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1 Introduction

This working note describes how to install and test version 1.8 of ScaLAPACK [1].
This release of ScaLAPACK includes:

e Externalisation of the LAPACK routines. Now you NEED the LAPACK library
installed on your machine in order to link/run a ScaLAPACK program.

e 2 new routines: p[sdcz|lawrite and [psdcz]laread declined in the 4 precisions( they
haev been adapated from ScaEx example from Antoine Pettitet.

e a new directory EXAMPLE that contains a ScaLAPACK example in the 4 precisions.
e Several bug fixes.

For a detailed explanation of the design and contents of the ScaLAPACK library, please
refer to the ScaLAPACK Users’ Guide[1].
ScaLAPACK is freely available on netlib and can be obtained via the World Wide Web

or anonymous ftp.
http://www.netlib.org/scalapack/scalapack.tgz

Prebuilt ScalLAPACK libraries are available on netlib for a variety of architectures.
http://www.netlib.org/scalapack/archives/

However, if a prebuilt library does not exist for your architecture, you will need to download
the distribution tar file and build the library as instructed in this guide.

To install and test ScaLAPACK, the user must have the BLACS, BLAS[9, 6, 5], LAPACK][11]
and MPI [7] or PVM [8] available on his machine.

ScaLAPACK has been tested on MPPs like the IBM SP series, Cray T3E, and SGI
Origin 2000/3000, and tested on clusters of PCs and networks of workstations supporting
MPI or PVM.10

Section 2 contains step-by-step installation and testing/timing instructions. For users
desiring additional information, Section 3 gives details on the testing/timing programs for
the ScaLAPACK codes and their input files. Appendices A and B describe the ScaLAPACK
driver, computational, and auxiliary routines currently available.

2 Installation Procedure

Installing, testing, and timing ScalLAPACK involves the following steps:

1. Gunzip and tar the file scalapack.tgz.

°Tt is very important to note that only PVM version 3.3 or later is supported with the BLACS[4, 10].
Due to major changes in PVM and the resulting changes required in the BLACS, earlier versions of PVM
are NOT supported.



2. Copy the SLmake.inc.example to SLmake.inc and edit the SLmake.inc include file,
specifying the location of the MPI or PVM library, the BLACS library, the BLAS
library and the LAPACK library.

3. Edit the top-level Makefile, and type make to generate the ScaLAPACK library
4. Type make exe to generate the ScaLAPACK Test Suite(s).
5. Run the Test Suite(s).

If failures are encountered during any phase of the installation or testing process, please
first refer to the FAQ and Errata files for information

http://www.netlib.org/scalapack/faq.html

http://www.netlib.org/scalapack/errata.html
and if that does not resolve the problem, please contact the developers at

scalapack@cs.utk.edu

2.1 Gunzip and tar the file scalapack.tgz

The software is distributed in the form of a gzipped tar file which contains the ScalLA-
PACK source code and test suite, as well as the PBLAS source code and testing/timing
programs. The PBLAS are parallel versions of the Level 1, 2, and 3 BLAS. For more details
on the PBLAS, refer to [2, 3].

http://www.netlib.org/scalapack/scalapack.tgz
To unpack the scalapack.tgz file, type the following command:

gunzip -c scalapack.tgz | tar xvf -

This will create a top-level directory called SCALAPACK as shown in Figure 1. Please note
that this figure does not reflect everything that is contained in the SCALAPACK directory.
Input and instructional files are also located at various levels. Libraries are created in the

SCALAPACK

| | | | | | |

PBLAS SRC  TESTING TOOLS REDIST EXAMPLE INSTALL

T

SRC  TESTING  LIN EIG SRC  TESTING

Figure 1: Organization of ScaLAPACK

SCALAPACK directory and executable files are created in the TESTING directory(ies). Input
files are copied into the TESTING directory at the time each executable is created. You will
need approximately 28 Mbytes of space for the tar file. Your total space requirements will
vary depending upon if all platforms of the BLACS are installed and the size of executable
files that your configuration can handle.



2.2 Edit the SLmake.inc include file

Example machine-specific SCALAPACK/SLmake . inc files are provided in the INSTALL
subdirectory for the Intel i860, IBM SP, Cray T3E, SGI Origin, and various workstations
using MPI or PVM. When you have selected the machine to which you wish to install ScalLA-
PACK, copy the appropriate sample include file (if one is present) into SCALAPACK/SLmake . inc.
For example, if you wish to run ScaLAPACK on a DEC ALPHA,

cp INSTALL/SLmake.ALPHA SLmake.inc

Edit the SLmake.inc make include file to contain the following:
1. Specify the complete path to the top level SCALAPACK directory called home.

2. Identify the platform to which you will be installing the libraries. If your directory
structure for ScalLAPACK is different than the aforementioned structure, you will also
need to specify locations of SCALAPACK subdirectories.

3. Define F77, NOOPT, F77FLAGS, CC, CCFLAGS, LOADER, LOADFLAGS, ARCH, ARCHFLAGS,
and RANLIB, to refer to the compiler and compiler options, loader and loader options,
library archiver and options, and ranlib for your machine. If your machine does not
require ranlib set RANLIB = echo.

4. Specify the C preprocessor definitions for compilation, BLACSDBGLVL and CDEFS. The
possible values for BLACSDBGLVL are 0 and 1. The possible options for CDEFS are
-DAdd_, -DNoChange, and -DUPCASE. If you are on a DEC ALPHA, you must also add
-DNO_IEEE to the definition of CDEFS.

5. Specify the locations of the needed libraries: BLACS, PVM or MPI, BLAS and LAPACK.

This make include file is referenced inside each of the makefiles in the various subdirectories.
As a result, there is no need to edit the makefiles in the subdirectories. All information
that is machine specific has been defined in this include file.

2.2.1 Further Details to obtain BLACS, BLAS, LAPACK and PVM or MPI

Prebuilt BLACS libraries are available on netlib for a variety of architectures and message
passing library combinations;

http://www.netlib.org/blacs/archives
otherwise, the BLACS distribution tar files are available.

http://www.netlib.org/blacs/mpiblacs.tgz
http://www.netlib.org/blacs/pvmblacs.tgz

After obtaining the source, follow the instructions in “A User’s Guide to the BLACS”
or in the ”Installing the BLACS” section of the BLACS webpage to install the library.
Instructions for running the BLACS Test Suite can be found in “A User’s Guide to the
BLACS Tester”. Both of these documents are available via the blacs index on netlib.



If an vendor optimized BLAS library is not available, then the user can install ATLAS
which will generate an optimized BLAS library for the given architecture, or install the
Fortran77 reference implementation of the BLAS.

http://www.netlib.org/blas/faq.html#1.6
http://www.netlib.org/atlas/
http://www.netlib.org/blas/blas.tgz

An optimized BLAS library is essential for best performance, and use of the Fortran77
reference implementation BLAS is strongly discouraged.

If an vendor optimized LAPACK library is not available, then the user can install
LAPACK from netlib.

http://www.netlib.org/lapack/faq.html#1.1
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/lapack.tgz

If a vendor-supplied MPI or PVM library is not available, portable implementations of
PVM and MPI (MPICH and LAM/MPI) are available: If a vendor-supplied MPI or PVM
library is not available, portable implementations of PVM and MPI (MPICH, MPICH2,
Open MPI and LAM/MPI) are available:

http://www.netlib.org/pvm3/
http://www-unix.mcs.anl.gov/mpi/mpichl/
http://www-unix.mcs.anl.gov/mpi/mpich//
http://www.lam-mpi.org/ http://www.open-mpi.org/

Installation instructions for PVM are contained in the PVM Users’ Guide [8]. An Instal-
lation Guide for MPICH/MPICH2 is available on the aforementioned webpage. Likewise,
installation instructions for Open MPI and LAM/MPI are contained on their respective
webpage.

2.3 Edit the top-level SCALAPACK/Makefile and type make

A top-level SCALAPACK/Makefile has been included to build all libraries, testing exe-
cutables and examples. This makefile is very useful if you are familiar with the installation
process and wish to do a quick installation. Your instructions to build the ScaLAPACK
library are:

cd SCALAPACK
make

If you wish to build the testing executables (assuming that all libraries have previously
been built), you can specify

make exe.

If you wish to build the examples (assuming that all libraries have previously been built),
you can specify



make example.

If you wish to build only selected libraries or executables, you can modify the 1ib or
exe definition accordingly.

To specify the data types to be built, you will need to modify the definition of PRECISIONS.
By default, PRECISIONS is set to

PRECISIONS = single double complex complex16

to build all precisions of the libraries and executables. If you only wish to compile the
single precision real version of a target specify single, for double precision real specify
double, for single precision complex specify complex, and for double precision complex
specify complex16.

By default, the presence of no arguments following the make command will result in the
building of all data types. The make command can be run more than once to add another
data type to the library if necessary.

You may then proceed to running each of the individual test suites. See section 2.4 for
details on the PBLAS Test Suite, section 2.6 to run the REDIST test suite, and section
2.7 for details on the ScaLAPACK Test Suite. After all testing has been completed, you
can remove all object files from the various subdirectories and all executables from the
SCALAPACK/TESTING directory by typing

make clean.

Or, you can selectively remove only the object files with make cleanlib, make cleanexe
to remove only the testing routine object files and executable files, or make cleanexample
to remove only the object files created for the examples.

2.4 Run the PBLAS Test Suite

The PBLAS testing executables are created in the PBLASTSTdir directory as defined in
SLmake.inc. By default, these testing executables are copied into the SCALAPACK/TESTING
directory. For the Level 1 PBLAS routines, the testing executables are called xspblasitst,
xdpblasitst, xcpblasitst, and xzpblasltst. Likewise, the testing executables for the
Level 2 PBLAS are xspblas2tst, xdpblas2tst, xcpblas2tst, and xzpblas2tst. The
testing executables for the Level 3 PBLAS are xspblas3tst, xdpblas3tst, xcpblas3tst,
and xzpblas3tst. There is one input file associated with each testing executable. For
example, the input file for xspblasitst is called PSBLA1TST.dat. The input files are
copied to the PBLASTSTdir directory at the time the executables are built.

For brevity, we shall only list instructions for testing PBLAS executables using MPICH
on a network of workstations, and PVM on a network of workstations. Execution instruc-
tions for the various distributed-memory computers are machine-dependent.

Testing instructions with MPICH on a network of workstations

For the sake of an example, we shall assume that you have installed the portable im-
plementation of MPI, called MPICH, and built the PBLAS tester executables for each of the



machines used in your application. The executable files are not required to be stored in a
particular directory. Then, to run the executable, you will use the command mpirun. For
example,

mpirun -np <number of processes> <executable>

where <executable> is replaced by xspblasltst, and so on. If the network of work-
stations is heterogeneous, you will need to specify the —p4pg option and supply a text file
containing the names of the machines and the locations of the executables to which you will
spawn tasks. Refer to the mpirun manpage for complete details.

Testing instructions with PVM on a network of workstations

First, insure that the PVM library and tester executable files have been compiled for
each of the machines used in your PVM implementation. PVM 3.3 requires that executable
files be stored in a particular directory so that the PVM daemon can find them. In the
general case, PVM looks for executable files in ~/pvm3/bin/arch, where arch specifies the
architecture for which the executable has been built. For example, if one wished to run the
test program on a SUN SPARCstation and on an IBM RS6000 workstation, appropriately
compiled executable files need to be placed in ~/pvm3/bin/SUN4 and ~/pvm3/bin/RS6K (for
more directory information, consult the PVM documentation). If you wish to run the tests
on machines that are not connected to the same file system, you need to make sure that
the executable is available on each file system. Next, start pvm by typing

pvm

At this point, you specify the machines that are to take part in the testing process (see
the PVM documentation for more information). Finally, to test the REAL PVM Level 1
PBLAS, start the test program by typing:

xspblasltst

on one of the machines that is a member of your PVM machine. This program will then
instruct the PVM daemon to start processes on the other computers in your PVM machine
and you will be prompted by the program for the name of the executable. Make sure that
PSBLA1TST.dat is located in the same directory as xspblasitst. It is read on the machine
from which you type xspblasitst and its contents distributed to the other computers in
your PVM machine.

Alternatively, you can use blacs_setup.dat to perform much of this process. This file
specifies the name of the executable and the machines to spawn in your pvm cluster, as well
as a few other features. See the “A User’s Guide to the BLACS” for details. However, the
use of this file is not recommended for the naive user.

Similar commands should be used for the other test programs, with the second letter
‘s’ in the executable and data file replaced by ‘d’, ‘c’, or ‘z’. The name of the output file is
indicated on the first line of the input file and is currently defined to be PSBLA1TST . SUMM for
the REAL version, with similar names for the other data types. The user may also choose
to send all output to standard error.



2.5 Run the PBLAS Timing Suite (optional)
a) Go to the directory SCALAPACK/PBLAS/TIMING.

b) Type make followed by the data types desired. For the Level 1 PBLAS routines,
the timing executables are called xspblasltim, xdpblasltim, xcpblasltim, and
xzpblasltim, and are created in the PBLASTSTdir directory as defined in SLmake. inc.
Likewise, the timing executables for the Level 2 PBLAS are xspblas2tim, xdpblas2tim,
xcpblas2tim, and xzpblas2tim. The timing executables for the Level 3 PBLAS are
xspblas3tim, xdpblas3tim, xcpblas3tim, and xzpblas3tim. There is one input file
associated with each timing executable. For example, the input file for xspblasitim
is called PSBLA1TIM.dat. The input files are copied to the PBLASTSTdir directory at
the time the executables are built.

¢) Run the timing executables on the desired platform as analogously described in Sec-
tion 2.4.

2.6 Run the REDIST Test Suite

The redistribution/copy routines allow the redistribution of a 2-D block cyclic dis-
tributed general or trapezoidal matrix from an arbitrary P x () grid with arbitrary blocksize
to another grid with arbitrary blocksize.

a) Go to the directory SCALAPACK/REDIST/TESTING.

b) Type make followed by the data types desired. The testing executables are called
xigemr, xsgemr, xdgemr, xcgemr, xzgemr for the redistribution of general matrices.
They are called xitrmr, xstrmr, xdtrmr, xctrmr, and xztrmr for trapezoidal matri-
ces, and are created in the REDISTdir/TESTING directory as defined in SLmake.inc.
There is one input file GEMR2D . dat for general matrices, and one input file TRMR2D . dat
for trapezoidal matrices. Each line of the input file is a separate test.

2.7 Run the ScaLAPACK Test Suite

There are eighteen distinct test programs for testing the ScaLAPACK routines of the
following type: LU, Cholesky, Band LU, Band Cholesky, General Tridiagonal, Band Tridi-
agonal, QR (RQ, LQ, QL, QP, and TZ), Linear Least Squares, upper Hessenberg reduction,
tridiagonal reduction, bidiagonal reduction, matrix inversion, the symmetric eigenproblem,
the generalized symmetric eigenproblem, the nonsymmetric eigenproblem, and the singular
value decomposition.

Each of the test programs is automatically timed and reports a table of execution
times and megaflop rates. There is one input file for each test program. As previously
stated, the input files reside in the SCALAPACK/TESTING subdirectory and are copied into
the TESTINGdir directory (as specified in the SLmake.inc file) at the time the executables
are built. All testing programs occur in four precisions, with the exception of the singular
value decomposition which only occurs in SINGLE and DOUBLE PRECISION REAL. For
more information on the test programs and how to modify the input files see Section 3.
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Run the testing executables on the desired platform as analogously described in Sec-
tion 2.4. For example, in double precision, the testing executables are named xdlu, xd11t,
xddblu, xdgblu, xddtlu, xdpbllt, xdptllt, xdls, xdqr, xdhrd, xdtrd, xdbrd, xdinv,
xdsep, xdgsep, xdnep, and xdsvd. The input files are LU.dat, LLT.dat, BLU.dat, BLLT .dat,
LS.dat, QR.dat, HRD.dat, TRD.dat, BRD.dat, INV.dat, SEP.dat, NEP.dat, and SVD.dat.

Similar commands can be used for alternate precisions of the same test program or other
test programs. The name of the output file is indicated on the first line of the input file
and is currently defined to be 1u.out for the LU tester, with similar names for the other
data types. The user may also choose to send all output to standard error.

2.8 Run the examples

In the EXAMPLE directory, you have a program declined in the 4 precisions that
solves a linear system by calling the ScaLAPACK routine PDGESV. The input matrix and
right-and-sides are read from a file. The solution is written to a file.

To compile and create the example executables (assuming that all librairies have previ-
ously been built), type make example or make if you are in the EXAMPLE directory.
This will create the four executables in the TESTING directory:

e xsscaex: for the example using single precision

e xdscaex: for the example using double precision

e xcscaex: for the example using complex precision

e xzscaex: for the example using double complex precision.

and copy the input files in the TESTING directory. The input files are CSCAEXMAT.dat,
CSCAEXRHS . dat, DSCAEXMAT . dat, DSCAEXRHS . dat, SCAEX . dat, SSCAEXMAT . dat, SSCAEXRHS . dat,
ZSCAEXMAT.dat and ZSCAEXRHS.dat.

To run the example programs using MPI, type (for single precision example)

mpirun -np <number of processes> xsscaex
The results will be written in CSCAEXSOL.dat for xcscaex , DSCAEXSOL.dat for xdscaex,
SSCAEXSOL.dat for xsscaex andZSCAEXSOL.dat for xzscaex.
2.9 Troubleshooting

If failures are encountered during any phase of the installation or testing process, please
first refer to the FAQ and Errata files for information

http://www.netlib.org/scalapack/faq.html
http://www.netlib.org/scalapack/errata.html

and if that does not resolve the problem, please contact the developers at
scalapack@cs.utk.edu

This release of ScaLAPACK is compatible with the previous release (version 1.7).
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3 More About the ScaLAPACK Test Suite

The main test programs for the ScalLAPACK routines are located in the SCALAPACK/TESTING/LIN
and SCALAPACK/TESTING/EIG subdirectories and are called pd__driver.f (ps__driver.f for
REAL, pc_driver.f for COMPLEX, and pz_driver.f for COMPLEX*16), where the __
is replaced by 1lu, qr, 11t, and so on. Each of the test programs for the ScaLAPACK
routines has a similar style of input.

The following sections describe the different input formats and testing verifications. The
data inside the input files is only test data designed to exercise the code. It should NOT
be interpreted in any way as OPTIMAL performance values for any of the routines. For
best performance, the value of the blocksize NB should be set to the value determined by
ATLAS as optimal. A good starting point is a multiple of 16 — e.g., 16, 32, 48, 64.

The test programs for the routines are driven by separate data files.

The number and size of the input values are limited by certain program maximums
which are defined in PARAMETER statements in the main test programs. These program
maximums are:

Parameter  Description Value
TOTMEM Total Memory available for testing data 2000000
INTGSZ Length in bytes to store a INTEGER element 4
REALSZ Length in bytes to store a REAL element 4
DBLESZ Length in bytes to store a DOUBLE PRECISION element 8
CPLXSZ Length in bytes to store a COMPLEX element 8
ZPLXSZ Length in bytes to store a COMPLEX*16 element 16
NTESTS Maximum number of tests to be performed 20

The user should modify TOTMEM to indicate the maximum amount of memory in
bytes his system has available. You must remember to leave room in memory for the op-
erating system, the BLACS buffer, etc. For example, for PVM, the parameters we use are
TOTMEM=2,000,000, and the length of a DOUBLE is 8. Some experimenting with the
maximum allowable value of TOTMEM may be required. All arrays used by the factor-
izations, reductions, solves, and condition and error estimation are allocated out of the big
array called MEM.

Please note that these parameter maximums in the test programs assume at least 2
Megabytes of memory per process. Thus, if you do not have that much space per process
then you will need to reduce the size of the parameters.

For each of the test programs, the test program generates test matrices (nonsymmet-
ric, symmetric, symmetric positive-definite, or upper Hessenberg), calls the ScaLAPACK
routines in that path, and computes a solve and/or factorization and/or reduction residual
error check to verify that each operation has performed correctly. The factorization residual
is only calculated if the residual for the solve step exceeds the threshold value THRESH.
Thus, if a user wants both checks automatically done then he should set THRESH = 0.0.

When the tests are run, each test ratio that is greater than or equal to the threshold
value causes a line of information to be printed to the output file.

A table of timing information is printed in the output file containing execution times as
well as megaflop rates.

12



After all of the tests have been completed, summary lines are printed of the form

Finished 180 tests, with the following results:
180 tests completed and passed residual checks.
0 tests completed and failed residual checks.
O tests skipped because of illegal input values.

END OF TESTS.

3.1 Tests for the ScaLAPACK LU routines

The LU test program generates random nonsymmetric test matrices with values in the
interval [-1,1], calls the ScaLAPACK routines to factor and solve the system, and computes a
solve and/or factorization residual error check to verify that each operation has performed
correctly. Condition estimation and iterative refinement routines are included and are
optionally tested.

Specifically, each test matrix is subjected to the following tests:

e Factor the matrix A = LU using PxGETRF

e Solve the system AX = B using PxGETRS, and compute the ratio
SRESID = [|AX — BI|/(nl|All|| X][¢)

e If SRESID > THRESH, then compute the ratio

FRESID = ||LU — Al|/(n||A]|¢)

The expert driver (PxGESVX) performs condition estimation and iterative refinement and
thus incorporates the following additional test:

e Compute the reciprocal condition number RCOND using PxGECON.
e Use iterative refinement (PxGERFS) to improve the solution, and recompute the ratio
SRESID = ||AX — BI|/(nl|All|1X]J¢)
3.1.1 Input File for Testing the ScaLAPACK LU Routines
An annotated example of an input file for the test program is shown below.

’ScaLAPACK LU factorization input file’
’MPI machine.’

’lu.out’ output file name (if any)
6 device out

2 number of problems sizes
250 553 values of N

3 number of NB’s

235 values of NB

13



2 number of NRHS’s

15 values of NRHS

3 Number of NBRHS’s

135 values of NBRHS

5 Number of processor grids (ordered pairs of P & Q)
14218 values of P

12481 values of Q

1.0 threshold

T (T or F) Test Cond. Est. and Iter. Ref. Routines

3.2 Tests for the ScaLAPACK Band and Tridiagonal LU routines

The LU test program generates random nonsymmetric band test matrices with values
in the interval [-1,1], calls the ScaLAPACK routines to factor and solve the system, and
computes a solve and/or factorization residual error check to verify that each operation has
performed correctly.

Specifically, each test matrix is subjected to the following test:

e Compute the Band or Tridiagonal LU factorization using PxDBTRF (PxGBTRF or
PxDTTRF)

e Solve the system AX = B using PxDBTRS (PxGBTRS or PxDTTRS), and compute
the ratio

SRESID = ||AX — B||/(n||A[|[|X]le)
3.2.1 Input File for Testing the ScaLAPACK Band and Tridiagonal LU Rou-
tines

An annotated example of an input file for the test program is shown below.

’ScaLAPACK, Version 1.5, banded linear systems input file’
PVM.°
20 output file name (if any)

6 device out
T define transpose or not
7348 number of problem sizes
2 5 17 28 37 121 200 1023 2048 3073 values of N
6 number of bandwidths
123156 8 values of BWL
2114 156 values of BWU
1 number of NB’s
-1345 values of NB (-1 for automatic determination)
1 number of NRHS’s (must be 1)
8 values of NRHS
1 number of NBRHS’s (ignored)
1 values of NBRHS (ignored)
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4 number of process grids
1234578 15 26 47 64 values of "Number of Process Columns"
3.0 threshold

3.3 Tests for the ScaLAPACK LLT routines

The Cholesky test program generates random symmetric test matrices with values in
the interval [-1,1] and then modifies these matrices to be diagonally dominant with posi-
tive diagonal elements thus creating symmetric positive-definite matrices. It then calls the
ScalLAPACK routines to factor and solve the system, and computes a solve and/or factor-
ization residual error check to verify that each operation has performed correctly. Condition
estimation and iterative refinement routines are included and optionally tested.

Specifically, each test matrix is subjected to the following tests:

e Compute the LLT factorization using PxPOTRF

e Solve the system AX = B using PxPOTRS, and compute the ratio
SRESID = || AX — BI|/(n]|All|| X]|¢)

o IF SRESID > THRESH, then compute the ratio
FRESID = ||[LLT — Al|/(n||A]l¢)

The expert driver (PxPOSVX) performs condition estimation and iterative refinement and
thus incorporates the following additional tests:

e Compute the reciprocal condition number RCOND using PxPOCON.
e Use iterative refinement (PxPORFS) to improve the solution, and recompute the ratio

SRESID = ||AX — B||/(n||A[|[|X]le)
3.3.1 Input File for Testing the ScaLAPACK LLT Routines
An annotated example of an input file for the test program is shown below.

’ScaLAPACK LLT factorization input file’
’MPI machine.’

’11test.out’ output file name (if any)
6 device out

2 number of problems sizes
250 553 values of N

3 number of NB’s

235 values of NB

2 number of NRHS’s

15 values of NRHS

3 Number of NBRHS’s

135 values of NBRHS
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3.4 Tests for the ScaLAPACK Band

5 Number of processor grids (ordered pairs of P & Q)
14281 values of P

12418 values of Q

1.0 threshold

T (T or F) Test Cond. Est. and Iter. Ref. Routines

and Tridiagonal LLT routines

The Cholesky test program generates random symmetric positive definite band or tridi-
agonal test matrices with values in the interval [-1,1]. It then calls the ScaLAPACK routines

to factor and solve the system, and computes a
operation has performed correctly.

solve residual error check to verify that each

Specifically, each test matrix is subjected to the following tests:

e Compute the Band or Tridiagonal LLT factorization using PxPBTRF (or PxPTTRF)

e Solve the system AX = B using PxPBTRS (or PxPTTRS), and compute the ratio

SRESID = [|AX — B||/(n][A[[ [[X]le)

3.4.1 Input File for Testing the ScaLAPACK Band or Tridiagonal LLT Rou-

tines

An annotated example of an input file for the test program is shown below.

’ScalAPACK, banded linear systems input file’

’PVM.’

20 output file name (if any)

6 device out

'L’ define Lower or Upper

7 number of problem sizes

1 5 17 28 37 121 200 values of N

6 number of bandwidths

12410 31 64 values of BW

1 number of NB’s

-1345 values of NB (-1 for automatic determination)
1 number of NRHS’s (must be 1)

8 values of NRHS

1 number of NBRHS’s (ignored)

1 values of NBRHS (ignored)

4 number of process grids

123457 values of "Number of Process Columns"
3.0 threshold
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3.5 Tests for the ScaLAPACK QR, RQ, LQ, QL, QP, and TZ routines

The QR test program generates random nonsymmetric test matrices with values in
the interval [-1,1], calls the ScaLAPACK routines to factor the system, and computes a
factorization residual error check to verify that each operation has performed correctly.

Specifically, each test matrix is subjected to the following tests:

e Compute the QR factorization using PxGEQRF, and generate the orthogonal matrix
Q) from the Householder vectors

e Compute the ratio
FRESID = ||QR — Al|/(n[|Alle)

The testing of the RQ, LQ, QL, and QP routines proceeds in a similar fashion. Simply
replace all occurrences of QR in the previous discussion with RQ, LQ, QL, or QP respec-
tively. For TZ, the factorization routine is called PxTZRZF.

3.5.1 Input File for Testing the ScaLAPACK QR, RQ, LQ, QL, QP, and TZ
Routines
An annotated example of an input file for the test program is shown below.

’ScalLAPACK, Orthogonal factorizations input file’
’MPI machine’

’QR.out’ output file name (if any)

6 device out

6 number of factorizations

’QR’> ’QL’ °LQ’ ’RQ’ ’QP’ °’TZ’ factorizations: QR, QL, LQ, RQ, QP, TZ
4 number of problems sizes

2 513 15 13 26 30 15 values of M

278 10 17 20 30 35 values of N

4 number of blocking sizes

435546 values of MB

473582 values of NB

4 number of process grids (ordered pairs P & Q)
1214238 values of P

1241321 values of Q

3.0 threshold

w
o

Tests for the Linear Least Squares (LLS) routines

The LLS test program tests the PxGELS driver routine for computing solutions to over-
and underdetermined, full-rank systems of linear equations AX = B (A is m-by-n). For
each test matrix type, we generate three matrices: One which is scaled near underflow, a
matrix with moderate norm, and one which is scaled near overflow.

The PxGELS driver computes the least-squares solutions (when m > n) and the minimum-
norm solution (when m < n) for an m-by-n matrix A of full rank. To test PxGELS, we
generate a diagonally dominant matrix A, and for C = A and C = A¥ | we
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e generate a consistent right-hand side B such that X is in the range space of C', compute
a matrix X using PxGELS, and compute the ratio

||AX = B[/ (max(m, n)||A[[[| X[|¢)

e If C has more rows than columns (i.e. we are solving a least-squares problem), form
R = AX — B, and check whether R is orthogonal to the column space of A by
computing

|RTC|/ (max(m, n, nrhs)||All[| Blle)

e If C has more columns than rows (i.e. we are solving an overdetermined system), check
whether the solution X is in the row space of C' by scaling both X and C' to have
norm one, and forming the QR factorization of D = [A, X] if C' = Af and the LQ
factorization of D = [A X|H if C = A. Letting E = D(n : n+nrhs,n+1,n+nrhs)
in the first case, and E = D(m + 1 : m + nrhs,m + 1 : m + nrhs) in the latter, we
compute

max |d;;|/(max(m, n, nrhs)e)

3.6.1 Input File for Testing the ScaLAPACK LLS Routines

An annotated example of an input file for the test program is shown below.

’ScalLAPACK LLS input file’

’MPI machine’

’LS.out’ output file name (if any)
6 device out

3 number of problems sizes
55 17 31 values of M

571 31 values of N

3 number of NB’s

235 values of NB

3 number of NRHS’s

235 values of NRHS

2 number of NBRHS’s

12 values of NBRHS

4 number of process grids (ordered pairs P & Q)
1 values of P

1
4

D=
=
w N
N W
= 00

values of Q
threshold

S NN

3.7 Tests for the ScaLAPACK INYV routines

The inversion test driver tests five different matrix types — general nonsymmetric (GEN),
general upper or lower triangular (UTR and LTR), and symmetric positive definite (upper
or lower triangular) (UPD or LPD).

18



by invoking PxGETRI

by invoking PxTRTRI

If GEN, compute the LU factorization using PxGETRF, and then compute the inverse

If UTR or LTR, set UPLO="U’ or UPLO="L’ respectively, and compute the inverse

If UPD or LPD, set UPLO="U’ or UPLO="L’ respectively, compute the Cholesky

factorization using PxPOTRF, and then compute the inverse by invoking PxPOTRI

e Compute the ratio

FRESID = [|AA~" — I||/(n]|All¢)

3.7.1 Input File for Testing the ScaLAPACK INV Routines

An annotated example of an input file for the test program is shown below.

’ScalLAPACK, Matrix Inversion Testing input file’
’MPI machine.’

>INV.out’

6
5

number

of

’GEN’ °UTR’ °LTR’ ’UPD’ ’LPD’ GEN, UTR,

4 number of
2 5 10 15 13 20 30 50 values of
4 number of
23456 20 values of
4 number of
1214238 values of
1141321 values of
1.0 threshold

output file name (if any)
device out

matrix types (next line)

LTR, UPD, LPD

problems sizes

N

NB’s

NB

process grids (ordered P & Q)
P

Q

3.8 Tests for the ScaLAPACK HRD routines

The HRD test program generates random nonsymmetric test matrices with values in the
interval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to upper Hessenberg
form, and computes a reduction residual error check to verify that each operation has
performed correctly.
Specifically, each test matrix is subjected to the following tests:

e Reduce the matrix A to upper Hessenberg form H using PxGEHRD

QT+ AxQ=H.

e and compute the ratio

FRESID = ||Q + H + Q" — Al|/(n]|Alle)
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3.8.1 Input File for Testing the ScaLAPACK HRD Routines

An annotated example of an input file for the test program is shown below.

’ScalAPACK HRD input file’
’MPI machine.’

’HRD.out’ output file name (if any)
6 device out

1 number of problems sizes
100 101 values of N

11 values of ILO

100 101 values of IHI

1 number of NB’s
212345 values of NB

1 number of processor grids (ordered pairs of P & Q)
214 values of P

241 values of Q

1.0 threshold

3.9 Tests for the ScaLAPACK TRD routines

The TRD test program generates random symmetric test matrices with values in the
interval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to symmetric tridi-
agonal form, and computes a reduction residual error check to verify that each operation
has performed correctly.

Specifically, each test matrix is subjected to the following tests:

e Reduce the symmetric matrix A to symmetric tridiagonal form T using PxSYTRD
QT+ AxQ=T.
e and compute the ratio
FRESID = [|Q «T + Q7 — All/(n]|All)
3.9.1 Input File for Testing the SCALAPACK TRD Routines
An annotated example of an input file for the test program is shown below.

’ScalAPACK TRD computation input file’
’MPI machine.’

>TRD.out’ output file name

6 device out

'L’ define Lower or Upper

2 number of problems sizes
16 17 100 101  values of N

3 number of NB’s

345 values of NB
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3 Number of processor grids (ordered pairs of P & Q)
241 values of P

214 values of Q

1.0 threshold

3.10 Tests for the ScaLAPACK BRD routines

The BRD test program generates random nonsymmetric test matrices with values in
the interval [-1,1], calls the ScaLAPACK routines to reduce the test matrix to upper or
lower bidiagonal form, and computes a reduction residual error check to verify that each
operation has performed correctly.

Specifically, each test matrix is subjected to the following tests:

e Reduce the matrix A to upper or lower bidiagonal form B using PxGEBRD
QT xAxP=DB.
e and compute the ratio

FRESID = ||Q * B x PT — Al|/(n||A]le)

3.10.1 Input File for Testing the ScaLAPACK BRD Routines
An annotated example of an input file for the test program is shown below.

’ScaLAPACK BRD input file’
’MPI machine.’

’BRD.out’ output file name (if any)
6 device out
3 number of problems sizes

16 14 25 15 16 values of M
9 13 20 15 16 wvalues of N

2 number of NB’s

345 values of NB

3 Number of processor grids (ordered pairs of P & Q)
241 values of P

214 values of Q

1.0 threshold

3.11 Tests for the ScaLAPACK SEP routines

The following tests will be performed on PxSYEV/PxHEEV, PxSYEVX/PxHEEVX
and PxSYEVD/PxHEEVD:

B |AZ — ZL||
"7 Gbstol + ulp || A]|
L lzrz-

ulp || All
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where Z is the matrix of eigenvectors returned when the eigenvector option is given, L is
the matrix of eigenvalues, ulp represents PxUAMCH( ICTXT, 'P’ ), and abstol represents
ulp || A].

The tester allows multiple test requests to be controlled from a single input file. Each
test request is controlled by the following inputs:

Values of N
N = The matrix size

Values of P, Q, NB
P = NPROW, the number of processor rows
Q = NPCOL, the number of processor columns
NB = the block size

Values of the matrix types
See Section 3.11.1.

Number of eigen requests
1 = Test full eigendecomposition only
8 = Test the following eigen requests:
Full eigendecomposition
All eigenvalues, no eigenvectors
Eigenvalues requested by value (i.e. VL,VU)
Figenvalues and vectors requested by value
Eigenvalues requested by index (i.e. 1L, IU)
Figenvalues and vectors requested by index
Full eigendecomposition with minimal workspace provided
Full eigendecomposition with random workspace provided

Threshold
The highest value of 71,72 and r3 that will be accepted.

Absolute tolerance
Must be -1.0 to ensure orthogonal eigenvectors

Print Request
1 = Print every test
2 = Print only failing tests and a summary of the request

3.11.1 Test Matrices for the Symmetric Eigenvalue Routines

Twenty-two different types of test matrices may be generated for the symmetric
eigenvalue routines. Table 1 shows the types, along with the numbers used to refer to the
matrix types. Except as noted, all matrices have norm O(1). The expression U DU ~! means
a real diagonal matrix D with entries of magnitude O(1) conjugated by a unitary (or real
orthogonal) matrix U.
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Eigenvalue Distribution

Type Arithmetic \ Geometric \ Clustered Other
Zero 1
Identity 2
Diagonal 3 4, 67, 7% 5
UDU! 8, 117, 12F, 9, 17* 10, 18*

16%, 19*, 20°
Symmetric w/Random entries 13, 147, 157
Tridiagonal 214
Multiple Clusters 220

T— matrix entries are O(v/overflow)

I— matrix entries are O(v/underflow)

* — diagonal entries are positive

* — matrix entries are O(voverflow) and diagonal entries are positive

e — matrix entries are O(v/underflow) and diagonal entries are positive

a — Some of the immediately off-diagonal elements are zero - guaranteeing splitting
b — Clusters are sized: 1, 2, 4, ..., 2%

Table 1: Test matrices for the symmetric eigenvalue problem

3.11.2 Input File for Testing the Symmetric Eigenvalue Routines and Drivers

An annotated example of an input file for testing the symmetric eigenvalue routines
and drivers is shown below.

’ScaLAPACK Symmetric Eigensolver Test File’

) )

’sep.out’ output file name (if any)

6 device out (13 & 14 reserved for internal testing)
4 maximum number of processes

’N’disable pxsyev tests, recommended for heterogeneous systems.
) )

TEST 1 - test tiny matrices - different process configurations’
3 number of matrices

0 1 2 matrix size

1 number of uplo choices

’L’uplo choices

2 number of processor configurations (P, Q, NB)

11 values of P (NPROW)

2 1 values of Q (NPCOL)

11 values of NB

1 number of matrix types

8 matrix types (see pdseptst.f)

’N’perform subset tests?

80.0 Threshold (x* 5 for generalized tests)
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-1 Absolute Tolerance
J J

’End of tests’
-1

3.12 Tests for the ScaLAPACK GSEP routines

Finding the eigenvalues and eigenvectors of symmetric matrices A and B, where B is also
positive definite, follows the same stages as the symmetric eigenvalue problem except that
the problem is first reduced from generalized to standard form using PxSYGST /PxHEGST.

To check these calculations, the following test ratios are computed:

|AZ - BZD|
[AT 1 Z] oy
calling PxSYGVX/PxHEGVX with ITYPE=1 and UPLO="U’
|AZ - BZD|
[AT 1 Z] oy
calling PxSYGVX/PxHEGVX with ITYPE=1 and UPLO="L’
IAZ - BZD|
[ATTZ] oy
calling PxSYGVX/PxHEEVX with ITYPE=2 and UPLO="U’
IABZ — ZD||
[ATZ] oy
calling PxSYGVX/PxHEEVX with ITYPE=2 and UPLO="L’
IABZ — ZD||
[ATZ] oy
calling PxSYGVX/PxHEEVX with ITYPE=3 and UPLO="U’
IBAZ — ZD||
[ATZ] oy
calling PxSYGVX/PxHEEVX with ITYPE=3 and UPLO="L’
IBAZ— ZD||
[ATZ] oy

1

rs =

rg =

rio =

T2 =

T14

(1)

3.12.1 Input File for Testing the Generalized Symmetric Eigenvalue Routines
and Drivers

The input file for testing the generalized symmetric eigenvalue routines and drivers
is the same as that for testing the symmetric eigenproblem routines. Refer to the Section
3.11.2 for further details.

3.13 Tests for the ScaLAPACK NEP routines

The PxLAHQR test program generates random upper Hessenberg matrices, completes
a Schur decomposition on them, and then tests the resulting Schur decomposition for main-
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taining similarity. The following tests will be performed on P_LAHQR:

71 e
nulp | H||
r9 = —
nulp

(2)

where () is the Schur vectors of the upper Hessenberg matrix H when the Schur vector
and Schur decomposition option is given. N is the order of the matrix, ulp represents
PxLAMCH( ICTXT, 'P’ ), and the one-norm is used for the norm computations.

3.13.1 Input File for Testing the ScaLAPACK NEP Routines

An annotated example of an input file for the test program is shown below.

?SCALAPACK NEP (Nonsymmetric Eigenvalue Problem) input file’
’MPI Machine’

’NEP.out’ output file name (if any)

6 device out

8 number of problems sizes

12346 10 100 200 values of N

3 number of NB’s

6 20 40 values of NB

4 number of process grids (ordered pairs of P & Q)
1214 values of P

1241 values of Q

20.0 threshold

3.14 Tests for the ScaLAPACK EVC routines

The PCTREVC/PZTREVC test program performs a right and left eigenvector calcula-
tion of a triangular matrix followed by a residual checks of the calculated eigenvectors.
The following tests will be performed on P_.TREVC. The basic test is:

|\HZ — ZD||

&1
nulp || T

using the 1-norm. It also tests the normalization of Z.

max; ||m — norm(Z(j)) — 11|

ry =
nulp
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where H is the upper Hessenberg matrix, n is the order of the matrix, Z(j) is the j-th
eigenvector, and m-norm is the max-norm of a vector, and ulp represents PxLAMCH(
ICTXT, 'P’ ). The max-norm of a complex n-vector z in this case is the maximum of
lre(z(2))]| + |lim(z(7))]| over i =1,... ,n.

3.14.1 Input File for Testing the ScaLAPACK EVC Routines

An annotated example of an input file for the test program is shown below.

>SCALAPACK NEP (Nonsymmetric Eigenvalue Problem) input file’
’MPI Machine’

’EVC.out’ output file name (if any)
6 device out
1 number of problems sizes

100 1000 1500 2000 2500 3000 Probs

number of NB’s

values of NB

number of process grids (ordered pairs of P & Q)
values of P
values of Q

20.0 threshold

Ll S S © O I
=
=

NN
w w
= N

SN
0 =

3.15 Tests for the ScaLAPACK SVD routines

The following tests will be performed on PSGESVD/PDGESVD. A number of matrix
“types” are specified, as denoted in Table 2. For each type of matrix, and for the minimal
workspace as well as for larger than minimal workspace an M-by N matrix “A” with known
singular values is generated and used to test the SVD routines. For each matrix, A will be
factored as A = U diag(S) VT and the following 9 tests computed:

|A — Uldiag(S1)VT1|

b [A] max(M, N) ulp
|- T
2= M ulp
HI ~ VIV
"= N ulp
_ 0  if S1 contains SIZE nonnegative values in decreasing order.
"= % otherwise
ulp
e = A51-52|
° T SIZEM|S||
. U1 = U2
6 M ulp
I|IS1 — S3|
T = s T Ao
SIZE ulp||S||
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\VT1— VT3
N ulp
||IS1 — S4|
SIZEulp ||S||

where ulp represents PxLAMCH(ICTXT, 'P’).

rs =

T9 =

3.15.1 Test Matrices for the Singular Value Decomposition Routines

Six different types of test matrices may be generated for the singular value decom-
position routines. Table 2 shows the types available, along with the numbers used to refer
to the matrix types. Except as noted, all matrix types other than the random bidiagonal
matrices have O(1) entries. The expression UDV means a real diagonal matrix D with
O(1) entries multiplied by unitary (or real orthogonal) matrices on the left and right.

Singular Value Distribution
Type Arithmetic Other
Zero 1
Identity 2
Diagonal 3
UDV 4, 5T, 6%

1— matrix entries are O(voverflow)
I— matrix entries are O(v/underflow)

Table 2: Test matrices for the singular value decomposition

3.15.2 Input File for Testing the ScaLAPACK SVD Routines

An annotated example of an input file for the test program is shown below.

’ScaLAPACK Singular Value Decomposition input file’
6 device out
4 maxnodes

P}

TEST 1 - test medium matrices - all types and requests’

20.0 Threshold

1 number of matrices
100 number of rows

25 number of columns

number of processor configurations (P, Q, NB)
values of P (NPROW)

values of Q (NPCOL)

values of NB

00NN -

)

’End of tests’
-1
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Appendix A

ScaLAPACK Routines

In this appendix, we review the subroutine naming scheme for ScalLAPACK and indicate
by means of a table which subroutines are included in this release. We also list the driver
routines.

Each subroutine name in ScaLAPACK, which has an LAPACK equivalent, is simply
the LAPACK name prepended by a P. All names consist of seven characters in the form
PTXXYYY. The second letter, T, indicates the matrix data type as follows:

S REAL

D DOUBLE PRECISION

C COMPLEX

Z COMPLEX*16 (if available)

The next two letters, XX, indicate the type of matrix. Most of these two-letter codes
apply to both real and complex routines; a few apply specifically to one or the other, as
indicated below:

DB general band (diagonally-dominant like)

DT general tridiagonal (diagonally-dominant like)

GB general band

GE general (i.e. unsymmetric, in some cases rectangular)

GG general matrices, generalized problem (i.e. a pair of general matrices)
HE (complex) Hermitian

OR  (real) orthogonal

PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite

PT symmetric or Hermitian positive definite tridiagonal
ST symmetric tridiagonal

SY symmetric

TR triangular (or in some cases quasi-triangular)

TZ trapezoidal
UN (complex) unitary
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The last three characters, YYY, indicate the computation done by a particular subrou-
tine. Included in this release are subroutines to perform the following computations:

BRD reduce to bidiagonal form by orthogonal transformations
CON estimate condition number

EBZ  compute selected eigenvalues by bisection

EDC compute eigenvectors using divide and conquer

EIN  compute selected eigenvectors by inverse iteration

EQU equilibrate a matrix to reduce its condition number

EVC  compute the eigenvectors from the Schur factorization

GBR  generate the orthogonal /unitary matrix from PxGEBRD
GHR generate the orthogonal /unitary matrix from PxGEHRD
GLQ generate the orthogonal /unitary matrix from PxGELQF
GQL generate the orthogonal/unitary matrix from PxGEQLF
GQR generate the orthogonal /unitary matrix from PxGEQRF
GRQ generate the orthogonal/unitary matrix from PxGERQF

GST reduce a symmetric-definite generalized eigenvalue problem to standard form
HRD reduce to upper Hessenberg form by orthogonal transformations
LQF  compute an LQ factorization without pivoting

MBR  multiply by the orthogonal/unitary matrix from PxGEBRD
MHR multiply by the orthogonal/unitary matrix from PxGEHRD
MLQ multiply by the orthogonal/unitary matrix from PxGELQF
MQL multiply by the orthogonal/unitary matrix from PxGEQLF
MQR multiply by the orthogonal /unitary matrix from PxGEQRF
MRQ multiply by the orthogonal/unitary matrix from PxGERQF
MRZ multiply by the orthogonal/unitary matrix from PxTZRZF
MTR multiply by the orthogonal/unitary matrix from PxxxTRD
QLF  compute a QL factorization without pivoting

QPF  compute a QR factorization with column pivoting

QRF compute a QR factorization without pivoting

RFS  refine initial solution returned by TRS routines

RQF compute an RQ factorization without pivoting

RZF  compute an RZ factorization without pivoting

TRD reduce a symmetric matrix to real symmetric tridiagonal form
TRF compute a triangular factorization (LU, Cholesky, etc.)

TRI  compute inverse (based on triangular factorization)

TRS  solve systems of linear equations (based on triangular factorization)

Given these definitions, the following table indicates the ScaLAPACK subroutines for
the solution of systems of linear equations:
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HE UN
GE GG DB GB DT GT PO PB PT SY TR TZ OR
X X X X X
X X X X X

TRF
TRS
RFS
TRI
CON
EQU
QPF
QRF'
RZF X
GQRT

MQR? x
i—also RQ, QL, and LQ

iI—also RQ, RZ, QL, and LQ

X X X X X X
X X X X

X X X X X X X X

The following table indicates the ScaLAPACK subroutines for finding eigenvalues and
eigenvectors or singular values and singular vectors:

HE
GE GG HS HG TR TG SY ST PT BD

HRD X

TRD X

BRD X

EQZ

EIN

EBZ

EDC

EVC X

GST X
Orthogonal /unitary transformation routines have also been provided for the reductions

that use elementary transformations.

X X X X

UN

OR
GHR  x
GTR  x
GBR X
MHR x
MTR  x
MBR  x

In addition, a number of driver routines are provided with this release. The naming
convention for the driver routines is the same as for the LAPACK routines, but the last
3 characters YYY have the following meanings (note an ‘X’ in the last character position
indicates a more expert driver):

SV factor the matrix and solve a system of equations
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SVX

LS
EV
EVD
EVX
GVX
SVD

equilibrate, factor, solve, compute error bounds and do iterative refinement, and

estimate the condition number

solve over- or underdetermined linear system using orthogonal factorizations

compute all eigenvalues and/or eigenvectors

compute all eigenvalues and, optionally, eigenvectors (using divide and conquer algorithm)
compute selected eigenvalues and eigenvectors

compute selected generalized eigenvalues and/or generalized eigenvectors

compute the SVD and/or singular vectors

The driver routines provided in ScaLAPACK are indicated by the following table:

HE HB
GE GG DB GB DT GT PO PB PT SY SB ST
SV X X X X X X X
SVX X X
LS X
EV X
EVD X
EVX X
GVX X
SVD X

31



Appendix B

ScaLAPACK Auxiliary Routines

This appendix lists all of the auxiliary routines (except for the BLAS and LAPACK)
that are called from the ScaLAPACK routines. These routines are found in the directory
SCALAPACK/SRC. Routines specified with a first character P followed by an underscore as
the second character are available in all four data types (S, D, C, and Z), except those
marked (real), for which the first character may be ‘S’ or ‘D’, and those marked (complex),

for which the first character may be ‘C’ or ‘Z’.
Functions for computing norms:

P_LANGE
P_LANHE
P_LANHS
P_LANSY
P_LANTR

General matrix

(complex) Hermitian matrix
Upper Hessenberg matrix
Symmetric matrix
Trapezoidal matrix

Level 2 BLAS versions of the block routines:

P_GEBD2 reduce a general matrix to bidiagonal form

P_GEHD2 reduce a square matrix to upper Hessenberg form
P_GELQ2 compute an LQ factorization without pivoting

P_GEQL2 compute a QL factorization without pivoting

P_GEQR2 compute a QR factorization without pivoting

P_GERQ2 compute an RQ factorization without pivoting

P_GETF2 compute the LU factorization of a general matrix
P_HETD2 (complex) reduce a Hermitian matrix to real tridiagonal form
P_ORG2L (real) generate the orthogonal matrix from PxGEQLF
P_ORG2R (real) generate the orthogonal matrix from PxGEQRF
P_ORGL2 (real) generate the orthogonal matrix from PxGEQLF
P_ORGR2 (real) generate the orthogonal matrix from PxGERQF
P_ORM2L (real) multiply by the orthogonal matrix from PxGEQLF
P_ORM2R (real) multiply by the orthogonal matrix from PxGEQRF
P_ORML2 (real) multiply by the orthogonal matrix from PxGELQF
P_ORMR2 (real) multiply by the orthogonal matrix from PxGERQF
P_ORMRS3 (real) multiply by the orthogonal matrix from PxTZRZF
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P_POTF2 compute the Cholesky factorization of a positive definite matrix
P_SYGS2 (real) reduce a symmetric-definite generalized eigenvalue problem to
P_SYTD2 (real) reduce a symmetric matrix to tridiagonal form

P_TRTI2 compute the inverse of a triangular matrix

P_UNG2L (complex) generate the unitary matrix from PxGEQLF

P_UNG2R (complex) generate the unitary matrix from PxGEQRF
P_UNGL2 (complex) generate the unitary matrix from PxGEQLF
P_UNGR2 (complex) generate the unitary matrix from PxGERQF
P_UNM2L (complex) multiply by the unitary matrix from PxGEQLF
P_UNM2R (complex) multiply by the unitary matrix from PxGEQRF
P_UNML2 (complex) multiply by the unitary matrix from PxGELQF
P_UNMR2 (complex) multiply by the unitary matrix from PxGERQF
)

P_UNMRS3 (complex) multiply by the unitary matrix from PxTZRZF

Other ScaLAPACK auxiliary routines:

P_LABAD (real) returns square root of underflow and overflow if exponent range is large
P_LABRD reduce NB rows or columns of a matrix to upper or lower bidiagonal form
P_LACGV (complex) conjugates a complex vector of length n

P_LACHKIEEE

(real) performs a simple check for the features of the IEEE standard

P_LACON estimate the norm of a matrix for use in condition estimation
P_LACONSB (real) looks for two consecutive small subdiagonal elements
P_LACP2 copies all or part of a distributed matrix to another distributed matrix
P_LACP3 (real) copies from a global parallel array into a local
replicated array or vice versa.
P_LACPY copy all or part of a distributed matrix to another distributed matrix
P_LAEDO Used by PxSTEDC.
P_LAED1 (real) Used by PxSTEDC.
P_LAED2 (real) Used by PxSTEDC.
P_LAED3 (real) Used by PxSTEDC.
P_LAEDZ (real) Used by PxSTEDC.
P_LAEVSWP moves the eigenvectors from where they are computed to a
standard block cyclic array
P_LAHEF (complex) compute part of the diagonal pivoting factorization of a Hermitian
matrix
P_LAHQR Find the Schur factorization of a Hessenberg matrix (modified version of
HQR from EISPACK)
P_LAHRD reduce NB columns of a general matrix to Hessenberg form
P_LAIECTB (real) computes the number of negative eigenvalues in (A — X1)
where the sign bit is assumed to be bit 32.
P_LAIECTL (real) computes the number of negative eigenvalues in (A — X1)
where the sign bit is assumed to be bit 64.
_LANV2 (complex) computes the Schur factorization of a real 2-by-2 nonsymmetric matrix
P_LAPIV applies permutation matrix to a general distributed matrix
P_LAPV2 pivoting
P_LAQGE equilibrate a general matrix
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P_LAQSY
P LAREDID

P_LARED2D

P_LARF
P_LARFB
P_LARFC

P_LARFG
P_LARFT
P_LARZ

P_LARZB

P_LARZC

P_LARZT

P_LASCL
P_LASE2
P_LASET

P_LASMSUB
P_LASNBT

P_LASRT
P_LASSQ
P_LASWP
P_LATRA
P_LATRD

P_LATRS
P_LATRZ
P_LAUU2
P_LAUUM
P_LAWIL

equilibrate a symmetric matrix

(real) Redistributes an array assuming that the input
array, BYCOL, is distributed across rows and that all
process columns contain the same copy of BYCOL.
Redistributes an array assuming that the input array,
BYROW, is distributed across columns and that all process
rows contain the same copy of BYROW. The output array,
BYALL, will be identical on all processes.

apply (multiply by) an elementary reflector to a general
rectangular matrix.

apply (multiply by) a block reflector or its transpose/
conjugate-transpose to a general rectangular matrix.
(complex) apply (multiply by) the conjugate-transpose

of an elementary reflector to a general matrix.

generate an elementary reflector (Householder matrix).
form the triangular factor of a block reflector

apply (multiply by) an elementary reflector as returned by
P_TZRZF to a general matrix.

apply (multiply by) a block reflector or its transpose/
conjugate transpose as returned by P_TZRZF to a general matrix.
(complex) apply (multiply by) the conjugate transpose of
an elementary reflector as returned by P_TZRZF to a
general matrix.

form the triangular factor of a block reflector as returned
by P_.TZRZF.

multiplies a general rectangular matrix by a real scalar CTO/CFROM

initializes a matrix to BETA on the diagonal and ALPHA on
the off-diagonals

(real) looks for a small subdiagonal element from the bottom
of the matrix that it can safely set to zero.

computes the position of the sign bit of a double precision
floating point number

Compute a scaled sum of squares of the elements of a vector

Perform a series of row interchanges

computes the trace of a distributed matrix

reduce NB rows and columns of a real symmetric or complex Hermitian
matrix to tridiagonal form

solve a triangular system with scaling to prevent overflow

reduces an upper trapezoidal matrix to upper triangular form
Unblocked version of P.LAUUM

Compute the product U*U’ or L’*L (blocked version)

forms the Wilkinson transform
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