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Chapter 1

Introduction

A numerical semigroup is a subset of the set N of nonnegative integers that is closed under addition,
contains 0 and whose complement in N is finite. The smallest positive integer belonging to a numerical
semigroup is its multiplicity.

Let S be a numerical semigroup and A be a subset of S. We say that A is a system of generators
of S if S = {k1a1 + · · ·+ knan | n,k1, . . . ,kn ∈ N,a1, . . . ,an ∈ A}. The set A is a minimal system of
generators of S if no proper subset of A is a system of generators of S.

Every numerical semigroup has a unique minimal system of generators. This is a data that can
be used in order to uniquely define a numerical semigroup. Observe that since the complement of a
numerical semigroup in the set of nonnegative integers is finite, this implies that the greatest common
divisor of the elements of a numerical semigroup is 1, and the same condition must be fulfilled by its
minimal system of generators (or by any of its systems of generators).

Given a numerical semigroup S and a nonzero element s in it, one can consider for every inte-
ger i ranging from 0 to s− 1, the smallest element in S congruent with i modulo s, say w(i) (this
element exists since the complement of S in N is finite). Clearly w(0) = 0. The set Ap(S,s) =
{w(0),w(1), . . . ,w(s− 1)} is called the Apéry set of S with respect to s. Note that a nonnegative in-
teger x congruent with i modulo s belongs to S if and only if w(i) ≤ x. Thus the pair (s,Ap(S,s))
fully determines the numerical semigroup S (and can be used to easily solve the membership problem
to S). This set is in fact one of the most powerfull tools known for numerical semigroups, and it is
used almost everywhere in the computation of components and invariants associated to a numerical
semigroup. Usually the element s is taken to be the multiplicity, since in this way the resulting Apéry
set is the smallest possible.

A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The set of gaps of
S is usually denoted by H(S), and clearly determines uniquely S. Note that if x is a gap of S, then so
are all the nonnegative integers dividing it. Thus in order to describe S we do not need to know all its
gaps, but only those that are maximal with respect to the partial order induced by division in N. These
gaps are called fundamental gaps.

The largest nonnegative integer not belonging to a numerical semigroup S is the Frobenius number
of S. If S is the set of nonnegative integers, then clearly its Frobenius number is −1, otherwise its
Frobenius number coincides with the maximum of the gaps (or fundamental gaps) of S. In this package
we refer to the elements in the semigroup that are less than or equal to the Frobenius number plus 1
as small elements of the semigroup. Observe that from the definition, if S is a numerical semigroup
with Frobenius number f , then f +N \ {0} ⊆ S. An integer z is a pseudo-Frobenius number of S if
z+S\{0} ⊆ S. Thus the Frobenius number of S is one of its pseudo-Frobenius numbers. The type of

6
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a numerical semigroup is the cardinality of the set of its pseudo-Frobenius numbers.
The number of numerical semigroups having a given Frobenius number is finite. The elements

in this set of numerical semigroups that are maximal with respect to set inclusion are precisely those
numerical semigroups that cannot be expressed as intersection of two other numerical semigroups
containing them properly, and thus they are known as irreducible numerical semigroups. Clearly,
every numerical semigroup is the intersection of (finitely many) irreducible numerical semigroups.

A numerical semigroup S with Frobenius number f is symmetric if for every integer x, either x∈ S
or f − x ∈ S. The set of irreducible numerical semigroups with odd Frobenius number coincides with
the set of symmetric numerical semigroups. The numerical semigroup S is pseudo-symmetric if f is
even and for every integer x not equal to f /2 either x ∈ S or f − x ∈ S. The set of irreducible nu-
merical semigroups with even Frobenius number is precisely the set of pseudo-symmetric numerical
semigroups. These two classes of numerical semigroups have been widely studied in the literature due
to their nice applications in Algebraic Geometry. This is probably one of the main reasons that made
people turn their attention on numerical semigroups again in the last decades. Symmetric numerical
semigroups can be also characterized as those with type one, and pseudo-symmetric numerical semi-
groups are those numerical semigroups with type two and such that its pseudo-Frobenius numbers are
its Frobenius number and its Frobenius number divided by two.

Another class of numerical semigroups that catched the attention of researchers working on Al-
gebraic Geometry and Commutative Ring Theory is the class of numerical semigroups with maximal
embedding dimension. The embedding dimension of a numerical semigroup is the cardinality of its
minimal system of generators. It can be shown that the embedding dimension is at most the multi-
plicity of the numerical semigroup. Thus maximal embedding dimension numerical semigroups are
those numerical semigroups for which their embedding dimension and multiplicity coincide. These
numerical semigroups have nice maximal properties, not only (of course) related to their embed-
ding dimension, but also by means of their presentations. Among maximal embedding dimension
there are two classes of numerical semigroups that have been studied due to the connections with the
equivalence of algebroid branches. A numerical semigroup S is Arf if for every x ≥ y ≥ z ∈ S, then
x+y− z ∈ S; and it is saturated if the following condition holds: if s,s1, . . . ,sr ∈ S are such that si ≤ s
for all i ∈ {1, . . . ,r} and z1, . . . ,zr ∈ Z are such that z1s1 + · · ·+ zrsr ≥ 0, then s+ z1s1 + · · ·+ zrsr ∈ S.

If we look carefully inside the set of fundamental gaps of a numerical semigroup, we see that there
are some fulfilling the condition that if they are added to the given numerical semigroup, then the
resulting set is again a numerical semigroup. These elements are called special gaps of the numerical
semigroup. A numerical semigroup other than the set of nonnegative integers is irreducible if and
only if it has only a special gap.

The inverse operation to the one described in the above paragraph is that of removing an element
of a numerical semigroup. If we want the resulting set to be a numerical semigroup, then the only
thing we can remove is a minimal generator.

Let a,b,c,d be positive integers such that a/b < c/d, and let I = [a/b,c/d]. Then the set S(I) =
N∩

S
n≥0 nI is a numerical semigroup. This class of numerical semigroups coincides with that of

sets of solutions to equations of the form Ax mod B ≤Cx with A,B,C positive integers. A numerical
semigroup in this class is said to be proportionally modular.

A sequence of positive rational numbers a1/b1 < · · · < an/bn with ai,bi positive integers is a
Bézout sequence if ai+1bi−aibi+1 = 1 for all i ∈ {1, . . . ,n−1}. If a/b = a1/b1 < · · ·< an/bn = c/d,
then S([a/b,c/d]) = 〈a1, . . . ,an〉. Bézout sequences are not only interesting for this fact, they have
shown to be a major tool in the study of proportionally modular numerical semigroups.

If S is a numerical semigroup and k is a positive integer, then the set S/k = {x ∈ N | kx ∈ S} is a
numerical semigroup, known as the quotient S by k.
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Let m be a positive integer. A subadditive function with period m is a map f : N → N such that
f (0) = 0, f (x + y) ≤ f (x) + f (y) and f (x + m) = f (x). If f is a subadditive function with period
m, then the set M f = {x ∈ N | f (x) ≤ x} is a numerical semigroup. Moreover, every numerical
semigroup is of this form. Thus a numerical semigroup can be given by a subadditive function with a
given period. If S is a numerical semigroup and s∈ S,s 6= 0, and Ap(S,s) = {w(0),w(1), . . . ,w(s−1)},
then f (x) = w(x mod s) is a subadditive function with period s such that M f = S.

Let S be a numerical semigroup generated by {n1, . . . ,nk}. Then we can define the following mor-
phism (called sometimes the factorization morphism) by ϕ : Nk → S, ϕ(a1, . . . ,ak) = a1n1 + · · ·+aknk.
If σ is the kernel congruence of ϕ (that is, aσb if ϕ(a) = ϕ(b)), then S is isomorphic to Nk/σ. A pre-
sentation for S is a system of generators (as a congruence) of σ. If {n1, . . . ,np} is a minimal system
of generators, then a minimal presentation is a presentation such that none of its proper subsets is a
presentation. Minimal presentations of numerical semigroups coincide with presentations with mini-
mal cardinality, though in general these two concepts are not the same for an arbitrary commutative
semigroup.

A set I of integers is an ideal relative to a numerical semigroup S provided that I +S ⊆ I and that
there exists d ∈ S such that d + I ⊆ S. If I ⊆ S, we simply say that I is an ideal of S. If I and J are
relative ideals of S, then so is I− J = {z ∈ Z | z + J ⊆ I}, and it is tightly related to the operation ”:”
of ideals in a commutative ring.

In this package we have implemented the functions needed to deal with the elements exposed in
this introduction.



Chapter 2

Numerical Semigroups

This chapter describes how to create numerical semigroups in GAP and perform some basic tests.

2.1 Generating Numerical Semigroups

Recalling some definitions from Chapter 1.
A numerical semigroup is a subset of the set N of nonnegative integers that is closed under addi-

tion, contains 0 and whose complement in N is finite.
We refer to the elements in a numerical semigroup that are less than or equal to the Frobenius

number plus 1 as small elements of the semigroup.
A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The fundamental

gaps of S are those gaps that are maximal with respect to the partial order induced by division in N.
Given a numerical semigroup S and a nonzero element s in it, one can consider for every inte-

ger i ranging from 0 to s− 1, the smallest element in S congruent with i modulo s, say w(i) (this
element exists since the complement of S in N is finite). Clearly w(0) = 0. The set Ap(S,s) =
{w(0),w(1), . . . ,w(s−1)} is called the Apéry set of S with respect to s.

Let a,b,c,d be positive integers such that a/b < c/d, and let I = [a/b,c/d]. Then the set S(I) =
N∩

S
n≥0 nI is a numerical semigroup. This class of numerical semigroups coincides with that of

sets of solutions to equations of the form Ax mod B ≤Cx with A,B,C positive integers. A numerical
semigroup in this class is said to be proportionally modular. If C = 1, then it is said to be modular.

There are several different ways to specify a numerical semigroup S, namely, by its generators;
by its gaps, its fundamental or special gaps by its Apéry set, just to name some. In this section we
describe functions that may be used to specify, in one of these ways, a numerical semigroup in GAP.

To create a numerical semigroup in GAP the function NumericalSemigroup is used.

2.1.1 NumericalSemigroup

♦ NumericalSemigroup( Type, List ) (function)

Type
May be "generators", "minimalgenerators", "modular", "propmodular", "elements",

"gaps", "fundamentalgaps", "subadditive" or "apery" according to whether the semigroup is
to be given by means of a condition of the form ax mod m <= x, a system of generators, a condition

9
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of the form ax mod m <= cx, a set of all elements up to the Frobenius number +1, the set of gaps, the
set of fundamental gaps, a periodic subaditive function or the Apéry set.

When no string is given as first argument it is assumed that the numerical semigroup will be given
by means of a set of generators.

List
When the semigroup is given through a set of generators, this set may be given as a list or through

its individual elements.
The set of all elements up to the Frobenius number +1, the set of gaps, the set of fundamental

gaps or the Apéry set are given through lists.
A periodic subadditive function with period m is given through the list of images of the elements,

from 1 to m. The image of m has to be 0.
Example

gap> s1 := NumericalSemigroup("generators",3,5,7);
<Numerical semigroup with 3 generators>
gap> s2 := NumericalSemigroup("generators",[3,5,7]);
<Numerical semigroup with 3 generators>
gap> s1=s2;
true
gap> s := NumericalSemigroup("minimalgenerators",3,7);
<Numerical semigroup with 2 generators>
gap> s := NumericalSemigroup("modular",3,5);
<Modular numerical semigroup satisfying 3x mod 5 <= x >
gap> s1 := NumericalSemigroup("generators",2,5);
<Numerical semigroup with 2 generators>
gap> s = s1;
true

....................................

2.1.2 ModularNumericalSemigroup

♦ ModularNumericalSemigroup( a, b ) (function)

Given two positive integers a and b, this function returns a modular numerical semigroup satisfy-
ing ax mod b <= x.

Example
gap> ModularNumericalSemigroup(3,7);
<Modular numerical semigroup satisfying 3x mod 7 <= x >

2.1.3 ProportionallyModularNumericalSemigroup

♦ ProportionallyModularNumericalSemigroup( a, b, c ) (function)

Given three positive integers a, b and c, this function returns a proportionally modular numerical
semigroup satisfying ax mod b <= cx.

Example
gap> ProportionallyModularNumericalSemigroup(3,7,12);
<Proportionally modular numerical semigroup satisfying 3x mod 7 <= 12x >
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2.1.4 NumericalSemigroupByGenerators

♦ NumericalSemigroupByGenerators( List ) (function)

♦ NumericalSemigroupByMinimalGenerators( List ) (function)

♦ NumericalSemigroupByMinimalGeneratorsNC( List ) (function)

♦ NumericalSemigroupByInterval( List ) (function)

♦ NumericalSemigroupByOpenInterval( List ) (function)

♦ NumericalSemigroupBySubAdditiveFunction( List ) (function)

♦ NumericalSemigroupByAperyList( List ) (function)

♦ NumericalSemigroupBySmallElements( List ) (function)

♦ NumericalSemigroupByGaps( List ) (function)

♦ NumericalSemigroupByFundamentalGaps( List ) (function)

The function NumericalSemigroup (2.1.1) is a front-end for these functions. The argument of
each of these functions is a list representing an entity of the type to which the function’s name refers.

Example
gap> s:=NumericalSemigroup(3,11);
<Numerical semigroup with 2 generators>
gap> GapsOfNumericalSemigroup(s);
[ 1, 2, 4, 5, 7, 8, 10, 13, 16, 19 ]
gap> t:=NumericalSemigroupByGaps(last);
<Numerical semigroup>
gap> s=t;
true

gap> AperyListOfNumericalSemigroupWRTElement(s,20);;
gap> t:=NumericalSemigroupByAperyList(last);
<Numerical semigroup>
gap> s=t;
true
...

2.2 Some basic tests

This section describes some basic tests on numerical semigroups.The first described tests refer to the
way the semigroup was created. Then are presented functions to test if a given list represents the small
elements, gaps or the Apéry set (see 1) of a numerical semigroup; to test if an integer belongs to a
numerical semigroup and if a numerical semigroup is a subsemigroup of another one.

2.2.1 IsNumericalSemigroup

♦ IsNumericalSemigroup( NS ) (attribute)

♦ IsNumericalSemigroupByGenerators( NS ) (attribute)

♦ IsNumericalSemigroupByMinimalGenerators( NS ) (attribute)

♦ IsNumericalSemigroupByInterval( NS ) (attribute)

♦ IsNumericalSemigroupByOpenInterval( NS ) (attribute)

♦ IsNumericalSemigroupBySubAdditiveFunction( NS ) (attribute)

♦ IsNumericalSemigroupByAperyList( NS ) (attribute)
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♦ IsNumericalSemigroupBySmallElements( NS ) (attribute)

♦ IsNumericalSemigroupByGaps( NS ) (attribute)

♦ IsNumericalSemigroupByFundamentalGaps( NS ) (attribute)

♦ IsProportionallyModularNumericalSemigroup( NS ) (attribute)

♦ IsModularNumericalSemigroup( NS ) (attribute)

NS is a numerical semigroup and these attributes are available (their names should be self explana-
tory).

Example
gap> s:=NumericalSemigroup(3,7);
<Numerical semigroup with 2 generators>
gap> AperyListOfNumericalSemigroupWRTElement(s,30);;
gap> t:=NumericalSemigroupByAperyList(last);
<Numerical semigroup>
gap> IsNumericalSemigroupByGenerators(s);
true
gap> IsNumericalSemigroupByGenerators(t);
false
gap> IsNumericalSemigroupByAperyList(s);
true
gap> IsNumericalSemigroupByAperyList(t);
true

2.2.2 RepresentsSmallElementsOfNumericalSemigroup

♦ RepresentsSmallElementsOfNumericalSemigroup( L ) (attribute)

Tests if the list L (which has to be a set) may represent the “small” elements of a numerical
semigroup.

Example
gap> L:=[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ];
[ 0, 3, 6, 9, 11, 12, 14, 15, 17, 18, 20 ]
gap> RepresentsSmallElementsOfNumericalSemigroup(L);
true
gap> L:=[ 6, 9, 11, 12, 14, 15, 17, 18, 20 ];
[ 6, 9, 11, 12, 14, 15, 17, 18, 20 ]
gap> RepresentsSmallElementsOfNumericalSemigroup(L);
false

2.2.3 RepresentsGapsOfNumericalSemigroup

♦ RepresentsGapsOfNumericalSemigroup( L ) (attribute)

Tests if the list L may represent the gaps (see 1) of a numerical semigroup.
Example

gap> s:=NumericalSemigroup(3,7);
<Numerical semigroup with 2 generators>
gap> L:=GapsOfNumericalSemigroup(s);
[ 1, 2, 4, 5, 8, 11 ]
gap> RepresentsGapsOfNumericalSemigroup(L);
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true
gap> L:=Set(List([1..21],i->RandomList([1..50])));
[ 2, 6, 7, 8, 10, 12, 14, 19, 24, 28, 31, 35, 42, 50 ]
gap> RepresentsGapsOfNumericalSemigroup(L);
false

2.2.4 IsAperyListOfNumericalSemigroup

♦ IsAperyListOfNumericalSemigroup( L ) (function)

Tests whether a list L of integers may represent the Apéry list of a numerical semi-
group. It returns true when the periodic function represented by L is subadditive (see
RepresentsPeriodicSubAdditiveFunction (A.2.1)) and the remainder of the division of L[i] by
the length of L is i and returns false otherwise (the crieterium used is the one explained in [Ros96b]).

Example
gap> IsAperyListOfNumericalSemigroup([0,21,7,28,14]);
true

2.2.5 IsSubsemigroupOfNumericalSemigroup

♦ IsSubsemigroupOfNumericalSemigroup( S, T ) (function)

S and T are numerical semigroups. Tests whether T is contained in S.
Example

gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> T := NumericalSemigroup(2,3);
<Numerical semigroup with 2 generators>
gap> IsSubsemigroupOfNumericalSemigroup(T,S);
true
gap> IsSubsemigroupOfNumericalSemigroup(S,T);
false

2.2.6 BelongsToNumericalSemigroup

♦ BelongsToNumericalSemigroup( n, S ) (operation)

n is an integer and S is a numerical semigroup. Tests whether n belongs to S. n in S is the short
for BelongsToNumericalSemigroup(n,S).

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> BelongsToNumericalSemigroup(15,S);
false
gap> 15 in S;
false
gap> SmallElementsOfNumericalSemigroup(S);
[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]
gap> BelongsToNumericalSemigroup(13,S);
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true
gap> 13 in S;
true



Chapter 3

Basic operations with numerical
semigroups

3.1 The definitions

3.1.1 MultiplicityOfNumericalSemigroup

♦ MultiplicityOfNumericalSemigroup( NS ) (attribute)

NS is a numerical semigroup. Returns the multiplicity of NS, which is the smallest positive integer
belonging to NS.

Example
gap> S := NumericalSemigroup("modular", 7,53);
<Modular numerical semigroup satisfying 7x mod 53 <= x >
gap> MultiplicityOfNumericalSemigroup(S);
8

3.1.2 GeneratorsOfNumericalSemigroup

♦ GeneratorsOfNumericalSemigroup( S ) (function)

♦ GeneratorsOfNumericalSemigroupNC( S ) (function)

♦ MinimalGeneratingSystemOfNumericalSemigroup( S ) (attribute)

S is a numerical semigroup. GeneratorsOfNumericalSemigroup returns a set of
generators of S, which may not be minimal. GeneratorsOfNumericalSemigroupNC re-
turns the set of generators recorded in S!.generators, which may not be minimal.
MinimalGeneratingSystemOfNumericalSemigroup returns the minimal set of generators of S.

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> GeneratorsOfNumericalSemigroup(S);
[ 11, 12, 13, 32, 53 ]
gap> S := NumericalSemigroup(3, 5, 53);
<Numerical semigroup with 3 generators>
gap> GeneratorsOfNumericalSemigroup(S);
[ 3, 5, 53 ]

15
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gap> MinimalGeneratingSystemOfNumericalSemigroup(S);
[ 3, 5 ]

3.1.3 SmallElementsOfNumericalSemigroup

♦ SmallElementsOfNumericalSemigroup( NS ) (attribute)

NS is a numerical semigroup. It returns the list of small elements of NS. Of course, the time
consumed to return a result may depend on the way the semigroup is given.

Example
gap> SmallElementsOfNumericalSemigroup(NumericalSemigroup(3,5,7));
[ 0, 3, 5 ]

3.1.4 FirstElementsOfNumericalSemigroup

♦ FirstElementsOfNumericalSemigroup( n, NS ) (function)

NS is a numerical semigroup. It returns the list with the first n elements of NS.
Example

gap> FirstElementsOfNumericalSemigroup(2,NumericalSemigroup(3,5,7));
[ 0, 3 ]
gap> FirstElementsOfNumericalSemigroup(10,NumericalSemigroup(3,5,7));
[ 0, 3, 5, 6, 7, 8, 9, 10, 11, 12 ]

3.1.5 AperyListOfNumericalSemigroupWRTElement

♦ AperyListOfNumericalSemigroupWRTElement( S, m ) (operation)

S is a numerical semigroup and m is a positive element of S. Computes the Apéry list of S wrt m.
It contains for every i ∈ {0, . . . ,m−1}, in the i + 1th position, the smallest element in the semigroup
congruent with i modulo m.

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> AperyListOfNumericalSemigroupWRTElement(S,12);
[ 0, 13, 26, 39, 52, 53, 54, 43, 32, 33, 22, 11 ]

3.1.6 DrawAperyListOfNumericalSemigroup

♦ DrawAperyListOfNumericalSemigroup( ap ) (function)

ap is the Apéry list of a numerical semigroup. This function draws the graph (ap,E) where the
edge u−> v is in E iff v−u is in ap. To use this function, Graphviz (http://www.graphviz.org)
should be installed and also Evince (http://www.gnome.org/projects/evince/) or ggv
(http://directory.fsf.org/ggv.html).

http://www.graphviz.org
http://www.gnome.org/projects/evince/
http://directory.fsf.org/ggv.html
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3.1.7 AperyListOfNumericalSemigroupAsGraph

♦ AperyListOfNumericalSemigroupAsGraph( ap ) (function)

ap is the Apéry list of a numerical semigroup. This function returns the adjacency list of the graph
(ap,E) where the edge u−> v is in E iff v−u is in ap. The 0 is ignored.

Example
gap> s:=NumericalSemigroup(3,7);
<Numerical semigroup with 2 generators>
gap> AperyListOfNumericalSemigroupWRTElement(s,10);
[ 0, 21, 12, 3, 14, 15, 6, 7, 18, 9 ]
gap> AperyListOfNumericalSemigroupAsGraph(last);
[ ,, [ 3, 6, 9, 12, 15, 18, 21 ],,, [ 6, 9, 12, 15, 18, 21 ],
[ 7, 14, 21 ],, [ 9, 12, 15, 18, 21 ],,, [ 12, 15, 18, 21 ],,
[ 14, 21 ], [ 15, 18, 21 ],,, [ 18, 21 ],,, [ 21 ] ]

3.2 Frobenius Number

The largest nonnegative integer not belonging to a numerical semigroup S is the Frobenius number
of S. If S is the set of nonnegative integers, then clearly its Frobenius number is −1, otherwise its
Frobenius number coincides with the maximum of the gaps (or fundamental gaps) of S. An integer z
is a pseudo-Frobenius number of S if z+S\{0} ⊆ S.

3.2.1 FrobeniusNumberOfNumericalSemigroup

♦ FrobeniusNumberOfNumericalSemigroup( NS ) (attribute)

NS is a numerical semigroup. It returns the Frobenius number of NS. Of course, the time consumed
to return a result may depend on the way the semigroup is given or on the knowledge already produced
on the semigroup.

Example
gap> FrobeniusNumberOfNumericalSemigroup(NumericalSemigroup(3,5,7));
4

3.2.2 FrobeniusNumber

♦ FrobeniusNumber( NS ) (attribute)

This is just a synonym of FrobeniusNumberOfNumericalSemigroup (3.2.1).

3.2.3 PseudoFrobeniusOfNumericalSemigroup

♦ PseudoFrobeniusOfNumericalSemigroup( S ) (attribute)

S is a numerical semigroup. It returns set of pseudo-Frobenius numbers of S.
Example

gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
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gap> PseudoFrobeniusOfNumericalSemigroup(S);
[ 21, 40, 41, 42 ]

3.3 Gaps

A gap of a numerical semigroup S is a nonnegative integer not belonging to S. The fundamental gaps
of S are those gaps that are maximal with respect to the partial order induced by division in N. The
special gaps of a numerical semigroup S, are those fundamental gaps such that if they are added to
the given numerical semigroup, then the resulting set is again a numerical semigroup.

3.3.1 GapsOfNumericalSemigroup

♦ GapsOfNumericalSemigroup( NS ) (attribute)

NS is a numerical semigroup. It returns the set of gaps of NS.
Example

gap> GapsOfNumericalSemigroup(NumericalSemigroup(3,5,7));
[ 1, 2, 4 ]

3.3.2 FundamentalGapsOfNumericalSemigroup

♦ FundamentalGapsOfNumericalSemigroup( S ) (attribute)

S is a numerical semigroup. It returns the set of fundamental gaps of S.
Example

gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> FundamentalGapsOfNumericalSemigroup(S);
[ 16, 17, 18, 19, 27, 28, 29, 30, 31, 40, 41, 42 ]
gap> GapsOfNumericalSemigroup(S);
[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 27, 28, 29,
30, 31, 40, 41, 42 ]

3.3.3 SpecialGapsOfNumericalSemigroup

♦ SpecialGapsOfNumericalSemigroup( S ) (attribute)

S is a numerical semigroup. It returns the special gaps of S.
Example

gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> SpecialGapsOfNumericalSemigroup(S);
[ 40, 41, 42 ]



Chapter 4

Presentations of Numerical Semigroups

In this chapter we explain how to compute a minimal presentation of a numerical semigroup. There
are three functions involved in this process.

4.1 Presentations of Numerical Semigroups

4.1.1 FortenTruncatedNCForNumericalSemigroups

♦ FortenTruncatedNCForNumericalSemigroups( L ) (function)

L contains the list of coefficients of a single linear equation. This function gives a minimal gener-
ator of the affine semigroup of nonnegative solutions of this equation with the first coordinate equal
to one (see [CD94]). Returns fail if no solution exists.

Example
gap> FortenTruncatedNCForNumericalSemigroups([ -57, 3 ]);
[ 1, 19 ]
gap> FortenTruncatedNCForNumericalSemigroups([ -57, 33 ]);
fail
gap> FortenTruncatedNCForNumericalSemigroups([ -57, 19 ]);
[ 1, 3 ]

4.1.2 MinimalPresentationOfNumericalSemigroup

♦ MinimalPresentationOfNumericalSemigroup( S ) (function)

S is a numerical semigroup. The output is a list of lists with two elements. Each list of
two elements represents a relation between the minimal generators of the numerical semigroup.
If {{x1,y1}, . . . ,{xk,yk}} is the output and {m1, . . . ,mn} is the minimal system of generators of
the numerical semigroup, then {xi,yi} = {{ai1 , . . . ,ain},{bi1 , . . . ,bin}} and ai1m1 + · · ·+ ainmn =
bi1m1 + · · ·+binmn.

Any other relation among the minimal generators of the semigroup can be deduced from the ones
given in the output.

The algorithm implemented is described in [Ros96a] (see also [RGS99]).
Example

gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>

19
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gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 1, 0, 1 ], [ 0, 2, 0 ] ], [ [ 4, 0, 0 ], [ 0, 1, 1 ] ],
[ [ 3, 1, 0 ], [ 0, 0, 2 ] ] ]

The first element in the list means that 1×3+1×7 = 2×5, and so on.

4.1.3 GraphAssociatedToElementInNumericalSemigroup

♦ GraphAssociatedToElementInNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n is an element in S.
The output is a pair. If {m1, . . . ,mn} is the set of minimal generators of S, then the first component

is the set of vertices of the graph associated to n in S, that is, the set {mi | n−mi ∈ S}, and the second
component is the set of edges of this graph, that is, {{mi,m j} | n− (mi +m j) ∈ S}.

This function is used to compute a minimal presentation of the numerical semigroup S, as ex-
plained in [Ros96a].

Example
gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>
gap> GraphAssociatedToElementInNumericalSemigroup(10,s);
[ [ 3, 5, 7 ], [ [ 3, 7 ], [ 5, 5 ], [ 7, 3 ] ] ]



Chapter 5

Constructing numerical semigroups from
others

5.1 Adding and removing elements of a numerical semigroup

In this section we show how to construct new numerical semigroups from a given numerical semi-
group. Two dual operations are presented. The first one removes a minimal generator from a numeri-
cal semigroup. The second adds a special gap to a semigroup (see [JCRJM03]).

5.1.1 RemoveMinimalGeneratorFromNumericalSemigroup

♦ RemoveMinimalGeneratorFromNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n is one if its minimal generators.
The output is the numerical semigroup S\{n} (see [JCRJM03]; S\{n} is a numerical semigroup

if and only if n is a minimal generator of S).
Example

gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>
gap> RemoveMinimalGeneratorFromNumericalSemigroup(7,s);
<Numerical semigroup with 3 generators>
gap> MinimalGeneratingSystemOfNumericalSemigroup(last);
[ 3, 5 ]

5.1.2 AddSpecialGapOfNumericalSemigroup

♦ AddSpecialGapOfNumericalSemigroup( g, S ) (function)

S is a numerical semigroup and g is a special gap of S
The output is the numerical semigroup S∪{g} (see [JCRJM03], where it is explained why this set

is a numerical semigroup).
Example

gap> s:=NumericalSemigroup(3,5,7);
<Numerical semigroup with 3 generators>

21
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gap> s2:=RemoveMinimalGeneratorFromNumericalSemigroup(5,s);
<Numerical semigroup with 3 generators>
gap> s3:=AddSpecialGapOfNumericalSemigroup(5,s2);
<Numerical semigroup>
gap> SmallElementsOfNumericalSemigroup(s) =
> SmallElementsOfNumericalSemigroup(s3);
true
gap> s=s3;
true

5.1.3 IntersectionOfNumericalSemigroups

♦ IntersectionOfNumericalSemigroups( S, T ) (function)

S and T are numerical semigroups. Computes the intersection of S and T (which is a numerical
semigroup).

Example
gap> S := NumericalSemigroup("modular", 5,53);
<Modular numerical semigroup satisfying 5x mod 53 <= x >
gap> T := NumericalSemigroup(2,17);
<Numerical semigroup with 2 generators>
gap> SmallElementsOfNumericalSemigroup(S);
[ 0, 11, 12, 13, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]
gap> SmallElementsOfNumericalSemigroup(T);
[ 0, 2, 4, 6, 8, 10, 12, 14, 16 ]
gap> IntersectionOfNumericalSemigroups(S,T);
<Numerical semigroup>
gap> SmallElementsOfNumericalSemigroup(last);
[ 0, 12, 22, 23, 24, 25, 26, 32, 33, 34, 35, 36, 37, 38, 39, 43 ]

5.1.4 QuotientOfNumericalSemigroup

♦ QuotientOfNumericalSemigroup( S, n ) (function)

S is a numerical semigroup and n is an integer. Computes the quotient of S by n, that is, the
set {x ∈ N | nx ∈ S}, which is again a numerical semigroup. S / n may be used as a short for
QuotientOfNumericalSemigroup(S, n).

Example
gap> s:=NumericalSemigroup(3,29);
<Numerical semigroup with 2 generators>
gap> SmallElementsOfNumericalSemigroup(s);
[ 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 29, 30, 32, 33, 35, 36, 38,
39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56 ]

gap> t:=QuotientOfNumericalSemigroup(s,7);
<Numerical semigroup>
gap> SmallElementsOfNumericalSemigroup(t);
[ 0, 3, 5, 6, 8 ]
gap> u := s / 7;
<Numerical semigroup>
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gap> SmallElementsOfNumericalSemigroup(u);
[ 0, 3, 5, 6, 8 ]

5.2 Constructing the set of all numerical semigroups containing a given
numerical semigroup

In order to construct the set of numerical semigroups containing a fixed numerical semigroup S, one
first constructs its unitary extensions, that is to say, the sets S∪{g} that are numerical semigroups
with g a positive integer. This is achieved by constructing the special gaps of the semigroup, and then
adding each of them to the numerical semigroup. Then we repeat the process for each of this new
numerical semigroups until we reach N.

These procedures are described in [JCRJM03].

5.2.1 OverSemigroupsNumericalSemigroup

♦ OverSemigroupsNumericalSemigroup( s ) (function)

s is a numerical semigroup. The output is the set of numerical semigroups containing it.
Example

gap> OverSemigroupsNumericalSemigroup(NumericalSemigroup(3,5,7));
[ <Numerical semigroup with 1 generators>, <Numerical semigroup>,
<Numerical semigroup>, <Numerical semigroup with 3 generators> ]

]]

gap> List(last,s->MinimalGeneratingSystemOfNumericalSemigroup(s));
[ [ 1 ], [ 3, 4, 5 ], [ 2, 3 ], [ 3, 5, 7 ] ]

5.2.2 NumericalSemigroupsWithFrobeniusNumber

♦ NumericalSemigroupsWithFrobeniusNumber( f ) (function)

f is an non zero integer greater than or equal to -1. The output is the set of numerical semigroups
with Frobenius number f. The algorithm implemented is given in [JCRM04].

Example
gap> Length(NumericalSemigroupsWithFrobeniusNumber(20));
900



Chapter 6

Irreducible numerical semigroups

6.1 Irreducible numerical semigroups

An irreducible numerical semigroup is a semigroup that cannot be expressed as the intersection of
numerical semigroups properly containing it.

It is not difficult to prove that a semigroup is irreducible if and only if it is maximal (with re-
spect to set inclusion) in the set of all numerical semigroup having its same Frobenius number (see
[RB03]). Hence, according to [RFH87] (respectively [VBF97]), symmetric (respectively pseudo-
symmetric) numerical semigroups are those irreducible numerical semigroups with odd (respectively
even) Frobenius number.

In [JCRJM03] it is shown that a numerical semigroup is irreducible if and only if it has only one
special gap. We use this characterization.

In this section we show how to construct the set of all numerical semigroups with a given Frobe-
nius number. First we construct an irreducible numerical semigroup with the given Frobenius number
(as explained in [Ros04]), and then we construct the rest from it. That is why we have separated both
functions.

Every numerical semigroup can be expressed as an intersection of irreducible numerical semi-
groups. If S can be expressed as S = S1∩ ·· · ∩ Sn, with Si irreducible numerical semigroups, and no
factor can be removed, then we say that this decomposition is minimal. Minimal decompositions can
be computed by using Algorithm 26 in [JCRJM03].

6.1.1 IsIrreducibleNumericalSemigroup

♦ IsIrreducibleNumericalSemigroup( s ) (function)

s is a numerical semigroup. The output is true if s is irreducible, false otherwise.
Example

gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,9));
true
gap> IsIrreducibleNumericalSemigroup(NumericalSemigroup(4,6,7,9));
false
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6.1.2 IsSymmetricNumericalSemigroup

♦ IsSymmetricNumericalSemigroup( s ) (function)

s is a numerical semigroup. The output is true if s is symmetric, false otherwise.
Example

gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,23));
true
gap> IsSymmetricNumericalSemigroup(NumericalSemigroup(10,11,23));
false

6.1.3 IsPseudoSymmetricNumericalSemigroup

♦ IsPseudoSymmetricNumericalSemigroup( s ) (function)

s is a numerical semigroup. The output is true if s is pseudo-symmetric, false otherwise.
Example

gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(6,7,8,9,11));
true
gap> IsPseudoSymmetricNumericalSemigroup(NumericalSemigroup(4,6,9));
false

6.1.4 AnIrreducibleNumericalSemigroupWithFrobeniusNumber

♦ AnIrreducibleNumericalSemigroupWithFrobeniusNumber( f ) (function)

f is an integer greater than or equal to -1. The output is an irreducible numerical semigroup with
frobenius number f. From the way the procedure is implemented, the resulting semigroup has at
most four generators (see [Ros04]).

Example
gap> FrobeniusNumber(AnIrreducibleNumericalSemigroupWithFrobeniusNumber(28));
28

6.1.5 IrreducibleNumericalSemigroupsWithFrobeniusNumber

♦ IrreducibleNumericalSemigroupsWithFrobeniusNumber( f ) (function)

f is an integer greater than or equal to -1. The output is the set of all irreducible numerical
semigroups with frobenius number f.

Example
gap> Length(IrreducibleNumericalSemigroupsWithFrobeniusNumber(39));
227
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6.1.6 DecomposeIntoIrreducibles

♦ DecomposeIntoIrreducibles( s ) (function)

s is a numerical semigroup. The output is a set of irreducible numerical semigroups containing it.
These elements appear in a minimal decomposition of s as intersection into irreducibles.

Example
gap> DecomposeIntoIrreducibles(NumericalSemigroup(5,6,8));
[ <Numerical semigroup>, <Numerical semigroup> ]



Chapter 7

Ideals of numerical semigroups

7.1 Ideals of numerical semigroups

Let S be a numerical semigroup. A set I of integers is an ideal relative to a numerical semigroup S
provided that I +S ⊆ I and that there exists d ∈ S such that d + I ⊆ S.

If {i1, . . . , ik} is a subset of Z, then the set I = {i1, . . . , ik}+S =
Sk

n=1 in +S is an ideal relative to S,
and {i1, . . . , ik} is a system of generators of I. A system of generators M is minimal if no proper subset
of M generates the same ideal. Usually, ideals are specified by means of its generators and the ambient
numerical semigroup to which they are ideals (for more information see for instance [VBF97]).

7.1.1 IdealOfNumericalSemigroup

♦ IdealOfNumericalSemigroup( l, S ) (function)

S is a numerical semigroup and l a list of integers.
The output is the ideal of S generated by l
There are several shortcuts for this function, as shown in the example.

Example
gap> IdealOfNumericalSemigroup([3,5],NumericalSemigroup(9,11));
<Ideal of numerical semigroup>
gap> [3,5]+NumericalSemigroup(9,11);
<Ideal of numerical semigroup>
gap> last=last2;
true
gap> 3+NumericalSemigroup(5,9);
<Ideal of numerical semigroup>

7.1.2 IsIdealOfNumericalSemigroup

♦ IsIdealOfNumericalSemigroup( Obj ) (function)

Tests if the object Obj is an ideal of a numerical semigroup.
Example

gap> I:=[1..7]+NumericalSemigroup(7,19);
<Ideal of numerical semigroup>
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gap> IsIdealOfNumericalSemigroup(I);
true
gap> IsIdealOfNumericalSemigroup(2);
false

7.1.3 MinimalGeneratingSystemOfIdealOfNumericalSemigroup

♦ MinimalGeneratingSystemOfIdealOfNumericalSemigroup( I ) (function)

I is an ideal of a numerical semigroup.
The output is the minimal system of generators of I.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);
[ 3 ]

7.1.4 GeneratorsOfIdealOfNumericalSemigroup

♦ GeneratorsOfIdealOfNumericalSemigroup( I ) (function)

♦ GeneratorsOfIdealOfNumericalSemigroupNC( I ) (function)

I is an ideal of a numerical semigroup.
The output of GeneratorsOfIdealOfNumericalSemigroup is a system of generators of

the ideal. If the minimal system of generators is known, then it is used as output.
GeneratorsOfIdealOfNumericalSemigroupNC always returns the set of generators stored in
I!.generators.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> GeneratorsOfIdealOfNumericalSemigroup(I);
[ 3, 5, 9 ]
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);
[ 3 ]
gap> GeneratorsOfIdealOfNumericalSemigroup(I);
[ 3 ]
gap> GeneratorsOfIdealOfNumericalSemigroupNC(I);
[ 3, 5, 9 ]

7.1.5 AmbientNumericalSemigroupOfIdeal

♦ AmbientNumericalSemigroupOfIdeal( I ) (function)
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I is an ideal of a numerical semigroup, say S.
The output is S.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> AmbientNumericalSemigroupOfIdeal(I);
<Numerical semigroup with 2 generators>

7.1.6 SmallElementsOfIdealOfNumericalSemigroup

♦ SmallElementsOfIdealOfNumericalSemigroup( I ) (function)

I is an ideal of a numerical semigroup.
The output is a list with the elements in I that are less than or equal to the greatest integer not

belonging to the ideal plus one.
Example

gap> I:=[3,5,9]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> SmallElementsOfIdealOfNumericalSemigroup(I);
[ 3, 5, 7, 9, 11, 13 ]
gap> J:=[2,11]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> SmallElementsOfIdealOfNumericalSemigroup(J);
[ 2, 4, 6, 8, 10 ]

7.1.7 BelongsToIdealOfNumericalSemigroup

♦ BelongsToIdealOfNumericalSemigroup( n, I ) (function)

I is an ideal of a numerical semigroup, n is an integer.
The output is true if n belongs to I.
n in I can be used for short.

Example
gap> J:=[2,11]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> BelongsToIdealOfNumericalSemigroup(9,J);
false
gap> 9 in J;
false
gap> BelongsToIdealOfNumericalSemigroup(10,J);
true
gap> 10 in J;
true
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7.1.8 SumIdealsOfNumericalSemigroup

♦ SumIdealsOfNumericalSemigroup( I, J ) (function)

I, J are ideals of a numerical semigroup.
The output is the sum of both ideals {i+ j | i ∈ I, j ∈ J}.
I + J is a synonym of this function.

Example
gap> I:=[3,5,9]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> J:=[2,11]+NumericalSemigroup(2,11);
<Ideal of numerical semigroup>
gap> I+J;
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);
[ 5, 14 ]
gap> SumIdealsOfNumericalSemigroup(I,J);
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(last);
[ 5, 14 ]

7.1.9 MultipleOfIdealOfNumericalSemigroup

♦ MultipleOfIdealOfNumericalSemigroup( n, I ) (function)

I is an ideal of a numerical semigroup, n is a non negative integer.
The output is the ideal I+ · · ·+I (n times).
n * I can be used for short.

Example
gap> I:=[0,1]+NumericalSemigroup(3,5,7);
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(2*I);
[ 0, 1, 2 ]

7.1.10 SubtractIdealsOfNumericalSemigroup

♦ SubtractIdealsOfNumericalSemigroup( I, J ) (function)

I, J are ideals of a numerical semigroup.
The output is the ideal {z ∈ Z | z+J⊆ I}.
I - J is a synonym of this function. The following example appears in [HS04].

Example
gap> S:=NumericalSemigroup(14, 15, 20, 21, 25);
<Numerical semigroup with 5 generators>
gap> I:=[0,1]+S;
<Ideal of numerical semigroup>
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gap> II:=(0+S)-I;
<Ideal of numerical semigroup>
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I);
[ 0, 1 ]
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(II);
[ 14, 20 ]
gap> MinimalGeneratingSystemOfIdealOfNumericalSemigroup(I+II);
[ 14, 15, 20, 21 ]

7.1.11 DifferenceOfIdealsOfNumericalSemigroup

♦ DifferenceOfIdealsOfNumericalSemigroup( I, J ) (function)

I, J are ideals of a numerical semigroup. J must be contained in I.
The output is the set I\J.

Example
gap> S:=NumericalSemigroup(14, 15, 20, 21, 25);
<Numerical semigroup with 5 generators>
gap> I:=[0,1]+S;
<Ideal of numerical semigroup>
gap> 2*I-2*I;
<Ideal of numerical semigroup>
gap> I-I;
<Ideal of numerical semigroup>
gap> DifferenceOfIdealsOfNumericalSemigroup(last2,last);
[ 26, 27, 37, 38 ]

7.1.12 TranslationOfIdealOfNumericalSemigroup

♦ TranslationOfIdealOfNumericalSemigroup( k, I ) (function)

Given an ideal I of a numerical semigroup S and an integer k returns an ideal of the numerical
semigroup S generated by {i1 + k, . . . , in + k} where {i1, . . . , in} is the system of generators of I.

As a synonym to TranslationOfIdealOfNumericalSemigroup(k, I) the expression k + I
may be used.

Example
gap> s:=NumericalSemigroup(13,23);
<Numerical semigroup with 2 generators>
gap> l:=List([1..6], _ -> Random([8..34]));
[ 22, 29, 34, 25, 10, 12 ]
gap> I:=IdealOfNumericalSemigroup(l, s);
<Ideal of numerical semigroup>
gap> It:=TranslationOfIdealOfNumericalSemigroup(7,I);
<Ideal of numerical semigroup>
gap> It2:=7+I;
<Ideal of numerical semigroup>
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gap> It2=It;
true

7.1.13 HilbertFunctionOfIdealOfNumericalSemigroup

♦ HilbertFunctionOfIdealOfNumericalSemigroup( n, I ) (function)

I is an ideal of a numerical semigroup, n is a non negative integer. I must be contained in its
ambient semigroup.

The output is the cardinality of the set nI\ (n+1)I.
Example

gap> I:=[6,9,11]+NumericalSemigroup(6,9,11);;
gap> List([1..7],n->HilbertFunctionOfIdealOfNumericalSemigroup(n,I));
[ 3, 11, 24, 48, 96, 192, 384 ]

7.1.14 BlowUpIdealOfNumericalSemigroup

♦ BlowUpIdealOfNumericalSemigroup( I ) (function)

I is an ideal of a numerical semigroup.
The output is the ideal

S
n≥0 nI−nI.

Example
gap> I:=[0,2]+NumericalSemigroup(6,9,11);;
gap> BlowUpIdealOfNumericalSemigroup(I);;
gap> SmallElementsOfIdealOfNumericalSemigroup(last);
[ 0, 2, 4, 6, 8 ]

7.1.15 ReductionNumberIdealNumericalSemigroup

♦ ReductionNumberIdealNumericalSemigroup( I ) (function)

I is an ideal of a numerical semigroup.
The output is the least integer such that nI+ i = (n+1)I, where i = min(I).

Example
gap> I:=[0,2]+NumericalSemigroup(6,9,11);;
gap> ReductionNumberIdealNumericalSemigroup(I);
2
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7.1.16 MaximalIdealOfNumericalSemigroup

♦ MaximalIdealOfNumericalSemigroup( S ) (function)

Returns the maximal ideal of the numerical semigroup S.
Example

gap> MaximalIdealOfNumericalSemigroup(NumericalSemigroup(3,7));
<Ideal of numerical semigroup>

7.1.17 BlowUpOfNumericalSemigroup

♦ BlowUpOfNumericalSemigroup( S ) (function)

If M is the maximal ideal of the numerical semigroup, then the output is the numerical semigroupS
n≥0 nM−nM.

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);
<Numerical semigroup with 10 generators>
gap> BlowUpOfNumericalSemigroup(s);
<Numerical semigroup with 10 generators>
gap> SmallElementsOfNumericalSemigroup(last);
[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,
40, 41, 42, 44 ]

gap> m:=MaximalIdealOfNumericalSemigroup(s);
<Ideal of numerical semigroup>
gap> BlowUpIdealOfNumericalSemigroup(m);
<Ideal of numerical semigroup>
gap> SmallElementsOfIdealOfNumericalSemigroup(last);
[ 0, 5, 10, 12, 15, 17, 20, 22, 24, 25, 27, 29, 30, 32, 34, 35, 36, 37, 39,
40, 41, 42, 44 ]

7.1.18 MicroInvariantsOfNumericalSemigroup

♦ MicroInvariantsOfNumericalSemigroup( S ) (function)

Returns the microinvariants of the numerical semigroup S defined in [Eli01]. For their computa-
tion we have used the formula given in [BF06]. The Apéry set of S and its blow up are involved in
this computation.

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);
<Numerical semigroup with 10 generators>
gap> bu:=BlowUpOfNumericalSemigroup(s);
<Numerical semigroup with 10 generators>
gap> ap:=AperyListOfNumericalSemigroupWRTElement(s,30);;
gap> apbu:=AperyListOfNumericalSemigroupWRTElement(bu,30);;
gap> (ap-apbu)/30;
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[ 0, 4, 4, 3, 2, 1, 3, 4, 4, 3, 2, 3, 1, 4, 4, 3, 3, 1, 4, 4, 4, 3, 2, 4, 2,
5, 4, 3, 3, 2 ]

gap> MicroInvariantsOfNumericalSemigroup(s)=last;
true

7.1.19 IsGradedAssociatedRingNumericalSemigroupCM

♦ IsGradedAssociatedRingNumericalSemigroupCM( S ) (function)

Returns true if the graded ring associated to K[[S]] is Cohen-Macaulay, and false otherwise. This
test is the implementation of the algorithm given in [BF06].

Example
gap> s:=NumericalSemigroup(30, 35, 42, 47, 148, 153, 157, 169, 181, 193);
<Numerical semigroup with 10 generators>
gap> IsGradedAssociatedRingNumericalSemigroupCM(s);
false
gap> MicroInvariantsOfNumericalSemigroup(s);
[ 0, 4, 4, 3, 2, 1, 3, 4, 4, 3, 2, 3, 1, 4, 4, 3, 3, 1, 4, 4, 4, 3, 2, 4, 2,
5, 4, 3, 3, 2 ]

gap> List(AperyListOfNumericalSemigroupWRTElement(s,30),
> w->MaximumDegreeOfElementWRTNumericalSemigroup (w,s));
[ 0, 1, 4, 1, 2, 1, 3, 1, 4, 3, 2, 3, 1, 1, 4, 3, 3, 1, 4, 1, 4, 3, 2, 4, 2,
5, 4, 3, 1, 2 ]
gap> last=last2;
false
gap> s:=NumericalSemigroup(4,6,11);
<Numerical semigroup with 3 generators>
gap> IsGradedAssociatedRingNumericalSemigroupCM(s);
true
gap> MicroInvariantsOfNumericalSemigroup(s);
[ 0, 2, 1, 1 ]
gap> List(AperyListOfNumericalSemigroupWRTElement(s,4),
> w->MaximumDegreeOfElementWRTNumericalSemigroup(w,s));
[ 0, 2, 1, 1 ]

7.1.20 CanonicalIdealOfNumericalSemigroup

♦ CanonicalIdealOfNumericalSemigroup( S ) (function)

Computes a canonical ideal of S ([BF06]): xinZ|g− xnotinS.
Example

gap> s:=NumericalSemigroup(4,6,11);
<Numerical semigroup with 3 generators>
gap> m:=MaximalIdealOfNumericalSemigroup(s);
<Ideal of numerical semigroup>
gap> c:=CanonicalIdealOfNumericalSemigroup(s);
<Ideal of numerical semigroup>
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gap> (m-c)-c=m;
true
gap> id:=3+s;
<Ideal of numerical semigroup>
gap> (id-c)-c=id;
true

7.1.21 IntersectionIdealsOfNumericalSemigroup

♦ IntersectionIdealsOfNumericalSemigroup( I, J ) (function)

Given two ideals I and J of a numerical semigroup S returns the ideal of the numerical semigroup
S which is the intersection of the ideals I and J.

Example
gap> i:=IdealOfNumericalSemigroup([75,89],s);
<Ideal of numerical semigroup>
gap> j:=IdealOfNumericalSemigroup([115,289],s);
<Ideal of numerical semigroup>
gap> IntersectionIdealsOfNumericalSemigroup(i,j);
<Ideal of numerical semigroup>



Chapter 8

Numerical semigroups with maximal
embedding dimension

8.1 Numerical semigroups with maximal embedding dimension

If S is a numerical semigroup and m is its multiplicity (the least positive integer belonging to it), then
the embedding dimension e of S (the cardinality of the minimal system of generators of S) is less
than or equal to m. We say that S has maximal embedding dimension (MED for short) when e = m.
The intersection of two numerical semigroups with the same multiplicity and maximal embedding
dimension is again of maximal embedding dimension. Thus we define the MED closure of a non-
empty subset of positive integers M = {m < m1 < · · ·< mn < · · ·} with gcd(M) = 1 as the intersection
of all MED numerical semigroups with multiplicity m.

Given a MED numerical semigroup S, we say that M = {m1 < · · · < mk} is a MED system of
generators if the MED closure of M is S. Moreover, M is a minimal MED generating system for
S provided that every proper subset of M is not a MED system of generators of S. Minimal MED
generating systems are unique, and in general are smaller that the classical minimal generating systems
(see [JCRB03]).

8.1.1 IsMEDNumericalSemigroup

♦ IsMEDNumericalSemigroup( S ) (function)

S is a numerical semigroup.
Returns true if S is a MED numerical semigroup and false otherwise.

Example
gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,5,7));
true
gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,5));
false
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8.1.2 MEDNumericalSemigroupClosure

♦ MEDNumericalSemigroupClosure( S ) (function)

S is a numerical semigroup.
Returns the MED closure of S.

Example
gap> MEDNumericalSemigroupClosure(NumericalSemigroup(3,5));
<Numerical semigroup>
gap> MinimalGeneratingSystemOfNumericalSemigroup(last);
[ 3, 5, 7 ]

8.1.3 MinimalMEDGeneratingSystemOfMEDNumericalSemigroup

♦ MinimalMEDGeneratingSystemOfMEDNumericalSemigroup( S ) (function)

S is a MED numerical semigroup.
Returns the minimal MED generating system of S.

Example
gap> MinimalMEDGeneratingSystemOfMEDNumericalSemigroup(
> NumericalSemigroup(3,5,7));
[ 3, 5 ]

8.2 Numerical semigroups with the Arf property and Arf closures

Numerical semigroups with the Arf property are a special kind of numerical semigroups with maximal
embedding dimension. A numerical semigroup S is Arf if for every x,y,z in S with x ≥ y ≥ z, one has
that x+ y− z ∈ S.

The intersection of two Arf numerical semigroups is again Arf, and thus we can consider the Arf
closure of a set of nonnegative integers with greatest common divisor equal to one. Analogously as
with MED numerical semigroups, we define Arf systems of generators and minimal Arf generating
system for an Arf numerical semigroup. These are also unique(see [JCRB04]).

8.2.1 IsArfNumericalSemigroup

♦ IsArfNumericalSemigroup( S ) (function)

S is a numerical semigroup.
Returns true if S is an Arf numerical semigroup and false otherwise.

Example
gap> IsArfNumericalSemigroup(NumericalSemigroup(3,5,7));
true
gap> IsArfNumericalSemigroup(NumericalSemigroup(3,7,11));
false
gap> IsMEDNumericalSemigroup(NumericalSemigroup(3,7,11));
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true

8.2.2 ArfNumericalSemigroupClosure

♦ ArfNumericalSemigroupClosure( S ) (function)

S is a numerical semigroup.
Returns the Arf closure of S.

Example
gap> ArfNumericalSemigroupClosure(NumericalSemigroup(3,7,11));
<Numerical semigroup>
gap> MinimalGeneratingSystemOfNumericalSemigroup(last);
[ 3, 7, 8 ]

8.2.3 MinimalArfGeneratingSystemOfArfNumericalSemigroup

♦ MinimalArfGeneratingSystemOfArfNumericalSemigroup( S ) (function)

S is an Arf numerical semigroup.
Returns the minimal MED generating system of S.

Example
gap> MinimalArfGeneratingSystemOfArfNumericalSemigroup(
> NumericalSemigroup(3,7,8));
[ 3, 7 ]



Chapter 9

Catenary and Tame degrees of numerical
semigroups

9.1 Factorizations in Numerical Semigroups

Let S be a numerical semigroup minimally generated by {m1, . . . ,mn}. A factorization of an ele-
ment s ∈ S is an n-tuple a = (a1, . . . ,an) of nonnegative integers such that n = a1n1 + · · ·+ anmn.
The lenght of a is |a| = a1 + · · ·+ an. Given two factorizations a and b of n, the distance be-
tween a and b is d(a,b) = max{|a−gcd(a,b)|, |b−gcd(a,b)|}, where gcd((a1, . . . ,an),(b1, . . . ,bn)) =
(min(a1,b1), . . . ,min(an,bn)).

If l1 > · · · > lk are the lenghts of all the factorizations of s ∈ S, the Delta set associated to s is
∆(s) = {l1− l2, . . . , lk− lk−1}.

The catenary degree of S is the least positive integer c such that for any two factorizations a and
b of an element in S, there exists a chain of factorizations staring in a and ending in b and so that the
distance between two consecutive links is at most c.

The tame degree of S is the least positive integer t for any factorization a of an element s in S, and
any i such that s−mi ∈ S, there exists another factorization b of s so that the distance to a is at most t
and bi 6= 0.

The basic properties of these constants can be found in [GHK06]. The algorithm used to compute
the catenary and tame degree is an adaptation of the algorithms appearing in [STCR06] for numeri-
cal semigroup (see [STCL]). The computation of the elascitiy of a numerical semigroup reduces to
m/n with m the multiplicity of the semigroup and n its largest minimal generator (see [STCM] or
[GHK06]).

9.1.1 FactorizationsElementWRTNumericalSemigroup

♦ FactorizationsElementWRTNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the set of factorizations of
n in terms of the minimal generating set of S.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> FactorizationsElementWRTNumericalSemigroup(1100,s);
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[ [ 0, 0, 0, 2, 2, 0 ], [ 0, 2, 3, 0, 0, 1 ], [ 0, 8, 1, 0, 0, 0 ],
[ 5, 1, 1, 0, 0, 1 ] ]

9.1.2 LengthsOfFactorizationsElementWRTNumericalSemigroup

♦ LengthsOfFactorizationsElementWRTNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the set of lengths of the
factorizations of n in terms of the minimal generating set of S.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> LengthsOfFactorizationsElementWRTNumericalSemigroup(1100,s);
[ 4, 6, 8, 9 ]

9.1.3 ElasticityOfFactorizationsElementWRTNumericalSemigroup

♦ ElasticityOfFactorizationsElementWRTNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n a positive integer. The output is the maximum length divided by
the minimum length of the factorizations of n in terms of the minimal generating set of S.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> ElasticityOfFactorizationsElementWRTNumericalSemigroup(1100,s);
9/4

9.1.4 ElasticityOfNumericalSemigroup

♦ ElasticityOfNumericalSemigroup( S ) (function)

S is a numerical semigroup. The output is the elasticity of S.
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> ElasticityOfNumericalSemigroup(s);
286/101

9.1.5 DeltaSetOfFactorizationsElementWRTNumericalSemigroup

♦ DeltaSetOfFactorizationsElementWRTNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the Delta set of the factor-
izations of n in terms of the minimal generating set of S.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> DeltaSetOfFactorizationsElementWRTNumericalSemigroup(1100,s);
[ 1, 2 ]
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9.1.6 MaximumDegreeOfElementWRTNumericalSemigroup

♦ MaximumDegreeOfElementWRTNumericalSemigroup( n, S ) (function)

S is a numerical semigroup and n a nonnegative integer. The output is the maximum length of the
factorizations of n in terms of the minimal generating set of S.

Example
gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> MaximumDegreeOfElementWRTNumericalSemigroup(1100,s);
9

9.1.7 CatenaryDegreeNumericalSemigroup

♦ CatenaryDegreeNumericalSemigroup( S ) (function)

S is a numerical semigroup. The output is the catenary degree of S.
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> CatenaryDegreeNumericalSemigroup(s);
8

9.1.8 TameDegreeNumericalSemigroup

♦ TameDegreeNumericalSemigroup( S ) (function)

S is a numerical semigroup. The output is the tame degree of S.
Example

gap> s:=NumericalSemigroup(101,113,196,272,278,286);
<Numerical semigroup with 6 generators>
gap> TameDegreeNumericalSemigroup(s);
14



Appendix A

Generalities

Here we describe some functions which are not specific for numerical semigroups but are used to do
computations with them. As they may have interest by themselves, we decribe them here.

A.1 Bézout sequences

A sequence of positive rational numbers a1/b1 < · · · < an/bn with ai,bi positive integers is a Bézout
sequence if ai+1bi−aibi+1 = 1 for all i ∈ {1, . . . ,n−1}.

The following function uses an algorithm presented in [Ros].

A.1.1 BezoutSequence

♦ BezoutSequence( arg ) (function)

arg consits of two rational numbers or a list of two rational numbers. The output is a Bézout se-
quence with ends the two rational numbers given. (Warning: rational numbers are silently transformed
into irreducible fractions.)

Example
gap> BezoutSequence(4/5,53/27);
[ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/6, 13/7, 15/8, 17/9, 19/10, 21/11, 23/12,
25/13, 27/14, 29/15, 31/16, 33/17, 35/18, 37/19, 39/20, 41/21, 43/22,
45/23, 47/24, 49/25, 51/26, 53/27 ]

A.1.2 IsBezoutSequence

♦ IsBezoutSequence( L ) (function)

L is a list of rational numbers. IsBezoutSequence returns true or false according to whether L
is a Bézout sequence or not.

Example
gap> IsBezoutSequence([ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/6]);
true
gap> IsBezoutSequence([ 4/5, 1, 3/2, 5/3, 7/4, 9/5, 11/3]);
Take the 6 and the 7 elements of the sequence
false
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A.1.3 CeilingOfRational

♦ CeilingOfRational( r ) (function)

Returns the smallest integer greater than or equal to the rational r.
Example

gap> CeilingOfRational(3/5);
1

A.2 Periodic subadditive functions

A periodic function f of period m from the set N of natural numbers into itself may be specified
through a list of m natural numbers. The function f is said to be subadditive if f (i+ j)≤ f (i)+ f ( j)
and f (0) = 0.

A.2.1 RepresentsPeriodicSubAdditiveFunction

♦ RepresentsPeriodicSubAdditiveFunction( L ) (function)

L is a list of integers. RepresentsPeriodicSubAdditiveFunction returns true or false ac-
cording to whether L represents a periodic subAdditive function f periodic of period m or not. To
avoid defining f (0) (which we assume to be 0) we define f (m) = 0 and so the last element of the list
must be 0. This technical need is due to the fact that positions in a list must be positive (not a 0).

Example
gap> RepresentsPeriodicSubAdditiveFunction([1,2,3,4,0]);
true



Appendix B

Random functions

Here we describe some functions which allow to create several ”random” objects.

B.1 Random functions

B.1.1 RandomNumericalSemigroup

♦ RandomNumericalSemigroup( n, m ) (function)

Returns a “random” numerical semigroup with no more than n generators in [1..m].
Example

gap> RandomNumericalSemigroup(3,9);
<Numerical semigroup with 3 generators>

B.1.2 RandomListForNS

♦ RandomListForNS( n, m ) (function)

Returns a set of length not greater than n of random integers in [1..m] whose GCD is 1. It is used
to create ”random” numerical semigroups.

Example
gap> RandomListForNS(13,79);
[ 22, 26, 29, 31, 34, 46, 53, 61, 62, 73, 76 ]

B.1.3 RandomModularNumericalSemigroup

♦ RandomModularNumericalSemigroup( k ) (function)

Returns a “random” modular numerical semigroup.
Example

gap> RandomModularNumericalSemigroup(9);
<Modular numerical semigroup satisfying 5x mod 6 <= x >
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B.1.4 RandomProportionallyModularNumericalSemigroup

♦ RandomProportionallyModularNumericalSemigroup( k ) (function)

Returns a “random” proportionally modular numerical semigroup (see 1).
Example

gap> RandomProportionallyModularNumericalSemigroup(9);
<Proportionally modular numerical semigroup satisfying 2x mod 3 <= 2x >

B.1.5 RandomListRepresentingSubAdditiveFunction

♦ RandomListRepresentingSubAdditiveFunction( m, a ) (function)

Produces a “random” list representing a subadditive function (see 1) which is periodic with period
m (or less). When possible, the images are in [a..20*a]. (Otherwise, the list of possible images is
enlarged.)

Example
gap> RandomListRepresentingSubAdditiveFunction(7,9);
[ 173, 114, 67, 0 ]
gap> RepresentsPeriodicSubAdditiveFunction(last);
true



Appendix C

A graphical interface

Here we describe a Tcl/Tk interface to specify numerical semigroups.

C.1 Graphical interface

C.1.1 XNumericalSemigroup

♦ XNumericalSemigroup( [s] ) (function)

This function pops up a Tcl/Tk window which allows the specification of numerical semigroups.
The optional argument s is a numerical semigroup whose definition becomes displayed in the graphi-
cal interface.

The interface is very simple, it allows to specify a numerical semigroup by its generators or a
(proportionally) modular numerical semigroup by its (proportionally) modular condition. The GAP
variable by which the semigroup will be known must also be specified.

The interface also allows to apply some functions to the semi-
group, namely AperyListOfNumericalSemigroupWRTElement (3.1.5),
DrawAperyListOfNumericalSemigroup (3.1.6), SmallElementsOfNumericalSemigroup (3.1.3),
GapsOfNumericalSemigroup (3.3.1), FrobeniusNumberOfNumericalSemigroup (3.2.1) and
MinimalPresentationOfNumericalSemigroup (4.1.2). Finally, it is also possible to add functions
to this list and remove them.

Example
gap> s:=RandomNumericalSemigroup(3,9);
<Numerical semigroup with 3 generators>
gap> XNumericalSemigroup(s);

This would pop up the following window:
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mental gaps in numerical semigroups. J. Pure Appl. Algebra, 189(1-3):301–313, 2004.
23

[RB03] J. C. Rosales and M. B. Branco. Irreducible numerical semigroups. Pacific J. Math.,
209(1):131–143, 2003. 24
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