
IdRel

A package for Identities among Relators

Version 2.03

October 2007

Anne Heyworth
Chris Wensley

Anne Heyworth — Email: anne.heyworth@googlemail.com

Chris Wensley — Email: c.d.wensley@bangor.ac.uk
— Homepage: http://www.informatics.bangor.ac.uk/˜cwensley/
— Address: School of Computer Science, Bangor University,

Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.

mailto://anne.heyworth@googlemail.com
mailto://c.d.wensley@bangor.ac.uk
http://www.informatics.bangor.ac.uk/~cwensley/

IdRel 2

Abstract
The IdRel package was originally implemented in 1999, using the GAP 3 language, when the first author was
studying for a Ph.D. in Bangor.

This package is designed to compute a minimal set of generators for the module of the identities among
relations of a group presentation. It does this using

• rewriting and logged rewriting: a self-contained implementation of the Knuth-Bendix process using the
monoid presentation associated to the group presentation;

• monoid polynomials: an implementation of the monoid ring;

• module polynomials: an implementation of the right module over this monoid generated by the relators.

• Y-sequences: used as a rewriting way of representing elements of a free crossed module (products of
conjugates of group relators and inverse relators).

Bug reports, suggestions and comments are, of course, welcome. Please contact the second author at
c.d.wensley@bangor.ac.uk.

Copyright
c© 2005-2007 by Anne Heyworth and Chris Wensley

We adopt the copyright regulations of GAP as detailed in the copyright notice in the GAP manual.

mailto://c.d.wensley@bangor.ac.uk

Contents

1 Introduction 5

2 Rewriting Systems 6
2.1 Identity Y-sequences . 6
2.2 Monoid Presentations of FpGroups . 7

2.2.1 FreeRelatorGroup . 7
2.2.2 MonoidPresentationFpGroup . 7

2.3 Rewriting systems for FpGroups . 8
2.3.1 RewritingSystemFpGroup . 8
2.3.2 OnePassReduceWord . 9
2.3.3 OnePassKB . 10

2.4 Enumerating elements . 11
2.4.1 ElementsOfMonoidPresentation . 11

3 Logged Rewriting Systems 12
3.1 Logged Knuth-Bendix Completion . 12

3.1.1 LoggedOnePassKB . 12
3.1.2 LoggedKnuthBendix . 13

3.2 Logged reduction of a word . 14
3.2.1 LoggedReduceWordKB . 14
3.2.2 LoggedRewritingSystemFpGroup . 15

4 Monoid Polynomials 16
4.1 Construction of monoid polynomials . 16

4.1.1 MonoidPolyFromCoeffsWords . 16
4.2 Components of a polynomial . 17

4.2.1 Terms . 17
4.2.2 Monic . 17
4.2.3 AddTermMonoidPoly . 18

4.3 Monoid Polynomial Operations . 18
4.3.1 Length . 19

4.4 Reduction of a Monoid Polynomial . 19
4.4.1 ReduceMonoidPoly . 19

3

IdRel 4

5 Module Polynomials 21
5.1 Construction of module polynomials . 21

5.1.1 ModulePoly . 21
5.2 Components of a module polynomial . 22

5.2.1 Terms . 22
5.2.2 ZeroModulePoly . 23
5.2.3 AddTermModulePoly . 23

5.3 Module Polynomial Operations . 23
5.4 Identities among relators . 24

5.4.1 IdentitiesAmongRelators . 24
5.4.2 RootIdentities . 25

Chapter 1

Introduction

This manual describes the IdRel (version 2.03) GAP package for computing the identities among re-
lations of a group presentation using rewriting, logged rewriting, monoid polynomials, module poly-
nomials and Y -sequences.

The theoretical background for these computations is contained in Brown and Huebschumann
[BH82], Brown and Razak Salleh [BRS99] and is surveyed in [Hey99].

IdRel is primarily designed for the computation of a minimal set of generators for the module
of identities among relations. It also contains functions which compute logged rewrite systems for
group presentations (and complete them where possible), functions for operations involving elements
of monoid rings and functions for operations with elements of right modules over monoid rings. The
Y -sequences are used as a rewriting way of representing elements of a free crossed module (products
of conjugates of group relators and inverse relators). The package is written entirely in GAP4, and
requires no compilation.

The package is loaded into GAP with the LoadPackage command, and on-line help is available in
the usual way.

Example

gap> LoadPackage("idrel");
gap> ?idrel

A pdf version of the IdRel manual is available in the doc directory of the home directory of IdRel.
The information parameter InfoIdRel has default value 0. When raised to a higher value, additional
information is printed out. IdRel was originally developed in 1999 using GAP3, partially supported by
a University of Wales Research Assistantship for the first author, Anne Heyworth. If you use IdRel to
solve a problem then please send a short email to the second author, to whom bug reports, suggestions
and other comments should also be sent. You may reference the package by mentioning [HW03] and
[Hey99].

5

Chapter 2

Rewriting Systems

This chapter describes functions to construct rewriting systems for finitely presented groups which
store rewriting information. The example used is a presentation of the quaternion group q8 with
generators a,b and relators [a4,b4,abab−1,a2b2].

2.1 Identity Y-sequences

A typical input for IdRel is an fp-group presentation. This requires a free group F on a set of generators
and a set of relators R (words in the free group). The module of identities among relations for this
presentation has as its elements the Peiffer equivalence classes of all products of conjugates of relators
which represent the identity in the free group.

In this package the identities among relations are represented by Y-sequences, which are lists
[[r1,u1], . . . , [rk,uk]] where r1, . . . ,rk are the group relators or their inverses, and u1, . . . ,uk are words
in the free group F. A Y-sequence is evaluated in F as the product (u−1

1 r1u1) . . .(u−1
k rkuk) and is an

identity Y-sequence if it evaluates to the identity in F. An identity Y-sequence represents an identity
among the relators of the group presentation. The main function of the package is to produce a set
of Y-sequences which generated the module of identites among relations, and further, that this set be
minimal in the sense that every element in it is needed to generate the module.

We now give a simple example to illustrate the use of IdRel. All the functions used are described
in detail in this manual. We compute a reduced set of identities among relations for the presentation
of the symmetric group s3 with generators a,b and relators [a3,b2,(ab)2].

Example

gap> F := FreeGroup(2);
<free group on the generators [fl, f2]>
gap> a := F.l;; b:= F.2;;
gap> rels := [aˆ3 , bˆ2, a*b*a*b];
[flˆ3 , f2ˆ2, fl*f2*fl*f2]
gap> s3 := F/rels;
<fp group on the generators [fl, f2]>
gap> idrels3 := IdentitiesAmongRelators(s3);;
gap> Display(idrels3);
[[(FY4*(<identity ...>, FR1*(mon1 - <identity ...>),

(FY8*(<identity ...>, FR2*(mon2 - <identity ...>),
(FY7*(mon2*mon1), FR3*(mon2 - mon1)),
(FY6*(-<identity ...>, FR1*(-mon2*mon1 - mon1) + FR2*(-mon1*mon2 - mo\

6

IdRel 7

nl - <identity ...> + FR3 *(mon3 + mon2 + <identity ...>)],
[(FY4*(<identity ...>, FR1*(mon1 - <identity ...>),
(FY8*(<identity ...>, FR2*(mon2 - <identity ...>),
(FY7*(mon2*mon1), FR3 *(mon2 - mon1)),
(FY4*(-mon2*mon1 + <identity ...> + FY6*(-<identity ...> + FY7*(-mon\

2*mon1) + FY8*(mon3) , FR1*(-mon2 - <identity ...> + FR2*(-mon3 - mon1 - <i
dentity ...> + FR3*(mon3 + mon1 + <identity ...>))]]

2.2 Monoid Presentations of FpGroups

2.2.1 FreeRelatorGroup

♦ FreeRelatorGroup(grp) (attribute)

♦ FreeRelatorHomomorphism(grp) (attribute)

The function FreeRelatorGroup returns a free group on the set of relators of the given fp-group
G. If HasName(G) is true then a name is automatically assigned to the free group.

The function FreeRelatorHomomorphism returns the group homomorphism from the free group
on the relators to the free group on the generators of G, mapping each generator to the corresponding
word.

Example

gap> F := FreeGroup(2);;
gap> a := F.1;; b:= F.2;;
gap> rels := [aˆ4, bˆ4, a*b*a*bˆ-1, aˆ2*bˆ2];
[f1ˆ4, f2ˆ4, f1*f2*f1*f2ˆ-1, f1ˆ2*f2ˆ2]
gap> q8 := F/rels;;
gap> SetName(q8, "q8");
gap> frq8 := FreeRelatorGroup(q8);
q8_R
gap> GeneratorsOfGroup(frq8);
[q8_R1, q8_R2, q8_R3, q8_R4]
gap> frhomq8 := FreeRelatorHomomorphism(q8);
[q8_R1, q8_R2, q8_R3, q8_R4] -> [f1ˆ4, f2ˆ4, f1*f2*f1*f2ˆ-1, f1ˆ2*f2ˆ2]

2.2.2 MonoidPresentationFpGroup

♦ MonoidPresentationFpGroup(grp) (attribute)

♦ FreeGroupOfPresentation(mon) (attribute)

♦ GroupRelatorsOfPresentation(mon) (attribute)

♦ InverseRelatorsOfPresentation(mon) (attribute)

♦ HomomorphismOfPresentation(mon) (attribute)

A monoid presentation for a finitely presented group G has two monoid generators g+,g− for each
group generator g. The relators of the monoid presentation comprise the group relators, and rela-
tors g+g− specifying the inverses. The function MonoidPresentationFpGroup returns the monoid

IdRel 8

presentation derived in this way from an fp-presentation. (Note: this function should always be fol-
lowed by a double semicolon – MonoidPresentationFpGroup(G);; – because an error occurs in
attempting to display the results on the screen: the ElementsFamily needs to be fixed.)

The function FreeGroupOfPresentation returns the free group on the monoid generators.
The function GroupRelatorsOfPresentation returns those relators of the monoid which corre-

spond to the relators of the group. All negative powers in the group relators are converted to positive
powers of the g−.

The function InverseRelatorsOfPresentation returns relators which specify the inverse pairs
of the monoid generators.

The function HomomorphismOfPresentation returns the homomorphism from the free group of
the monoid presentation to the free group of the group presentation.

In the example below, the four monoid generators a+,b+,a−,b− are named q8\ M1, q8\ M2,
q8\ M3, q8\ M4.

Example

gap> mon := MonoidPresentationFpgroup(q8);;
gap> fgmon := FreeGroupOfPresentation(mon);
<free group on the generators [q8_Ml, q8_M2, q8_M3, q8_M4]>
gap> genfgmon := GeneratorsOfGroup(fgmon);
[q8_Ml, q8_M2, q8_M3, q8_M4]
gap> gprels := GroupRelatorsOfPresentation(mon);
[q8_Mlˆ4, q8_M2ˆ4, q8_Ml*q8_M2*q8_Ml*q8_M4, q8_Mlˆ2*q8_M2ˆ2]
gap> invrels := InverseRelatorsOfPresentation(mon);
[q8_Ml*q8_M3, q8_M2*q8_M4, q8_M3*q8_Ml, q8_M4*q8_M2]
gap> hompres := HomomorphismOfPresentation(mon);
[q8_Ml, q8_M2, q8_M3, q8_M4] -> [fl, f2, flˆ-l, f2ˆ-1]

2.3 Rewriting systems for FpGroups

These functions duplicate the standard Knuth Bendix functions which are available in the GAP library.
There are two reasons for this: (1) these functions were first written before the standard functions were
available; (2) we require logged versions of the functions, and these are most conveniently extended
versions of the non-logged code.

2.3.1 RewritingSystemFpGroup

♦ RewritingSystemFpGroup(grp) (attribute)

This function attempts to return a complete rewrite system for the group G obtained from the
monoid presentation mon, with a length-lexicographical ordering on the words in fgmon, by applying
Knuth-Bendix completion. Such a rewrite system can be obtained for all finite groups. The rewrite
rules are (partially) ordered, starting with the inverse relators, followed by the rules which reduce the
word length the most.

In our q8 example there are 16 rewrite rules.
Example

gap> rws := RewritingSystemFpGroup(q8);

IdRel 9

[[q8_Ml*q8_M3, <identity ...>], [q8_M2*q8_M4, <identity ...>],
[q8_M3*q8_Ml, <identity ...>], [q8_M4*q8_M2, <identity ...>],
[q8_M1ˆ2*q8_M4, q8_M2], [q8_Mlˆ2*q8_M2, q8_M4], [q8_Mlˆ3, q8_M3],
[q8_M4ˆ2, q8_Mlˆ2], [q8_M4*q8_M3, q8_Ml*q8_M4],
[q8_M4*q8_Ml, q8_Ml*q8_M2], [q8_M3*q8_M4, q8_Ml*q8_M2],
[q8_M3ˆ2, q8_Mlˆ2], [q8_M3*q8_M2, q8_Ml*q8_M4],
[q8_M2*q8_M3, q8_Ml*q8_M2], [q8_M2ˆ2, q8_Mlˆ2],
[q8_M2*q8_Ml, q8_Ml*q8_M4]]

The functions called by RewritingSystemFpGroup are as follows.

2.3.2 OnePassReduceWord

♦ OnePassReduceWord(word, rules) (operation)

♦ ReduceWordKB(word, rules) (operation)

Assuming that word is an element of a free monoid and rules is a list of ordered pairs of such
words, the function OnePassReduceWord searches the list of rules until it finds that the left-hand
side of a rule is a subword of word, whereupon it replaces that subword with the right-hand side
of the matching rule. The search is continued from the next rule in rules, but using the new word.
When the end of rules is reached, one pass is considered to have been made and the reduced word is
returned. If no matches are found then the original word is returned.

The function ReduceWordKB repeatedly applies the function OnePassReduceWord until the word
remaining contains no left-hand side of a rule as a subword. If rules is a complete rewrite system,
then the irreducible word that is returned is unique, otherwise the order of the rules in rules will
determine which irreducible word is returned.

Example

gap> monrels := Concatenation(gprels, invrels);
[q8_Mlˆ4, q8_M2ˆ4, q8_Ml*q8_M2*q8_Ml*q8_M4, q8_Mlˆ2*q8_M2ˆ2, q8_Ml*q8_M3,
q8_M2*q8_M4, q8_M3*q8_Ml, q8_M4*q8_M2]

gap> id := One(monrels[l]);;
gap> r0 := List(monrels, r -> [r, id]);
[[q8_Mlˆ4, <identity ...>], [q8_M2ˆ4, <identity. ..>],
[q8_Ml*q8_M2*q8_Ml*q8_M4, <identity ...>],
[q8_Mlˆ2*q8_M2ˆ2, <identity. ..>], [q8_Ml*q8_M3, <identity ...>],
[q8_M2*q8_M4, <identity ...>], [q8_M3*q8_Ml, <identity. ..>],
[q8_M4*q8_M2, <identity ...>]]

gap> ap := genfgmon[l];; bp := genfgmon[2];; ## p for plus
gap> am := genfgmon[3];; bm := genfgmon[4];; ## m for minus
gap> w0 := (apˆ3 * bpˆ3)ˆ3;
q8_Mlˆ3*q8_M2ˆ3*q8_Mlˆ3*q8_M2ˆ3*q8_Mlˆ3*q8_M2ˆ3
gap> w1 := OnePassReduceWord(w0, r0);
q8_Ml*q8_M2*q8_Mlˆ3*q8_M2ˆ3*q8_Mlˆ3*q8_M2ˆ3
gap> w2 := ReduceWordKB(w0, r0);
q8_Ml*q8_M2*q8_Ml*q8_M2*q8_Ml*q8_M2

IdRel 10

2.3.3 OnePassKB

♦ OnePassKB(rules) (operation)

♦ RewriteReduce(rules) (operation)

♦ KnuthBendix(rules) (operation)

♦ ShorterRule(rule1, rule2) (operation)

The function OnePassKB implements the main loop of the Knuth-Bendix completion algorithm.
Rules are compared with each other; all critical pairs are calculated; and the irreducible critical pairs
are orientated with respect to the length-lexicographical ordering and added to the rewrite system.

The function RewriteReduce will remove unnecessary rules from a rewrite system. A rule is
deemed to be unnecessary if it is implied by the other rules, i.e. if both sides can be reduced to the
same thing by the remaining rules.

The function KnuthBendix implements the Knuth-Bendix algorithm, attempting to complete a
rewrite system with respect to a length-lexicographic ordering. It calls first OnePassKB, which adds
rules, and then (for efficiency) RewriteReduce which removes any unnecessary ones. This procedure
is repeated until OnePassKB adds no more rules. It will not always terminate, but for many examples
(all finite groups) it will be successful. The rewrite system returned is complete, that is: it will rewrite
any given word in the free monoid to a unique irreducible; there is one irreducible for each element of
the quotient monoid; and any two elements of the free monoid which are in the same class will rewrite
to the same irreducible.

The function ShorterRule gives an ordering on rules. Rules (glg2, id) that identify two genera-
tors (or one generator with the inverse of another) are considered to be the best. Otherwise one rule is
considered to be better than another if it reduces the length of a word by a greater amount.

One pass of this procedure for our q8 example adds 13 relators to the original 8, and these 21 are
then reduced to 9. A second pass and reduction gives a list of 16 rules which forms a complete rewrite
system for the group.

Example

gap> r1 := OnePassKB(r0);
[[q8_Mlˆ4, <identity ...>], [q8_M2ˆ4, <identity ...>],
[q8_Ml*q8_M2*q8_Ml*q8_M4, <identity ...>],
[q8_Mlˆ2*q8_M2ˆ2, <identity. ..>], [q8_Ml*q8_M3, <identity ...>],
[q8_M2*q8_M4, <identity ...>], [q8_M3*q8_Ml, <identity ...>],
[q8_M4*q8_M2, <identity ...>], [q8_M2*q8_Ml*q8_M4, q8_Mlˆ3],
[q8_Ml*q8_M2ˆ2, q8_Mlˆ3], [q8_M2ˆ2, q8_Mlˆ2], [q8_Mlˆ3, q8_M3],
[q8_M2ˆ3, q8_M4], [q8_Ml*q8_M2*q8_Ml, q8_M2],
[q8_M2ˆ3, q8_Mlˆ2*q8_M2], [q8_M2ˆ2, q8_Mlˆ2], [q8_Mlˆ2*q8_M2, q8_M4],
[q8_Mlˆ3, q8_M3], [q8_M2*q8_Ml*q8_M4, q8_M3], [q8_Ml*q8_M2ˆ2, q8_M3],
[q8_M2ˆ3, q8_M4]]

gap> r1 := RewriteReduce(r1);
[[q8_Ml*q8_M3, <identity ...>], [q8_M2ˆ2, q8_Mlˆ2],
[q8_M2*q8_M4, <identity ...>], [q8_M3*q8_Ml, <identity ...>],
[q8_M4*q8_M2, <identity ...>], [q8_Mlˆ3, q8_M3],
[q8_Mlˆ2*q8_M2, q8_M4], [q8_Ml*q8_M2*q8_Ml, q8_M2],
[q8_M2*q8_Ml*q8_M4, q8_M3]]

gap> Length(r1);
9
gap> r2 := KnuthBendix(r1);
[[q8_Ml*q8_M3, <identity ...>], [q8_M2*q8_Ml, q8_Ml*q8_M4],

IdRel 11

[q8_M2ˆ2, q8_Mlˆ2], [q8_M2*q8_M3, q8_Ml*q8_M2],
[q8_M2*q8_M4, <identity ...>], [q8_M3*q8_Ml, <identity ...>],
[q8_M3*q8_M2, q8_Ml*q8_M4], [q8_M3ˆ2, q8_Mlˆ2],
[q8_M3*q8_M4, q8_Ml*q8_M2], [q8_M4*q8_Ml, q8_Ml*q8_M2],
[q8_M4*q8_M2, <identity ...>], [q8_M4*q8_M3, q8_Ml*q8_M4],
[q8_M4ˆ2, q8_Mlˆ2], [q8_Mlˆ3, q8_M3], [q8_Mlˆ2*q8_M2, q8_M4],
[q8_Mlˆ2*q8_M4, q8_M2]]

2.4 Enumerating elements

2.4.1 ElementsOfMonoidPresentation

♦ ElementsOfMonoidPresentation(mon) (attribute)

The function ElementsOfMonoidPresentation returns a list of normal forms for the elements
of the group given by the monoid presentation mon. The normal forms are in fact the least elements
in each equivalence class (with respect to the length-lex order). The function EnumerateKB builds up
a catalogue of irreducible words in the generators of a monoid with respect to a set of rules. When
rules is a complete rewrite system for G the list returned is a set of normal forms for the group
elements.

Example

gap> elq8 := Elements(q8);
[<identity .. .>, fl, f2, flˆ2, fl*f2, flˆ3*f2, flˆ3, flˆ2*f2]
gap> elmonq8 := ElementsOfMonoidPresentation(monq8);
[<identity. ..>, q8_Ml, q8_M2, q8_M3, q8_M4, q8_Mlˆ2, q8_Ml*q8_M2,
q8_Ml*q8_M4]

Chapter 3

Logged Rewriting Systems

A logged rewrite system is associated with a group presentation. Each logged rewrite rule contains,
in addition to the standard rewrite rule, a record or log component which express the rule in terms
of the original relators of the group. Here a logged rewrite rule is represented by a triple [u,
[L1,L2,..,Lk], v], where [u,v] is a rewrite rule and Li = [ni,wi] where ni is a group relator
and wi is a word. These three components obey the identity u = nw1

1 . . .nwk
k v.

Rules of the form g+g− are relevant to the monoid presentation, but not to the group presentation,
so are not included in the logging.

3.1 Logged Knuth-Bendix Completion

The functions in this section are the logged versions of those in the previous chapter.

3.1.1 LoggedOnePassKB

♦ LoggedOnePassKB(loggedrules) (operation)

Given a logged rewrite system, this function finds all the rules that would be added to complete the
rewrite system in OnePassKB, and also the logs which relate the new rules to the originals. The result
of applying this function to loggedrules is to add new logged rules to the system without changing the
monoid it defines.

Example

gap> l0 := ListWithIdenticalEntries(8, 0);;
gap> for j in [1..8] do

r := r0[j];
if (j<5) then

l0[j] := [r[1], [[j,id]], r[2]];
else

l0[j] := [r[1], [], r[2]];
fi;

od;
gap> l0;
[[q8_M1ˆ4, [[1, <identity ...>]], <identity. ..>],
[q8_M2ˆ4, [[2, <identity ...>]], <identity ...>],
[q8_M1*q8_M2*q8_M1*q8_M4, [[3, <identity ...>]], <identity ...>],

12

IdRel 13

[q8_M1ˆ2*q8_M2ˆ2, [[4, <identity ...>]], <identity ...>],
[q8_M1*q8_M3, [], <identity ...>],
[q8_M2*q8_M4, [], <identity ...>],
[q8_M3*q8_M1, [], <identity ...>],
[q8_M4*q8_M2, [], <identity ...>]]

gap> l1 := LoggedOnePassKB(l0);
[[q8_M1ˆ4, [[1, <identity. ..>]], <identity ...>],
[q8_M2ˆ4, [[2, <identity ...>]], <identity ...>],
[q8_M1*q8_M2*q8_M1*q8_M4, [[3, <identity ...>]], <identity ...>],
[q8_M1ˆ2*q8_M2ˆ2, [[4, <identity ...>]], <identity ...>],
[q8_M1*q8_M3, [], <identity ...>], [q8_M2*q8_M4, [], <identity ...>],
[q8_M3*q8_M1, [], <identity ...>], [q8_M4*q8_M2, [], <identity ...>],
[q8_M2*q8_M1*q8_M4, [[-1, <identity. ..>], [3, q8_M1ˆ-3]], q8_M1ˆ3],
[q8_M1*q8_M2ˆ2, [[-1, <identity ...>], [4, q8_M1ˆ-3]], q8_M1ˆ3],
[q8_M2ˆ2, [[-1, <identity ...>], [4, q8_M1ˆ-2]], q8_M1ˆ2],
[q8_M1ˆ3, [[1, <identity ...>]], q8_M3],
[q8_M2ˆ3, [[2, <identity ...>]], q8_M4],
[q8_M1*q8_M2*q8_M1, [[3, <identity ...>]], q8_M2],
[q8_M2ˆ3, [[-4, <identity ...>], [2, q8_M2ˆ-1*q8_M1ˆ-2]],

q8_M1ˆ2*q8_M2],
[q8_M2ˆ2, [[-4, <identity ...>], [2, q8_M1ˆ-2]], q8_M1ˆ2],
[q8_M1ˆ2*q8_M2, [[4, <identity ...>]], q8_M4],
[q8_M1ˆ3, [[1, q8_M3ˆ-1]], q8_M3],
[q8_M2*q8_M1*q8_M4, [[3, q8_M3ˆ-1]], q8_M3],
[q8_M1*q8_M2ˆ2, [[4, q8_M3ˆ-1]], q8_M3],
[q8_M2ˆ3, [[2, q8_M4ˆ-1]], q8_M4]]

3.1.2 LoggedKnuthBendix

♦ LoggedKnuthBendix(loggedrules) (operation)

♦ LoggedRewriteReduce(loggedrules) (operation)

The function LoggedRewriteReduce removes unnecessary rules from a logged rewrite system. It
works on the same principle as RewriteReduce.

The function LoggedKnuthBendix repeatedly applies LoggedOnePassKB and
LoggedRewriteReduce until no new rules are added and no unnecessary ones are included.
The output is a reduced complete logged rewrite system.

Example

gap> l1 := LoggedRewriteReduce(l1);
[[q8_M1*q8_M3, [], <identity ...>],
[q8_M2ˆ2, [[-4, <identity ...>], [2, q8_M1ˆ-2]], q8_M1ˆ2],
[q8_M2*q8_M4, [], <identity ...>], [q8_M3*q8_M1, [], <identity ...>],

[q8_M4*q8_M2, [], <identity ...>],
[q8_M1ˆ3, [[1, <identity. ..>]], q8_M3],
[q8_M1ˆ2*q8_M2, [[4, <identity. ..>]], q8_M4],
[q8_M1*q8_M2*q8_M1, [[3, <identity ...>]], q8_M2],
[q8_M2*q8_M1*q8_M4, [[3, q8_M3ˆ-1]], q8_M3]]

gap> l2 := LoggedKnuthBendix(l1);
[[q8_M1*q8_M3, [], <identity ...>],

IdRel 14

[q8_M2*q8_M1, [[3, q8_M3ˆ-1], [-1, <identity. ..>], [4, q8_M1ˆ-1]],
q8_M1*q8_M4],

[q8_M2ˆ2, [[-4, <identity ...>], [2, q8_M1ˆ-2]], q8_M1ˆ2],
[q8_M2*q8_M3, [[-3, <identity ...>]], q8_M1*q8_M2],
[q8_M2*q8_M4, [], <identity ...>], [q8_M3*q8_M1, [], <identity ...>],
[q8_M3*q8_M2, [[-1, <identity ...>], [4, q8_M1ˆ-1]], q8_M1*q8_M4],
[q8_M3ˆ2, [[-1, <identity ...>]], q8_M1ˆ2],
[q8_M3*q8_M4, [[-1, <identity ...>], [-2, q8_M1ˆ-2],

[4, <identity ...>], [3, q8_M3ˆ-1*q8_M2ˆ-1],
[-3, <identity. ..>]], q8_M1*q8_M2],

[q8_M4*q8_M1, [[-4, <identity ...>], [3, q8_M1ˆ-1]], q8_M1*q8_M2],
[q8_M4*q8_M2, [], <identity ...>],
[q8_M4*q8_M3, [[-3, q8_M3ˆ-1*q8_M4ˆ-1]], q8_M1*q8_M4],
[q8_M4ˆ2, [[-4, <identity. ..>]], q8_M1ˆ2],
[q8_M1ˆ3, [[1, <identity ...>]], q8_M3],
[q8_M1ˆ2*q8_M2, [[4, <identity. ..>]], q8_M4],
[q8_M1ˆ2*q8_M4, [[-4, q8_M1ˆ-2], [1, <identity ...>]], q8_M2]]

3.2 Logged reduction of a word

3.2.1 LoggedReduceWordKB

♦ LoggedReduceWordKB(loggedrules) (operation)

♦ LoggedOnePassReduceWord(word, loggedrules) (operation)

♦ ShorterLoggedRule(logrule1, logrule2) (operation)

Given a word and a logged rewrite system, the function LoggedOnePassReduceWord makes one
reduction of the word (as in OnePassReduceWord) and records this, using the log part of the rule used
and the position in the original word of the replaced part.

The function LoggedReduceWordKB repeatedly applies OnePassLoggedReduceWord until the
word can no longer be reduced. Each step of the reduction is logged, showing how the original
word can be expressed in terms of the original relators and the irreducible word. When loggedrules
is complete the reduced word is a unique normal form for that group element. The log of the reduc-
tion however has no uniqueness but depends on the order in which the rules are applied and on the
non-unique logs of the rules themselves.

The function Shorterloggedrule decides whether one logged rule is better than another, using
the same criteria as ShorterRule.

Example

gap> w0;
q8_M1ˆ3*q8_M2ˆ3*q8_M1ˆ3*q8_M2ˆ3*q8_M1ˆ3*q8_M2ˆ3
gap> lw1 := LoggedOnePassReduceWord(w0, l2);
[[[3, q8_M3ˆ-1*q8_M2ˆ-2*q8_M1ˆ-3], [-1, q8_M2ˆ-2*q8_M1ˆ-3],

[4, q8_M1ˆ-1*q8_M2ˆ-2*q8_M1ˆ-3], [-4, q8_M1ˆ-3], [2, q8_M1ˆ-5],
[-4, q8_M1ˆ-6], [3, q8_M1ˆ-7], [1, <identity ...>],
[4, q8_M1ˆ-2*q8_M3ˆ-1], [-4, q8_M1ˆ-2*q8_M3ˆ-1], [1, q8_M3ˆ-1]],

q8_M3*q8_M2*q8_M1*q8_M2ˆ3*q8_M1ˆ3*q8_M2ˆ3]
gap> lw2 := LoggedReduceWordKB(w0, l2);
[[[3, q8_M3ˆ-1*q8_M2ˆ-2*q8_M1ˆ-3], [-1, q8_M2ˆ-2*q8_M1ˆ-3],

IdRel 15

[4, q8_M1ˆ-1*q8_M2ˆ-2*q8_M1ˆ-3], [-4, q8_M1ˆ-3], [2, q8_M1ˆ-5],
[-4, q8_M1ˆ-6], [3, q8_M1ˆ-7], [1, <identity ...>],
[4, q8_M1ˆ-2*q8_M3ˆ-1], [-4, q8_M1ˆ-2*q8_M3ˆ-1], [1, q8_M3ˆ-1],
[3, q8_M3ˆ-2], [-1, q8_M3ˆ-1], [4, q8_M1ˆ-1*q8_M3ˆ-1],
[-4, q8_M4ˆ-1*q8_M1ˆ-1*q8_M3ˆ-1],
[2, q8_M1ˆ-2*q8_M4ˆ-1*q8_M1ˆ-1*q8_M3ˆ-1], [-4, <identity ...>],
[3, q8_M1ˆ-1], [1, q8_M2ˆ-1*q8_M1ˆ-1*q8_M2ˆ-1*q8_M1ˆ-1],
[3, q8_M3ˆ-1*q8_M1ˆ-1], [-1, q8_M1ˆ-1], [4, q8_M1ˆ-2],
[-4, q8_M3ˆ-1*q8_M2ˆ-1*q8_M4ˆ-1*q8_M1ˆ-2],
[2, q8_M1ˆ-2*q8_M3ˆ-1*q8_M2ˆ-1*q8_M4ˆ-1*q8_M1ˆ-2],
[-3, q8_M4ˆ-1*q8_M1ˆ-2], [-4, q8_M1ˆ-2], [3, q8_M1ˆ-3],
[1, <identity ...>], [4, q8_M2ˆ-2*q8_M3ˆ-1], [-4, q8_M3ˆ-1],
[2, q8_M1ˆ-2*q8_M3ˆ-1]], q8_M1*q8_M4]

3.2.2 LoggedRewritingSystemFpGroup

♦ LoggedRewritingSystemFpGroup(loggedrules) (attribute)

Given a group presentation, the function LoggedRewritingSystemFpGroup determines a logged
rewrite system based on the relators. The initial logged rewrite system associated with a group pre-
sentation consists of two types of rule. These are logged versions of the two types of rule in the
monoid presentation. For each relator rel of the group there is a logged rule [rel, [[1, rel]
], id]. For each inverse relator there is a logged rule [gen*inv, [], id]. It then attempts a
completion of the logged rewrite system. The rules in the final system are partially ordered by the
function ShorterLoggedRule.

Example

gap> LoggedRewritingSystemFpGroup(q8);
[[q8_M4*q8_M2, [], <identity ...>], [q8_M3*q8_Ml, [], <identity ...>],

[q8_M2*q8_M4, [], <identity ...>],
[q8_Ml*q8_M3, [], <identity ...>],
[q8_Mlˆ2*q8_M4, [[-8, q8_Mlˆ-2], [5, <identity ...>]], q8_M2],
[q8_Mlˆ2*q8_M2, [[8, <identity ...>]], q8_M4],
[q8_Mlˆ3, [[5, <identity ...>]], q8_M3],
[q8_M4ˆ2, [[-8, <identity ...>]], q8_Mlˆ2],
[q8_M4*q8_M3, [[-7, q8_M3ˆ-1*q8_M4ˆ-1]], q8_Ml*q8_M4],
[q8_M4*q8_Ml, [[-8, <identity. ..>], [7, q8_Mlˆ-1]], q8_Ml*q8_M2],
[q8_M3*q8_M4,

[[-5, <identity ...>], [-6, q8_Mlˆ-2], [8, <identity ...>],
[7, q8_M3ˆ-1*q8_M2ˆ-1], [-7, <identity. ..>]], q8_Ml*q8_M2],

[q8_M3ˆ2, [[-5, <identity ...>]], q8_Mlˆ2],
[q8_M3*q8_M2, [[-5, <identity. ..>], [8, q8_Mlˆ-1]], q8_Ml*q8_M4],
[q8_M2*q8_M3, [[-7, <identity ...>]], q8_M1*q8_M2],
[q8_M2ˆ2, [[-a, <identity ...>], [6, q8_M1ˆ-2]], q8_M1ˆ2],
[q8_M2*q8_M1, [[7, q8_M3ˆ-1], [-5, <identity ...>], [a, q8_M1ˆ-1]],

q8_M1*q8_M4]]

Chapter 4

Monoid Polynomials

This chapter describes functions to compute with elements of a free noncommutative algebra. The
elements of the algebra are sums of rational multiples of words in a free monoid. These will be called
monoid polynomials, and are stored as lists of pairs [coefficient, word].

4.1 Construction of monoid polynomials

4.1.1 MonoidPolyFromCoeffsWords

♦ MonoidPolyFromCoeffsWords(coeffs, words) (operation)

♦ MonoidPoly(terms) (operation)

♦ ZeroMonoidPoly(F) (operation)

There are two possible ways to input a monoid polynomial. The first is by listing the coefficients
and then the words; the second is by listing the terms as a list of pairs [coefficient, word]. Note
that if a word occurs more than once in the input list, the coefficients will be added so that the terms
of the monoid polynomial recorded do not contain any duplicates. The zero monoid polynomial is the
polynomial with no terms.

Example

gap> rels := RelatorsOfFpGroup(q8);
[f1ˆ4, f2ˆ4, f1*f2*f1*f2ˆ-1, f1ˆ2*f2ˆ2]
gap> freeq8 := FreeGroupOfFpGroup(q8);
Group([f1, f2])
gap> gens := GeneratorsOfGroup(freeq8);;
gap> famfree := ElementsFamily(FamilyObj(freeq8));
NewFamily("FreeGroupElementsFamily", [125, 144, 989],
[76, 77, 78, 79, 111, 114, 117, 121, 125, 144, 989])
gap> famfree!.monoidPolyFam := MonoidPolyFam;
NewFamily("MonoidPolyFam", [2416], [111, 114, 117, 2416])
gap> cg := [6,7];
[6, 7]
gap> cr := [3,4,-5,-2];
[3, 4, -5, -2]
gap> pg := MonoidPolyFromCoeffsWords(cg, gens);
<monpoly>
gap> Print(pg);

16

IdRel 17

7*f2 + 6*f1
gap> pr := MonoidPolyFromCoeffsWords(cr, rels);
<monpoly>
gap> Print(pr);
4*f2ˆ4 - 5*f1*f2*f1*f2ˆ-1 - 2*f1ˆ2*f2ˆ2 + 3*f1ˆ4
gap> zeromp := ZeroMonoidPoly(freeq8);
<monpoly>
gap> Print(zeromp);
zero monpoly

4.2 Components of a polynomial

4.2.1 Terms

♦ Terms(poly) (attribute)

♦ Coeffs(poly) (attribute)

♦ Words(poly) (attribute)

♦ LeadTerm(poly) (attribute)

♦ LeadCoeffMonoidPoly(poly) (attribute)

The function Terms returns the terms of a polynomial as a list of pairs of the form [word,
coefficient]. The function Coeffs returns the coefficients of a polynomial as a list, and the func-
tion Words returns the words of a polynomial as a list. The function LeadTerm returns the term of the
polynomial whose word component is the largest with respect to the length-lexicographical ordering.
The function LeadCoeffMonoidPoly returns the coefficient of the leading term of a polynomial.

Example

gap> Coeffs(pr);
[4, -5, -2, 3]
gap> Terms(pr);
[[4, f2ˆ4], [-5, f1*f2*f1*f2ˆ-1], [-2, f1ˆ2*f2ˆ2], [3, f1ˆ4]]
gap> Words(pr);
[f2ˆ4, f1*f2*f1*f2ˆ-1, f1ˆ2*f2ˆ2, f1ˆ4]
gap> LeadTerm(pr);
[4, f2ˆ4]
gap> LeadCoeffMonoidPoly(pr);
4

4.2.2 Monic

♦ Monic(poly) (operation)

A monoid polynomial is called monic if the coefficient of its leading polynomial is one. The
function Monic converts a polynomial into a monic polynomial by dividing all the coefficients by the
leading coefficient.

IdRel 18

Example

gap> mpr := Monic(pr);;
gap> Print(mpr);
f2ˆ4 - 5/4*f1*f2*f1*f2ˆ-1 - 1/2*f1ˆ2*f2ˆ2 + 3/4*f1ˆ4

4.2.3 AddTermMonoidPoly

♦ AddTermMonoidPoly(poly, coeff, word) (operation)

The function AddTermMonoidPoly adds a new term, given by its coeffiecient and word, to an
existing polynomial.

Example

gap> w := gens[1]ˆgens[2];
f2ˆ-1*f1*f2
gap> cw := 3/4;;
gap> wpg:= AddTermMonoidPoly(pg, cw, w);
<monpoly>
gap> Print(wpg);
3/4*f2ˆ-1*f1*f2 + 7*f2 + 6*f1

4.3 Monoid Polynomial Operations

Tests for equality and arithmetic operations are performed in the usual way.
The operation poly1 = poly2 returns true if the monoid polynomials have the same terms,

and false otherwise. Multiplication of a monoid polynomial (on the left or right) by a coefficient;
the addition or subtraction of two monoid polynomials; multiplication (on the right) of a monoid
polynomial by a word; and multiplication of two monoid polynomials; are all implemented.

Example

gap> pg = pg;
true
gap> pg = pr;
false
gap> prcw := pr*cw;
3*f2ˆ4 - 15/4*f1*f2*f1*f2ˆ-1 - 3/2*f1ˆ2*f2ˆ2 + 9/4*f1ˆ4
gap> cwpr := cw*pr;
3*f2ˆ4 - 15/4*f1*f2*f1*f2ˆ-1 - 3/2*f1ˆ2*f2ˆ2 + 9/4*f1ˆ4
gap> pr = prcw;
false
gap> prcw = cwpr;
true
gap> Print(pg + pr);
4*f2ˆ4 - 5*f1*f2*f1*f2ˆ-1 - 2*f1ˆ2*f2ˆ2 + 3*f1ˆ4 + 7*f2 + 6*f1
gap> Print(pg - pr);
- 4*f2ˆ4 + 5*f1*f2*f1*f2ˆ-1 + 2*f1ˆ2*f2ˆ2 - 3*f1ˆ4 + 7*f2 + 6*f1

IdRel 19

gap> Print(pg * w);
6*f1*f2ˆ-1*f1*f2 + 7*f1*f2
gap> Print(pg * pr);
28*f2ˆ5 - 35*f2*f1*f2*f1*f2ˆ-1 - 14*f2*f1ˆ2*f2ˆ2 + 21*f2*f1ˆ4
+ 24*f1*f2ˆ4 - 30*f1ˆ2*f2*f1*f2ˆ-1 - 12*f1ˆ3*f2ˆ2 + 18*f1ˆ5

4.3.1 Length

♦ Length(poly) (attribute)

This function returns the number of distinct terms in the monoid polynomial.
Example

gap> Length(pr);
4

The boolean function poly1 > poly2 returns true if the first polynomial has more terms than
the second. If the polynomials are the same length it will compare their leading terms. If the leading
word of the first is lengthlexicographically greater than the leading word of the second, or if the words
are equal but the coefficient of the first is greater than the coefficient of the second then true is returned.
If the leading terms are equal then the next terms are compared in the same way. If all terms are the
same then false is returned.

Example

gap> pol > 3*pol;
false
gap> pol > redpol;
true

4.4 Reduction of a Monoid Polynomial

4.4.1 ReduceMonoidPoly

♦ ReduceMonoidPoly(poly, rules) (operation)

Recall that the words of a monoid polynomial are elements of a free monoid. Given a rewrite
system (set of rules) on the free monoid the words can be reduced. This allows us to simulate calcula-
tion in monoid rings where the monid is given by a complete presentation. This function reduces the
words of the polynomial (elements of the free monoid) with respect to the complete rewrite system.
The words of the reduced polynomial are normal forms for the elements of the monoid presented by
that rewite system.

Example

gap> M := genfgmon;
[q8_Ml, q8_M2, q8_M3, q8_M4]

IdRel 20

gap> r2;
[q8_Ml*q8_M3, <identity ...>], [q8_M2*q8_Ml, q8_Ml*q8_M4],
[q8_M2ˆ2, q8_Mlˆ2], [q8_M2*q8_M3, q8_Ml*q8_M2],
[q8_M2*q8_M4, <identity ...>], [q8_M3*q8_Ml, <identity ...>],
[q8_M3*q8_M2, q8_Ml*q8_M4], [q8_M3ˆ2, q8_Mlˆ2],
[q8_M3*q8_M4, q8_Ml*q8_M2], [q8_M4*q8_Ml, q8_Ml*q8_M2],
[q8_M4*q8_M2, <identity ...>], [q8_M4*q8_M3, q8_Ml*q8_M4],
[q8_M4ˆ2, q8_Mlˆ2], [q8_Mlˆ3, q8_M3], [q8_Mlˆ2*q8_M2, q8_M4],
[q8_Mlˆ2*q8_M4, q8_M2]]

gap> pol := MonoidPolyFromCoeffsWords([3,2,-5], [M[1]*M[3] ,M[2]-4,M[1]]);
<monpoly>
gap> Print(pol);
2*q8_M2ˆ4 + 3*q8_Ml*q8_M3 - 5*q8_Ml
gap> redpol := ReduceMonoidPoly(pol, KBrules);
<monpoly>
gap> Print(redpol);
- 5*q8_Ml + 5*<identity ...>

Chapter 5

Module Polynomials

In this chapter we consider finitely generated modules over the monoid rings considered previously.
We call an element of this module a module polynomial, and we describe functions to construct
module polynomials and the standard algebraic operations for such polynomials.

A module polynomial modpoly is recorded as a list of pairs, [gen, monpoly], where gen is
a module generator (basis element), and monpoly is a monoid polynomial. The module polynomial
is printed as the formal sum of monoid polynomial multiples of the generators. Note that the monoid
polynomials are the coefficients of the module polynomials and appear to the right of the generator,
as we choose to work with right modules.

The examples we are aiming for are the identities among the relators of a finitely presented group
(see section 5.4).

5.1 Construction of module polynomials

5.1.1 ModulePoly

♦ ModulePoly(gens, monpolys) (operation)

♦ ModulePoly(args) (operation)

This function returns a module polynomial. The terms of the polynomial maybe input as a list
of generators followed by a list of monoid polynomials or as one list of [generator, monoid
polynomial] pairs.

Example

gap> frq8 := FreeRelatorGroup(q8);
q8_R
gap> genfrq8 := GeneratorsOfGroup(frq8);
[q8_R1, q8_R2, q8_R3, q8_R4]
gap> mp1 := MonoidPolyFromCoeffsWords([3,2,-5], [M[1]*M[3], M[2]ˆ4, M[1]]);
<monpoly>
gap> Print(mp1);
2*q8_M2ˆ4 + 3*q8_M1*q8_M3 _ 5*q8_M1
gap> mp2 := MonoidPolyFromCoeffsWords([1,-4,-1,2],

[M[2]*M[3]*M[1], M[3]ˆ3, M[1]*M[2], M[4]]
<monpoly>
gap> Print(mp2);

21

IdRel 22

- 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_M1 - q8_M1*q8_M2 + 2*q8_M4
gap> s1 := ModulePoly([genfrq8[4] , genfrq8[1]], [mp1, mp2]);
<modpoly>
gap> Print(s1);
q8_R1*(- 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_M1 - q8_M1*q8_M2 + 2*q8_M4)
+ q8_R4*(2*q8_M2ˆ4 + 3*q8_M1*q8_M3 - 5*q8_M1)

gap> s2 := ModulePoly([genfrq8[3], genfrq8[2], genfrq8[1]], [3*mp1, -1*mp2,\
(mp1+mp2)]);
<modpoly>
gap> Print(s2);
q8_R1*(2*q8_M2ˆ4 - 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_M1 + 3*q8_M1*q8_M3
- q8_M1*q8_M2 + 2*q8_M4 - 5*q8_M1) + q8_R2*(4*q8_M3ˆ3 - q8_M2*q8_M3*q8_M1
+ q8_M1*q8_M2 - 2*q8_M4) + q8_R3*(6*q8_M2ˆ4 + 9*q8_M1*q8_M3 - 15*q8_M1)

5.2 Components of a module polynomial

5.2.1 Terms

♦ Terms(modpoly) (attribute)

♦ LeadTerm(modpoly) (attribute)

♦ LeadMonoidPoly(modpoly) (attribute)

♦ One(modpoly) (attribute)

♦ Length(modpoly) (attribute)

The first function counts the number of module generators which occur in modpoly (a generator
occurs in a polynomial if it has nonzero coefficient). The function One returns the identity in the free
group on the generators.

The function Terms returns the terms of a module polynomial as a list of pairs. In LeadTerm, the
generators are ordered, and the term of modpoly with the highest value generator is defined to be the
leading term. The monoid polynomial (coefficient) part of the leading term is returned by the function
LeadMonoidPoly.

Example

gap> Length(s1);
2
gap> Length(s2);
3
gap> One(s1);
<identity ...>
gap> Terms(s1);
[[q8_R1, - 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_M1 - q8_M1*q8_M2 + 2*q8_M4],
[q8_R4, 2*q8_M2ˆ4 + 3*q8_M1*q8_M3 - 5*q8_M1]]

gap> Terms(s2);
[[q8_R1, 2*q8_M2ˆ4 - 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_M1 + 3*q8_M1*q8_M3 - q8_M1*q8_M\
2 + 2*q8_M4 - 5*q8_M1],
[q8_R2, 4*q8_M3ˆ3 - q8_M2*q8_M3*q8_M1 + q8_M1*q8_M2 - 2*q8_M4],
[q8_R3, 6*q8_M2ˆ4 + 9*q8_M1*q8_M3 - 15*q8_M1]]

gap> LeadTerm(s1);
[q8_R4, <monpoly>]

IdRel 23

gap> LeadTerm(s2);
[q8_R3, <monpoly>]
gap> Print(LeadMonoidPoly(s1));
2*q8_M2ˆ4 + 3*q8_M1*q8_M3 - 5*q8_M1
gap> Print(LeadMonoidPoly(s2));
6*q8_M2ˆ4 + 9*q8_M1*q8_M3 - 15*q8_M1

5.2.2 ZeroModulePoly

♦ ZeroModulePoly(Fgens, Fmon) (operation)

Assuming that Fgens is the free group on the module generators and Fmon is the free group on the
monoid generators, then this function returns the zero module polynomial, which has no terms, and is
an element of the module.

Example

gap> zeromp := ZeroModulePoly(frel, freeq8);
<modpoly>
gap> Print(zeromp);
zero modpoly

5.2.3 AddTermModulePoly

♦ AddTermModulePoly(modpoly, gen, monpoly) (operation)

This function adds a term [gen, monpoly] to a module polynomial modpoly.
Example

gap> s3 := AddTermModulePoly(s1, frelgen[3], mp1);
<modpoly>
gap> Print(s3);
q8_Rl*(- 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_Ml - q8_Ml*q8_M2 + 2*q8_M4)
+ q8_R3*(2*q8_M2ˆ4 + 3*q8_Ml*q8_M3 - 5*q8_Ml)
+ q8_R4*(2*q8_M2ˆ4 + 3*q8_Ml*q8_M35*q8_Ml)

5.3 Module Polynomial Operations

Tests for equality and arithmetic operations are performed in the usual way. Module polynomials may
be added or subtracted. A module polynomial can also be multiplied on the right by a word or by
a scalar. The effect of this is to multiply the monoid polynomial parts of each term by the word or
scalar. This is made clearer in the example.

Example

gap> Print(s1);
q8_Rl*(- 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_Ml - q8_Ml*q8_M2 + 2*q8_M4)

IdRel 24

+ q8_R4*(2*q8_M2ˆ4 + 3*q8_Ml*q8_M3 _ 5*q8_Ml)
gap> Print(s2);
q8_Rl*(2*q8_M2ˆ4 - 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_Ml + 3*q8_Ml*q8_M3

- q8_Ml*q8_M2 + 2*q8_M4 - 5*q8_Ml)
+ q8_R2*(4*q8_M3ˆ 3 - q8_M2*q8_M3*q8_Ml + q8_Ml*q8_M2 - 2*q8_M4)
+ q8_R3*(6*q8_M2ˆ4 + 9*q8_Ml*q8_M3 - 15*q8_Ml)

gap> Print(s1+s2);
q8_Rl*(2*q8_M2ˆ4 - 8*q8_M3ˆ3 + 2*q8_M2*q8_M3*q8_Ml

+ 3*q8_Ml*q8_M32*q8_Ml*q8_M2 + 4*q8_M4 - 5*q8_Ml)
+ q8_R2*(4*q8_M3ˆ 3 - q8_M2*q8_M3*q8_Ml + q8_Ml*q8_M2 - 2*q8_M4)
+ q8_R3*(6*q8_M2ˆ4 + 9*q8_Ml*q8_M3 - 15*q8_Ml)
+ q8_R4*(2*q8_M2ˆ4 + 3*q8_Ml*q8_M3 - 5*q8_Ml)

gap> Print(s1 - s2);
q8_Rl*(- 2*q8_M2ˆ4 - 3*q8_Ml*q8_M3 + 5*q8_Ml)
+ q8_R2*(- 4*q8_M3ˆ3 + q8_M2*q8_M3*q8_Ml - q8_Ml*q8_M2 + 2*q8_M4)
+ q8_R3*(- 6*q8_M2ˆ49*q8_Ml*q8_M3 + 15*q8_Ml) + q8_R4*(2*q8_M2ˆ4
+ 3*q8_Ml*q8_M3 - 5*q8_Ml)

gap> Print(s1*1/2);
q8_R1*(- 2*q8_M3ˆ3 + 1/2*q8_M2*q8_M3*q8_M1 - 1/2*q8_M1*q8_M2 + q8_M4)
+ q8_R4*(q8_M2ˆ4 + 3/2*q8_M1*q8_M3 - 5/2*q8_M1)

gap> M[1];
q8_M1
gap> Print(s1*M[1]);
q8_R1*(- 4*q8_M3ˆ3_q8_M1 + q8_M2*q8_M3*q8_M1ˆ2 - q8_M1*q8_M2*q8_M1
+ 2*q8_M4*q8_M1) + q8_R4*(2*q8_M2ˆ4*q8_M1 + 3*q8_M1*q8_M3*q8_M1 - 5*q8_M1ˆ2)

gap> Length(s3);
3

5.4 Identities among relators

5.4.1 IdentitiesAmongRelators

♦ IdentitiesAmongRelators(grp) (attribute)

The identities among the relators for a finitely presented group are logged module polynomials.
Example

gap> idsq8 := IdentitiesAmongRelators(q8);
[[(q8_Y3*(q8_M1*q8_M4), q8_R1*(q8_M1 - <identity ...>)),

(q8_Y10*(-q8_M1*q8_M4), q8_R2*(q8_M2 - <identity ...>)),
(q8_Y17*(<identity ...>), q8_R1*(-q8_M3 - q8_M2) + q8_R3*(q8_M1ˆ
2 + q8_M3 + q8_M1 + <identity ...>)),

(q8_Y31*(q8_M1*q8_M4), q8_R3*(q8_M3 - q8_M2) + q8_R4*(q8_M1 - <identity\
...>)), (q8_Y32*(-q8_M1*q8_M4), q8_R2*(-q8_M1ˆ

2) + q8_R3*(-q8_M3 - <identity ...>) + q8_R4*(q8_M2 + <identity ...>))
,

(q8_Y12*(q8_M1*q8_M4), q8_R1*(-q8_M2) + q8_R3*(q8_M1*q8_M2 + q8_M4) + q\
8_R4*(q8_M2 - <identity ...>)),

(q8_Y16*(-<identity ...>), q8_R1*(-<identity ...>) + q8_R2*(-q8_M1) + q\
8_R4*(q8_M3 + q8_M1))],

IdRel 25

[(q8_Y3*(q8_M1*q8_M4), q8_R1*(q8_M1 - <identity ...>)),
(q8_Y10*(-q8_M1*q8_M4), q8_R2*(q8_M2 - <identity ...>)),
(q8_Y3*(-q8_M1*q8_M4*q8_M3) + q8_Y17*(<identity ...>), q8_R1*(-q8_M2 - \

<identity ...>) + q8_R3*(q8_M1ˆ2 + q8_M3 + q8_M1 + <identity ...>)),
(q8_Y31*(q8_M1*q8_M4), q8_R3*(q8_M3 - q8_M2) + q8_R4*(q8_M1 - <identity\

...>)),
(q8_Y10*(-q8_M1*q8_M4*q8_M2 - q8_M1*q8_M4) + q8_Y32*(-q8_M1*q8_M4), q8_R\

2*(-<identity ...>) + q8_R3*(-q8_M3 - <identity ...>) + q8_R4*(q8_M2 + <identi\
ty ...>)),

(q8_Y12*(q8_M1*q8_M4), q8_R1*(-q8_M2) + q8_R3*(q8_M1*q8_M2 + q8_M4) + q\
8_R4*(q8_M2 - <identity ...>)),

(q8_Y16*(-<identity ...>), q8_R1*(-<identity ...>) + q8_R2*(-q8_M1) + q\
8_R4*(q8_M3 + q8_M1))]]
gap> RootIdentities(q8);
[(q8_Y3*(q8_M1*q8_M4), q8_R1*(q8_M1 - <identity ...>)),
(q8_Y3*(q8_M1*q8_M4), q8_R1*(q8_M1 - <identity ...>))]

5.4.2 RootIdentities

♦ RootIdentities(grp) (attribute)

The root identities are identities of the form rwr−1 where r = wn is a relator and n > 1.
Example

gap> RootIdentities(q8);
[(q8_Y3*(q8_M1*q8_M4), q8_R1*(q8_M1 - <identity ...>)),
(q8_Y3*(q8_M1*q8_M4), q8_R1*(q8_M1 - <identity ...>))]

References

[BH82] Ronald Brown and Johannes Huebschumann. Identities among relations. In R. Brown
and T.L. Thickstun, editors, Low-Dimensional Topology, volume 46 of London Math. Soc.
Lecture Note Series, pages 153–202. Cambridge University Press, 1982. 5

[BRS99] R. Brown and A. Razak Salleh. On the computation of identities among relations and of
free crossed resolutions of groups. London Math. Soc. J. Comput. Math., 2:28–61, 1999. 5

[Hey99] Anne Heyworth. Applications of Rewriting Systems and Groebner Bases to Com puting
Kan Extensions and Identities Among Relations. Ph.D. thesis, University of Wales, Bangor,
1999. 5

[HW03] Anne Heyworth and Christopher D. Wensley. Logged rewriting and identities among re-
lators. In C. M. Campbell, E. F. Robertson, and G. C. Smith, editors, Groups St Andrews
2001 in Oxford, volume 304 of London Math. Soc. Lecture Note Series, pages 256–276.
Cambridge University Press, 2003. 5

26

Index

=,+,* for module polynomials, 23
=,+,* for monoid polynomials, 18

AddTermModulePoly, 23
AddTermMonoidPoly, 18

Coeffs, 17

ElementsOfMonoidPresentation, 11

FreeGroupOfPresentation, 7
FreeRelatorGroup, 7
FreeRelatorHomomorphism, 7

GroupRelatorsOfPresentation, 7

HomomorphismOfPresentation, 7

IdentitiesAmongRelators, 24
InverseRelatorsOfPresentation, 7

KnuthBendix, 10

LeadCoeffMonoidPoly, 17
LeadMonoidPoly, 22
LeadTerm, 17, 22
Length, 19, 22
LoggedKnuthBendix, 13
LoggedOnePassKB, 12
LoggedOnePassReduceWord, 14
LoggedReduceWordKB, 14
LoggedRewriteReduce, 13
LoggedRewritingSystemFpGroup, 15

ModulePoly, 21
Monic, 17
MonoidPoly, 16
MonoidPolyFromCoeffsWords, 16
MonoidPresentationFpGroup, 7

One, 22
OnePassKB, 10

OnePassReduceWord, 9

ReduceMonoidPoly, 19
ReduceWordKB, 9
RewriteReduce, 10
RewritingSystemFpGroup, 8
RootIdentities, 25

ShorterLoggedRule, 14
ShorterRule, 10

Terms, 17, 22

Words, 17

ZeroModulePoly, 23
ZeroMonoidPoly, 16

27

