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Chapter 1

Resolutions of the ground ring

ResolutionAbelianGroup(L,n) ResolutionAbelianGroup(G,n) Inputs a listL := [m1,m2, ...,md] of nonnegative integers, and a positive integern. It returnsn terms of aZG-resolution for the abelian groupG = ZL[1]+ZL[2]+∆∆∆+ZL[d] . If G is finite then the first argument can also be the abelian groupG itself.
ResolutionAlmostCrystalGroup(G,n) Inputs a positive integern and an almost crystallographic pcp groupG. It returnsn terms of a freeZG-resolution. (A group is almost crystallographic if it is nilpotent-by-finite and has no non-trivial finite normal subgroup. Such groups can be constructed using the ACLIB package.)
ResolutionAlmostCrystalQuotient(G,n,c) ResolutionAlmostCrystalQuotient(G,n,c,false) An almost crystallographic groupG is an extension of a finite groupP by a nilpotent groupT, and has no non-trivial finite normal subgroup. We define the relative lower central series by settingT1 = T andTi+1 = [Ti ,G]. This function inputs an almost crystallographic groupG together with positive integersn andc. It returnsn terms of a freeZQ-resolutionR for the groupQ = G/Tc . In addition to the usual components, the resolutionRhas the componentR.quotientHomomorphismwhich gives the quotient homomorphismG−→ Q. If a fourth optional variable is set equal to ”false” then the function omits to test whetherQ is finite and a ”more canonical” resolution is constructed.
ResolutionArtinGroup(D,n) Inputs a Coxeter diagramD and an integern > 1. It returnsn terms of a freeZG-resolutionRwhereG is the Artin monoid associated toD. It is conjectured thatR is also a free resolution for the Artin groupG. The conjecture is known to hold inAbout/aboutArtinGroups.html. G = R.group is infinite and returned as a finitely presented group. The listR.elts is a partial listing of the elements ofG which grows asR is used. InitiallyR.elts is empty and then, any time the boundary of a resolution generator is called,R.elts is updated to include elements ofG involved in the boundary. The contracting homotopy onRhas not yet been implemented! Furthermore, the groupG is currently returned only as a finitely presented group (without any method for solving the word problem).
ResolutionAsphericalPresentation(F,R,n) Inputs a free groupF , a setRof words inF which constitute an aspherical presentation for a groupG, and a positive integern. (Asphericity can be a difficult property to verify. The functionIsAspherical(F,R) could be of help.) The function returns n terms of a freeZG-resolutionRwhich has generators in dimensions< 3 only. No contracting homotopy onRwill be returned.
ResolutionBieberbachGroup( G )
ResolutionBieberbachGroup( G, v ) Inputs a Bieberbach groupG (represented using AffineCrystGroupOnRight as in the GAP package Cryst). It also optionally inputs a choice of vectorv in the euclidean spaceRn on whichG acts freely. The function returnsn+1 terms of the freeZG-resolution ofZ arising as the cellular chain complex of the tesselation ofRn by the Dirichlet-Voronoi fundamental domain determined byv. This is a HAPcryst function and is thus only available if HAPcryst is loaded. The function requires the use of Polymake software.
ResolutionDirectProduct(R,S) ResolutionDirectProduct(R,S,"internal") Inputs aZG-resolutionRandZH-resolutionS. It outputs aZD-resolution for the direct productD = GxH. If G andH lie in a common groupK, and if they commute and have trivial intersection, then an optional third variable ”internal” can be used. This will forceD to be the subgroupGH in K.
ResolutionExtension(g,R,S) ResolutionExtension(g,R, S,"TestFiniteness") ResolutionExtension(g,R,S,"NoTest",GmapE) Inputs a surjective group homomorphismg : E −→ G with kernelN. It also inputs aZN-resolutionRand aZG-resolutionS. It returns aZE-resolution. The groupsE andG can be infinite. If an optional fourth argument is set equal to ”TestFiniteness” then the groupsN andG will be tested to see if they are finite. If they are finite then some speed saving routines will be invoked. If the homomorphismg is such that the GAP functionPreImagesElement(g,x) doesn’t work, then a functionGmapE() should be included as a fifth input. For anyx in G this function should return an elementGmapE(x) in E which gets mapped ontox by g. The contracting homotopy on theZE-resolution has not yet been fully implemented for infinite groups!
ResolutionFiniteDirectProduct(R,S) ResolutionFiniteDirectProduct(R,S, "internal") Inputs aZG-resolutionRandZH-resolutionSwhereG andH are finite groups. It outputs aZD-resolution for the direct productD = G×H. If G andH lie in a common groupK, and if they commute and have trivial intersection, then an optional third variable ”internal” can be used. This will forceD to be the subgroupGH in K.
ResolutionFiniteExtension(gensE,gensG,R,n) ResolutionFiniteExtension(gensE,gensG,R,n,true) ResolutionFiniteExtension(gensE,gensG,R,n,false,S) Inputs: a setgensEof generators for a finite groupE; a setgensGequal to the image ofgensEin a quotient groupG of E; aZG-resolutionRup to dimension at leastn; a positive integern. It uses theTwistedTensorProduct() construction to returnn terms of aZE-resolution. The function has an optional fourth argument which, when set equal to ”true”, invokes tietze reductions in the construction of a resolution for the kernel ofE −→ G. If a ZN-resolutionS is available, whereN is the kernel of the quotientE −→ G, then this can be incorporated into the computations using an optional fifth argument.
ResolutionFiniteGroup(gens,n) ResolutionFiniteGroup(gens,n,true) ResolutionFiniteGroup(gens,n,false,p) Inputs a setgensof generators for a finite groupG and a positive integern. It outputsn terms of aZG-resolution. The function has an optional third argument which, when set equal totrue, invokes tietze reductions in the construction of the resolution. The function has an optional fourth argument which, when set equal to a primep, records the fact that the resolution will only be used for modp calculations. This could speed up subsequent constructions.
ResolutionFiniteSubgroup(R,K) ResolutionFiniteSubgroup(R,gensG,gensK) Inputs aZG-resolution for a finite groupG and a subgroupK of index|G : K|. It returns a freeZK-resolution whoseZK-rank is|G : K| times theZG-rank in each dimension. Generating setsgensG, gensKfor G andK can also be input to the function (though the method does not depend on a choice of generators). ThisZK-resolution is not reduced. ie. it has more than one generator in dimension 0.
ResolutionGraphOfGroups(D,n) ResolutionGraphOfGroups(D,n,L) Inputs a graph of groupsD and a positive integern. It returnsn terms of a freeZG-resolution for the fundamental groupG of D. An optional third argumentL = [R1, . . . ,Rt ] can be used to list (in any order) free resolutions for some/all of the vertex and edge groups inD. If for some vertex or edge group no resolution is listed inL then the functionResolutionFiniteGroup() will be used to try to construct the resolution. TheZG-resolution is usually not reduced. i.e. it has more than one generator in dimension 0. The contracting homotopy on theZG-resolution has not yet been implemented! Furthermore, the groupG is currently returned only as a finitely presented group (without any method for solving the word problem).
ResolutionNilpotentGroup(G,n) ResolutionNilpotentGroup(G,n,"TestFiniteness") Inputs a nilpotent groupG and positive integern. It returnsn terms of a freeZG-resolution. The resolution is computed using a divide-and-conquer technique involving the lower central series. This function can be applied to infinite groupsG. For finite groups the functionResolutionNormalSeries() probably gives better results. If an optional third argument is set equal to ”TestFiniteness” then the groupsN andG will be tested to see if they are finite. If they are finite then some speed saving routines will be invoked. The contracting homotopy on theZE-resolution has not yet been fully implemented for infinite groups.
ResolutionNormalSeries(L,n) ResolutionNormalSeries(L,n,true) ResolutionNormalSeries(L,n,false,p) Inputs a positive integern and a listL = [L1, ...,Lk] of normal subgroupsLi of a finite groupG satisfyingG = L1 > L2 >.. . >Lk. Alternatively,L = [gensL1, ...gensLk] can be a list of generating sets for theLi (and these particular generators will be used in the construction of resolutions). It returns aZG-resolution by repeatedly using the functionResolutionFiniteExtension(). The function has an optional third argument which, if set equal to true, invokes tietze reductions in the construction of resolutions. The function has an optional fourth argument which, if set equal to p> 0, produces a resolution which is only valid for modp calculations.
ResolutionPrimePowerGroup(P,n) ResolutionPrimePowerGroup(G,n,p) Inputs ap-groupP and integern>0. It uses GAP’s standard linear algebra functions over the fieldF of p elements to construct a freeFP-resolution for modp calculations only. The resolution is minimal - meaning that the number of generators ofRn equals the rank ofHn(P,F). The function can also be used to obtain a free non-minimalFG-resolution of a small groupG of non-prime-power order. In this case the primep must be entered as the third input variable. (In the non-prime-power case the algorithm is naive and not very good.)
ResolutionSmallFpGroup(G,n) ResolutionSmallFpGroup(G,n,p) Inputs a small finitely presented groupG and an integern>0. It returnsn terms of aZG-resolution which, in dimensions 1 and 2, corresponds to the given presentation forG. The method returns no contracting homotopy for the resolution. The function has an optional fourth argument which, when set equal to a primep, records the fact that the resolution will only be used for modp calculations. This could speed up subsequent constructions. This function was written by Irina Kholodna.
ResolutionSubgroup(R,K) Inputs aZG-resolution for an (infinite) groupG and a subgroupK of finite index|G : K|. It returns a freeZK-resolution whoseZK-rank is|G : K| times theZG-rank in each dimension. IfG is finite then the functionResolutionFiniteSubgroup(R,G,K) will probably work better. In particular, resolutions from this function probably won’t work with the functionEquivariantChainMap(). ThisZK-resolution is not reduced. i.e. it has more than one generator in dimension 0.
ResolutionSubnormalSeries(L,n) Inputs a positive integer n and a listL = [L1, . . . ,Lk] of subgroupsLi of a finite groupG = L1 such thatL1 > L2. . . > Lk is a subnormal series inG (meaning that eachLi+1 must be normal inLi). It returns aZG-resolution by repeatedly using the functionResolutionFiniteExtension(). If L is a series of normal subgroups inG then the functionResolutionNormalSeries(L,n) will possibly work more efficiently.
TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE) Inputs aZG-resolutionR, aZN-resolutionS, and other data relating to a short exact sequence 1−→ N −→ E −→ G−→ 1. It uses a perturbation technique of CTC Wall to construct aZE-resolutionF . BothG andN could be infinite. The ”length” ofF is equal to the minimum of the ”length”s ofRandS. The resolutionRneeds no contracting homotopy if no such homotopy is requied forF .
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Chapter 2

Resolutions of modules

ResolutionFpGModule(M,n) Inputs anF pG-moduleM and a positive integern. It returnsn terms of a minimal freeFG-resolution of the moduleM (whereG is a finite group andF the field ofp elements).
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Chapter 3

Induced equivariant chain maps

EquivariantChainMap(R,S,f) Inputs aZG-resolutionR, aZG′-resolutionS, and a group homomorphismf : G−→ G′. It outputs a component objectM with the following components.M!.sourceis the resolutionR. M!.target is the resolutionS. M!.mapping(w,n) is a function which gives the image inSn, under a chain map induced byf , of a wordw in Rn. (HereRn andSn are then-th modules in the resolutionsRandS.) F !.propertiesis a list of pairs such as [”type”, ”equivariantChainMap”]. The resolutionSmust have a contracting homotopy.
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Chapter 4

Functors

••••
HomToIntegers(X) Inputs either aZG-resolutionX = R, or an equivariant chain mapX = (F : R−→ S). It returns the cochain complex or cochain map obtained by applyingHomZG(,Z) whereZ is the trivial module of integers (characteristic 0).
HomToIntegersModP(R) Inputs aZG-resolutionRand returns the cochain complex obtained by applyingHomZG(,Zp) whereZp is the trivial module of integers modp. (At present this functor does not handle equivariant chain maps.)
HomToIntegralModule(R,f) Inputs aZG-resolutionRand a group homomorphismf : G−→ GLn(Z) to the group ofn×n invertible integer matrices. HereZ must have characteristic 0. It returns the cochain complex obtained by applyingHomZG(,A) whereA is theZG-moduleZn with G action via f . (At present this function does not handle equivariant chain maps.)
LowerCentralSeriesLieAlgebra(G) LowerCentralSeriesLieAlgebra(f) Inputs a pcp groupG. If each quotientGc/Gc+1 of the lower central series is free abelian or p-elementary abelian (for fixed prime p) then a Lie algebraL(G) is returned. The abelian group underlyingL(G) is the direct sum of the quotientsGc/Gc+1 . The Lie bracket onL(G) is induced by the commutator inG. (HereG1 = G, Gc+1 = [Gc,G] .) The function can also be applied to a group homomorphismf : G−→ G′ . In this case the induced homomorphism of Lie algebrasL( f ) : L(G)−→ L(G′) is returned. If the quotients of the lower central series are not all free or p-elementary abelian then the function returns fail. This function was written by Pablo Fernandez Ascariz
TensorWithIntegers(X) Inputs either aZG-resolutionX = R, or an equivariant chain mapX = (F : R−→ S). It returns the chain complex or chain map obtained by tensoring with the trivial module of integers (characteristic 0).
TensorWithIntegersModP(X,p) Inputs either aZG-resolutionX = R, or an equivariant chain mapX = (F : R−→ S), and a primep. It returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulop.
TensorWithRationals(R) Inputs aZG-resolutionRand returns the chain complex obtained by tensoring with the trivial module of rational numbers.
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Chapter 5

Chain complexes

ChevalleyEilenbergComplex(X,n) Inputs either a Lie algebraX = A (over the ring of integersZ or over a fieldK) or a homomorphism of Lie algebrasX = ( f : A−→ B), together with a positive integern. It returns either the firstn terms of the Chevalley-Eilenberg chain complexC(A), or the induced map of Chevalley-Eilenberg complexesC( f ) : C(A)−→C(B). (The homology of the Chevalley-Eilenberg complexC(A) is by definition the homology of the Lie algebraA with trivial coefficients inZ or K). This function was written by Pablo Fernandez Ascariz
LeibnizComplex(X,n) Inputs either a Lie or Leibniz algebraX = A (over the ring of integersZ or over a fieldK) or a homomorphism of Lie or Leibniz algebrasX = ( f : A−→ B), together with a positive integern. It returns either the firstn terms of the Leibniz chain complexC(A), or the induced map of Leibniz complexesC( f ) : C(A)−→C(B). (The Leibniz complexC(A) was defined by J.-L.Loday. Its homology is by definition the Leibniz homology of the algebraA). This function was written by Pablo Fernandez Ascariz
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Chapter 6

Homology and cohomology groups

Cohomology(X) Inputs either a cochain complexX = C or a cochain mapX = (C−→ D) over the integersZ.If X = C then the torsion coefficients ofHn(C) are retuned. IfX = (C−→ D) then the induced homomorphismHn(C)−→ Hn(D) is returned as a homomorphism of finitely presented groups.
CohomologyPrimePart(C,n,p) Inputs a cochain complexC in characteristic 0, a positive integern, and a primep. It returns a list of those torsion coefficients ofHn(C) that are positive powers ofp. The function uses the EDIM package by Frank Luebeck.
GroupCohomology(X,n) GroupCohomology(X,n,p) Inputs a positive integern and either a finite groupX = G or a Coxeter diagramX = D representing an infinite Artin groupG. It returns the torsion coefficients of the integral cohomologyHn(G,Z). There is an optional third argument which, when set equal to a primep, causes the function to return the the modp cohomologyHn(G,Zp) as a list of length equal to its rank. This function is a composite of more basic functions, and makes choices for a number of parameters. For a particular group you would almost certainly be better using the more basic functions and making the choices yourself!
GroupHomology(X,n)
GroupHomology(X,n,p) Inputs a positive integern and either a finite groupX = G or a Coxeter diagramX = D representing an infinite Artin groupG. It returns the torsion coefficients of the integral homologyHn(G,Z). There is an optional third argument which, when set equal to a primep, causes the function to return the modp homologyHn(G,Zp) as a list of lenth equal to its rank. This function is a composite of more basic functions, and makes choices for a number of parameters. For a particular group you would almost certainly be better using the more basic functions and making the choices yourself!
Homology(X,n) Inputs either a chain complexX = C or a chain mapX = (C−→ D).If X = C then the torsion coefficients ofHn(C) are retuned. IfX = (C−→ D) then the induced homomorphismHn(C)−→ Hn(D) is returned as a homomorphism of finitely presented groups.
HomologyPb(C,n) This is a back-up function which might work in some instances whereHomology(C,n) fails. It is most useful for chain complexes whose boundary homomorphisms are sparse. It inputs a chain complexC in characteristic 0 and returns the torsion coefficients ofHn(C) . There is a small probability that an incorrect answer could be returned. The computation relies on probabilistic Smith Normal Form algorithms implemented in the Simplicial Homology GAP package. This package therefore needs to be loaded. The computation is stored as a component ofC so, when called a second time for a givenC andn, the calculation is recalled without rerunning the algorithm. The choice of probabalistic algorithm can be changed using the command SetHomologyAlgorithm(HomologyAlgorithm[i]); where i = 1,2,3 or 4. The upper limit for the probability of an incorrect answer can be set to any rational number 0<e<= 1 using the following command. SetUncertaintyTolerence(e); See the Simplicial Homology package manual for further details.
HomologyPrimePart(C,n,p) Inputs a chain complexC in characteristic 0, a positive integern, and a primep. It returns a list of those torsion coefficients ofHn(C) that are positive powers ofp. The function uses the EDIM GAP package by Frank Luebeck.
LeibnizAlgebraHomology(A,n) Inputs a Lie or Leibniz algebraX = A (over the ring of integersZ or over a fieldK), together with a positive integern. It returns then-dimensional Leibniz homology ofA.
LieAlgebraHomology(A,n) Inputs a Lie algebraA (over the integers or a field) and a positive integern. It returns the homologyHn(A,k) wherek denotes the ground ring.
PrimePartDerivedFunctor(G,R,F,n) Inputs a finite groupG, a positive integern, at leastn+1 terms of aZP-resolution for a Sylow subgroupP<G and a ”mathematically suitable” covariant additive functorF such as TensorWithIntegers . It returns the abelian invariants of thep-component of the homologyHn(F(R)) . Warning: All calculations are assumed to be in characteristic 0. The function should not be used if the coefficient module is over the field ofp elements. ”Mathematically suitable” means that the Cartan-Eilenberg double coset formula must hold.
RankHomologyPGroup(G,n) RankHomologyPGroup(R,n) RankHomologyPGroup(G,n,"empirical") Inputs a (smallish)p-groupG, or n terms of a minimalZpG-resolutionRof Zp , together with a positive integern. It returns the minimal number of generators of the integral homology groupHn(G,Z). If an option third string argument ”empirical” is included then an empirical algorithm will be used. This is one which always seems to yield the right answer but which we can’t prove yields the correct answer.
RankPrimeHomology(G,n) Inputs a (smallish)p-groupG together with a positive integern. It returns a functiondim(k) which gives the rank of the vector spaceHk(G,Zp) for all 0 <= k <= n.

8



Chapter 7

Poincare series

••••
EfficientNormalSubgroups(G)
EfficientNormalSubgroups(G,k) Inputs a prime-power groupG and, optionally, a positive integerk. The default isk = 4. The function returns a list of normal subgroupsN in G such that the Poincare series forG equals the Poincare series for the direct product(N× (G/N)) up to degreek.
ExpansionOfRationalFunction(f,n) Inputs a positive integern and a rational functionf (x) = p(x)/q(x) where the degree of the polynomialp(x) is less than that ofq(x). It returns a list[a0,a1,a2,a3, . . . ,an] of the firstn+1 coefficients of the infinite expansionf (x) = a0 +a1x+a2x2 +a3x3 + . . . .
PoincareSeries(G,n) PoincareSeries(R,n)
PoincareSeries(L,n)
PoincareSeries(G) Inputs a finitep-groupG and a positive integern. It returns a quotient of polynomialsf (x) = P(x)/Q(x) whose coefficient ofxk equals the rank of the vector spaceHk(G,Zp) for all k in the rangek = 1 tok = n. (The second input variable can be omitted, in which case the function tries to choose a ”reasonable” value forn.) In place of the groupG the function can also input (at leastn terms of) a minimal modp resolutionR for G. Alternatively, the first input variable can be a listL of integers. In this case the coefficient ofxk in f (x) is equal to the(k+1)st term in the list.
PoincareSeriesPrimePart(G,p,n) Inputs a finite groupG, a primep, and a positive integern. It returns a quotient of polynomialsf (x) = P(x)/Q(x) whose coefficient ofxk equals the rank of the vector spaceHk(G,Zp) for all k in the rangek = 1 tok = n. The efficiency of this function needs to be improved.
Prank(G) Inputs ap-groupG and returns the rank of the largest elementary abelian subgroup.
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Chapter 8

Cohomology ring structure

IntegralCupProduct(R,u,v,p,q)
IntegralCupProduct(R,u,v,p,q,P,Q,N) (Various functions used to construct the cup product are alsoCR f unctions.html.) Inputs aZG-resolutionR, a vectoru representing an element inH p(G,Z), a vectorv representing an element inHq(G,Z) and the two integersp,q >0. It returns a vectorw representing the cup productu·v in H p+q(G,Z). This product is associative andu·v = (−1)pqv·u . It providesH∗(G,Z) with the structure of an anti-commutative graded ring. This function implements the cup product for characteristic 0 only. The resolutionRneeds a contracting homotopy. To save the function from having to calculate the abelian groupsHn(G,Z) additional input variables can be used in the formIntegralCupProduct(R,u,v, p,q,P,Q,N) , whereP is the output of the commandCRCocyclesAndCoboundaries(R, p, true) Q is the output of the commandCRCocyclesAndCoboundaries(R,q, true) N is the output of the commandCRCocyclesAndCoboundaries(R, p+q, true) .
IntegralRingGenerators(R,n) Inputs at leastn+1 terms of aZG-resolution and integern> 0. It returns a minimal list of cohomology classes inHn(G,Z) which, together with all cup products of lower degree classes, generate the groupHn(G,Z) . (Let ai be thei-th canonical generator of thed-generator abelian groupHn(G,Z). The cohomology classn1a1 + ...+ndad is represented by the integer vectoru = (n1, ...,nd). )
ModPCohomologyGenerators(G,n)
ModPCohomologyGenerators(R) Inputs either ap-groupG and positive integern, or elsen terms of a minimalZpG-resolutionRof Zp. It returns a pair whose first entry is a minimal set of homogeneous generators for the cohomology ringA = H∗(G,Zp) modulo all elements in degree greater thann. The second entry of the pair is a functiondegwhich, when applied to a minimal generator, yields its degree. WARNING: the following rule must be applied when multiplying generatorsxi together. Only products of the formx1∗ (x2∗ (x3∗ (x4∗ ...))) with deg(xi)≤ deg(xi+1) should be computed (since thexi belong to a structure constant algebra with only a partially defined structure constants table).
ModPCohomologyRing(G,n)
ModPCohomologyRing(G,n,level)
ModPCohomologyRing(R)
ModPCohomologyRing(R,level) Inputs either ap-groupG and positive integern, or elsen terms of a minimalZpG-resolutionRof Zp. It returns the cohomology ringA = H∗(G,Zp) modulo all elements in degree greater thann. The ring is returned as a structure constant algebraA. The ringA is graded. It has a componentA!.degree(x) which is a function returning the degree of each (homogeneous) elementx in GeneratorsO f Algebra(A). An optional input variable ”level” can be set to one of the strings ”medium” or ”high”. These settings determine parameters in the algorithm. The default setting is ”medium”. When ”level” is set to ”high” the ringA is returned with a componentA!.niceBasis. This component is a pair[Coe f f,Bas]. HereBasis a list of integer lists; a ”nice” basis for the vector spaceA can be constructed using the commandList(Bas,x−> Product(List(x, i−> Basis(A)[i])). The coefficients of the canonical basis elementBasis(A)[i] are stored asCoe f f[i]. If the ringA is computed using the setting ”level”=”medium” then the componentA!.niceBasiscan be added toA using the commandA := ModPCohomologyRingpart2(A).
ModPRingGenerators(A) Inputs a modp cohomology ringA (created using the preceeding function). It returns a minimal generating set for the ringA. Each generator is homogeneous.
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Chapter 9

Commutator and nonabelian tensor
computations

•••
BaerInvariant(G,c) Inputs a nilpotent groupG and integerc>0. It returns the Baer invariantM(c)(G) defined as follows. For an arbitrary groupG let L∗c+1(G) be the(c+1)-st term of the upper central series of the groupU = F/[[[R,F ],F ]...] (with c copies ofF in the denominator) whereF/R is any free presentation ofG. This is an invariant ofG and we defineM(c)(G) to be the kernel of the canonical homomorphismM(c)(G)−→ G. Forc = 1 the Baer invariantM(1)(G) is isomorphic to the second integral homologyH2(G,Z). This function requires the NQ package.
Coclass(G) Inputs a groupG of prime-power orderpn and nilpotency classc say. It returns the integerr = n−c .
EpiCentre(G,N)
EpiCentre(G) Inputs a finite groupG and normal subgroupN and returns a subgroupZ∗(G,N) of the centre ofN. The groupZ∗(G,N) is trivial if and only if there is a crossed moduled : E −→ G with N = Image(d) and withKer(d) equal to the subgroup ofE consisting of those elements on whichG acts trivially. If no value forN is entered then it is assumed thatN = G. In this case the groupZ∗(G,G) is trivial if and only if G is isomorphic to a quotientG = E/Z(E) of some groupE by the centre ofE. (See also the commandU pperE picentralSeries(G,c). )
NonabelianExteriorProduct(G,N) Inputs a finite groupG and normal subgroupN. It returns a recordE with the following components.E.homomorphismis a group homomorphismµ : (G∧N)−→ G from the nonabelian exterior product(G∧N) to G. The kernel ofµ is the relative Schur multiplier.E.pairing(x,y) is a function which inputs an elementx in G and an elementy in N and returns(x∧y) in the exterior product(G∧N) . This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.
NonabelianTensorProduct(G,N) Inputs a finite groupG and normal subgroupN. It returns a recordE with the following components.E.homomorphismis a group homomorphismµ : (G⊗N)−→ G from the nonabelian exterior product(G⊗N) to G. E.pairing(x,y) is a function which inputs an elementx in G and an elementy in N and returns(x⊗y) in the tensor product(G⊗N) . This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.
NonabelianTensorSquare(G)
NonabelianTensorSquare(G,m) Inputs a finite or nilpotent infinite groupG and returns a recordT with the following components.T.homomorphismis a group homomorphismµ : (G⊗G)−→ G from the nonabelian tensor square ofG to G. The kernel ofµ is isomorphic to the third homotopy group of the suspensionSK(G,1) of an Eilenberg-Mac Lane space.T.pairing(x,y) is a function which inputs two elementsx,y in G and returns the tensor(x⊗y) in the tensor square(G⊗G) . An optional second variblem can be set equal to a multiple of the order of the tensor square(G⊗G). This might help whenG is solvable but not nilpotent (especially if the estimated upper boundm is reasonable accurate) as the bound is used in the solvable quotient algorithm. The optional second variablem can also be set equal to 0. In this case the Todd-Coxeter procedure will be used to enumerate the tensor square even whenG is solvable. This function should work for reasonably small solvable groups or extremely small non-solvable groups.
RelativeSchurMultiplier(G,N) Inputs a finite groupG and normal subgroupN. It returns the homology groupH2(G,N,Z) that fits into the exact sequence. . .−→ H3(G,Z)−→ H3(G/N,Z)−→ H2(G,N,Z)−→ H3(G,Z)−→ H3(G/N,Z)−→ . . . . This function should work for reasonably small nilpotent groupsG or extremely small non-nilpotent groups.
TensorCentre(G) Inputs a groupG and returns the largest central subgroupN such that the induced homomorphism of nonabelian tensor squares(G⊗G)−→ (G/N⊗G/N) is an isomorphism. Equivalently,N is the largest central subgroup such thatπ3(SK(G,1))−→ π3(SK(G/N,1)) is injective.
ThirdHomotopyGroupOfSuspensionB(G)
ThirdHomotopyGroupOfSuspensionB(G,m) Inputs a finite or nilpotent infinite groupG and returns the abelian invariants of the third homotopy groupJGof the suspensionSK(G,1) of the Eilenberg-Mac Lane spaceK(G,1). For non-nilpotent groups the implementation of the functionThirdHomotopyGroupO f SuspensionB(G) is far from optimal and will soon be improved. As a temporary solution to this problem, an optional second variablem can be set equal to 0, and then the function efficiently returns the abelian invariants of groupsA andB such that there is an exact sequence 0−→ B−→ JG−→ A−→ 0. Alternatively, the optional second variblem can be set equal to a positive multiple of the order of the tensor square(G⊗G). In this case the function returns the abelian invariants ofJG. This might help whenG is solvable but not nilpotent (especially if the estimated upper boundm is reasonable accurate).
UpperEpicentralSeries(G,c) Inputs a nilpotent groupG and an integerc. It returns thec-th term of the upper epicentral series 1< Z∗1(G) < Z∗2(G) < .. .. The upper epicentral series is defined for an arbitrary groupG. The groupZ∗c(G) is the image inG of thec-th termZc(U) of the upper central series of the groupU = F/[[[R,F ],F ] . . .] (with c copies ofF in the denominator) whereF/R is any free presentation ofG. This functions requires the NQ package.
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Chapter 10

Lie commutators and nonabelian Lie
tensors

••••••
All functions on this page were implemented by Hamid Mohammadzadeh.
LieCoveringHomomorphism(L) Inputs a finite dimensional Lie algebraL over a field, and returns a surjective Lie homomorphismphi : C→ L where:the kernel ofphi lies in both the centre ofL and the derived subalgebra ofL, the kernel ofphi is a vector space of rank equal to the rank of the second Chevalley-Eilenberg homology ofL.
LieEpiCentre(L) Inputs a finite dimensional Lie algebraL over a field, and returns an idealZ∗(L) of the centre ofL. The idealZ∗(L) is trivial if and only if L is isomorphic to a quotientL = E/Z(E) of some Lie algebraE by the centre ofE.
LieExteriorSquare(L) Inputs a finite dimensional Lie algebraL over a field. It returns a recordE with the following components.E.homomorphismis a Lie homomorphismµ : (L∧L)−→ L from the nonabelian exterior square(L∧L) to L. The kernel ofµ is the Lie multiplier.E.pairing(x,y) is a function which inputs elementsx,y in L and returns(x∧y) in the exterior square(L∧L) .
LieTensorSquare(L) Inputs a finite dimensional Lie algebraL over a field and returns a recordT with the following components.T.homomorphismis a Lie homomorphismµ : (L⊗L)−→ L from the nonabelian tensor square ofL to L. T.pairing(x,y) is a function which inputs two elementsx,y in L and returns the tensor(x⊗y) in the tensor square(L⊗L) .
TensorCentre(L) Inputs a finite dimensional Lie algebraL over aq field and returns the largest idealN such that the induced homomorphism of nonabelian tensor squares(L⊗L)−→ (L/N⊗L/N) is an isomorphism.

12



Chapter 11

Generators and relators of groups

••••••
CayleyGraphDisplay(G,X)
CayleyGraphDisplay(G,X,"mozilla") Inputs a finite groupG together with a subsetX of G. It displays the corresponding Cayley graph as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument. The argumentG can also be a finite set of elements in a (possibly infinite) group containingX. The edges of the graph are coloured according to which element ofX they are labelled by. The listX corresponds to the list of colours [blue, red, green, yellow, brown, black] in that order. This function requires Graphviz software.
IsAspherical(F,R) Inputs a free groupF and a setRof words inF . It performs a test on the 2-dimensional CW-spaceK associated to this presentation for the groupG = F/<R>F . The function returns ”true” ifK has trivial second homotopy group. In this case it prints: Presentation is aspherical. Otherwise it returns ”fail” and prints: Presentation is NOT piece-wise Euclidean non-positively curved. (In this caseK may or may not have trivial second homotopy group. But it is NOT possible to impose a metric on K which restricts to a Euclidean metric on each 2-cell.) The function uses Polymake software.
PresentationOfResolution(R) Inputs at least two terms of a reducedZG-resolutionRand returns a recordP with componentsP. f reeGroupis a free groupF , P.relators is a listSof words inF , whereG is isomorphic toF modulo the normal closure ofS. This presentation forG corresponds to the 2-skeleton of the classifying CW-space from whichRwas constructed. The resolutionR requires no contracting homotopy.
TorsionGeneratorsAbelianGroup(G) Inputs an abelian groupG and returns a generating set[x1, . . . ,xn] where no pair of generators have coprime orders.
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Chapter 12

Orbit polytopes and fundamental
domains

••
FundamentalDomainAffineCrystGroupOnRight(v,G) Inputs a crystallographic group G (represented using AffineCrystGroupOnRight as in the GAP package Cryst). It also inputs a choice of vector v in the euclidean spaceRn on whichG acts. It returns the Dirichlet-Voronoi fundamental cell for the action ofG on euclidean space corresponding to the vectorv. The fundamental cell is a fundamental domain ifG is Bieberbach. The fundamental cell/domain is returned as a “Polymake object”. Currently the function only applies to certain crystallographic groups. See the manuals to HAPcryst and HAPpolymake for full details. This is a HAPcryst function and is thus only available if HAPcryst is loaded. The function requires the use of Polymake software.
OrbitPolytope(G,v,L) Inputs a permutation group or matrix groupG of degreen and a rational vectorv of lengthn. In both cases there is a natural action ofG onv. Let P(G,v) be the convex polytope arising as the convex hull of the Euclidean points in the orbit ofv under the action ofG. The function also inputs a sublistL of the following list of strings: [”dimension”,”vertexdegree” , ”visualgraph” , ”schlegel” , ”visual” ]Dependingonthesublist, the f unction: printsthedimensiono f theorbit polytopeP(G,v);printsthedegreeo f avertexinthegrapho fP(G,v);visualizesthegrapho fP(G,v);visualizestheSchlegeldiagramo fP(G,v);visualizesP(G,v)i f thepolytopeiso f dimension2or3.

The function uses Polymake software.
PolytopalComplex(G,v)

PolytopalComplex(G,v,n)
Inputs a permutation group or matrix groupG of degreen and a rational vectorv of lengthn. In both

cases there is a natural action ofG onv. Let P(G,v) be the convex polytope arising as the convex
hull of the Euclidean points in the orbit ofv under the action ofG. The cellular chain complex

C∗ = C∗(P(G,v)) is an exact sequence of (not necessarily free)ZG-modules. The function returns a
component objectRwith components:

•• R!.dimension(k) is a function which returns the number ofG-orbits of thek-dimensional faces
in P(G,v). If eachk-face has trivial stabilizer subgroup inG thenCk is a freeZG-module of
rankR.dimension(k).

• R!.stabilizer(k,n) is a function which returns the stabilizer subgroup for a face in then-th orbit
of k-faces.

• If all faces of dimension<k+1 have trivial stabilizer group then the firstk terms ofC∗ constitute
part of a freeZG-resolution. The boundary map is described by the functionboundary(k,n) .
(If some faces have non-trivial stabilizer group thenC∗ is not free and no attempt is made to
determine signs for the boundary map.)

• R!.elements, R!.group, R!.propertiesare as in aZG-resolution.

If an optional third input variablen is used, then only the firstn terms of the resolutionC∗ will be
computed.

The function uses Polymake software.
PolytopalGenerators(G,v)

Inputs a permutation group or matrix groupG of degreen and a rational vectorv of lengthn. In both
cases there is a natural action ofG onv, and the vectorv must be chosen so that it has trivial stabilizer
subgroup inG. Let P(G,v) be the convex polytope arising as the convex hull of the Euclidean points

in the orbit ofv under the action ofG. The function returns a recordP with components:
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• P.generatorsis a list of all those elementsg in G such thatg ·v has an edge in common withv.
The list is a generating set forG.

• P.vectoris the vectorv.

• P.hasseDiagramis the Hasse diagram of the cone atv.

The function uses Polymake software. The function is joint work with Seamus Kelly.
VectorStabilizer(G,v)

Inputs a permutation group or matrix groupG of degreen and a rational vector of degreen. In both
cases there is a natural action ofG onv and the function returns the group of elements inG that fixv.



Chapter 13

Cocycles

CocycleCondition(R,n) Inputs a resolutionRand an integern>0. It returns an integer matrixM with the following property. Supposed = R.dimension(n). An integer vectorf = [ f1, . . . , fd] then represents aZG-homomorphismRn −→ Zq which sends theith generator ofRn to the integerfi in the trivialZG-moduleZq (where possiblyq = 0 ). The homomorphismf is a cocycle if and only ifMt f = 0 modq.
StandardCocycle(R,f,n)
StandardCocycle(R,f,n,q) Inputs aZG-resolutionR (with contracting homotopy), a positive integern and an integer vectorf representing ann-cocycleRn −→ Zq whereG acts trivially onZq. It is assumedq = 0 unless a value forq is entered. The command returns a functionF(g1, ...,gn) which is the standard cocycleGn −→ Zq corresponding tof . At present the command is implemented only forn = 2 or 3.
Syzygy(R,g) Inputs aZG-resolutionR (with contracting homotopy) and a listg = [g[1], ...,g[n]] of elements inG. It returns a wordw in Rn. The wordw is the image of then-simplex in the standard bar resolution corresponding to then-tupleg. This function can be used to construct explicit standardn-cocycles. (Currently implemented only for n<4.)
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Chapter 14

Words in free ZG-modules

AddFreeWords(v,w) Inputs two wordsv,w in a freeZG-module and returns their sumv+w. If the characteristic ofZ is greater than 0 then the next function might be more efficient.
AddFreeWordsModP(v,w,p) Inputs two wordsv,w in a freeZG-module and the characteristicp of Z. It returns the sumv+w. If p = 0 the previous function might be fractionally quicker.
AlgebraicReduction(w)
AlgebraicReduction(w,p) Inputs a wordw in a freeZG-module and returns a reduced version of the word in which all pairs of mutually inverse letters have been cancelled. The reduction is performed in a free abelian group unless the characteristicp of Z is entered.
Multiply Word(n,w) Inputs a wordw and integern. It returns the scalar multiplen·w.
Negate([i,j]) Inputs a pair[i, j] of integers and returns[−i, j].
NegateWord(w) Inputs a wordw in a freeZG-module and returns the negated word−w.
PrintZGword(w,elts) Inputs a wordw in a freeZG-module and a (possibly partial but sufficient) listing elts of the elements ofG. The function prints the wordw to the screen in the formr1E1 + . . .+ rnEn wherer i are elements in the group ringZG, andEi denotes thei-th free generator of the module.
TietzeReduction(S,w) Inputs a setSof words in a freeZG-module, and a wordw in the module. The function returns a wordw′ such thatS,w′ generates the same abelian group asS,w. The wordw′ is possibly shorter (and certainly no longer) thanw. This function needs to be improved!
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Chapter 15

F pG-modules

DirectSumOfFpGModules(M,N)
DirectSumOfFpGModules([ M[1], M[2], ..., M[k] ])) Inputs twoF pG-modulesM andN with common group and characteristic. It returns the direct sum ofM andN as anF pG-Module. Alternatively, the function can input a list ofF pG-modules with common groupG. It returns the direct sum of the list.
FpGModule(A,P)
FpGModule(A,G,p) Inputs ap-groupP and a matrixA whose rows have length a multiple of the order ofG. It returns the “canonical”F pG-module generated by the rows ofA. A small non-prime-power groupG can also be input, provided the characteristicp is entered as a third input variable.
FpGModuleDualBasis(M) Inputs anF pG-moduleM. It returns a recordRwith two components:R. f reeModuleis the free moduleFG of rank one.R.basisis a list representing anF-basis for the moduleHomFG(M,FG). Each term in the list is a matrixA whose rows are vectors inFG such thatM!.generators[i]−→ A[i] extends to a module homomorphismM −→ FG.
FpGModuleHomomorphism(M,N,A)
FpGModuleHomomorphismNC(M,N,A) InputsF pG-modulesM andN over a commonp-groupG. Also inputs a listA of vectors in the vector space spanned byN!.matrix. It tests that the functionM!.generators[i]−→ A[i] extends to a homomorphism ofF pG-modules and, if the test is passed, returns the correspondingF pG-module homomorphism. If the test is failed it returns fail. The ”NC” version of the function assumes that the input defines a homomorphism and simply returns theF pG-module homomorphism.
DesuspensionFpGModule(M,n)
DesuspensionFpGModule(R,n) Inputs a positive integern and and FpG-moduleM. It returns an FpG-moduleDnM which is mathematically related toM via an exact sequence 0−→ DnM −→ Rn −→ . . .−→ R0 −→ M −→ 0 whereR∗ is a free resolution. (IfG = Group(M) is of prime-power order then the resolution is minimal.) Alternatively, the function can input a positive integern and at leastn terms of a free resolutionRof M.
RadicalOfFpGModule(M) Inputs anF pG-moduleM with G a p-group, and returns the Radical ofM as anF pG-module. (IgG is not ap-group then a submodule of the radical is returned.
GeneratorsOfFpGModule(M) Inputs anF pG-moduleM and returns a matrix whose rows correspond to a minimal generating set forM.
ImageOfFpGModuleHomomorphism(f) Inputs anF pG-module homomorphismf : M −→ N and returns its imagef (M) as anF pG-module.
IntersectionOfFpGModules(M,N) Inputs twoF pG-modulesM,N arising as submodules in a common free module(FG)n whereG is a finite group andF the field ofp-elements. It returns theF pG-module arising as the intersection ofM andN.
IsFpGModuleHomomorphismData(M,N,A) InputsF pG-modulesM andN over a commonp-groupG. Also inputs a listA of vectors in the vector space spanned byN!.matrix. It returns true if the functionM!.generators[i]−→ A[i] extends to a homomorphism ofF pG-modules. Otherwise it returns false.
MultipleOfFpGModule(w,M) Inputs anF pG-moduleM and a listw := [g1, ...,gt ] of elements in the groupG = M!.group. The listw can be thought of as representing the elementw = g1 + . . .+gt in the group algebraFG, and the function returns a semi-echelon matrixB which is a basis for the vector subspacewM .
ProjectedFpGModule(M,k) Inputs anF pG-moduleM of ambient dimensionn|G|, and an integerk between 1 andn. The moduleM is a submodule of the free module(FG)n . Let Mk denote the intersection ofM with thek-th summand of(FG)n . The function returnsMk as anF pG-module with ambient dimensionn|G|.
RandomHomomorphismOfFpGModules(M,N) Inputs twoF pG-modulesM andN over a common groupG. It returns a random matrixA whose rows are vectors inN such that the functionM!.generators[i]−→ A[i] extends to a homomorphismM −→ N of F pG-modules. (There is a problem with this function at present.)
Rank(f) Inputs anF pG-module homomorphismf : M −→ N and returns the dimension of the image off as a vector space over the fieldF of p elements.
SumOfFpGModules(M,N) Inputs twoF pG-modulesM,N arising as submodules in a common free module(FG)n whereG is a finite group andF the field ofp-elements. It returns theF pG-Module arising as the sum ofM andN.
SumOp(f,g) Inputs twoF pG-module homomorphismsf ,g : M −→ N with common sorce and common target. It returns the sumf +g : M −→ N . (This operation is also available using ”+”.
VectorsToFpGModuleWords(M,L) Inputs anF pG-moduleM and a listL = [v1, . . . ,vk] of vectors inM. It returns a listL′ = [x1, ...,xk] . Eachx j = [[W1,G1], ..., [Wt ,Gt ]] is a list of integer pairs corresponding to an expression ofv j as a wordv j = g1∗w1 +g2∗w1 + ...+gt ∗wt wheregi = Elements(M!.group)[Gi ] wi = GeneratorsO f F pGModule(M)[Wi ] .
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Chapter 16

Meataxe modules

••
DesuspensionMtxModule(M) Inputs a meataxe moduleM over the field ofp elements and returns an FpG-module DM. The two modules are related mathematically by the existence of a short exact sequenceDM −→ FM −→ M with FM a free module. Thus the homological properties ofDM are equal to those ofM with a dimension shift. (IfG := Group(M.generators) is a p-group thenFM is a projective cover ofM in the sense that the homomorphismFM −→ M does not factor asFM −→ P−→ M for any projective moduleP.)
FpG to MtxModule(M) Inputs an FpG-moduleM and returns an isomorphic meataxe module.
GeneratorsOfMtxModule(M) Inputs a meataxe moduleM acting on, say, the vector spaceV. The function returns a minimal list of row vectors inV which generateV as aG-module (where G=Group(M.generators) ).
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Chapter 17

Coxeter diagrams and graphs of groups

CoxeterDiagramComponents(D) Inputs a Coxeter diagramD and returns a list[D1, ...,Dd] of the maximal connected subgraphsDi .
CoxeterDiagramDegree(D,v) Inputs a Coxeter diagramD and vertexv. It returns the degree ofv (i.e. the number of edges incident withv).
CoxeterDiagramDisplay(D)
CoxeterDiagramDisplay(D,"web browser") Inputs a Coxeter diagramD and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument. This function requires Graphviz software.
CoxeterDiagramFpArtinGroup(D) Inputs a Coxeter diagramD and returns the corresponding finitely presented Artin group.
CoxeterDiagramFpCoxeterGroup(D) Inputs a Coxeter diagramD and returns the corresponding finitely presented Coxeter group.
CoxeterDiagramIsSpherical(D) Inputs a Coxeter diagramD and returns ”true” if the associated Coxeter groups is finite, and returns ”false” otherwise.
CoxeterDiagramMatrix(D) Inputs a Coxeter diagramD and returns a matrix representation of it. The matrix is given as a functionDiagramMatrix(D)(i, j) wherei, j can range over the vertices.
CoxeterSubDiagram(D,V) Inputs a Coxeter diagramD and a subsetV of its vertices. It returns the full sub-diagram ofD with vertex setV.
CoxeterDiagramVertices(D) Inputs a Coxeter diagramD and returns its set of vertices.
EvenSubgroup(G) Inputs a groupG and returns a subgroupG+. The subgroup is that generated by all productsxywherex andy range over the generating set forG stored by GAP. The subgroup is probably only meaningful whenG is an Artin or Coxeter group.
GraphOfGroupsDisplay(D)
GraphOfGroupsDisplay(D,"web browser") Inputs a graph of groupsD and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument. This function requires Graphviz software.
GraphOfGroupsTest(D) Inputs an objectD and itries to test whether it is a Graph of Groups. However, it DOES NOT test the injectivity of any homomorphisms. It returns true ifD passes the test, and false otherwise. Note that there is no functionIsHapGraphO f Groups() because no special data type has been created for these graphs.
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Chapter 18

Some functions for accessing basic data

BoundaryMap(C) Inputs a resolution, chain complex or cochain complexC and returns the functionC!.boundary.
BoundaryMatrix(C,n) Inputs a chain or cochain complexC and integern>0. It returns then-th boundary map ofC as a matrix.
Dimension(C)
Dimension(M) Inputs a resolution, chain complex or cochain complexC and returns the functionC!.dimension. Alternatively, inputs anF pG-moduleM and returns its dimension as a vector space over the field ofp elements.
EvaluateProperty(X,"name") Inputs a component objectX (such as aZG-resolution or chain map) and a string ”name” (such as ”characteristic” or ”type”). It searchesX.propertyfor the pair [”name”,value] and returns value. IfX.propertydoes not exist, or if [”name”,value] does not exist, it returns fail.
GroupOfResolution(R) Inputs aZG-resolutionRand returns the groupG.
Length(R) Inputs a resolutionRand returns its length (i.e. the number of terms ofR that HAP has computed).
Map(f) Inputs a chain map, or cochain map or equivariant chain mapf and returns the mapping function (as opposed to the target or the source off ) .
Source(f) Inputs a chain map, or cochain map, or equivariant chain map, orF pG-module homomorphismf and returns it source.
Target(f) Inputs a chain map, or cochain map, or equivariant chain map, orF pG-module homomorphismf and returns its target.
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Chapter 19

Parallel Computation - Core Functions

ChildProcess()
ChildProcess("computer.ac.wales") This starts a GAP session as a child process and returns a stream to the child process. If no argument is given then the child process is created on the local machine; otherwise the argument should be the address of a remote computer for which ssh has been configured to require no password from the user. (To configure ssh so that the user can login without a password prompt from ”thishost” to ”remotehost” either consult ”man ssh” or

- open a shell on thishost
- cd .ssh
- ls
-¿ if iddsa, idrsaetcexists,skipthenexttwosteps!
- ssh-keygen -t rsa
- ssh-keygen -t dsa
- scp *.pub user@remotehost: /
- ssh remotehost -l user
- cat idrsa.pub>> .ssh/authorizedkeys
- cat iddsa.pub>> .ssh/authorizedkeys
- rm idrsa.pubiddsa.pub
- exit

You should now be able to connect from ”thishost” to ”remotehost” without a password prompt.)
ChildClose(s) This closes the stream s to a child GAP process.
ChildCommand("cmd;",s) This runs a GAP command ”cmd;” on the child process accessed by the stream s. Here ”cmd;” is a string representing the command.
NextAvailableChild(L) Inputs a listL of child processes and returns a child inL which is ready for computation (as soon as such a child is available).
IsAvailableChild(s) Inputs a child processs and returns true if s is currently available for computations, and false otherwise.
ChildPut(A,"B",s) This copies a GAP object A on the parent process to an object B on the child process s. (The copying relies on the function PrintObj(A); )
ChildGet("A",s) This functions copies a GAP object A on the child process s and returns it on the parent process. (The copying relies on the function PrintObj(A); )
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Chapter 20

Parallel Computation - Extra Functions

ChildFunction("function(arg);",s) This runs the GAP function ”function(arg);” on a child process accessed by the stream s. The output from ”func;” can be accessed via the stream.
ChildRead(s) This returns, as a string, the output of the last application ofChildFunction(” f unction(arg); ” ,s).
ChildReadEval(s) This returns, as an evaluated string, the output of the last application ofChildFunction(” f unction(arg); ” ,s).
ParallelList(I,fn,L) Inputs a listI , a function f n such thatf n(x) is defined for allx in I , and a list of childrenL. It uses the children inL to computeList(I ,x−> f n(x)). (Obviously the functionf n must be defined on all child processes inL.)
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Chapter 21

Topological Data Analysis

MatrixToTopologicalSpace(A,n) Inputs an integer matrixA and an integern. It returns a 2-dimensional topological space corresponding to the black/white image determined by the thresholdn and the values of the pixels inA.
ReadImageAsTopologicalSpace("file.png",n) ReadImageAsTopologicalSpace("file.png",[m,n]) Reads an image file (”file.png”, ”file.eps”, ”file.bmp” etc) and an integern or pair[m,n] of integers between 0 and 765. It returns a topological space based on the black/white version of the image determined by the thresholdn or threshold range[m,n].
ReadImageAsMatrix("file.png") Reads an image file (”file.png”, ”file.eps”, ”file.bmp” etc) and returns an integer matrix whose entries are the sum of the RGB values of the pixels in the image.
WriteTopologicalSpaceAsImage(T,"filename","ext") Inputs a 2-dimensional topological space T, and a filename followed by its extension (e.g. ”myfile” followed by ”png”). A black/white image is saved to the file.
ViewTopologicalSpace(T) ViewTopologicalSpace(T,"mozilla") Inputs a topological space T, and optionally a command such as ”mozilla” for viewing image files. A black/white image is displayed.
BettiNumbers(T,n) BettiNumbers(T) Inputs a topological spaceT and a non-negative integern. It returns the n-th betti number ofT. If the integern is not input then a list of all betti numbers is returned.
PathComponent(T,n) Inputs a topological spaceT and an integern in the rane 0, ..., BettiNumbers(T,0) . It returns the n-th path component ofT as a topological space.
SingularChainComplex(A) Inputs a topological spaceT and returns a (usually very large) integral chain complex that is homotopy equivalent to the singular chain complex ofT.
ContractTopologicalSpace(T) Inputs a topological spaceT of dimensiond and removesd-dimensional cells fromT without changing the homotopy type ofT. When the function has been applied, no furtherd-cells can be removed fromT without changing the homotopy type.
BoundaryTopologicalSpace(T) Inputs a topological spaceT and returns its boundars as a topological space.
BoundarySingularities(T) Inputs a topological spaceT and returns the subspace of points in the boundary where the boundary is not differentiable. (The method for deciding differentiability at a point is crude/discrete and prone to errors.) The zeroth betti number of the set of points is a measure of the number of ”corners” in the boundary ofT.
ThickenedTopologicalSpace(T) ThickenedTopologicalSpace(T,n) Inputs a topological spaceT and returns a topological spaceS. If a euclidean point is inT then this point and all its perpendicularly neighbouring euclidean points are included inS. If a positive integern is input as a second argument then the thickening process is repeatedn times.
ComplementTopologicalSpace(T) Inputs a topological spaceT and returns a topological spaceS. A euclidean point is inSprecisely when the point is not inT.
ConcatenatedTopologicalSpace(L) Inputs a listL of topological spaces whose underlying arrays of numbers all have equal dimensions. It returns a topological spaceT got by juxtaposing the spacesL[1],L[2], ...,L[Length(L)].
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Chapter 22

Pseudo lists

Add(L,x) Let L be a pseudo list of lengthn, andx an object compatible with the entries inL. If x is not inL then this operation convertsL into a pseudo list of length n+1 by addingx as the final entry. Ifx is in L the operation has no effect onL.
Append(L,K) Let L be a pseudo list andK a list whose objects are compatible with those inL. This operation applies Add(L,x) for each x inK.
ListToPseudoList(L) Inputs a listL and returns the pseudo list representation ofL.
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Chapter 23

Miscellaneous

BigStepLCS(G,n) Inputs a groupG and a positive integern. It returns a subseriesG = L1>L2>.. .Lk = 1 of the lower central series ofG such thatLi/Li+1 has order greater thann.
Compose(f,g) Inputs twoF pG-module homomorphismsf : M −→ N andg : L −→ M with Source( f ) = Target(g) . It returns the composite homomorphismf g : L −→ N . This also applies to group homomorphismsf ,g.
HAPcopyright() This function provides details of HAP’S GNU public copyright licence.
IsLieAlgebraHomomorphism(f) Inputs an objectf and returns true iff is a homomorphismf : A−→ B of Lie algebras (preserving the Lie bracket).
IsSuperperfect(G) Inputs a groupG and returns ”true” if both the first and second integral homology ofG is trivial. Otherwise, it returns ”false”.
MakeHAPManual() This function creates the manual for HAP from an XML file.
PermToMatrixGroup(G,n) Inputs a permutation groupG and its degreen. Returns a bijective homomorphismf : G−→ M whereM is a group of permutation matrices.
SolutionsMatDestructive(M,B) Inputs anm×n matrixM and ak×n matrixB over a field. It returns a k×mmatrixSsatis f yingSM=B.The f unctionwillleavematrixMunchangedbutwill probablychangematrixB.(Thisisatrivialrewriteo f thestandardGAP f unctionSolutionMatDestructive(<mat>,<vec>).)
TestHap() This runs a representative sample of HAP functions and checks to see that they produce the correct output.
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