RDS

A GAP4— Package
for Relative Difference Sets

Version 0.9beta21

Marc Roder
Fachbereich Mathematik, TU Kaiserslautern

roeder@mathematik.uni-kl.de
marc_roeder@web.de

November 2006

1.1

2.1

2.2
2.3

3.1
3.2

3.3
34

4.1
4.2

6.1
6.2

6.3
6.4

7.1

About this package
Installation
A quick start

First Step: Integers instead of group
elements

Signatures: An important tool
Change of coset vs. brute force
General concepts
Introduction

How partial difference sets are
represented

Basic functions for startset generation
A brute force method

Invariants for Difference Sets

The Coset Signature

Blackbox functions

An Example Program

Ordered Signatures

Ordered signatures by quotient images

Ordered signatures using
representations

Definition

Methods for calculating ordered
signatures

Determining the Isomorphism
Class of Projective Planes

Isomorphisms and Collineations

N N o owotos

oo

11
12
12
16
18
21

23
23

24

26
27

7.2
7.3
7.4

8.1
8.2
8.3
8.4
8.5

Contents

Central Collineations

Collineations on Baer Subplanes
Invariants for Projective Planes
Some functions for everyday use
Groups and actions

Iterators

Lists and Matrices

Cyclotomic numbers

Filters and Categories
Bibliography

Index

28
29
29
31
31
31
32
33
33
35
36

About this package

The RDS package is meant to help with complete searches for relative difference sets in non-abelian groups.
Of course, it also works for abelian groups, but no special features are implemented for this case. In particular,
there is no support for multipliers.

Furthermore, the focus is on difference sets defining projective planes. So RDS contains some methods
for analyzing projective planes but has no support for other designs. Nonetheless other designs may be
constructed if they can be described in terms of difference sets.

RDS has no undocumented functions. While this is generally regarded as a feature, it leads to a quite long
manual and a lot of documentation not needed for everyday work. So each chapter has a short introduction
helping you to distinguish the “interesting” features from the “uninteresting” ones.

For a quick overview, see chapter 2.

The package is entirely written in GAP. So it should run on every computer that runs GAP.

1.1 Installation

Just copy the archive to the directory where the other packages live . For example, gap/pkg/ in your home
directory. Or use the pkg/ directory in one of the paths from the GAPvariable GAP_ROOT.

Then call GAPand type
gap> LoadPackage("rds");

Loading RDS 0.9betab
by Marc Roeder
For help, type: 7RDS

For a test, see the example in chapter 2.

A quick start

This chapter shows a quick example of how to use RDS. Some of the functions used here make choices
which might not be optimal. So if you plan to do more involved computations, you should also see the other
chapters to learn about the concepts behind these high-level functions.

Here we will construct relative difference sets of Dembowski-Piper type “b” and order 9. We will take the
elementary abelian group as an example. The general idea is as follows: Find a “nice” normal subgroup U
and generate relative difference sets coset by coset. The normal subgroup has to be chosen such that we
know how many elements to choose from each coset modulo U.

The calculations here are very easy, a more demanding example can be found in chapter 5.

2.1 First Step: Integers instead of group elements

Difference sets are represented by lists of integers. Every difference set is assumed to contain 1. This is
assumed implicitly. So the lists representing difference sets must not contain 1 (a partial difference set of
length n is hence represented by a list of length n — 1). If a partial difference set contains 1, many functions
will produce errors.

To find Difference sets in a group, say G, begin with generating the group (and forbidden subgroup) and
defining the parameters. Like this:

gap> LoadPackage("rds");

Loading RDS 0.9betab

by Marc Roeder

For help, type: 7RDS

true

gap> k:=9;;lambda:=1;;groupOrder:=81;;

gap> forbiddenGroupOrder:=9;;

gap> G:=ElementaryAbelianGroup(groupOrder) ;

<pc group of size 81 with 4 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> N:=Group(Generators0fGroup(G){[1,2]1});

<pc group with 2 generators>

gap> Size(N)=forbiddenGroupOrder; #just a test...
true

Once we have calculated Gdata, this will be used very often to represent the group G as it contains much
more information.

Section 2. Signatures: An important tool 5

2.2 Signatures: An important tool

The “signature” of a subset S C G of a group relative to a normal subgroup U is the multiset of numbers of
elements S contains from each coset modulo U. Possible values of these numbers can be calculated a priori
for relative difference sets.

gap> sigdat:=SignatureData(Gdata,N,k,lambda,1075);;

The argument 10° depends on your degree of impatience. Larger numbers take more time in this step, but
give better results for later reduction steps.

Now we will look for a “nice” normal subgroup. A normal subgroup is “nice”, if it has only few signatures
and the number of different entries in each signature is low. If you have different choices here do some
experiments, to see what works. Let’s see what we have:

gap> NormalSgsHavingAtMostNSigs(sigdat,1,[1..7]);
[rec(sigs := [[3, 3, 31], subgroup := Group([f1, £2, £3 1)),

rec(sigs := [[3, 3, 3] 1, subgroup := Group([f1, f2, f4 1)),
rec(sigs := [[3, 3, 31 1, subgroup := Group([f1, f2, £3%xf4 1)),
rec(sigs := [[3, 3, 3] 1, subgroup := Group([f1, £f2, £3*f4°2 1))]

The second parameter of NormalSgsHavingAtMostNSigs is the maximal number of signatures the subgroup
may have. The second parameter gives the desired lengths of the signatures (the index of the normal
subgroup).

So in this example we have no real choice. Let’s take the first group for U. The signature means that
we have to get 3 elements from each coset modulo U. So we generate startsets of length 2 in the trivial
coset U (representing partial relative difference sets of length 3). The function StartsetsInCoset generates
startsets in U by generating an initial set of startsets and then raising the length of each startset by 1. Then
a reduction using signatures and automorphism is performed. This is done until all startsets have the desired
length or no startset remains (in which case there is no relative difference set). For the reduction, a suitable
set of automorphisms must be chosen. This is done by the function SuitableAutomorphismsForReduction:

gap> U:=last[1].subgroup;

Group([f1, f2, £3 1)

gap> auts:=SuitableAutomorphismsForReduction(Gdata,U);

[<permutation group of size 303264 with 8 generators>]

gap> startsets:=StartsetsInCoset([],U,N,2,auts,sigdat,Gdata,lambda);
#I Size 18

#I 1/ 0 @ 0:00:00.328

#I Size 8
#I 1/ 0 @ 0:00:00.180
[[4, 2211

For larger examples, this takes a wile. Taking 10° (or even more) for the generation of sigdat can save some
time here. A few remarks about the parameters of StartsetsInCoset. The first parameter [] is the set of
startsets which we start with (as we just started, this is empty). The second parameter is the coset we use
to generate startsets and third parameter is the forbidden subgroup. The fourth parameter is the length of
the startsets we want to generate (remember that 1 is assumed to be in every startset without being listed.
So we want startsets of size 3 represented by lists of length 2. Hence the 2 in this place). Instead of auts a
suitable list of groups of automorphisms of G in permutation representation may be inserted. These are used
for the reduction of startsets. For large groups auts/1] it is a good idea to add some subgroups of auts/1] to
the list (ascending in order) auts, as the reduction is done using the first group in the list and then reducing
the already reduced list again using the next group.

6 Chapter 2. A quick start
2.3 Change of coset vs. brute force

Now we have startsets of length 2 in U and there are two possibilities:

(1) Find 3 more elements from another coset like this:

gap> cosets:=RightCosets(G,U);
[RightCoset(Group([f1, £f2, £3]),<identity> of ...),
RightCoset (Group([f1, f2, £3]),f4),
RightCoset (Group([f1, f2, £3]),f4"2)]
gap> startsets:=StartsetsInCoset(startsets,cosets[2],N,5,auts,sigdat,Gdata,lambda);
#I Size 27
#I 1/ 0 @ 0:00:00.632

#I Size 11
#I 1/ 0 @ 0:00:00.260
#I Size 12

#I 2/ 0 @ 0:00:00.340
[[4, 22, 5, 48, 591, [4, 22, 5, 59, 61 1] 1]

And 3 more from the last one (of course, we could also change to force, but it seems to work this way...).

gap> startsets:=StartsetsInCoset(startsets,cosets[3],N,8,auts,sigdat,Gdata,lambda);
#I Size 9
#I 1/ 0 @ 0:00:00.300

#I Size 1
#I 1/ 1 @ 0:00:00.024
#I Size 1

#I 1/ 1 @ 0:00:00.028
[[4, 22, 5, 48, 59, 29, 72, 78 1]

So we found one difference set of order 9 in the elementary abelian group of order 81. To get the difference
set containing 1 explicitly and as a subset of G, say

gap> PermList2GroupList(Concatenation(startsets[1],[1]),Gdata);
[£3, f1x£f372, f4, f2*x£f372%f4, f1xf2°2xf3xf4, f2*xf4"2, f1 " 2xf3"2xf4"2,
£17°2+£272%x£3%xf472, <identity> of ...]

(2) Do a brute force search. Here we have to convert the forbidden group N into a list of integers Np. And
we have to raise the length of the startsets by one before we can start. This is due to the ordering we chose
(which is not necessarily compatible with the cosets modulo U).

gap> Np:=GroupList2PermList (Set(N),Gdata);

[1, 2, 3, 6, 7, 10, 16, 19, 32 1]

gap> startsets:=ExtendedStartsetsNoSort(startsets, [1..groupOrder],Np,8,Gdata,lambda);;
gap> Size(startsets);

54

gap> foundsets:=[];;

gap> for set in startsets

> do

> Append(foundsets,AllDiffsets(set, [1..groupOrder] ,k-1,Np,Gdata,lambda));
> od;

gap> Size(foundsets);

162

Now foundsets contains 162 relative (9, 9,9, 1)-difference sets (represented by lists of length 8).

General concepts

In this chapter, we first give a definition of relative difference sets and outline a part of the theory. Then we
have a quick look at the way difference sets are represented in RDS.

After that, some basic methods for the generation of difference sets are explained.

If you already read chapter 2 and want to know what StartsetsInCoset really does, you may want to read
this chapter (and the following one, of course). The main high-level function in this chapter is Extended-
Startsets.

3.1 Introduction

Let G be a finite group and N C G. The set R C G with |R| = k is called a “relative difference set of order
k — X relative to the forbidden set N” if the following properties hold:

(a) The multiset {a - b~':a,b € R} contains every nontrivial (# 1) element of G — N exactly A times.
(b) {a-b71t:a,b € R} does not contain any element of N.

Relative difference sets with N = 1 are called (ordinary) difference sets. As a special case, difference sets
with N =1 and A = 1 correspond to projective planes of order k£ — 1. Here the blocks are the translates of
R and the points are the elements of G.

In group ring notation a relative difference set satisfies

RR™' =k +A\G - N):
The set D C G is called partial relative difference set with forbidden set N, if

DD ' =k + Z Vg g
geG—N

holds for some 1 <k < kand 0 <y, < Aforall g€ G— N.If D is a relative difference set then ,obviously,
D is also a partial relative difference set.

Two relative difference sets D, D’ C G are called strongly equivalent if they have the same forbidden set
N C @ and if there is ¢ € G and an automorphism « of G such that D’g~! = D®. The same term is applied
to partial relative difference sets.

Let D C G be a difference set, then the incidence structure with points G and blocks {Dg | g € G} is called
the development of D. In short: devD. Obviously, G acts on devD by multiplication from the right.

If D is a difference set, then D! is also a difference set. And devD~! is the dual of devD. So a group
admitting an operation some structure defined by a difference set does also admit an operation on the
dual structure. We may therefore change the notion of equivalence and take ¢ to be an automorphism
or an anti-automorphism. Forbidden sets are closed under inversion, so this gives a “weak” sort of strong
equivalence.

8 Chapter 3. General concepts

3.2 How partial difference sets are represented

Let G be a group. We define an enumeration {g1,...,9,} = G and represent D C G as a list of integers
(where ,of course, i represents g; for all 1 < ¢ < n). So the automorphism group of G is represented as
a permutation group of degree n. One of the operations performed most often by methods in RDS is the
calculation of quotients in G. So we calculate a look-up table for this.

This pre-calculation is done by the operation PermutationRepForDiffsetCalcuations. So before you start
generating difference set, call this function and work with the data structure returned by it.

For an exhaustive search, the ordering of G is very important. To avoid generating duplicate partial difference
sets, we would like to represent partial difference sets by sets, i.e. ordered lists. But in fact, RDS does not
assume that partial difference sets are sets. The operations ExtendedStartSets and A11Diffsets assume
that the last element of partial difference set is its maximum. But they don’t test it. So if you start from
scratch, these methods generate difference sets which are really sets. Whereas the NoSort versions disregard
the ordering of G and will produce duplicates.

The reason for this seemingly strange behaviour is the following: Assume that we have a normal subgroup
U < G and know that every difference set D C G contains exactly n; elements from the i*" coset modulo
U. Then it is natural to generate difference sets by first searching all partial difference sets of length n;
containing entirely of elements of the first coset modulo U and then proceed with the other cosets.

This method of difference set generation is normally not compatible with the ordering of G. This is why
partial difference sets are not required to be sets. See chapter 5 for an example.

3.3 Basic functions for startset generation

Defining an enumeration of the a group G, every relative difference set may be represented by a list of
integers. Indexing G in this way has the advantage of the automorphism group of G being a permutation
group. As relative difference sets are normally calculated in small groups, it is possible to store a complete
multiplication table of the group in terms of the enumeration.

If not stated otherwise, partial difference sets are always considered to be lists of integers. Note that it is
not required for a partial difference set to be a set.

PermutationRepForDiffsetCalculations(group) O
PermutationRepForDiffsetCalculations(group, autgrp) O

For a group group, PermutationRepForDiffsetCalculations (group) returns a record containing:
the group .G=group.

the sorted list . Glist=Set (group),

the automorphism group .A of group,

the group .Aac, which is the permutation action of A on the indices of . Glist,
.Ahom=ActionHomomorphism(.4,.Glist),

the group .Ai of anti-automorphisms of .group acting on the indices of Glist,

N ot W

the multiplication table .diff Table of .group in a special form.

.diff Table is a matrix of integers defined such that .difftable [1] [j] is the position of Glist [1] (Glist[j1)~-1)
in Glist with Glist [1]=0ne (group).

PermutationRepForDiffsetCalculations runs into an error if Set (group) [1] is not equal to One (group).

If autgrp is given, PermutationRepForDiffsetCalculations will not calculate the automorphism group of
group but will take autgrp instead without any test.

Section 3. Basic functions for startset generation 9

If ’Set(group)[1]’ is not equal to One(group), then PermutationRepForDiffsetCalculations returns an
error message stating “Unable to generate Glist”. In this case, calculating a representation helps:

gap> G:=DirectProduct(SL(2,3),CyclicGroup(3));
<group of size 72 with 3 generators>
gap> data:=PermutationRepForDiffsetCalculations(G) ;
Error, Unable to generate <Glist>
called from
<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk> quit;
gap> phi:=ActionHomomorphism(G,Set(G),0nRight);
<action homomorphism>
gap> Gnew:=ImagesSource(phi) ;
<permutation group with 3 generators>
gap> data:=PermutationRepForDiffsetCalculations(Gnew) ;

A partial difference set may be converted from a list of group elements to a list of integers using

2» GroupList2PermList(list, dat) O

where dat is a record containing .diffTable as returned by PermutationRepForDiffsetCalculations. The
inverse operation is performed by

3» PermList2GroupList(list, dat) O

gap> G:=DihedralGroup(6);

<pc group of size 6 with 2 generators>

gap> N:=NormalSubgroups(G) [2];

Group([£2 1)

gap> dat:=PermutationRepForDiffsetCalculations(G);

rec(G := <pc group of size 6 with 2 generators>,
Glist := [<identity> of ..., f1, £2, f1xf2, £272, f1x£272],
A := <group of size 6 with 2 generators>,
Aac := Group([(3,5)(4,6), (2,4,6) 1),
Ahom := <action homomorphism>,
Ai := Group([(3,5), (3,5)(4,6), (2,4,6) 1),
diffTable := [[1, 2, 5, 4, 3,61, [2,1, 6, 3, 4, 561,
(3,6,1,2,5,41, [4,5,2,1,6, 31,
[5,4,3,6,1,21,0[6,3,4,5,2,111)
gap> Nperm:=GroupList2PermList (Set(N),dat);

[1,3,5]

In the following functions the record dat has to contain a matrix .diffTable as returned by Permutation-
RepForDiffsetCalculations.

NewPresentables(list, newel, table)
NewPresentables([list, newel, dat)

NewPresentables(list, newlist, dat)
NewPresentables(list, newlist, table)

cloNoNe

NewPresentables(list,newel,dat) takes a record dat as returned by PermutationRepForDiffsetCal-
culations(group). For NewPresentables(list,newel,table), table has to be the multiplication table in
the form of NewPresentables(list, newel, dat.diff Table)

10 Chapter 3. General concepts

The method returns the unordered list of quotients djnewel ' with d; € list U {1} (in permutation repre-
sentation).

When used with a list newlist, a list of quotients dyd, ! with d; € list U {1} and dy € newlist is returned.

AllPresentables(list, table) O
AllPresentables(list, dat) O

Let list be a list of integers representing elements of a group defined by dat (or table). A11Presentables(
list, table) returns an unordered list of quotients ab~' for all group elements a, b represented by integers
in list. If 1 € list, an error is issued. The multiplication table table has to be of the form as returned by
PermutationRepForDiffsetCalculations. And dat is a record as calculated by PermutationRepForDiff-
setCalculations.

gap> G:=CyclicGroup(7);;dat:=PermutationRepForDiffsetCalculations(G);;
gap> AllPresentables([2,3],dat);

[2,3,7,2,7, 61

gap> AllPresentables([1,2,3],dat);

Error. ..
RemainingCompletions(diffset, completions[, forbidden], dat[, lambdal) O
RemainingCompletionsNoSort (diffset, completions[, forbidden], table[, lambdal) 0]

For a partial difference set diffset, RemainingCompletions (diffset, completions, dat) returns a subset of the
set completions, such that each of its elements may be added to diffset without it loosing the property to
be a partial difference set. Only elements greater than the last element of diffset are returned.

For partial relative difference sets, forbidden is the forbidden set.

RemainingCompletionsNoSort does also return elements from completions which are smaller than diff-
set [Size (diffset)].

gap> G:=CyclicGroup(7);

<pc group of size 7 with 1 generators>

gap> dat:=PermutationRepForDiffsetCalculations(G);;
gap> RemainingCompletionsNoSort([4],[1..7],dat);
[2,3]

gap> RemainingCompletionsNoSort([4],[1..7],dat,2);
[2, 3,6, 7]

gap> RemainingCompletions([4],[1..7],dat);

[1]
gap> RemainingCompletions([4],[1..7],dat,2);
(6, 71
ExtendedStartsets(startsets, completions, [forbiddenset]l[, aim], Gdatal, lambdal) O

ExtendedStartsetsNoSort (startsets, completions, [forbiddenset][, aim]l, Gdatal, lambdal) O

For a set of partial (relative) difference sets startsets, the set of all extensions by one element from completions
is returned. Here an “extension” of a partial diffence set S is a list which has one element more than S and
contains S.

Here completions is a set of elements wich may be appended to the lists in startsets to generate new partial
difference sets. For relative difference sets, the forbidden set forbiddenset must be given. And the integer
aim gives the desired total length, i.e. the number of elements of completions that have to be added to each
startset plus its length. Note that the elements of startset are always extended by one element (if they can
be extended). aim does only tell how many elements from completions you want to add. A partial difference
set is only be extended, if there are enough admissible elements in completions, so if for some S € startsets,

1»

Section 4. A brute force method 11

we have less than aim — Size(S) elements in completions which can be added to S, no extension of S is
returned.

If lambda is not passed as a parameter, it is assumed to be 1.

Note that ExtendedStartsets does use RemainingCompletions while ExtendedStartsetsNoSort uses
RemainingCompletionsNoSort. Note that the partial difference sets generated with ExtendedStartset-
sNoSort are not sets (i.e. not sorted). This may result in doing work twice. But it can also be useful,
especially when generating difference sets “coset by coset”.

gap> G:=CyclicGroup(7);;dat:=PermutationRepForDiffsetCalculations(G);;
gap> startsets:=[[2],[4],[6]1];;

gap> ExtendedStartsets(startsets,[1..7],dat);

(02,41, [2,61]

gap> ExtendedStartsets(startsets,[1..7],3,dat);

[L2411

gap> ExtendedStartsets(startsets,[1..7],dat,2);

[[2,31,[2,41, 02,51, [2,61, (04,61, [4, 71,06, 711
gap> ExtendedStartsetsNoSort(startsets, [1..7],dat);

(2,41, 02,61, [04,21,04,31,[6,21,[6,51]

3.4 A brute force method

The following method can be used to find (partial) difference sets by brute force.
A11Diffsets(diffset, completions, aim, forbidden, Gdata, lambda) O

Let diffset be partial relative difference set and completions a list of possible completions and forbidden the
forbidden set. Then Al1Diffsets returns a list of (partial) difference sets which contain diffset. Gdata is

the record as always and lambda is the parameter of the relative difference set. forbidden and completions
have to be lists of integers.

1»

Invariants for
Difference Sets

This chapter contains an important tool for the generation of difference sets. It is called the “coset signature”
and is an invariant for equivalence of partial relative difference sets. For large A, there is an invariant
calculated by MultiplicityInvariantLargeLambda. This invariant can be used complementary to the coset
signature and is explained in section 6.1.

Most of the methods explained here are not commonly used. If you do not want to know how coset signatures
work in detail, you can safely skip a large part of this and go straight to the explanation of Signature-
DataForNormalSubgroups and ReducedStartsets.

The last section (4.2) of this chapter has some functions which allow the user to use coset signatures with
even less effort. But be aware that these functions make choices for you that you probably do not want if you
do very involved calculations. In particular, the coset signatures are not stored globally and hence cannot
be reused. For a demonstration of these easy-to-use functions, see chapter 2

4.1 The Coset Signature

Let R C G be a (partial) relative difference set (for definition see 3.1) with forbidden set N C G. Let U < G
be a normal subgroup and C' = {g1,..., gj¢:v|} be a system of representatives of G/U.

The intersection number of R with Ug; is defined as v; = |R N Uy;|. For every normal subgroup U < G the
multiset {|R N Ug;|: g € C} is called “coset signature of R (relative to U)”.

Let D C G be a relative difference set and {vy,...,v/q.p|} its coset signature. Then the following equations
hold (see [Brub5],[R6d06]):

Z vV = k

>vf =AU [UNN|)+k

> vv =AUl =g UNN|) for gi g U
where v;; = |D N g;g; U|. If the forbidden set N is a subgroup of G we have |g; U N N| is either 0 or equal to
|UNN|.
Given a group @G, the forbidden set N C G and some normal subgroup U < G, the right sides of this
equations are known. So we may ask for tuples (vi,...,v/g.y|) solving this system of equations. Of course,
we index the v; with the elements of G/ U, so the last equation poses conditions to the ordering of the tuple
(Ul, ey U|G:U|)~

So we call any multiset {vi,..., v .y} solving the above equations an “admissible signature” for U.

CosetSignature0fSet (set, cosets) F

CosetSignature0fSet (set, cosets) returns the ordered list of intersection numbers of set. That is, the
size of the intersection of set with each Element of cosets.

Note that it is not tested, if cosets is really a list of cosets. CosetSignatureOfSet(set, cosets) works for
any List set and any list of lists cosets. So be careful!

Section 1. The Coset Signature 13

gap> G:=SymmetricGroup(5);;

gap> A:=AlternatingGroup(5);;

gap> CosetSignature0fSet([(1,2),(1,5),(1,2,3)],RightCosets(G,A));

[1, 2]

gap> CosetSignature0fSet([(1,2),(1,5),(1,2,3)]1,[A]);

[1]

gap> CosetSignatureOfset([(132) > (1’5) > (1,2,3)] > [[(1’2) 3 (1:233)] s [(3y2, 1)]]) H
[0, 2]

2» CosetSignatures(Gsize, Usize, diffsetorder) O
> CosetSignatures(Gsize, Nsize, Usize, Intersectsizes, k, lambda) O

3>

4»

5»

CosetSignatures(Gsize, Usize, diffsetorder) returns all Gsize/Usize tuples such that the sum of the
squares of each tuple equals Usize+diffsetorder. And the sum of each tuple equals diffsetorder+1.

These are necessary conditions for signatures of difference sets and normal subgroups of order Usize in
groups of order Gsize (see 4.1).

CosetSignatures(Gsize, Nsize, Usize, Intersectsizes , k ,lambda) Calculates all multiset meeting some con-
ditions for signatures of relative difference sets and normal subgroups of order Usize in groups of order Gsize
(see 4.1). Here Nsize is the size of the forbidden group, Intersectsizes is a list of integers determining the
size of the intersection of the forbidden set and the normal Subgroup of order Usize. The pararmeters & and
lambda are the usual ones for designs. CosetSignatures returns a list containing one pair for each entry
of Intersectsizes. The first entry of this pair is [Gsize, Nsize, Usize, i, k, lambda] and the second one is a list
of admissible signatures with these parameters.

gap> CosetSignatures(256,16,64,[1,4,8,16],17,1);
L [[2s6, 16,64, 1, 17, 11, [11,
[[2566, 16, 64, 4, 17, 11, [[3, 4, 4,6111,
[[256, 16, 64, 8, 17, 11, [[4, 4, 5111
[[256, 16, 64, 16, 17, 1 1, [111
#And for an ordinary difference set of order 16.
gap> CosetSignatures(273,1,39,[1],17,1);
[CrC2ars, 1,39 1, 17, 11,

> B

tro,12,3,38,4,41,[0,2,2,2,3, 3,51,
(1,1,1,2,4,4,41,01,1,1,3,3,3,5]1,
(1,1,2,2,2,4,5]1711]1
TestSignaturelargeIndex(sig, group, Normalsg[, factorgrp]) O

this does only work for ordinary difference sets, not for relative difference sets in general

TestSignaturelLargeIndex(sig, group, Normalsg [, factorgrp]l) tests if sig meets some necessary conditions
of 4.1 to be a signature for a difference set in group for the normal subgroup Normalsg. factorgrp is the
factorgroup group/Normalsg. The returned value is true or false resp.

TestSignatureCyclicFactorGroup(sig, Nsize) 0]

This does only work for ordinary difference sets, not for relative difference sets in general

TestSignatureCyclicFactorGroup (sig, Nsize) test if sig meets meets some necessary conditions of 4.1 to
be a signature for a difference set in some group, which has a normal subgroup of size Nsize such that the
factor group is cyclic. The returned value is true or false resp.

TestedSignatures(sigs, group, normalsgl, maztest] [, moretest]) O

this does only work for ordinary difference sets, not for relative difference sets in general

6»

L d

8»

14 Chapter 4. Invariants for Difference Sets

Let sigs be a list of possible signatures as returned from CosetSignatures. Let normalsg be a subgroup
of group. For each signature in sigs, the necessary conditions described in 4.1 are tested to decide if the
signature can be a signature of a difference set in group for for the normal subgroup normalsg.

As this involves computation for all permutations of the signature, this can be very costly. The argument
maztest determines how many permutations are admissible. If maztest=0, all signatures are tested, regardless
of how much work is necessary for this. If a signature has too many permutations, it is returned without test.
Even though it is not wise, maxztest=0 is the default option. If InfoLevel (InfoRDS) is at least 2, information
about skipped signatures is echoed.

If the boolean value moretest is false and all signatures in sigs but the last one are found to be not admissible,
the last one is returned without test. This saves the time to test the last signature, but if chances are that
there is no difference set in group, this may also give away a chance to find out early (every difference set
has signatures, so no admissible signature means that no difference set can exist). Default is true.

TestedSignatures calls TestSignatureCyclicFactorGroup or TestSignaturelLargeIndex and returns a
sublist of sigs.

G:=SmallGroup(273,2);

gap> N:=First(NormalSubgroups(G),g->0rder(g)=39);
Group([f1, £3 1)

gap> sigs:=CosetSignatures(273,1,39,[1],17,1);
[CC273, 1, 39, 1, 17, 1 1,

(co,1,2,3,3,4,41, [0, 2,2,2,3,3,51,
[1,1,1,2,4,4,471, [1,1,1,3,3,3,51,
[1,1,2,2,2,4,5111]1
gap> TestedSignatures(sigs[1][2],G,N);
(1, 1,1,2,4,4,41, [1,1,1,3,3,3,51]
TestedSignaturesRelative(sigs, fgdata, [, maztest] [, moretest]) O

TestedSignaturesRelative takes a list sigs of lists of integers and returns a those which may be signatures
of relative difference sets with forbidden set.

fgdata is a record as returned by RDSFactorGroupData(U, N ,lambda, Gdata) If maztest is set, a signature
s is only tested if NrPermutationsList(s) is less than maxtest if maztest is set to 0, all signatures are
tested this is the default. If moretest is tue, a signature is tested even if it is the only one left. This means
we do not assume that there must be an admissable signature at all. The default for moretest is true.

SigInvariant(prd , data) Q)

Given a partial relative difference set prd and a list of records with entries cosets and sigs. Here cosets is a
full list of cosets and sigs is a list of signatures that may occur for relative difference sets.

For each record rec in data, the intersection numbers of prd with the cosets of rec.cosets are computed stored
in a set sig. If none of the signatures in rec.sigs is pointwise greater or equal sig, SigInvariant(prd, data)
returns fail’. Otherwise sig is added to a list of signatures that is returned.

Note the returned invariant is that of prd U{1}. The output from SignatureDataForNormalSubgroups can
be used as data.

RDSFactorGroupData(U, N, lambda, Gdata) O

takes the subgroup U of G, the forbidden set N as a subgroup or subset of G and the record of data Gdata
as returned by PermutationRepForDiffsetCalculations((G) and returns a record containing

fg the factor group modulo U

fglist the factor group as a strictly ordered list

.cosets the cosets modulo U as lists of integers

Section 1. The Coset Signature 15

Jambda the parameter lambda as passed to the function

.Usize the size of U

fgaut the automorphism group of .fg

.Nfg the image of N in .fg
ith

fgintersect a list of pairs such that the i* entry is the pair consisting of .fgfi/ and the size of the intersection of .fg

with .Nfg as cosets modulo U.

.ntersectshort ist just the second component of .fgintersect.

9»

10»

11»

MatchingFGDataNonGrp(fgdatalist, fgmatchdata) O

Let fgdatalist be a list of records and fgmatchdata a record with components .fg, .Nfg and .fgintersect as
returned by RDSFactorGroupData. Then MatchingFGDataNonGrp returns the entry of fgdatalist that defines
the same admissible signatures as fgmatchdata. If no such entry exists, fail is returned.

The forbidden set N is not assumed to be a group.

MatchingFGData(fgdatalist, fgmatchdata) O

Let fgdatalist be a list of records and fgmatchdata a record with components .fg, .Nfg, .fgintersect and
.fgaut as returned by RDSFactorGroupData. Then MatchingFGDataNonGrp returns the entry of fgdatalist
that defines the same admissible signatures as fgmatchdata. If no such entry exists, fail is returned.

Here the forbidden set N has to be a group.
SignatureDataForNormalSubgroups(Normals, globalSigData, forbiddenSet, Gdata, parameters) O

Let Gdata be a record as returned by PermutationRepForDiffsetCalculations. Let Normals be a list of
normal subgroups of Gdata.G, and forbiddenSet the forbidden set (as set of group elements or group).

parameters must be a list of length 4 of the form [k,lambda, maztest,moretest] with k the length of the relative
difference set to be constructed and lambda the parameter as always. maxtest and moretest are passed to
TestedSignaturesRelative and must be set.

SignatureDataForNormalSubgroups returns a list containing one record for each group U in Normals. This
record contains:

1. the subgroup U named .subgroup
2. the signatures .sigs for U

3. the cosets .cosets modulo U as lists of integers

Moreover, the list globalSigData is used to store global information which can be reused with other groups.
The i entry of globalSigData is a list of records that contains all known information about subgroups of
order i. Each of these records has the following components:

1. .cspara the parameters for CosetSignatures
2. .sigs the output of CosetSignatures when the input is .cspara

3. .fgsigs a list of records containing data about factor groups with parameters .cspara:

3.1. .fg the factor group

3.2. .fgaut the automorphism group of .fg

3.3. .Nfg the image of the forbidden set N under the natural epimorphism to .fg
3.4. .fgintersect the pairs [g,|g N N|] for all g in .fg. Here N is the forbidden set.

3.5. .sigs the known admissible signatures (this is a subset of the set in number 2. of course)

12 »

13»

1»

2»

3>

16 Chapter 4. Invariants for Difference Sets

The list globalSigData can be used if different groups are studied. If a group has a normal subgroup with
parameters (in the sense of .cspara) listed in globalSigData, the signatures from a previous calculation may
be used. Of course, the factor groups have to be checked first. This check is done with MatchingFGData or
MatchingFGDataNonGrp.

So the second run of SignatureDataForNormalSubgroups with the same parameters and different Gdata
and Normals will normally be much faster, as the signatures are already stored in globalSigData. Note that
maxtest and moretest are not stored. So a second run with larger maztest will not result in a recalculation
of signatures.

ReducedStartsets(startsets, autlist, csdata, Gdata) O
ReducedStartsets(startsets, autlist, func, Gdata) O

Let startsets be a set of partial relative difference sets, autlist a list of permutation groups and Gdata
record returned by PermutationRepForDiffsetCalculations. Then ReducedStartsets partitions the list
startsets according to the values of the function func and performs a test for equivalence on the elements of
the partition. The list returned is a sublist of startsets of pairwise non-equivalent partial relative difference
sets if func is an invariant for partial relative difference sets. All elements for which func returns fail are
discarded.

Let csdata be a list of records as used for SigInvariant (i.e. containing .cosets and .signatures). Then
ReducedStartsets (startsets, autlist, csdata , Gdata) SigInvariant is used for func.

maxAutsizeForOrbitCalculation Vv

In ReducedStartsets, a bound is needed to decide if Orbit or RepresentativeAction should be used. If
the group is larger than mazAutsize ForOrbitCalculation, RepresentativeAction is used. The default value
for maxAutsizeForOrbitCalculation is 105. If you want to change it, you will have to edit the file sigs.gd.

4.2 Blackbox functions

Here are a few functions used in chapter 2. These are meant as black boxes for quick tests. Some of them
make choices for you which might not be suitable to the chase you consider, so for serious studies, consider
using the more complicated-looking functions above (an example for this comprises chapter 5).

SignatureData(Gdata, forbiddenSet, k, lambda, maxtest) O

Let Gdata be a record as returned by PermutationRepForDiffsetCalculations. Let forbiddenSet the
forbidden set (as set or group).

k is the length of the relative difference set to be constructed and lambda the usual parameter. maxtest
is the Then SignatureData calls SignatureDataForNormalSubgroups for normal subgroups of order at
least RootInt (Gdata.G). Here maxtest is an integer which determines how many permutations of a possible
signature are checked to be a sorted signature. Choose a value of at least 10°. Larger numbers here normaly
result in better results when generating difference sets (making reduction more effective).

NormalSgsHavingAtMostNSigs(sigdata, n, lengthlist) F

Let sigdata be a list as returned by 'SignatureDataForNormalSubgroups’, an integer n and a list of integers
lengthlist. NormalSgsHavingAtMostKSigs filters sigdata and returns a list of records with components .sub-
group and .sigs is returned, such that for every entry .subgroup is a normal subgroup of index in lengthlist
having at most n signatures.

SuitableAutomorphismsForReduction(Gdata, normalsg) F

Given a normal subgroup normalsg of Gdata.G, the function returns a list containing the group of auto-
morphisms of Gdata.G which stabilizes all cosets modulo normalsg. This group is returned as a group of

4»

Section 2. Blackboz functions 17

permutations on Gdata.Glist (which is actually the right regular representation). The returned list can be
used with StartsetsInCoset.

StartsetsInCoset(ssets, coset, forbiddenSet, aim, autlist, sigdat, data, lambda) F

Assume, we want to generate difference sets “coset by coset” modulo some normal subgroup. Let ssets be a
(possibly empty) set of startsets, coset the coset from which to take the elements to append to the startsets
from ssets. Furthermore, let aim be the size of the generated partial difference sets (that is, the size of the
elements from ssets plus the number of elements to be added from coset). Let autlist be a list of groups of
automorphisms (in permutation representation) to use with the reduction algorithm. Here the output from
SuitableAutomorphismsForReduction can be used. And data and sigdat are the records as returned by
PermutationRepForDiffsetCalculations and SignatureDataForNormalSubgroups (or SignatureData,
alternatively). The parameter lambda is the usual one for difference sets (the number of ways of expressing
elements outside the forbidden set as quotients).

Then StartsetsInCoset returns a list of partial difference sets (a list of lists of integers) of length aim.

An Example Program

Here is a similar example to that in chapter 2. But now we do a little more handwork to see how things
work. Now we will calculate the relative difference sets of “Dembowski-Piper type d” and order 16. These
difference sets represent projective planes which admit a quasiregular collineation group such that the fixed
structure is an anti-flag. See [DP67], [Dem68] or [R6d06] for details.

To have a little more output, you may want to increase InfoRDS:

gap> SetInfolevel (InfoRDS,3);

First, define some parameters and calculate the data needed:

gap> k:=16;;lambda:=1;;groupOrder:=255;; #Diffset parameters
gap> forbiddenGroupOrder:=15;;

gap> maxtest:=1076;; #Bound for sig testing
gap> G:=CyclicGroup(groupOrder) ;

<pc group of size 255 with 3 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;

gap> MakeImmutable(Gdata);;

Now the forbidden group is calculated in a very ineffective way. Then we calculate admissible signatures. As
there are only few normal subgroups in G, we calculate them all. For other groups, one should choose more
wisely.

gap> N:=First(NormalSubgroups(Gdata.G),i->Size(i)=forbiddenGroupOrder) ;

Group([f1*£3°9, £2*£3°10 1)

gap> globalSigData:=[];;

gap> normals:=Filtered(NormalSubgroups(Gdata.G) ,n->Size(n) in [2..groupOrder-1]);;
gap> sigdat:=SignatureDataForNormalSubgroups(normals,globalSigData,

> N,Gdata, [k,lambda,maxtest,truel);;

The last step gives better results, if a larger maztest is chosen. But it also takes more time. To find a suitable
maztest, the output of SignatureDataForNormalSubgroups can be used, if InfoLevel (InfoRDS) is at least
2. Note that for recalculating signatures, you will have to reset globalSigData to [1. Try experimenting with
mazxtest to see the effect of signatures for the generation of startsets.

Now examine the signatures found. Look if there is a normal subgroup which has only one admissible
signature (of course, you can also use NormalSgsHavingAtMostNSigs here):

gap> Set(Filtered(sigdat,s->Size(s.sigs)=1 and Size(s.sigs[1])<=5),i->i.sigs);
CCCo0,4,4,4,411,[04,4,8711]1

Great! we'll take the subgroup of index 3. The cosets modulo this group will be used to generate startsets
and we assume that the trivial coset contains 8 elements of the difference set. So we generate startsets in
U and make a first reduction. For this, we need U and N as lists of integers (recall that difference sets are
asumed to be lists of integers). We will call these lists Up and Np. Furthermore, we will have to choose a
suitable group of automorphisms for reduction. As G is cyclic, we may take Gdata - Aac here. A good choice

19

is the stabilizer of all cosets modulo U. Yet sometimes larger groups may be possible. For example if we
want to generate start sets in U and then do a brute force search. In this case, we may take the stabilizer
of U for reduction.

gap> U:=First(sigdat,s->s.sigs=[[4, 4, 8] 1) .subgroup;

Group([£2, £3 1)

gap> cosets:=RightCosets(G,U);

gap> Ul:=cosets[2];;U2:=cosets[3];;

gap> Up:=GroupList2PermList (Set (U),Gdata);;

gap> Np:=GroupList2PermList (Set(N),Gdata);

[1, 12, 25, 43, 78, 97, 115, 116, 134, 151, 169, 188, 207, 238, 249]
gap> comps:=Difference(Up,Np);;

gap> ssets:=List(comps,i->[i]);;

gap> ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable) ;
#I Size 80

#I 2/ 0 @ 0:00:00.061

(31,0411

Observe that 1 is assumed to be element of every difference set and is not recorded explicitly. So the
partial difference sets represented by ssets at this point are [[1, 3], [1, 4]]. Now the startsets
are extended to size 7 using elements of Up. The runtime varies depending on the output of Signature-
DataForNormalSubgroups and hence on maztest.

gap> repeat

> ssets:=ExtendedStartsets(ssets,comps,Np,7,Gdata) ;

> ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
> until ssets=[] or Size(ssets[1])=7;

#I Size 133

#I 3/ 0 @ 0:00:00.133

#I Size 847

#I 4/ 0 @ 0:00:00.949
#I Size 6309

#I 4/ 0 @ 0:00:07.692
#I Size 21527

#I 5/ 0 @ 0:00:28.337
#I Size 15884

#I 4/ 0 @ 0:00:21.837
#I Size 1216

#I 4/ 0 @ 0:00:01.758
gap> Size(ssets);

192

At a higher level of InfoRDS, the number of start sets which are discarded because of wrong signatures are
also shown. Now the cosets are changed. Here we use the NoSort version of RaiseStartSetLevel. This leads
to a lot of start sets in the first step. If the number of start sets in U is very large, this could be too much
for a reduction. Then the only option is using the brute force method. But also for the brute force search,
RaiseStartSetLevelNoSort must be called first (remember that we chos an enumeration of G and assume
the last element from each startset to be the largeset “interesting” one for further completions).

20 Chapter 5. An Exzample Program

gap> comps:=Difference(GroupList2PermList (Set(Ul),Gdata),Np);;

gap> ssets:=ExtendedStartsetsNoSort(ssets,comps,Np,11,Gdata);;

gap> ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
#I Size 8640

#I 9/ 0 @ 0:00:14.159

gap> Size(ssets);

6899

And as above, we continue:

repeat
ssets:=ExtendedStartsets(ssets,comps,Np,11,Gdata);
ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
until ssets=[] or Size(ssets[1])=11;
comps :=Difference(GroupList2PermList (Set (U2),Gdata) ,Np);
RaiseStartSetLevelNoSort (ssets, comps,Np,15,Gdata) ;
repeat
ssets:=ExtendedStartsets(ssets, comps,Np,15,Gdata) ;
ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
until ssets=[] or Size(ssets[1])=15;

1»

2>

Ordered Signatures

In this chapter, we will discuss two methods to calculate ordered signatures. The first one can be used for
relative difference sets with forbidden set, while the second one does only work for ordinary difference sets.

The methods introduced here can only be used in some special cases.

6.1 Ordered signatures by quotient images

Let D C G be a relative difference set with parameters (v/n,n, k, A) and forbidden set N C G. Let U < G
be a normal subgroup such that U C N.

Then the coset signature (vy,...,vq.y|) of D has only the entries 1 (k- times) and 0 (|G : U| — k- times).
And as in chapter 4 we have

> vy =AUl = |g:UNN]|) for gi ¢ U

J

where v;; = |D N g;g; U|. If the forbidden set N is a subgroup of G we have |g; U N N| is either 0 or equal to
|[UNN|=|U]|.

Let ¢: G — G/ U be the canonical epimorphism. Then D? is a relative difference set in G/ U with forbidden
set N® and parameters (v/n,n/|U|, k,|U|N).

So the ordered signatures with respect to U are equivalent to the relative difference sets in G/ U. Observe that
we may not apply reduction in G/ U using the full automorphismgroup of G/U but only the group induced
by the stabiliser of U in the automorphism group of G. This is due to the fact that we use an “induced”

notion of equivalence in G/ U because we are interested in signatures and not primarily in difference sets in
G/U.

NormalSgsForQuotientImages(forbidden, Gdata) Q)

calculates all normal subgroups of Gdata.G which lie in forbidden. The returned value is a list of normal
subgroups which define pairwise non-isomorphic factor groups.

DataForQuotientImage(normal, forbidden, k, lambda, Gdata) O

Let Gdata be the usual record for a group G. And let k£ and lambda be the parameters of the relative
difference set we want to find. Let then forbidden be the forbidden set (as a group or a list of group elements
or integers) and normal a normal subgroup of G which is contained in forbidden.

Then DataForQuotientImage returns a record containing the record .Gdata of the factor group G/ U where
the automorphism group is the one induced by the stabiliser of normal in the automorphism group of G.
Furthermore the returned record contains the forbidden set .forbidden in G/U and the new parameter
.lambda for the difference set in G/ U.

The data returned by DataForQuotientImage can be used to calculate difference sets in G/ U in the way
outlined in chapter 2. A quotient image of a relative difference set has a larger A than the initial difference
set. So the following invariant can be used for the generation of difference sets:

3>

4»

5»

6»

22 Chapter 6. Ordered Signatures

MultiplicityInvariantLargeLambda(set, Gdata) O
Let set be a partial relative difference set with A > 1. Set P:=Al1Presentables(set, Gdata) then the set
of multiplicities of P is an invariant for partial relative difference sets.
MultiplicityInvariantLargeLambda returns a List in a form as Collected does.

gap> G:=CyclicGroup(7);;Gdata:=PermutationRepForDiffsetCalculations(G);;

gap> AllPresentables([2,3],Gdata);

(2, 3,7,2,7,6]1]

gap> MultiplicityInvariantLargelLambda([2,3],Gdata);
tf1,21,02,21]1]

This invariant can be used for ReducedStartSets complementary to the signature invariant by defining

gap> partfunc:=function(list)
> local sig;

> if sig=fail

> then return fail;

> fi;

> return [MultiplicityInvariantLargeLambda(list,Gdata),SigInvariant(list,sigdata)];
> end;

function(list) ... end

and then passing partfunc to ReducedStartSets. Of course, sigdata has to be the list of records defining
the coset signatures (see section 4.1)

After all difference sets are known, they must be converted into ordered signatures. This is done by the
following function:

OrderedSigsFromQuotientImages(fGroupData, gimages, forbidden, normal, Gdata) O

Let Gdata be the usual record for a group G and normal a normal subgroup of G which lies in the
forbidden set forbidden. Let then fGroupData be the record .Gdata describing G /normal as returned by
DataForQuotientImage and gimages a set of difference sets in G /normal.

Then OrderedSigsFromQuotientImages returns a record containing a list of ordered signatures .orderedSigs
and a list of cosets .cosets as well as the factor group .fg defined by fGroupData and its full automorphism
group fgaut and the image of forbidden in .fg is returned as .Nfg.

MatchingFGDataForOrderedSigs(forbidden, Gdata, normalsgs, fgdata) O

Let fgdata be a list of records of the form returned by OrderedSigsFromQuotientImages and normalsgs a
list of normal subgroups of the group Gdata.G. Furthermore let forbidden be the forbidden set as a list of
group elements or integers or a subgroup of Gdata.G.

Then MatchingFGDataForOrderedSigs retruns all elements of fgdata which match a normal subgroup of
normalsgs. The returned value is a record containing the normal subgroup .normal from normalsgs, the
record .sigdata from fgdata and a homomorphism .hom which maps Gdata.G onto .sigdata.Gdata.G and
takes forbidden to .sigdata.Nfg.

OrderedSigInvariant(set, data) O

does the same as SigInvariant, but for ordered signatures. Here data has to be a list of records containing
ordered signatures called .orderedSigs and cosets .cosets just as returned by OrderedSigsFromQuotientIm—
ages.

Assume we have calculated ordered signatures and have stored them in a record .osigs and a list normalSub-
groupsData as returned by SignatureData containing the admissible signatures. A function for partitioning
partial relative difference sets as required by ReducedStartsets can be defined as follows:

Section 3. Definition 23

partitionfunc:=function(list)
local si, osi;
si:=SigInvariant(Union(list, [1]) ,normalSubgroupsData);
osi:=0rderedSigInvariant (Union(list, [1]), [osigs]);
if osi=fail or si=fail
then
return fail;
else
return si;
fi;
end;

6.2 Ordered signatures using representations

This section contains some methods for ordered signatures in ordinary difference sets. Unfortunately, these
methods are not as comfortable as those for unordered signatures. The reason for this is simply that I didn’t
have any time to tie them together to high-level functions. If you need help here, don’t hesitate to contact
me.

6.3 Definition

Let R C G be a (partial) ordinary difference set (for definition see 3.1). Let U < G be a normal subgroup
and C = {g1,...,9/¢.v|} be a system of representatives of G/ U.

As in 4.1 we may define the coset signature of R relative to U.

Let U = g1,...,9)¢:v| be an enumeration of G/U. An “admissible ordered signature” for U is a tuple
(vi,...,vq:v|) such that

Zvi:k
Yol =MU[-1)+k
Zj Vj Vg5 :)\(|U‘ 71) for g ¢ U

holds where we index the v; by elements of G/U, so v; = v, and write v; = vy, . Observe that the third
equation is a restriction on the ordering of the tuple (v1, ..., v¢.y)). If v is an admissible ordered signature,
then the multiset of v is an unordered signature.

Getting ordered admissible signatures from unordered ones can be done by taking all permutations of
the unordered signature and verifying the above equations. Obviously, this method isn’t very satisfying
(nevertheless, the methods for testing unordered signatures from section 4.1 do this to find out if there is
an ordered signature at all. Except that they stop when they find an ordered signature).

For ordinary difference sets in extensions of semidirect products of cyclic groups, ordered signatures may be
calculated a lot easier (see [R6d06] for details).

24 Chapter 6. Ordered Signatures

6.4 Methods for calculating ordered signatures
1» NormalSubgroupsForRep(groupdata, divisor) 0]

Let groupdata be the output of PermutationRepForDiffsetCalculations and divisor an integer. Then
NormalSubgroupsForRep calculates all normal subgroups of groupdata.G such that the size of the factor
group is divisible by divisor and the factor group is a semidirect product of cyclic groups.

The output is a record consisting of

. a normal subgroup .Nsg of G
. the factor group .fgrp:=G/Nsg

1
2
3. the epimorphism .epi from G to .fgrp
4. a root of unity .root

5

. a galois automorphism .alpha
6.47. generators of the factor group G/.Nsg named .a and .b such that .a is normalized by .b.
8 a list .int2pairtable such that the i’ entry ist the pair /m,n] with that Glist[i] epi=a"(m-1)*b"(n-1)

.alpha and .root may be used as input for OrderedSigs

2» OrderedSigs(coeffSums, absSum, alpha, root) O

Let G be group which contains a normal subgroup of index s such that the coset signature for a difference
set for this normal subgroup is coeffSums. Let N be a normal subgroup of G such that G/N is a semidirect
product of cyclic group of orders s, ¢ and ¢ divides the order of G/N.

Then OrderedSigs (coeffSums, absSum , alpha ,root) calculates all ordered signatures for N. Here root is a
primitive g-th root of unity and alpha is a Galois- automorphism of CS(¢) with order dividing s. absSum is
the order of the difference set. (i.e. order = k — \).

OrderedSigs is based on calculations using an s-dimensional unitary representation of G/N. In this rep-
resentation a subset of G induces a semi-circular matrix. The returned value is a list of lists s-tuples The
entries of the s-tuples are coefficients of numbers in Z[root] such that the semi-circular matrix defined by
these numbers together with alpha meets necessary conditions for matrices induced by difference sets. To
gain the algebraic numbers from the s-tuple tup, use List (tup,i->CoeffList2CyclotomicList (i, root))

Each |coeffSums|-tuple returned defines an ordered signature. The ordering of G/N is chosen to fit to the
data returned by NormalSubgroupsForRep:

[a® al,... a% 1] [a%b, a'b, ..., a?1b],... [, .. a? 157l

So for the calculation of ordered signatures, smaller ordered signatures coeffSums have to be known. But
this is not so bad, as small signatures are easy to calculate. The following example shows an application.

gap> G:=SmallGroup(273,3);

<pc group of size 273 with 3 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;

gap> CosetSignatures(273,273/3,16);

(03, 7,711

gap> nsgs:=NormalSubgroupsForRep(Gdata,3);

[rec(Nsg := Group([f2]), alpha := ANFAutomorphism(CF(13), 3),

root := E(13), fgrp := Group([f1, <identity> of ..., £2 1),
epi := [f1, f2, £3] -> [f1, <identity> of ..., f2 1, a := f2,
b := f1,

int2pairtable := [[1, 11, [1,21, [1,11, 2,11, [1,31,

(s, 31, 11,31, [5,21, [11,3]11),

3>

Section 4. Methods for calculating ordered signatures

rec(Nsg := Group([£3]), alpha := ANFAutomorphism(CF(7), 2),

root := E(7), fgrp := Group([f1, f2, <identity> of ... 1),
epi := [f1, £2, £3] -> [f1, 2, <identity> of ...], a := f2,
b := f1,

int2pairtable := [[1, 11, [1,21, [2,11, 1,11, [1, 31,

[6,31, [4,31, [4,21,[6,3]11)]1
gap> osigs:=0rderedSigs([3,7,7],16,nsgs[2] .alpha,nsgs[2] .root);
rrro,o0,0,1,0,1,11, [0,0,1,2,2,0,21,[2,2,0,2,0,0,11]1
(ro,o0,o0,1,0,1, 11, [0,1,2,2,0,2,01,[2,0,0,1,2,2,01]1]

tf110,1,0,0,01,02,2,1,0,0,2,01,[2,1,0,0,2,0,211]1
gap> Size(osigs);
98
gap> Set(osigs,g->SortedList(Concatenation(g)));
rro, o, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,1, 2,2,2,2,2,217]]

Note that the signature [3, 7, 7] can be assumed to be ordered (by passing to a suitable translate). So
even if we are not interested in ordered signatures, we have found out that there is only one admissible
unordered signature for this normal subgroup. To get this result using TestedSignatures would have taken

a very long time.
Of course, ordered signatures can also be used directly.

OrderedSignature0fSet(set, normal_data)

takes a set set of integers (meant to be a partial difference set) and a list of records as returned by Normal-
SubgroupsForRep. The returned value is a list of lists which is the ordered signature of the partial difference

set set and can be compared to the output of OrderedSigs

gap> OrderedSignatureOfSet([2,3,4,5] ,nsgs[2]);
tf11,1,0,0,0,017J],[1,0,0,0,0,0,01, [0,0,0,0,0,0,017]

1»

Determining the
Isomorphism Class
of Projective Planes

The methods in this chapter do not deal with relative difference sets. Instead, they help studying projective
planes. So if you have a relative difference set, you must first generate the projective plane it defines (if it
does).

Projective planes are always assumed to consist of positive integers (as points) and sets of integers (as
blocks). The incidence relation is assumed to be the element relation. The blocks of a projective plane must
be sets.

The following methods generate a record characterising the projective plane. As most of the functions
in this chapter need this data, the record returned by ElationPrecalc or ElationPrecalcSmall is the
recommended representation of projective planes.

ElationPrecalc(blocks) F
ElationPrecalcSmall(blocks) F

Given the blocks blocks of a projective plane, ElationPrecalc(blocks) returns a record conatining

.points the points of the projective plane (immutable)

.blocks the blocks as passed to the function (immutable)

.jpoint a matrix with 4j-th entry the point meeting the i-th and the j-th block.

.jblock a matrix with 4j-th entry the position of the block connecting the point ¢ to the point j in blocks.

2»

3>

ElationPrecalcSmall(blocks) returns arecord which does only contain .points, .blocks and .jblock. Hence
the name.

In the following sections, some of the functions have two versions. The versions which have a Small appended
to it’s name do not depend on the data generated by ElationPrecalc, but rather on the data structure
provided by ElationPrecalcSmall. The Small versions are generally much slower than the other ones.

DualPlane(blocks) 0)

For a projective plane given by blocks, DualPlane(blocks) returns a record containing a set of blocks
defining the dual plane and a List #mage containing the same blocks such that image/p/ is the image of the
point p under duality. It is not tested, if the design defined by blocks is actually a projective plane.

ProjectiveClosureOfPointSet (points, maxsize, data) O

Let P be a projective plane given by the record data as returned by ElationPrecalcSmall. Let points be
a set of points (integers). Then ProjectiveClosure0fPointSet returns the projective colsure of points in
P (the smallest subplane of P containing the points points). The closure is returned as a list of points. If
mazxsize # 0, calculations are stopped if the closure is known to have at least mazsize points and data.points
is returned. Observe that this is a “small” function, in the sense that it does not need the data from
ElationPrecalc but merely the data generated by ElationPrecalcSmall.

1»

Section 1. Isomorphisms and Collineations 27

7.1 Isomorphisms and Collineations

Isomorphisms of projective planes are mappings which take points to points and blocks to blocks and respect
incidence. A collineation of a projective plane P is a collineation from P to P (an automorphism).

As projective planes are assumed to live on the integers, isomorphisms of projective planes are represented
by permutations. To test if a permutation on points is actually an isomorphism of projective planes, the
following methods can be used.

IsIsomorphismOfProjectivePlanes(perm, blocksl, blocks2) O

Let blocks1, blocks2 be two sets of blocks of projective planes on the same points. IsIsomorphism0fPro-
jectivePlanes(perm,blocks1 ,blocks?2) test if the permutation perm on points defines an isomorphism
of the projective planes defined by blocks! and blocks2.

IsCollineationOfProjectivePlane(perm, blocks) O
IsCollineationOfProjectivePlane(perm, data) O

Let blocks be the blocks of a projective plane and perm a permutation on the points of this plane. Is-
CollineationOfProjectivePlane(perm,blocks) returns true, if perm induces a collineation of the projec-
tive plane.

If data as returned by ElationPrecalc is given instead of blocks, the calculation should be faster.

IsomorphismProjPlanesByGenerators(gens!, datal, gens2, data?2) O
IsomorphismProjPlanesByGeneratorsNC(gensl, datal, gens?2, data2) O

Let gens! be a list of points generating the projective plane defined by datal and gens2 a list of gener-
ating points for data2. Then a permutation is returned representing a mapping from the datal.points to
data2.points and mapping the list gensi to the list gens2. If there is no such mapping which defines an
isomorphism of projective planes, fail is returned. Note that this is a “small” function, in the sense that
datal and data?2 are as returned by ElationPrecalcSmall rather than by ElationPrecalc.

IsomorphismProjPlanesByGeneratorsNC does not checked whether gens! and gens2 really generate the
planes given by datal and data2.

Assume that <blocks> contains a list of lines of a projective plane

of order 16

gap> data:=ElationPrecalc(blocks);;

gap> Size(ProjectiveClosure0fPointSet([1,2,3,5],16,data));

4

gap> Size(ProjectiveClosureOfPointSet([1,2,60,268],16,data));time;

273

0

gap> Size(ProjectiveClosure0fPointSet([1,2,60,268],0,data)) ;time;

273

184

gap> IsomorphismProjPlanesByGenerators([1,2,3,5],data,[1,2,60,268] ,data);
fail

gap> IsomorphismProjPlanesByGenerators([1,2,60,268],data,[1,2,60,268],data);
O

gap> IsomorphismProjPlanesByGenerators([1,2,60,268],data, [1,3,146,268],data);
(2,3)(5,10)(6,12)(7,9) (8,11) (13,16) (17,249) (18,251) (19,250) ([...])

gap> Order(last);

2

v

v

5»

6»

28 Chapter 7. Determining the Isomorphism Class of Projective Planes

7.2 Central Collineations

Let ¢ be a collineation of a projective plane which fixes one point block-wise (the so-called centre) and one
block point-wise (the so-called axis). If the centre is contained in the axis, ¢ is called elation. Otherwise, ¢
is called homology. The group of elations with given axis is called translation group of the plane (relative
to the chosen axis). A projective plane with transitive translation group is called translation plane. Here
transitivity is on the points outside the axis.

ElationsByPairs(centre, axis, pairs, data) O
ElationsByPairs(centre, axis, pairs, blocks) O
ElationsByPairsSmall(centre, axis, pairs, data) O

Let centre be a point and azis a block of a projective plane defined by blocks (or by data as returned
by ElationPrecalc). The list pairs must contain pairs of points outside azis. ElationsByPairs returns a
collineation fixing azis pointwise and centre blockwise (an elation) such that for each pair p of pairs p[1] is
mapped on p/2/. If no such elation exists, fail is returned.

ElationsByPairsSmall uses data as returned by ElationPrecalcSmall

All1ElationsCentAx(centre, axis, datal, "generators"]) Q)
AllElationsCentAx(centre, axis, blocks[, "generators"]) O
Al1ElationsCentAxSmall(centre, axis, datal, "generators"]) O

Let centre be a point and azis a block of a projective plane defined by blocks (or by data as returned by
ElationPrecalc). A11ElationsCentAx returns a list of all non-trivial elations with centre centre and axis
azis. If “generators” is set, a list of generators of the translation group is returned.

AllElationsAx(azis, datal, "generators"])
Al1ElationsAx(axis, blocks)
All1ElationsAxSmall(azis, datal, "generators"])

Q0O

Let azis be a block of a projective plane defined by blocks (or by data as returned by ElationPrecalc).
Al1ElationsAx returns a list of all non-trivial elations with axis axis.

IsTranslationPlane(infline, planedata) O
IsTranslationPlaneSmall(infline, planedata) O

If the group of elations with axis infline is (sharply) transitive on the affine points (the points outside
infline), IsTranslationPlane returns true, otherwise it returns false. This is faster than calculating the
full translation group if the projective plane is not a translation plane.

HomologyByPairSmall(centre, azis, pair, data) 0]

HomologyByPairSmall returns the homology defined by the pair pair fixing centre blockwise and axis
pointwise. The returned permutation fixes azis pointwise and centre linewise and takes pair/1] to pair(2].

GroupOfHomologiesSmall(centre, azis, data) O

returns the group of homologies with centre centre and axis axis.

1»

1»

2>

Section 4. Invariants for Projective Planes 29

7.3 Collineations on Baer Subplanes

Let P be a projective plane of order n2. A subplane B of order n of P is called Baer subplane. Baer
suplanes are exactly the maximal subplanes of P.

InducedCollineation(baerdata, baercoll, point, image, planedata, liftingperm) O

If a projective plane contains a Baer subplane, collineations of the subplane may be lifted to the full plane.
Here baercoll is a collineation of the subplane given by baerdata (as returned by ElationPrecalc. Be careful,
as the enumeration for the subplane is not the same as for the whole plane). liftingperm is a permutation
on the points of the full pane which converts the enumeration of the subplane to that of the full plane. This
means that the image of baerdata.points under liftingperm is a subset of planedata.points. Namely the one
representing the Baer plane in the enumeration used for the whole plane. point and image are points outside
the Baer plane.

InducedCollineation returns a collineation of the full plane (as a permutation on planedata.points) which
takes point to image and acts on the Baer plane as baercoll does.

Just to make this clear again, baerdata has points [1,...,n2 + n + 1] and planedata has points [1,...,n* +
n? + 1]. baercoll lives on baerdata.points (and hence on n? + n + 1 points) and point and image live on
planedata.points. Anything can happen if you mix something up here.

7.4 Invariants for Projective Planes

The functions NrFanoPlanesAtPoints, pRank, FingerprintAntiFlag and FingerprintProjPlane calcu-
late invariants for finite projective planes. For more details see [R6d06] and [M0095]. The values of some of
these invariants are available from the homepages of [Moo] and [Roy] for many planes.

NrFanoPlanesAtPoints(points, data) O

For a projective plane defined by the blocks data as returned by ElationPrecalc, NrFanoPlanesAt-
Points(points, data) calculates the so-called Fano invariant. That is, for each point in points, the number
of subplanes of order 2 (so-called Fano planes) containing this point is calculated. The method returns a list
of pairs of the form [point, number] where number is the number of Fano sub-planes in point.

NrFanoPlanesAtPointsSmall (pointlist, data) O

Uses data as returned by ElationPrecalcSmall. Only use this, if you want to do a quick experiment in
a plane of small order and don’t like to generate a new set of data with ElationPrecalc. The difference
between NrFanoPlanesAtPoints and NrFanoPlanesAtPointsSmall is that the “small” version does some
operations for lists (like Intersection) whereas the “large” version does only read matrix entries. This

makes quite a difference as for a plane of order n, there are ("';1) (g)n quadrangles to be tested per point.
IncidenceMatrix(points, blocks) O
IncidenceMatrix(data) O

returns a matrix I, where the columns are numbered by the blocks and the rows are numbered by points.
And Ifi/[jj=1 if and only if points[i/ is incident (contained in) blocks/[j]/.

pRank(blocklist, p) Q)
pRank(data, p) 0

Let I be the incidence matrix of the projective plane given by the list of blocks blocklist or the record data
as returned by ElationPrecalc. The rank of I- I as a matrix over GF(p) is called p-rank of the projective
plane. Here I' denotes the transposed matrix.

As pRank calls IncidenceMatrix, the list blocklist has to be a list of lists of integers.

5»

30 Chapter 7. Determining the Isomorphism Class of Projective Planes

FingerprintProjPlane(blocks) O
FingerprintProjPlane(data) O
For each anti-flag (p, 1) of a projective plane of order n, define an arbitrary but fixed enumeration of the lines
through p and the points on [. Say I, ..., l,+1 and p1,...,p,+1 The incidence relation defines a canonical
bijection between the /; and the p; and hence a permutation on the indices 1,...,n + 1. Let o(, ;) be this
permutation.

Denote the points and lines of the plane by ¢i,...¢21,11 and ey, ..., €21 ,11. Define the sign matrix as

Ay = sgn(o(g,.e)) if (¢, e) is an anti-flag and = 0 if it is a flag. Then the fingerprint is defnied as the
multiset of the entries of |[AA"|. Here data is a record as returned by ElationPrecalcSmall.

FingerprintAntiFlag(point, linenr, data) O

Let my,..., m,41 be the lines containing point and Ei, ..., E,+1 the points on the line given by linenr such
that Ej is incident with m;. Now label the points of m; as point = P;1,...,P; n4+1 = E; and the lines of
E; as line = l,...,lint1 = my. For i # j, each P; lies on exactly one line li ko, ; containing E; for some
permutation o; ;

Define a matrix A, where A; ; is the sign of o, ; if ¢ # j and A; ; = 0 for all ¢. The partial fingerprint is the
multiset of entries of |AA?| where A' denotes the transposed matrix of A.

this is a “small” function.

1»

2»

1»

2»

Some functions
for everyday use

This chapter contains a number of functions that did not fit in anywhere else. Some of them might be useful
for other people, too, so they were included here.

8.1 Groups and actions
OnSubgroups (subgroup, aut) F

For a group G and an automorphism aut of G, OnSubgroups (subgroup , aut) is the image of subgroup under
aut

gap> G:=Group((1,2,3),(2,3));

Group([(1,2,3), (2,3) 1)

gap> alpha:=InnerAutomorphism(G, (1,2,3));
~(1,2,3)

gap> OnSubgroups (Subgroup(G, [(2,3)]1) ,alpha);
Group([(1,3) 1D

RepsCClassesGivenOrder(group, order) 0O

RepsCClassesGivenOrder(group, order) returns all elements of order order up to conjugacy. Note that
the representatives are not always the smallest elements of each conjugacy class.

gap> RepsCClassesGivenOrder (SymmetricGroup(5),2);
[(4,5), (2,3)(4,5)]

8.2 lterators

CartesianIterator(tuplelist) O
Returns an iterator for Cartesian (tuplelist)

ConcatenationOfIterators(iterlist) F

ConcatenationOfIterators (iterlist) returns an iterator which runs through all iterators in iterlist. Note
that the returned iterator loops over the iterators in iterlist sequentially beginning with the first one.

gap> it:=Iterator([1,2,3]);;

gap> it2:=CartesianIterator([[9,10],[11]1);;
gap> cit:=ConcatenationOfIterators([it,it2]);;
gap> repeat

> Print (NextIterator(cit),",\c");

> until IsDonelterator(cit);

1,2,3,[9, 11 1,[10, 11 17,

1»

2»

3>

4»

5»

32 Chapter 8. Some functions for everyday use

8.3 Lists and Matrices

IsListOfIntegers(list) P
IsListOfIntegers(list) returns IsSubset(Integers, list) if list is a dense list and false otherwise.
List2Tuples(list, int) 0)

If Size(list) is divisible by int, List2Tuples(list,int) returns a list list2 of size int such that Concate-
nation([list2)= list and every element of list2 has the same size.

gap> List2Tuples([1..6],2);
(C01,2,31,[4,5,61]1

MatTimesTransMat(mat) O

does the same as mat*TransposedMat (mat) but uses slightly less space and time for large matrices.
PartitionByFunctionNF(list, f) O

PartitionByFunctionNF(list, f) partitions the list list according to the values of the function f defined
on list. If f returns fail for some element of list, PartitionByFunctionNF(list, f) enters a break loop.
Leaving the break loop with 'return;’ is safe because PartitionByFunctionNF treats fail as all other results
of f.

PartitionByFunction(list, f) O

PartitionByFunction(list, f) partitions the list list according to the values of the function f defined
on list. All elements, for which f returns fail are omitted, so PartitionByFunction does not necessarily
return a partition. If InfoLevel (InfoRDS) is at least 2, the number of elements for which f returns fail is
shown (if fail is returned at all).

gap> PartitionByFunctionNF([-1..5],x->x"2);
tftol, -1,11, 021,031,041, [51]
gap> test:=function(x)

> if x>0 then return Sqrt(x);

> else return fail;

> fi;

> end;

function(x) ... end

gap> PartitionByFunction([-1..5],test);
(C11,041,05861,[271,031]1

gap> SetInfolevel (InfoRDS,2);

gap> PartitionByFunction([-1..5],test);

#I -2-

(11,041,051, 021, [31]1

gap> PartitionByFunctionNF([-1..5],test);
Error, function returned <fail> called from

brk> return;

tc11,0431,0581, 021,031, [-1,01]1

1»

2»

3»

4»

Section 5. Filters and Categories 33

8.4 Cyclotomic numbers

IsRoot0fUnity(cyc) P
IsRoot0fUnity tests if a given cyclotomic is actually a root of unity.

CoeffList2CyclotomicList (list, root) O

CoeffList2CyclogomicList(list, root) takes a list of integers list and a root of unity root and returns
a list list2, where list2[i]=list[i]* root"(i-1).

AbssquareInCyclotomics(list, root) @)

For a list of integers and a root of unity, AbssquareInCyclotomics(list, root) returns the modulus of
Sum(CoeffList2CyclotomicList (list, ro00t)).

CycsGivenCoeffSum(sum, root) O

CycsGivenCoeffSum(sum, root) returns all elements of Z[root] such that the coefficient sum is sum
and all coefficients are non-negative. The returned list has the following form: The cyclotomic numbers are
represented by coefficients. CoeffList2CyclotomicList can be used to get the algebraic number represented
by list. The list is partitioned into equivalence classes of elements having the same modulus. For each class
the modulus is returned. This means that CycsGivenCoeffSum returns a list of pairs where the first entry
of each pair is the square of the modulus of an element of the second entry. And the second entry is a list
of coefficient lists of cyclotomics in Z[root] having the coefficient sum sum.

gap> CycsGivenCoeffSum(3,E(3));
(fo, fC1,1,12111,
rs, rro,121,00,2,11,[1,0,21,[1,2,01,[2,0,11,
(2,10111, 109, [[0,0,31,[0,3,01,[3,0,0111]1
gap> CycsGivenCoeffSum(2,E(2));
(fo, [C1,1111, 04, [C00,2]1,02,0111]1

8.5 Filters and Categories

The following was originally posted at the GAP forum by Thomas Breuer [Bre05].

Each filter in GAP is either a simple filter or a meet of filters. For example, IsInt and IsPosRat are simple
filters, and IsPosInt is defined as their meet IsInt and IsPosRat.

Each simple filter is of one of the following kinds.

1. property: Such a filter is an operation, the filter value can be computed. The (unary) methods of this
operation must return true or false, and the return value is stored in the argument, except if the argument
is of a basic data type such as cyclotomic (including rationals and integers), finite field element, permuta-
tion, or internally represented list —the latter with a few exceptions. Examples of properties are IsFinite,
IsAbelian, IsSSortedList.

2. attribute tester: Such a filter is associated to an operation that has been created via DeclareAttribute, in
the sense that the value is true if and only if a return value for (a unary method of) this operation is stored
in the argument. Currently, attribute values are stored in objects in the filter IsAttributeStoringRep.
Examples of attribute testers are HasSize, HasCentre, HasDerivedSubgroup.

2. property tester: Such a filter is similar to an attribute tester, but the associated operation is a property. So
property testers can return true also if the argument is not in the filter IsAttributeStoringRep. Examples
of property testers are HasIsFinite, HasIsAbelian, HasIsSSortedList.

3. category or representation: These filters are not associated to operations, their values cannot be computed
but are set upon creation of an object and should not be changed later, such that for a filter of this kind,

1»

34 Chapter 8. Some functions for everyday use

one can rely on the fact that if the value is true then it was true already when the object in question was
created.

The distinction between representation and category is intended to express dependency on or independence of
the way how the object is stored internally. For example, IsPositionalObjectRep, IsComponentObjectRep,
and IsInternalRep are filters of the representation kind; the idea is that such filters are used in low level
methods, and that higher level methods can be implemented without referring to these filters.

Examples of categories are IsInt, IsRat, IsPerm, ISFFE, and filters expressing algebraic structures, such
as IsMagma, IsMagmaWithOne, IsAdditiveMagma. When one calls such a filter, one can be sure that no
computation is triggered. For example, whenever a quotient of two integers is formed, the result is clearly
in the filter IsRat, but the system also stores the value of IsInt, i.e., GAP does not support “unevaluated
rationals” for which the IsInt value is computed on demand and then stored.

4. other filters: Some filters do not belong to the above kinds, they are not associated to operations but they
are intended to be set (or even reset) by the user or by functions also after the creation of objects. Examples
are IsQuickPositionList, CanEasilyTestMembership, IsHandledByNiceBasis.

Each meet of filters can involve computable simple filters (properties, attribute and property testers) and
not computable simple filters (categories, representations, other filters). When one calls a meet of two filters
then the two filters from which the meet was formed are evaluated (if necessary). So a meet of filters is
computable only if at least one computable simple filter is involved.

IsComputableFilter(filter) F

'IsComputableFilter(filter)’ returns true if a the filter filter is computable. Filters for which *IsComputable-
Filter’ returns false may be used in 'DeclareOperation’.

gap> IsComputableFilter(IsFinite);

true

gap> IsComputableFilter(HasSize);

true

gap> IsComputableFilter(HasIsFinite);

true

gap> IsComputableFilter(IsPositionalObjectRep);
false

gap> IsComputableFilter(IsInt);

false

gap> IsComputableFilter(IsQuickPositionList);
false

gap> IsComputableFilter(IsInt and IsPosRat);
false

gap> IsComputableFilter(IsMagma) ;

false

Bibliography

[Bre05] Thomas Breuer. Re: Filter trouble. Posting at the GAP forum, Jun 2005.

[Bru55] Richard H. Bruck. Difference sets in a finite group. Transactions of the American Mathematical
Society, 78(78):464-481, 1955.

[Dem68] Peter Dembowski. Finite Geometries. Number 44 in Ergebnisse der Mathematik und ihrer
Genzgebiete. Springer-Verlag, Berlin Heidelberg, 1968.

[DP67] Peter Dembowski and Fred Piper. Quasiregular collineation groups of finite projective planes.
Mathematische Zeitschrift, 99:53-75, 1967.

[Moo] G. Eric Moorhouse. Data for projective planes.
http://www.uwyo.edu/moorhouse/.

[M0095] G. Eric Moorhouse. Two-graphs and skew two-graphs in finite geometries. Linear Algebra and its
Applications, 226-228:529-551, 1995.

[R6d06] Marc Roder. Quasiregular Projective Planes of Order 16 — A Computational Approach. PhD thesis,
Technische Universitat Kaiserslautern, 2006.

[Roy] Gordon Royle. Combinatorial catalogues.
http://www.csse.uwa.edu.au/ gordon/data.html.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A FingerprintAntiFlag, 30

A brute force method, 11 FingerprintProjPlane, 30
AbssquareInCyclotomics, 33 First Step: Integers instead of group elements, /
All1Diffsets, 11 G

AllElationsAx, 28
AllElationsAxSmall, 28
AllElationsCentAx, 28
AllElationsCentAxSmall, 28
AllPresentables, 10 H

B HomologyByPairSmall, 28

How partial difference sets are represented, 8

GroupList2PermList, 9
GroupOfHomologiesSmall, 28
Groups and actions, 31

Basic functions for startset generation, 8
Blackbox functions, 16 I

C IncidenceMatrix, 29
InducedCollineation, 29

InfoRDS, 14, 32

Installation, 8

Introduction, 7

Invariants for Projective Planes, 29
IsCollineationOfProjectivePlane, 27
IsComputableFilter, 34
IsIsomorphismOfProjectivePlanes, 27
IsListOfIntegers, 32
IsomorphismProjPlanesByGenerators, 27
IsomorphismProjPlanesByGeneratorsNC, 27

CartesianlIterator, 31

Central Collineations, 28

Change of coset vs. brute force, 6
CoeffList2CyclotomicList, 33
Collineations on Baer Subplanes, 29
ConcatenationOfIterators, 31
CosetSignatureOfSet, 12
CosetSignatures, 13

Cyclotomic numbers, 33
CycsGivenCoeffSum, 33

D Isomorphisms and Collineations, 27
DataForQuotientImage, 21 IsRoot0fUnity, 33

Definition, 23 IsTranslationPlane, 28
DualPlane, 26 IsTranslationPlaneSmall, 28

E Iterators, 31

ElationPrecalc, 26 L

ElationPrecalcSmall, 26 List2Tuples, 32
ElationsByPairs, 28 Lists and Matrices, 32
ElationsByPairsSmall, 28 M

ExtendedStartsets, 10

ExtendedStartsetsNoSort, 10 MatchingFGData, 15

MatchingFGDataForOrderedSigs, 22
F MatchingFGDataNonGrp, 15
Filters and Categories, 33 MatTimesTransMat, 32

Index

maxAutsizeForOrbitCalculation, 16
Methods for calculating ordered signatures, 2/
MultiplicityInvariantLargeLambda, 22

N

NewPresentables, 9
NormalSgsForQuotientImages, 21
NormalSgsHavingAtMostNSigs, 16
NormalSubgroupsForRep, 24
NrFanoPlanesAtPoints, 29
NrFanoPlanesAtPointsSmall, 29

0

OnSubgroups, 31

OrderedSigInvariant, 22
OrderedSignature0fSet, 25

Ordered signatures by quotient images, 21
Ordered signatures using representations, 23
OrderedSigs, 24
OrderedSigsFromQuotientImages, 22

P
PartitionByFunction, 32
PartitionByFunctionNF, 32
PermList2GrouplList, 9

PermutationRepForDiffsetCalculations, 8
pRank, 29
ProjectiveClosureOfPointSet, 26

R

RDSFactorGroupData, 14
ReducedStartsets, 16
RemainingCompletions, 10
RemainingCompletionsNoSort, 10
RepsCClassesGivenOrder, 31

S

SigInvariant, 14

SignatureData, 16
SignatureDataForNormalSubgroups, 15
Signatures: An important tool, &
StartsetsInCoset, 17
SuitableAutomorphismsForReduction, 16

T

TestedSignatures, 13
TestedSignaturesRelative, 14
TestSignatureCyclicFactorGroup, 13
TestSignatureLargelIndex, 13

The Coset Signature, 12

37

	Contents
	About this package
	Installation

	A quick start
	First Step: Integers instead of group elements
	Signatures: An important tool
	Change of coset vs. brute force

	General concepts
	Introduction
	How partial difference sets are represented
	Basic functions for startset generation
	A brute force method

	Invariants for Difference Sets
	The Coset Signature
	Blackbox functions

	An Example Program
	Ordered Signatures
	Ordered signatures by quotient images
	Ordered signatures using representations
	Definition
	Methods for calculating ordered signatures

	Determining the Isomorphism Class of Projective Planes
	Isomorphisms and Collineations
	Central Collineations
	Collineations on Baer Subplanes
	Invariants for Projective Planes

	Some functions for everyday use
	Groups and actions
	Iterators
	Lists and Matrices
	Cyclotomic numbers
	Filters and Categories

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T

