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Circle 2

Abstract

The GAP4 package Circle extends the GAP functionality for computations in adjoint groups of associative rings.
It provides functionality to construct circle objects that will respect the circle multiplication r-s = r+ s+ rs,
create multiplicative groups, generated by such objects, and compute groups of elements, invertible with respect
to this operation, for finite radical algebras and finite associative rings without one.
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Chapter 1

Introduction

1.1 General aims

Let R be an associative ring, not necessarily with one. The set of all elements of R forms a monoid
with the neutral element O from R under the operation r-s = r+ s+ rs defined for all r and s of R.
This operation is called the circle multiplication, and it is also known as the star multiplication. The
monoid of elements of R under the circle multiplication is called the adjoint semigroup of R and is
denoted by R%. The group of all invertible elements of this monoid is called the adjoint group of R
and is denoted by R*.

These notions naturally lead to a number of questions about the connection between a ring and
its adjoint group, for example, how the ring properties will determine properties of the adjoint group;
which groups can appear as adjoint groups of rings; which rings can have adjoint groups with pre-
scribed properties, etc.

For example, V. O. Gorlov in [Gor95] gives a full list of finite nilpotent algebras R, such that
R? # 0 and the adjoint group of R is metacyclic (but not cyclic).

S. V. Popovich and Ya. P. Sysak in [PS97] characterize all quasiregular algebras such that all
subgroups of their adjoint group are their subalgebras. In particular, they show that all algebras of
such type are nilpotent with nilpotency index at most three.

Various connections between properties of a ring and its adjoint group were considered by O. D.
Artemovych and Yu. B. Ishchuk in [AI97].

B. Amberg and L. S. Kazarin in [AK00] give the description of all nonisomorphic finite p-groups
that can occur as the adjoint group of some nilpotent p-algebra of the dimension at most 5.

In [ASO1] B. Amberg and Ya. P. Sysak give a survey of results on adjoint groups of radical rings,
including such topics as subgroups of the adjoint group; nilpotent groups which are isomorphic to
the adjoint group of some radical ring; adjoint groups of finite nilpotent p-algebras. The authors
continued their investigations in further papers [AS02] and [AS04].

In [KSO4] L. S. Kazarin and P. Soules study associative nilpotent algebras over a field of positive
characteristic whose adjoint group has a small number of generators.

The main objective of the proposed GAP4 package Circle is to extend the GAP functionality for
computations in adjoint groups of associative rings to make it possible to use the GAP system for the
investigation of the above described questions.

Circle provides functionality to construct circle objects that will respect the circle multiplication
r-s =r+ s+ rs, create multiplicative groups, generated by such objects, and compute groups of
elements, invertible with respect to this operation, for finite radical algebras and finite associative
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rings without one.
Also we hope that the package will be useful as an example of extending the GAP system with
new multiplicative objects.

1.2 Installation and system requirements

Circle does not use external binaries and, therefore, works without restrictions on the type of the
operating system. It is designed for GAP4.4 and no compatibility with previous releases of GAP4 is
guaranteed.

To use the Circle online help it is necessary to install the GAP4 package GAPDoc
by Frank Liibeck and Max Neunhoffer, which is available from the GAP site or from
http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/.

Circle is distributed in standard formats (zoo, tar.gz, tar.bz2, -win.zip) and can be ob-
tained from http://homepages.vub.ac.be/ okonoval/circle.htm. To unpack the archive
circle-1.1.zoo you need the program unzoo, which can be obtained from the GAP homepage
http://www.gap-system.org/ (see section ‘Distribution’). To install Circle, copy this archive into
the pkg subdirectory of your GAP4.4 installation. The subdirectory circle will be created in the pkg
directory after the following command:

unzoo -x circle-1.1.zoo


http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/
http://homepages.vub.ac.be/~okonoval/circle.htm
http://www.gap-system.org/

Chapter 2

Circle functions

To use the Circle package first you need to load it as follows:

Example

gap> LoadPackage ("circle");

Loading Circle 1.0 (Adjoint groups of associative rings)

by Alexander Konovalov (http://homepages.vub.ac.be/ okonoval/) and
Panagiotis Soules (psoules@math.uoa.gr).

true
gap>

2.1 Circle objects

Because for elements of the ring R the ordinary multiplication is already denoted by *, for the imple-
mentation of the circle multiplication in the adjoint semigroup we need to wrap up ring elements as

CircleObjects, for which * is defined to be the circle multiplication.

2.1.1 CircleObject

{Q CircleObject ( x )

Let x be aring element. Then CircleObject (x) returns the corresponding circle object. If x lies
in the family fam, then CircleObject (x) lies in the family CircleFamily (2.1.5), corresponding to

the family fam.

Example
gap> x := 2;
2
gap> a := CircleObject( x );
CircleObject ( 2 )
gap> FamilyObj( a ) = CircleFamily( FamilyObj( x ) );
true
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2.1.2 UnderlyingRingElement

Q UnderlyingRingElement ( x ) (operation)

Let x be a circle object. Then UnderlyingRingElement (x) returns the corresponding ring ele-

ment.
Example

gap> x := 2;

2

gap> a := CircleObject( x );

CircleObject ( 2 )

gap> UnderlyingRingElement ( a );

2

gap> FamilyObj( a ) = CircleFamily( FamilyObj( x ) );
true

2.1.3 IsCircleObject

O IsCircleObject ( x ) (Category)
Q IsCircleObjectCollection( x ) (Category)

An object x lies in the category IsCircleObject if and only if it lies in a family constructed by
CircleFamily (2.1.5). Since circle objects can be multiplied via * with elements in their family, and
we want to implement operations One and Inverse to deal with groups they generate, circle objects
are implemented in the category IsMultiplicativeElementWithInverse.

Example

gap> IsCircleObject( 2 );

false

gap> IsCircleObject ( CircleObject( 2 ) );

true

gap> IsMultiplicativeElementWithInverse( CircleObject( 2 ) );

true

gap> One( CircleObject( 2 ) );

CircleObject( 0 )

gap> CircleObject( -2 ) -1;

CircleObject ( -2 )
2.1.4 IsPositionalObjectOneSlotRep
{Q IsPositionalObjectOneSlotRep( x ) (Representation)
O IsDefaultCircleObject ( x ) (Representation)

To store the corresponding circle object, we need only to store the underlying ring element. Since
this is quite common situation, we defined the representation IsPositionalObjectOneSlotRep
for a more general case. Then we defined IsDefaultCircleObject as a synonym of
IsPositionalObjectOneSlotRep for objects in IsCircleObject (2.1.3).
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Example

gap> IsPositionalObjectOneSlotRep( CircleObiject( 2 ) );
true

gap> IsDefaultCircleObject( CircleObject( 2 ) );

true

2.1.5 CircleFamily

Q CircleFamily( fam ) (attribute)

CircleFamily (fam) is a family, elements of which are in one-to-one correspondence with ele-
ments of the family fam, but with the circle multiplication as an infix multiplication. That is, for x, y
in fam, the product of their images in the CircleFamily (fam) will be the image of x +y+ xy.
Example

gap> x:=CircleObject (2) *CircleObject (3);
CircleObject ( 11 )

gap> y:=CircleObject (2+3+2*3);
CircleObject ( 11 )

gap> x=y;

true

gap> FamilyObj (x)=FamilyObj(y);

true

2.2 Operations with circle objects
2.2.1 OneOp

O OneOp ( x ) (operation)

This operation returns the multiplicative neutral element for the circle object x. The result is the
circle object corresponding to the additive neutral element of the appropriate ring.

Example
gap> One( CircleObject( 5 ) );
CircleObject( 0 )
gap> One( CircleObject( 5 ) ) = CircleObject( Zero( 5 ) );
true
gap> One( CircleObject( [ [ 1, 1 1,00, 1.1 1) );
CircleObject( [ [ O, O 1, [ O, O 1 1)
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2.2.2 InverseOp

O InverseOp( x ) (operation)

For a circle object x, returns the multiplicative inverse of x with respect to the circle multiplication;

if such one does not exist then fail is returned.
Example

gap> CircleObject ( -2 )" -1;

CircleObject ( -2 )

gap> CircleObject( 2 ) -1;

CircleObject ( -2/3 )

gap> CircleObject ( -2 )*CircleObject( -2 ) -1;
CircleObject( 0 )

gap> m := CircleObject( [ [ 1, 11, [ 0, 111 );
CircleObject( [ [ 1, 11, [ 0, 21 1)

gap> m"-1;

CircleObject( [ [ -1/2, -1/4 1, [ 0, -1/2 1 1)
gap> m * m"-1;
CircleObject( [ [ 0, O
gap> CircleObject( [ [
fail

2.2.3 IsUnit

O IsUnit( R, x ) (operation)
O IsUnit( x ) (operation)

Let x be a circle object corresponding to an element of the ring R. Then the operation IsUnit
returns true, if x is invertible in R with respect to the circle multiplication, and false otherwise.
Example

gap> IsUnit ( Integers, CircleObject( -2 ) );

true

gap> IsUnit( Integers, CircleObject( 2 ) );

false

gap> IsUnit( Rationals, CircleObject( 2 ) );

true

gap> IsUnit( ZmodnZ(8), CircleObject( ZmodnZObj(2,8) ) );
true

gap> m := CircleObject( [ [ 1, 1 1,00, 1 11 );
CircleObject( [ [ 1, 11, [0, 11 1)

gap> IsUnit ( FullMatrixAlgebra( Rationals, 2 ), m );
true
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In the second form the result will be returned with respect to the default ring of the circle object x.
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Example

gap> IsUnit( CircleObject( -2 ) );

true

gap> IsUnit( CircleObiject( 2 ) );

false

gap> IsUnit( CircleObject( ZmodnzObij(2,8) ) );

true

gap> IsUnit( CircleObject( [ [ 1, 1 1,00, 21 1) );

true
2.2.4 IsCircleUnit
O IsCircleUnit( R, x ) (operation)
{ IsCircleUnit( x ) (operation)

Let x be an element of the ring R. Then IsCircleUnit ( R, x ) determines whether x is invert-
ible in R with respect to the circle multilpication. This is equivalent to the condition that 1+x is a unit

in R with respect to the ordinary multiplication.

Example
gap> IsCircleUnit( Integers, -2 );
true
gap> IsCircleUnit ( Integers, 2 );
false
gap> IsCircleUnit ( Rationals, 2 );
true
gap> IsCircleUnit ( ZmodnZ(8), ZmodnZObj(2,8) );
true
gap>m = [ [ 1, 11,00, 11 1;

(11, 11, 00, 1711
gap> IsCircleUnit ( FullMatrixAlgebra(Rationals,2), m );
true

In the second form the result will be returned with respect to the default ring of x.
Example

gap> IsCircleUnit( -2 );

true

gap> IsCircleUnit( 2 );

false

gap> IsCircleUnit ( ZmodnZObij(2,8) );

true

gap> IsCircleUnit( [ [ 1, 11,00, 111 );
true
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2.3 Construction of the adjoint group

2.3.1 AdjointGroup

{ AdjointGroup( R ) (attribute)

If R is a finite radical algebra then AdjointGroup (R) will return the adjoint group of R, given as
a group generated by a set of circle objects.

To compute the adjoint group of a finite radical algebra, Circle uses the fact that all elements of
a radical algebra form a group with respect to the circle multiplication. Thus, the adjoint group of
R coincides with R elementwise, and we can randomly select an appropriate set of generators for the
adjoint group.

The warning is displayed by IsGeneratorsOfMagmaWithInverses method defined in
gapdrd/1lib/grp.gi and may be ignored.

WARNINGS:

1. The set of generators of the returned group is not required to be the minimal generating set.

2. AdjointGroup is stored as an attribute of R, so for the same copy of R calling it again you
will get the same result. But if you will create another copy of R in the future, the output may differ
because of the random selection of generators. If you want to have the same generating set, next time
you should construct a group immediately specifying circle objects that generate it.

3. In most cases, to investigate some properties of the adjoint group, it is necessary first to convert
it to an isomorphic permutation group or to a PcGroup.

For example, we can create the following commutative 2-dimensional radical algebra of order 4
over the field of two elements, and show that its adjoint group is a cyclic group of order 4:

Example
gap> x:=[ [ 0, 1, 0 ],
> [OI OI l ]I
> [0, 0,01 1;;

gap> R := Algebra( GF(2), [ One(GF(2))*x ] );

<algebra over GF(2), with 1 generators>

gap> RadicalOfAlgebra( R ) = R;

true

gap> Dimension (R);

2

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

[ CircleObject( [ [ 0%Z(2), 0*Z(2), Z(2)°0 1, [ 0*z(2), 0*Z(2), 0*Z(2) 1,
[ 0*%2(2), 0*2(2), 0*z(2) 1 1) 1

<group of size 4 with 2 generators>

gap> Size( R ) = Size( G );

true

gap> StructureDescription( G );

"C4||




Circle

12

In the following example we construct a non-commutative 3-dimensional radical algebra of order 8
over the field of two elements, and demonstrate that its adjoint group is the dihedral group of order 8:

Example
gap> x:=[ [ 0, 1, 0 1,
> [0, 0, 01,
> [0, 0, 071 1;;
gap> y:=[ [ 0, 0, O ],
> [0, 0,11,
> [0, 0, 01 1;;

gap> R := Algebra( GF(2), One(GF(2))*[x,vy] );

<algebra over GF(2), with 2 generators>

gap> RadicalOfAlgebra(R) = R;

true

gap> Dimension (R);

3

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

[ CircleObject( [ [ 0%Z(2), Z(2)°0, z2(2)°0 1, [ 0*Z(2), 0*z(2), Z(2)"0 1,
[ 0*Z(2), 0*Z(2), 0*Z(2) 1 1) 1

<group of size 8 with 2 generators>

gap> StructureDescription( G );

"D8ll

If the ring R is not a radical algebra, but also is not a ring with one, then Circle will use another
approach. We will enumerate all elements of the ring R and select those that are units with respect
to the circle multiplication. Then we will use a random approach similar to the case of the radical
algebra, to find some generating set of the adjoint group. Again, all warnings 1-3 above refer also to

this case.

Of course, enumeration of all elements of R should be feasible for this computation. In the fol-

lowing example we demonstrate how it works for rings, generated by residue classes:

Example

gap> R := Ring( [ ZmodnZObij(2,8) 1 );

<ring with 1 generators>

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ CircleObject ( ZmodnZObj( 2, 8 ) ) 1

<group of size 4 with 2 generators>

gap> StructureDescription( G );

"c2 x c2"

gap> R := Ring( [ ZmodnZObj(2,256) 1 );

<ring with 1 generators>

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ CircleObject ( ZmodnZObj( 234, 256 ) ) ]

<group of size 128 with 2 generators>

gap> StructureDescription( G );

"C64 x C2"
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If R has a unity 1, then the set 1+ R, where R%? is the adjoint semigroup of R, coincides with the
multiplicative semigroup R™/" of R, and the map r ~— (14 r) for r in R is an isomorphism from R%?
onto R™,
Similarly, the set 1 + R*, where R* is the adjoint group of R, coincides with the unit group of R,
which we denote U(R), and the map r — (1 +r) for r in R is an isomorphism from R* onto U (R).
We demonstrate this isomorphism using the following example.
Example

gap> FG := GroupRing( GF(2), DihedralGroup(8) );

<algebra-with-one over GF(2), with 3 generators>

gap> R := AugmentationIdeal( FG );

<two-sided ideal in <algebra-with-one over GF(2), with 3 generators>,
(dimension 7)>

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

[ CircleObject ( (Z(2)"0)*f2+(Z(2)"0)*f1*f2 ) ]

<group of size 128 with 4 generators>

gap> IdGroup( G );

[ 128, 170 ]

gap> IdGroup( Units( FG ) );

#I LAGUNA package: Computing the unit group ...

[ 128, 170 ]

This is is why we did not implemented in Circle adjoint groups for associative rings with one. If you
will try to compute the adjoint group for such a ring, you will get an error message telling that you
can investigate the unit group of the ring instead.

If R is infinite, an error message will appear, telling that Circle does not provide methods to deal
with infinite rings.
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2.4 Service functions
2.4.1 InfoCircle

{ InfoCircle (info class)

InfoCircle is a special Info class for Circle algorithms. It has 2 levels: O (default) and 1. To
change info level to k, use command SetInfoLevel (InfoCircle, k).
Example

gap> SetInfolevel( InfoCircle, 1 );

gap> SetInfolevel (InfoCircle,l);

gap> R := Ring( [ ZmodnzObij(2,8) 1);

<ring with 1 generators>

gap> G := AdjointGroup( R );

#I Circle : <R> is not a radical algebra, computing circle units ...
#I Circle : searching generators for adjoint group ...

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for
[ CircleObject ( ZmodnZObij( 6, 8 ) ) 1]

<group of size 4 with 2 generators>

gap> SetInfolevel( InfoCircle, 0 );

2.4.2 CIRCLEBuildManual

{ CIRCLEBuildManual ( ) (function)

This function is used to build the manual in the following formats: DVI, PDF, PS, HTML and text
for online help. We recommend that the user should have a recent and fairly complete TgX distribution.
Since Circle is distributed together with its manual, it is not necessary for the user to use this function.
Normally it is intended to be used by the developers only. This is the only function of Circle which
requires UNIX/Linux environment.

2.4.3 CIRCLEBuildManualHTML

¢ CIRCLEBuildManualHTML ( ) (function)

This fuction is used to build the manual only in HTML format. This does not depend on the
availability of the TgX installation and works under Windows and MacOS as well. Since Circle is
distributed together with its manual, it is not necessary for the user to use this function. Normally it is
intended to be used by the developers only.
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A sample computation with Circle

Here we give an example to give the reader an idea what Circle is able to compute.

It was proved in [KS04] that if R is a finite nilpotent two-generated algebra over a field of charac-
teristic p > 3 whose adjoint group has at most three generators, then the dimension of R is not greater
than 9. Also, an example of the 6-dimensional such algebra with the 3-generated adjoint group was
given there. We will construct the algebra from this example and investigate it using Circle. First we
create two matrices that determine its generators:
Example

gap> x:=[

~
~
~
~
~

~
~
~
~
~
~

~
~
~
~
~
~

~
~
~
~

~
~
~
~

~
~
~
~

vV V V V V V
~
O O O O O = O O
~

~
<
~

~
~
|
—
~
~
~

~ ~
~ ~
~ ~
~ ~
~ ~
O O O O O O O O o O
~

~
~

~
~
~
|
—
~

~
~
~
~
~
o

O O O O O O O O O o o o o o
~

~

~

O O O O O O O O o o o o o
~

O O O O P OO OO o o o o
~

~

<
O O O OO OO OO OO O o
~
~
O O O P OO OOk O oo o
~
~

~

[
[
[
[
[
[
[
gap> y:=[ [
[
[
[
[
[
[

vV V V V V V
~

O O O O O
~

~

~
o

Now we construct this algebra in characteristic five and check its basic properties:
Example

gap> R := Algebra( GF(5), One(GF(5))*[x,y] );
<algebra over GF(5), with 2 generators>
gap> Dimension( R );

6

gap> Size( R );

15625

gap> RadicalOfAlgebra( R ) = R;
true

15
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Then we compute the adjoint group of R. During the computation a warning will be dis-
played. It is caused by the method for IsGeneratorsOfMagmaWithInverses defined in the file
gap4r4/lib/grp.gi from the GAP library, and may be safely ignored.

gap> G := AdjointGroup( R );

[ CircleObject ( [ [ 0*Z(5), Z(5), Z(5),
[ 0*Z(5), 0*Z(5), 0*Z(5)
[ 0*%2(5), 0*Z(5), 0*Z(5), Z(5),
[ 0%2(5), 0*Z(5), 0*Z(5), 0*z(5),
[ 0*Z(5), 0*Zz(5), 0*Z(5), 0*z(5),
[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5),
[ 0*Z(5), 0*Z(5), 0*Z(5), 0*Z(5),

<group of size 15625 with 3 generators>

Example

» Z(5), Z(5)7°3, Z(5)73, Z(5
Z(5), 0*z(5), Z(5)

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

Z2(5)7°3, z(5), 0*z(5), z(5)"2 ],
"3,

0%z (5), 2(5), Z(5) 1,

0%z (5), Z(5), Z2(5) 73 1,
0*Z(5), 0*Z(5), 0*z(5) 1,

0%z (5), 0*z(5), 0*2(5) 1 1) ]

Now we can find the minimal generating set of G and check that G it is 3-generated. To do this, first

we need to convert it to the isomorphic PcGroup:

Example
gap> f := IsomorphismPcGroup( G );;
gap> H := Image( f );

Group ([ f1, f2, f£3, f4, f£5, f6 1)
gap> gens := MinimalGeneratingSet( H );
[ f1, f2, £5 ]
gap> gens:=List ( gens, x -> UnderlyingRingElement (PreImage(f,x)));;
gap> Perform(gens,Display);
. 3344 .1
. 3214
. 3324
33
32
311 ...
34 1
132
1
34
2232 .4
2333
22 .2
2 2
2 3

It appears that the adjoint group of the algebra from example will be 3-generated in characteristic

three as well:
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gap> R := Algebra( GF(3), One(GF(3))*[x,y] );

<algebra over GF(3), with 2 generators>

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

[ CircleObject( [ [ 0*Z(3), 0*Z(3), Z(3)"0, Z(3)"0, Z(3), Z(3), 0*Z(3) 1,

(
[ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3), Z(3)°0, Zz(3)"0 1,
[ 0%Z(3), 0*Z(3), 0*Z(3), Z(3)"0, 0%*Z(3), Z(3), Z(3) 1,
[ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)°0, 0*Z(3) 1,
[ 0%Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3) 1,
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) 1,
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) 1 ] ) ]

<group of size 729 with 3 generators>

gap> H := Image( IsomorphismPcGroup( G ) );
Group ([ f1, f2, £3, f4, £5, £6 1)

gap> MinimalGeneratingSet( H );

[ f1, £2, f4 ]

But this is not the case in characteristic two, where the adjoint group is 4-generated:

Example

gap> R := Algebra( GF(2), One(GF(2))*[x,y] );

<algebra over GF(2), with 2 generators>

gap> G := AdjointGroup( R );

#I default ‘IsGeneratorsOfMagmaWithInverses’ method returns ‘true’ for

[ CircleObject( [ [ 0*Z(2), Z(2)"0, Z(2)°0, 0*z(2), Z(2)"0, 0*z(2), 0*Z(2)
[ 0%Z(2), 0*z(2), 0*Z(2), Z(2)°0, Z2(2)"0, Z(2)"0, 0*z(2) 1,
[ 0%Z(2), 0*z(2), 0*Z(2), Z(2)°0, Z2(2)"0, Z(2)"0, Z(2)"0 1,
[ 0%Z2(2), 0*zZ(2), 0*Z(2), 0*Z(2), 0*Zz(2), Z(2)"0, Z(2)°0 1,
[ 0*Z(2), 0*z(2), 0*Z(2), 0*Z(2), 0*z(2), Z(2)"0, Z(2)°0 1,
[ 0%Z(2), 0*Z(2), 0*Z(2), 0*zZ(2), 0*z(2), 0*Z(2), 0*Z(2) 1,
[ 0*Z(2), 0*Z(2), 0*Z(2), 0*Z2(2), 0*Z(2), 0*z(2), 0*Z(2) 1 1 ) ]
<group of size 64 with 4 generators>
gap> H := Image( IsomorphismPcGroup( G ) );

Group ([ f1, £f2, £3, f4, £5, f6 1)
gap> MinimalGeneratingSet ( H );
[ £1, £2, £f4, £5 ]

1,
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