Polycyclic

Computation with polycyclic groups

A GAP 4 package

by

Bettina Eick
Institut fiir Geometrie
TU Braunschweig

and

Werner Nickel
Fachbereich Mathematik
TU Darmstadt

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

6.1
6.2

7.1
7.2
7.3

Preface

Introduction to polycyclic presentations
Collectors

Constructing a Collector

Accessing Parts of a Collector

Special Features

Pcp-groups - polycyclically presented groups
Pcp-elements — elements of a pc-presented group
Methods for pcp-elements

Pcp-groups - groups of pcp-elements

Basic methods and functions for pcp-groups
Elementary methods for pcp-groups

Elementary properties of pcp-groups

Subgroups of pcp-groups

Polycyclic presentation sequences for subfactors
Factor groups of pcp-groups

Homomorphisms for pcp-groups

Changing the defining pc-presentation

Printing a pc-presentation

Converting to and from a presentation
Libraries and examples of pcp-groups
Libraries of various types of polycyclic groups
Some asorted example groups

Higher level methods for pcp-groups
Subgroup series in pcp-groups

Orbit stabilizer methods for pcp-groups

Centralizers, Normalizers and Intersections

Contents

N 9 o wm

10
10
12
12
12
14
15
15
16
16
17
19
19
20
21
21
22
22
23
24
24
26
27

Contents

7.4
7.5
7.6
7.7
7.8
7.9

8
8.1
8.2
8.3
8.4
8.5

9
9.1
9.2

Finite subgroups

Subgroups of finite index and maximal subgroups

Further attributes for pcp-groups based on the Fitting subgroup

Functions for nilpotent groups

Random methods for pcp-groups

Non-abelian tensor product and Schur extensions

Cohomology for pcp-groups
Cohomology records

Cohomology groups

Extended 1-cohomology

Extensions and Complements
Constructing pcp groups as extensions
Matrix Representations
Unitriangular matrix groups

Upper unitriangular matrix groups
Bibliography

Index

28
29
30
30
31
32
36
36
37
38
39
40
41
41
41
43
44

Preface

A group G is called polycyclic if there exists a subnormal series in G with cyclic factors. Every polycyclic
group is soluble and every supersoluble group is polycyclic. The class of polycyclic groups is closed with
respect to forming subgroups, factor groups and extensions. Polycyclic groups can also be characterised as
those soluble groups in which each subgroup is finitely generated.

K. A. Hirsch has initiated the investigation of polycyclic groups in 1938, see [Hir38a], [Hir38b], [Hir46],
[Hir52], [Hir54], and their central position in infinite group theory has been recognised since.

A well-known result of Hirsch asserts that each polycyclic group is finitely presented. In fact, a polycyclic
group has a presentation which exhibits its polycyclic structure: a pc-presentation as defined in the Chapter
2. Pc-presentations allow efficient computations with the groups they define. In particular, the word problem
is efficiently solvable in a group given by a pc-presentation. Further, subgroups and factor groups of groups
given by a pc-presentation can be handled effectively.

The GAP 4 package polycyclic is designed for computations with polycyclic groups which are given by a
pc-presentation. The package contains methods to solve the word problem in such groups and to handle
subgroups and factor groups of polycyclic groups. Based on these basic algorithms we present a collection
of methods to construct polycyclic groups and to investigate their structure.

In [BCRS91] and [Seg90] the theory of problems which are decidable in polycyclic-by-finite groups has been
started. As a result of these investigation we know that a large number of group theoretic problems are
decidable by algorithms in polycyclic groups. However, practical algorithms which are suitable for computer
implementations have not been obtained by this study. We have developed a new set of practical methods for
groups given by pe-presentations, see for example [Eic00], and this package is a collection of implementations
for these and other methods.

We refer to [Rob82], page 147ff, and [Seg83] for background on polycyclic groups. Further, in [Sim94] a
variation of the basic methods for groups with pc-presentation is introduced. Finally, we note that the main
GAP library contains many practical algorithms to compute with finite polycyclic groups. This is described
in the Section on polycyclic groups in the reference manual.

Introduction to
polycyclic presentations

Let G be a polycyclic group and let G = Ci1>Cy...C, > C,4+1 = 1 be a polycyclic series, that is,
a subnormal series of G with non-trivial cyclic factors. For 1 < ¢ < n we choose g; € C; such that
C; = (gi, Ci1+1). Then the sequence (g1,...,g,) is called a polycyclic generating sequence of G. Let I
be the set of those ¢ € {1,...,n} with r; := [C; : Ci41] finite. Each element of G can be written uniquely as
gt gl with e, € Zfor 1 <i<nand0<e < foriel.

Each polycyclic generating sequence of G gives rise to a power-conjugate (pc-) presentation for G with
the conjugate relations

gjg7 — g7€_i(_l17]71+1) .. 95(2,7,n) fOr 1 S i <] S n,
-1 P .
g =gl gl for 1< i< j <,
and the power relations N
g =gy gt for i € 1L

Vice versa, we say that a group G is defined by a pc-presentation if G is given by a presentation of the
form above on generators g¢i,..., g,. These generators are the defining generators of G. Here, [is the
set of 1 < ¢ < n such that g; has a power relation. The positive integer r; for ¢ € I is called the relative
order of g;. If G is given by a pc-presentation, then G is polycyclic. The subgroups C; = (g;, ..., g,) form a
subnormal series G = Cy > ... > Cj41 = 1 with cyclic factors and we have that g;" € C;4;. However, some
of the factors of this series may be smaller than r; for ¢ € I or finite if ¢ & I-

If G is defined by a pc-presentation, then each element of G can be described by a word of the form g;* - - - g&
in the defining generators with ¢; € Z for 1 < i < m and 0 < ¢; < r; for ¢ € I. Such a word is said to be in
collected form. In general, an element of the group can be represented by more than one collected word. If
the pc-presentation has the property that each element of G has precisely one word in collected form, then
the presentation is called confluent or consistent. If that is the case, the generators with a power relation
correspond precisely to the finite factors in the polycyclic series and r; is the order of C;/Cjt1.

The GAP 4 package polycyclic is designed for computations with polycyclic groups which are given by
consistent pc-presentations. In particular, all the functions described below assume that we compute with
a group defined by a consistent pc-presentation. See Section 3 for a routine that checks the consistency of a
pc-presentation.

A pc-presentation can be interpreted as a rewriting system in the following way. One needs need to
add a new generator G; for each generator g; together with the relations ¢;G; = 1 and G;g; = 1. Any
occurrence in a relation of an inverse generator g[l is replaced by G;. In this way one obtains a monoid
presentation for the group G. With respect to a particular ordering on the set of monoid words in the
generators ¢i,... g, Gi,... G, the wreath product ordering, this monoid presentation is a rewriting
system. If the pc-presentation is consistent, the rewriting system is confluent.

In this package we do not address this aspect of pc-presentations because it is of little relevance for the
algorithms implemented here. For the definition of rewriting systems and confluence in this context as well
as further details on the connections between pc-presentations and rewriting systems we recommend the
book [Sim94].

1»

Collectors

Let G be a group defined by a pc-presentation as described in the Chapter 2.

The process for computing the collected form for an arbitrary word in the generators of G is called collection.
The basic idea in collection is the following. Given a word in the defining generators, one scans the word
for occurrences of adjacent generators (or their inverses) in the wrong order or occurrences of subwords g;”
with ¢ € I and e; not in the range 0...7;_;. In the first case, the appropriate conjugacy relation is used to
move the generator with the smaller index to the left. In the second case, one uses the appropriate power
relation to move the exponent of g; into the required range. These steps are repeated until a collected word
is obtained.

There exist a number of different strategies for collecting a given word to collected form. The strategies
implemented in this package are collection from the left as described by [LGS90] and [Sim94] and
combinatorial collection from the left by [VL9I0]. In addition, the package provides access to Hall
polynomials computed by Deep Thought for the multiplication in a nilpotent group, see [Mer97] and [L.GS98].

The first step in defining a pc-presented group is setting up a data structure that knows the pc-presentation
and has routines that perform the collection algorithm with words in the generators of the presentation.
Such a data structure is called a collector.

To describe the right hand sides of the relations in a pc-presentation we use generator exponent lists;

the word g;'g;> ... g;" is represented by the generator exponent list [i1, €1, 42, €2, . . ., ik, €x]-

3.1 Constructing a Collector

A collector for a group given by a pc-presentation starts by setting up an empty data structure for the
collector. Then the relative orders, the power relations and the conjugate relations are added into the data
structure. The construction is finalised by calling a routine that completes the data structure for the collector.
The following functions provide the necessary tools for setting up a collector.

FromTheLeftCollector(mn)

returns an empty data structure for a collector with n generators. No generator has a relative order, no
right hand sides of power and conjugate relations are defined. Two generators for which no right hand side
of a conjugate relation is defined commute. Therefore, the collector returned by this function can be used
to define a free abelian group of rank n.

gap> ftl := FromTheLeftCollector(4);

<<from the left collector with 4 generators>>
gap> PcpGroupByCollector(ftl);

Pcp-group with orders [0, 0, 0, 0]

gap> IsAbelian(last);

true

If the relative order of a generators has been defined (see 3.1.2), but the right hand side of the corresponding
power relation has not, then the order and the relative order of the generator are the same.

2»
>

5»

6>

8 Chapter 3. Collectors

SetRelativeOrder(coll, i, ro)
SetRelativeOrderNC(coll, i, 70)

set the relative order in collector coll for generator i to ro. The parameter coll is a collector as returned by
the function 3.1.1, 7 is a generator number and ro is a non-negative integer. The generator number i is an
integer in the range 1,...,n where n is the number of generators of the collector.

If 7o is 0, then the generator with number 7 has infinite order and no power relation can be specified. As a
side effect in this case, a previously defined power relation is deleted.

If ro is the relative order of a generator with number 7 and no power relation is set for that generator, then
ro is the order of that generator.

The NC version of the function bypasses checks on the range of <.

gap> ftl := FromTheLeftCollector(4);

<<from the left collector with 4 generators>>

gap> for i in [1..4] do SetRelativeOrder(ftl, i, 3); od;
gap> G := PcpGroupByCollector(ftl);

Pcp-group with orders [3, 3, 3, 3]

gap> IsElementaryAbelian(G);

true

SetPower(coll, i, rThs)
SetPowerNC(coll, i, rhs)

set the right hand side of the power relation for generator i in collector coll to (a copy of) rhs. An attempt
to set the right hand side for a generator without a relative order results in an error.
Right hand sides are by default assumed to be trivial.

The parameter coll is a collector, i is a generator number and rhs is a generators exponent list or an element
from a free group.

The no-check (NC) version of the function bypasses checks on the range of i and stores rhs (instead of a
copy) in the collector.

SetConjugate(coll, 7, ¢, Ths)
SetConjugateNC(coll, j, i, rhs)

set the right hand side of the conjugate relation for the generators j and ¢ with j larger than i. The parameter
coll is a collector, 7 and i are generator numbers and rhs is a generator exponent list or an element from a
free group. Conjugate relations are by default assumed to be trivial.

The generator number 7 can be negative in order to define conjugation by the inverse of a generator.

The no-check (NC) version of the function bypasses checks on the range of ¢ and j and stores rhs (instead
of a copy) in the collector.

SetCommutator(coll, j, i, rhs)

set the right hand side of the conjugate relation for the generators j and ¢ with j larger than i by specifying
the commutator of j and i. The parameter coll is a collector, j and ¢ are generator numbers and rhs is a
generator exponent list or an element from a free group.

The generator number ¢ can be negative in order to define the right hand side of a commutator relation
with the second generator being the inverse of a generator.
UpdatePolycyclicCollector(coll)

completes the data structures of a collector. This is usually the last step in setting up a collector. Among
the steps performed is the completion of the conjugate relations. For each non-trivial conjugate relation of
a generator, the corresponding conjugate relation of the inverse generator is calculated.

s

Section 1. Constructing a Collector 9

Note that UpdatePolycyclicCollector is automatically called by the function PcpGroupByCollector (see
4.3.1).

IsConfluent(coll)

tests if the collector coll is confluent. The function returns true or false accordingly.
Compare Chapter 2 for a definition of confluence.
Note that confluence is automatically checked by the function PcpGroupByCollector (see 4.3.1).

The following example defines a collector for a semidirect product of the cyclic group of order 3 with the
free abelian group of rank 2. The action of the cyclic group on the free abelian group is given by the matrix

0 Ly
-1 -1
This leads to the following polycyclic presentation:

(91,92, 93197, 98" = 93, 95" = 95 95 ", 952 = g3)-

gap> ftl := FromTheLeftCollector(3);

<<from the left collector with 3 generators>>
gap> SetRelativeOrder(ftl, 1, 3);

gap> SetConjugate(ftl, 2, 1, [3,1]);

gap> SetConjugate(ftl, 3, 1, [2,-1,3,-1]);
gap> UpdatePolycyclicCollector(ftl);

gap> IsConfluent(ftl);

true

The action of the inverse of g; on (gs, g2) is given by the matrix

-1 -1\
1 0
The corresponding conjugate relations are automatically computed by UpdatePolycyclicCollector. It is

also possible to specify the conjugation by inverse generators. Note that you need to run UpdatePolycyclic—
Collector after one of the set functions has been used.

gap> SetConjugate(ftl, 2, -1, [2,-1,3,-1]);

gap> SetConjugate(ftl, 3, -1, [2,1]);

gap> IsConfluent(ftl);

Error, Collector is out of date called from
CollectWordOrFail(coll, evi, [j, 1, i, 1]); called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk>

gap> UpdatePolycyclicCollector(ftl);

gap> IsConfluent(ftl);

true

1»

2»

4»

6>

1»

10 Chapter 3. Collectors

3.2 Accessing Parts of a Collector

RelativeOrders(coll)
returns (a copy of) the list of relative order stored in the collector coll.

GetPower (coll, @)
GetPowerNC(coll, 7)

returns a copy of the generator exponent list stored for the right hand side of the power relation of the
generator ¢ in the collector coll.

The no-check (NC) version of the function bypasses checks on the range of ¢ and does not create a copy
before returning the right hand side of the power relation.

GetConjugate(coll, j, i)
GetConjugateNC(coll, j, %)

returns a copy of the right hand side of the conjugate relation stored for the generators j and i in the
collector coll as generator exponent list. The generator j must be larger than 1.

The no-check (NC) version of the function bypasses checks on the range of i and j and does not create a
copy before returning the right hand side of the power relation.

NumberOfGenerators(coll)
returns the number of generators of the collector coll.
0ObjByExponents(coll, expvec)

returns a generator exponent list for the exponent vector expvec. This is the inverse operation to Expo-
nentsByObj. See ExponentsBy0Obj (3.2.6) for an example.

ExponentsBy0Obj(coll, genexp)

returns an exponent vector for the generator exponent list genexp. This is the inverse operation to ObjBy-
Exponents.

gap> G := UnitriangularPcpGroup(4, 0);
Pcp-group with orders [0, 0, 0, 0, 0, 0]
gap> coll := Collector (G);

<<from the left collector with 6 generators>>
gap> ObjByExponents(coll, [6,-5,4,3,-2,1]);
(1,6, 2, -5, 3, 4, 4, 3, 5, -2, 6, 1]
gap> ExponentsByObj(coll, last);

[6, -5, 4, 3, -2, 1]

3.3 Special Features

In this section we descibe collectors for nilpotent groups which make use of the special structure of the given
pc-presentation.

IsWeightedCollector(coll)

checks if there is a function w from the generators of the collector coll into the positive integers such that
w(g) > w(z) + w(y) for all generators z, y and all generators ¢ in (the normal of) [z, y]. If such a function
does not exist, false is returned. If such a function exists, it is computed and stored in the collector. In
addition, the default collection strategy for this collector is set to combinatorial collection.

2»

4»

5»

6>

7>

8»

9g»

Section 3. Special Features 11

AddHallPolynomials(coll)

is applicable to a collector which passes IsWeightedCollector and computes the Hall multiplication poly-
nomials for the presentation stored in coll. The default strategy for this collector is set to evaluating those
polynomial when multiplying two elements.

String(coll)
converts a collector coll into a string.
FTLCollectorPrintTo(file, name, coll)

stores a collector coll in the file file such that the file can be read back using the function 'Read’ into GAP
and would then be stored in the variable name.

FTLCollectorAppendTo(file, name, coll)

appends a collector coll in the file file such that the file can be read back into GAP and would then be stored
in the variable name.

UseLibraryCollector

this property can be set to true for a collector to force a simple from-the-left collection strategy implemented
in the GAP language to be used. Its main purpose is to help debug the collection routines.

USE_LIBRARY_COLLECTOR

this global variable can be set to true to force all collectors to use a simple from-the-left collection strategy
implemented in the GAP language to be used. Its main purpose is to help debug the collection routines.

DEBUG_COMBINATORIAL_COLLECTOR

this global variable can be set to true to force the comparison of results from the combinatorial collector
with the result of an identical collection performed by a simple from-the-left collector. Its main purpose is
to help debug the collection routines.

USE_COMBINATORIAL_COLLECTOR

this global variable can be set to false in order to prevent the combinatorial collector to be used.

3>

Pcp-groups -
polycyclically
presented groups

4.1 Pcp-elements — elements of a pc-presented group

A pcp-element is an element of a group defined by a consistent pc-presentation given by a collector. Suppose
that g1, ..., g, are the defining generators of the collector. Recall that each element ¢ in this group can be
written uniquely as a collected word g;* --- g% with ¢; € Z and 0 < ¢; < r; for ¢ € I. The integer vector
[e1,. .., e,] is called the exponent vector of ¢g. The following functions can be used to define pcp-elements
via their exponent vector or via an arbitrary generator exponent word as introduced in Section 3.

PcpElementByExponentsNC(coll, exp)
PcpElementByExponents(coll, exp)

returns the pcp-element with exponent vector exp. The exponent vector is considered relative to the defining
generators of the pc-presentation.

PcpElementByGenExpListNC(coll, word)
PcpElementByGenExpList (coll, word)

returns the pcp-element with generators exponent list word. This list word consists of a sequence of generator
numbers and their corresponding exponents and is of the form [, e, i2, €5, ..., %, €;]. The generators
exponent list is considered relative to the defining generators of the pc-presentation.

These functions return pcp-elements in the category IsPcpElement. Presently, the only representation im-
plemented for this category is IsPcpElementRep. (This allows us to be a little sloppy right now. The basic
set of operations for IsPcpElement has not been defined yet. This is going to happen in one of the next
version, certainly as soon as the need for different representations arises.)

IsPcpElement (obj)
returns true if the object obj is a pcp-element.
IsPcpElementRep(obj)

returns true if the object obj is represented as a pcp-element.

4.2 Methods for pcp-elements

Now we can describe attributes and functions for pcp-elements. The four basic attributes of a pcp-element,
Collector, Exponents, GenExpList and NameTag are computed at the creation of the pcp-element. All
other attributes are determined at runtime.

Let g be a pcp-element and gy, . . ., g, a polycyclic generating sequence of the underlying pc-presented group.
Let C,..., C, be the polycyclic series defined by g1, ..., gn.

1»

2»

3>

4»

5»

6>

7>

9

10»

11»

Section 2. Methods for pcp-elements 13

The depth of a non-trivial element g of a pcp-group (with respect to the defining generators) is the integer
i such that g € C; \ C;y1. The depth of the trivial element is defined to be n + 1. If ¢ # 1 has depth ¢ and
gi* -+ gt is the collected word for g, then e; is the leading exponent of g.

If g has depth 4, then we call r; = [C; : C;41] the factor order of g. If r < oo, then the smallest positive
integer | with g’ € Cj4 is the called relative order of g. If r = oo, then the relative order of g is defined
to be 0. The index e of (g, Ci+1) in C; is called relative index of g. We have that r = el.

We call a pcp-element normed, if its leading exponent is equal to its relative index. For each pcp-element
g there exists an integer e such that ¢¢ is normed.

Collector(g)
the collector to which the pcp-element g belongs.
Exponents(g)

returns the exponent vector of the pcp-element g with respect to the defining generating set of the underlying
collector.

GenExpList(g)

returns the generators exponent list of the pcp-element g with respect to the defining generating set of the
underlying collector.

NameTag(¢)

the name used for printing the pcp-element ¢. Printing is done by using the name tag and appending the
generator number of g.

Depth(g)
returns the depth of the pcp-element ¢ relative to the defining generators.
LeadingExponent(¢)

returns the leading exponent of pcp-element g relative to the defining generators. If g is the identity element,
the functions returns ’fail’

RelativeOrder(g)

returns the relative order of the pcp-element g with respect to the defining generators.
RelativeIndex(g)

returns the relative index of the pcp-element g with respect to the defining generators.
FactorOrder(¢)

returns the factor order of the pcp-element g with respect to the defining generators.
NormingExponent(¢)

returns a positive integer e such that the pcp-element g raised to the power of e is normed.
NormedPcpElement(g)

returns the normed element corresponding to the pcp-element g.

2»

3>

14 Chapter 4. Pcp-groups - polycyclically presented groups
4.3 Pcp-groups - groups of pcp-elements

A pcp-group is a group consisting of pcp-elements such that all pcp-elements in the group share the same
collector. Thus the group G defined by a polycyclic presentation and all its subgroups are pcp-groups.

PcpGroupByCollector(coll)
PcpGroupByCollectorNC(coll)

returns a pcp-group build from the collector coll.

The function calls UpdatePolycyclicCollector (see 3.1.6) and checks the confluence (see 3.1.7) of the
collector.

The non-check version bypasses these checks.

Group(gens, id)

returns the group generated by the pcp-elements gens with identity id.

Subgroup(G, gens)

returns a subgroup of the pcp-group G generated by the list gens of pcp-elements from G.

gap> ftl := FromTheLeftCollector(2);;

gap> SetRelativeOrder(ftl, 1, 2);

gap> SetConjugate(ftl, 2, 1, [2,-1]);

gap> UpdatePolycyclicCollector(ftl);

gap> G:= PcpGroupByCollectorNC(ftl);
Pcp-group with orders [2, 0]

gap> Subgroup(G, Generators0fGroup(G){[2]});
Pcp-group with orders [O]

1»

3>

4»

5»

7

8»

9»

10»

11»

12»

Basic methods and
functions for pcp-groups

Pcp-groups are groups in the GAP sense and hence all generic GAP methods for groups can be applied for
pep-groups. However, for a number of group theoretic questions GAP does not provide generic methods that
can be applied to pcp-groups. For some of these questions there are functions provided in polycyclic.

5.1 Elementary methods for pcp-groups

In this chapter we describe some important basic functions which are available for pcp-groups. A number of
higherlevel functions are outlined in later sections and chapters.

Let U, V and N are subgroups of a pcp-group.
U=V

decides if U and V are equal as sets.

Size(U)

returns the size of U.

Random(U)

returns a random element of U.

Index(U, V)

returns the index of V in U if V is a subgroup of U. The function does not check if V is a subgroup of U
and if it is not, the result is not meaningful.

g in U

checks if g is an element of U.

Elements(U)

returns a list containing all elements of U if U is finite and it returns the list [fail] otherwise.
ClosureGroup(U, V)

returns the group generated by U and V.

NormalClosure(U, V)

returns the normal closure of V under action of U.

HirschLength(U)

returns the Hirsch length of U.

CommutatorSubgroup(U, V)

returns the group generated by all commutators [u, v] with w in U and v in V.
PRump(U, p)

returns the subgroup U’ U? of U where p is a prime number.
SmallGeneratingSet(U)

returns a small generating set for U.

1»

2»

4»

5»

6P

16 Chapter 5. Basic methods and functions for pcp-groups

5.2 Elementary properties of pcp-groups
IsSubgroup(U, V)

tests if V is a subgroup of U.

IsNormal(U, V)

tests if V' is normal in U.

IsNilpotentGroup(U)

checks whether U is nilpotent.

IsAbelian(U)

checks whether U is abelian.
IsElementaryAbelian(U)

checks whether U is elementary abelian.
IsFreeAbelian(U)

checks whether U is free abelian.

5.3 Subgroups of pcp-groups

A subgroup of a pcp-group G can be defined by a set of generators as described in Section 4.3. However,
many computations with a subgroup U need an induced generating sequence or igs of U. An igs is a
sequence of generators of U whose list of exponent vectors form a matrix in upper triangular form. Note
that there may exist many igs of U. The first one calculated for U is stored as an attribute.

An induced generating sequence of a subgroup of a pcp-group G is a list of elements of G. An igs is called
normed, if each element in the list is normed. Moreover, it is canonical, if the exponent vector matrix is
in Hermite Normal Form. The following functions can be used to compute induced generating sequence for
a given subgroup U of G.

IgsC U)
Igs(gens)
IgsParallel(gens, gens2)

returns an induced generating sequence of the subgroup U of a pcp-group. In the second form the subgroup
is given via a generating set gens. The third form computes an igs for the subgroup generated by gens
carrying gens2 through as shadows. This means that each operation that is applied to the first list is also
applied to the second list.

Ngs(U)
Ngs(igs)

returns a normed induced generating sequence of the subgroup U of a pcp-group. The second form takes an
igs as input and norms it.

Cgs(U)
Cgs(igs)
CgsParallel(gens, gens2)

returns a canonical generating sequence of the subgroup U of a pcp-group. In the second form the function
takes an igs as input and returns a canonical generating sequence. The third version takes a generating set
and computes a canonical generating sequence carrying gens2 through as shadows. This means that each
operation that is applied to the first list is also applied to the second list.

2»

4»

5»

Section 4. Polycyclic presentation sequences for subfactors 17

For a large number of methods for pcp-groups U we will first of all determine an igs for U. Hence it might
speed up computations, if a known igs for a group U is set a priori. The following functions can be used for
this purpose.

SubgroupByIgs(G, igs)
SubgroupByIgs(G, igs, gens)

returns the subgroup of the pcp-group G generated by the elements of the induced generating sequence igs.
Note that igs must be an induced generating sequence of the subgroup generated by the elements of the
igs. In the second form igs is a igs for a subgroup and gens are some generators. The function returns the
subgroup generated by igs and gens.

AddToIgs(igs, gens)
AddToIgsParallel(igs, gens, igs2, gens2)
AddIgsToIgs(igs, igs2)

sifts the elements in the list gens into igs. The second version has the same functionality and carries shadows.
This means that each operation that is applied to the first list and the element gens is also applied to the
second list and the lement gens2. The third version is available for efficiency reasons and assumes that the
second list 4gs2 is not only a generating set, but an igs.

5.4 Polycyclic presentation sequences for subfactors

A subfactor of a pcp-group G is again a polycyclic group for which a polycyclic presentation can computed.
However, to compute a polycyclic presentation for a given subfactor can be time-consuming. Hence we
introduce polycyclic presentation sequences or Pcp to compute more efficiently with subfactors. (Note
that a subgroup is also a subfactor and thus can be handled by a pcp)

A pep for a pep-group U or a subfactor U/N can be created with one of the following functions.

Pcp(U)

Pcp(U, N)

Pep(U, 7snf”)
Pcp(C U, N, 7snf”)

returns a polycyclic presentation sequence for the subgroup U or the quotient group U modulo N. If the
parameter "snf" is present, the function can only be applied to an abelian subgroup U or abelian subfactor
U/N. The pcp returned will correspond to a decomposition of the abelian group into a direct product of
cyclic groups.

A pcep is a component object which behaves similar to a list representing an igs of the subfactor in question.
The basic functions to obtain the stored values of this component object are as follows. Let pcp be a pcp
for a subfactor U/N of the defining pcp-group G.

Generators0fPcp(pcp)

this returns a list of elements of U corresponding to an igs of U/N.
peplil

returns the i-th element of pcp.

Length(pcp)

returns the number of generators in pcp.

RelativeOrders0fPcp(pcp)

the relative orders of the igs in U/N.

6>

i d

8>

9>

10»

11»

18

Denominator0fPcp(pcp)
returns an igs of N.
NumeratorO0fPcp(pcp)
returns an igs of U.
GroupO0fPcp(pcp)
returns U.

One0fPcp(pcp)

returns the identity element of G.

ExponentsByPcp(pep, g)

PcpGroupByPcp(pcp)

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> pcp := Pcp(G);

Pcp [gi, g2] with orders [2, 0]
gap> pcplll;

gl

gap> Length(pcp);

2

gap> RelativeOrdersOfPcp(pcp);
[2, 0]

gap> Denominator0fPcp(pcp);

L]
gap> NumeratorOfPcp(pcp);
[gl, g2 1]

gap> GroupOfPcp(pcp);
Pcp-group with orders [2, 0]
gap> OneO0fPcp(pcp);

identity

gap> G := ExamplesOfSomePcpGroups(5) ;
Pcp-group with orders [2, 0, 0, 0]
gap> D := DerivedSubgroup(G);
Pcp-group with orders [0, 0, 0]
gap> Generators0fGroup(G);

[g1, g2, g3, g4]

gap> Generators0fGroup(D);

[g27-2, g3°-2, g4~2]

Chapter 5. Basic methods and functions for pcp-groups

The two main features of pcp are the possibility to compute exponent vectors with respect to to a pcp and
to compute the group defined by the corresponding igs of U/N.

returns the exponent vector of g with respect to the generators of pep. This is the exponent vector of g/ N
with respect to the igs of U/N.

let pcp be a Pcp of a subgroup or a factor group of a pcp-group. This function computes a new pcp-group
whose defining generators correspond to the generators in pcp.

1»

1»

2»

Section 6. Homomorphisms for pcp-groups 19

an ordinary pcp for G / D
gap> pcpl := Pcp(G, D);
Pcp [g1, g2, g3, g4] with orders [2, 2, 2, 2]

a pcp for G/D in independent generators
gap> pcp2 := Pcp(G, D, "snf");
Pcp [g2, g3, g1 1 with orders [2, 2, 4]

gap> g := Random(G);
glxg2~-4*g3*xgd~2

compute the exponent vector of g in G/D with respect to pcpl
gap> ExponentsByPcp(pcpl, g);
[17 O’ 1’ 0]

compute the exponent vector of g in G/D with respect to pcp2
gap> ExponentsByPcp(pcp2, g);
[o,1,11]

5.5 Factor groups of pcp-groups

Pcp’s for subfactors of pcp-groups have already been described above. These are usually used within algo-
rithms to compute with pcp-groups. However, it is also possible to explicitly construct factor groups and
their corresponding natural homomorphisms.

NaturalHomomorphism(G, N)
returns the natural homomorphism G — G/N. Its image is the factor group G/N.

G/N
FactorGroup(G, N)

returns the desired factor as pcp-group without giving the explicit homomorphism. This function is just a
wrapper for PcpGroupByPcp(Pcp(G, N)).

5.6 Homomorphisms for pcp-groups

IsPcpGHBI is a representation used to define group homomorphisms by generators and images from a pcp-
group into another pcp-group. Such homomorphisms can be compared and multiplied. Moreover, we provide
the following functions.

IsToPcpGHBI is a representation used to define group homomorphisms by generators and images from an
arbitrary group into a pcp-group. Here, only very restricted functionality is provided. This is mostly used
for converting other groups to pcp-groups.

GroupHomomorphismByImages(G, H, gens, imgs)

returns the homomorphism from the (pcp-) group G to the pep-group H mapping the generators of G in
the list gens to the corresponding images in the list imgs of elements of H.

Kernel(hom)

returns the kernel of the homomorphism hom from a pcp-group to a pcp-group.

3>

4»

5»

6>

1»

20 Chapter 5. Basic methods and functions for pcp-groups

Image(hom)
Image(hom, U)
Image(hom, g)

returns the image of the whole group, of U and of g, respectively, under the homomorphism hom.
PreImage(hom, U)

returns the complete preimage of the subgroup U under the homomorphism hom. If the domain of hom is
not a pcp-group, then this function only works properly if hom is injective.

PreImagesRepresentative(hom, g)
returns a preimage of the element g under the homomorphism hom.
IsInjective(hom)

checks if the homomorphism hom is injective.

5.7 Changing the defining pc-presentation
RefinedPcpGroup(G)

returns a new pcp-group isomorphic to G whose defining polycyclic presentation is refined; that is, the
corresponding polycyclic series has prime or infinite factors only. If H is the new group, then H!- bijection
is the isomorphism G — H.

PcpGroupBySeries(ser)
PcpGroupBySeries(ser, "snf")

returns a new pcp-group isomorphic to the first subgroup G of the given series ser such that its defining
pep refines the given series. The series must be subnormal and H! - bijection is the isomorphism G — H.
In the second form, the series must have abelian factors. The pcp of the group returned corresponds to a
decomposition of each abelian factor into a direct product of cyclic groups.

gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> U := Subgroup(G, [Pcp(G)[2]71440]);
Pcp-group with orders [O]

gap> F := G/U;

Pcp-group with orders [2, 1440]

gap> RefinedPcpGroup(F);

Pcp-group with orders [2, 2, 2, 2, 2, 2, 3, 3, 5]

gap> ser := [G, U, TrivialSubgroup(G)];

[Pcp-group with orders [2, 0],
Pcp-group with orders [0],
Pcp-group with orders []]

gap> PcpGroupBySeries(ser);

Pcp-group with orders [2, 1440, 0]

1»

2>

Section 9. Converting to and from a presentation 21

5.8 Printing a pc-presentation

By default, a pcp-group is printed using its relative orders only. The following methods can be used to view
the pcp presentation of the group.

PrintPcpPresentation(G)
PrintPcpPresentation(pcp)

prints the pcp presentation defined by the igs of G or the pcp pep. As usual, the trivial conjugate relations
are omitted from this presentation to shorten notation. Also, the relations obtained from conjugating with
inverse generators are included only if the conjugating generator has infinite order. If this generator has
finite order, then the conjugation relation is a consequence of the remaining relations.

PrintFullPresentation(G)
PrintFullPresentation(pcp)

prints the full defining pcp presentation defined by the igs of G or the pcp pcp. Here the trivial conjugate
relations are always included and also the conjugation with inverses is always included.

5.9 Converting to and from a presentation
IsomorphismPcpGroup(G)

returns an isomorphism from G onto a pcp-group H. There are various methods installed for this operation
and some of these methods are part of the Polycyclic package, while others may be part of other packages.

For example, Polycyclic contains methods for this function in the case that G is a finite pc-group or a finite
solvable permutation group. Further, Polycyclic can convert a finitely presented group with a polycyclic
presentation into a pcp group via IsomorphismPcpGroup.

Other examples for methods for IsomorphismPcpGroup are the methods for the case that G is a crystal-
lographic group (see Cryst) or the case that G is an almost crystallographic group (see AClib). A general
method for the case that G is a rational polycyclic matrix group will be included in the Polenta package.
A general method for the case that G is a polycyclic finitely presented group will be included in the IPCQ
package.

IsomorphismPcGroup(G)

pe-groups are a representation for finite polycyclic groups. This function can convert finite pcp-groups to
pc-groups.

1»

2>

4»

5»

6 »

i d

8>

Libraries and examples
of pcp-groups

6.1 Libraries of various types of polycyclic groups

There are the following generic pcp-groups available.
AbelianPcpGroup(n, rels)

constructs the abelian group on n generators such that generator ¢ has order rels[:]. If this order is infinite,
then rels[i] should be either unbound or 0.

DihedralPcpGroup(n)

constructs the dihedral group of order n. If n is an odd integer, then ’fail’ is returned. If n is zero or not an
integer, then the infinite dihedral group is returned.

UnitriangularPcpGroup(n, ¢)

returns a pcp-group isomorphic to the group of upper triangular in GL(n, R) where R = Z if ¢ = 0 and
R = F, if ¢ = p. The natural unitriangular matrix representation of the returned pcp-group G can be
obtained as G! - isomorphism.

SubgroupUnitriangularPcpGroup(mats)

mats should be a list of upper unitriangular n x n matrices over Z or over F,. This function returns the
subgroup of the corresponding "UnitriangularPcpGroup’ generated by the matrices in mats.

InfiniteMetacyclicPcpGroup(n, m, 7)

Infinite metacyclic groups are classified in [BK00]. Every infinite metacyclic group G is isomorphic to a

finitely presented group G(m,n,r) with two generators a and b and relations of the form a" = b™ =1 and

[a,b] = a'~", where m,n,r are three non-negative integers with mn = 0 and r relatively prime to m. If
= —1 mod m then n is even, and if » = 1 mod m then m = 0. Also m and n must not be 1.

1

Moreover, G(m,n,r) 2= G(m',n’,s) if and only if m = m’, n = n/, and either r = s or r = s~! mod m.

This function returns the metacyclic group with parameters n, m and r as a pcp-group with the pc-
presentation (z,y|z",y™,y" = y"). This presentation is easily transformed into the one above via the
mapping z — b~ !,y — a.

HeisenbergPcpGroup(n)

returns the Heisenberg group on 2n generators as pcp-group. This gives a group of Hirsch length
3n.

MaximalOrderByUnitsPcpGroup(f)

takes as input a normed, irreducible polynomial over the integers. Thus f defines a field extension F' over
the rationals. This function returns the split extension of the maximal order O of F' by the unit group U of
O, where U acts by right multiplication on O.

BurdeGrunewaldPcpGroup(s, t)

returns a nilpotent group of Hirsch length 11 which has been constructed by Burde und Grunewald. If s is
not 0, then this group has no faithful 12-dimensional linear representation.

1»

2»

Section 2. Some asorted example groups 23

6.2 Some asorted example groups

The functions in this section provide some more example groups to play with. They come with no further
description and their investigation is left to the interested user.

ExampleOfMetabelianPcpGroup(a, k)

returns an example of a metabelian group. The input parameters must be two positive integers greater than
1.

Examples0OfSomePcpGroups(n)

this function takes values n in 1 up to 16 and returns for each input an example of a pcp-group. The groups
in this example list have been used as test groups for the functions in this package.

1»

2»

3>

4»

5»

6»

' d

8>

9»

Higher level methods
for pcp-groups

This is a description of some higher level functions of the polycyclic package of GAP 4. Throughout this
chapter we let G be a pc-presented group and we consider algorithms for subgroups U and V of G. For
background and a description of the underlying algorithms we refer to [EicOlal.

7.1 Subgroup series in pcp-groups

Many algorithm for pcp-groups work by induction using some series through the group. In this section we
provide a number of useful series for pcp-groups. An efa series is a normal series with elementary or free
abelian factors. See [Eic00] for outlines on the algorithms of a number of the available series.

PcpSeries(U)

returns the polycyclic series of U defined by an igs of U.
EfaSeries(U)

returns a normal series of U with elementary or free abelian factors.
SemiSimpleEfaSeries(U)

returns an efa series of U such that every factor in the series is semisimple as a module for U over a finite
field or over the rationals.

DerivedSeries(U)
the derived series of U.

RefinedDerivedSeries(U)

the derived series of U refined to an efa series such that in each abelian factor of the derived series the free
abelian factor is at the top.

RefinedDerivedSeriesDown(U)

the derived series of U refined to an efa series such that in each abelian factor of the derived series the free
abelian factor is at the bottom.

LowerCentralSeries(U)

the lower central series of U. If U does not have a largest nilpotent quotient group, then this function may
not terminate.

UpperCentralSeries(U)

the upper central series of U. This function always terminates, but it may terminate at a proper subgroup
of U.

TorsionByPolyEFSeries(U)

returns an efa series of U such that all torsion-free factors are at the top and all finite factors are at the
bottom. Such a series might not exist for U and in this case the function returns fail.

Section 1. Subgroup series in pcp-groups 25

gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [2, 0, 0, 0]
gap> Igs(G);

[g1, g2, g3, g4]

gap> PcpSeries(G);

[Pcp-group with orders [2, 0, 0, 0 1],
Pcp-group with orders [0, 0, 0],
Pcp-group with orders [0, 0 1],
Pcp-group with orders [0],
Pcp-group with orders []]

gap> List(PcpSeries(G), Igs);
[[gl, g2, g3, g4 1, [g2, g3, g4 1, [g3, g4 1, [g4l, [11

Algorithms for pcp-groups often use an efa series of G and work down over the factors of this series. Usually,
pep’s of the factors are more useful than the actual factors. Hence we provide the following.

10> PcpsBySeries(ser)
» PcpsBySeries(ser, ”snf”)

returns a list of pcp’s corresponding to the factors of the series. If the second argument is present, then each
pep corresponds to a decomposition of the abelian groups into direct factors.

11» PcpsOfEfaSeries(U)
returns a list of pcps corresponding to an efa series of U.

gap> G := ExamplesOfSomePcpGroups(5);
Pcp-group with orders [2, 0, 0, O]

gap> PcpsBySeries(DerivedSeries(G));

[Pcp [g1, g2, g3, g4] with orders [2, 2, 2, 2 1],
Pcp [g2°-2, g3°-2, g4"2] with orders [0, 0, 4 1],
Pcp [g4°8] with orders [0]]

gap> PcpsBySeries(RefinedDerivedSeries(G));

[Pcp [g1, g2, g3 1 with orders [2, 2, 2 1],

Pcp [g4] with orders [2],

Pcp [g272, g372] with orders [0, O],
Pcp [g472] with orders [2 1],

Pcp [g474] with orders [2 1],

Pcp [g4°8] with orders [0]]

gap> PcpsBySeries(DerivedSeries(G), "snf");

[Pcp [g2, g3, g1] with orders [2, 2, 4 1],
Pcp [g4°2, g37-2, g2"2%g4"2] with orders [4, 0, 0 1],
Pcp [g4°8] with orders [0]]

gap> G.174 in DerivedSubgroup(G);

true

gap> G.172 = G.4;

true

26 Chapter 7. Higher level methods for pcp-groups

gap> PcpsOfEfaSeries(G);

[Pcp [g1] with orders [2 1],
Pcp [g2] with orders [0],
Pcp [g3] with orders [0],
Pcp [g4] with orders [0]]

7.2 Orbit stabilizer methods for pcp-groups

Let U be a pcp-group which acts on a set £2. One of the fundamental problems in algorithmic group theory
is the determination of orbits and stabilizers of points in €2 under the action of U. We distinguish two cases:
the case that all considered orbits are finite and the case that there are infinite orbits. In the latter case,
an orbit cannot be listed and a description of the orbit and its corresponding stabilizer is much harder to
obtain.

If the considered orbits are finite, then the following two functions can be applied to compute the considered
orbits and their corresponding stabilizers.

PcpOrbitStabilizer(point, gens, acts, oper)
PcpOrbitsStabilizers(points, gens, acts, oper)

The input gens can be an igs or a pcp of a pcp-group U. The elements in the list gens act as the elements in
the list acts via the function oper on the given points; that is, oper(point, acts[i]) applies the ith generator
to a given point. Thus the group defined by acts must be a homomorphic image of the group defined by gens.
The first function returns a record containing the orbit as component ’orbit’ and and igs for the stabilizer
as component ’stab’. The second function returns a list of records, each record contains 'repr’ and ’stab’.
Both of these functions run forever on infinite orbits.

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> mats := [[[-1,0],[0,1]], [[1,1],[0,11] 1;;
gap> pcp := Pcp(G);
Pcp [g1, g2] with orders [2, 0]
gap> PcpOrbitStabilizer([0,1], pcp, mats, OnRight);
rec(orbit := [[0, 1] 1,
stab := [g1, g2 1,
word := [[[1, 211, [[2,1111)

If the considered orbits are infinite, then it may not always be possible to determine a description of the
orbits and their stabilizers. However, as shown in [EO02] and [Eic02], it is possible to determine stabilizers
and check if two elements are contained in the same orbit if the given action of the polycyclic group is a
unimodular linear action on a vector space. The following functions are available for this case.

StabilizerIntegralAction(U, mats, v)
OrbitIntegralAction(U, mats , v, w)

The first function computes the stabilizer in U of the vector v where the pcp group U acts via mats on an
integral space and v and w are elements in this integral space. The second function checks whether v and w
are in the same orbit and the function returns either false or a record containing an element in U mapping
v to w and the stabilizer of v.

NormalizerIntegralAction(U, mats, B)
ConjugacyIntegralAction(U, mats, B, C)

The first function computes the normalizer in U of the lattice with the basis B, where the pcp group U
acts via mats on an integral space and B is a subspace of this integral space. The second functions checks

Section 3. Centralizers, Normalizers and Intersections 27

whether the two lattices with the bases B and C are contained in the same orbit under U. The function
returns either false or a record with an element in U mapping B to C and the stabilizer of B.

get a pcp group and a free abelian normal subgroup
gap> G := ExamplesOfSomePcpGroups(8) ;

Pcp-group with orders [0, 0, 0, 0, O]

gap> efa := EfaSeries(G);

[Pcp-group with orders [0, 0, 0, 0, O 1],
Pcp-group with orders [0, 0, 0, 0],
Pcp-group with orders [0, 0, 0 1],
Pcp-group with orders []]

gap> N := efal[3];

Pcp-group with orders [0, 0, 0]
gap> IsFreeAbelian(N) ;

true

create conjugation action on N
gap> mats := LinearActionOnPcp(Igs(G), Pcp(N));

rrri1,0,01, 0,121,071, [0,0,111,
rro,o0,11, 01, -1,11,[00,1,011,
[(1,0,0]1,[0,1,01, [0,0,111,
[[1,0,0],[0,1,01, [o0,0,111,
[[1,0,01, [0,1,0]1,[0,0,111]1

take an arbitrary vector and compute its stabilizer
gap> StabilizerIntegralAction(G,mats, [2,3,4]);
Pcp-group with orders [0, 0, 0, O]

gap> Igs(last);

[g1, g3, g4, g5]

check orbits with some other vectors
gap> OrbitIntegralAction(G,mats, [2,3,4],[3,1,5]);
rec(stab := Pcp-group with orders [0, 0, O, 0], prei := g2)

gap> OrbitIntegralAction(G,mats, [2,3,4], [4,6,8]);
false

compute the orbit of a subgroup of Z"3 under the action of G
gap> NormalizerIntegralAction(G, mats, [[1,0,0],[0,1,0]1);
Pcp-group with orders [0, 0, 0, 0, O]

gap> Igs(last);

[g1, g272, g3, g4, g5 1]

7.3 Centralizers, Normalizers and Intersections

In this section we list a number of operations for which there are methods installed to compute the corre-
sponding features in polycyclic groups.

Centralizer(U, g)

IsConjugate(U, g, h)

These functions solve the conjugacy problem for elements in pcp-groups and they can be used to compute
centralizers. The first method returns a subgroup of the given group U, the second method either returns a
conjugating element or false if no such element exists.

v

3>

1»

2>

3>

4»

5»

28 Chapter 7. Higher level methods for pcp-groups

The methods are based on the orbit stabilizer algorithms described in [EO02]. For nilpotent groups, an
algorithm to solve the conjugacy problem for elements is described in [Sim94].

Centralizer(U, V)
Normalizer(U, V)
IsConjugate(U, V, W)

These three functions solve the conjugacy problem for subgroups and compute centralizers and normalizers
of subgroups. The first two functions return subgroups of the input group U, the third function returns a
conjugating element or false if no such element exists.

The methods are based on the orbit stabilizer algorithms described in [Eic02]. For nilpotent groups, an
algorithm to solve the conjugacy problems for subgroups is described in [Lo98a].

Intersection(U, N)

A general method to compute intersections of subgroups of a pcp-group is described in [EicOla], but it is not
yet implemented here. However, intersections of subgroups U, N < G can be computed if N is normalising
U. See [Sim94] for an outline of the algorithm.

7.4 Finite subgroups

There are various finite subgroups of interest in polycyclic groups. See [Eic00] for a description of the
algorithms underlying the functions in this section.

TorsionSubgroup(U)

If the set of elements of finite order forms a subgroup, then we call it the torsion subgroup. This function
determines the torsion subgroup of U, if it exists, and returns fail otherwise. Note that a torsion subgroup
does always exist if U is nilpotent.

NormalTorsionSubgroup(U)

Each polycyclic groups has a unique largest finite normal subgroup. This function computes it for U.
IsTorsionFree(U)

This function checks if U is torsion free. It returns true or false.

FiniteSubgroupClasses(U)

There exist only finitely many conjugacy classes of finite subgroups in a polycyclic group U and this function
can be used to compute them. The algorithm underlying this function proceeds by working down a normal
series of U with elementary or free abelian factors. The following function can be used to give the algorithm
a specific series.

FiniteSubgroupClassesBySeries(U, pcps)

gap> G := ExamplesOfSomePcpGroups(15);

Pcp-group with orders [O, O, 0, O, O, 0, O, O, O, O, 5, 4, 0]

gap> TorsionSubgroup(G);

Pcp-group with orders [5, 2]

gap> NormalTorsionSubgroup(G) ;

Pcp-group with orders [5, 2]

gap> IsTorsionFree(G) ;

false

gap> FiniteSubgroupClasses(G) ;

[Pcp-group with orders [5, 2]1°G,
Pcp-group with orders
Pcp-group with orders
Pcp-group with orders

2 1°G,
5 1°G,
176 1

1»

2»

3>

4»

Section 5. Subgroups of finite indexr and maximal subgroups 29

gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> TorsionSubgroup(G);

fail

gap> NormalTorsionSubgroup(G) ;

Pcp-group with orders []

gap> IsTorsionFree(G);

false

gap> FiniteSubgroupClasses(G);

[Pcp-group with orders [2]1°G,
Pcp-group with orders [2 1°G,
Pcp-group with orders []1°G]

7.5 Subgroups of finite index and maximal subgroups

Here we outline functions to determine various types of subgroups of finite index in polycyclic groups.
Again, see [Eic00] for a description of the algorithms underlying the functions in this section. Also, we refer
to [Lo98b] for an alternative appraoch.

MaximalSubgroupClassesByIndex(U, p)

Each maximal subgroup of a polycyclic group U has p-power index for some prime p. This function can be
used to determine the conjugacy classes of all maximal subgroups of p-power index for a given prime p.

LowIndexSubgroupClasses(U, n)

There are only finitely many subgroups of a given index in a polycyclic group U. This function computes
conjugacy classes of all subgroups of index n in U.

LowIndexNormals(U, n)
This function computes the normal subgroups of index n in U.
NilpotentByAbelianNormalSubgroup(U)

This function returns a normal subgroup N of finite index in U such that N is nilpotent-by-abelian. Such a
subgroup exists in every polycyclic group and this function computes such a subgroup using LowIndexNor-
mal. However, we note that this function is not very efficient and the function NilpotentByAbelianByFinite-
Series may well be more efficient on this task.

gap> G := ExamplesOfSomePcpGroups(2) ;
Pcp-group with orders [0, 0, 0, 0, 0, 0]

gap> MaximalSubgroupClassesByIndex(G, 61);;

gap> max := List(last, Representative);;

gap> List(max, x -> Index(G, x));

[61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 226981]

gap> LowIndexSubgroupClasses(G, 61);;

gap> low := List(last, Representative);;

gap> List(low, x -> Index(G, x));

[61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
61, 61, 61, 61, 61, 61]

1»

2»

3>

4»

5»

6»

1»

30 Chapter 7. Higher level methods for pcp-groups

7.6 Further attributes for pcp-groups based on the Fitting subgroup

In this section we provide a variety of other attributes for pcp-groups. Most of the methods below are based
or related to the Fitting subgroup of the given group. We refer to [Eic01b] for a description of the underlying
methods.

FittingSubgroup(U)

returns the Fitting subgroup of U; that is, the largest nilpotent normal subgroup of U.
IsNilpotentByFinite(U)

checks whether the Fitting subgroup of U has finite index.

Centre(U)

returns the centre of U.

FCCentre(U)

returns the FC-centre of U; that is, the subgroup containing all elements having a finite conjugacy class in
U.

PolyZNormalSubgroup(U)
returns a normal subgroup N of U such that N has a polycyclic series with infinite factors only.
NilpotentByAbelianByFiniteSeries(U)

returns a normal series 1 < F < A < U such that F is nilpotent, A/F is abelian and U/A is finite. This
series is computed using the Fitting subgroup and the centre of the Fitting factor.

7.7 Functions for nilpotent groups

There are (very few) functions which are available for nilpotent groups only. First, there are the different
central series. These are available for all groups, but for nilpotent groups they terminate and provide series
though the full group. Secondly, the determination of a minimal generating set is available for nilpotent
groups only.

MinimalGeneratingSet(U)

gap> G := ExamplesOfSomePcpGroups(14);

Pcp-group with orders [O, O, 0, O, O, 0, O, O, O, O, 5, 4, 0, 5, 5, 4, 0, 6,
5, 5, 4, 0, 10, 6]

gap> IsNilpotent(G);

true

gap> PcpsBySeries(LowerCentralSeries(G));
[Pcp [g1, g2] with orders [0, O],

Pcp [g3] with orders [0],

Pcp [g4] with orders [0],

Pcp [gb] with orders [0],

Pcp [g6, g7] with orders [0, 0 1],

Pcp [g8] with orders [0],

Pcp [g9, g10] with orders [0, 0],

Pcp [gi1l, g12, g13] with orders [5, 4, 01,

Pcp [gl4, gib5, gl6, gi7, g18] with orders [5, 5, 4, 0, 6 1,

Pcp [g19, g20, g21, g22, g23, g24] with orders [5, 5, 4, 0, 10, 6]]

1»

3>

Section 8. Random methods for pcp-groups 31

gap> PcpsBySeries(UpperCentralSeries(G));
[Pcp [g1, g2] with orders [0, 0],

Pcp [g3] with orders [0],

Pcp [g4] with orders [0],

Pcp [gb] with orders [0],

Pcp [g6, g7] with orders [0, 0 1],

Pcp [g8] with orders [0],

Pcp [g9, g10] with orders [0, 0],

Pcp [gl1, gl12, g13] with orders [5, 4, 0 1],

Pcp [gl4, gib5, gl6, gi7, g18] with orders [5, 5, 4, 0, 6 1],

Pcp [gl19, g20, g21, g22, g23, g24] with orders [5, 5, 4, 0, 10, 6]]

gap> MinimalGeneratingSet(G) ;
[g1, g2]

7.8 Random methods for pcp-groups

Below we introduce a function which computes orbit and stabilizer using a random method. This function
tries to approximate the orbit and the stabilizer, but the returned orbit or stabilizer may be incomplete. This
function is used in the random methods to compute normalizers and centralizers. Note that determinstic
methods for these purposes are also available.

RandomOrbitStabilizerPcpGroup(U, point, oper)

RandomCentralizerPcpGroup(U, ¢)
RandomCentralizerPcpGroup(U, V)

RandomNormalizerPcpGroup(U, V)

gap> G := DihedralPcpGroup(0);

Pcp-group with orders [2, 0]

gap> mats := [[[-1, 0],[0,1]], [[1,1],([0,111];
tftrft-1,01,00,1171, 001,17, C00,111]
gap> pcp := Pcp(G);

Pcp [g1, g2] with orders [2, 0]

gap> RandomPcpOrbitStabilizer([1,0], pcp, mats, OnRight).stab;
#I Orbit longer than limit: exiting.
[1]

gap> g := Igs(G)[1];

gl

gap> RandomCentralizerPcpGroup(G, g);
#I Stabilizer not increasing: exiting.
Pcp-group with orders [2]

gap> Igs(last);

[g1]

32 Chapter 7. Higher level methods for pcp-groups

7.9 Non-abelian tensor product and Schur extensions
1» SchurExtension(G)

Let G be a polycyclic group with a polycyclic generating sequence consisting of n elements. This function
computes the largest central extension H of G such that H is generated by n elements. If F/R is the
underlying polycyclic presentation for G, then H is isomorphic to F/[R, F].

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]
gap> Centre(G);

Pcp-group with orders []

gap> H := SchurExtension(G);
Pcp-group with orders [2, 0, 0, 0]
gap> Centre(H);

Pcp-group with orders [0, 0]
gap> H/Centre(H);

Pcp-group with orders [2, 0]
gap> Subgroup(H, [H.1,H.2]) = H;
true

2» SchurExtensionEpimorphism(G)

returns the projection from the Schur extension G* of G onto G. See the function SchurExtension. The
kernel of this epimorphism is the direct product of the Schur multiplicator of G and a direct product of n
copies of Z where n is the number of generators in the polycyclic presentation for G. The Schur multiplicator
is the intersection of the kernel and the derived group of the source. See also the function SchurCovering.

gap> gl23 := Range(IsomorphismPcpGroup(GL(2,3)));

Pcp-group with orders [2, 3, 2, 2, 2]

gap> SchurExtensionEpimorphism(gl23);

[g1, g2, g3, g4, g5, gb, g7, g8, g9, g10 1 —> [gl, g2, g3, g4, g5,
id, id, id, id, id]

gap> Kernel(last);

Pcp-group with orders [0, 0, 0, 0, 0]

gap> SchurMultiplicator(gl23);

L]
gap> Intersection(Kernel(epi), DerivedSubgroup(Source(epi)));
L1

There is a crossed pairing from G into (G*)" which can be defined via this epimorphism:

gap> G := DihedralPcpGroup(0) ;

Pcp-group with orders [2, 0]

gap> epi := SchurExtensionEpimorphism(G);
[gl, g2, g3, g4 1 > [g1, g2, id, id]
gap> PreImagesRepresentative(epi, G.1);

gl

gap> PreImagesRepresentative(epi, G.2);
g2

gap> Comm(last, last2);

g2"-2xg4

3» SchurCovering(G)

computes a Schur covering group of the polycyclic group G. A Schur covering is a largest central extension
H of G such that the kernel M of the projection of H onto G is contained in the commutator subgroup of
H.

4»

5»

6>

Section 9. Non-abelian tensor product and Schur extensions 33

If G is given by a presentation F/R, then M is isomorphic to the subgroup R N [F, F]/[R, F]. Let C be a
complement to RN [F, F|/[R, F] in R/[R, F]. Then F/C is isomorphic to H and R/C is isomorphic to M.

gap> G := AbelianPcpGroup(3,[]);

Pcp-group with orders [0, 0, 0]

gap> ext := SchurCovering(G);

Pcp-group with orders [0, 0, 0, 0, 0, 0]

gap> Centre(ext);

Pcp-group with orders [0, 0, 0]

gap> IsSubgroup(DerivedSubgroup(ext), last);
true

SchurMultiplicator(G)

computes the isomorphism type of the Schur multiplicator of G and returns a list of pairs describing the
isomorphism type as a direct product of cyclic groups. The first component of a pair is the order of the
cyclic group. The second component specifies how often that cyclic group occurs as a direct factor. The
isomorphism type of the Schur multiplicator is the direct product of the groups specified by the list of pairs.

If a cyclic factor is infinite, then the first component of the corresponding pair is 0.
Note that the Schur multiplicator of a polycyclic group is a fintiely generated abelian group.

gap> G := DihedralPcpGroup(O);

Pcp-group with orders [2, 0]

gap> DirectProduct(G, AbelianPcpGroup(2, [1));
Pcp-group with orders [0, 0, 2, 0]

gap> SchurMultiplicator(last);

([2, 41, 00,111

NonAbelianExteriorSquareEpimorphism(G)

returns the epimorphism of the non-abelian exterior square of a polycylic group G onto the derived group
of G. The non-abelian exterior square can be defined as the derived subgroup of a Schur cover of G. The
isomorphism type of the non-abelian exterior square is unique despite the fact that the isomorphism type of
a Schur cover of a polycyclic groups need not be unique. The derived group of a Schur cover has a natural
projection onto the derived group of G which is what the function returns.

The kernel of the epimorphism is isomorphic to the Schur multiplicator of G.

gap> G := ExamplesOfSomePcpGroups(3);

Pcp-group with orders [0, 0]

gap> G := DirectProduct(G,G);

Pcp-group with orders [0, 0, 0, 0]

gap> SchurMultiplicator(G);

(ro,11, 02,311

gap> epi := NonAbelianExteriorSquareEpimorphism(G);
[g27-2*%g5, g4~-2%gl0, g6, g7, g8, g9 1 -> [g27-2, g4~-2, id, id, id, id]
gap> Kernel(epi);

Pcp-group with orders [0, 2, 2, 2]

gap> Collected(AbelianInvariants(last));
(Lo,17,02 31]

NonAbelianExteriorSquare(G)

computes the non-abelian exterior square of a polycylic group G. See the explanation for NonAbelianExte-
riorSquareEpimorphism. The natural projection of the non-abelian exterior square onto the derived group
of G is stored in the component !.epimorphism.

34 Chapter 7. Higher level methods for pcp-groups

There is a crossed pairing from G into G A G. See the function SchurExtensionEpimorphism for details.
The crossed pairing is stored in the component !.crossedPairing. This is the crossed pairing A in [ENO7].

gap> G := DihedralPcpGroup(0) ;

Pcp-group with orders [2, 0]

gap> GwG := NonAbelianExteriorSquare(G);
Pcp-group with orders [0]

gap> lambda := GwG!.crossedPairing;
function(g, h) ... end

gap> lambda(G.1, G.2);

g2 2%gd"-1

7» NonAbelianTensorSquareEpimorphism(G)

returns for a polycyclic group G the projection of the non-abelian tensor square G ® G onto the non-
abelian exterior square G A G. The range of that epimorphism has the component !.epimorphism set
to the projection of the non-abelian exterior square onto the derived group of G. See also the function
NonAbelianExteriorSquare.

With the result of this function one can compute the groups in the commutative diagram at the beginning of
the paper [EN07]. The kernel of the returned epimorphism is the group V(G). The kernel of the composition
of this epimorphism and the above mention projection onto G’ is the group J(G).

gap> G := DihedralPcpGroup(0) ;

Pcp-group with orders [2, 0]

gap> G := DirectProduct(G,G);

Pcp-group with orders [2, 0, 2, 0]

gap> alpha := NonAbelianTensorSquareEpimorphism(G);

[g9*g25~-1, glO*g26~-1, gll*g27, gl2%g28, gl3*g29, gld*g30, glb, glb,

gl7,
gl8, gl19, g20, g21, g22, g23, g24 1 > [g27-2*g6, g4~ -2xgl2, g8,
g9, glo0,

gll, id, id, id, id, id, id, id, id, id, id]
gap> gamma := Range(alpha)!.epimorphism;
[g27-2%g6, g4~-2xgl2, g8, g9, gl0, gi1] -> [g27-2, g4~-2, id, id,
id, id]
gap> JG := Kernel(alpha * gamma);
Pcp-group with orders [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
gap> Image(alpha, JG);
Pcp-group with orders [2, 2, 2, 2]
gap> SchurMultiplicator(G);
[[2, 411

\>NonAbelianTensorSquare(<G>)

computes for a polycyclic group <G> the non-abelian tensor square
$G\otimes G$.

\beginexample

gap> G := AlternatingGroup(IsPcGroup, 4);
<pc group of size 12 with 3 generators>
gap> PcGroupToPcpGroup(G);

Pcp-group with orders [3, 2, 2]

gap> NonAbelianTensorSquare(last);

Section 9. Non-abelian tensor product and Schur extensions 35

Pcp-group with orders [2, 2, 2, 3]
gap> PcpGroupToPcGroup(last);

<pc group of size 24 with 4 generators>
gap> DirectFactors0fGroup(last);

[Group([f1, £2, £3 1), Group([£f4 1)]
gap> List(last, Size);

(8, 3]
gap> IdGroup(last2[1]);
[8, 4] # the quaternion group of Order 8

gap> G := DihedralPcpGroup(0);
Pcp-group with orders [2, 0]

gap> ten := NonAbelianTensorSquare(G);
Pcp-group with orders [0, 2, 2, 2]
gap> IsAbelian(ten);

true

8» NonAbelianExteriorSquarePlusEmbedding(G)

returns an embedding from the non-abelian exterior square G A G into an extensions of G A G by G x G.
For the significance of the group see the paper [EN07]. The range of the epimorphism is the group 7(G) in
that paper.

9» NonAbelianExteriorSquarePlusEmbedding(G)
returns the group 7(G) in [ENOT].
10> NonAbelianTensorSquarePlusEpimorphism(G)

returns an epimorphisms of v(G) onto 7(G). The group v(G) is an extension of the non-abelian tensor
square G ® G of G by G x G. The group 7(G) is an extension of the non-abelian exterior square G A G by
G x G. For details see [ENOT].

11» NonAbelianTensorSquarePlus(G)

returns the group v(G) in [ENOT].

1»

Cohomology
for pcp-groups

The GAP 4 package polycyclic provides methods to compute the first and second cohomology group for a
pcp-group U and a finite dimensional ZU or FU module A where F is a finite field. The algorithm for
determining the first cohomology group is outlined in [Eic00].

As a preparation for the cohomology computation, we introduce the cohomology records. These records
provide the technical setup for our cohomology computations.

8.1 Cohomology records

Cohomology records provide the necessary technical setup for the cohomology computations for polycyclic
groups.

CRRecordByMats(U, mats)

creates an external module. Let U be a pcp group which acts via the list of matrices mats on a vector space
of the form Z" or F). Then this function creates a record which can be used as input for the cohomology
computations.

CRRecordBySubgroup(U, A4)
CRRecordByPcp(U, pcp)

creates an internal module. Let U be a pcp group and let A be a normal elementary or free abelian normal
subgroup of A or let pcp be a pep of a normal elementary of free abelian subfactor of U. Then this function
creates a record which can be used as input for the cohomology computations.

The returned cohomology record C' contains the following entries:
factor

a pcp of the acting group. If the module is external, then this is Pep(U). If the module is internal,
then this is Pep(U, A) or Pep(U, GroupOfPcp(pcp)).

mats, invs and one
the matrix action of factor with acting matrices, their inverses and the identity matrix.

dim and char
the dimension and characteristic of the matrices.

relators and enumrels
the right hand sides of the polycyclic relators of factor as generator exponents lists and a description
for the corresponding left hand sides.

central
is true, if the matrices mats are all trivial. This is used locally for efficiency reasons.

And additionally, if C' defines an internal module, then it contains:

group
the original group U.

1»

2»

3>

4»

6»

Section 2. Cohomology groups 37

normal
this is either Pep(A) or the input pep.

extension
information on the extension of A by U/A.

8.2 Cohomology groups

Let U be a pcp-group and A a free or elementary abelian pcp-group and a U-module. By Z(U, A) be
denote the group of i-th cocycles and by B?(U, A) the i-th coboundaries. The factor Z*(U, A)/B(U, A) is
the i-th cohomology group. Since A is elementary or free abelian, the groups Z/(U, A) and B (U, A) are
elementary or free abelian groups as well.

The polycyclic package provides methods to compute first and second cohomology group for a polycyclic
group U. We write all involved groups additively and we use an explicit description by bases for them. Let
C' be the cohomology record corresponding to U and A.

Let fi,...,f, be the elements in the entry factor of the cohomology record C. Then we use the following
embedding of the first cocycle group to describe 1-cocycles and 1-coboundaries: Z'(U, A) — A" : §

(§(f1)a AR 5(f71))

For the second cohomology group we recall that each element of Z?(U, A) defines an extension H of A by
U. Thus there is a pc-presentation of H extending the pc-presentation of U given by the record C. The
extended presentation is defined by tails in A; that is, each relator in the record entry relators is extended
by an element of A. The concatenation of these tails yields a vector in A’ where [is the length of the record
entry relators of C. We use these tail vectors to describe Z?(U, A) and B%(U, A). Note that this description
is dependent on the chosen presentation in C. However, the factor Z?(U, A)/B?(U, A) is independent of
the chosen presentation.

The following functions are available to compute explicitly the first and second cohomology group as de-
scribed above.

OneCoboundariesCR(C)
OneCocyclesCR(C)
TwoCoboundariesCR(C')
TwoCocyclesCR(C)
OneCohomologyCR(C)

TwoCohomologyCR(C)

The first 4 functions return bases of the corresponding group. The last 2 functions need to describe a factor
of additive abelian groups. They return the following descriptions for these factors.

gee
the basis of the cocycles of C.
gcd
the basis of the coboundaries of C.
factor

a description of the factor of cocycles by coboundaries. Usually, it would be most convenient to use
additive mappings here. However, these are not available in case that A is free abelian and thus we
use a description of this additive map as record. This record contains

L d

1»

2>

3>

38 Chapter 8. Cohomology for pcp-groups

gens
a base for the image.
rels
relative orders for the image.
1mgs
the images for the elements in gcc.
prei
preimages for the elements in gens.
denom

the kernel of the map; that is, another basis for gcb.

There is an additional function which can be used to compute the second cohomology group over an arbitrary
finitely generated abelian group. The finitely generated abelian group should be realized as a factor of a free
abelian group modulo a lattice. The function is called as

TwoCohomologyModCR(C', lat)

where C' is a cohomology record and lat is a basis for a sublattice of a free abelian module. The output
format is the same as for TwoCohomologyCR.

8.3 Extended 1-cohomology

In some cases more information on the first cohomology group is of interest. In particular, if we have an
internal module given and we want to compute the complements using the first cohomology group, then we
need additional information. This extended version of first cohomology is obtained by the following functions.

OneCoboundariesEX(C)

returns a record consisting of the entries

basis
a basis for BY(U, A) < A™.

transf
There is a derivation mapping from A to B"1(U,A). This mapping is described here as transforma-
tion from A to basis.

fixpts

the fixpoints of A. This is also the kernel of the derivation mapping.

OneCocyclesEX(C)
returns a record consisting of the entries

basis
a basis for Z1(U, A) < A".

transl
a special solution. This is only of interest in case that C' is an internal module and in this case
it gives the translation vector in A™ used to obtain complements corresponding to the elements in
basis. If C' is not an internal module, then this vector is always the zero vector.

OneCohomologyEX(C)

returns the combined information on the first cohomology group.

1»

2>

3>

4»

5»

6»

i d

8>

9>

Section 4. Fxtensions and Complements 39

8.4 Extensions and Complements
The natural applications of first and second cohomology group is the determination of extensions and
complements. Let C' be a cohomology record.

ComplementCR(C', ¢)

returns the complement corresponding to the 1-cocycle c. In the case that C is an external module, we
construct the split extension of U with A first and then determine the complement. In the case that C' is
an internal module, the vector ¢ must be an element of the affine space corresponding to the complements
as described by OneCocyclesEX.

ComplementsCR(C)

returns all complements using the correspondence to Z(U, A). Further, this function returns fail, if Z1(U, A)
is infinite.

ComplementClassesCR(C)

returns complement classes using the correspondence to H'(U, A). Further, this function returns fail, if
HY(U, A) is infinite.

ComplementClassesEfaPcps(U, N, pcps)

Let N be a normal subgroup of U. This function returns the complement classes to N in U. The classes
are computed by iteration over the U-invariant efa series of N described by pcps. If at some stage in this
iteration infinitely many complements are discovered, then the function returns fail. (Even though there
might be only finitely many conjugacy classes of complements to N in U.)

ComplementClasses([V,] U, N)

Let N and U be normal subgroups of V with N < U < V. This function attempts to compute the V-
conjugacy classes of complements to N in U. The algorithm proceeds by iteration over a V-invariant efa
series of N. If at some stage in this iteration infinitely many complements are discovered, then the algorithm
returns fail.

ExtensionCR((', ¢)
returns the extension corresponding to the 2-cocycle c.
ExtensionsCR(C')

returns all extensions using the correspondence to Z2(U, A). Further, this function returns fail, if Z2(U, A)
is infinite.

ExtensionClassesCR(C)

returns extension classes using the correspondence to H?(U, A). Further, this function returns fail, if
H?(U, A) is infinite.

SplitExtensionPcpGroup(U, mats)

returns the split extension of U by the U-module described by mats.

40

8.5 Constructing pcp groups as extensions

Chapter 8. Cohomology for pcp-groups

This section contains an example application of the second cohomology group to the construction of pcp
groups as extensions. The following constructs extensions of the group of upper unitriangular matrices with

its natural lattice.

get the group and its matrix action
gap> G := UnitriangularPcpGroup(3,0);
Pcp-group with orders [0, 0, 0]

gap> mats := G!.mats;

ccrca,1,01,00,1,01, 0,0, 111,
(10,01, [00,1,17], [0,0,111,
1, 0,11, 00,121,071, [0,0,111]1]

set up the cohomology record
gap> C := CRRecordByMats(G,mats);;

compute the second cohomology group
gap> cc := TwoCohomologyCR(C);;

the abelian invariants of H"2(G,M)
gap> cc.factor.rels;
[2,0,0]

construct an extension which corresponds to a cocycle that has

infinite image in H"2(G,M)

gap> c¢ := cc.factor.preil[2];

[o, o, 0, 0, O, O, O, O, O, O, O, O, O, 1, O, O,
gap> H := ExtensionCR(CR, c);

Pcp-group with orders [0, 0, 0, 0, O, 0]

-1, 1]

check that the extension does not split - get the normal subgroup

gap> N := H!.module;
Pcp-group with orders [0, 0, 0]

create the interal module
gap> C := CRRecordBySubgroup(H,N);;

use the complements routine
gap> ComplementClassesCR(C);
L]

1»

1»

2>

3>

4»

9 Matrix Representations

This chapter describes functions which compute with matrix representations for pcp-groups. So far the
routines in this package are only able to compute matrix representations for torsion-free nilpotent groups.

9.1 Unitriangular matrix groups
UnitriangularMatrixRepresentation(G)

computes a faithful representation of a torsion-free nilpotent group G as unipotent lowertriangular matrices
over the integers. The pc-presentation for G must not contain any power relations. The algorithm is described
in [dGNO02].

IsMatrixRepresentation(G, matrices)

checks if the map defined by maping the i-th generator of the pcp-group G to the i-th matrix of matrices
defines a homomorphism.

9.2 Upper unitriangular matrix groups

We call a matrix upper unitriangular if it is an upper triangular matrix with ones on the main diagonal. The
weight of an upper unitriangular matrix is the number of diagonals above the main diagonal that contain
zeroes only.

The subgroup of all upper unitriangular matrices of GL(n,Z) is torsion-free nilpotent. The k-th term of its
lower central series is the set of all matrices of weight & — 1. The Z-rank of the k-th term of the lower central
series modulo the (k + 1)-th term is n — k.

IsomorphismUpperUnitriMatGroupPcpGroup(G)

takes a group G generated by upper unitriangular matrices over the integers and computes a polycylic
presentation for the group. The function returns an isomorphism from the matrix group to the pcp group.
Note that a group generated by upper unitriangular matrices is necessarily torsion-free nilpotent.

SiftUpperUnitriMatGroup(G)

takes a group G generated by upper unitriangular matrices over the integers and returns a recursive data
structure L with the following properties: L contains a polycyclic generating sequence for G, using L one
can decide if a given upper unitriangular matrix is contained in G, a given element of G can be written as
a word in the polycyclic generating sequence. L is a representation of a chain of subgroups of G refining the
lower centrals series of G.. It contains for each subgroup in the chain a minimal generating set.

RanksLevels(L)
takes the data structure returned by SiftUpperUnitriMat and prints the Z-rank of each the subgroup in L.
MakeNewLevel(m)

creates one level of the data structure returned by SiftUpperUnitriMat and initialises it with weight m.

42 Chapter 9. Matriz Representations

5» SiftUpperUnitriMat(gens, level, M)

takes the generators gens of an upper unitriangular group, the data structure returned level by SiftUp-
perUnitriMat and another upper unitriangular matrix M. It sift M through level and adds M at the
appropriate place if M is not contained in the subgroup represented by level.

The function SiftUpperUnitriMatGroup illustrates the use of SiftUpperUnitriMat.

InstallGlobalFunction("SiftUpperUnitriMatGroup", function(G)
local firstlevel, g;

firstlevel := MakeNewLevel(0);
for g in Generators0fGroup(G) do
SiftUpperUnitriMat (GeneratorsOfGroup(G), firstlevel, g);
od;
return firstlevel;
end);

6 » DecomposeUpperUnitriMat(level, M)

takes the data structure level returned by SiftUpperUnitriMatGroup and a upper unitriangular matrix M
and decomposes M into a word in the polycyclic generating sequence of level.

Bibliography

[BCRS91] G. Baumslag, F.B. Cannonito, D.J.S. Robinson, and D. Segal. The algorithmic theory of polycyclic-
by-finite groups. J. Alg., 142:118 — 149, 1991.

[BK0OO] James R. Beuerle and Luise-Charlotte Kappe. Infinite metacyclic groups and their non-abelian
tensor squares. Proc. Edinburgh Math. Soc. (2), 43(3):651-662, 2000.

[dGN02] Willem A. de Graaf and Werner Nickel. Constructing faithful representations of finitely-generated
torsion-free nilpotent groups. J. Symbolic Comput., 33(1):31-41, 2002.

[Eic00] Bettina Eick. Computing with infinite polycyclic groups. In Groups and Computation III, Amer.
Math. Soc. DIMACS Series. (DIMACS, 1999), 2000.

[EicOla] Bettina Eick. Computations with polycyclic groups. Habilitationsschrift, Kassel, 2001.

[EicO1lb] Bettina Eick. On the Fitting subgroup of a polycyclic-by-finite group and its applications. J. Alg.,
242:176 — 187, 2001.

[Eic02] Bettina Eick. Orbit-stabilizer problems and computing normalizers for polycyclic groups. J. Symb.
Comp., 34:1 — 19, 2002.

[ENO7] Bettina Eick and Werner Nickel. Computing the schur multiplicator and the non-abelian tensor
square of a polycyclic group. submitted, 2007.

[EO02] Bettina Eick and Gretchen Ostheimer. On the orbit stabilizer problem for integral matrix actions
of polycyclic groups. Accepted by Math. Comp, 2002.

] K.A. Hirsch. On infinite soluble groups (I). Proc. London Math. Soc., 44(2):53-60, 1938.

] K.A. Hirsch. On infinite soluble groups (II). Proc. London Math. Soc., 44(2):336-414, 1938.

] K.A. Hirsch. On infinite soluble groups (III). J. London Math. Soc., 49(2):184-94, 1946.
[Hir52] K.A. Hirsch. On infinite soluble groups (IV). J. London Math. Soc., 27:81-85, 1952.

] K.A. Hirsch. On infinite soluble groups (V). J. London Math. Soc., 29:250-251, 1954.

|

C. R. Leedham-Green and L. H. Soicher. Collection from the left and other strategies. J. Symbolic
Comput., 9(5-6):665-675, 1990.

[LGS98] C. R. Leedham-Green and Leonard H. Soicher. Symbolic collection using Deep Thought. LMS J.
Comput. Math., 1:9-24 (electronic), 1998.

[Lo98a] E. H. Lo. Finding intersection and normalizer in finitely generated nilpotent groups. J. Symbol.
Comput., 25:45 — 59, 1998.

[Lo98b] Eddie H. Lo. Enumerating finite index subgroups of polycyclic groups. Unpublished report, 1998.

[Mer97] Wolfgang W. Merkwitz. Symbolische Multiplikation in nilpotenten Gruppen mit Deep Thought.
Diplomarbeit, RWTH Aachen, 1997.

[Rob82] D.J. Robinson. A Course in the Theory of Groups, volume 80 of Graduate Texts in Math. Springer-
Verlag, New York, Heidelberg, Berlin, 1982.

[Seg83] D. Segal. Polycyclic Groups. Cambridge University Press, Cambridge, 1983.
[Segd0] D. Segal. Decidable properties of polycyclic groups. Proc. London Math. Soc. (3), 61:497-528, 1990.

[Sim94] Charles C. Sims. Computation with finitely presented groups, volume 48 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1994.

[VL90] M. R. Vaughan-Lee. Collection from the left. J. Symbolic Comput., 9(5-6):725-733, 1990.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A Denominator0fPcp, 17
AbelianPcpGroup, 22 Depth, 13

Accessing Parts of a Collector, 9 DerivedSeries, 24
AddHallPolynomials, 10 DihedralPcpGroup, 22
AddIgsTolgs, 17 E

AddToIgs, 17

Ef i 24
AddToIgsParallel, 17 aSeries,

Elementary methods for pcp-groups, 15

B Elementary properties of pcp-groups, 15
BurdeGrunewaldPcpGroup, 22 Elements, 15
C equality, subgroups, 15

ExampleOfMetabelianPcpGroup, 23
Examples0fSomePcpGroups, 23
Exponents, 13

ExponentsBy0bj, 10
ExponentsByPcp, 18

Extended 1-cohomology, 38
ExtensionClassesCR, 39
ExtensionCR, 39

Extensions and Complements, 38
ExtensionsCR, 39

Centralizer, element in subgroup, 27
subgroup in subgroup, 28

Centralizers, Normalizers and Intersections, 27

Centre, 30

Cgs, 16

CgsParallel, 16

Changing the defining pc-presentation, 20

ClosureGroup, 15

Cohomology groups, 37

Cohomology records, 36

Collector, 13 F

CommutatorSubgroup, 15 FactorGroup, 19
ComplementClasses, 39 factor group, 19
ComplementClassesCR, 39 Factor groups of pcp-groups, 19
ComplementClassesEfaPcps, 39 FactorOrder, 13

ComplementCR, 38 FCCentre, 30

ComplementsCR, 39 FiniteSubgroupClasses, 28
ConjugacyIntegralAction, 26 FiniteSubgroupClassesBySeries, 28
Constructing a Collector, 7 Finite subgroups, 28

Constructing pcp groups as extensions, 39 FittingSubgroup, 30

Converting to and from a presentation, 21 FromTheLeftCollector, 7
CRRecordByMats, 36 FTLCollectorAppendTo, 11
CRRecordByPcp, 36 FTLCollectorPrintTo, 11
CRRecordBySubgroup, 36 Functions for nilpotent groups, 30

D Further attributes for pcp-groups based on the

DEBUG_COMBINATORIAL_COLLECTOR, 11 Fitting subgroup, 29

DecomposeUpperUnitriMat, 42 G

Index

Generators0fPcp, 17
GenExpList, 13
GetConjugate, 10
GetConjugateNC, 10
GetPower, 9

GetPowerNC, 9

Group, 14
GroupHomomorphismByImages, 19
GroupOfPcp, 18

H

HeisenbergPcpGroup, 22
HirschLength, 15

Homomorphisms for pcp-groups, 19

|
Igs, 16
IgsParallel, 16
Image, 19
Index, 15
InfiniteMetacyclicPcpGroup, 22
Intersection, 28
IsAbelian, 16
IsConfluent, 8
IsConjugate, elements, 27
subgroups, 28
IsElementaryAbelian, 16
IsFreeAbelian, 16
IsInjective, 20
IsMatrixRepresentation, 41
IsNilpotentByFinite, 30
IsNilpotentGroup, 16
IsNormal, 16
IsomorphismPcGroup, 21
IsomorphismPcpGroup, 21
IsomorphismUpperUnitriMatGroupPcpGroup, 41
IsPcpElement, 12
IsPcpElementRep, 12
IsSubgroup, 15
IsTorsionFree, 28
IsWeightedCollector, 10

K

Kernel, 19

L

LeadingExponent, 13
Length, 17

Libraries of various types of polycyclic groups, 22

LowerCentralSeries, 24

45

LowIndexNormals, 29
LowIndexSubgroupClasses, 29

M

MakeNewLevel, 41
MaximalOrderByUnitsPcpGroup, 22
MaximalSubgroupClassesByIndex, 29
membership, 15

Methods for pcp-elements, 12
MinimalGeneratingSet, 30

N

NameTag, 13

NaturalHomomorphism, 19

Ngs, 16

NilpotentByAbelianByFiniteSeries, 30

NilpotentByAbelianNormalSubgroup, 29

Non-abelian tensor product and Schur extensions,
31

NonAbelianExteriorSquare, 33

NonAbelianExteriorSquareEpimorphism, 33

NonAbelianExteriorSquarePlusEmbedding, 35

NonAbelianTensorSquareEpimorphism, 34

NonAbelianTensorSquarePlus, 35

NonAbelianTensorSquarePlusEpimorphism, 35

NormalClosure, 15

Normalizer, 28

NormalizerIntegralAction, 26

NormalTorsionSubgroup, 28

NormedPcpElement, 13

NormingExponent, 13

NumberQfGenerators, 10

NumeratorOfPcp, 17

0

ObjByExponents, 10
OneCoboundariesCR, 37
OneCoboundariesEX, 38
OneCocyclesCR, 37
OneCocyclesEX, 38
OneCohomologyCR, 37
OneCohomologyEX, 38
OneOfPcp, 18
OrbitIntegralAction, 26
Orbit stabilizer methods for pcp-groups, 26

P

Pcp, 17

pep, as list, 17

Pcp-elements — elements of a pc-presented group, 12

46

Pcp-groups - groups of pcp-elements, 13
PcpElementByExponents, 12
PcpElementByExponentsNC, 12
PcpElementByGenExpList, 12
PcpElementByGenExpListNC, 12
PcpGroupByCollector, 13
PcpGroupByCollectorNC, 13
PcpGroupByPcp, 18
PcpGroupBySeries, 20
PcpOrbitsStabilizers, 26
PcpOrbitStabilizer, 26
PcpsBySeries, 25
PcpSeries, 24
PcpsOfEfaSeries, 25
Polycyclic presentation sequences for subfactors, 17
PolyZNormalSubgroup, 30
PrelImage, 19
PreImagesRepresentative, 20
PrintFullPresentation, 21
Printing a pc-presentation, 20
PrintPcpPresentation, 20

PRump, 15
R
Random, 15

RandomCentralizerPcpGroup, 31
Random methods for pcp-groups, 31
RandomNormalizerPcpGroup, 31
RandomOrbitStabilizerPcpGroup, 31
RanksLevels, 41
RefinedDerivedSeries, 24
RefinedDerivedSeriesDown, 24
RefinedPcpGroup, 20
RelativelIndex, 13
RelativeOrder, 13
RelativeOrders, 9
RelativeOrders0fPcp, 17

S

SchurCovering, 32
SchurExtension, 31
SchurExtensionEpimorphism, 32
SchurMultiplicator, 33

Index

SemiSimpleEfaSeries, 24
SetCommutator, 8
SetConjugate, 8
SetConjugateNC, 8
SetPower, 8
SetPowerNC, 8
SetRelativeOrder, 7
SetRelativeOrderNC, 7
SiftUpperUnitriMat, 41
SiftUpperUnitriMatGroup, 41
Size, 15
SmallGeneratingSet, 15
Some asorted example groups, 22
Special Features, 10
SplitExtensionPcpGroup, 39
StabilizerIntegralAction, 26
String, 10
Subgroup, 14
SubgroupBylIgs, 16
Subgroup series in pcp-groups, 24
Subgroups of finite index and maximal subgroups,
29
Subgroups of pcp-groups, 16
SubgroupUnitriangularPcpGroup, 22

T

TorsionByPolyEFSeries, 24
TorsionSubgroup, 28
TwoCoboundariesCR, 37
TwoCocyclesCR, 37
TwoCohomologyCR, 37
TwoCohomologyModCR, 38

U

Unitriangular matrix groups, 41
UnitriangularMatrixRepresentation, 41
UnitriangularPcpGroup, 22
UpdatePolycyclicCollector, 8
UpperCentralSeries, 24

Upper unitriangular matrix groups, 41
USE_COMBINATORIAL_COLLECTOR, 11
USE_LIBRARY_COLLECTOR, 11
UseLibraryCollector, 11

	Contents
	Preface
	Introduction to polycyclic presentations
	Collectors
	Constructing a Collector
	Accessing Parts of a Collector
	Special Features

	Pcp-groups - polycyclically presented groups
	Pcp-elements -- elements of a pc-presented group
	Methods for pcp-elements
	Pcp-groups - groups of pcp-elements

	Basic methods and functions for pcp-groups
	Elementary methods for pcp-groups
	Elementary properties of pcp-groups
	Subgroups of pcp-groups
	Polycyclic presentation sequences for subfactors
	Factor groups of pcp-groups
	Homomorphisms for pcp-groups
	Changing the defining pc-presentation
	Printing a pc-presentation
	Converting to and from a presentation

	Libraries and examples of pcp-groups
	Libraries of various types of polycyclic groups
	Some asorted example groups

	Higher level methods for pcp-groups
	Subgroup series in pcp-groups
	Orbit stabilizer methods for pcp-groups
	Centralizers, Normalizers and Intersections
	Finite subgroups
	Subgroups of finite index and maximal subgroups
	Further attributes for pcp-groups based on the Fitting subgroup
	Functions for nilpotent groups
	Random methods for pcp-groups
	Non-abelian tensor product and Schur extensions

	Cohomology for pcp-groups
	Cohomology records
	Cohomology groups
	Extended 1-cohomology
	Extensions and Complements
	Constructing pcp groups as extensions

	Matrix Representations
	Unitriangular matrix groups
	Upper unitriangular matrix groups

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U

