Semigroup visualization

(Version 0.997)

Manuel Delgado
José Joao Morais

Manuel Delgado — Email: mdelgado@fc.up.pt
— Homepage: http://www.fc.up.pt/cmup/mdelgado

José Joao Morais — Email: josejoao@fc.up.pt

mailto://mdelgado@fc.up.pt
http://www.fc.up.pt/cmup/mdelgado
mailto://josejoao@fc.up.pt

Semigroup visualization 2

Copyright

(© 2005 by Manuel Delgado and José Jodao Morais
We adopt the copyright regulations of GAP as detailed in the copyright notice in the GAP manual.

Acknowledgements

The first author aknowledges financial support of FCT, through the Centro de Matemdtica da Universidade do
Porto.

The second author acknowledges financial support of FCT and the POCTI program through a scholarship
given by Centro de Matemdtica da Universidade do Porto.

Both authors acknowledge Jorge Almeida, Vitor H. Fernandes and Pedro Silva for many helpfull
discussions and comments.

Colophon

Bug reports, suggestions and comments are, of course, welcome. Please use the email address
mdelgado@fc.up.pt or josejoaolfc.up.pt to this effect.

mailto://mdelgado@fc.up.pt
mailto://josejoao@fc.up.pt

Contents

1 Introduction

2 Basics
2.1 Examples
2.2 Someattributes L e e e
2.2.1 HasCommutingldempotents
2.2.2 IslnverseSemigroup.ol
2.3 Somebasic functions e e
2.3.1 PartialTransformation
2.3.2 ReduceNumberOfGeneratorso i v
2.3.3 SemigroupFactorization L
234 GrahamBlocks
24 Cayleygraphs
2.4.1 RightCayleyGraphAsAutomaton
2.4.2 RightCayleyGraphMonoidAsAutomaton
3 Drawings of semigroups
3.1 Drawing the D-class of an element of a semigroup
3.1.1 DrawDClassOfElement
3.2 Drawing the D-classes of a semigroup
3.2.1 DrawDClasses e
33 Cayleygraphs e
3.3.1 DrawRightCayleyGraph
3.3.2 DrawCayleyGraph
3.4 Schutzenberger graphs
3.4.1 DrawSchutzenbergerGraphs L L.
3.5 Drawings output formats
3.5.1 DrawingsListOfExtraFormats
3.5.2 DrawingsExtraFormat
3.5.3 SetDrawingsExtraFormat

4 User friendly ways to give semigroups and automata

4.1 Finiteautomata e e e e e e e e e e e e e
4.1.1 XAutomaton e e
4.2 Finite Semigroups o v v v it e e e e e e e e e e e
421 XSemigroup o i e e e e e e

wn

O O O 00 N0 J JJ I 19

10

10
11
11
11
11
11
11
11
12
12
12
12

Semigroup visualization

4.2.2 Semigroups given through generators and relations

4.2.3 Semigroups given by partial transformations . . .
4.2.4 Syntatic Semigroups

Chapter 1

Introduction

The aim of this package is to turn GAP more user-friendly, at least for semigroup theorists. It
requires the usage of external programs as is the case of graphviz [DEG™], a software for drawing
graphs developed at AT & T Labs, that can be obtained at http://www.graphviz.org/. It is
used not only to draw right Cayley graphs of finite semigroups and Schiizenberger graphs of finite
inverse semigroups but also to visualize in the usual way the egg-box picture of a D-classe of a finite
semigroup.

IMPORTANT NOTE: The version of graphviz to install should be greater or equal to 1.16.

Tcl/Tk should also be available in order to run the graphical interfaces (XAutomaton and
XSemigroup) used to specify automata and semigroups.

http://www.graphviz.org/

Chapter 2

Basics

We give some examples of semigroups to be used later. We also describe some basic functions that
are not directly available from GAP, but are useful for the purposes of this package.

2.1 Examples

These are some examples of semigroups that will be used through this manual

Example

gap> f := FreeMonoid("a","b");

<free monoid on the generators [a, b]>

gap> a := GeneratorsOfMonoid(f)| 11;;

gap> b := GeneratorsOfMonoid(f)[2 1;;

gap> r:=[[a"3,a"2],

> [a"2*b,a"2],

> [b*a"2,a"2],

> [b"2,a"2],

> [a*b*a,al,

> [b*a*b,b] 1;

[[a"3, a"2 1, [a"2*b, a"2 1, [b*a"2, a"2 1, [b"2, a2 1, [a*b*a, a I,

[b*a*b, b]]

gap> b2l:= f/r;

<fp semigroup on the generators [<identity ... >, a, b]>
Example

gap> f := FreeSemigroup("a","b");

<free semigroup on the generators [a, b]>

gap> a := GeneratorsOfSemigroup(£)[1];;

gap> b := GeneratorsOfSemigroup(f)[2 1;;

gap> r:=[[a"3,a"2],

> [a"2*b,a"2],

> [b*a"2,a"2],

> [b"2,a"2],

> [a*b*a,a]l,

> [b*a*b,b]];

[[a3, a"2], [a"2*b, a"2 1, [b*a"2, a"2 1, [b2, a“2], [a*b*a, a],

[b*a*b, b]]

gap> b2:= f/r;

<fp semigroup on the generators [a, b]>

Semigroup visualization 7

Example

Dii

gap> g0:=Transformation([4,1,2,4 ;
gap> gl:=Transformation([1,3,4,4]);;
2,4,3,4
)

r r

gap> g2:=Transformation([2, i
gap> poi3:= Monoid(g0,gl, g2
<monoid with 3 generators>

’ r

4

2.2 Some attributes

These functions are semigroup attributes that get stored once computed.

2.2.1 HasCommutingldempotents

O HasCommutingIdempotents(M) (attribute)

Tests whether the idempotents of the semigroup M commute.

2.2.2 IsInverseSemigroup

Q IsInverseSemigroup(S) (attribute)

Tests whether a finite semigroup S is inverse. It is well-known that it suffices to test whether the
idempotents of S commute and S is regular. The function IsReqularSemigroup is part of GAP.

2.3 Some basic functions

2.3.1 PartialTransformation
{ PartialTransformation(L) (function)
A partial transformation is a partial function of a set of integers of the form {1, ..., n}. Itis

given by means of the list of images L. When an element has no image, we write 0. Returns a full
transformation on a set with one more element that acts like a zero.

Example
gap> PartialTransformation([2,0,4,0]1);
Transformation([2, 5, 4, 5, 51)
2.3.2 ReduceNumberOfGenerators
) ReduceNumberOfGenerators(L) (function)

Given a subset L of the generators of a semigroup, returns a list of generators of the same semi-
group but possibly with less elements than L.

Semigroup visualization

2.3.3 SemigroupFactorization

{Q SemigroupFactorization(S, L) (function)

L is an element (or list of elements) of the semigroup S. Returns a minimal factorization on the
generators of S of the element(s) of L. Works only for transformation semigroups.

Example
gap> ell := Transformation([2, 3, 4, 4 1);;
gap> el2 := Transformation([2, 4, 3, 41);;
gap> fl := SemigroupFactorization(poi3,ell);
[[Transformation([1, 3, 4, 4 1), Transformation([2, 4, 3, 41) 1 1]
gap> f1[1][1] * f1[1][2] = ell;
true
gap> SemigroupFactorization(poi3, [ell,el2]);
[[Transformation([1, 3, 4, 4 1), Transformation([2, 4, 3, 41) 1,
[Transformation([2, 4, 3, 41) 1]

2.3.4 GrahamBlocks

{) GrahamBlocks (mat) (function)

mat is a matrix as displayed by DisplayEggBoxOfDClass (D) ; of a regular D-class D. This func-
tion outputs a list [gmat, phi] where gmat is mat in Graham’s blocks form and phi maps H-
classes of gmat to the corresponding ones of mat, i.e., phi[i] []] [i",3"] wheremat [i"][]"]
= gmat[1] [J]. If the argument to this function is not a matrix corresponding to a regular D-class,
the function may abort in error.

Example
gap> pl := PartialTransformation([6,2,0,0,2,6,0,0,10,10,0,07]);;
gap> p2 := PartialTransformation([0,0,1,5,0,0,5,9,0,0,9,11);;
gap> p3 := PartialTransformation([0,0,3,3,0,0,7,7,0,0,11,11]);;
gap> p4 := PartialTransformation([4,4,0,0,8,8,0,0,12,12,0,0]1);;

gap> css3:=Semigroup (pl,p2,p3,p4);
<semigroup with 4 generators>

gap> el := Elements(css3)[8];;
gap> D := GreensDClassOfElement (css3, el);;
gap> IsRegularDClass (D);
true
gap> DisplayEggBoxOfDClass (D) ;
(r 1, 0o, 1, 01,

[0, 1, 0, 11,

[0, 1, 0, 117,

[1, 0, 1, 011
gap> mat := [[1, O, 1, 0 1],
> [0 1, 0, 117,
> [o0 1, 0, 11,
> [1, 0, 1, 01 1;;
gap> res := GrahamBlocks (mat);;
gap> PrintArray(res[l]);
rr 1, 1, 0, 01,

[1, 1, 0, 01,

[0, O, 1, 117,

Semigroup visualization 9

[0, 0, 1, 111
gap> PrintArray(res[2]);
tt t, 11, 01,31, (1,271, [1,4711,
[(04171, 004 31, [4 21, [4 4711,
(12,11, (2,31, (12,21, [2,411,
(03 11, [3 31, 03 21, [3 4111
2.4 Cayley graphs
2.4.1 RightCayleyGraphAsAutomaton
{Q RightCayleyGraphAsAutomaton(S) (function)

Computes the right Cayley graph of a finite monoid or semigroup S. It uses the GAP buit-in
function CayleyGraphSemigroup to compute the Cayley Graph and returns it as an automaton with-
out initial nor final states. (In this automaton state i represents the element Elements (S) [1].) The
Automata package is used to this effect.

Example
gap> rcg := RightCayleyGraphAsAutomaton (b21);
< deterministic automaton on 2 letters with 6 states >
gap> Display(rcg);
| 1 2 3 4 5 6

al 2 4 6 4 2 4

b| 3 5 4 4 4 3

Initial state: []
Accepting state: []

2.4.2 RightCayleyGraphMonoidAsAutomaton

{Q RightCayleyGraphMonoidAsAutomaton(S) (function)

This function is a synonym of RightCayleyGraphAsAutomaton (2.4.1).

Chapter 3

Drawings of semigroups

There are some pictures that may give a lot of information about a semigroup. This is the case of the
egg-box picture of the D-classes, the right Cayley graph of a finite monoid and the Schutzenberger
graphs of a finite inverse monoid.

3.1 Drawing the D-class of an element of a semigroup

3.1.1 DrawDClassOfElement

{Q DrawDClassOfElement (arg) (function)

This function takes as arguments a semigroup followed by a transformation which is the element
whose D-class will be drawn. Optionally we can then specify n lists of elements and the elements
of each list will be drawn in different colours. Finally, we may specify a string name the file that
will be used to write the drawing of the class (in PostScript format) and if the last argument is the
integer 1 then the elements will appear as transformations, otherwise they will appear as words. The
idempotents will be marked with a * before them.

This last optional argument may also be the integer 2 and in this case the elements will appear as
integers, where 1 represents the element Elements (S) [1i].

Example

gap> DrawDClassOfElement (poi3, Transformation([1l,4,3,41));

gap> DrawDClassOfElement (poi3, Transformation([1,4,3,41),1);

gap> DrawDClassOfElement (poi3, Transformation([1,4,3,4]1),
[Transformation([2, 3, 4, 41)],1);

gap> DrawDClassOfElement (poi3, Transformation([1,4,3,4]),
[Transformation([2, 3, 4, 4]), Transformation([2, 4, 3, 41)1,
[Transformation([2, 4, 3, 41)1,1);

gap> DrawDClassOfElement (poi3, Transformation([1,4,3,4]1),
[Transformation([2, 4, 3, 4])],"Dclass",1);

10

Semigroup visualization 11

3.2 Drawing the D-classes of a semigroup

3.2.1 DrawDClasses

{Q DrawDClasses(arg) (function)

This function is similar to the previous one, except that this one draws all the D-classes of the
semigroup given as the first argument. It then takes optionally n lists of elements and the elements of
each list will be drawn in different colours. It also accepts a string specifying the name of the file in
which the drawing will be written and the last, optional, argument, the integer 1, to specify whether
the elements will appear as words or as transformations as in the previous function. The idempotents
will be marked with a * before them.

This last optional argument may also be the integer 2 and in this case the elements will appear as
integers, where 1 represents the element Elements (S) [1].

Example
gap> DrawDClasses (poi3, "DClasses");
gap> DrawDClasses (poi3, [Transformation([2, 3, 4, 41),
Transformation([2, 4, 3, 4 1)1,
[Transformation([2, 4, 3, 4 1)1,1);
3.3 Cayley graphs
3.3.1 DrawRightCayleyGraph
O DrawRightCayleyGraph(S) (function)

Draws the right Cayley graph of a finite monoid or semigroup S.
3.3.2 DrawCayleyGraph
Q DrawCayleyGraph(S) (function)

This function is a synonym of DrawRightCayleyGraph (3.3.1).

For example, the command DrawCayleyGraph (b21) ; would produce the following image (where
state 1 represents the element Elements (S) [1], the neutral element is colored in “’light blue” and all
other idempotents are colored in “’light coral”):

3.4 Schutzenberger graphs

3.4.1 DrawSchutzenbergerGraphs

{ DrawSchutzenbergerGraphs(S) (function)

Draws the Schutzenberger graphs of the inverse semigroup S.
For example, DrawSchutzenbergerGraphs (poi3); would produce the following:

Semigroup visualization 12

3.5 Drawings output formats

By default, when a drawing is requested, it is outputted in PostScript format. Since graphviz allows
other output formats (see http://www.graphviz.org/doc/info/output.html), it is possible to
also request a drawing in a format other than PostScript.

3.5.1 DrawingsListOfExtraFormats

O DrawingsListOfExtraFormats (global variable)

This is a global variable which holds the valid output formats for a drawing. It currently
has the Value: [lldia", llfigll, "gd"] llgdzlll "gif", "hpgllll lljpg", "mif", "mp",
"pcl"’ "picll, "plainll’ "plain_ext", "png", "pS", "pSZ", "Svg", "SVgZ", "Vrml",
"vtx", "wbmp", "none"] (see http://www.graphviz.org/doc/info/output.html for their
description).

3.5.2 DrawingsExtraFormat

O DrawingsExtraFormat (global variable)

This is a global variable which holds the alternative output format for a drawing. By default its
value is "none" which indicates that just PostScript will be used as the output format.

If its value becomes one of those in DrawingsListOfExtraFormats (3.5.1), then besides the
PostScript file, it will also be created a file in the alternative format.

To change this variable’s value, please use SetDrawingsExtraFormat (3.5.3).

3.5.3 SetDrawingsExtraFormat

{Q SetDrawingsExtraFormat (f) (function)

This function is used to set the value of DrawingsExtraFormat (3.5.2) to the format £ which is

one of DrawingsListOfExtraFormats (3.5.1).
Example

gap> DrawingsExtraFormat;

"none"

gap> SetDrawingsExtraFormat ("jpg");
gap> DrawingsExtraFormat;

LU

jeg"

gap> DrawRightCayleyGraph (poi3);

Displaying file: /tmp/tmp.tpdqvI/cayleygraph.dot.ps

The extra output format file: /tmp/tmp.tpdgvI/cayleygraph.dot.jpg
has also been created.

http://www.graphviz.org/doc/info/output.html
http://www.graphviz.org/doc/info/output.html

Chapter 4

User friendly ways to give semigroups
and automata

This chapter describes two Tcl/Tk graphical interfaces that can be used to define and edit semigroups
and automata.

4.1 Finite automata

4.1.1 XAutomaton

{ XAutomaton ([A]) (function)

The function Xautomaton without arguments opens a new window where an automaton may
be specified. A finite automaton (which may then be edited) may be given as argument.

Example

gap> XAutomaton();

It opens a window like the following:

Due to problems with scaling and displaying images, they will be available only in HTML
format.

Var is the GAP name of the automaton, States is the number of states, Alphabet rep-
resents the alphabet and may be given through a positive integer (in this case the alphabet is
understood to be a,b,c,...) or through a string whose symbols, in order, being the letters
of the alphabet. The numbers corresponding to the initial and accepting states are placed in the
respective boxes. The automaton may be specified to be deterministic, non deterministic or with
epsilon transitions. After pressing the TRANSITION MATRIX button the window gets larger and the
transition matrix of the automaton may be given. The ith row of the matrix describes the action of the
ith letter on the states. A non deterministic automaton may be given as follows:

By pressing the button OK the GAP shell aquires the aspect shown in the following picture
and the automaton ndAUT may be used to do computations. Some computations such as getting a

13

Semigroup visualization 14

rational expression representing the language of the automaton, the (complete) minimal automaton
representing the same language or the transition semigroup of the automaton, may be done directly
after pressing the FUNCTIONS button.

By pressing the button VIEW an image representing the automaton is displayed in a new window.
An automaton with epsilon transitions may be given as follows shown in the following picture. The
last letter of the alphabet is always considered to be the €. In the images it is represented by .

A new window with an image representing the automaton may be obtained by pressing the button
VIEW .

In the next example it is given an argument to the function XAutomaton.
Example

gap> A := RandomAutomaton ("det",2,2);
< deterministic automaton on 2 letters with 2 states >
gap> XAutomaton (A);

It opens a window like the following:

4.2 Finite semigroups

The most common ways to give a semigroup to are through generators and relations, a set of (partial)
transformations as generating set and as syntactic semigroups of automata or rational languages.

4.2.1 XSemigroup

O XSemigroup ([S]) (function)

The function XSemigroup without arguments opens a new window where a semigroup (or
monoid) may be specified. A finite semigroup (which may then be edited) may be given as argument.

Example
gap> XSemigroup();

It opens a window like the following: where one may choose how to give the semigroup.

4.2.2 Semigroups given through generators and relations

In the window opened by XSemigroup, by pressing the button PROCEED the window should enlarge
and have the following aspect. (If the window does not enlarge automatically, use the mouse to do it.)

GAP variable is the GAP name of the semigroup. One has then to specify the number of
generators, the number of relations (which does not to be exact) and whether one wants to produce a
monoid or a semigroup. Pressing the PROCEED button one gets:

4.2.3 Semigroups given by partial transformations

XSemigroup (poi3); would pop up the following window, where everything should be clear:

Semigroup visualization 15

4.2.4 Syntatic semigroups

XSemigroup () ; would pop up the following window, where we would select ”Syntatic semigroup”,
press the PROCEED button and then choose either to give a ”Rational expression” or an ”Automaton”
by pressing one of those buttons: If ”Rational expression” is chosen, a new window pops up where the
expression can be specified: After pressing the OK button, notice that the menu button FUNCTIONS
appears on the main window (lower right corner) meaning that GAP already recognizes the given
semigroup:

References

[DEG*] D. Dobkin, J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz
- graph drawing programs. Technical report, AT&T Research and Lucent Bell Labs.
http://www.graphviz.org/. 5

16

Index

DrawCayleyGraph, 11
DrawDClasses, 11
DrawDClassOfElement, 10
DrawingsExtraFormat, 12
DrawingsListOfExtraFormats, 12
DrawRightCayleyGraph, 11
DrawSchutzenbergerGraphs, 11

GrahamBlocks, 8
HasCommutingIdempotents, 7
IsInverseSemigroup, 7
PartialTransformation, 7

ReduceNumberOfGenerators, 7
RightCayleyGraphAsAutomaton, 9
RightCayleyGraphMonoidAsAutomaton, 9

SemigroupFactorization, 8
SetDrawingsExtraFormat, 12

XAutomaton, 13
XSemigroup, 14

17

