NQL

Computing nilpotent quotients

of
L-presented groups

A GAP 4 package

by

René Hartung
Institute for Computational Mathematics
TU Braunschweig

2.1
2.2
2.3
2.4
2.5

3.1
3.2

4.1
4.2
4.3

Preface

Introduction to L-presented groups
Creating an L-presented group

The underlying free group

Accessing an L-presentation

Properties and attributes of L-presented groups
Methods for L-presented groups

Nilpotent Quotients of L-presented groups
New methods for L-presented groups

A short description of the algorithm

The underlying functions

Nilpotent Quotient Systems for invariant L-presentations
Attributes of L-presented groups

The Info-Class InfoNQL

Bibliography

Index

Contents

© o W N o O Ut kW

I e e e
[N U

Preface

In 1980, Grigorchuk [Gri80] gave an example of an infinite, finitely generated torsion group, which provided
a counter-example for the general Burnside problem. It is nowadays called the Grigorchuk group and was
originally defined as a group of transformations of the interval [0, 1] which preserve the Lebesgue measure.
Grigorchuk [Gri80] also showed that this group is not finitely presented. In 1985, Lysenok [Lys85] determined
the following presentation for the Grigorchuk group

n

(a,b,c,d | a® b, % d? bed,[d,d?)"",[d, d*"]°" (n € N)),

where ¢ is the homomorphism of the free group on a, b, ¢, d induced by a — ¢* b+ d,c— b, and d — c.
Thus the infinitely many relators of this presentation can be described in finite terms using powers of the
endomorphism o.

In 2003, Bartholdi [Bar03] introduced the notion of an L-presented group for groups of this type (see
Chapter 2 for a precise definition of L-presented groups). He proved that each finitely generated, contracting,
semi-fractal, regular branch group is finitely L-presented but not finitely presented.

The NQL-package defines new GAP objects to work with L-presented groups. The main part of the package
is a nilpotent quotient algorithm for L-presented groups. That is an algorithm which takes as input an
L-presented group G and a positive integer c. It computes a polycyclic presentation for the lower central
series quotient G/v.+1(G).

The nilpotent quotient algorithm defined in this package generalizes the method by Nickel [Nic96] as im-
plemented in the NQ-package of GAP: see [Nic03]. In difference to NQ, the NQL-package is implemented in
GAP.

Our method can be readily modified to determine p-quotients of a finitely L-presented group. An implemen-
tation of a PQ is planned for future expansions of the NQL-package.

As finite presentations can be considered as a special type of finite L-presentations, our algorithm also applies
to finitely presented groups. It coincides with Nickel’s NQ in this special case.

Introduction to
L-presented groups

Let S be an arbitrary alphabet, @ and R be finite subsets of the free group Fg on S, and ® be a finite set
of homomorphisms ¢ : Fg — Fg. An L-presentation is an expression of the form (S | @ | ® | R). It defines
the L-presented group G = Fs/K where

K<QU U R“”>FS

ped*

and ®* is the monoid generated by ®, i.e. the closure of ® U {id} under composition.

The elements in @ will be called fixed relators and the elements in R will be called iterated relators.
Furthermore an L-presentation will be called

e ascending if () is empty.

e invariant if the normal subgroup K is g-invariant for each ¢ in ®; that is, K¥ C K for each ¢ in .

Note that every ascending L-presentation is invariant. In general it is a non trivial task to decide whether a
given L-presentation is invariant.

2.1 Creating an L-presented group

The construction of an L-presented group is similar to the construction of finitely presented groups (see
Chapter 45.1 of the GAP Reference manual for further details).

1» LPresentedGroup(F, frels, endos, irels) F

returns the GAP object of an L-presented group with the underlying free group F, the fixed relators frels,
the set of endomorphisms endos, and the iterated relators irels. The input variables frels and irels are finite
subsets of F' and endos is a finite list of homomorphisms F — F.

The Grigorchuk group,
<a7 b7 C, d ‘ (12, b2, 02, dz’ bed | o | [d, da]’ [d7 daCacaD7

can be constructed as follows.

gap> F:=FreeGroup("a","b","c","d");

<free group on the generators [a, b, ¢, d]>

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [a, b, c, d]

gap> frels:=[a"2,b72,c"2,d"2,bxc*d] ;;

gap> endos:=[GroupHomomorphismByImagesNC(F,F, [a,b,c,d], [c"a,d,b,c])];;
gap> irels:=[Comm(d,d"a),Comm(d,d” (axc*axcxa))];;

gap> G:=LPresentedGroup(F,frels,endos,irels);

<L-presented group on the generators [a, b, c, d]>

2» ExamplesOfLPresentations(n) F

returns some of the examples discussed in [Bar03] for 1 <n< 9.

3>

5»

1»

2»

3

4»

5»

Section 2. The underlying free group 5

n = 1 First Grigorchuk group on 4 generators (see [Gri80], [Lys85]; and [Bar03], Thm. 4.6)

n = 2 First Grigorchuk group on 3 generators (see [Gri80], [Lys85]; and [Bar03], Thm. 4.6)

n = 3 Lamplighter group ([Bar03], Thm. 4.1)

n = 4 Brunner-Sidki-Vieira group (see [BSV99]; and [Bar03], Thm. 4.4)

n =5 Grigorchuk supergroup (see [BG02]; and [Bar03], Thm. 4.6)

n = 6 Fabrykowski-Gupta-3 group (see [FG85]; cf. [Bar03], Thm. 4.7)

n =7 Gupta-Sidki-3 group (see [Sid87]); cf. [Bar03], Thm. 4.9)

n = 8 an index-3 subgroup of the Gupta-Sidki group

n = 9 Basilica group (see [GZ02], [BV05])

EngelGroup(n, c) F
returns an L-presentation for an Engel group on n generators that satisfy the c-th Engel identity.
FreeNilpotentGroup(n, ¢) F
returns an L-presentation for a free nilpotent group of class ¢ on n generators.

GeneralizedFabrykowskiGuptaLpGroup(n)

returns an L-presentation for the n-th generalized Fabrykowski-Gupta group. For n=3 it coincides with the
Fabrykowski-Gupta group above.

2.2 The underlying free group

An L-presented group is defined as an image of its underlying free group. Note that these are two different
GAP objects, but the elements of the L-presented group are represented by words in the underlying free

group.
FreeGroup0fLpGroup(LpGroup) A
returns the underlying free group of the L-presented group LpGroup.

FreeGenerators0fLpGroup(LpGroup) A
returns the generators of the free group underlying the L-presented group LpGroup.

Generators0fGroup(LpGroup) O

returns the generators of the L-presented group LpGroup. These are the images of the generators of the
underlying free group under the natural homomorphism.

UnderlyingElement (elm) Q)

returns the preimage of an L-presented group element elm in the underlying free group. More precisely, each
element of an L-presented group is represented by an element in the free group. This method returns the
corresponding element in the free group.

Element0fLpGroup(fam, elm) 0]

returns the element in the L-presented group represented by the word elm on the generators of the underlying
free group if fam is the family of L-presented group elements.

1»

2»

3>

1»

2»

6 Chapter 2. Introduction to L-presented groups

gap> F:=FreeGroup(2);;

gap> G:=LPresentedGroup(F, [F.172], [IdentityMapping(F)], [F.2]);;
gap> FreeGroup0fLpGroup(G)=F;

true

gap> GeneratorsOfGroup(G);

[f1, f2]

gap> FreeGenerators0fLpGroup(G) ;

[£f1, f2]

gap> last=last2;

false

gap> UnderlyingElement(G.1);

f1

gap> last in F;

true

gap> ElementOfLpGroup(ElementsFamily(FamilyObj(G)), last2) in G;
true

2.3 Accessing an L-presentation
The fixed relators, the iterated relators, and the endomorphisms of an L-presented group can be accessed
by the following functions.

FixedRelatorsOfLpGroup(LpGroup) A

returns the fixed relators of the L-presented group LpGroup as words in the underlying free group.

IteratedRelators0fLpGroup(LpGroup) A

returns the iterated relators of the L-presented group LpGroup as words in the underlying free group.

Endomorphisms0fLpGroup(LpGroup) A

returns the endomorphisms of the L-presented group LpGroup as endomorphisms of the underlying free
group.

gap> F:=FreeGroup(2);;

gap> G:=LPresentedGroup(F, [F.1°2], [IdentityMapping(F)], [F.2]);

<L-presented group on the generators [f1, f2 1>

gap> FixedRelatorsOfLpGroup(G);

[£f172]

gap> IteratedRelatorsOfLpGroup(G);

[£f2]

gap> Endomorphisms0fLpGroup(G) ;

[IdentityMapping(<free group on the generators [f1, f2 1>)]

2.4 Properties and attributes of L-presented groups

To determine the method for the nilpotent quotient algorithm, L-presented groups have the following prop-
erties:

IsAscendinglPresentation(LpGroup) P

tests whether the L-presentation of LpGroup is ascending; that is if the set of fixed relators is empty.

IsInvariantLPresentation(LpGroup) P

tests whether the L-presentation of LpGroup is invariant. Note that no method is implemented.

3>

1»

2»

3>

Section 5. Methods for L-presented groups 7

UnderlyingInvariantLPresentation(LpGroup) A

returns an underlying invariant L-presentation for the L-presented group LpGroup.

An underlying invariant L-presentation for the L-presentation (S | @ | ® | R) is an invariant L-
presentation (S | @' | ® | R) with @' C @. Note that such invariant L-presentation always exists since
Q' = 0 yields an ascending and hence invariant L-presentation.

The underlying invariant L-presentation is used for computation purposes in the nilpotent quotient algo-
rithm. For this, it is useful to have such a presentation with @’ as large as possible. The method implemented
in UnderlyingInvariantLPresentation returns the ascending L-presentation in general.

Embedding0fAscendingSubgroup(LpGroup) A

returns an embedding of an ascending subgroup of the L-presented group LpGroup. This attribute is set for
ascending L-presentations only. In this case it is the identity map of LpGroup.

2.5 Methods for L-presented groups
MappedWord(=, gens, imgs) O

returns the new group element that is obtained by replacing each occurrence of a generator gen in the list of
generators gens by the corresponding group element img in the list of group elements imgs. The lists gens
and 4mgs must of course have the same length.

EpimorphismFromFpGroup(LpGroup, n) Q)

returns an epimorphism from a finitely presented group on LpGroup. The finitely presented group is achieved
from LpGroup by applying only words of length at most n of the monoid generated by the endomorphisms
of LpGroup.

SplitExtensionByAutomorphismsLpGroup(LpGroup, H, auts) O

returns the split extension of the LpGroup by an L-presented or a finitely presented group H where the
action of each generator of H on LpGroup is described by an automorphism in auts. Thus for each generator
of H an automorphisms in auts must exist.

gap> F:=FreeGroup("a");

<free group on the generators [a]>

gap> H:=F/[F.1"3];

<fp group on the generators [a]>

gap> U:=ExamplesOfLPresentations(8);

<L-presented group on the generators [t, u, v]>

gap> aut:=GroupHomomorphismByImagesNC(U,U, [U.1,U0.2,0.3],[U.2,U.3,U0.1]);
[t,u, v] >[u, v, t]

gap> SplitExtensionByAutomorphismsLpGroup(U,H, [aut]);

<L-presented group on the generators [t, u, v, a]>

1»

2»

Nilpotent Quotients
of L-presented groups

Our method to determine polycyclic presentations for nilpotent quotients of L-presented groups generalizes
Nickel’s nilpotent quotient algorithm for finitely presented groups. We refer to the documentation of the
NQ-package for further details on the algorithm.

3.1 New methods for L-presented groups
NilpotentQuotientLpGroup(LpGroupl[, ¢l) 0]

returns a polycyclic presentation for LpGroup/v.+1(LpGroup) if ¢ is specified. If ¢ is not given, this method
attempts to compute the largest nilpotent quotient of LpGroup and will terminate only if LpGroup has a
largest nilpotent quotient.

The following example computes the class-5-quotient of the Grigorchuk group on four generators.

gap> G:=ExamplesOfLPresentations(1);;

gap> H:=NilpotentQuotientLpGroup(G,5);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> lcs:=LowerCentralSeries(H);

[Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2],
Pcp-group with orders [2, 2, 2, 2, 2, 2, 2],
Pcp-group with orders [2, 2, 2, 2, 2], Pcp-group with orders [2, 2, 2],
Pcp-group with orders [2, 2], Pcp-group with orders []]

gap> List([1..5],x->lcs[x]/1lcs[x+1]);

[Pcp-group with orders [2, 2, 2], Pcp-group with orders [2, 2],
Pcp-group with orders [2, 2], Pcp-group with orders [2],
Pcp-group with orders [2, 2]]

LargestNilpotentQuotient (LpGroup) A

returns the largest nilpotent quotient of the L-presented group LpGroup if such quotient exists. It uses
the NilpotentQuotientLpGroup-method of the NQL-package. If LpGroup does not have a largest nilpotent
quotient, this method will not terminate.

NgEpimorphismNilpotentQuotientLpGroup(LpGroupl, cl) Q)
NgEpimorphismNilpotentQuotientLpGroup(LpGroup[, PcpGroupl) 0]

In the first case, this method returns an epimorphism from the L-presented group LpGroup into its class-c¢
quotient LpGroup/v.+1(LpGroup) if ¢ is specified. If ¢ is not given, this method attempts to compute an
epimorphism into the largest nilpotent quotient of LpGroup. If LpGroup does not have a largest nilpotent
quotient this method will not terminate.

If a pcp-group PepGroup is given as additional parameter, then PcpGroup has to be a nilpotent quotient of
LpGroup. The method computes an epimorphism from the L-presented group LpGroup into PcpGroup.

The following example computes an epimorphism from the Grigorchuk group on four generators into its
class-5-quotient.

Section 2. A short description of the algorithm 9

gap> G:=ExamplesOfLPresentations(1);

<L-presented group on the generators [a, b, c, 4 1>

gap> epi:=NgEpimorphismNilpotentQuotientLpGroup(G,5) ;

[a, b, c, d] > [g1, g2xg3, g2, g3 1

gap> H:=Image(epi);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> NilpotencyClass0fGroup (H) ;

5

gap> H:=NilpotentQuotientLpGroup(G,7);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> NilpotentQuotientLpGroup(G,10);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2,2,2,2,2]
gap> NgEpimorphismNilpotentQuotientLpGroup(G,H)
[a, b, c, d1 > [g1, g2%g3, g2, g3]

gap> Image(last);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

4» AbelianInvariants(LpGroup) 0

returns the Abelian invariants of the Abelian quotient of the L-presented group LpGroup. It uses functions
of the NilpotentQuotientLpGroup method (see 3.1.1).

gap> G:=ExamplesOfLPresentations(1);;
gap> AbelianInvariants(G);
[2,2, 2]

3.2 A short description of the algorithm

In the following we give a short description of the nilpotent quotient algorithm for non-invariant L-presen-
tations.

Let (S| Q| @
presentation (S |
by G.

The first step in computing a polycyclic presentation for G /7.(G) of the L-presented group G is to determine
a polycyclic presentation for G/v.(G).

| R) be an L-presentation for the L-presented group G with underlying invariant L-
Q' | ® | R). Denote the L-presented group given by the underlying invariant L-presentation

This will be done by induction on c¢. The induction step is a generalization of Nickel’s nilpotent quotient
algorithm. It returns a nilpotent presentation H for G /~v.(G) and an epimorphism 6 : G — H.

Then a nilpotent presentation for G/7.(G) can be determined using the nilpotent presentation H and an
extension ¢’ : Fg — H of the epimorphism . The nilpotent quotient G/v.(G) is isomorphic to the factor
H/{Q%) of H and the Polycyclic-package can be used to compute a polycyclic presentation for G /7.(G).

The efficiency of this general approach depends on the underlying invariant L-presentation (S | @' | @ |
R). The set of fixed relators @’ should be as large as possible. Otherwise, the nilpotent quotient H gets
unnecessarily large and slows down the induction step for the underlying invariant L-presentation.

The Grigorchuk group on four generators has the L-presentation
<a7 G, b7 d ‘ G’Za b2a C27 d2a bed | o | [d7 da]a [d7 dacacaD.
This L-presentation is invariant and hence the underlying invariant L-presentation is the same as above.

There are two ways to compute nilpotent quotients of these groups: First, one can manually set the property
IsInvariantLPresentation for this group.

10 Chapter 3. Nilpotent Quotients of L-presented groups

gap> F:=FreeGroup("a","b","c","d");

<free group on the generators [a, b, c, 4 1>

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [a, b, ¢, d]
gap> rels:=[a"2,b"2,c"2,d"2,b*d*c];;

gap> endos:=[GroupHomomorphismByImagesNC(F,F, [a,b,c,d], [c"a,d,b,c])];;
gap> itrels:=[Comm(d,d"a),Comm(d,d” (a*c*a*xc*a))];;
gap> G:=LPresentedGroup(F,rels,endos,itrels);
<L-presented group on the generators [a, b, c, d]I>
gap> List(rels,x->x"endos[1]);

[a~=1%c"2*a, d°2, b~2, c~2, dxc*b]

gap> SetIsInvariantLPresentation(G,true);

Second, one can define the underlying invariant L-presentation as the same L-presentation as the group
itself.

gap> F:=FreeGroup("a","b","c","d");

<free group on the generators [a, b, ¢, d 1>

gap> AssignGeneratorVariables(F);

#I Assigned the global variables [a, b, ¢, d]
gap> rels:=[a"2,b"2,c"2,d"2,b*d*c];;

gap> endos:=[GroupHomomorphismByImagesNC(F,F, [a,b,c,d], [c"a,d,b,c])];;
gap> itrels:=[Comm(d,d"a),Comm(d,d” (a*xc*a*xcxa))];;
gap> G:=LPresentedGroup(F,rels,endos,itrels);
<L-presented group on the generators [a, b, c, d 1>
gap> U:=LPresentedGroup(F,rels,endos,itrels);;

gap> SetUnderlyingInvariantLPresentation(G,U);

For saving memory the first method should be preferred. In general the L-presentation is not invariant and
thus the second method is the method of choice.

1»

2»

The underlying
functions

4.1 Nilpotent Quotient Systems for invariant L-presentations

For an L-presented group G which is given by an invariant L-presentation a polycyclic presentation for
G/7v.+1(@G) is computed by determine a weighted nilpotent quotient system for G/G’ and extending it
inductively to a quotient system for G/v.4+1(G).

A quotient system in the NQL package is a record containing the following entries:

Lpres
the (invariant) L-presentation of the quotient system.

Pccol
FromTheLeftCollector of the nilpotent quotient represented by this quotient system.

Imgs
images of the generators of the L-presented group under the epimorphism onto the nilpotent quotient
Pccol. For each generator of the L-presented group Lpres there is an integer or a generator exponent
list. If the image is an integer int the image is a definition of the int-th generator of the nilpotent
presentation Pccol.

Epimorphism
epimorphism from the L-presented group Lpres onto its nilpotent quotient Pccol with the images
of the generators given by Imgs.

Weights
weight of each generator of the nilpotent presentation Pccol.

Definitions

the definition of each generator of Pccol. Each generator in the quotient system has a definition as
an image or as a commutator of the form [a;, ;] where a; and a; are generators of a certain weight.
If the i-th entry is an integer, the i-th generator of Pccol has a definition as an image. Otherwise
the i-th entry is a 2-tuple [k,] and the i-th generator has a definition as commutator [ag, a;].

A quotient system of an L-presented group given by an invariant L-presentation can be computed by the
following functions. Both are implemented in the NilpotentQuotientLpGroup- and NqEpimorphismNilpo-
tentQuotientLpGroup method.

InitQuotientSystem(LpGroup)

returns a weighted nilpotent quotient system for the largest Abelian quotient of the L-presented group
LpGroup.

ExtendQuotientSystem(QS)

extends the weighted nilpotent quotient system @S of an L-presented group given by an invariant L-
presentation.

12 Chapter 4. The underlying functions

gap> G:=ExamplesOfLPresentations(1);
<L-presented group on the generators [a, b, c, 4 1>
gap> Q:=InitQuotientSystem(G) ;
rec(Lpres := <L-presented group on the generators [a, b, ¢, d 1>,
Pccol := <<from the left collector with 3 generators>>,
Imgs := [1, [2,1, 3, 11, 2, 31, Epimorphism := [a, b, ¢, d] —>
[g1, g2%g3, g2, g3 1, Weights := [1, 1, 1], Definitions := [1, 3, 4 1]

)

gap> ExtendQuotientSystem(Q) ;

rec(Lpres := <L-presented group on the generators [a, b, c, d 1>,
Pccol := <<from the left collector with 5 generators>>,

Imgs := [1, [2,1, 3,11, 2,31,

Definitions := [1, 3, 4, [2, 11, [3, 1]

Weights := [1, 1, 1, 2, 2], Epimorphism :=
[g1, g2%g3, g2, g3 1)

1,
[a,b’ C,d]_>

4.2 Attributes of L-presented groups

To avoid repeated extensions of quotient systems the largest known quotient system is stored as an attribute
of the invariant L-presentation. For non-invariant L-presentations the known nilpotent quotients and its
epimorphisms are stored as an attribute.

1» NilpotentQuotientSystem(LpGroup) A

returns the largest known nilpotent quotient system of an L-presented group that is given by an invariant
L-presentation.

gap> G:=ExamplesOfLPresentations(1);;

gap> NilpotentQuotientLpGroup(G,5);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> NilpotentQuotientSystem(G) ;

rec(Lpres := <L-presented group on the generators [a, b, c, d 1>,
Pccol := <<from the left collector with 10 generators>>,
Imgs := [1, [2,1, 3,11, 2,31,
Definitions := [1, 3, 4, [2,11, [3, 11, [4,2]1,0[4,31,1I

[8, 21, [8,3]11, Weights :=[1, 1,1, 2, 2,3, 3, 4,5, 5

Epimorphism := [a, b, ¢, d 1 > [gl, g2*g3, g2, g3 1)

gap> NilpotencyClassOfGroup (PcpGroupByCollectorNC(last.Pccol));

5

2» NilpotentQuotients(LpGroup) A
returns all known nilpotent quotients of the non-invariant L-presentation LpGroup.

gap> G:=ExamplesOfLPresentations(3);;

gap> HasIsInvariantLPresentation(G);

false

gap> NilpotentQuotientLpGroup(G,3);

Pcp-group with orders [2, 0, 2, 2]

gap> NilpotentQuotients(G);

[rec(Quotient := Pcp-group with orders [2, 0],
Epimorphism := [a, b, t] -> [g1, g1, g2 1),

rec(Quotient := Pcp-group with orders [2, 0, 2 1],

Epimorphism := [a, b, t] -> [g1, g1, g2 1),

Section 3. The Info-Class InfoNQL 13

rec(Quotient := Pcp-group with orders [2, 0, 2, 2 1],
Epimorphism := [a, b, t 1] -> [g1, g1, g2])]
gap> NilpotentQuotientSystem(UnderlyingInvariantLPresentation(G));
rec(Lpres := <L-presented group on the generators [a, b, t 1>,
Pccol := <<from the left collector with 9 generators>>, Imgs := [1, 2, 3],
Definitions := [1, 2, 3, [3,11, [3,21, [4,11,[5,21, [4, 31,
[5, 311, Weights := [1, 1, 1, 2, 2, 3, 3, 3, 31,
Epimorphism := [a, b, t] -> [g1, g2, g3 1)

4.3 The Info-Class InfoNQL

To get some information about the progress of the algorithm, one can use the info class InfoNQL.

1» InfoNQL

is the info class of the NQL-package. It gives further information on the progress of the nilpotent quotient
algorithm for L-presented groups.

gap> SetInfolevel (InfoNQL,1);;

gap> G:=ExamplesOfLPresentations(1);

#I The first Grigorchuk group on 4 generators
<L-presented group on the generators [a, b, c, d 1>
gap> NilpotentQuotientLpGroup(G,5);

#I Class 1: 3 generators with relative orders: [2, 2, 2]
#I Class 2: 2 generators with relative orders: [2, 2]

#I Class 3: 2 generators with relative orders: [2, 2]

#I Class 4: 1 generators with relative orders: [2]

#I Class 5: 2 generators with relative orders: [2, 2]
Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]

gap> NilpotentQuotientLpGroup(G,10);

#I Class 6: 2 generators with relative orders: [2, 2]

#I Class 7: 1 generators with relative orders: [2]

#I Class 8: 1 generators with relative orders: [2]

#I Class 9: 2 generators with relative orders: [2, 2]

#I Class 10: 2 generators with relative orders: [2, 2]
Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,2, 2,2,2,2,2,2]

2» InfoNQL_MAX_GENS

this global variable sets the limit of generators whose relative order will be shown on each step of the
nilpotent quotient algorithm if the 'InfoLevel’ of InfoNQL is positive.

[Bar03]
[BG02]

[BSV99]
[BV05]
[FG85)
[Gri80)]
[GZ02]
[Lys85]
[Nic96]

[Nic03]
[Sid87]

Bibliography

Laurent Bartholdi. Endomorphic presentations of branch groups. J. Algebra, 268:419-443, 2003.

Laurent Bartholdi and Rostislav I. Grigorchuk. On parabolic subgroups and Hecke algebras of some
fractal groups. Serdica Math. J., 28(1):47-90, 2002.

A. M. Brunner, Said Sidki, and Ana Cristina Vieira. A just-nonsolvable torsion-free group defined
on the binary tree. 211(1):99-114, 1999.

Laurent Bartholdi and Bélint Virdg. Amenability via random walks. Duke Math. J., 130(1):39-56,
2005.

Jacek Fabrykowski and Narain Gupta. On groups with sub-exponential growth functions. J. Indian
Math. Soc. (N.S.), 49(3-4):249-256 (1987), 1985.

R.I. Grigorchuk. Burnside’s problem on periodic groups. Functional Analysis and its Applications,
14:41-43, 1980.

Rostislav Grigorchuk and Andrzej Zuk. On a torsion-free weakly branch group defined by a three
state automaton. Internat. J. Algebra Comput., 12(1-2):223-246, 2002.

I.G. Lysenok. A system of defining relations for a Grigorchuk group. Mathematical Notes, 38:784—
792, 1985.

Werner Nickel. Computing nilpotent quotients of finitely presented groups. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 25:175-191, 1996.

W. Nickel. NQ, 2003. A GAP4 package, see [GAP4].

Said Sidki. On a 2-generated infinite 3-group: The presentation problem. Journal of Algebra, 110:13—
23, 1987.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A IsInvariantLPresentation, 6
AbelianInvariants, 9 IteratedRelatorsOfLpGroup, 6
Accessing an L-presentation, 6 L

A short description of the algorithm, 9

. L Nil i
Attributes of L-presented groups, 12 argestNilpotentQuotient, 8

LPresentedGroup, 4

¢ M

Creating an L-presented group, 4 Mappediord, 7

E Methods for L-presented groups, 7
Element0fLpGroup, 5 N
Embedding0fAscendingSubgroup, 7
Endomorphisms0fLpGroup, 6
EngelGroup, 5
EpimorphismFromFpGroup, 7
ExamplesOfLPresentations, 4
ExtendQuotientSystem, 11

New methods for L-presented groups, 8

NilpotentQuotientLpGroup, 8

NilpotentQuotients, 12

NilpotentQuotientSystem, 12

Nilpotent Quotient Systems for invariant L-
presentations, 171

F NgEpimorphismNilpotentQuotientLpGroup, 8

FixedRelators0fLpGroup, 6 P

FreeGenerators0fLpGroup, 5

FreeGroupOfLpGroup, 5 Properties and attributes of L-presented groups, 6

FreeNilpotentGroup, 5 S

G SplitExtensionByAutomorphismsLpGroup, 7
GeneralizedFabrykowskiGuptalLpGroup, 5 T

Generators0fGroup, 5 The Info-Class InfoNQL, 13

| The underlying free group, 5

InfoNQL, 13 U

InfoNQL_MAX_GENS, 13 UnderlyingElement, 5
InitQuotientSystem, 11 UnderlyingInvariantLPresentation, 6

IsAscendinglPresentation, 6

	Contents
	Preface
	Introduction to L-presented groups
	Creating an L-presented group
	The underlying free group
	Accessing an L-presentation
	Properties and attributes of L-presented groups
	Methods for L-presented groups

	Nilpotent Quotients of L-presented groups
	New methods for L-presented groups
	A short description of the algorithm

	The underlying functions
	Nilpotent Quotient Systems for invariant L-presentations
	Attributes of L-presented groups
	The Info-Class InfoNQL

	Bibliography
	Index
	A
	C
	E
	F
	G
	I
	L
	M
	N
	P
	S
	T
	U

