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Chapter 1

Introduction

1.1 Philosophy

Forms is a package for computation with sesquilinear and quadratic forms on finite vector spaces. It
provides users with the basic tools to work with classical groups and polar geometry, and enables one
to specify a form and its corresponding geometry. Also included in the functionality of the package
are operations which allow a user to change coordinates; or to “change form” and work in an isometric
(or similar) polar space.

1.2 Overview over this manual

The next chapter (2) gives some basic examples of the use of this package. In "Background Theory
of Forms” (Chapter 3) we revise the basic notions of the theory of sesquilinear and quadratic forms,
where we also set the notation and conventions adopted by the this package. In Sections 4.1, 4.2, and
4.3 we provide the details of the operations, functions, and attributes entailed in Forms.



Chapter 2

Examples

Here we give some simple examples that display some of the functionality of Forms.

2.1 A conic of PG(2,8)

Consider the three-dimensional vector space V = GF(8)® over GF(8), and consider the following
quadratic polynomial in 3 variables:

x% + x2x3.
Then this polynomial defines a quadratic form in V and the zeros form a conic of the associated

projective plane. So in particular, our quadratic form defines a degenerate parabolic quadric of Witt
Index 1. We will see now how we can use Forms to view this example.

Example
gap> gf := GF(8);
GF (273)
gap> vec := gf”"3;
( GF(273)"3 )
gap> r := PolynomialRing( gf, 3 );
GF(2°3) [x_1,%_2,%x_3]
gap> poly := r.1°2 + r.2 * r.3;
x_1"2+x_2*x_3
gap> form := QuadraticFormByPolynomial( poly, r );

< quadratic form >
gap> Display( form );
Quadratic form
Gram Matrix:

1.

Polynomial: x_1"2+x_2*x_3
gap> IsDegenerateForm( form );

true

gap> WittIndex( form );

1

gap> IsParabolicForm( form );
true

gap> RadicalOfForm( form );
<vector space of dimension 1 over GF(2"3)>
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Now our conic is stabilised by GO(3,8), but not the same GO(3, 8) that is installed in GAP. However,
our conic is the canonical conic given in Forms.

Example
gap> canonical := IsometricCanonicalForm( form );
< quadratic form >
gap> form = canonical;
true

So we “change forms”...

Example

gap> go := GO(3,8);
GO (0,3,8)
gap> mat := InvariantQuadraticForm( go )!.matrix;

[ [ 2(2)70, 0*2(2), 0*z(2) 1, [ 0*2(2), 0*z(2), 0*Z(2) I,
[ 0*Z(2), 2(2)°0, 0*Z(2) 1 ]

gap> gapform := QuadraticFormByMatrix( mat, GF(8) );

< quadratic form >

gap> b := BaseChangeToCanonical( gapform );
[ [ 2(2)70, 0%z(2), 0*Z2(2) 1, [ 0*z(2), Z2(2)"0, 0*Z(2) 1,
[ 0%Z(2), 0*z(2), Z(2)°0 1 ]

gap> hom := BaseChangeHomomorphism( b, GF(8) );
"I [ z2(2)70, 0*%z2(2), 0*z(2) 1, [ 0*Z(2), Z(2)°0, 0*Z(2) 1,
[ 0%Z(2), 0*Z(2), Z2(2)°0 ] ]

gap> newgo := Image (hom, go);

Group ([ [ [ Z(2)"0, O*Z(Z), 0%z (2) 1, [ 0%Z2(2), Z(2°3), 0*Z(2) 1,
[ 0%2(2), 0*Z(2), ( 37611, [ [2(2)°0, 0%2(2), 0*z(2) 1,

[ 2(2)°0, 2(2)"0, 01, [0%2(2), 2(2)70, 0%Z(2) 1 1 1)

Now we look at the action of our new GO(3,8) on the conic.

Example
gap> conic := Filtered(vec, x —-> IsZero( x"form ));;
gap> Size( conic );
64
gap> orbs := Orbits(newgo, conic, OnRight);;
gap> List (orbs, Size);
[ 1, 63 ]

So we see that there is a fixed point, which is actually the nucleus of the conic, or in other words, the
radical of the form.

2.2 A form for W(5,3)

The symplectic polar space W(5,q) is defined by an alternating reflexive bilinear form on the six-
dimensional vector space GF(g)®. Any invertible 6 x 6 matrix A which satisfies A +A” =0 is a
candidate for the Gram matrix of a symplectic polarity. The canonical form we adopt in Forms for an
alternating form is

F(x,y) = X1y2 — X291 +X3Y4 — XaY3 -+ + X2n—1Y2n — X2nY2n—1-
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Example

gap> £ := GF(3);
GF (3)

gap> gram :=
(0,0,0,1,0,0]
[0,0,0,0,1,0]
(0,0,0,0,0,1]
(-1,0,0,0,0,0
(0,-1,0,0,0,01,
[0,0,-1,0,0,0]] * One(f);;

gap> form := BilinearFormByMatrix( gram, f );
< bilinear form >

gap> IsSymplecticForm( form );

true

gap> Display( form );

Bilinear form

Gram Matrix:

[

r

r

1,
]
]

4

1.
1.
. 1
2 .
L2,
2
gap> b := BaseChangeToCanonical( form );;
gap> Display( b );
. 1
.2 .
. 1
.2 .
. 1
2




Chapter 3

Background Theory on Forms

In this section, we give a very brief overview on the theory of sesquilinear and quadratic forms.
The reader can find more in the texts: Cameron [Cam00], Taylor [Tay92], Aschbacher [Asc00], or
Kleidman and Liebeck [KL.90].

3.1 Sesquilinear forms, dualities, and polarities

A sesquilinear form on a vector space V over a field F, is a map f from V x V to F which is linear
in the first coordinate, but semilinear in the second coordinate; that is, there is a field automorphism
o (the companion automorphism of f) such that f(v,Aw) = A*f(v,w) forall yw € V and A € F. If
o is the identity, then f is bilinear. Two vectors v and w are orthogonal (w.r.t. f) if f(v,w) =0. The
radical of f is the subspace consisting of vectors which are orthogonal to every vector, and we say
that f is non-degenerate if its radical is trivial (and degenerate otherwise). A duality d of a projective
space P is an incidence reversing permutation of the subspaces of P, and a polarity of P is a duality
of order 2. An example of such arises from a non-degenerate sesquilinear form; given a subspace
W, we let W+ be the set of points which are orthogonal with every element of W. We say that a
subspace W is totally isotropic with respect to a polarity if W contains or is contained in W+. The
Birkhoff-von Neumann Theorem states that every duality of the projective space PG(n,q) arises from
a non-degenerate sesquilinear form (up to a scalar). Such a duality is a polarity if it is reflexive,
ie., f(v,w) =0 implies f(w,v) = 0. Now a sesquilinear form f is hermitian if f(v,w) = f(w,v)*
holds where o is the companion automorphism of f and o has order 2. But if o is trivial then f is
symmetric. If f inturn satisfies f(v,v) = 0 (for all v) then f is alternating. 1t is a well-known theorem
of polar geometry that a non-degenerate reflexive sesquilinear form is either alternating, symmetric,
or similar to an hermitian form. The associated polarity is called symplectic, orthogonal, and unitary
respectively (though there are some other conventions for the characteristic 2 case).

3.1.1 Example

Let M be an invertible 4-dimensional square matrix over F and consider the following map on pairs
of elements of the 4-dimensional vector space V over F:

fv,w) =vMw’.

Then f is a sesquilinear form of V and M is the Gram matrix of f.
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3.2 Quadratic forms

We have seen that a polar space can arise from a reflexive sesquilinear form, but there are other polar
spaces which do not arise this way, but instead have an associated quadratic form. A map Q from a
vector space V to a field F is a quadratic form if it satisfies Q(Av) = A2Q(v) forall v € V and A € F.
We say that a subspace W is rotally singular if the restriction of Q to W is trivial. Note that a subspace
is totally isotropic (with respect to the associated polarity) if it is totally singular, but the converse is
not always true.

3.2.1 Example

Let M be an invertible 4-dimensional square matrix over F' and consider the following map on ele-
ments of the 4-dimensional vector space V over F':

fv) =vMmyT.

Then f is a quadratic form of V and M is the Gram matrix of f.
Given a quadratic form Q, there is an associated sesquilinear form f (which may not be reflexive)
defined as follows

flvyw)=0Wv+w)—0()—0(w).

For characteristic not 2, the quadratic form and its associated sesquilinear form f determine one
another, as 2Q(v) = f(v,v) (for all v).

3.3 Morphisms of forms

An isometry from a formed space (V, f) to a formed space (W, f’) is a bijection ¢ such that for all v, w
in V we have

Fw) = £1(0(v),0(w)).

The weaker notions of similarity and semi-similarity are also important in polar geometry. If there
exists a scalar A such that for all v,w in V we have

Frw) =1f/(0(v),0(w))

then we say that ¢ is a similarity. If we also have a fixed field automorphism o such that

F,w) =Af'(0(v), 0(w))%,

then ¢ is a semi-similarity. Naturally, we say that the formed spaces (V, f) and (W, f') are isometric
(resp. similar) if there exists an isometry (resp. similarity) between them. Every non-degenerate
reflexive sesquilinear form is alternating, symmetric, or similar to an hermitian form. Thus, up to sim-
ilarity, the non-degenerate polar spaces come in five flavours: symplectic, unitary, orthogonal-elliptic,
orthogonal-hyperbolic, and orthogonal-parabolic. In the case of the orthogonal spaces, they are dis-
tinguished by their Witt Index (the common dimension of their maximal totally singular/isotropic
subspaces).
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3.4 An important convention

In Forms, we have stipulated a convention on the creation of forms so as to cause as little confusion
as possible. The hermitian forms will simply be those with the Frobenius Automorphism is the com-
panion automorphism. We should also caution the user on what information is “enough” to specify a
form as problems can arise in even characteristic.

3.4.1 Example

Let F be a finite field of square order and let M be the following 4 x 4 matrix over F:

01 0 O
1 0 0 O
0 0 0 1
0 0 1 0

Let o be the unique automorphism of F of order 2. Then the form
(u,v) := uM (v )*
defines a non-degenerate hermitian sesquilinear form. If F has odd characteristic, then the form
(u,v) := uMv’
defines a non-degenerate orthogonal form, but if F has even characteristic, then this form is both:
1. a symplectic bilinear form, and
2. the associated bilinear form arising from a quadratic form.

In the latter, case we see that the bilinear form does not define the quadratic form, but rather that the
quadratic form is necessary in order to define the polar geometry.

3.5 Canonical forms

Every nondegenerate polar space has a direct decomposition into a sum
Lyl !l --L,1U

where each of the L; are hyperbolic lines and U is an anisotropic subspace of dimension at most 2.
Thus if the given polar space is defined by a sesquilinear form f, then there is an isometric polar space
defined by a Gram Matrix of the form

U

m O
O =

m O
O =

0 1
e 0

were the top left hand corner represents the anisotropic part, and there are zeros everywhere else.
The value of € is -1 if the form is alternating, otherwise it is 1.




Chapter 4

Functionality

4.1 Functions for creating forms

4.1.1 BilinearFormByMatrix

Q BilinearFormByMatrix( m, f ) (operation)
Returns: a bilinear form
The argument m must be a square matrix over the finite field £. The field must be specified, as only
the characteristic of the underlying field can be determined by the entries of m. The output will be a
record rec( matrix, basefield, type ).
Example

gap> gf := GF(372);
GF (372)
gap> mat := IdentityMat (4, gf);
[ [ 2(3)°0, 0%Z(3), 0*Z(3), 0*Z(3) 1, [ 0*Z(3), Z(3)"0, 0*Z(3), 0*Z(3) 1,
[ 0%Z(3), 0*Z(3), Z(3)"0, 0*Z(3) 1, [ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0 1 ]
gap> f := BilinearFormByMatrix( mat, gf );
< bilinear form >
gap> Display (f);
Bilinear form
Gram Matrix:
1. ..
1

4.1.2 QuadraticFormByMatrix

Q QuadraticFormByMatrix( m, f ) (operation)
Returns: a quadratic form
The argument m must be a square matrix over the finite field £. The field must be specified, as only
the characteristic of the underlying field can be determined by the entries of m. The output will be a
record rec( matrix, basefield, type ).

Example
gap> gf := GF(272);
GF(2°2)
gap> mat := InvariantQuadraticForm( SO(-1, 4, 4) )!.matrix;

12
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[ [ 0%2(2), z(2)"°0, 0*Z(2), 0*Z(2) 1, [ 0*Z(2), 0*Z(2), 0*z(2), 0*z(2) 1,
[ 0%*Z(2), 0%Z(2), Z2(2°2)"2, 2(2)"0 1, [ 0*Z(2), 0*z(2), 0*z(2), Z(272)"2 ]
gap> f := QuadraticFormByMatrix( mat, gf );
< quadratic form >
gap> Display(f);
Quadratic form
Gram Matrix:
z = 7(4)
1

4.1.3 HermitianFormByMatrix

Q HermitianFormByMatrix( m, f ) (operation)
Returns: a quadratic form
The argument m must be a square matrix over the finite field f of square order. The field must be
specified, as only the characteristic of the underlying field can be determined by the entries of m. The
output will be a record rec( matrix, basefield, type ).
Example

gap> gf := GF(372);
gap> mat := IdentityMat (4, gf);
gap> f := HermitianFormByMatrix( mat, gf );
< hermitian form >
gap> Display (f);
Hermitian form
Gram Matrix:
1

O |
Witt Index: 2

4.1.4 BilinearFormByPolynomial

{ BilinearFormByPolynomial ( poly, r, n ) (operation)
Q BilinearFormByPolynomial ( poly, r ) (operation)
Returns: a bilinear form
The argument poly must be a polynomial in the polynomial ring r. The (optional) last argument
is the dimension for the underlying vector space of the resulting form, which by default is the number
of indeterminates specified by poly.
Example

gap> r := PolynomialRing( GF(11), 4);
GF(11) [x_1,x_2,x_3,x_4]

gap> vars := IndeterminatesOfPolynomialRing( r );
[ x 1, x 2, x 3, 2 4]
gap> pol := vars[l]*vars[2]+vars[3]*vars[4];

x_1*x 24x_3*x_4

gap> form := BilinearFormByPolynomial (pol, r, 4);
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< bilinear form >
gap> Display (form);
Bilinear form
Gram Matrix:

6

6
Polynomial: x_1*x 2+x_3*x_4
gap> ## Projective Points...
gap> projpoints := List (Subspaces( GF(11)"4, 1 ), Representative);;
gap> ## Number of totally isotropic points
gap> Number (projpoints, t -> IsZero( [t, t] " form ));
144

4.1.5 QuadraticFormByPolynomial

{ QuadraticFormByPolynomial ( poly, r, n ) (operation)
Q QuadraticFormByPolynomial ( poly, r ) (operation)
Returns: a quadratic form
The argument poly must be a polynomial in the polynomial ring r. The (optional) last argument
is the dimension for the underlying vector space of the resulting form, which by default is the number
of indeterminates specified by poly.
Example

gap> r := PolynomialRing( GF(8), 3);

GF(2°3) [x_1,x_2,x_3]

gap> poly := r.1°2 + r.2"2 + r.372;
x_1"2+4x_2"24%_3"2

gap> form := QuadraticFormByPolynomial (poly, r);
< quadratic form >

gap> RadicalOfForm(form);

<vector space over GF(2°3), with 3 generators>

4.1.6 HermitianFormByPolynomial

Q HermitianFormByPolynomial ( poly, r, n ) (operation)
Q HermitianFormByPolynomial ( poly, r ) (operation)
Returns: an hermitian form
The argument poly must be a polynomial in the polynomial ring r (defined over a finite field of
square order). The (optional) last argument is the dimension for the underlying vector space of the
resulting form, which by default is the number of indeterminates specified by poly.

Example
gap> r := PolynomialRing( GF(9), 4);
GF(372) [x_1,x_2,x_3,x_4]
gap> vars := IndeterminatesOfPolynomialRing( r );
[ x 1, %2, x_3, x4 ]
gap> poly := vars[l]*vars[2] " 3+vars([l] "3*vars[2]+vars[3]*vars[4] " 3+vars[3] " 3*vars[4]|
x_173%x 2+x_1*x 2" 3+x_3"3*x_4+x_3*x_4"3
gap> form := HermitianFormByPolynomial (poly,r);
< hermitian form >
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gap> Display (form);
Hermitian form
Gram Matrix:

1.

1.
Polynomial: x_173*x_2+x_1*x_2"3+x_3"3*x_4+x_3*x_4"3

4.2 Attributes and properties of forms

4.2.1 IsReflexiveForm

{) IsReflexiveForm( f ) (attribute)
Returns: true or false.
A sesquilinear form f is reflexive if whenever we have f(u,v) = 0, then we also have f(v,u) = 0.
This operation simply returns true or false.

4.2.2 IsAlternatingForm

{Q IsAlternatingForm( f ) (attribute)
Returns: true or false.
A bilinear form f is alternating if f(v,v) = 0 for all v. This operation simply returns true or
false.

4.2.3 IsSymmetricForm

Q IsSymmetricForm( f ) (attribute)
Returns: true or false.
A bilinear form f is symmetric if f(u,v) = f(v,u) for all pairs of vectors u and v. This operation
simply returns true or false.

4.2.4 IsDegenerateForm

Q IsDegenerateForm( f ) (attribute)
Returns: true or false.
A sesquilinear form f is degenerate if there exists a nonzero vector v which is orthogonal to every
other vector. That is, f(v,w) = 0 for all w. Likewise, a quadratic form Q is degenerate if there is a
nonzero vector v such that Q(v) = 0. This operation simply returns true or false.

4.2.5 BaseField

{) BaseField( f ) (attribute)
Returns: the underlying field of f.
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4.2.6 GramMatrix
{ GramMatrix( f )

Returns: the associated Gram matrix of £.
4.2.7 WittIndex

QWittIndex( f )
Returns: the Witt index of £.

16

(attribute)

(attribute)

The Witt index is the maximum dimension of a totally singular subspace. So for example, if £ is
a symplectic form and d is the dimension of its underlying vector space, then the Witt index of £ is

d)2.

4.2.8 RadicalOfForm

{ RadicalOfForm( f )

Returns: a subspace, the radical, of the vectors space associated with f.

(attribute)

Example
gap> r := PolynomialRing( GF(8), 3 );

GF(2°3) [x_1,x_2,x_3]

gap> poly := r.172 + r.2 * r.3;
x_1"2+4x_2*x_3

gap> form := QuadraticFormByPolynomial ( poly, r );
< quadratic form >

gap> RadicalOfForm( form );

<vector space of dimension 1 over GF(2"3)>

4.2.9 PolynomialOfForm

Q PolynomialOfForm( f )
Returns: the polynomial associated with f.

(attribute)

Example
gap> mat := [ [ Z(8) , 2(2), 0%2(2), 0*Z(2), 0*z2(2) 1,
[ 0*Z(2), 2(2)°0, Z(2 ) 5, 0*z2(2), 0*2(2) 1,
[ 0*Z(2), 0*Zz(2), 0*Z(2), 0*z(2), 0*Z(2) 1,
[ 0%Z2(2), 0*2(2), 0*Z(2), 0*Z(2), 2(2)"0 ],
[ 0%2(2), 0*2(2), 0*Z(2), 0*Z(2), 0*Z2(2) 1 1;;
gap> form := QuadraticFormByMatrix(mat,GF (8));

< quadratic form >
gap> PolynomialOfForm(form);
Z(273)*x_1"24x_2"2+72(273) "5*x_2*x_3+x_4*x_5

4.2.10 DiscriminantOfForm

{ DiscriminantOfForm( f )
Returns: a string

Given a quadratic or sesquilinear form £, this operation returns a string: “

(attribute)

square” or “nonsquare”.

Discriminants can be used to delineate the isometry type of an orthogonal form in even (algebraic)

dimension.
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Example
gap> gram := InvariantQuadraticForm(GO(-1,4,5))!.matrix;;
gap> f := QuadraticFormByMatrix (gram, GF(5));

< quadratic form >

gap> DiscriminantOfForm(f);

"nonsquare"

4.3 Functions for changing forms

4.3.1 BaseChangeToCanonical

{ BaseChangeToCanonical ( f ) (operation)
Returns: a base-transition matrix
The argument f is a sesquilinear or quadratic form. For every isometry class of forms, there is a
canonical representative, which is in block diagonal form. If M is the Gram matrix of the form £, then
b * M * TransposedMat (b) is the Gram matrix of the canonical representative.

Example
gap> £ := GF(3);
GF (3)
gap> gram := [
(0,0,0,1,0,07,
(0,0,0,0,1,01,
(0,0,0,0,0,11,
(-1,0,0,0,0,01,
(0,-1,0,0,0,01,
[0,0, 1,0,0,0]] * One(f);;
gap> form := BilinearFormByMatrix( gram, f );
< bilinear form >
gap> b := BaseChangeToCanonical ( form );;
gap> Display( b * gram * TransposedMat (b) );
1.
2 . .
.1
.2 . .
.1
.2

4.3.2 IsometricCanonicalForm

{) IsometricCanonicalForm( f ) (attribute)
Returns: the canonical form isometric to the sesquilinear or quadratic form f.
For every isometry type of sesquilinear or quadratic form, there is a canonical one. In Forms, the
canonical form of each class is that which preserves the natural hyperbolic line decomposition (see
Secton 3.5).

Example
gap> mat := [ [ Z(8) , O* z(2), 0%Z2(2), 0*z(2), 0*Z(2) 1,
[ 0*Z(2), Z(2)°0, Z2(273)"°5, 0*Z(2), 0*z(2) 1,
[ 0*Z(2), 0%z (2), 0*Z(2), O*Z(Z), O*Z( ) 1,
[ O*Z(Z), 0%z(2), 0*z(2), 0*z(2), "0 1,
[ 0*%2(2), 0*2(2), 0*z(2), 0*Z(2), O*Z (2) 1 1:;
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gap> form := QuadraticFormByMatrix (mat,GF(8));
< quadratic form >
gap> 1so := IsometricCanonicalForm(form);

< quadratic form >
gap> Display (form);
Quadratic form
Gram Matrix:

z = 7(8)

Witt Index: 2
gap> Display(iso);
Quadratic form
Gram Matrix:

1.

1

Witt Index: 2

4.4 Operations on forms

4.4.1 BaseChangeHomomorphism

{ BaseChangeHomomorphism( b, gf ) (operation)
Returns: the inner automorphism of GL(d,q) associated to the base-transition b.
The argument b must be an invertible matrix over the finite field gf.

Example
gap> gl:=GL(3,3);
GL(3,3)
gap> go:=G0(3,3);
GO (0,3,3)

gap> gram:=InvariantBilinearForm(go)!.matrix;

[ [ 0%2(3), 2(3)70, 0*Z(3) 1, [ 2(3)70, 0*Z(3), 0*Z(3) 1, [ 0*Z(3), 0*Z(3), Z(3) ] ]
gap> f:=FormByMatrix (gram,GF(3),"parabolic");

< bilinear form >

gap> b:=BaseChangeToCanonical (f);;

gap> hom := BaseChangeHomomorphism(b, GF(3));

L0 0*2(3), 0*%2(3), 2(3) 1, [ 2(3), 2(3), Z2(3)°0 1, [ 2(3), 0*2(3), Z(3) 1 ]

gap> newgo := Image (hom, go);

Group (

[ [ [2Z(3)°0, 0*2(3), Z2(3) 1, [ 2(3)70, 2(3), Z2(3)"0 1, [ 0*z(3), 0*Z(3), Z2(3) 1 1,
[ [ 2(3), 2(3)70, 0*2(3) 1, [ 0*2(3), Z(3), 0*Z(3) 1, [ 2(3)70, 2(3)°0, z2(3) 1 1 ]

gap> gens:=GeneratorsOfGroup (newgo);;

gap> canonical := b * gram * TransposedMat (b);

[ [ 2(3), 0*2(3), 0*Z2(3) 1, [ 0*Z(3), 0*Z(3), Z2(3)°0 1, [ 0%*Z(3), Z(3)70, 0*Z(3) 1 1]
gap> ForAll(gens, y -> y * canonical * TransposedMat (y) = canonical);
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’ true

4.4.2 EvaluateForm

{ EvaluateForm( £, u, v ) (operation)
O EvaluateForm( £, u ) (operation)
Returns: a finite field element
The argument f is either a sesquilinear or quadratic form defined over a finite field GF(g). The
other argument is a pair of vectors or matrices, or a single vector or matrix, which represent the bases
of given subspaces of GF (¢)?. There is also an overloading of the operation ~ which we show in the
following example:
Example
gap> mat := [[Z(8),0,0,0],(0,0,Z(8)"4,0],(0,0,0,11,10,0,0,011*%2(8)"0;;
gap> form := QuadraticFormByMatrix(mat,GF (8));
< quadratic form >

gap> u := [ Z2(2°3)74, 2(2°3)74, 7(2)°0, Z(2"3)"3 1;
[ 2(273)74, 72(2°3)74, 72(2)°0, Z(2°3)"3 ]

gap> EvaluateForm( form, u );

2(2°3)76

gap> u”form;

z(2°3)"6

Here is an example using sesquilinear forms...
Example
gap> gram := [[0,0,0,0,0,2],(0,0,0,0,2,0],(0,0,0,1,0,071,(0,0,1,0,0,01,
(0,2,0,0,0,01,02,0,0,0,0,011*2(3)"0;;
gap> form := BilinearFormByMatrix(gram,GF (3));
< bilinear form >
gap> u := [ [ Z(3)°0, (3), Z2(3), z(3)°0, 0*z(3), Z(3)70 1,
[ 0%Z(3), 0*Z(3), Z(3)"0, 2(3) 0, 2(3), 0*Z(3) 1 1;;
gap> v := [ [ Z(3)°0, (3), 2(3)°0, Z2(3), 0*2(3), z(3) 1,
[ 0%Z(3), Z(3)70, 0*Z(3), 2(3), Z2(3), Z(3) 1 1;;
gap> EvaluateForm( form, u, v);
[ [2(3)7°0, 2(3)°0 1, [ 0*2(3), 0*2(3) ] ]
gap> [u,v] form;
[ [ 2(3)70, 2(3)70 1, [ 0*2(3), 0*Z(3) 1 ]
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