RCWA

Residue Class-Wise Affine Groups
Version 2.1.7

September 1, 2006

Stefan Kohl

Stefan Kohl — Email: kohl@mathematik.uni-stuttgart.de
— Homepagenttp://www.cip.mathematik.uni-stuttgart.de/ "kohlsn
— Address: Institutiir Geometrie und Topologie

Universitt Stuttgart

70550 Stuttgart

Germany

mailto://kohl@mathematik.uni-stuttgart.de
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn

RCWA 2

Abstract

RCWA is a package foGAP 4 which provides methods for investigatif@sidueClassWise Affine groups
by means of computation. Residue class-wise affine groups are countable permutation groups acting on the
integers, whose elements are bijective residue class-wise affine mappings.
A mappingf : Z — Z is calledresidue class-wise affingrovided that there is a positive integersuch
that the restrictions of to the residue classes (mag are all affine. This means that for any residue class
r(m) € Z/mz there are coefficientg), brm), ¢ m) € Z such that the restriction of the mappirigo the set
r(m) = {r+kmke Z} is given by

8 (m) - N+brm)

f\r(m): r(mj—2Z, n— -

“Many” residue class-wise affine groups act multiply transitivelyZoor on subsets thereof. The class of groups
which can faithfully be represented as residue class-wise affine groups is closed under forming wreath products
with finite groups and with the infinite cyclic groyf, +). It includes free groups of any rank, all free products

of finite groups and certain divisible torsion groups. It also contains finitely generated groups with unsolvable
membership problem. The group which is generated byglafis transpositions these are involutions which
interchange two disjoint residue classes — is a simple group which has subgroups of all mentioned types and
whose class of isomorphism types of subgroups is closed under the above operations.

Despite of what has been said in the preceding paragraph, still not very much is known about the structure of
residue class-wise affine groups. This package is intended to serve as a tool for obtaining a better understanding
of their rich and interesting group theoretical and combinatorial structure.

Residue class-wise affine groups can be generalized in a natural way to euclidean rings other than the ring
of integers. While this package undoubtedly provides most functionality for residue class-wise affine groups
over the integers, at least rudimentarily it also covers the cases that the underlying ring is a semilocalization
of Z or a polynomial ring in one variable over a finite field.

The original motivation for investigating residue class-wise affine groups comes from the fameus 3
Conjecture, which is an assertion about a surjective, but not injective residue class-wise affine mapping.

Residue class-wise affine groups are introduced in the author’s tRestklassenweise affine Gruppen
This thesis is published atttp://deposit.ddb.de/cgi-bin/dokserv?idn=977164071 (Archivserver
Deutsche Bibliothek). A copy of this thesis and an english translation thereof are distributed with this package.

Copyright

(© 2003 - 2006 by Stefan Kohl. This package is distributed under the GNU General Public License.

Acknowledgements

| am very grateful to Bettina Eick for communicating this package and for her kind help in improving its
documentation. Further | would like to thank the two anonymous referees for their constructive criticism and
their helpful suggestions. | am also very grateful to Laurent Bartholdi for inviting me to give a talk on the
subject in Lausanne in April 2006, and for his hint on how to construct wreath products of residue class-wise
affine groups withZ,+). | would like to thank Otto H. Kegel, Katrin Tent and OlivebRdigs for their related
invitations to Freiburg resp. Bielefeld in February and March 2006.

http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071

Contents

1 Preface 6
1.1 Motivation. e 6
1.2 Groupswhichcanberepresented 6
1.3 Purposeofthispackage. e 7
1.4 Scopeofthispackage. 7

2 Residue Class-Wise Affine Mappings 8
2.1 Basicdefinitions L 8
2.2 Entering residue class-wise affinemappings 9

2.2.1 ClassShift(r,m) 10
2.2.2 ClassReflection(r,m). 10
2.2.3 ClassTransposition (rl, m1,r2,m2). 11
224 PrimeSwitch(p) e 11
2.25 RcwaMapping (R, m,coeffs) 12
22,6 LaTeXObj(f) o 13
2.3 Basic functionality forrcwamappings 14
2.4 Factoringrewa mappings o v o i e e e e e e e e e 16
2.4.1 FactorizationIntoCSCRCT (@) . . - .« « v v v v v i e e e 16
242 mKnot(m) e 17
2.5 Determinantandsign e e e 17
251 Determinant () o oo e 17
252 SigN(Q). . . . o e e 18
2.6 Attributes and properties derived from the coefficients. 18
2.7 Functionality related to the affine partial mappings. 19
2.7.1 LargestSourcesOfAffineMappings(f) 19
2.7.2 Multpk (f, p,K) . . o o 20
2.7.3 FixedPointsOfAffinePartialMappings (f). 20
2.8 Transition graphs and transition matrices 21
2.8.1 TransitionGraph (f,m). 21
2.8.2 OrbitsModulo (f,m) 21
2.8.3 FactorizationOnConnectedComponents (f,.m). 21
2.8.4 TransitionMatrix (f,m). 22
285 Sources(f) e 22
2.8.6 Sinks(f). e 22
2.8.7 Loops(f) e 23
2.9 TrajeCtorieS. 23

RCWA 4

2.9.1 Trajectory (f,n,length) 23
2.9.2 Trajectory (f, n, length, whichcoeffs). 23
29.3 IncreasingOn(f) 24
2.9.4 GluckTaylorlnvariant (a). e 24
2.10 Localizations of rcwa mappings of theintegers. 25
2.10.1 LocalizedRcwaMapping (f, p). o o . e 25
2.11 Extractingroots of rcvamappings e e 25
2111 Root (f,K). . . o o e 25
2.12 Special functions for non-bijective mappings 25
2.12.1 Rightinverse (f). 25
2.12.2 CommonRightinverse (I, r) e 26
2.12.3 ImageDensity (f). 26
2.13 Probabilistic guesses on the behaviour of trajectories 27
2.13.1 LikelyContractionCentre (f, maxn, bound). 27
2.13.2 GuessedDivergence (f) L 27
2.14 The categories and familiesof rcwamappings 28
2.14.1 IsRcwaMapping (f). e 28
2.14.2 RcewaMappingsFamily (R).o oo 28
Residue Class-Wise Affine Groups 29
3.1 Constructing residue class-wise affinegroups 29
3.1.1 RCWA(R) . . o e e 29
3.1.2 IsomorphismRcwaGroupOverZ (G) o v i i 30
3.1.3 StructureDescription (G) e 31
3.2 Direct products and wreath products. 31
3.2.1 DirectProduct (G1,G2,...) e 32
3.2.2 WreathProduct (G,P). 32
3.3 Themembershiptest 33
3.4 Basic attributes and properties of rcwagroups oL 33
3.5 Permutation- and matrix representations, 34
3.5.1 IsomorphismPermGroup (G). e 34
3.5.2 IsomorphismMatrixGroup (G). 34
3.6 Factoringelementsintogenerators. 0. 35
3.6.1 PrelmagesRepresentative (phi,@). 35
3.6.2 PrelmagesRepresentatives (phi,.9) 36
3.7 The action of an rcwa group on the underlyingring. 36
3.7.1 IsTransitive (G, Integers) e 36
3.7.2 RepresentativeAction (G, src,dest,act). 37
3.7.3 RepresentativeActionPrelmage (G, src, dest,act, F) 38
3.7.4 RepresentativeAction (RCWA(Integers), P1,P2). 38
3.7.5 ShortOrbits (G,S,maxIng) 39
3.7.6 Projections (G, M) e 40
3.7.7 Ball(G,p,d,act). 40
3.8 Conjugacy INRCWA(Z) o i e e e e e e e 40
3.8.1 IsConjugate (RCWA(Integers),f, @) o .. 40
3.8.2 RepresentativeAction (RCWA(Integers), f,9). 41

3.8.3 NrConjugacyClassesOfRCWAZOfOrder (ord) 41

RCWA

3.9 Restrictionand induction L
3.9.1 Restriction(g,f)
3.9.2 Induction (g,f)

3.10 Getting pseudo-random elements of RCWA(Z).

3.11 Special attributes for tamercwagroups
3.11.1 RespectedPartition (G)
3.11.2 ActionOnRespectedPartition (G).
3.11.3 KernelOfActionOnRespectedPartition (G).
3.11.4 IntegralConjugate (G). e

3.12 Some general utility functions.

3.13 The categories of rcwa groups o i it e e
3.13.1 ISRcwaGroup (G) . . .« v v o o e e

Examples

4.1 Factoring Collatz’ permutation of the integers.
4.2 Anrcwa mapping which seems to be contracting, butvery slow
4.3 Checkingaresultby P. Andaloro.
4.4 Two examples by Matthewsand Leigh.
4.5 Exploring the structure ofawild rcewagroup.
4.6 A wild rcwa mapping which has only finitecycles.
4.7 An abelian rcwa group over a polynomialring.
4.8 Atame group generated by commutators of wild permutations.
4.9 Checkingforsolvability
4.10 Some examples over (semi)localizations of the integers.
4.11 Twisting 257-cycles into an rcwa mapping with modulus32.
4.12 The behaviour of the moduliof powers.
4.13 Images and preimages under the Collatz mapping.
4.14 A group which acts 4-transitively on the positive integers
4.15 A group which acts 3-transitively, but not 4-transitivelyonZ.
4.16 Grigorchukgroups. e
4.17 Forward orbits of a monoid with 2 generators.
4.18 Representations of the free groupofrank2.
4.19 Representations of the modular group PSL(2,2)

The Algorithms Implemented in RCWA

Installation and auxiliary functions

6.1 Requirements. e
6.2 Installation

6.3 ThelInfoclassofthepackage.
6.3.1 InfoRCWA
6.4 Thetestingroutine. e
6.4.1 RCWATeSt e
6.5 Buildingthemanual e
6.5.1 RCWABUIldManual

42
42
42
43
44
44
44
45
45
46
46
46

47
47
49
51
52
54
56
60
61
64
65
68
69
70
72
81
84
86
87
88

90

Chapter 1

Preface

1.1 Motivation

The development of this package has originally been inspired by the fameu$-Eonjecture. This
conjecture asserts that iterated application of the Collatz mapping

L if neven
T:Z Z, nir— {2
—> {3”“ if n odd

to any given positive integer eventually yields 1.

The 3+ 1-Conjecture has been made by Lothar Collatz in the 1930s, and is still lacking a proof
today. Jeffrey C. Lagarias has written and maintains a comprehensive annotated bibliogeaityy [
which currently lists about 200 references to publications related to Collatz’ conjecture. None of the
articles mentioned there tries to attack the problem by means of group theory or investigates the
structure of groups generated by bijective mappings which are “similar to the Collatz mapping”, i.e.
residue class-wise affindn fact, residue class-wise affine grouppparently have not been treated
anywhere in the literature before.

After having investigated these objects for a couple of years, the author feels that this is a gap
which is worth to be filled.

1.2 Groups which can be represented

This section lists some types of groups which are known to be representable as residue class-wise
affine groups. Proofs of most of the results have not yet appeared in print, but can be found in the
preprintA Simple Group Generated by Involutions Interchanging Residue Classes of the latiegers

the author’'s homepage.

Obviously, the infinite dihedral groufm — —n,n— n+ 1) can be represented. Further the class of
representable groups is closed under forming direct products and under forming wreath products with
finite groups and with the infinite cyclic grouf, +). Free groups and free products of finite groups
can be represented as well. Further there are divisible torsion groups and finitely generated groups
with unsolvable membership problem which have faithful residue class-wise affine representations.
In principle this package permits to construct and investigate groups of all mentioned types.

The group which is generated by elass transpositions these are involutions which interchange
two disjoint residue classes, seessTransposition (2.2.3 —is a simple group which contains all
the above groups. It has uncountably many simple subgroups.

6

RCWA 7

1.3 Purpose of this package

So far, compared to classes of groups like for example matrix groups, finite permutation groups or

polycyclic groups, only relatively basic facts about residue class-wise affine groups are known. This

package is intended to serve as a tool for obtaining a better understanding of their rich and interesting
group theoretical and combinatorial structure.

1.4 Scope of this package

This package being a research tool which can be applied in various ways to various different problems,
it is simply not possible to say what can be found out with its help about which mappings or groups.
The best way to get an idea about this is likely to experiment with the examples discussed in this
manual and included in the filg&kg/rcwa/examples/examples.q.

Of course this package often does not provide an out-of-the-box solution for a given problem.
At the beginning the user may perhaps notice long runtimes for seemingly easy things. But with
some experience he will learn to estimate how long something will take and to see why raising some
harmlessly-looking mapping to the 20th power would take terabytes of memory, while one can easily
find out nontrivial things about groups which look much more complicate. Quite often it is possible
to find an answer for a given question by using an interactive trial-and-error approach.

Among many other results, with substancial help of this package the author has found a proof that
the group generated by all class transpositions is simple. Interactive sessions with this package have
also lead to the development of a method for factoring residue class-wise affine permutations into
involutions which have a particularly simple structure (8ee€torizationIntoCSCRCT (2.4.1).

Chapter 2

Residue Class-Wise Affine Mappings

This chapter gives the basic definitions, describes how to enter residue class-wise affine mappings and
how to compute with them. The functionality of this package which is dedicated to residue class-wise
affine groups is described in detail in the next chapter.

2.1 Basic definitions

In the abstract, already a brief definition of residue class-wise affine groups over the ring of integers
has been given. In this section it follows a slightly generalized and more formal version of this
definition. In the same time some useful notation is introduced.

Let R be an infinite euclidean domain which is not a field and all of whose proper residue class
rings are finite. A mappind : R— Ris calledresidue class-wise affiner for short amcwamapping,
if there is anm € R\ {0} such that the restrictions df to the residue classe$m) € R/mRare all
affine. This means that for any residue cle@s) there are coefficient), by (m), ¢ (m € Rsuch that
the restriction of the mappin§ to the ser(m) = {r + kmk € R} is given by

8r(m) N+ Br(m

f\r(m): rm—R n— Com
r(m

The valuem is called themodulusof f. It is understood that all fractions are reduced, i.e. that
gcd(@; (m), br(m), ¢rm)) = 1, and thamis chosen multiplicatively minimal. Apart from the restrictions
imposed by the condition that the image of any residue claasunderf must be a subset & and
that one cannot divide by 0, the coefficieatsy), by andc,m) can be any ring elements. The lcm
of the coefficients, i, in the numerators is called tmaultiplier of f, and the Icm of the coefficients
Cr(m) in the denominators is called tligvisor of f.

The product f- g of some rcwa mappings andg is their composition as mappings, wheras
applied first. Thenverseof a bijective rcwa mapping is its inverse mapping.

The set RCWAR) :={ 0 € Sym(R) | o is residue class-wise affirjds closed under multiplication
and taking inverses (this can be verified easily), hence forms a subgroup oRSyngubgroup of
RCWA(R) is called aresidue class-wise affirgroup, or for short amcwa group.

There are two entirely different classes of rcwa mappings and -groups. One of these classes
comprises what could be called the “trivial cases”. The members of the other have typically a quite
complicate structure and are in often very difficult to investigate. Accordingly, the former are called
tameand the latter are calledild. By definition, an rcwa mapping immeif the set of moduli of its
powers is bounded, and an rcwa groufaisieif the set of moduli of its elements is bounded.

8

RCWA 9

2.2 Entering residue class-wise affine mappings

Entering an rcwa mapping inRCWA in general requires specifying the underlying riRghe mod-

ulusm and the coefficients,), by(m) andc;m) for r(m) running over the residue classes (nmod

For the sake of simplicity, in this section we describe how to enter rcwa mappiRs&. This is

likely the most prominent and certainly the best-supported case. For the general constructor for rcwa
mappings, sekcwaMapping (2.2.5.

The easiest way to enter an rcwa mappin@.a$ by RcwaMapping (coeffs). Herecoeffs is
a list of m coefficient triplescoeffs [r + 11 = [&(m), By(m), Cr(m)], Wherer runs from 0 tom— 1.

If some coefficient;) is zero or if images of some integers under the mapping to be defined
would not be integers, an error message is printed and a break loop is entered. For example, the
coefficient triple[1, 1, 3] is not allowed at the first position. The reason for this is that not all integers
congruent to O + 1 = 1 mouh are divisible by 3.
Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]); # The Collatz mapping.
<rcwa mapping of Z with modulus 2>

gap> [IsSurjective(T), IsInjective(T)];

[true, false]

gap> SetName (T, "T"); Display(T);

Surjective rcwa mapping of Z with modulus 2

gap> a := RcwaMapping([[2,0,31,104,-1,3]1,14,1,311); SetName(a,"a");
<rcwa mapping of Z with modulus 3>

gap> IsBijective(a);

true

gap> Display(a); # This is Collatz’ permutation:

Bijective rcwa mapping of Z with modulus 3

n mod 3 | n"a
_______________________________________ +______________________________________
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

gap> Support (a);

z\N [-1, 0, 1]

gap> Cycle(a,44);

[44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]

RCWA 10

There is computational evidence for the conjecture that any residue class-wise affine permufation of
can be factored into members of the following three series of rcwa mappings of particularly simple
structure (cpFactorizationIntoCSCRCT (2.4.1):

2.2.1 ClassShift (r, m)

{ ClassShift(r, m) (function)
{ ClassShift (ResidueClass(r, m)) (function)
Returns: The class shift,).
The class shiftv,y, is the rcwa mapping o which mapsn € r(m) to n+m and which fixes
Z \ r(m) pointwisely. Enclosing the argument list in list brackets is permitted.
Example

gap> Display(ClassShift (5,12));

Tame bijective rcwa mapping of Z with modulus 12, of order infinity

n mod 12 | n"ClassShift (5,12)
_______________________________________ +______________________________________
01 2 3 4 6 7 8 91011 | n
5 | n+ 12
2.2.2 ClassReflection (r, m)
{ ClassReflection(r, m) (function)
{ ClassReflection(ResidueClass(r, m)) (function)

Returns: The class reflectiony).
Theclass reflectiorg; y is the rcwa mapping o which mapsn € r(m) to —n+ 2r and which
fixesZ \ r(m) pointwisely. Enclosing the argument list in list brackets is permitted.
Example

gap> Display(ClassReflection(5,9));
Bijective rcwa mapping of Z with modulus 9, of order 2
n"ClassReflection(5,9)

012346738
5

RCWA 11

2.2.3 ClassTransposition (r1, m1, r2, m2)

{Q ClassTransposition(rl, ml, r2, m2) (function)
{Q ClassTransposition(ResidueClass(rl, ml), ResidueClass(r2, m2)) (function)
Returns: The class transposition, (m,) r,(m,)-
Theclass transposition,, (m,) r,(my,) IS an involution which interchanges the disjoint residue classes
r1(mp) andra(my) of Z and which fixes the complement of their union pointwisely. Enclosing the
argument list in list brackets is permitted. The residue clasg@s;) andra(mp) are stored as an

attributeTransposedClasses.
Example

gap> Display (ClassTransposition(1,2,8,10));

Bijective rcwa mapping of Z with modulus 10, of order 2

n mod 10 | n"ClassTransposition(1,2,8,10)
_______________________________________ +______________________________________
2 4 | n
1 3 5 7 9 | 5n + 3
| (n-3)/5

It can be shown that the group which is generated by all class transpositions is simple.
The permutations of the following kind play an important role in factoring bijective rcwa mappings
into class shifts, class reflections and class transpositiong{eporizationIntoCSCRCT (2.4.1):

2.2.4 PrimeSwitch (p)

O PrimeSwitch(p) (function)
Q PrimeSwitch(p, k) (function)
Returns: In the one-argument form thgrime switchap, 1= To(g) 1(2p) * Ta(8),—1(2p) * To(4),1(2p) *
To(4),~1(2p) T2(2p),1(4p) * T4(2p),2p+1(ap)» @Nd in the two-argument form the restrictionagf by n — kn.
For an odd primep, the prime switcho, is a bijective rcwa mapping dZ with modulus 4,

multiplier p and divisor 2.

Example
gap> Display (PrimeSwitch(3));

Wild bijective rcwa mapping of Z with modulus 12

n mod 12 | n"PrimeSwitch (3)

_______________________________________ e

0 | n/2

1 | n+ 1

2 6 10 | (3n + 4)/2

3 | n

4 | n -3

5 811 | n-1

RCWA 12

There are propertieSsClassShift, IsClassReflection, IsClassTransposition and
IsPrimeSwitch which indicate whether a given rcwa mapping belongs to the corresponding series.

In the sequel, a description of the general-purpose constructor for rcwa mappings is given. This
might look a bit technical on a first glance, but knowing all possible ways of entering an rcwa mapping
is by no means necessary for understanding this manual or for using this package.

2.2.5 RcwaMapping (R, m, coeffs)

Q RcwaMapping(R, m, coeffs) (method)
{ RcwaMapping (R, coeffs) (method)
O RcwaMapping (coeffs) (method)
{ RcwaMapping (perm, range) (method)
{ RcwaMapping (m, values) (method)
O RcwaMapping (pi, coeffs) (method)
{ RecwaMapping(g, m, coeffs) (method)
Q RcwaMapping (P1, P2) (method)
{ RcwaMapping (cycles) (method)

Returns: An rcwa mapping.

In all cases the argumentis the underlying ringp is the modulus andoeffs is the coefficient
list. A coefficient list for an rcwa mapping with modulus consists of|R/mR coefficient triples
(8 (m)» br(m), Cr(m) 1. Their ordering is determined by the ordering of the representatives of the residue
classes (modh) in the sorted list returned byl 1Residues (R, m). In caseR = Z this means that the
coefficient triple for the residue clas$rf)) comes first and is followed by the one fofnd), the one
for 2(m) and so on. In case one or several of the argunmenisandcoeffs are omitted or replaced
by other arguments, the former are either derived from the latter or default values are taken. The
meaning of the other arguments is defined in the detailed description of the particular methods given
in the sequel. The above methods return the rcwa mapping

(a) of R with modulusmodulus and coefficientgoef s, resp.

(b) of R =Z orRr =Z with modulusLength (coeffs) and coefficientgoeffs, resp.

(c) of R =Z with modulusLength (coeffs) and coefficientgoeffs, resp.

(d) of R =7, acting on any setange+k*Length (range) like the permutatioperm on range, resp.

(e) of R =Z with modulusnodulus and values prescribed by the list1, which consists of Ziodulus
pairs giving preimage and image for 2 points per residue class fwdd us), resp.

(f) of R =Zx with modulusLength (coeffs) and coefficientsoeffs (the set of primestdenoting
the underlying ring is passed as argumeijt, resp.

(g) of R = GF(g)[x] with modulusmodulus and coefficientgoeffs, resp.

(h) a bijective rcwa mapping which induces a bijection between the partitiorendp2 of R into
residue classes and which is affine on the elemertts ,akesp.

(i) a bijective rcwa mapping with “residue class cycles” as givertfyles. The latter is a list of
lists of pairwise disjoint residue classes which the mapping should permute cyclically, each.

The methods for the operati;rwaMapping perform a number of argument checks, which can be
skipped by usin@cwaMappingNC instead.

RCWA 13

Example

gap> X 1);; SetName(x,"x");

Indeterminate (GF (2),
gap> R := PolynomialRing(GF(2),1);
GF (2) [x]
gap> RcwaMapping (R, x+1,[[1,0,x+One(R)], [x+One(R),0,1]1]1*0One(R)); # (a)
<rcwa mapping of GF(2) [x] with modulus x+Z(2) "0>
gap> RcwaMapping (Z_pi(2), [[1/3,0,1]1); # (b)
Rcwa mapping of Z_(2): n -> 1/3 n
gap> a := RcwaMapping([[2,0,3],14,-1,31,104,1,311); # (c)
<rcwa mapping of Z with modulus 3>
gap> RcwaMapping((1,2,3),[1..4]); # (d)
<bijective rcwa mapping of Z with modulus 4, of order 3>
gap> T = RewaMapping (2, [[1,2], (2,11, (3,51, [4,2]1); $ ()
true
gap> RcwaMapping ([2]1,[[1/3,0,111); t (f)
Rcwa mapping of Z_(2): n -> 1/3 n
gap> RcwaMapping (2,x+1,[[1,0,x+One(R)], [x+One(R),0,1]]1*0ne (R)); # (9)

<rcwa mapping of GF(2) [x] with modulus x+Z(2) 0>

gap> a = RcwaMapping (List ([[0,31,1[1,3],12,3]],ResidueClass),

> List ([[0,2],[1,4],(3,4]1]1,ResidueClass)); # (h)
true

gap> RcwaMapping ([List ([[0,2],[1,4],1[3,8],[7,16]],ResidueClass)]); # (1)
<bijective rcwa mapping of Z with modulus 16, of order 4>

gap> Cycle(last,ResidueClass(0,2));

[0(2), 1(4), 3(8), 7(1l6)]

In most cases the output of theew method does not describe an rcwa mapping completely.

these cases the output is enclosed in brackets. There are methods installeghbfer;, Print and
String. ThepPrinted representation of an rcwa mappinGiP - readable if and only if therinted
representation of the elements of the underlying ring is so. There is also a methaddar

2.2.6 LaTeXObj (f)

Q LaTeXObj(£) (method)
O LaTeX(f) (method)
Returns: A LATEX representation of the rcwa mappifig
The output makes use of th&TjEX macro packagemsmath. If the optionFactorization is

In

set, a factorization of into class shifts, class reflections, class transpositions and prime switches is
printed (cp.FactorizationIntoCSCRCT (2.4.1). For rcwa mappings with modulus greater than 1,
an indentation byndentation characters can be specified by setting this option value accordingly.

Example

gap> Print (LaTeX0bj(T));
n \ \longmapsto \
\begin{cases}
\frac{n}{2} & \text{if} \ n \in 0(2), \\
\frac{3n + 1}{2} & \text{if} \ n \in 1(2).
\end{cases}

RCWA 14

Example

gap> Print (LaTeXObj (Comm(a,ClassShift (0,4)) :Factorization));
&\nu_{4(8)} \cdot \nu_{0(8)}"{-1}
\cdot \tau_{0(8),4(8)} \cdot \tau_{5(16),11(16)}
\cdot \tau_{4(8),11(16)}

There is an operationaTexAndXDVI which displays an rcwa mapping in advi window. This
works as follows: The string returned by theTex0bj - method described above is inserted into a
IATEX template file. This file isAIpX’ed, and the result is shown witkdvi. CallingDisplay with
optionxdvi has the same effect. The operaticiTeXAndxDV1 is only available on UNIX systems,
and requires suitable installations 8TfEX and xdvi.

2.3 Basic functionality for rcwva mappings

Checking whether two rcwa mappings are equal is cheap. Rcwa mappings can be multiplied, thus
there is a method for. Bijective rcwa mappings can also be inverted, thus there is a method for
Inverse. The latter method is usually accessed by raising a mapping to some power with negative
exponent. Multiplying, inverting and computing powers of tame rcwa mappings is cheap. Computing
powers of wild mappings is usually expensive — runtime and memory requirements normally grow
approximately exponentially with the exponent. How expensive multiplying a couple of wild map-
pings is, varies very much. In any case, the amount of memory required for storing an rcwa mapping
is proportional to its modulus. Whether a given mapping is tame or wild can be determined by the
operationIsTame. There are methods farrder, which can not only compute a finite order, but can
also detect infinite order.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,211);; # The Collatz mapping.
gap> a := RcwaMapping([[2,0,3],14,-1,31,1[4,1,311);; # Collatz’ permutation.
gap> List([-4..4],k->Modulus(a’k));

[256, 64, 16, 4, 1, 3, 9, 27, 81]

gap> IsTame(T) or IsTame(a);

false

gap> IsTame(ClassShift (0,1)) and IsTame (ClassTransposition(0,2,1,2));

true

gap> T 2*a*T*a"-3;

<rcwa mapping of Z with modulus 768>

gap> (ClassShift (1,3)*ClassReflection(2,7))"1000000;

<bijective rcwa mapping of Z with modulus 21>

There are methods installed fogInjective, IsSurjective, IsBijective andImage.
Example

gap> [IsInjective(T), IsSurjective(T), IsBijective(a) 1;
[false, true, true]

gap> Image (RcwaMapping([[2,0,111));

0(2)

RCWA 15

Images of elements, of finite sets of elements and of unions of finitely many residue classes of the
source of an rcwa mapping can be computed wjtthe same symbol as used for exponentiation and
conjugation. The same works for partitions of the source into a finite number of residue classes.
Example

gap> 15°T;

23

gap> ResidueClass(1,2)"T;

2(3)

gap> List ([[0,3],11,3]1,[2,3]],ResidueClass) "a;
[0(2), 1(4), 3(4)]

For computing preimages of elements under rcwa mappings, there are methedsrfargeE 1m and
PreImagesElm. The preimage of a finite set of ring elements or of a union of finitely many residue
classes under an rcwa mapping can be computed Bsighage.

Example

gap> PrelmagesElm (T, 8);

[5, 16]

gap> PrelImage (T,ResidueClass (Integers,3,2));

Z \ 0(6) U 2(6)

gap> M := [1]1;; 1 := [1];;

gap> while Length(M) < 10000 do M := PreImage(T,M); Add(l,Length(M)); od; 1;

(1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208, 277,
367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458, 8608, 11472]

There is a method for the operationpport for computing the support of a bijective rcwa mapping.
A synonym forSupport isMovedPoints. Thereis also a method faestrictedpPerm for computing

the restriction of a bijective rcwa mapping to a union of residue classes which it fixes setwisely.
Example

gap> List([a,a”2], Support);

(z\Nf[-1,0, 11,2\ 1[-3 -2, -1, 0,1, 2, 311

gap> RestrictedPerm(ClassShift (0,2)*ClassReflection(l,2),ResidueClass(0,2));
<rcwa mapping of Z with modulus 2>

gap> last = ClassShift(0,2);

true

Rcwa mappings can be added and subtracted pointwisely. However, please note that the set of rcwa
mappings of a ring does not form a ring undeand *.

Example

gap> b := ClassShift (0,3) * a;;
gap> [Image((a + b)), Image((a - b)) 1;
[2(4), [-2, 0]]

RCWA 16

There are operationsdulus (abbreviatediod) andCoefficients for extracting the modulus resp.

the coefficient list of a given rcwa mapping. The meaning of the return values is as described in
the previous section. General documentation for most operations mentioned in this section can be
found in theGAP reference manual. For rcwa mappings of rings other thamot for all operations
applicable methods are available.

2.4 Factoring rcwa mappings

Factoring group elements into elements of some “nice” set of generators is often helpful. The fol-
lowing can be seen as an attempt towards getting a satisfactory solution of this problem for the group
RCWA(Z):

2.4.1 FactorizationIntoCSCRCT (g)

{Q FactorizationIntoCSCRCT(g) (attribute)
Q Factorization(g) (method)

Returns: A factorization of the bijective rcwa mappinginto class shifts, class reflections and
class transpositions, provided that such a factorization exists and the method finds it.

The method may returfiail, stop with an error message or run into an infinite loop. If it returns
a result, this result is always correct.

By default, prime switches are taken as one factor. If the optigrindPrimeSwitches is set,
they are each decomposed into the 6 class transpositions given in the definitien {segwitch
(2.2.9). By default, the factoring process begins with splitting off factors from the right. This can
be changed by setting the optiohrection to "from the left". By default, a reasonably coarse
respected partition of the integral mapping occuring in the final stage of the algorithm is computed.
This can be suppressed by setting the optiosirtenPartition equal tofalse. By default, at the
end it is checked whether the product of the determined factors indeed gquiiss check can be
suppressed by setting the option

The problem of obtaining a factorization as described is algorithmically difficult, and this factor-
ization routine is currently perhaps the most sophisticated part cRweA package. Information
about the progress of the factorization process can be obtained by setting the info level of the Info

classInfoRCWA (6.3.1) to 2.
Example

gap> Factorization (Comm(ClassShift (0,3)*ClassReflection(1l,2),ClassShift(0,2)));
[ClassReflection(2,3), ClassShift(2,6)"-1, ClassTransposition(0,6,2,6),
ClassTransposition(0,6,5,6) 1]

For purposes of demonstrating the capabilities of the factorization routine, in SéctiGollatz’
permutation is factored. Lothar Collatz has investigated this permutation in 1932. Its cycle structure
is unknown so far.

Class transpositions can be written as products of any given nukdferiass transpositions, as
long as the underlying ring has a residue class ring of cardinalitguch a decomposition can be
obtained bysplittedClassTransposition (ct,k).

Obtaining a factorization of a bijective rcwa mapping into class shifts, class reflections and class
transpositions is particularly difficult if multiplier and divisor are coprime. A prototype of permuta-
tions which have this property has been introduced in a different contextiaq:

RCWA 17

2.4.2 mKnot (m)

O mKnot (m) (function)
Returns: The permutatiom, as introduced in{el99].
The argument must be an odd integer 3.

Example

gap> Display (mKnot (5));
Wild bijective rcwa mapping of Z with modulus 5

| n"mKnot (5)
_______________________________________ o

| 6n/5

| (4n + 1)/5

| (én - 2)/5

| (4n + 3)/5

| (6én - 4)/5

In his article, Timothy P. Keller shows that a permutation of this type cannot have infinitely many
cycles of any given finite length.

2.5 Determinant and sign

2.5.1 Determinant (g)

O Determinant (g) (method)
{Q Determinant (g, S) (method)
Returns: The determinant of the bijective rcwa mapping
The determinantof an affine mapping — (an+ b)/c whose source is a residue clags) is
defined byb/|ajm. This definition is extended additively to determinants of rcwa mappings and their
restrictions to unions of residue classes.
Using the notation from the definition of an rcwa mapping, de¢erminantdet(©) of an rcwa

mappingo is given by
m r(m)eR/mR|af(m)|

The determinant mapping is an epimorphism from the group of all class-wise order-preserving bijec-
tive rcwa mappings o to (Z,+), see Koh05, Theorem 2.11.9.

If a residue class uniosi is given as an additional argument, the method returns the determinant
of the restriction of; to s.

Example

gap> List ([ClassTransposition(0,4,5,12),ClassShift(3,7)],Determinant);
[0, 1]

gap> Determinant (ClassTransposition(0,4,5,12)*ClassShift (3,7)"100);
100

RCWA 18

2.5.2 Sign (9)

QO Sign(g) (attribute)
Returns: The sign of the bijective rcwa mappinrg
Using the notation from the definition of an rcwa mapping,stggof a bijective rcwa mapping
of Z is defined by

det(o)Jr1 (m—2r)
m r(m): am<0
(=1)

The sign mapping is an epimorphism from RCV¥A(to the groupZ*> of units of Z, see Koh04,
Theorem 2.12.8. Therefore the kernel of the sign mapping is a normal subgroup of REWA(

index 2.
Example

gap> List([ClassTransposition(3,4,2,6),ClassShift (0,3),ClassReflection(2,5)],Sign);
[1, -1, -1]

gap> Sign (ClassTransposition(3,4,2,6)*ClassShift (0,3)*ClassReflection(2,5));

1

2.6 Attributes and properties derived from the coefficients

A number of basic attributes and properties of an rcwa mapping are derived immediately from the
coefficients of its affine partial mappings. This holds for example for the multiplier and the divisor.
These two values are stored as attributestiplier andDivisor, or in shortMult resp. Div.

The prime setof an rcwa mapping is the set of prime divisors of the product of its modulus and its
multiplier. It is stored as an attributerimeSet. An rcwa mapping is calleéhtegral if its divisor
equals 1. An rcwa mapping is calldzhlancedif its multiplier and divisor have the same prime
divisors. An integral mapping has the propertyintegral and a balanced mapping has the property
IsBalanced. An rcwa mapping of the ring of integers or of one of its semilocalizations is called
class-wise order-preservinfgand only if all coefficientsa, i, in the numerators of the affine partial
mappings are positive. The corresponding propertys(sassiiseOrderPreserving.

RCWA 19

Example

gap> u := RcwaMapping([[3,0,5],19,1,5],(3,-1,5],(9,-2,5],109,4,511);;
gap> IsBijective(u);; Display(u);

Bijective rcwa mapping of Z with modulus 5

n mod 5 | n"f
_______________________________________ +______________________________________
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> Multiplier(u);

9

gap> Divisor(u);

5

gap> PrimeSet (u);

[3, 51

gap> IsIntegral (u) or IsBalanced(u);
false

gap> IsClassWiseOrderPreserving(u);
true

2.7 Functionality related to the affine partial mappings

2.7.1 LargestSourcesOfAffineMappings (f)

{ LargestSourcesOfAffineMappings (f) (attribute)
Returns: The coarsest partition afource (f) on whose elements the rcwa mappihig affine.

Example

gap> LargestSourcesOfAffineMappings (ClassShift (3,7));

[2N 3(7), 3(7) 1

gap> LargestSourcesOfAffineMappings (ClassReflection(0,1));

[Integers]

gap> u := RcwaMapping([[3,0,5],19,1,51,13,-1,51,109,-2,51,109,4,511);;
gap> List([u, u"-1], LargestSourcesOfAffineMappings);

[T 0(5), 1(5), 2(5), 3(5), 4(5) 1, [0(3), 1(3), 2(9), 5(9), 8(9) 11
gap> kappa := ClassTransposition(2,4,3,4) * ClassTransposition(4,6,8,12)
> * ClassTransposition(3,4,4,6);; SetName (kappa, "kappa");

gap> LargestSourcesOfAffineMappings (kappa);
[2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12) 1]

RCWA 20

2.7.2 Multpk (f, p, k)

O Multpk(£, p, k) (operation)
Returns: The union of the residue classesn) such thatpkHar(m) if k> 0, and the union of the

residue classegm) such thatpX| |Cr(m) if k< 0. In this contextm denotes the modulus aag, and
Cr(m) denote the coefficients afas introduced in the definition of an rcwa mapping.

Example

gap> T := RcwaMapping([[1,0,2],13,1,211);; # The Collatz mapping.
gap> [Multpk(T,2,-1), Multpk(T,3,1) 1;
[Integers, 1(2)]

gap> u := RewaMapping([[3,0,5],19,1,5],1(3,-1,5],1[9,-2,51,[9,4,5]1);

gap> [Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1) 1;
[[1, 0(5 U2(5, Z\ 0(5 U 2(5), Integers]

2.7.3 FixedPointsOfAffinePartialMappings (f)

Q FixedPointsOfAffinePartialMappings(£) (attribute)

Returns: A list of the sets of fixed points of the affine partial mappings of the rcwa mapping
the quotient field of its source.

The returned list contains entries for the restrictions ¢ all residue classes modulnd (f).
A list entry can either be an empty set, the sourceé of a set of cardinality 1. The ordering of the
entries corresponds to the ordering of the residues iResidues (Source (f) ,m).
Example

gap> FixedPointsOfAffinePartialMappings (ClassShift (0,2));
[[1, Rationals]
gap> List([1..3],k->FixedPointsOfAffinePartialMappings (T k));
crrol, =111, ttro1, 011,021, [0-111,
ttcol, 0-71,02/51, [-51, (451, [1/5], [-10], [-1 11]

There are attributessetOnWhichMappingIsClassWiise (-OrderPreserving, -Constant,
-OrderReversing) which store the union of the residue classes (mod(f)) on which an rcwa

mappingf of Z or of a semilocalization thereof is class-wise order-preserving, class-wise constant
resp. class-wise order-reversing.

Example

gap> List([ClassTransposition(l,2,0,4),ClassShift(2,3),ClassReflection(2,5)],
> SetOnWhichMappingIsClassWiseOrderPreserving);

[Integers, Integers, Z \ 2(5)]

gap> SetOnWhichMappingIsClassWiseConstant (RcwaMapping([[2,0,1]1,[0,4,111));
1(2)

gap> SetOnWhichMappingIsClassWiseOrderReversing(ClassReflection(13,17));
13(17)

RCWA 21

2.8 Transition graphs and transition matrices

2.8.1 TransitionGraph (f, m)

{ TransitionGraph(£, m) (operation)
Returns: The transition graph of the rcwa mappindgor modulusm.
Thetransition graphl s m of f for modulusmis defined as follows:

1. The vertices are the residue classes (mmpd
2. There is an edge from (m) to ro(m) if and only if there is soma € r1(m) such than’ € ry(m).

The assignment of the residue classes (mptb the vertices of the graph corresponds to the ordering
of the residues im11Residues (Source (f),m). The result is returned in the format used by the
packageGRAPE.

Example
gap> TransitionGraph(ClassShift(0,1),6);
rec(isGraph := true, order := 6, group := Group(()),
schreierVector := [-1, -2, -3, -4, -5, -6],
adjacencies := [[2], [31, [41, [5], [e6], [111,
representatives := [1, 2, 3, 4, 5, 6], names := [1, 2, 3, 4, 5, 6 1)
2.8.2 OrbitsModulo (f, m)
{ OrbitsModulo(£, m) (operation)

Returns: The partition ofal1Residues (Source (f),m) corresponding to the weakly connected
components of the transition graph of the rcwa mapgifgr modulusm.

Example

gap> OrbitsModulo (ClassTransposition(0,2,1,4),8);
(10,1, 41, [2,5¢6]1, [31, [71]

2.8.3 FactorizationOnConnectedComponents (f, m)

{Q FactorizationOnConnectedComponents(£, m) (operation)
Returns: The set of restrictions of the rcwa mappingo the weakly connected components of
its transition graph ¢ m.
The product of the returned mappingstisThey have pairwise disjoint supports, hence any two
of them commute.

Example
gap> sigma := ClassTransposition(l,4,2,4) * ClassTransposition(l,4,3,4)
> * ClassTransposition(3,9,6,18) * ClassTransposition(l,6,3,9);;

gap> List (FactorizationOnConnectedComponents (sigma, 36), Support);
[33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36),
<union of 23 residue classes (mod 36)> \ [-6, 3]]

RCWA 22

2.8.4 TransitionMatrix (f, m)

{ TransitionMatrix(f, m) (operation)
Returns: The transition matrix of the rcwa mappirdgor modulusm.
LetM be this matrix. Then for any two residue classgsn), r2(m) € R/mR the entryM;, i) r,(m)
is defined by

._ |R/mR

My (m).ra(m) = R/AR |{r(m) e R/MR T ery(m) Arf erp(m)}

)

whereni is the product ofn and the square of the modulus &f The assignment of the residue
classes (moa) to the rows and columns of the matrix corresponds to the ordering of the residues in
AllResidues (Source (f),m).

The transition matrix is a weighted adjacency matrix of the corresponding transition graph
TransitionGraph (f,m). The sums of the rows of a transition matrix are always equal to 1.
Example

gap> T := RcwaMapping([[1,0,2],13,1,2]1]1);; # The Collatz mapping.
gap> Display (TransitionMatrix(T"3,3));
[[1/8, 1/4, 5/8 1,

[0, 1/4, 3/41,

[0, 3/8, 5/8 1 1]

2.8.5 Sources (f)

Q Sources(f) (attribute)
Returns: A list of unions of residue classes modulo the modutusf the rcwa mapping, as
described below.
The returned list contains an entry for any strongly connected component of the transition graph
of £ for modulusMod (f) which has only outgoing edges. The list entry corresponding to such a
component is the union of the vertices belonging to it.
Example

gap> Sources (ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[0(4)]

2.8.6 Sinks (f)

O Sinks(f) (attribute)
Returns: (Seesources (2.8.9, with “outgoing” replaced by “ingoing”.)

Example

gap> Sinks(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[1(4)]

RCWA 23

2.8.7 Loops (f)

O Loops() (attribute)
Returns: The list of non-isolated vertices of the transition graph of the rcwa mappifay
modulusMod (f) which carry a loop.

Example

gap> Loops (ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[0(4), 1(4)]

2.9 Trajectories

2.9.1 Trajectory (f, n, length)

O Trajectory(f, n, length) (method)
O Trajectory(f, n, length, m) (method)
Q Trajectory(f, n, terminal) (method)
Q Trajectory(f, n, terminal, m) (method)

Returns: The firstlength iterates in the trajectory of the rcwa mappihgtarting at, resp. the
initial part of the trajectory of the rcwa mappirgtarting atr which ends at the first occurence of an
iterate in the seterminal. If the argument is given, the iterates are reduced (mgd

To save memory when computing long trajectories containing huge iterates, the reductior) (mod
is done each time before storing an iterate. In place of the ring elemém methods also accept a
finite set of ring elements or a union of residue classes.

Example

gap> T := RcwaMapping([[1,0,2],13,1,211);; # The Collatz mapping.
gap> Trajectory(T,27,16); Trajectory(T,27,25,5);
[27, 41, 62, 31, 47, 71, 107, 1lel, 242, 121, 182, 91, 137, 206, 103, 155]
(2,1,2,1,2, 1,2, 1,2 1,2,1,2,1, 3,0, 3,0, 0, 3, 0, 3, 0, 0, 3]
gap> Trajectory(T,15,[1]); Trajectory(T,15,[1],2);
[15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1]
(1, 1,1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]
gap> Trajectory(T,ResidueClass (Integers,3,0), Integers);
[0(3), 0(3) U 5(9), 0(3) U5(9) U 7(9) U 8(27),
<union of 20 residue classes (mod 27)>, <union of 73 residue classes (mod
81)>, Z \ 10(81) U 37(81), Integers]

2.9.2 Trajectory (f, n, length, whichcoeffs)

O Trajectory(f, n, length, whichcoeffs) (method)

Q Trajectory(f, n, terminal, whichcoeffs) (method)
Returns: Either the listc of triples of coprime coefficients such that for aryit holds that

n" (£°(k-1)) = (cl[k][1]*n + c[k][2])/c[k][3] or the last entry of that list, depending on

whetherwhichcoeffsis "A11Coeffs" Or "LastCoeffs".

RCWA

24

The meanings of the argumentength and terminal are the same as in the methods for
the operatiorrrajectory described above.

(whichcoeffs = "LastCoeffs") needs considerably less memory than computing the entire list.

In general, computing only the last coefficient triple

Example

gap> (last][

1

gap> Trajectory (T, 27, [1
[36472996377170786403,
11*27+1last[2]

1,
195820718533800070543,

"LastCoeffs");

) /last[3];

1180591620717411303424]

2.9.3 IncreasingOn (f)

Q) IncreasingOn(f)
{Q DecreasingOn(f)

Returns:
IR/amRl < |[R/crm)R

The union of all residue classegm) such that|R/a;mR| > |R/c

(attribute)
(attribute)
mR| resp.
bmm)andcmnothe

coefficients off as introduced in the definition of an rcwa mapping.

Example
gap> List([1..3],k->IncreasingOn(T"k));
[1(2), 3(4), 3(4) U 1(8) U 6(8)]
gap> List([1l.] k->DecreasingOn (T k));
[0(2), Z \ 3 , 0(4) U 2(8) U 5(8) 1
gap> a := RcwaMappinq([[2,0,31,[,-1,31,104,1,311);; # Collatz’ permutation.
gap> List([-2..2],k->IncreasingOn(a’k));
[2\ 1(8) UT(8), 0(2), [1, 2\ 0(3), 1(9) U 4(9) U 5(9) U 8(9)]

2.9.4 GluckTaylorInvariant (a)

Q GluckTaylorInvariant(a) (function)

Returns: The invariant introduced inGT0Z. This is (Y!_;a - & modi+1)/(3!_;8%), wherel
denotes the length ef.

The argument must be a list of integers. IdT07 it is shown that ifa is a trajectory of the
‘original’ Collatz mappingn — (n/2 if n even, 31+ 1 if n odd) starting at an odd integer 3 and
ending at 1, then the invariant lies in the inter}@113,5/7/.

Example

gap> C := RcwaMapping([[1,0,2],

gap> List ([3,5.

[0.701053,
0.699714,
0.714242,
0.69612,

[3,1,111);;

.49],n->Float (GluckTaylorInvariant (Trajectory(C,n, [1]))));
0.696721, 0.708528, 0.707684, 0.706635, 0.695636, 0.711769,
0.707409, 0.693833, 0.710432, 0.706294, 0.714242, 0.699935,
0.705383, 0.706591, 0.698198, 0.712222, 0.714242, 0.709048,

0.714241, 0.701076]

RCWA 25

2.10 Localizations of rcwva mappings of the integers

2.10.1 LocalizedRcwaMapping (f, p)

¢ LocalizedRcwaMapping(£, p) (function)
Q SemilocalizedRcwaMapping(£, pi) (function)

Returns: The rcwa mapping o, resp.Z with the same coefficients as the rcewa mapping
of Z.

The argumenp resp. pi must be a prime resp. a set of primes, and the argumenist be an
rcwa mapping ofZ whose modulus is a power of resp. whose modulus has only prime divisors
which lie inpi.

Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]);; # The Collatz mapping.

gap> Cycle(LocalizedRcwaMapping(T,2),131/13);

[131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13, 419/13,
635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13, 1231/13,
1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13]

2.11 Extracting roots of rcwa mappings

2.11.1 Root (f, k)

Q Root (£, k) (method)
Returns: Anrcwa mappingy such that"k=f, provided that such a mapping exists and that there

is a method available which can determine it.

Example

gap> Root (ClassTransposition(0,2,1,2),100);
<bijective rcwa mapping of Z with modulus 8>
gap> last”100 = ClassTransposition(0,2,1,2);
true

2.12 Special functions for non-bijective mappings

2.12.1 Rightinverse (f)

Q RightInverse(f) (attribute)
Returns: A right inverse of the injective rcwa mappirigi.e. a mapping such thattg = 1.

Example

gap> twice := RcwaMapping([[2,0,1]1]);
Rcwa mapping of Z: n —> 2n

gap> twice * RightInverse(twice);
IdentityMapping(Integers)

RCWA 26

2.12.2 CommonRightinverse (I, r)

¢ CommonRightInverse(1, r) (operation)
Returns: A mappingd such thatid = rd = 1.
The mappings andr must be injective, and their images must form a partition of their source.
Example

gap> twice := RcwaMapping([[2,0,1]]); twiceplusl := RcwaMapping([[2,1,1]]);
Rcwa mapping of Z: n —> 2n

Rcwa mapping of Z: n -> 2n + 1

gap> Display (CommonRightInverse (twice,twiceplusl));

Rcwa mapping of Z with modulus 2

n mod 2 | n~f
_______________________________________ +______________________________________
0 | n/2
1 [(n-1)/2
2.12.3 ImageDensity (f)
Q) ImageDensity(f) (attribute)

Returns: Theimage densityf the rcwa mapping.

In the notation introduced in the definition of an rcwa mapping,ithage densityof an rcwa
mappingf is defined byné1 Y rmer/mrIR/CmRI/|R/amR|. The image density of an injective rcwa
mapping is< 1, and the image density of a surjective rcwa mapping s(this can be seen easily).
Thus in particular the image density of a bijective rcwa mapping is 1.

Example

gap> T := RcwaMapping([[1,0,2],13,1,2]11);; # The Collatz mapping.
gap> List([T, ClassShift(0,1), RcwaMapping([[2,0,1]])], ImageDensity);
[4/3, 1, 1/2]

Given an rcwa mapping, the functioninjectiveAsMappingFrom returns a ses such that the
restriction off to s is injective, and such that the image®éindert is the entire image of.
Example

gap> InjectiveAsMappingFrom(T);
0(2)

RCWA 27

2.13 Probabilistic guesses on the behaviour of trajectories

This section describes some functionality for getting “educated guesses” on the overall behaviour
of the trajectories of a given rcwa mapping. Its contents have deliberately been separated from the
documentation of the non-probabilistic functionality related to trajectories of rcwa mappings.

2.13.1 LikelyContractionCentre (f, maxn, bound)

{Q LikelyContractionCentre(f, maxn, bound) (operation)

Returns: A list of ring elements (see below).

This operation tries to compute tlw@ntraction centreof the rcwa mapping. Assuming its
existence this is the unique finite subSgtof the source of on whichf induces a permutation and
which intersects nontrivially with any trajectory 6f The mapping is assumed to beontracting
i.e. to have such a contraction centre. As in general contraction centres are likely not computable, the
methods for this operation are probabilistic and may return wrong results. The argumeris a
bound on the starting value andund is a bound on the elements of the trajectories to be searched. If

the limitbound is exceeded, an Info message on Info level 3rafoRCWA is given.
Example

gap> T := RcwaMapping([[1,0,2],13,1,21]1);; # The Collatz mapping.

gap> SO := LikelyContractionCentre(T,100,1000);

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for information on how to improve this guess.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1, O,
1, 2]

2.13.2 GuessedDivergence (f)

{ GuessedDivergence(f) (operation)
Returns: A floating point value which is intended to be a rough guess on how fast the trajectories

of the rcwa mapping diverge (return value greater than 1) or converge (return value smaller than 1).
Nothing particular is guaranteed.

Example

gap> GuessedDivergence (T);
#I Warning: GuessedDivergence: no particular return value is guaranteed.
0.866025

RCWA 28

2.14 The categories and families of rcwa mappings

2.14.1 IsRcwaMapping (f)

{ IsRcwaMapping(f) (filter)
Q IsRcwaMappingOfZ(f) (filter)
{ IsRcwaMappingOfZ pi(£) (filter)
Q IsRcwaMappingOfGFgx (f) (filter)

Returns: true if £ is an rcwa mapping resp. an rcwa mapping of the ring of integers resp. an
rcwa mapping of a semilocalization of the ring of integers resp. an rcwa mapping of a polynomial
ring in one variable over a finite field, arid1se otherwise.

Often the same methods can be used for rcwa mappings of the ring of integers and of its semilo-
calizations. For this reason there is a categtycwaMapping0fz0Orz_pi which is the union of
IsRcwaMappingOfZz and IsRcwaMappingOfZ_pi. The internal representation of rcwa mappings is
calledIsRcwaMappingStandardRep.

2.14.2 RcwaMappingsFamily (R)

Q) RcwaMappingsFamily (R) (function)
Returns: The family of rcwa mappings of the rirgy

Chapter 3

Residue Class-Wise Affine Groups

This chapter describes the functionality provided by this package for computing with residue class-
wise affine groups.

3.1 Constructing residue class-wise affine groups

Residue class-wise affine groups can be constructed using eithep, GroupByGenerators Or
GroupWithGenerators as usual, cp. theAP reference manual.
Example

gap> G := Group (ClassTransposition(0,2,1,4),ClassShift (0,5));
<rcwa group over Z with 2 generators>

gap> IsTame (G); Size(G); IsSolvable(G); IsPerfect (G);

true

infinity

false

false

There are methods for the operatiatiew, Display, Print andstring which are applicable to rcwa
groups. All rcwa groups over a ririgare subgroups of RCWA). The group RCWAR) itself is not

finitely generated, thus cannot be constructed in the way described above. It is handled as a special
case:

3.1.1 RCWA (R)

O RCWA(R) (function)
Returns: The group RCWAK) of all residue class-wise affine permutations of the Ang

Example

gap> RCWA_Z := RCWA (Integers);
RCWA (Z)

29

RCWA 30

Example

gap> One (RCWA_Z); Size(RCWA_Z); IsFinitelyGeneratedGroup (RCWA_Z);
IdentityMapping(Integers)

infinity

false

gap> IsSolvable (RCWA_Z) or IsPerfect (RCWA_Z);

false

gap> Centre (RCWA_Z);

Trivial rcwa group over Z

gap> IsSubgroup (RCWA_Z,G);

true

There is a method for the operatictandom which generates pseudo-random elements of
RCWA(Z) — see SectioB.10
Another way of constructing an rcwa group is taking the image of an rcwa representation:

3.1.2 IsomorphismRcwaGroupOverZ (G)

{ IsomorphismRcwaGroupOverZ (G) (attribute)
Q IsomorphismRcwaGroup(G) (attribute)

Returns: A monomorphism from the groupto RCWA(Z).

Currently there are methods available for finite groups, for free products of finite groups and for
free groups. The method for free products of finite groups uses the Table-Tennis Lemma (cp. e.g.
Section II.B. in fIHOQ]), and the method for free groups uses an adaptation of the construction given
on page 27 indIHOC] from PSL(2{C) to RCWA(Z).

In case G is a finite-degree permutation group, the image under a specific embedding
can be obtained bycwaGroupByPermGroup (G). The resulting groupd satisfies the relation

Action(H"ClassShift (0,1), [1..LargestMovedPoint (G)]) = G.
Example

gap> F := FreeProduct (Group((1,2) (3,4),(1,3)(2,4)),Group((1,2,3)),
> SymmetricGroup(3));
<fp group on the generators [fl, f2, £3, f4, f5]>
gap> IsomorphismRcwaGroup (F);
[f1, £2, £3, f4, £5] -> [<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 24>,
<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 72>,
<bijective rcwa mapping of Z with modulus 36>]
gap> IsomorphismRcwaGroup (FreeGroup(2));
[f1, £2] -> [<wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8>]
gap> F2 := Image(last);
<wild rcwa group over Z with 2 generators>

RCWA 31

3.1.3 StructureDescription (G)

Q StructureDescription(G) (method)

Returns: A string which describes the structure of the rcwa group some extent.

The attributestructureDescription for finite groups is documented in th@AP Reference
Manual. Therefore we describe here only issues which are specific to infinite groups, and in particular
to rcwa groups.

Wreath products are denoted by, and free products are denoted+yThe infinite cyclic group
(Z,+) is denoted by, the infinite dihedral group is denoted by and free groups of rank 3,4, . ..
are denoted by2, F3, F4, While for finite groups the symbal is used to denote a non-split
extension, for rcwa groups in general it stands for an extension which may be split or not. For wild
groups in most cases it happens that there is a large section on which no structural information can be
obtained. Such sections of the group with unknown structure are denotedibyown>. In general,
the structure of a section denoted ynknown> can be very complicate and very difficult to exhibit.
While for isomorphic finite groups always the same structure description is computed, this cannot be
guaranteed for isomorphic rcwa groups.

Example

gap> G := Group (ClassTransposition(0,2,1,4),ClassShift(0,5));;
gap> StructureDescription(G);

"(Z xZ2x2xZ2x2x17Zzx12) . (C2xST)"
gap> G := Group (ClassTransposition(0,2,1,4),
> ClassShift (2,4),ClassReflection(1,2));;

gap> StructureDescription(G:short);
"7Z72.((S3x83):2)"

gap> F2 := Image (IsomorphismRcwaGroup (FreeGroup(2)));;
gap> PSL2Z := Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(3),
S CyclicGroup(2))));;

gap> G := DirectProduct (PSL2Z,F2);

<wild rcwa group over Z with 4 generators>

gap> StructureDescription(G);

"(C3 * C2) x F2"

gap> G := WreathProduct (G,CyclicGroup (IsRcwaGroupOverz, infinity));
<wild rcwa group over Z with 5 generators>

gap> StructureDescription(G);

"((C3 * C2) x F2) wr 2"

gap> Collatz := RcwaMapping([[2,0,31,[(4,-1,31,14,1,311);;
gap> G := Group(Collatz,ClassShift(0,1));;

gap> StructureDescription (G:short);

"<unknown>.z"

3.2 Direct products and wreath products

The class of groups which can faithfully be represented as rcwa groups is closed under forming direct
products, wreath products with finite groups and wreath products with the infinite cyclic Gfou.

For information on how direct products and wreath products of subgroups of RENd#€ embedded

in RCWA(Z), see Sectio3.9below.

RCWA 32

3.2.1 DirectProduct (G1, G2, ...)

{ DirectProduct (G1, G2, ...) (method)
Returns: An rcwa group isomorphic to the direct product of the rcwa groups @vgiven as
arguments.
There is certainly no unique or canonical way to embed a direct product of rcwa groups into
RCWA(Z). This method chooses to embed the groapsG2, G3 ... via restrictions byn — mn
n— mn+1,n— mn+2 ... (— Restriction (3.9.1), wherem denotes the number of groups given
as arguments.
Example

gap> F2 := Image (IsomorphismRcwaGroup (FreeGroup(2)));;
gap> F2xF2 := DirectProduct (F2,F2);

<wild rcwa group over Z with 4 generators>

gap> Image (Projection (F2xF2,1)) = F2;

true

3.2.2 WreathProduct (G, P)

{ WreathProduct (G, P) (method)
{ WreathProduct (G, Z) (method)

Returns: An rcwa group isomorphic to the wreath product of the rcwa greoper Z with the
finite permutation group, resp. with the infinite cyclic group.

The first-mentioned method embeds thegreeAction (P)th direct power of; using the method
for DirectProduct, and lets the permutation growpact naturally on the set of residue classes
modulo DegreeAction (P). The second-mentioned method restricts Restriction (3.9.1)
the groupé to the residue class 3(4), and maps the generator of the infinite cyclic graap
ClassTransposition(0,2,1,2) * ClassTransposition(0,2,1,4).

Example

gap> F2 := Image (IsomorphismRcwaGroup (FreeGroup(2)));;
gap> F2wrA5 := WreathProduct (F2,AlternatingGroup(5));;
gap> Embedding (F2wrA5,1);
[<wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8>] ->
[<wild bijective rcwa mapping of Z with modulus 40>,
<wild bijective rcwa mapping of Z with modulus 40>]
gap> Embedding (F2wrA5,2);
[(1,2,3,4,5), (3,4,5) 1 —>
[<bijective rcwa mapping of Z with modulus 5, of order 5>,
<bijective rcwa mapping of Z with modulus 5, of order 3>]
gap> ZwrZz := WreathProduct (Group (ClassShift (0,1)),Group(ClassShift(0,1)));
<wild rcwa group over Z with 2 generators>
gap> Embedding (ZwrZ,1);
[ClassShift (0,1)] —>
[<tame bijective rcwa mapping of Z with modulus 4, of order infinity>]
gap> Embedding (ZwrZ,2);
[ClassShift(0,1)] -> [<wild bijective rcwa mapping of Z with modulus 4>]

RCWA 33

3.3 The membership test

There is a method for the operatian. Given an rcwa groug and an rcwa mapping, this method
tries to decide whetheyis an element of or not. It can always decide this questioiis tame. For
wild groups this is sometimes not the case. On Info level 2h@brCWA the method gives information
on reasons why is an element of or not.
The direct product of two free groups of rank 2 can faithfully be represented as an rcwa group.
According to Mih58] this implies that in general the membership problem for rcwa groups is algo-

rithmically undecidable.
Example

gap> G := Group(ClassShift (0,3),ClassTransposition(0,3,2,6));;

gap> ClassShift (2,6) "7*ClassTransposition(0,3,2,6)*ClassShift(0,3)" -3 in G;
true

gap> ClassShift (0,1) in G;

false

3.4 Basic attributes and properties of rcwa groups

There is a method available for the operatine. An rcwa group is finite if and only if it is tame
and its action on a suitably chosen respected partitionRsgectedPartition (3.11.7) is faithful.
Hence the problem of computing the order of an rcwa group reduces to the problem of deciding
whether it is tame, the problem of deciding whether it acts faithfully on a respected partition and the
problem of computing the order of the finite permutation group induced on the respected partition.
Basic attributes derived from the affine partial mappings of the elements of an rcwa group and

their coefficients ar®odulus, Multiplier, Divisor andPrimeSet. Themodulusof an rcwa group
is the Icm of the moduli of its elements in case such an Icm exists and 0 otherwisenultiier
resp.divisor of an rcwa group is the Icm of the multipliers resp. divisors of its elements in case such
an Icm exists ande otherwise. Therime setof an rcwa group is the union of the prime sets of its
elements. There are shorthamdsl, Mult andpiv defined foModulus, Multiplier resp.Divisor.
Technically, the modulus of an rcwa group is stored as an attribitel usOfRcwaGroup.

A tame rcwa group, i.e. one with modulus 0, has the propertyme. An rcwa group is calleth-
tegralresp.class-wise order-preservirifall of its elements are so. There are corresponding methods
available forIsintegral andisClassWiseOrderPreserving.

Example
gap> gl := RcwaMapping((1,2),[1..2]1);;
gap> g2 := RcwaMapping((1,2,3),[1..31);;
gap> g3 := RcwaMapping((1,2,3,4,5),[1..5]);;
gap> List([gl,g2,g3],Modulus);
[2, 3, 5]
gap> G := Group(gl,g2,93);;
gap> Size(G);

265252859812191058636308480000000

gap> List ([Modulus,Multiplier,Divisor,PrimeSet,

> IsIntegral,IsClassWiseOrderPreserving], f->f(G));
[30, 1, 1, [2, 3, 5], true, true]

RCWA 34

3.5 Permutation- and matrix representations

3.5.1 IsomorphismPermGroup (G)

¢ IsomorphismPermGroup(G) (method)
Returns: An isomorphism from the finite rcwa grougto a finite-degree permutation group.

Example
gap> IsomorphismPermGroup (Group (ClassTransposition (0,2, ,2)
> ClassTransposition(0,3,1,3)
[ClassTransposition(0,2,1,2), ClassTransposition(O, ,1,3)

)) i
] >
[(1,2)(3,4)(5,6), (1,2)(4,5)]

3.5.2 IsomorphismMatrixGroup (G)

{ IsomorphismMatrixGroup(G) (attribute)
Returns: An isomorphism from the rcwa groupto a matrix group, provided thatembeds into
a matrix group and that there is a suitable method available. Both conditions are fulfilledt#me.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(2,4));

<rcwa group over Z with 2 generators>

gap> phi := IsomorphismMatrixGroup (G);;

gap> FieldOfMatrixGroup (Image (phi));

Rationals

gap> DegreeOfMatrixGroup (Image (phi));

10

gap> Display (GeneratorsOfGroup (Image (phi)) [1]*One (GF (5)));
.32 .

.21 .
T
gap> Display (GeneratorsOfGroup (Image (phi)) [2]*One (GF (5)));

RCWA 35

3.6 Factoring elements into generators

3.6.1 PrelmagesRepresentative (phi, g)

{Q PreImagesRepresentative(phi, g) (method)
Returns: A representative of the set of preimagesg ainder the homomorphisphi from a free
group to an rcwa group ovéf.
This method can be used for factoring elements of rcwa groupsZweto generators. It can
also be used for finding nontrivial relations among the generators if the respective group is not free
and the method returns a factorization which does not happen to be equal to one which is already
known. The homomorphismphi must map the generators of the free group to the generators of the
rcwa group one-by-one. This method is also suitable for wild groups. The implementation is based
ONRepresentativeActionPreImage (3.7.3.

Example
gap> a := RcwaMapping([[2,0,3],(04,-1,3]1,14,1,311);; # Collatz’ permutation.
gap> nu := RcwaMapping([[1,1,111);; #n->n+ 1.
gap> SetName (nu, "nu"); SetName(a,"a"); # For displaying purposes.

gap> G := Group(a,nu);

<rcwa group over Z with 2 generators>

gap> phi := EpimorphismFromFreeGroup (G);

[a, nu] > [a, nu]

gap> F := Source (phi);

<free group on the generators [a, nu]>
gap> w := Comm(F.1"2*F.274,F.1*F.273);
nu"-4*a"-2*nu"-3*a*nu”4*a*nu”3

gap> g := w'phi;

<bijective rcwa mapping of Z with modulus 8>

gap> pre := PrelmagesRepresentative (phi,q);
nu"-4*a"-1*nu"-1*a"-1*nu"3*a*nu”"-1*a*nu”3
gap> rel := w/pre; # pre <> w --> We have a nontrivial relation!

nu"-4*a"-2*nu"-3*a*nu”"5*a"-1*nu"-3*a*nu*a*nu”4

gap> rel := rel”(F.2"-4*F.1"-1); # Cyclically reduced form.
a"-1*nu”-3*a*nu”5*a"-1*nu”-3*a*nu

gap> rel’phi;

IdentityMapping(Integers)

RCWA 36

3.6.2 PrelmagesRepresentatives (phi, g)

{Q PreImagesRepresentatives(phi, g) (operation)
Returns: A list of representatives of the set of preimagesyafnder the homomorphismhi
from a free group to an rcwa group ov&r
Quite frequently, computing several preimages is not harder than computing just one, i.e. often
several preimages are found simultaneously. This operation is callettbyagesRepresentative
(3.6.1), which simply chooses the shortest representative. For a slightly more concise description see

there.
Example

gap> w := Comm(F.1*F.2,Comm(F.1,F.272)); # We continue the example above.

nu"-1*a"-1*nu"-2*a"-1*nu”"2*a"2*nu*a”"-1*nu"-2*a*nu”2

gap> g := w phi;

<bijective rcwa mapping of Z with modulus 16>

gap> pre := PrelmagesRepresentatives(phi,q);

[nu"-1*a"-2*nu"-2*a*nu"2*a*nu”"-1*a"-1*nu"2*a,
nu"-1*a"-1*nu"-2*a"-1*nu”2*a"2*nu”"-1*a"-1*nu"2*a |

gap> rel := pre[l]/prel2];

nu"-1*a"-2*nu"-2*a*nu”2*a"-1*nu"-2*a*nu"2*a*nu

gap> rel := (rel”(F.2"-1*F.17-1))"-1; # Cyclically reduced form.

nu"-2*a"-1*nu"2*a*nu”"-2*a"-1*nu"2*a

gap> rel’phi;

IdentityMapping(Integers)

3.7 The action of an rcwa group on the underlying ring

The support, i.e. set of moved points, of an rcwa group can be determinexidpprt or
MovedPoints (these are synonyms). Sometimes testing for transitivity on the underlying ring is fea-
sible. This is e.g. the case for tame groups derurther it is often possible to determine group
elements which map a given tuple of elements of the underlying ring to a given other tuple, if such
elements exist.

3.7.1 IsTransitive (G, Integers)

{Q IsTransitive(G, Integers) (method)
Returns: true if the rcwa groups acts transitively orZ. andfalse otherwise.
If G is wild, this may fail or run into an infinite loop.

Example

gap> G := Group(ClassTransposition(1,2,0,4),ClassShift (0,2));;
gap> IsTransitive (G, Integers);
true

RCWA 37

3.7.2 RepresentativeAction (G, src, dest, act)

O RepresentativeAction(G, src, dest, act) (method)
Returns: An element ofc which mapssrc to dest under the action given byct.
If an element satisfying this condition does not exist, this method either retatnsor runs into
an infinite loop. The problem to decide whether anddest lie in the same orbit under the action
of G in general seems to be hard. The method is base@presentativeActionPreImage (3.7.3,
and it basically just computes an image under an epimorphism. As this involves multiplications of
rcwa mappings, this can be quite expensive if the greigwild, the preimage is a rather long word

and coefficient explosion happens to occur.
Example

gap> a := RcwaMapping([[2,0,3],(4,-1,3]1,14,1,311);; # Collatz’ permutation.
gap> G := Group(a,ClassShift(1,4));

<rcwa group over Z with 2 generators>

gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],0nTuples);

<bijective rcwa mapping of Z with modulus 12>

gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

_— — — — 4+ —

gap> List([7,4,9],n->n"elm);

[4, 5, 13]

gap> elm := RepresentativeAction(G, [5,4,9],[13,5,4],0nTuples);
<bijective rcwa mapping of Z with modulus 9>

gap> Display (elm);

Bijective rcwa mapping of Z with modulus 9

n mod 9 | n~f

_______________________________________ e

0 | 4n/9

1 | (8n - 26)/9

2 | (8n + 2)/9

3 | (8n + 3)/9

4 | (l6n - 19)/9

5 | (16n + 37)/9

6 | (8n + 33)/9

7 | (16n - 49)/9

8 | (16n + 7)/9

gap> RepresentativeAction(G,[7,4,9],(4,5,8],0nTuples);
<bijective rcwa mapping of Z with modulus 256>

RCWA 38

3.7.3 RepresentativeActionPrelmage (G, src, dest, act, F)

Q RepresentativeActionPreImage(G, src, dest, act, F) (operation)

Returns: The result oRepresentativeAction (G, src,dest, act) as word in generators.

The argument is a free group whose generators are used as letters of the returned word. Note that
the dependency is just in the opposite direction than suggested algve §entativeaction calls
RepresentativeActionPreImage) and that the evaluation of the word sometimes takes much more
time than its determination. For this reasBapresentativeActionPreImage iS sometimes much
faster tharrRepresentativeAction. The used algorithm is based on computing balls of increasing
radius aroundrc anddest until they intersect nontrivially. It avoids multiplying rcwa mappings. Of
course the other warnings given in the descriptiok@fresentativeAction (3.7.9 apply to this
operation as well.

Example
gap> g := ClassTransposition(0,2,1,2)*ClassShift(0,3);; SetName (g, "g") ;
gap> h := ClassTransposition(3,4,4,6)*ClassReflection(0,4);; SetName (h,"h");
gap> G := Group(g,h);;
gap> F := FreeGroup("g","h");; phi := EpimorphismByGenerators(F,G);;

gap> wl := RepresentativeActionPrelmage (G, [1,2,3,4],[2,3,5,7],0nPoints,F);
h*-1*g"3*h"-1*g"-1*h"-2

gap> elml := wl’phi;

<bijective rcwa mapping of Z with modulus 864>

gap> List([1,2,3,4],n->n"elml); # ‘OnPoints’ permits reordering

(2, 7, 3, 51

gap> w2 := RepresentativeActionPrelmage (G, [1,2,3,4],12,3,5,7],0nTuples,F);
g*h"-1*g"-1*h"-1*g"-2*h*g"-2*h"2*g"-1*h*g

gap> elm2 := w2 phi;

<bijective rcwa mapping of Z with modulus 432>

gap> List([1,2,3,4],n->n"elm2); # ‘OnTuples’ does not permit reordering

[2, 3, 5, 71

3.7.4 RepresentativeAction (RCWA(Integers), P1, P2)

Q RepresentativeAction(RCWA_Z, P1, P2) (method)

Returns: An element of RCWAZ) which maps the partitionl top2.

The arguments1 andP2 must be partitions of the underlying ririginto the same number of
disjoint unions of residue classes. The method recognizes the aptiane. If this option is set, the
returned mapping is tame provided that there is a tame mapping which satisfies the given condition. If
the optionIsTame is not set and the partitiors andp2 both consist entirely of single residue classes,
then the returned mapping is affine on any residue clags.in

Example
gap> Pl := List([[0,3],11,31,02,91,105,9],18,9]11,ResidueClass);
[0(3), 1(3) 2(9), 5(9), 8(9) 1
gap> P2 := List([[0,2],([1,8],1[5,16],1[3,4]1,[13,16]],ResidueClass);
[0(2), 1(8), 5(16), 3(4), 13(16) 1]

gap> elm := RepresentativeAction (RCWA (Integers),P1l,P2);
<bijective rcwa mapping of Z with modulus 9>

RCWA 39

Example

gap> Pl7elm = P2;
true
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 9

2n/3

(8n - 5)/3
(l6n + 13)/9
(4n + 7)/9
(lén - 11)/9

gap> elm := RepresentativeAction (RCWA (Integers),Pl,P2:IsTame);
<tame bijective rcwa mapping of Z with modulus 1152>

gap> P := RespectedPartition(elm);;

gap> Length(P);

313

gap> elm := RepresentativeAction (RCWA (Integers),

> [ResidueClass(1,3),Union (ResidueClass (0,3),ResidueClass(2,3))1,
> [Union (ResidueClass (2,5),ResidueClass (4,5)),

> Union (ResidueClass (0,5),ResidueClass(1,5),ResidueClass(3,5))1);
<bijective rcwa mapping of Z with modulus 6>

gap> [ResidueClass(1l,3),Union(ResidueClass(0,3),ResidueClass(2,3))] elm;

[2(5) U 4(5), 2 \ 2(5) U 4(5)]

3.7.5 ShortOrbits (G, S, maxing)

{Q ShortOrbits(G, S, maxlng)
¢ ShortCycles(g, S, maxlng) (operation)

Returns: A list of all finite orbits of the rcwa group resp. of all finite cycles of the bijective
rcwa mappingy of length at moshax1ng which intersect nontrivially with the set

(operation)

Example

gap> G := Group (ClassTransposition(l,4,2,4) * ClassTransposition(l,4,3,4),
> ClassTransposition(3,9,6,18) * ClassTransposition(l,6,3,9));;
gap> List (ShortOrbits (G, [-15..15],100),orb->StructureDescription (Action(G,orb)));

["Al5", "a4“, "1™, "1, "C3", "1", "((C2 x C2 x C2) : C7) : C3", "1", "1",
"Cc3", "AL9"]
gap> ShortCycles (mKnot (5), [1..100],20);
ttt1riy, 21,031,041, [5¢%61 [7 8],
[9, 10, 12, 14, 16, 13, 11 1, [15, 18 1,
[17, 20, 24, 28, 23, 19, 22, 26, 21 1,
[45, 54, 64, 76, 61, 49, 58, 47, 56 1,
[59, 70, 84, 100, 120, 144, 172, 206, 165, 198, 159, 190, 228, 183, 147,
176, 141, 113, 91, 73 1]

RCWA 40

3.7.6 Projections (G, m)

{Q Projections(G, m) (operation)
Returns: The projections of the rcwa groupto the unions of residue classes (mgdwhich it
fixes setwisely.
The corresponding partition of a set of representatives for the residue classes)(icend be

obtained by the operatiarrbitsModulo (G, m).
Example

gap> G := Group (ClassTransposition(0,2,1,2),ClassShift(3,4));;
gap> Projections (G, 4);
[[ClassTransposition(0,2,1,2), ClassShift(3,4)] —>
[<bijective rcwa mapping of Z with modulus 4>,
IdentityMapping(Integers) 1,
[ClassTransposition(0,2,1,2), ClassShift(3,4)] ->
[<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 4>]]
gap> List (last,phi->Support (Image (phi)));
[0(4) U 1(4), 2(4) U 3(4)]

3.7.7 Ball (G, p, d, act)

QO Ball(G, p, d, act) (method)
OBall(G, g, d) (method)
Returns: The ball of radiusi around the poinp under the actionct of the groups, resp. the
ball of radiusd around the elementin the groupa.
All balls are understood w.r.tGeneratorsOfGroup (G). As element tests can be expensive, the
latter method does not check whethgeis indeed an element af. The methods require that point

comparisons resp. element comparisons are cheap. They are not only applicable to rcwa groups.
Example

gap> PSL2Z := Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup (3),

> CyclicGroup(2))));
<wild rcwa group over Z with 2 generators>

gap> List([1..10],k->Length(Ball (PSL2Z,0,k,0OnPoints)));

[3, 4, 6, 8, 12, 16, 24, 32, 48, 64]

gap> List ([1..10],k->Length(Ball (PSL2Z,[0,1],k,0OnTuples)));

[4, 8, 14, 22, 34, 50, 74, 106, 154, 218]

gap> Ball (Group ((1,2),(2,3),(3,4)),(),2);

[O, (3,4, (2,3), (2,3,4), (2,4,3), (1,2), (1,2)(3,4), (1,2,3), (1,3,2) 1

3.8 Conjugacy in RCWA(Z)

3.8.1 IsConjugate (RCWA(Integers), f, g)

Q IsConjugate(RCWA (Integers), f, g) (method)

Returns: true if the bijective rcwa mappings andg are conjugate in RCWAY), andfalse
otherwise.

RCWA 41

The author does not know a general way to solve the conjugacy problem for elements of

RCWA(Z), thus the method may fail or run into an infinite loop.
Example

gap> IsConjugate (RCWA (Integers),ClassTransposition(0,2,1,4)

14
> ClassTransposition(1,2,0,4));
true
gap> IsConjugate (RCWA (Integers),ClassTransposition(0,2,1,4),ClassShift(0,1));
false

In its 2-argument formshortCycles (f,maxlng) returns a list of all cycles of of length at
mostmax1ng which do not correspond to cycles consisting of residue classes. The cycles are sorted
by increasing length. If for some valuemfx1ng the listsList (ShortCycles (f, maxlng), Length)

andList (ShortCycles (g,maxlng), Length) differ, thenf andg are clearly not conjugate.
Example

gap> a := RcwaMapping([[2,0,3],(4,-1,3]1,14,1,311);; # Collatz’ permutation.
gap> ShortCycles(a,b);
rcrorl, 011, 0-21, 102, 31, [-3 21,014 5 17,9, 61,

[-9, -6, -4, -5, -7 1]

3.8.2 RepresentativeAction (RCWA(Integers), f, g)

O RepresentativeAction(RCWA (Integers), f, g) (method)
Returns: An rcwa mapping: such thatt"x = g, if such anx exists andfail otherwise.

This method may fail for the same reasong a&Sonjugate (3.8.1).
Example

gap> rep := RepresentativeAction (RCWA (Integers),ClassTransposition(0,2,1,4),

> ClassTransposition(1,2,0,4));

<bijective rcwa mapping of Z with modulus 32>

gap> ClassTransposition(0,2,1,4) "rep = ClassTransposition(1,2,0,4); # check

true

gap> Factorization(rep);

[ClassTransposition(0,2,3,16), ClassTransposition(l,4,11,16),
ClassTransposition(2,8,3,16), ClassTransposition(6,8,11,16),
ClassTransposition(l,2,2,8), ClassTransposition(0,4,6,8)]

3.8.3 NrConjugacyClassesOfRCWAZOfOrder (ord)

Q NrConjugacyClassesOfRCWAZOfOrder (ord) (function)
Returns: The number of conjugacy classes of RC\EAEf elements of ordesrd, as given in
Corollary 2.7.1 (b) in Koh05.

Example

gap> List ([2,105],NrConjugacyClassesOfRCWAZOfOrder) ;
[infinity, 218]

RCWA 42

3.9 Restriction and induction

There are monomorphisms from the group RCAihto itself. The support of the image of such a
monomorphism is the image of a given injective rcwa mapping. Therefore these monomorphisms are
calledrestriction monomorphismdaking images of rcwa groups under restrictions by rcwa mappings
with pairwise distinct images permits forming their direct product and their wreath product with some
finite permutation group, regardless of whether they are tame or not (cp. S@&jion

3.9.1 Restriction (g, f)

Q Restriction(g, f) (operation)
{ Restriction(G, f) (operation)

Returns: The restriction of the rcwa mapping resp. the rcwa group by the injective rcwa
mappingt.

By definition, the restrictiog; of an rcwa mapping by an injective rcwa mappingis the unique
rcwa mapping which satisfies the equatibrg; = g- f and which fixes the complement of the image
of £ pointwisely. If f is bijective, the restriction of by f is just the conjugate of underf.

The restriction of an rcwa groupby an injective rcwa mapping is defined as the group whose
elements are the restrictions of the elements oy £. The restriction ofs by £ acts on the image df
and fixes its complement pointwisely.

Example

gap> F2tilde := Restriction(F2,RcwaMapping([[5,3,111));
<wild rcwa group over Z with 2 generators>

gap> Support (F2tilde);

3(5)

3.9.2 Induction (g, f)

¢Q Induction(g, f) (operation)
¢ Induction(G, f) (operation)

Returns: Theinduction of the rcwa mappingy resp. the rcwa group by the injective rcwa
mappingt.

By definition, induction is the right inverse of restriction. This means that it is
Induction (Restriction(g, f), f) = gresp.Induction(Restriction(G,f),f) = G. The map-
ping g resp. the group must not move points outside the imagefof
Example

gap> Induction (F2tilde,RcwaMapping([[5,3,1]1]1)) = F2;
true

RCWA 43

3.10 Getting pseudo-random elements of RCWA(Z)

There is a method for the operatisandom for RCWA(Z). This method is designed to be suitable for
generating interesting examples. No particular distribution is guaranteed.
Example

gap> elm := Random(RCWA (Integers));
<bijective rcwa mapping of Z with modulus 60>
gap> Display (elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
_______________________________________ o
0 2 4 6 810 | 3n + 2
1 5 | -n + 2
3 7 | (n-7)/2
11 | (-n + 20)/3

The elements which are returned by this method are obtained by multiplying class shifts (see
ClassShift (2.2.1), class reflections (se®lassReflection (2.2.9) and class transpositions (see

ClassTransposition (2.2.3). These factors can be retrieved by factoring:
Example

gap> Factorization(elm);
[ClassTransposition(0,2,3,4), ClassTransposition(3,4,4,6),
ClassShift (0,2)"-1, ClassReflection(3,4), ClassReflection(1l,4)]

An auxiliary function which is used in this context for choosing the class transpositions is
ClassPairs(m). This function returns a list of 4-tuplesi,m,r2,mp) of integers corresponding
to the pairs of disjoint residue classgém) andra(my) with my, mp < m.

Example

gap> List (ClassPairs(4),ClassTransposition);

[ClassTransposition(0,2,1,2), ClassTransposition(0,2,1,4),
ClassTransposition(0,2,3,4) ClassTransposition(0,3,1,3),
ClassTransposition(0,3,2,3), ClassTransposition(0,4,1,4),
ClassTransposition(0,4,2,4), ClassTransposition(0,4,3,4),
ClassTransposition(1,2,0,4), ClassTransposition(l,2,2,4),
ClassTransposition(1,3,2,3), ClassTransposition(l,4,2,4),
ClassTransposition(l,4,3,4), ClassTransposition(2,4,3,4)]

gap> List (last,TransposedClasses);

[[0(2), 1(2) 1, [0(2), 1(4) 1, [0(2), 3(4) 1, [0(3), 1(3) I,
[0(3), 2(3) 1, [0(4), 1(4) 1, [0(4), 2(4) 1, [0(4), 3(4) 1,
[1(2), 0¢4) 1, [1(2), 2(4) 1, [1(3), 2(3) 1, [1(4), 2(4) 1,
[1(4), 3(4) 1, [2(4), 3(4) 1]

RCWA 44

3.11 Special attributes for tame rcwa groups

There is a couple of attributes which a priori make only sense for tame rcwa groups. In the sequel,
these attributes are described in detail.

With their help, various structural information about a given tame rcwa group can be obtained.
For example there are methods figsolvable and IsPerfect available for tame rcwa groups,
while testing wild groups for solvability or perfectness is currently not always feasible. It is often also
possible to compute the derived subgroup of a tame rcwa group.

3.11.1 RespectedPartition (G)

Q RespectedPartition(G) (attribute)
{ RespectedPartition(g) (attribute)

Returns: A respected partition of the rcwa grogpesp. of the rcwa mapping

A respected partitiorof G resp.g is a partition of the underlying rin® into a finite number of
residue classes on whiclresp. the cyclic group generateddgcts in a natural way as a permutation
group, and on whose elements all elements @sp. all powers of are affine. Such a partition exists
if and only if G resp.g is tame (seejoh05, Theorem 2.5.8).

Related attributes argespectedPartitionShort andRespectedPartitionLong. They are
used to denote respected partitions consisting of residue clagsgsherem divides the modulus
of G resp.g, resp. where the modulus efresp.g dividesm.

There is an operatioRespectsPartition (G,P) resp.RespectsPartition (g, P), which tests
whetherG resp.g respects a given partition The permutation induced kyon P can be computed

efficiently usingpermutationOpNC (g, P, OnPoints).
Example

gap> G := Group (ClassTransposition(0,4,1,6),ClassShift(0,2));
<rcwa group over Z with 2 generators>

gap> IsTame (G);

true

gap> Size (G);

infinity

gap> P := RespectedPartition(G);

[3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12)]

3.11.2 ActionOnRespectedPartition (G)

{Q ActionOnRespectedPartition(G) (attribute)
Returns: The action of the tame rcwa grogmn RespectedPartition (G).

Example

gap> H := ActionOnRespectedPartition (G);
Group ([(3,7)(5,8), (3,4,5,6) 1)

gap> H = Action(G,P);

true

gap> StructureDescription (H);

"C2 x S4"

RCWA 45

3.11.3 KernelOfActionOnRespectedPartition (G)

O KernelOfActionOnRespectedPartition(G) (attribute)
{ RankOfKernelOfActionOnRespectedPartition(G) (attribute)
Returns: The kernel of the action of the tame rcwa graupn RespectedPartition (G), resp.
the rank of the largest free abelian subgroup of this kernel.
The method foKernelOfActionOnRespectedPartition uses the packagalycyclic [ENOJ.
Example

gap> K := KernelOfActionOnRespectedPartition(G);
<rcwa group over Z with 3 generators>
gap> RankOfKernelOfActionOnRespectedPartition(G);
3
gap> Index (G,K);
48
gap> List (GeneratorsOfGroup (K),Factorization);
[[ClassShift(0,4)"2], [ClassShift(2,4)"2 1, [ClassShift(1,6)"2]]
gap> IsomorphismPcpGroup (K) ;
[<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 6>] -> [g6*gl0, g8%*gl2, gld4*gl6
]

3.11.4 IntegralConjugate (G)

¢ IntegralConjugate(G) (attribute)
Q IntegralConijugate(g) (attribute)
Returns: Some integral conjugate of the tame rcwa grougesp. of the tame bijective rcwa
mappingg in the group RCWAZL).
Such conjugates exist, se«&dh05, Theorem 2.5.14. In general there are infinitely
many of them. An rcwa mapping mapping such thatG"x=IntegralConjugate (G) resp.

g"x=IntegralConijugate (g) is stored as an attributeategralizingConjugator.
Example

gap> IsIntegral (IntegralConjugate(G));

true

gap> G IntegralizingConjugator (G) = IntegralConjugate(G);
true

gap> RespectedPartition (G);

[3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12)]

gap> RespectedPartition(G) "IntegralizingConjugator (G);

[0(8), 1(8), 2(8), 3(8), 4(8), 5(8), 6(8), 7(8) 1

gap> last = RespectedPartition(IntegralConjugate(G));
true

RCWA 46

Example

gap> Display (IntegralizingConjugator (G));

Bijective rcwa mapping of Z with modulus 24

n mod 24 | n"f
_______________________________________ e

0 8 16 | n+ 2

113 | (2n + 16)/3

2 10 18 | n+1

3 915 21 | (4n - 12)/3

4 12 20 | n

511 17 23 | (4n - 17)/3

6 14 22 | n -1

719 | (2n + 7)/3

3.12 Some general utility functions

RCWA introduces a few small utility functions which can be used for groups in general:
The function GeneratorsAndInverses (G) returns a list of generators of and their in-
versesFEpimorphismByGenerators (G, H) is a shorthand fo6roupHomomorphismByImages (G, H,
GeneratorsOfGroup (G) , GeneratorsOfGroup (H)) (there is also anc version of this) and the func-
tionAl1Products (1, k) returns the list of all products afentries of the list.

3.13 The categories of rcwa groups

3.13.1 IsRcwaGroup (G)

Q IsRcwaGroup(G) (filter)
{Q IsRcwaGroupOverZ(G) (filter)
{ IsRcwaGroupOverZ pi(G) (filter)
{ IsRcwaGroupOverGFgx (G) (filter)

Returns: true if G is an rcwa group resp. an rcwa group over the ring of integers resp. an rcwa
group over a semilocalization of the ring of integers resp. an rcwa group over a polynomial ring in
one variable over a finite field, arfd1se otherwise.

Often the same methods can be used for rcwa groups over the ring of integers and over its semilo-
calizations. For this reason there is a categt¢ycwaGroupOverZOrz_pi which is the union of
IsRcwaGroupOver?Z andIsRcwaGroupOverZ_pi. To allow distinguishing the entire group RCWB)(
from others by means of the method selection, it has the characteristic propestyural RCWA 7
resp. one of the properti@ésNatural RCWA_Z_pi Of IsNaturalRCWA_GFgx, depending on whethd&®
is the ring of integers, one of its semilocalizations or a univariate polynomial ring over a finite field.

Chapter 4

Examples

This chapter discusses a number of “nice” examples of rcwa mappings and -groups in detail. All of
them show different aspects of the package, and the order in which they appear is entirely arbitrary.
In particular they are not ordered by degree of interestingness or difficulty.

The rcwa mappings defined in this chapter (and in fact many more) can be found in the file
pkg/rcwa/examples/examples.g, SO there is no need to extract them from the manual files. This
file can be read into the curreBAP session by issueirkCiAReadExamples () ;.

The examples are typically far from discussing the respective aspects exhaustively. It is quite
likely that in many instances by just a few little modifications or additional easy commands you can
find out interesting things yourself — have fun!

4.1 Factoring Collatz’ permutation of the integers

In 1932, Lothar Collatz mentioned in his notebook the following permutation of the integers:
Example

gap> Collatz := RcwaMapping([[2,0,3],[4,-1,31,14,1,311);;
gap> SetName (Collatz,"Collatz"); Display(Collatz);

Rcwa mapping of Z with modulus 3

n mod 3 | n"Collatz
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3
This permutation has a few finite cycles:
Example

gap> ShortCycles(Collatz, [-50..50],50);
[[-111, -74, -99, -66, -44, -59, -79, -105, -70, -93, -62, -83],
[_9/ _61 _41 _51 -7 }I [_31 -2 }I [-1]/ [0]l [1]I [21 3]/
[4, 5 7,9, 6], [44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]]

47

RCWA 48

The cycle structure of Collatz’ permutation has not been completely determined yet. In particular it is
not known whether the cycle containing 8 is finite or infinite. Nevertheless, the factorization routine
included in this package can determine a factorization of this permutation into class transpositions,
i.e. involutions interchanging two disjoint residue classes:

Example

gap> Length(Factorization(Collatz));
212

Setting the Info level ofinfoRCWA equal to 2 (simply isSURCWAInfo (2) ;) causes the factorization
routine to display detailed information on the progress of the factoring process. For reasons of saving
space, this is not done in this manual.

We would like to get a factorization into fewer factors. Firstly, we try to factor the inverse — just
like the various options interpreted by the factorization routine, this has influence on decisions taken
during the factoring process:

Example

gap> Length (Factorization(Collatz"-1));
129

This is already a shorter product, but can still be improved. We remembekihe’s, of which the
permutatiomKnot (3) looks very similar to Collatz’ permutation. Therefore it is straightforward to
try to factor bothnknot (3) andCollatz/mKnot (3), and to look whether the sum of the numbers of

factors is less than 129:
Example

gap> KnotFacts := Factorization (mKnot (3));;

gap> QuotFacts := Factorization(Collatz/mKnot (3));;

gap> List ([KnotFacts,QuotFacts],Length);

[59, 9]

gap> CollatzFacts := Concatenation (QuotFacts,KnotFacts);

[ClassTransposition(0,6,4,6), ClassTransposition(0,6,5,6),
ClassTransposition(0,6,3,6), ClassTransposition(0,6,1,6),
ClassTransposition(0,6,2,6), ClassTransposition(2,3,4,6),
ClassTransposition(0,3,4,6)
ClassTransposition(0,3,1,6), ClassTransposition(0,36,35,36),

ClassTransposition(0,36,22,36), ClassTransposition(0,36,18,36),

ClassTransposition(0,36,17,36), ClassTransposition(0,36,14,36),

ClassTransposition(0,36,20,36), ClassTransposition(0,36,4,36),

ClassTransposition(2,36,8,36), ClassTransposition(2,36,16,36),

(

(

(

(, ClassTransposition(2,3,1,6),

(

(

(

(

(
ClassTransposition(2,36,13,36), ClassTransposition(2,36,9,36),

(

(

(

(

(

(

(

(

)
)
)
)

ClassTransposition(2,36,7,36), ClassTransposition(2,36,6,36),
ClassTransposition(2,36,3,36), ClassTransposition(2,36,10,36),
ClassTransposition(2,36,15,36), ClassTransposition(2,36,12,36),
ClassTransposition(2,36,5,36), ClassTransposition(21,36,28,36),
ClassTransposition(21,36,33,36), ClassTransposition(21,36,30,36),
ClassTransposition(21,36,23,36), ClassTransposition(21,36,34,36),
ClassTransposition(21,36,31,36), ClassTransposition(21,36,27,36),
ClassTransposition(21,36,25,36), ClassTransposition(21,36,24,36),

RCWA

ClassTransposition(26,36,32,36), ClassTransposition
ClassTransposition(10,18,35,36), ClassTransposition

(26,36,29,36),
(5,18,35,36),
ClassTransposition(10,18,17,36), ClassTransposition(5,18,17,36),
ClassTransposition(8,12,14,24), ClassTransposition(6,9,17,18),
ClassTransposition(3,9,17,18), ClassTransposition(0,9,17,18),
ClassTransposition(6,9,16,18), ClassTransposition(3,9,16,18),
ClassTransposition(0,9,16,18), ClassTransposition(6,9,11,18),
ClassTransposition(3,9,11,18), ClassTransposition(0,9,11,18),

(

(

(

(

(

(

(

ClassTransposition(6,9,4,18), ClassTransposition(3,9,4,18),
ClassTransposition(0,9,4,18), ClassTransposition(0,6,14,24),
ClassTransposition(0,6,2,24), ClassTransposition(8,12,17,18),
ClassTransposition(7,12,17,18), ClassTransposition(8,12,11,18),
ClassTransposition(7,12,11,18), PrimeSwitch(3) -1,
ClassTransposition(7,12,17,18), ClassTransposition(2,6,17,18),
ClassTransposition(0,3,17,18), PrimeSwitch(3)" -1, PrimeSwitch(3) -1,
PrimeSwitch(3) "-1]

gap> Product (CollatzFacts) = Collatz; # Check.

true

49

The factorsPrimeSwitch (3) are products of 6 class transpositions (epimeSwitch (2.2.4). At

the end of Sectiod.6, a much smaller factorization task is performed “manually” for purposes of

illustration.

4.2 Anrcwa mapping which seems to be contracting, but very slow

The iterates of an integer under the Collatz mapgirgeem to approach its contraction centre — this
is the finite set where all trajectories end up after a finite number of steps — rather quickly and do not

get very large before doing so (of course this is a purely heuristic statement as-ttie@Gonjecture

has not been proven so far!):
Example

gap> T := RcwaMapping([[1,0,21,1[3,1,211);;

gap> S0 := LikelyContractionCentre(T,100,1000);

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for information on how to improve this guess.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1,
1, 2]

gap> SO°T = S0; # This holds by definition of the contraction centre.

true

gap> List([1..40],n->Length(Trajectory(T,n,S0)));

(1, 1,5 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6, 11,
11, 8, 16, 8, 70, 13, 13, 13, 67, 5, 18, 10, 10, 15, 15, 15, 23, 7]

gap> Maximum(List ([1..1000],n->Length(Trajectory(T,n,S0))));

113

gap> Maximum(List ([1..1000],n->Maximum(Trajectory(T,n,S0))));

125252

RCWA 50

The following mapping seems to be contracting as well, but its trajectories are much longer:
Example

gap> f6 := RcwaMapping([[1,0,6]1,[5, 1,61, 7,-2,6],

> [11/316]1[11172/6}1[1177116]});;
gap> SetName (f6,"f6");

gap> Display (£6);

Rcwa mapping of Z with modulus 6

n mod 6 | n"f6
_______________________________________ S

0 | n/6

1 | (5n + 1)/6

2 | (Tn - 2)/6

3 | (11n + 3)/6

4 | (11In - 2)/6

5 | (11In - 1)/6

gap> SO := LikelyContractionCentre (£6,1000,100000);;

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

gap> Trajectory(f6,25,S0);

[25, 21, 39, 72, 12, 2]

gap> List([1..100],n->Length(Trajectory(f6,n,S0)));

(2, 2, 3, 4, 2, 2, 3, 2, 2, 5,7, 2, 8, 17, 3, 16, 2, 4, 17, 6, 5, 2, 5, 5,
6, 2, 4, 2, 15, 2, 2, 3, 2, 5, 13, 3, 2, 3, 4, 2, 8, 4, 4, 2, 7, 19, 23517,
3, 9, 3, 2, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 2, 4, 19, 12, 23511, 8,
23513, 10, 2, 13, 13, 3, 2, 23517, 7, 20, 7, 9, 9, 6, 12, 8, 6, 18, 14,
23516, 31, 12, 23545, 4, 21, 19, 5, 2, 17, 17, 13, 19, 6, 23515]

gap> Maximum(Trajectory (£6,47,50));;

736339177776247330443187705477107581873369010805146980871580925673774229545698\

886054

Computing the trajectory of 3224 takes quite a while — this trajectory ascends to atbftt%,
before it approaches the fixed point 2 after 19949562 steps.

When constructing the mappirntg, the denominators of the partial mappings have been chosen
to be equal and the numerators have been chosen to be numbers coprime to the common denominator,
whose product is just a little bit smaller than thedulus (£6)th power of the denominator. In the
example we have & - 113 = 46585 and 6= 46656.

Although the trajectories of are much shorter than those of, it seems likely that this does
not make the problem of deciding whether the mappirng contracting essentially easier — even for
mappings with much shorter trajectories ttatie problem seems to be equally hard. A solution can
usually only be found in trivial cases, i.e. for example when there is $osneh that applying thigth
power of the respective mapping to any integer decreases its absolute value.

RCWA 51

4.3 Checking a result by P. Andaloro

In [AndOd], P. Andaloro has shown that proving that trajectories of integets1(16) under the
Collatz mapping always contain 1 would be sufficient to prove the 3 Conjecture. In the sequel,
this result is verified bRCWA. Checking that the union of the images of the residue class 1(16) under
powers of the Collatz mapping containsZ \ 0(3) is obviously enough. Thus we p8t= 1(16), and
successively unite the sBwith its image under :

Example
gap> S := ResidueClass(Integers,16,1);
1(16)
gap> S := Union(S,S"T);
1(16) U 2(24)
gap> S := Union(S,S"T);

1(12) U 2(24) U 17(48) U 33(48)

gap> S := Union(S5,S°7T);

<union of 30 residue classes (mod 144)>
gap> S := Union(S,S"T);

<union of 42 residue classes (mod 144)>
gap> S := Union(S,S°7T);

<union of 172 residue classes (mod 432)>
gap> S := Union(S,S°T);

<union of 676 residue classes (mod 1296)>
gap> S := Union(S,S"T);

<union of 810 residue classes (mod 1296)>
gap> S := Union(S,S°7T);

<union of 2638 residue classes (mod 3888)>
gap> S := Union(S,S"T);

<union of 33 residue classes (mod 48)>
gap> S := Union(S,S"T);

<union of 33 residue classes (mod 48)>
gap> Union(S,ResidueClass (Integers,3,0)); # Et voila ...
Integers

Further similar computations are shown in Sectiohld

RCWA 52

4.4 Two examples by Matthews and Leigh

In [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories of the following (sur-
jective, but not injective) mappings are acyclic (mgdnd divergent:

Example
gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(2),1);
GF (2) [x]

gap> ML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)"3,1,x]]1*0One(R));;
gap> ML2 := RcwaMapping(R,x,[[1,0,x], [(x+1)"2,1,x]]1*0One(R));;
gap> SetName (ML1,"ML1"); SetName (ML2,"ML2");

gap> Display (ML1);

Rcwa mapping of GF(2) [x] with modulus x

gap> Display (ML2);

Rcwa mapping of GF(2) [x] with modulus x

gap> List ([ML1,ML2],IsSurjective);

[true, true]

gap> List ([ML1,ML2],IsInjective);

[false, false]

gap> trajl := Trajectory(ML1l,One(R),16);

[2(2)70, x"2+x+7Z(2)70, x"44+x"2+x, x"3+x+7Z(2)70, x"5+x"4+x"2, x"4+x"3+x,
X"3+x72472(2) 70, x"5+x"2+47Z(2)°0, x"7+x"6+x"5+x"3+Z(2) "0,

X9+ TTHRT6+X 754X 34+x+72 (2) "0, xT114+x710+x"8+x"T+x"6+x"5+x72,
x"10+x"9+x " T+ 6+x " 5+x "7 4+x, X"9+x"8+x"6+x"5+x"4+x"3+Z (2) "0,
Xx"11+x"8+x"T+x"6+x"4+x+Z (2) "0, x"13+x"12+x"11+x"8+x"7+x"6+x"4,
x"124x7114+x710+x"7+x76+x"5+x"3]

gap> traj2 := Trajectory(ML2, (x"3+x+1)*One(R),16);

[X"3+x+2(2) "0, x"4+x+Z(2)"0, x"5+x"3+x"2+x+Z2(2) "0, x"6+x"3+Z(2) "0,
XTTHX 54X 44x724x, XT0+xT44+x"3+x+72(2) "0, x"T+x744+x"34+x+72(2) "0,
X"8+x"60+x"5+x T 4+x"3+x+7Z (2) "0, x"9+x"6+x"3+x+Z(2) "0,
Xx"104+x"84+x"T+x"5+x 7 44+x+7 (2) "0, x"114+x"8+x"T+x"5+x"4+x"3+x"2+x+Z2(2) 0,
Xx"T124+x7104+x79+x "84k T+x 542 (2) "0, x"13+x710+x"T7+x"4+x,
X"T124x79+x764+x"34+Z2(2) "0, xT134x"114x7104+x"84+x"THx"54+x"T4+x"2+%,
XxT124x7104x79+x 7T+ T 6+x 7 44x " 34+x+Z2 (2) "0]

RCWA 53

The pattern which Matthews and Leigh used to show the divergence of the above trajectories can be
recognized easily by looking at the corresponding Markov chains with the two states @ amatl
1 modx:

Example

gap> trajlmodx := Trajectory(ML1l,One(R),400,x);;

gap> traj2modx := Trajectory(ML2, (x"3+x+1)*One(R),600,x);;

gap> List (trajlmodx{[1..200]},val->Position([Zero(R),One(R)],val)-1);

(1, 1, 0, 2, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, O, O, O, O, 2, 1, 1, 1, 1, 1, 1,
i, o, 0, 0, 0, 2, 1, 1, 1, 0, O, O, O, O, O, O, O, 2, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1, 0 0 0, O, O, O, O, O, 2, 1, 2, 21, 1, 1, 1, 1, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1, 1,111,111, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 0, O, O,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 2, 2, 1, 1, 1,1, 1, 1,1, 1, 1, 1,
i, 1, 1,1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
6, o, 0, 0, 0o, 0, 0, 0, 0, O, O, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> List (traj2modx{[1..200]},val->Position([Zero(R),0One(R)],val)-1);

(1, 1,1, 1,¢90,1,11,11,1, 1,1, 1,¢0, 1, 0 1, 1, 1,1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1,1, 1, 0, 1, O, 1, O, 1, O, 1, O, 1, O, 1, 0, 1, O,
i, 1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, O,
i, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, O, 1, O, 1, O, 1, O, 1, O, 1, 0, 1, O, 1,
o, 1, 0, 1, 0, 1,1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

What is important here are the lengths of the intervals between two changes from one state to the

other:
Example

gap> ChangePoints := 1 -> Filtered([l..Length(l)-1],pos->1[pos]<>1[pos+l]);;
gap> Diffs := 1 -> List([l..Length(l)-1],pos->1[pos+l]-1[pos]);;
gap> Diffs(ChangePoints(trajlmodx)); # The pattern in the first
(1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, l6, 32, 64, 32, 32,

gap> Diffs(ChangePoints
(1, 3 1, 7,1, 15,1, 31, 1, 6

64]

gap> Diffs(ChangePoints (traj2modx)); # ... and in the second example.

(1, 7,1, 1,1, 13, 1,1, 1, 1,1, 1,1, 25 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1, 49, 1,1, 1,1, 1,1, 1,1,11,11, 1,1, 1,1, 1,1, 1, 1, 1,
i, 1 1,1,1,1,1,1,1%1,11,1,1, 9, 1,1,11, 1,1, 1,1, 1,1, 11,1, 1,
1,11, 1,1,1,1%1,1,1,1,11,1,1,11,1,1,1, 11,1, 1,1, 1,1, 1, 1,
1,11, 1,1,1,1%,1,1,1,1,1,1,11,1,1,1, 11,1, 1,1, 1,1, 1, 1,
i, 193, 1, 1, 1, 1,1, 1,11, 11, 1, 1, 1,1, 1,1, 1, 1, 1, 1,1, 1, 1, 1,
1, 1,1, 1,1,1,11,1,1,1,1,1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1,
i, 1,1, 1,1,1,1%1,1,1,1,11,1,1,11, 1, 1,1, 1,1, 1,1, 1, 1,1, 1,
1,11, 1,1,1,11,1,1,11, 1, 1,1, 1, 1,1, 1, 1, 1]

()i #
3

This looks clearly acyclic, thus the trajectories diverge. Needless to say however that this computa-
tional evidence does not replace the proof along these lines given in the article cited above, but just
sheds a light on the idea behind it.

RCWA

54

4.5 Exploring the structure of a wild rcwa group

In this example, a simple attempt to should be made to investigate the structure of a given wild group
by finding orders of torsion elements. In general, determining the structure of a given wild group
seems to be a very hard task. First of all, the group in question has to be defined:

gap> u
gap> SetName (u, "u"
gap> Display(u);

)i

Rcwa mapping of Z with modulus 5

n mod 5

0

1

2

3

4
gap> nu := ClassShift(0,1);;
gap> G := Group(u,nu);

<rcwa group over Z with 2 generators>
gap> IsTame (G);
false

Example

:= RcwaMapping([[3,0,5],19,1,5], [3,-1,5], [9,

_275]/[97415]1);;

n"u
3n/5
(9n + 1)/5
(3n - 1)/5
(9n - 2)/5
(9n + 4)/5

Now we would like to know which orders torsion elementsafan have — taking a look at the above
generators it seems to make sense to try commutators:

gap> 1 :=

[0, 2, 3,
33, 35,
65, 66, 69, 70,
96, 99, 100]

gap> List (1,k->Order (Comm(u,nu’k)));

5
36,

6,
39,

9,
40,
72,

10, 12, 13, 15,
42, 43, 45, 47,
73, 75, 77, 18,

17,

5, 5, 3]

Example
Filtered([0..100],k->IsTame (Comm(u,nu’k)));

48,
80,

3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity, infinity, 3, 5, 7,
7, infinity, 3, 5, 5, 3, 5, infinity, infinity, infinity, 5, 3,

[1, 6, 5, 3, 5, 5, 3, infinity, 7, infinity,
5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5,
5/
infinity,

30, 32,
62, 63,
93, 95,

18, 20, 21,
50, 51, 54,
81, 84, 85,

24, 25,
55, 57,
87, 88,

27, 28,
58, 60,
90, 92,

7, 5, 3, infinity, infinity, 3,
infinity, infinity, infinity,

RCWA 55

Example

gap> Display (Comm(u,nu”13));

Bijective rcwa mapping of Z with modulus 9

n mod 9 | n"f
_______________________________________ e
036 | n+ 5
147 | 3n - 9
2 8 | n - 11
5 | (n + 16)/3

gap> Order (Comm(u,nu”13));

7

gap> u2 := u"2;

<wild bijective rcwa mapping of Z with modulus 25>

gap> Filtered([1..16],k->IsTame (Comm(u2,nu’k))); # k < 15 -> commutator wild!

[15]

gap> Order (Comm(u2,nu”15));
infinity

gap> u2nul7 := Comm(u2,nu”17);

<bijective rcwa mapping of Z with modulus 81>

gap> orbs := ShortOrbits (Group(u2nul7), [-100..100],100);;

gap> List (orbs,Length);

[72, 72, 13, 12, 73, 12, 12, 13, 12, 72, 72, 13, 72, 12, 73, 72, 12, 13, 12,
72, 13, 72, 72]

gap> Lcm(last);

5256

gap> u2nul7°5256; # This element has indeed order 273*372*73 = 5256.

IdentityMapping(Integers)

gap> u2nul8 := Comm(u2,nu”18);

<bijective rcwa mapping of Z with modulus 81>

gap> orbs := ShortOrbits (Group(u2nul8), [-100..100],100);;

gap> List (orbs,Length);

[22, 22, 22, 21, 22, 22, 22, 21, 21, 22, 22, 21, 22, 21, 22, 22, 21, 22, 22,
21, 22, 22, 21]

gap> Lcm(last);

462

gap> u2nul8°462; # This is an element of order 2*3*7*11 = 462.

IdentityMapping(Integers)

gap> Order (Comm (u2,nu”20));

29
gap> Order (Comm(u2,nu”25));
9
gap> Order (Comm (u2,nu”30));
15

Thus even this rather simple-minded approach reveals various different orders of torsion elements,
and the involved primes are also not all very “small”.

RCWA 56

4.6 A wild rcwa mapping which has only finite cycles

Some wild rcwa mappings &t have only finite cycles. In this section, a permutation is examined
which can be shown to be such a mapping and which is likely to be something like a “minimal
example.

OverR = GF(Q)[X], the degree function gives rise to a partitionRinto finite sets which is left
invariant by suitable wild rcwa mappings. OMeE= Z the situation looks different — there is no such
“natural” partition into finite sets which can be fixed by a wild rcwa mapping.

Example

gap> kappa := RcwaMapping([[1,0,1
> [2,0,1]
> [1,1
gap> SetName (kappa, "kappa") ;
gap> List ([-5..5],k->Modulus (kappa“k));

[7776, 1296, 432, 72, 24, 1, 12, 72, 144,
gap> Display (kappa);

864, 1728]

Bijective rcwa mapping of Z with modulus 12

_— 4+ —

gap>
[4,

gap>

gap>
[2/

8/
gap>
>

List ([-32..32],n->Length (Cycle (kappa,n)));
1, 4, 7, 1, 10, 10, 1, 1, 4, 4, 7, 1, 10,
1, 4, 2, 1,1, 2,1, 1, 4, 4, 4, 1, 7, 17, 4, 1, 1,
1, 4, 7, 1, 10, 10, 1, 1, 4, 4, 4, 1, 13, 13, 7]
List([2..14],k->Maximum (List ([1..2"k],n->Length(Cycle (kappa,n)))));
7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

List ([2..14],k->Length(Cycle (kappa,2°k-2)));

7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

10, 4, 1,

4’
4, 10,
4’
2.

[4094,
236194,
69983,
9215,

(01
[16,
[34,

Cycle (kappa,2°12-2);
6142, 9214,
354292, 708584,
139964, 46655,
18428, 6143,
last mod 12;

10, 10, 10, 10, 10,
11, 8, 11, 8, 11, 8,
lengthstatistics :=

6912 1, [
108]

ro |l
21, [37,

13822,

93308,
12284,

20734, 31102,
236195, 472388,
31103, 62204,
4095]

46654, 69982,
157463, 314924,
20735, 41468,

104974, 157462,
104975, 209948,
13823, 27644,

10, 10, 10, 10, 10, 4, 8, 8, 8,
11, 8, 11, 8, 11, 8, 31
Collected(List (ShortOrbits (Group (kappa),
[1..1274],100),Length));
432 1, [13, 216],

131, [28, 71, [31,

11, 8, 11, 11, 11,

L7
L2z,

864 1,
27 1,

[10,

[25, 31,

[40, 11]

RCWA

We would like to determine a partition @ into unions of cycles of equal length:

57

Example
gap> C := [Difference(Integers,MovedPoints (kappa))]l;; pow := [kappa”0];;
gap> rc := function(r,m) return ResidueClass(r,m); end;;
gap> for i in [1..3] do
> Add (pow, kappa“i);
> C[i+1] := Difference(rc(2,4),
> Union (Union(C{[1..1]}),
> Union(List ([0..1],
> j->Intersection(rc(2,4) "pow[j+1],
> rc(2,4)" (pow[i-Jj+11°-1))))))
> od;
gap> C;
[

1(4) U 0(12) U [-2 1, 2(24) U 18(24), 6(48) U 38(48) U 10(72) U 58(72),
<union of 38 residue classes (mod 864)>]

gap> List (C,S->Length(Cycle (kappa,S)));

[1, 4, 7, 10]

gap> Cycle (kappa,C[1l]);

[1(4) UO0(12) U [-2 1]

gap> Cycle (kappa,Cl2]);

[2(24) U 18(24), 4(36) U 28(36), 8(72) U 56(72), 3(24) U 19(24)]
gap> cycle7 := Cycle(kappa,C[3]);;

gap> for S in cycle7 do View(S); Print("\n"); od;

6(48) U 38(48) U 10(72) U 58(72)

10(72) U 58(72) U 16(108) U 88(108)

16(108) U 88(108) U 32(216) U 176(216)

11(72) U 59(72) U 32(216) U 176(216)

11(72) U 59(72) U 20(144) U 116(144)

7(48) U 39(48) U 20(144) U 116(144)

6(48) U 7(48) U 38(48) U 39(48)

gap> cyclel(Q := Cycle(kappa,Cl[4]);;

gap> for S in cyclel0 do View(S); Print("\n"); od;

<union of 38 residue classes (mod 864)>

<union of 38 residue classes (mod 1296)>

<union of 12 residue classes (mod 648)>

<union of 12 residue classes (mod 648)>

<union of 22 residue classes (mod 1296)>

<union of 12 residue classes (mod 432)>

<union of 22 residue classes (

<union of 12 residue classes (

<union of 14 residue classes (

<union of 16 residue classes (

gap> List (cyclelO,Density);

[19/432, 19/648, 1/54, 1/54, 11/648, 1/36, 11/432, 1/24, 7/144, 1/18]

gap> List (last,Float);

[0.0439815, 0.029321, 0.0185185, 0.0185185, 0.0169753, 0.0277778, 0.025463,
0.0416667, 0.0486111, 0.0555556]

gap> Sum(last2);

47/144

gap> Density(Union(cyclel0));

47/432

RCWA 58

Example

gap> P := List (C,S->Union(Cycle (kappa,S)));;

gap> for S in P do View(S); Print ("\n"); od;

1(4) U 0(12) U [-2]

<union of 18 residue classes (mod 72)>

<union of 78 residue classes (mod 432)>

<union of 282 residue classes (mod 2592)>

gap> P2 := AsUnionOfFewClasses(P[2]);

[2(24), 3(24), 18(24), 19(24), 4(36), 28(36), 8(72), 56(72)]

gap> Permutation (kappa,P2);

(1,5,7,2) (3,6,8,4)

gap> P3 := AsUnionOfFewClasses(P[3]);

[6(48), 7(48), 38(48), 39(48), 10(72), 11(72), 58(72), 59(72), 16(108),
88(108), 20(144), 116(144), 32(216), 176(216)]

gap> Permutation (kappa,P3);

(1,5,9,13,6,11,2) (3,7,10,14,8,12,4)

gap> P4 := AsUnionOfFewClasses(P[4]);

[14(96), 15(96), 78(96), 79(96), 22(144), 23(144), 118(144), 119(144),
34(216), 35(216), 178(216), 179(216), 44(288), 236(288), 52(324), 268(324),
68(432), 356(432), 104(648), 536(648)]

gap> Permutation (kappa,P4);

(1,5,9,15,19,10,17,6,13,2) (3,7,11,16,20,12,18,8,14,4)

gap> List (P,S->Set (List (Intersection([1..1274],S),n->Length(Cycle (kappa,n)))));

ctr1i1, 0471, 071, [107]]

gap> Set (List (Intersection([l..1274],Difference(Integers,Union(P))),

> n->Length (Cycle (kappa,n))));

[13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

Finally, the permutatiokrappa should be factored into involutions (this time “by hand”, for purposes
of illustration):
Example

gap> elml := kappa;

kappa

gap> Multpk(elml,2,1) "elml;
8(12)

gap> Multpk(elml,2,-1) "elml;
4(6)

gap> factl := ClassTransposition(4,6,8,12);;

RCWA

Example

59

gap> elm2 := elml/factl;
<bijective rcwa mapping of Z with modulus 12>
gap> Display (elm2);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
0 4 5 9 | n
2 610 | 3n + 2
3 711 | n-1
8 [(n+ 1)/3
gap> Multpk(elm2,3,1) "elm2;
8(12)
gap> Multpk (elm2,3,-1) "elm2;
3(4)
gap> fact2 := ClassTransposition(3,4,8,12);;
gap> elm3 := elm2/fact2;
<bijective rcwa mapping of Z with modulus 4>
gap> Display(elm3);
Bijective rcwa mapping of Z with modulus 4
n mod 4 | n~f
_______________________________________ o
01 | n
2 ' n+1
3 | n-1

gap> fact3 := ClassTransposition(2,4,3,4);;

gap> elmd := elm3/fact3;

IdentityMapping(Integers)

gap> kappafacts := [fact3, fact2, factl];

[ClassTransposition(2,4,3,4), ClassTransposition(3,4,8,12),
ClassTransposition(4,6,8,12)]

gap> kappa = Product (kappafacts);

true

RCWA 60

4.7 An abelian rcwa group over a polynomial ring

In this section, a wild rcwa group over GF(4)should be invstigated, which happens to be abelian.
Of course in general, rcwa groups also over this ring are usually far from being abelian (see below).
We start by defining this group:

Example
gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(4),1);
GF (272) [x]
gap> e := One(GF(4));;
gap> p = X2 + x + e;; q:=x"2+ e;;
gap> r = x"2 + x + Z(4);; s = x"2 + x + Z(4)"2;;
gap> cg := List(AllResidues(R,x72), pol -> [p, p * pol mod q, g 1);;
gap> ch := List(AllResidues(R,x72), pol -> [r, r * pol mod s, s]);;

gap> g := RcwaMapping(R, q, cg);

<rcwa mapping of GF(2°2) [x] with modulus x"2+Z(2) "0>
gap> h := RcwaMapping(R, s, ch);

<rcwa mapping of GF(272) [x] with modulus x"2+x+Z(272) "2>
gap> List([g,h],Order);

[infinity, infinity]

gap> List([g,h],IsTame);

[false, false]

gap> G := Group(g,h);

<rcwa group over GF(2°2) [x] with 2 generators>

gap> IsAbelian(G);

true

Now we compute the action of the groamn one of its orbits, and make some statistics of the orbits
of G containing polynomials of degree less than 4:
Example

gap> orb := Orbit (G,x"5);
[x°5, x"5+x"4+x"24+72(2) "0, x"5+x"3+x"2+Z(272)*x+Z(2) "0, x"5+x"3,
X5+ TA+XT3+x 7247 (272) "2*x+Z(272) "2, x75+x, x"5+x74+x73, x"5+x"2+7(2°2) "2*x,
XTE5EXTA4RT24%, XTHHXT34XT247Z(272) "2*%x+7(2) "0, x"5+x74+47Z(272)*x+7Z(272),
X"5+x 734, XT5+XTA+XT34XT24Z(272) *x+2(272), x"5+xT4+x"3+x+7Z(2) "0,
X 54X72+42(27°2) *x, X 54xT44Z(272) "2*x+7(27°2) "2]
gap> H := Action (G, orb);
Group ([(1,2,4,7,6,9,12,14) (3,5,8,11,10,13,15,16),
(1,3,6,10) (2,5,9,13) (4,8,12,15) (7,11,14,16) 1)
gap> IsBAbelian (H); # check ...
true
gap> Exponent (H);
8
gap> Collected(List (ShortOrbits (G,AllResidues(R,x"4),100),Length));
(11,41, 12,61, [4 1271, [8, 241]

RCWA 61

Changing the generators a little causes the group structure to change a lot:

Example
gap> cg[l][2] := cgl[l][2] + (k"2 + e) *p * qj;
gap> ch[7]1[2] := ch[7][2] + x * r * 5;;
gap> g := RcwaMapping(R, g, cg);; h := RcwaMapping(R, s, ch);;
gap> G := Group(g,h);

<rcwa group over GF(2°2) [x] with 2 generators>

gap> orb := Orbit (G,Zero(R));;

gap> Length (orb);

87

gap> Collected(List (orb,DegreeOfLaurentPolynomial));
(1, 21, 02,471, [3, 161, [4 6417, [infinity, 1 1]
gap> H := Action (G, orb);

<permutation group with 2 generators>

gap> IsNaturalAlternatingGroup (H);

true

gap> orb := Orbit (G,x"6);;

gap> Length(orb);

512

gap> H := Action (G, orb);

<permutation group with 2 generators>

gap> IsNaturalSymmetricGroup(H) or IsNaturalAlternatingGroup (H);
false

gap> blk := Blocks(H,[1..512]);;

gap> List (blk,Length);

[128, 128, 128, 128]

gap> Action(H,blk,OnSets);

Group ([(1,2)(3,4), (1,3)(2,4) 1)

Thus the modified group has a quotient isomorphic to the alternating group of degree 87, and a quotient
isomorphic to some wreath product or a subgroup thereof acting transitively, but not primitively on
512 points.

4.8 A tame group generated by commutators of wild permutations

In this section, we have a look at 3 wild rcwa mappings whose commutators generate tame groups:

Example
gap> a := RcwaMapping([[3,0,2]1,([3, 1,4]1,13,0,21,13,-1,411);;
gap> b := RcwaMapping([[3,0,2],13,13,41,13,0,21,13,-1,411);;
gap> ¢ := RcwaMapping([[3,0,2], (3, 1,41,13,0,21,13,11,411);;
gap> SetName (a,"a"); SetName (b, "b"); SetName (c,"c");
gap> List([a,b,c],IsTame);
[false, false, false]
gap> ab := Comm(a,b);; ac := Comm(a,c);; bc := Comm(b,c);;
gap> SetName (ab,"[a,b]"); SetName (ac,"[a,c]"); SetName (bc,"[b,c]");
gap> List ([ab,ac,bc],Order);
[6, 6, 12]

RCWA 62

Now we would like to have a look at[o] ...
Example

gap> Display(ab);

Bijective rcwa mapping of Z with modulus 18, of order 6

n mod 18 | n”[a,b]
_______________________________________ .

0 2 3 8 911 12 17 | n

110 | 2n = 5

4 7 13 16 | n+ 3

5 14 | 2n - 4

6 [(n+ 2)/2
15 | (n-5)/2

.. form the group generated by,}] and [a,c] and compute its action on one of its orbits:
Example

gap> G := Group(ab,ac);

<rcwa group over Z with 2 generators>

gap> orb := Orbit (G,1);

[-15, -12, -7, -6, -5, -4, -3, -2, -1, 1]
Action (G, orb);

gap> H :=

Group ([(2,5,8,10,7,6), (1,3,6,9,4,5) 1)
gap> Size(H);

3628800

gap> Size(G); # G acts faithfully on orb.
3628800

Hence the group is isomorphic to the symmetric group on 10 points and acts faithfully on the orbit
containing 1. Another question is which groups arise if we take as generatorsagitheror bc and

the involution which maps any integer to its additive inverse:
Example

gap> t := ClassReflection(0,1);;

gap> Display(t);

Bijective rcwa mapping of Z: n -> -n
gap> G := Group(ab,t);

<rcwa group over Z with 2 generators>
gap> Size(G);

7257600
gap> phi := IsomorphismPermGroup (G);
[[a,b], ClassReflection(0,1)] —>

[(1,36,12,27,9,15) (2,34,10,25,7,13) (3,35,11,26,8,14),
(1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,11) (9,10) (20,21) (22,36) (23,
35) (24,34) (25,33) (26,32) (27,31) (28,30)]
gap> StructureDescription (Image (phi));
"C2 x S10"

RCWA 63

Thus the group generated by andt is isomorphic to G x S;p. The next group is an extension of a
perfect group of order 960:

Example

gap> G := Group(ac,t);;

gap> Size (G);

3840

gap> H := Image (IsomorphismPermGroup (G));;
gap> P := DerivedSubgroup (H);;

gap> Size(P);

960

gap> IsPerfect (P);

true

gap> PerfectGroup (PerfectIdentification(P));
A5 2747

The last group is infinite:

Example

gap> G := Group(bc,t);;

gap> Size(G);

infinity

gap> Order (bc*t);

infinity

gap> Modulus (G) ;

18

gap> RespectedPartition(G);

[1(9), 2(9), 4(9), 5(9), 7(9), 8(9), 0(18), 3(18), 6(18), 9(18), 12(18),
15(18)]

gap> ActionOnRespectedPartition(G);

Group ([(1,5,8,2,4,12)(3,9,6,11), (1,6)(2,5) (3,4) (8,12)(9,11) 1)

gap> StructureDescription(last);

"s10"

gap> RankOfKernelOfActionOnRespectedPartition(G);

9

RCWA

4.9 Checking for solvability

Is the group generated by the permutatiar@db from the last paragraph solvable?

This group is wild. Presently there is no general method available for testing wild rcwa groups
for solvability. But nevertheless, for the given group we can obtain a negative answer to this question.
The idea is to find a subgroupwhich acts on a finite set of integers, and which induces ena

non-solvable finite permutation group:
Example

gap> a := RcwaMapping([[3,0,2],[3, 1,41,13,0,2]1,(3,-1,4]1]1);; SetName(a,"a");

gap> b := RcwaMapping([[3,0,2]1,(3,13,4]1,13,0,2]1,[3,-1,4]1]1);; SetName (b, "b");

gap> G := Group(a,b);;

gap> ShortOrbits (Group (Comm(a,b)), [-10..10],100);

([(-101, [-91, [-30, -21, -14, -13, -11, -8 1, [-7 1, [-6 1,
[=12, -5, -4, -3, -2, 11, [-1 1, [01, [2

[4, 5, 6, 7, 10, 151, [81, [911

[

(

’
gap> S := 4, 5, 6, 7, 10, 15 1;;
gap> Cycle (Comm(a,b),4);
[4, 7, 10, 15, 5, 6]
gap> elm := RepresentativeAction(G,S,Permuted(S, (1,4)),0nTuples);
<bijective rcwa mapping of Z with modulus 81>
gap> List(S,n->n"elm);
[7, 5, 6, 4, 10, 15]
gap> U := Group (Comm(a,b),elm);
<rcwa group over Z with 2 generators>
gap> Action(U,S);
Group([(1,4,5,6,2,3), (1,4) 1)
gap> IsNaturalSymmetricGroup (last);
true

Thus the subgroup induces ors a natural symmetric group of degree 6. Therefore the gedgmot
solvable, as claimed. We conclude this example by factoring the group elemeinto generators:

Example

gap> F := FreeGroup("a","b");

<free group on the generators [a, b]>

gap> RepresentativeActionPrelImage (G, S,Permuted(S, (1,4)),0nTuples,F);
a"-2*b"-2*a*b*a"-1*b*a*b"-2*a

gap> a"-2*b"-2*a*b*a”"-1*b*a*b"-2*a = elm;

true

RCWA 65

4.10 Some examples over (semi)localizations of the integers

We start with something one can observe when trying to “transfer” an rcwa mapping from the ring of
integers to one of its localizations:
Example

gap> a2 := LocalizedRcwaMapping(a,2);
<rcwa mapping of Z_(2) with modulus 4>
gap> IsSurjective(a2); # As expected
true

gap> IsInjective(a2); # Why not??

false

gap> 07a2;

0

gap> (1/3)"a2; # That’s the reason!

0

The above can also be explained easily by pointing out that the modulus of the inverse3fand
that 3 is a unit ofZ3). Moving toZ, 3) solves this problem:

Example

gap> a23 := SemilocalizedRcwaMapping(a, [2,3]);
<rcwa mapping of Z_(2, 3) with modulus 4>
gap> IsBijective(a23);

true

We get additional finite cycles, e.g.:
Example

gap> List (ShortOrbits (Group(a23),[0..50]1/5,50),orb->Cycle(a23,0rb[1]));
[101, [1/5 2/5 3/51,

[4/5, /5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5 1, [11,

[2, 31, [14/5, 21/5, 17/5 1,

[16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 78/5, 117/5, 89/5,
68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5, 113/5, 86/5,
129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5, 51/5, 37/5, 29/5,
23/5 1, [4, 6, 9, 7, 51 1]

gap> List (last,Length);

(1, 3, 11, 1, 2, 3, 34, 5]

gap> List (ShortOrbits (Group(a23),[0..50]/7,50),orb->Cycle(a23,0rb[1]))

rro1l1, (-1/7, /71, [2/7, 3/7, 4/7, /7, 9/7, 5/7 1, [11, [2,
[4, 6, 9, 7, 511

gap> List (last,Length);

(1, 2, 6, 1, 2, 51

31,

RCWA

66

But the group structure remains invariant under the “transfer” of a group with priri{@ $3tfrom Z

to Z(273)Z

Example

gap> b23 := SemilocalizedRcwaMapping (b, [2,3]1);;

gap> c23 := SemilocalizedRcwaMapping(c, [2,3]1);;

gap> ab23 := Comm(a23,b23);

<rcwa mapping of Z_(2, 3) with modulus 18>

gap> acz23 := Comm(a23,c23);

<rcwa mapping of Z_(2, 3) with modulus 18>

gap> G := Group (ab23,ac23);

<rcwa group over Z_(2, 3) with 2 generators>

gap> S := Intersection (Enumerator (Rationals) {[1..200]},Z_pi([2,3]));

([-12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -12/5, -11/5, -2, -9/5, -12/7,
-8/5, -11/7, -10/7, -7/5, -9/7, -6/5, -8/7, -12/11, -1, -10/11, -6/17,
-9/11, -4/5, -8/11, -5/7, -7/11, -3/5, -4/7, -6/11, -5/11, -3/7, -2/5,
-4/11, -2/7, -3/11, -1/5, -2/11, -1/7, -1/11, O, 1/13, 1/11, 1/7, 2/13,
2/11, 1/5, 3/13, 3/11, 2/7, 4/13, 4/11, 5/13, 2/5, 3/17, 5/11, 6/13, 7/13,
6/11, 4/7, 3/5, 8/13, 7/11, 9/13, 5/7, 8/11, 10/13, 4/5, 9/11, 11/13, 6/17,
10/11, 12/13, 1, 12/11, 8/7, 13/11, /5, 9/7, 7/5, 10/7, 11/7, 8/5, 12/17,
9/5, 2, 11/5, 12/5, 3, 4, 5, 6, 71, 8, 9, 10, 11, 12]

gap> orbs := ShortOrbits(G,S,50);;

gap> List (orbs,Length);

(w0, 10, 1, 10, 1, 10, 10, 10, 10, 10, 1, 10, 10, 10, 1, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1,
10, 1, 10, 10, 10, 1, 1, 10, 1, 101

gap> ForAll (orbs,orb->IsNaturalSymmetricGroup (Action (G, orb)));

true

“Transferring” a non-invertible rcwa mapping from the ring of integers to some
(semi)localizations can also turn it into an invertible one:
Example

of

gap> v := RcwaMapping([[6,0,1],(1,-7,2],16,0,17,11,-1,17,

> (6,0,11,11, 1,2],[6,0,1],[1,-1,111);;
gap> SetName (v, "v");

gap> Display(v);

Rcwa mapping of Z with modulus 8

n mod 8 | n"v
_______________________________________ o
0246 | 6n
1 [(n-T7)/2
37 | n -1
5 [(n+ 1)/2

its

RCWA 67

Example

gap> IsInjective (v);

true

gap> IsSurjective (v);

false

gap> Image (v);

Z \ 4(12) U 8(12)

gap> Difference (Integers, last);

4(12) U 8(12)

gap> v2 := LocalizedRcwaMapping(v,2);
<rcwa mapping of Z_(2) with modulus 8>
gap> IsBijective(v2);

true

gap> Display(v2"-1);

Bijective rcwa mapping of Z_(2) with modulus 4

n mod 4 | n"f
_______________________________________ +______________________________________
0 | 1/3 n/ 2
1 | 2 n+ 7
2 | n+ 1
3 | 2 n 1
gap> S := ResidueClass(Z_pi(2),2,0);; 1 := [S];;

gap> for i in [1..10] do Add(l,1l[Length(l)]"v2); od;
gap> 1; # Visibly v2 is wild ...
[0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512), 0(1024),

0(2048)]
gap> w2 := RcwaMapping(Z_pi(2),[[1,0,2],12,-1,1],(1,1,11,102,-1,111);;
gap> v2w2 := Comm(v2,w2);; SetName (v2w2,"[v2,w2]"); v2w2"-1;;

gap> Display(v2w2);

Bijective rcwa mapping of Z_(2) with modulus 8

_ — — — 4+ —

Again, viewed as an rcwa mapping of the integers the commutator given at the end of the example
would not be surjective.

RCWA 68

4.11 Twisting 257-cycles into an rcwa mapping with modulus 32

We define an rcwa mapping of order 257 with modulus 32. The easiest way to construct such a
mapping is to prescribe a transition graph and then to assign suitable affine mappings to its vertices.

Example

gap> x := RcwaMapping (

> [r 16, 2, 11, [16, 18, 11, [1, 16, 11, [16, 18, 11,

> ([1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,

> ([1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,

> ([1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,

> [1, 0O, 16], [16, 18, 11, [1,-14, 11, [16, 18, 1],

> ([1,-14, 11, [16, 18, 11, [1,-14, 11, [16, 18, 1],

> [1,-14, 11, [16, 18, 11, [1,-14, 1], [16, 18, 11,

> [1,-14, 11, [16, 18, 11, [1,-14, 11, [1,-31, 111);;

gap> SetName (x,"x"); Display(x);

Rcwa mapping of Z with modulus 32

n mod 32 | n"x

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U

0 | lé6n + 2
1 3 5 7 911 13 15 17 19 21 23 |
25 27 29 | 16n + 18
2 4 6 810 12 14 | n+ 16
16 | n/l6
18 20 22 24 26 28 30 | n - 14
31 | n - 31

gap> Order (x);

257

gap> Cycle(x,[1],0);

[0, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30, 16, 1, 34, 50, 36,
52, 38, 54, 40, 56, 42, 58, 44, 60, 46, 62, 48, 3, 66, 82, 68, 84, 70, 86,
12, 88, 74, 90, 76, 92, 78, 94, 80, 5, 98, 114, 100, 116, 102, 118, 104,
120, 106, 122, 108, 124, 110, 126, 112, 7, 130, 146, 132, 148, 134, 150,
136, 152, 138, 154, 140, 156, 142, 158, 144, 9, 162, 178, 164, 180, 166,
182, 168, 184, 170, 186, 172, 188, 174, 190, 176, 11, 194, 210, 196, 212,
198, 214, 200, 216, 202, 218, 204, 220, 206, 222, 208, 13, 226, 242, 228,
244, 230, 246, 232, 248, 234, 250, 236, 252, 238, 254, 240, 15, 258, 274,
260, 276, 262, 278, 264, 280, 266, 282, 268, 284, 270, 286, 272, 17, 290,
306, 292, 308, 294, 310, 296, 312, 298, 314, 300, 316, 302, 318, 304, 19,
322, 338, 324, 340, 326, 342, 328, 344, 330, 346, 332, 348, 334, 350, 336,
21, 354, 370, 356, 372, 358, 374, 360, 376, 362, 378, 364, 380, 366, 382,
368, 23, 386, 402, 388, 404, 390, 406, 392, 408, 394, 410, 396, 412, 398,
414, 400, 25, 418, 434, 420, 436, 422, 438, 424, 440, 426, 442, 428, 444,
430, 446, 432, 27, 450, 466, 452, 468, 454, 470, 456, 472, 458, 474, 460,
476, 462, 478, 464, 29, 482, 498, 484, 500, 486, 502, 488, 504, 490, 506,
492, 508, 494, 510, 496, 31]

gap> Length(last);

257

RCWA 69

4.12 The behaviour of the moduli of powers

In this section some examples are given, which illustrate how different the series of the moduli of
powers of a given rcwa mapping of the integers can look like.
Example

gap> List ([0..4],1i->Modulus(a”1i));

[1, 4, 1o, 64, 256]

gap> List ([0..6],1i->Modulus (ab”1i));

(1, 18, 18, 18, 18, 18, 1]

gap> g := RcwaMapping([[2,2,1],[1, 4,1],[1,0,2],[2,2,1],[1,—4,1],[1,—2,1]]);;
gap> h := RecwaMapping([(2,2,1],1(1,-2,11,11,0,21,102,2,11,1(1,-1,11,(1, 1,111);;
gap> List ([0..7],1i- >Modulus(g”'))

[1, 6, 12, 12, 12, 12, 6, 1]

gap> List([1..20],1i->Modulus((g”"3*h)"i));

[12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6]
gap> u := RcwaMapping([[3,0,5],19,1,51,13,-1,51,19,-2,51,19,4,511);;

gap> List ([0..3],i->Modulus(u”i));

[1, 5, 25, 125]

gap> v6 := RcwaMapping([[-1,2,17,[1,-1,11,11,-1,111);;

gap> List ([0..6],i->Modulus(v6~1i));
(1, 3, 3, 3, 3, 3, 11

gap> w8 := RewaMapping([[-1,3,1],(1,-1,11,[1,-1,11,[1,-1,111);;
gap> List ([0..8],1i->Modulus(w871));

(1, 4, 4, 4, 4, 4, 4, 4, 1]
gap> z := RcwaMapping([(2, 1, 11,11, 1,11,(2, -1,11,12, -2,1],
> (1, e, 23,11, 1,173,111, -6,2],12, 5,17,
> (1, 6, 21,11, 1,171,101, 1,11,12, -5,11,
> (1, o, 11,11, -4,11,11, ©0,11,12,-10,111);;
gap> SetName(z,"z");
gap> IsBijective(z);
true
gap> Display(z);
Bijective rcwa mapping of Z with modulus 16
n mod 16 | n"z

_______________________________________ o

0 | 2n + 1

1 5 910 ' n+1

2 | 2n -1

3 | 2n - 2

4 8 | (n+ 6)/2

6 | (n - 6)/2

7 | 2n + 5

11 | 2n = 5

12 14 | n

13 | n -4

15 | 2n - 10

RCWA

Example

70

gap> List ([0..25],i->Modulus(z”1i));

[1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256,
256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024]

gap> el := RcwaMapping([[1,4,1]1,(2,0,1],11,0,21,12,0,111);;

gap> e2 := RcwaMapping([[1,4,1],[2,0,11,[1,0,2],[1,0,1]

> (1,4,11,12,0,11,(1,0,17,11,0,1]

gap> List([el,e2],0rder);

[infinity, infinity]

gap> List([1..20],i->Modulus(el”™i));

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

gap> List([1..20],i->Modulus(e271));

(8, 4,8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4]

gap> SetName (el,"el"); SetName (e2,"e2");

gap> Display(e2);

)i

Bijective rcwa mapping of Z with modulus 8, of order infinity

n mod 8 | n"e?
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
0 4 | n+ 4
15 | 2n
2 | n/2
367 | n

gap> €272 = Restriction(RcwaMapping([[1,2,1]1]),RcwaMapping([[4,0,111));
true

4.13 Images and preimages under the Collatz mapping

We have a look at the images of the residue class 1(2) under powers of the Collatz mapping.

Example
gap> T := RcwaMapping([[1,0,2]1,(3,1,2]1]1);; SO := ResidueClass(Integers,2,1);;
gap> S1 := SO0°T;

2(3)

gap> S2 := S1°T;
1(3) U 8(9)

gap> S3 := S2°T;
2(3) U 4(9)

gap> S4 := S3°T;
Z \ 0(3) U 5(9)
gap> S5 := 54°T;
Z\ 0(3) U 7(9)
gap> S6 := S5°T;
Z \ 0(3)

gap> S7 := S6°T;
Z \ 0(3)

RCWA 71

Thus the image gets stable after applying the mappifigy the 6th time. Henc&® maps the residue

class 1(2) surjectively onto the union of the residue classes 1(3) and 2(3), which is setwisely stabilized
by T. Now we would like to determine the preimages of 1(3) resp. 2(3) in 1(2) uRfleFhe residue

class 1(2) has to be the disjoint union of these sets.

Example
gap> U := Intersection(PreImage(T"6,ResidueClass (Integers,3,1)),S0);
<union of 11 residue classes (mod 64)>
gap> V := Intersection(PreImage (T"6,ResidueClass (Integers,3,2)),S0);

<union of 21 residue classes (mod 64)>

gap> AsUnionOfFewClasses (U);

[1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64), 51(64),
59 (64)]

gap> AsUnionOfFewClasses (V) ;

[3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64),
37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64)]

gap> Union(U,V) = SO and Intersection(U,V) = []; # consistency check

true

The images of the residue class 0(3) under powefslobk as follows:
Example

gap> SO := ResidueClass(Integers,3,0);

0(3)

gap> S1 := S0°T;

0(3) U 5(9)

gap> S2 := S1°T;

0(3) U 5(9) U 7(9) U 8(27)
gap> S3 := S2°T;

<union of 20 residue classes (mod 27)>
gap> S4 := S3°T;
<union of 73 residue classes (mod 81)>

gap> S5 := S4°T;

Z \ 10(81) U 37(81)
gap> S6 := S5°T;
Integers

gap> S7 := S6°T;
Integers

Thus every integer is the image of a multiple of 3 un@ir This means that it would be sufficient to
prove the 8+ 1 Conjecture for multiples of 3. We can obtain the corresponding result for multiples
of 5 as follows:

Example

gap> S := [ResidueClass(Integers,5,0)];
[0(5)]
gap> for i in [1..12] do Add(S,S[i]°T); od;

RCWA 72
Example

gap> for s in S do View(s); Print("\n"); od;

0(5)

0(5))

U 8(15
0(5) U 4(15) U 8(15)
0(5) U 2(15) U 4(15) U 8(15) U 29(45)
<union of 73 residue classes (mod 135)>
<union of 244 residue classes (mod 405)>
<union of 784 residue classes (mod 1215)>
<union of 824 residue classes (mod 1215)>
<union of 2593 residue classes (mod 3645)>
mod 3645)>
mod 3645)>
mod 3645)>

<union of 2647 residue classes

<union of 2665 residue classes

<union of 2671 residue classes

1(3) U 2(3) U 0(15)

gap> Union(S[13],ResidueClass (Integers,3,0));

Integers

gap> List(S,Si->Float (Density(Si)));

[0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267, 0.678189,
0.711385, 0.7262, 0.731139, 0.732785, 0.733333]

(
(
(
(

4.14 A group which acts 4-transitively on the positive integers

In this section, we would like to show that the groBmenerated by the two wild mappings

Example

gap> a := RcwaMapping([[3,0,2],(3,1,4],1(3,0,2],[3,-1,411);;
gap> u := RcwaMapping([[3,0,5],19,1,5],[3,-1,5]1,19,-2,5],109,4,511);;
gap> SetName (a,"a"); SetName(u,"u"); G := Group(a,u);;

which we have already investigated in earlier examples acts 4-transitively on the set of positive inte-
gers. Obviously, it acts on the set of positive integers. First we show that this action is transitive. We
start by checking in which residue classes sufficiently large positive integers are mapped to smaller

ones by a suitable group element:
Example

gap> List([a,a”-1,u,u"-1],DecreasingOn);
[1(2), 0(3), 0(5) U 2(5), 2(3) 1]

gap> Union(last);

Z \ 4(30) U 16(30) U 28(30)

We see that we cannot always choose such a group element from the set of generators and their

inverses — otherwise the union would he:egers.

RCWA

Example

73

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2],DecreasingOn) ;

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9)]

gap> Union(last); # Still not enough ...

Z \ 4(90) U 58(90) U 76(90)

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2,a*u,u*a, (a*u) "-1, (u*a) "-11,

> DecreasingOn) ;

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8) 3
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U
3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3),

gap> Union(last); # . but that’s it!

Integers

8

Finally, we have to deal with “small” integers. We use the notation for the coefficients of rcwa

mappings introduced at the beginning of this manual. d:.gf > a;m. Then we easily see that

(@ (mN+br(m))/Cr(m) > nimpliesn < by /(Cr(m) — &(m))- Thus we can restrict our considerations
to integeran < bmax, Wherebmax is the largest second entry of a coefficient triple of one of the group

elements in our list;
Example

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2,a*u,u*a, (a*u) "-1, (u*a) "-11,
> f->Maximum (List (Coefficients (f),c->c[2])));

(1, 1, 4, 2, 7, 7, 56, 28, 25, 17, 17, 11]

gap> Maximum(last);

56

Thus this upper bound is 56. The rest is easy — all we have to do is to check that the orbit containing 1

contains also all other positive integers less than or equal to 56:

Example
gap> S := [1];;
gap> while not IsSubset(S,[l1..56]) do
> S := Union(S,S"a,S"u,S" (a"-1),8" (u"-1));
> od;
gap> IsSubset (S, [1..56]);
true

Checking 2-transitivity is computationally harder, and in the sequel we will omit some steps which
are in practice needed to find out “what to do”. The approach taken here is to show that the stabilizer
of 1 in G acts transitively on the set of positive integers greater than 1. We do this by similar means
as used above for showing the transitivity of the actiorGodn the positive integers. We start by
determining all products of at most 5 generators and their inverses, which stabilize 1 (taking at most

4-generator products would not suffice!):

RCWA 74

Example

gap> gens := [a,u,a"-1,u"-1];;
gap> tups := Concatenation(List ([1..5],k->Tuples([1..4],k)));;
gap> Length (tups);

1364

gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,1]1,1(2,4],[4,211,

> 1->PositionSublist (tup,l)=fail));;
gap> Length (tups);

484

gap> stab := [];;
gap> for tup in tups do

> n :=1;

> for i in tup do n := n"gens[i]; od;
> if n = 1 then Add(stab,tup); fi;

> od;

gap> Length(stab);

118

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i])));;
gap> ForAll (stabelm,elm->1"elm=1); # Check.
true

The resulting products have various different not quite small moduli:
Example

gap> List (stabelm,Modulus);

[4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243, 25¢,
400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135, 150, 75, 225,
81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561, 1024, 1600, 192,
1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100, 180, 192, 192, 108,
972, 1728, 972, 8748, 1600, 400, 320, 80, 1600, 2500, 300, 2500, 625, 625,
75, 675, 75, 75, 135, 405, 600, 120, 600, 1875, 75, 225, 405, 225, 225,
675, 243, 2187, 729, 2187, 216, 216, 243, 2187, 1944, 2187, 19683, 576,
144, 576, 432, 81, 81, 729, 2187, 5184, 324, 8748, 243, 2187, 19683, 26244,
19683]

gap> Lcm(last);

12597120000

gap> Collected(Factors(last));

(02,101, [03, 91, 5411

Similar as before, we determine for any of the above mappings the residue classes whose elements
larger than the largest i, - coefficient of the respective mapping are mapped to smaller integers:

RCWA 75

Example

gap> decs := List (stabelm,DecreasingOn);;

gap> List (decs,Modulus);

(2, 3, 8 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400, 48,
200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81, 243, 81,
243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400, 400, 48, 144,
1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324, 144, 324, 972, 400,
400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25, 75, 75, 75, 45, 135, 600,
120, 150, 1875, 75, 225, 135, 225, 225, 675, 243, 729, 243, 729, 108, 216,
243, 729, 162, 729, 2187, 144, 144, 144, 144, 81, 81, 243, 729, 1296, 324,
972, 243, 729, 2187, 1458, 2187]

gap> Lcm(last);

174960000

Since the least common multiple of the moduli of these unions of residue classes is as large as
174960000, directly forming their union and checking whether it is equal to the set of integers would
take relatively much time and memory. However, starting with the set of integers and subtracting the
above sets one-by-one in a suitably chosen order is cheap:

Example
gap> SortParallel (decs, stabelm,
> function(S1,S2)
> return First([1..100],k->Factorial (k) mod Modulus(S1l) = 0)
> < First([1..100],k->Factorial (k) mod Modulus(S2) = 0);
> end) ;
gap> S := Integers;;
gap> for i1 in [l..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then maxind := i; break; fi;
> od;
0(2)
2(6) U 4(6)

<union of 8 residue classes (mod 30)>
<union of 19 residue classes (mod 90)>
<union of 114 residue classes (mod 720)>
<union of 99 residue classes (mod 720)>
<union of 57 residue classes (mod 720)>
<union of 54 residue classes (mod 720
<union of 41 residue classes (mod 720
<union of 35 residue classes (mod 720
<union of 8 residue classes (mod 720)>
4(720) U 94(720) U 148(720) U 238(720)
<union of 24 residue classes (mod 5760)>
<union of 72 residue classes (mod 51840)>
<union of 48 residue classes (mod 51840)>

)
)
)
)

>
>
>

<union of 192 residue classes (mod 259200)
<union of 168 residue classes (mod 259200)
<union of 120 residue classes (mod 259200)
<union of 96 residue classes (mod 259200)>

>
>
>

RCWA 76

259200
mod 259200
mod 259200

<union of 72 residue classes d
d
d
od 259200
d
d
d

<union of 60 residue classes
<union of 48 residue classes

(m
(
(
<union of 24 residue classes (
(
(
(

o]
o]

=]

<union of 12 residue classes 259200
<union of 24 residue classes (mod 777600
<union of 12 residue classes (mod 777600)>

111604 (194400) U 14404 (777600) U 208804 (777600)

[]

>
>
>
>
mo >
>

)
)
)
)
)
)

Similar as above, it remains to check that the “small” integers all lie in the orbit containing 2. Ob-
viously, it is sufficient to check that any integer greater than 2 is mapped to a smaller one by some

suitably chosen element of the stabilizer under consideration:
Example

gap> Maximum(List (stabelm{[l..maxind]},

> f->Maximum (List (Coefficients(f),c->c[2]))));
6581

gap> Filtered([3..6581],n->Minimum(List (stabelm,elm->n"elm))>=n);
[4]

We have to treat 4 separately:
Example

gap> 17 (u*a*u”2*a”"-1*u);
1
gap> 47 (u*a*u"2*a"-1*u);
3

Now we know that any positive integer greater than 1 lies in the same orbit under the action of the
stabilizer of 1 inG as 2, thus that this stabilizer acts transitivelyMdi {1}. But this means that we
have established the 2-transitivity of the actiorGoén N.

In the following, we essentially repeat the above steps to show that this action is indeed 3-
transitive:

Example
gap> tups := Concatenation(List([l..6],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,11,1([2,4],14,2]1],
> 1->PositionSublist (tup,l)=fail));;
gap> stab := [];;
gap> for tup in tups do
> 1 :=11,21;
> for i in tup do 1 := List(l,n->n"gens[i]); od;
> if 1 = [1,2] then Add(stab,tup); fi;
> od;

gap> Length(stab);

RCWA 77
Example

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i])));;

gap> decs := List (stabelm,DecreasingOn);;

gap> SortParallel (decs, stabelm,

> function(S1,S2) return First([1..100],k->Factorial (k) mod Modulus(S1) = 0)

> < First([1..100],k->Factorial (k) mod Modulus(S2) = 0);

> end) ;

gap> S := Integers;;

gap> for i in [1l..Length(decs)] do

> S_old := S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print ("\n"); fi;

> if S = [] then break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 151 residue classes (mod 240)>

<union of 208 residue classes (mod 720)>

<union of 51 residue classes (mod 720)>

<union of 45 residue classes (mod 720)>

<union of 39 residue classes (mod 720)>

<union of 33 residue classes (mod 720)>

<union of 23 residue classes (mod 720)>

<union of 19 residue classes (mod 720)>

<union of 17 residue classes (mod 720)>

<union of 16 residue classes (mod 720)>

<union of 14 residue classes (mod 720)>

<union of 8 residue classes (mod 720)>
<union of 7 residue classes (mod 720)>
238(360) U 4(720) U 148(720) U 454 (720

)
<union of 38 residue classes (mod 5760)>
<union of 37 residue classes (mod 5760)>
<union of 25 residue classes (mod 5760)>
<union of 21 residue classes (mod 5760)>
<union of 17 residue classes (mod 5760)>
<union of 16 residue classes (mod 5760)>

<union of 138 residue classes (mod 51840)>

<union of 48 residue classes (mod 51840)>
<union of 32 residue classes (mod 51840)>
<union of 20 residue classes (mod 51840)>
<union of 16 residue classes (mod 51840)>
<union of 68 residue classes (mod 259200)>
<union of 42 residue classes (mod 259200)>
<union of 32 residue classes (mod 259200)>
<union of 26 residue classes (mod 259200)>
<union of 25 residue classes (mod 259200)>
<union of 11 residue classes (mod 259200)>
<union of 10 residue classes (mod 259200)>

<union of 7 residue classes (mod 259200)>

13414 (129600) U 2164(259200) U 66964 (259200) U 228964 (259200)
2164 (259200) U 66964 (259200) U 228964 (259200)

[]

RCWA 78
Example

gap> Maximum(List (stabelm, f->Maximum (List (Coefficients (f),c->c[2]))));

515816

gap> smallnum := [4..515816];;

gap> for i in [1l..Length(stabelm)] do

> smallnum := Filtered(smallnum,n->n"stabelm[i]>=n);

> od;

gap> smallnum;

[]

The same for 4-transitivity:

Example

gap> tups := Concatenation(List([l..8],k->Tuples([1..4],k)));;

gap> tups := Filtered(tups,tup->ForAll([[1,3],([3,11,12,4],1[4,211,

> 1->PositionSublist (tup,l)=£fail));;
gap> stab := [];;

gap> for tup in tups do

> 1 :=1[1,2,3];

> for i in tup do 1 := List(l,n->n"gens[i]); od;

> if 1 = [1,2,3] then Add(stab,tup); fi;

> od;

gap> Length (stab);

528

gap> stabelm := [];;

gap> for i in [1l..Length(stab)] do

> elm := One(G);

> for j in stab[i] do

> if Modulus(elm) > 10000 then elm := fail; break; fi;

> elm := elm * gens[j];

> od;

> if elm <> fail then Add(stabelm,elm); fi;

> od;

gap> Length (stabelm);

334

gap> decs := List (stabelm,DecreasingOn);;

gap> SortParallel (decs, stabelm,

> function(S1,S2)

> return First([1..100],k->Factorial (k) mod Modulus(S1)
> < First([1..100],k->Factorial (k) mod Modulus (S2)
> end) ;

RCWA

Example

79

gap> S := Integers;;

gap> for i in [l..Length(decs)] do

> S_old :=S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print ("\n"); fi;
> if S = [] then maxind := i; break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 46 residue classes (mod 72)>

<union of 20 residue classes (mod 72)>

4(18)

<union of 28 residue classes (mod 576)>
<union of 22 residue classes (mod 576)>
<union of 21 residue classes (mod 576)>

40(72) U 4(144) U 94(144) U 346(576) U 418(576)
<union of 16 residue classes (mod 576)>

<union of 15 residue classes (mod 576)>

4(144) U 94(144) U 346(576) U 418(576)

<union of 30 residue classes (mod 5184)>
<union of 26 residue classes (mod 5184)>
<union of 6 residue classes (mod 1296)>

<union of 504 residue classes (mod 129600)>
<union of 324 residue classes (mod 129600)>
<union of 282 residue classes (mod 129600)>
<union of 239 residue classes (mod 129600)>
<union of 218 residue classes (mod 129600)>
<union of 194 residue classes (mod 129600)>
<union of 154 residue classes (mod 129600)>

<union of 97 residue classes (mod 129600)>
<union of 85 residue classes (mod 129600)>
<union of 77 residue classes (mod 129600)>
<union of 67 residue classes (mod 129600)>

<union of 125 residue classes (mod 259200)>
<union of 108 residue classes (mod 259200)>
<union of 107 residue classes (mod 259200)>
<union of 101 residue classes (mod 259200)>
<union of 100 residue classes (mod 259200)>
<union of 84 residue classes (mod 259200)>
<union of 80 residue classes (mod 259200)>
<union of 76 residue classes (mod 259200)>
<union of 70 residue classes (mod 259200)>
<union of 66 residue classes (mod 259200)>
<union of 54 residue classes (mod 259200)>
<union of 53 residue classes (mod 259200)>
<union of 47 residue classes (mod 259200)>
<union of 43 residue classes (mod 259200)>
<union of 31 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 23 residue classes (mod 259200)>
<union of 13 residue classes (mod 259200)>

57406(129600) U 115006(129600) U 192676 (259200)
57406(129600) U 192676(259200) U 250276 (259200)

U 250276(259200)
U 374206(388800)

RCWA 80

57406 (129600) U 192676(259200) U 250276(259200)

250276 (259200) U 57406(388800) U 316606(388800) U 451876(777600)
316606(388800) U 451876 (777600) U 509476 (777600) U 768676(777600)

<union of 18 residue classes (mod 3110400)>

451876 (777600) U 509476 (777600) U 705406 (777600) U 768676(777600) U 2649406 (
3110400)

451876 (777600) U 705406(777600) U 768676(777600) U 2649406(3110400)
451876 (777600) U 705406(777600) U 2649406(3110400)

705406 (777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)
<union of 14 residue classes (mod 9331200)>

2260606 (2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)
4593406 (6998400) U 15091006(27993600) U 17559076(27993600) U 24557476 (
27993600)

<union of 14 residue classes (mod 83980800)>

18590206 (20995200) U 24557476 (83980800) U 45552676(83980800) U 71078206 (
83980800)

[]

gap> Maximum(List (stabelm{[1l..maxind]},

> f->Maximum (List (Coefficients(f),c->c[2]))));

58975

gap> smallnum := [5..58975];;

gap> for i in [1l..maxind] do

> smallnum := Filtered(smallnum,n->n"stabelm[i]>=n);

> od;

gap> smallnum;

(]

There is even some evidence that the degree of transitivity of the acti@ronfthe positive integers
is higher than 4:

Example

gap> phi := EpimorphismFromFreeGroup (G);
la, ul] > T[a ul

gap> F := Source(phi);

<free group on the generators [a, u]>
gap> words := List([5..20],

> n->RepresentativeActionPreImage (G, [1,2,3,4,5],
> [1,2,3,4,n],0nTuples,F));
[<identity ...>, a"-3*u"4*a*u"-2*a"2, a"-2*u*a"-l*u*a"-l*u*a’"-l*u*a"-1*u"-1*a

, a“4*u”-2*a"-4, a"-1*u"-4*a, u"2*a"-1*u"2*a"-1*u"-2, u"-2*a"-2*u"4,
a"-1*u"2*a, a"-l*u"-6*a, a"2*u”4*a"2*u"2, u ' -4*a*u"-2*a"-3,
a"-1*u"-2*a"-3*u”4*a"2, a"3*u”"2*a*u”2, a*u’"-4*ar*u"-4*a"-2,
u"-2*a*u"2*a*u"-2, u " -4*a"2*u”2]

RCWA 81

4.15 A group which acts 3-transitively, but not 4-transitively on Z

In this section, we would like to show that the wild groGpgenerated by the two tame mappings

n— n+1andty) o4) acts 3-transitively, but not 4-transitively on the set of integers.
Example

gap> G := Group(ClassShift (0,1),ClassTransposition(l,2,0,4));

<rcwa group over Z with 2 generators>

gap> IsTame (G);

false

gap> (G.1"-2*G.2)"3*(G.1"°2*G.2)"3; # G is not the free product C_infty * C_2.
IdentityMapping(Integers)

gap> Display(G);

Wild rcwa group over Z, generated by

[

Tame bijective rcwa mapping of Z: n -> n + 1

Bijective rcwa mapping of Z with modulus 4, of order 2

This group acts transitively o#, since already the cyclic group generated by the first of the two
generators does so. Next we have to show that it acts 2-transitively. We essentially proceed as in the
example in the previous section, by checking that the stabilizer of 0 acts transitively {0y.

Example
gap> gens := [ClassShift(0,1)"-1,ClassTransposition(1,2,0,4),ClassShift(0,1)]1;;
gap> tups := Concatenation(List([l..6],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],
> 1->PositionSublist (tup,l)=£fail));;
gap> Length (tups);
189
gap> stab := [];;
gap> for tup in tups do
> n :=0;
> for i in tup do n := n"gens[i+2]; od;
> if n = 0 then Add(stab,tup); fi;
> od;
gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i+2])));;
gap> Collected(List (stabelm,Modulus));
[[4 61, [8 41, [16, 311

RCWA 82

Example
gap> decs := List (stabelm,DecreasingOn);
[0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4), 0(8),
3(8) 1]
gap> Union(decs);
Integers

Similar as in the previous section, it remains to check that the integers with “small” absolute value all
lie in the orbit containing 1 under the action of the stabilizer of O:

Example
gap> Maximum(List (stabelm, f->Maximum (List (Coefficients (f),c->AbsInt(c[2])))));
21
gap> S := [1];;
gap> for elm in stabelm do S := Union(S,S"elm,S" (elm™-1)); od;
gap> IsSubset (S,Difference([-21..21],[0])); # Not yet ..
false
gap> for elm in stabelm do S := Union(S,S"elm,S” (elm”-1)); od;
gap> IsSubset (S,Difference([-21..21],([0]1)); # ... but now!
true

Now we have to check for 3-transitivity. Since we cannot find for every residue class an element of
the pointwise stabilizer of0,1} which properly divides its elements, we also have to take additions

and subtractions into consideration. Since the moduli of all of our stabilizer elements are quite small,
simply looking at sets of representatives is cheap:
Example

gap> tups := Concatenation(List ([1..10],k->Tuples([-1,0,1]1,k)));;

gap> tups := Filtered(tups,tup->ForAll([[0,0],([-1,1],([1,-111,

> 1->PositionSublist (tup,l)=fail));;
gap> Length (tups);

3069

gap> stab := [];

[]
gap> for tup in tups do

> 1 :=1[0,1];

> for i in tup do 1 := List(l,n->n"gens[i+2]); od;

> if 1 = [0,1] then Add(stab,tup); £fi;

> od;

gap> Length (stab);

10

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i+2])));;

gap> Maximum(List (stabelm,Modulus));

8

gap> Maximum(List (stabelm, f->Maximum(List (Coefficients (f),c->AbsInt (c[2])))));

RCWA 83

Example

gap> decsp := List (stabelm,elm->Filtered([9..16],n->n"elm<n));

rr9, 131, [10, 12, 14, 161, [12, 161, [9, 131, [12, 16 1,
9, 11, 13, 151, 19, 11, 13, 1571, [12, 16 1, [12, 16 1,
[9, 11, 13, 1571 1]

gap> Union (decsp);

(9, 10, 11, 12, 13, 14, 15, 16]

gap> decsm := List (stabelm,elm->Filtered([-16..-9],n->n"elm>n));

[[-15, -13, -11, -9 1, [-16, -12 1, [-16, -12 1, [-15, -11 7,
[-16, -14, -12, -10 1, [-15, -11 71, [-15, -11 1, [-le6, -14, -12, -10 1,
[-16, -14, -12, -10 1, [-15, -11 1]

gap> Union (decsm);

[-16, -15, -14, -13, -12, -11, -10, -9]

gap> S := [2];;

gap> for elm in stabelm do S := Union(S,S"elm,S” (elm”-1)); od;
gap> IsSubset (5,Difference([-8..81,[0,1]1));

true

At this point we have established 3-transitivity. It remains to check that the geodpes not act
4-transitively. We do this by checking that it is not transitive on 4-tuples (mod 4). Simoed 8
determines the image afunder a generator @ (mod 4), it suffices to compute (mod 8):

Example
gap> orb := [[0,1,2,311;;
gap> extend := function ()
> local gen;
> for gen in gens do
> orb := Union(orb,List (orb,1->List (1,n->n"gen) mod 8));
> od;
> end;;
gap> repeat
> old := ShallowCopy (orb);
> extend(); Print (Length(orb),"\n");
> until orb = old;
7
27
97
279
573
916
1185
1313
1341
1344
1344
gap> Length (Set (List (orb,1->1 mod 4)));
120
gap> last < 47°4;
true

RCWA 84

This shows tha is not 4-transitive ofZ.. The corresponding calculation for 3-tuples looks as follows:
Example

gap> orb := [[0,1,2]];;

gap> repeat

> old := ShallowCopy (orb);

> extend(); Print (Length(orb),"\n");
> until orb = old;

7

27

84

207

363

459

503

512

512

gap> Length (Set (List (orb,1->1 mod 4)));
64

gap> last = 473;

true

Needless to say that the latter kind of argumentation is not suitable for proving, but only for disproving
k-transitivity.

4.16 Grigorchuk groups

In this section, we show how to construct finite quotients of the two infinite periodic groups in-
troduced by Rostislav Grigorchuk irGfi80] with the help of RCWA. The first of these, nowa-
days known as “Grigorchuk group”, is investigated in an example given oGARewebsite — see
http://www.gap-system.org/Doc/Examples/grigorchuk.html. The RCWA package permits a
simpler and more elegant construction of the finite quotients of this group: The funeti@nemnent

given on the mentioned webpage gets unnecessary, and the fusieigshceElement can be sim-
plified as follows:

SequenceElement := function (r, level)

return Permutation (Product (Filtered([1l..level-1],k->k mod 3 <> r),
k->ClassTransposition (27 (k-1)-1, 27 (k+1),
2°k+2" (k-1)-1, 27 (k+1))),
[0..271evel-1]);
end;

http://www.gap-system.org/Doc/Examples/grigorchuk.html

RCWA 85

The actual constructors for the generators are modified as follows:

:= level -> Permutation(ClassTransposition(0,2,1,2),[0..2"1level-1]);
level -> SequenceElement (0, level);
:= level -> SequenceElement (2, level);
level -> SequenceElement (1, level);

Q. Q O w
Il

All computations given on the webpage can now be done just as with the “original” construction of
the quotients of the Grigorchuk group. In the sequel, we construct finite quotients of the second group
introduced in {5ri80):

Example

gap> FourCycle := RcwaMapping((4,5,6,7),[4..7]);
<bijective rcwa mapping of Z with modulus 4, of order 4>
gap> GrigorchukGroup2Generator := function (level)

> if level = 1 then return FourCycle; else

> return Restriction(FourCycle, RcwaMapping([[4,1,11]1))

> * Restriction(FourCycle, RcwaMapping([[4,3,11]))

> * Restriction(GrigorchukGroup2Generator (level-1),

> RcwaMapping ([[4,0,111));

> fi;

> end;;

gap> GrigorchukGroup2 := level -> Group (FourCycle,

> GrigorchukGroup2Generator (level));;

We can do similar things as shown in the example onGhe webpage for the “first” Grigorchuk
group:

Example

gap> G := List([1l..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.
[<rcwa group over Z with 2 generators>, <rcwa group over Z with 2 generators>
, <rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>]
gap> H := List([l..4],lev->Action(G[lev],[0..4"1lev-1])); # Isomorphic perm.-gps.
[Group([(1,2,3,4), (1,2,3,4) 1),

Group ([(1,2,3,4)(5,6,7,8)(9,10,11,12) (13,14,15,16),

(1,5,9,13) (2,6,10,14) (4,8,12,16) 1),

<permutation group with 2 generators>,

<permutation group with 2 generators>]
gap> List (H,Size);
[4, 1024, 4294967296, 1329227995784915872903807060280344576]
gap> List (last,n->Collected(Factors(n)));
(trtz2,211,10102,10711, 1002,32711, [[2 120111
gap> List (H,NilpotencyClassOfGroup);
[1, 6, 14, 40]

RCWA 86

4.17 Forward orbits of a monoid with 2 generators

The 3+ 1 Conjecture asserts that the forward orbit of any positive integer under the Collatz mapping
T contains 1. In contrast, it seems likely that “most” trajectories of the two mappings

n
T5iZZ—>Z, n— {2 !fneven
=L if nodd

diverge. However we can show by means of computation that the forward orbit of any positive integer
under the action of the monoid generated by the two mappigigandT;" indeed contains 1. First of

all, we enter the generators:

Example

gap> Tom := RcwaMapping([[l/ 072]1 [57_112JJ);;
gap> T5p := RcwaMapping([[1,0,2]1,([5, 1,2]11);;

We look for a numbek such that for any residue clas&®) there is a product of k mappingsTsi
whose restriction to(2¥) is given byn— (an+ b)/c wherec > a:
Example

gap> k := 1;;

gap> repeat

> maps := List (Tuples([T5m,T5p],k),Product);
decr := List (maps,DecreasingOn);
decreasable := Union(decr);
Print (k,": "); View(decreasable); Print ("\n");
k :=k + 1;

until decreasable = Integers;

0(2)

0(4)

Z \ 1(8) U 7(8)

0(4) U 3(16) U 6(16) U 10(16) U 13(1l6)

Z \ 7(32) U 25(32)

<union of 48 residue classes (mod 64)>

Integers

o U1 W NV V VYV YV

Thusk = 7 serves our purposes. To be sure that for any positive integer monoid contains a
mappingf such than® < n, we still need to check this condition for “smalti. Since in case > a
we have(an+b)/c > nif only if n<b/(c—a), we only need to check thosewhich are not larger
than the largest coefficiebt ,; occuring in any of the products under consideration:

Example
gap> maxb := Maximum(List (maps, f->Maximum(List (Coefficients(f),t->t[2]))));
25999
gap> small := Filtered([l..maxb],n->ForAll (maps,f->n"£f>=n));
(1, 7, 9, 11]

RCWA

87

This means that except of 1, only fare {7,9,11} there is no product of 7 mapping'g‘t which
mapsn to a smaller integer. We check that also the forward orbits of these three integers contain 1 by

successively computing preimages of 1:

Example
gap> S := [1];; k := 0;;
gap> repeat
> S := Union(S,Prelmage (T5m,S),PreImage (T5p,S));
> k := k+1;
> until IsSubset (S, small);
gap> k;
17

4.18 Representations of the free group of rank 2

The free group of rank 2 embeds in RCVWA(- in fact it embeds even in the subgroup which is
generated by all class transpositions. An explicit embedding can be constructed by transferring the
construction of the so-called “Schottky groups” (cplHO0], page 27) from PSL(Z}) to RCWA(Z)

(we use the notation from the cited book):

Example

gap> D := AllResidueClassesModulo (4);

[0(4), 1(4), 2(4), 3(4)]

gap> gammal := RepresentativeAction (RCWA (Integers),Difference(Integers,D[1]),DI[2
gap> gamma2 := RepresentativeAction (RCWA (Integers),Difference(Integers,D[3]),D[4
gap> F2 := Group(gammal, gamma?2) ;

<rcwa group over Z with 2 generators>

1)
1)ii

We can do some checks:

Example

gap> X1 := Union(D{[1,2]});; X2 := Union(D{I[3,41});;

gap> IsSubset (X1,X2"gammal) and IsSubset (X1,X2" (gammal”-1))
> and IsSubset (X2,X1"gamma2) and IsSubset (X2,X1" (gamma2”-1));
true

The generators are products of 3 class transpositions, each:
Example

gap> Factorization(gammal);

[ClassTransposition(0,2,1,2), ClassTransposition(3,4,5,8),
ClassTransposition(0,2,1,8)]

gap> Factorization(gamma2);

[ClassTransposition(0,2,1,2), ClassTransposition(l,4,7,8),
ClassTransposition(0,2,3,8) 1

RCWA 88

The above construction is used bgomorphismRewaGroup (3.1.2 to embed free groups of any
rank> 2.

We give another only slightly different representation of the free group of rank 2. We verify that
it really is one by applying the so-calld@ble-Tennis Lemm@ee e.g.qIHOQ], Section 11.B.) to the
infinite cyclic groups generated by the two generators and to the same twa setdx2 as above:

Example
gap> rl := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);
gap> r2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);
gap> F2 := Group(rl®2,r2"2);; SetName (F2,"F_2");
gap> List (GeneratorsOfGroup (F2), IsTame);
[false, false]
gap> IsSubset (X1,X2°F2.1) and IsSubset (X1,X2" (F2.17-1))
> and IsSubset (X2,X17F2.2) and IsSubset (X2,X1" (F2.2°-1));
true
gap> [Sources(rl),Sinks(rl),Loops(rl)]; # compare with X1
[[0(4) 1, [1(4) 1, [0(4), 1(4) 11
gap> [Sources(r2),Sinks(r2),Loops(r2)]; # compare with X2
[0 2(4) 1, [3(4) 1, [2(4), 3(4) 11
gap> IsSubset (X1,Union (Sinks(rl))) and IsSubset (X1,Union(Sinks(rl1”-1)))
> and IsSubset (X2,Union(Sinks(r2))) and IsSubset (X2,Union (Sinks(r2°-1)));
true
gap> IsSubset (Union(Sinks(rl)),X2°F2.1) and
> IsSubset (Union(Sinks (rl1™-1)),X2" (F2.17°-1));
true
gap> IsSubset (Union(Sinks(r2)),X1°F2.2) and
> IsSubset (Union(Sinks (r2°-1)),X1" (F2.2"-1));
true

Drawing the transition graphs afi andr2 for modulus 4 may help understanding what is actually

done in this calculation. It is easy to see that the group generated déaydr2 is notfree:
Example

gap> Order (rl/r2);
3

4.19 Representations of the modular group PSL(2,2)

The modular group PSL(Z) embeds in the group generated by all class transpositions as well. We
give an embedding, and check that it really is one by applying the Table Tennis Lemma as in the
previous section:

[3

2]

Example
gap> PSL2Z := Group(ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),
> ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;
gap> List (GeneratorsOfGroup (PSL2Z),0rder);

RCWA 89

Example
gap> X1 := Difference(Integers,ResidueClass(0,3));
Z \ 0(3)
gap> X2 := ResidueClass (0, 3);
0(3)
gap> IsSubset (X1,X2°PSL2Z.1) and IsSubset (X1,X2" (PSL2Z.1°2));
true
gap> IsSubset (X2,X1°PSL2Z.2);
true

A slightly different representation of PSLIR, can be obtained by usirRiCWA'’s general method for

IsomorphismRcwaGroup for free products of finite groups:
Example

gap> Display (Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(3),
N CyclicGroup(2)))));

Wild rcwa group over Z, generated by

Bijective rcwa mapping of Z with modulus 4

n mod 4 | n~f
_______________________________________ o
0 | n+ 2
13 | 2n - 2
2 | n/2
Bijective rcwa mapping of Z with modulus 2
n mod 2 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
0 | n+ 1
1 | n -1

Chapter 5

The Algorithms Implemented in RCWA

This chapter lists brief descriptions of most algorithms and methods implemented in this package.
These descriptions are kept very informal and short, and some of them provide only rudimentary
information. They are listed in alphabetical order. The word “trivial” as a description means that
essentially nothing is done except of storing or recalling one or several values, and “straightforward”
means that no sophisticated algorithm is used.

ActionOnRespectedPartition(G) “Straightforward” after having computed a respected
partition byRespectedPartition. One only needs to know how to compute images of residue
classes under affine mappings.

Ball(G,g,d) “Straightforward”.

Ball(G,p,d,act) “Straightforward”.

ClassReflection(r,m) “Trivial”.

ClassShift(r,m) “Trivial”.

ClassTransposition(rl,m1,r2,m2) See Remark 2.9.2 irkKph03.

Coefficients(f) “Trivial”.

CommonRightinverse(l,r) (SeerightInverse.)

DecreasingOn(f) Form the union of the residue classes which are determined by the coeffi-
cients as indicated.

Determinant(g) Evaluation of the given expression. For the mathematical meaning (epimor-
phism!), see Theorem 2.11.9 iKghO45].

DirectProduct(G1,G2, ...) Restrict the groupsi, G2, ... to disjoint residue classes.
SeeRestriction and Corollary 2.3.3 infoh04.

Display(f) “Trivial”.

Divisor(f) Lcm of coefficients, as indicated.

90

RCWA 91

FactorizationintoCSCRCT(Q) This uses a rather sophisticated method which will likely
some time be published elsewhere. At the moment termination is not guaranteed, but in case of
termination the result is certain. The strategy is roughly first to make the mapping class-wise
order-preserving and balanced, and then to remove all prime factors from multiplier and divisor
one after the other in decreasing order by dividing by appropriate class transpositions. The
remaining integral mapping can be factored almost similarly easily as a permutation of a finite
set can be factored into transpositions.

FactorizationOnConnectedComponents(f,m) Call GRAPE to get the connected com-
ponents of the transition graph, and then compute a partition of the suitably “blown up” coeffi-
cient list corresponding to the connected components.

FixedPointsOfAffinePartialMappings(f) “Straightforward”.

GuessedDivergence(f) Numerical computation of the limit of some series, which seems to
converge “often”. Caution!!!

Image(f) , Image(f,S) “Straightforward” if one can compute images of residue classes under
affine mappings and unite and intersect residue classes (Chinese Remainder Theorem). See
Lemma 1.2.1 inlKoh09).

ImageDensity(f) Evaluation of the given expression.

g in G (membership test) Test whether the mappingor its inverse is in the list of generators
of G. Ifitis, returntrue. Test whether its prime set is a subset of the prime set df not,
returnfalse. Test whether the multiplier or the divisor g@thas a prime factor which does not
divide the multiplier ofG. If yes, returnfalse. Test ifG is class-wise order-preserving, and
is not. If so, returntalse. Test if the sign ofy is -1 and all generators afhave sign 1. If yes,
returnfalse. TestifG is class-wise order-preserving, all generators tfave determinant 0
andg has determinang 0. If yes, returnfalse. Test whether the support gfis a subset of
the support ofs. If not, returnfalse. Test whethet fixes the nonnegative integers setwisely,
butg does not. If yes, returpalse.

If G istame, proceed as follows: Test whether the modulusdifides the modulus df. If not,
returnfalse. Test whethegt is finite andg has infinite order. If so, returfalse. Test whether

g is tame. If not, returrfalse. Compute a respected partitierof ¢ and the finite permutation
groupH induced byG on it (seeRespectedPartition). Check whetheg permutes. If not,
returnfalse. Leth be the permutation induced lyon p. Check whetheh lies in H. If not,
returnfalse. Compute an element of G which acts ore like g. For this purpose, factarinto
generators oft usingpPreImagesRepresentative, and compute the corresponding product of
generators of. Letk := g/gl. The mapping is always integral. Compute the kermeabf the
action ofG on P usingKernelOfActionOnRespectedPartition. Check whethek lies ink.
This is done using the packagelycyclic [ENO0J, and uses an isomorphism from a supergroup
of K which is isomorphic to thep | -fold direct product of the infinite dihedral group and which
always containk to a polycyclically presented group. #flies in X, returntrue, otherwise
returnfalse.

If G is not tame, proceed as follows: Look for finite orbitscofif some are found, test whether
g acts on them, and whether the induced permutations lie in the permutation groups induced
by G. If for one of the examined orbits one of the latter two questions has a negative answer,

RCWA 92

then returnfalse. Look for a positive integem such thay does not leave a partition @f into
unions of residue classes (movl invariant which is fixed bys. If successful, returfialse. If

not, try to factorg into generators of usingPreImagesRepresentative. If successful, return
true. If gisin G, this terminates after a finite number of steps. Both runtime and memory
requirements are exponential in the word length. i not inG, the method runs into an infinite
loop.

IncreasingOn(f) Form the union of the residue classes which are determined by the coeffi-
cients as indicated.

Induction(g,f) Computef * g * RightInverse (f).
Induction(G,f) Get a set of generators by applyingduction (g, f) to the generators of G.
InjectiveAsMappingFrom(f) The function starts with the entire sourcefodis “preimage”

pre and the empty set as “imagef. It loops over the residue classes (madi (f)). For any
such residue classl the following is done: Firstly, the image efi underf is added toim.

Secondly, the intersection of the preimage of the intersection of the imageusidert andim

underf andcl is subtracted fromre.

IntegralConjugate(f) , IntegralConjugate(G) Uses the algorithm described in the
proof of Theorem 2.5.14 irkjoh04.

IntegralizingConjugator(f) , IntegralizingConjugator(G) Uses the algorithm
described in the proof of Theorem 2.5.14 ifoh05.

Inverse(f) Essentially inversion of affine mappings. See Lemma 1.3.1, Part (BpinJH].

IsClassWiseOrderPreserving(f) Test whether the first entry of all coefficient triples is
positive.

IsConjugate(RCWA(Integers),f,q) Test whethert and g have the same order, and

whether either both or none of them is tame. If not, rettiahse.

If the mappings are wild, usehortCycles to search for finite cycles not belonging to an
infinite series, until their numbers for a particular length differ. This may run into an infinite
loop. If it terminates, returfalse.

If the mappings are tame, use the method described in the proof of Theorem 2.5bA0&|[

to construct integral conjugates o6fandg. Then essentially use the algorithm described in
the proof of Theorem 2.6.7 irkKph05 to compute “standard representatives” of the conjugacy
classes which the integral conjugatesftofind g belong to. Finally compare these standard
representatives, and returnue if they are equal andalse if not.

IsInjective(f) Seelmage.

Isintegral(f) “Trivial”.

IsomorphismMatrixGroup(G) Use the algorithm described in the proof of Theorem 2.6.3
in [Koh03).

IsomorphismPermGroup(G) If the groupa is infinite, there is no isomorphism to a finite per-

mutation group, thus returfril. Otherwise us@ctionOnRespectedPartition.

RCWA 93

IsomorphismRcwaGroup(G) The method for finite groups useswaMapping, Part (d).

The method for free products of finite groups uses the Table-Tennis Lemma (which is also
known asPing-Pong Lemmecp. e.g. Section I1.B. indIHOQ]). It uses regular permutation rep-
resentations of the factofs: (r =0,...,m— 1) of the free product on residue classes modulo

ny :=|G¢|. The basic idea is that since point stabilizers in regular permutation groups are trivial,
all non-identity elements map any of the permuted residue classes into their complements. To
get into a situation where the Table-Tennis Lemma is applicable, the method computes conju-
gates of the images of the mentioned permutation representations under bijective rcwa mappings
or which satisfy @n;)° = Z\ r(m).

The method for free groups uses an adaptation of the construction given on pagel2i0ij [
from PSL(2C) to RCWA(Z). As an equivalent for the closed discs used there, the method takes
the residue classes modulo two times the rank of the free group.

IsSurjective(f) Seelmage.
IsTame(G) Checks whether the modulus of the group is non-zero.

IsTame(f) Application of the criteria given in Corollary 2.5.10 and 2.5.12 and Theorem A.8
and A.11 in Koh09. The criterion “surjective, but not injective means wild” (Theorem A.8
in [Koh09) is the subject of Koh0g. For applying the criterion of the existence of weakly-
connected components of the transition graph which are not strongly-connected (Theorem A.11
in [Koh0Y), the packag&RAPE is needed.

In addition, some probabilistic methods are used. If the result depends on one of these, a
warning is displayed.

IsTransitive(G,Integers) Look for finite orbits, usingghortOrbits on a couple of inter-
vals. If a finite orbit is found, returfialse. TestifG is finite. If yes, returrfalse.

Search for an elementand a residue claggm) such that the restriction afto r(m) is given

by n— n+m. Then the cyclic group generated bwcts transitively om(m). The element is
searched among the generators,dfs powers, its commutators, powers of its commutators and
products of few different generators. The search for such an element may run into an infinite
loop, as there is no guarantee that the group has a suitable element.

If suitableg andr(m) are found, proceed as follows:

SetS:=r(m). SetS:= SUS for all generatorg of G, and repeat this unt remains constant.
This may run into an infinite loop.

If it terminates: IfS= 7Z, returnt rue, otherwise returfalse.

KernelOfActionOnRespectedPartition(G) First determine the abelian invariants of the
kernelk. For this, compute sufficiently many quotients of orders of permutation groups induced
by G on refinements of the stored respected partitidoy the order of the permutation group
induced byG on P itself. Then use a random walk through the graupCompute powers of
elements encountered along the way whictefiXranslate these kernel elements into elements
of a polycyclically presented group isomorphic to the|-fold direct product of the infinite
dihedral group X certainly embeds in this group). Uselycyclic [ENOJ to collect indepen-
dent “nice” generators &f. Proceed until the permutation groups inducedcimn the refined
respected partitions all equal the initially stored quotients.

RCWA 94

LargestSourcesOfAffineMappings(f) Form unions of residue classes modulo the mod-
ulus of the mapping, whose corresponding coefficient triples are equal.

LaTeXOhj(f) Collect residue classes those corresponding coefficient triples are equal.

LikelyContractionCentre(f,maxn,bound) Compute trajectories with starting values
from a given interval, until a cycle is reached. Abort if the trajectory exceeds the prescribed
bound. Form the union of the detected cycles.

LocalizedRcwaMapping(f,p) “Trivial”.
mKnot(m) “Straightforward”, following the definition given inqgel99].

Modulus(G) Searches for a wild element in the group. If unsuccessful, tries to construct a re-
spected partition (se&spectedPartition).

Modulus(f) “Trivial”.

MovedPoints(G) Needs only forming unions of residue classes and determining fixed points of
affine mappings.

Multiplier(f) Lcm of coefficients, as indicated.

Multpk(f,p,K) Form the union of the residue classes modulo the modulus of the mapping,
which are determined by the given divisibility criteria for the coefficients of the corresponding
affine mapping.

NrConjugacyClassesOfRCWAZOfOrder(ord) The class numbers are taken from Corol-
lary 2.7.1 in KohOg.

OrbitsModulo(f,m) Use GRAPE to compute the connected components of the transition
graph.

OrbitsModulo(G,m) “Straightforward”.

Order(f) Test for IsTame. If the mapping is not tame, then returnfinity. Otherwise use
Corollary 2.5.10 in Koh05.

Prelmage(f,S) Seelmage.

PrelmagesRepresentative(phi,g) , PreimagesRepresentatives(phi,g) As
indicated in the documentation of these methods. The underlying idea to successively compute
two balls around 1 and until they intersect non-trivially is standard in computational group
theory. For rcwa groups it would mean wasting both memory and runtime to actually compute
group elements. Thus only images of tuples of points are computed and stored.

PrimeSet(f) , PrimeSet(G) “Straightforward”.
PrimeSwitch(p) Multiplication of rcwa mappings as indicated.
Print(f) “Trivial”.

f*g Essentially composition of affine mappings. See Lemma 1.3.1, Part (&piDf].

RCWA 95

Random(RCWA(Integers)) Computes a product of “randomly” chosen class shifts, class re-
flections and class transpositions. This seems to be suitable for generating reasonably good
examples.

RankOfKernelOfActionOnRespectedPartition(G) This performs basically the first
part of the computations done ByrnelOfActionOnRespectedPartition.

RCWA(R) Attributes are set according to Theorem 2.1.1, Theorem 2.1.2, Corollary 2.1.6 and The-
orem 2.12.8 inlkoh09.

RcwaGroupByPermGroup(G) UseskRcwaMapping, Part (d).

RcwaMapping (a)-(c): “trivial”, (d): n"perm - n for determining the coefficients, (e): “affine
mappings by values at two given points”, (f) and (g): “trivial”, (h) and (i): correspond to
Lemma 2.1.4 inKoh04].

RepresentativeAction(G,src,dest,act) , RepresentativeActionPrelmage
As indicated in the documentation of these methods. The underlying idea to successively
compute two balls aroundrc and dest until they intersect non-trivially is standard in
computational group theory. Words standing for products of generatoraraf stored for any
image ofsrc or dest.

RepresentativeAction(G,P1,P2) Arbitrary mapping: see Lemma 2.1.4 ikqh05. Tame
mapping: see proof of Theorem 2.8.9 koh05. The former is almost trivial, while the latter
is a bit complicate and takes usually also much more time.

RepresentativeAction(RCWA(Integers),f,g) The algorithm used bysConjugate
constructs actually also an elemearguch thatt"x = q.

RespectedPartition(f) , RespectedPartition(G) Uses the algorithm described in
the proof of Theorem 2.5.8 irkph03.

Restriction(g,f) Compute the action afightInverse (f) * g * f onthe image of.

Restriction(G,f) Get a set of generators by applyirRgstriction (g, f) to the generators
g of G.

Rightinverse(f) “Straightforward” if one knows how to compute images of residue classes

under affine mappings, and how to compute inverses of affine mappings.

Root(f,k) If fis bijective, class-wise order-preserving and has finite order:

Find a conjugate of which is a product of class transpositions. Slice cyqfl|é§2r,1(ml)7n(m)
of £ a respected partitiof? into cyclesﬂ!:1ﬂ'j‘;étrl(kmlmﬂmi(km) of thek-fold length on the
refined partition which one gets froA by decomposing ang(m) € P into residue classes
(modkm). Finally conjugate the resulting permutation back.

Other cases seem to be more difficult and are currently not covered.
SemilocalizedRcwaMapping(f,pi) “Trivial”.

ShortCycles(f,maxIng) Look for fixed points of affine partial mappings of powersftof

RCWA 96

ShortOrbits(G,S,maxIng) “Straightforward”.

SetOnWhichMappinglsClassWiseOrderPreserving(f) , etc. Form the union of the
residue classes modulo the modulus of the mapping, in whose corresponding coefficient triple
the first entry is positive, zero resp. negative.

Sign(g) Evaluation of the given expression. For the mathematical meaning (epimorphism!), see
Theorem 2.12.8 infoh05.

Size(G) Test whether one of the generators of the graupas infinite order. If so, return
infinity. Test whether the group is tame. If not, returninfinity. Test whether
RankOfKernelOfActionOnRespectedPartition (G) IS nonzero. If so, returnnfinity.
Otherwise ifG is class-wise order-preserving, return the size of the permutation group induced
on the stored respected partition.clfs not class-wise order-preserving, return the size of the
permutation group induced on the refinement of the stored respected partition which is obtained
by splitting each residue class into three residue classes with equal moduli.

StructureDescription(G) (Not described here.)
f+g Pointwise addition of affine mappings.

Trajectory(f,n,...) Iterated application of an rcwa mapping. In the methods computing
“accumulated coefficients” additionally compaosition of affine mappings.

TransitionGraph(f,m) “Straightforward” — just check a sufficiently long interval.
TransitionMatrix(f,m) Evaluation of the given expression.
ViewODbj(f) “Trivial”.

WreathProduct(G,P) UsesDirectProduct to embed th@egreeaction (P)th direct power
of 6, andrcwaMapping, Part (d) to embed the finite permutation graup

WreathProduct(G,2) Restrictss to the residue class 3(4), and encodes the generatasf
To(2),1(2) To(2),1(4)- It is used that the images of 3(4) under powers of this mapping are pairwise
disjoint residue classes.

Chapter 6

Installation and auxiliary functions

6.1 Requirements

The RCWA package needs at leaSiAP 4.4.7, ResClasses 2.3.3, GRAPE 4.0 [So0i07], Poly-

cyclic 1.1 [ENOJ and GAPDoc 0.999 [LN02]. With possible exception of the most recent version

of ResClasses, all needed packages are already present in an up-to-date st@rdaidstallation.
TheRCWA package can be used under UNIX, under Windows and on the Macintosh. It is completely
written in the GAP language and does neither contain nor require external binaries. In particular,
warnings concerning missing binaries Wh@RAPE is loaded can savely be ignored.

6.2 Installation

Like any othelGAP packageRCWA must be installed in thekg subdirectory of th&AP distribution.
This is accomplished by extracting the distribution file in this directory. If you have done this, you
can load the package as usual vimdPackage ("rcwa");.

6.3 The Info class of the package
6.3.1 InfoRCWA
O InfoRCWA (info class)

This is the Info class of theCWA package. See sectidnfo Functionsin the GAP Reference
Manual for a description of the Info mechanism. For convenieRc&rInfo (n) is a shorthand for
SetInfolLevel (InfoRCWA,n).

6.4 The testing routine

6.4.1 RCWATest

O RCWATest () (function)
Returns: Nothing.
Performs tests of thRCWA package. Errors, i.e. differences to the correct results of the test
computations, are reported. The processed test files are in the dirgktgmewa/tst.

97

RCWA 98

6.5 Building the manual

The following routine is a development tool. As all files it generates are included in the distribution
file anyway, users will not need it.

6.5.1 RCWABuildManual

{) RCWABuildManual ()
Returns: Nothing.
This function builds the manual of tiRCWA package in the file formatsTgX, DVI, Postscript,

PDF, HTML and ASCII text. This is accomplished using tAaPDoc package by Frank libeck

and Max Neuntiffer. Building the manual is possible only on UNIX systems and requitgsXL
PDFETEX anddvips.

(function)

References

[And00]

[dIHOO]

[ENO3]

[Gri80]

[GT02]

[Kel99]

[KohOS]

[KohO6]

[Lag06]

[LNO2]

[Mih58]

[ML87]

[S0i02]

P. Andaloro. On total stopping times under 3x+1 iteratibifbonacci Quarterly 38:73-78,
2000. 51

Pierre de la HarpeTopics in Geometric Group TheaorZhicago Lectures in Mathematics,
2000. 30, 87, 88,93

Bettina Eick and Werner Nickel. Polycyclic. Computation with polycyclic
groups (version 1.1) 2003. GAP package, available at http://www.gap-
system.org/Packages/polycyclic.htnd5, 91, 93, 97

Rostislav I. Grigorchuk. Burnside’s problem on periodic groupsnctional Anal. Appl.
14:41-43, 1980.84, 85

David Gluck and Brian D. Taylor. A new statistic for the 3x+1 probldPnoc. Amer. Math.
Soc, 130(5):1293-1301, 200224

Timothy P. Keller. Finite cycles of certain periodically linear permutatioMissouri J.
Math. Sci, 11(3):152-157, 199916, 17, 94

Stefan Kohl. Restklassenweise affine Gruppen Dissertation, Universit
Stuttgart, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071, http://elib.uni-
stuttgart.de/opus/volltexte/2005/2448/. 17, 18, 41, 44, 45, 90, 91, 92, 93, 94, 95,

96

Stefan Kohl. Wildness of iteration of certain residue class-wise affine mapphaysAppl.
Math,, ?(?):approx. 8 pages, 2006. to appe2Bs.

Jeffrey C. Lagarias. 3x+1 problem annotated bibliography, 2006.
http://arxiv.org/abs/math.NT/0309224.

Frank Lilbeck and Max Neuriffer. GAPDoc (version 0.99)RWTH Aachen, 2002. GAP
package, available at http://www.gap-system.org/Packages/gapdocdiml.

K. A. Mihailova. The occurence problem for direct products of groupskl. Acad. Nauk.
SSSR119:1103-1105, 195833

K. R. Matthews and G. M. Leigh. A generalization of the Syracuse algorithgixin J.
Number Theory25:274-278, 198752

Leonard Soicher.GRAPE — GRaph Algorithms using PErmutation groups (version 4.1)
Queen Mary, University of London, 2002. GAP package, available at http://www.gap-
system.org/Packages/grape.htrall

99

Index

ActionOnRespectedPartition

G,44
AllProducts
l, k, 46

balanced
definition, 18
Ball
G, g,d,40
G, p, d, act40

ClassPairs
m, 43
ClassReflection
r(m), 10
r,m,10
ClassShift
r(m), 10
r,m,10

ClassTransposition
ri(ml), r2(m2)11
ri,mi, r2, m211

Coefficients

f, 16
Collatz conjecture6
Collatz mapping6

CommonRightInverse

I, 1,26

DecreasingOn

f, 24
Determinant

g,17

g,S,17
DirectProduct

G1,G2,..32
Display

f, 13

G, 29

Div

100

f, 18

G,33
Divisor

f, 18

G,33
divisor

definition,8

EpimorphismByGenerators

G, H,46

Factorization
0,16
FactorizationIntoCSCRCT
g,16

FactorizationOnConnectedComponents

f,m, 21

FixedPointsOfAffinePartialMappings

f, 20

GeneratorsAndInverses
G, 46

GluckTaylorInvariant
a, 24

Group, 29

GroupByGenerators, 29

GroupWithGenerators, 29

GuessedDivergence

f, 27

Image
f, 14
ImageDensity
f, 26
IncreasingOn
f, 24
Induction
G, f,42
g, f, 42
InfoRCWA, 97

RCWA

InjectiveAsMappingFrom
f, 26
integral
definition, 18
IntegralConjugate
G,45
g,45
IntegralizingConjugator
G,45
0,45
IsBalanced
f, 18
IsBijective
f, 14
IsClassWiseOrderPreserving
f, 18
G,33
IsConjugate
RCWA(Integers), f, g40
IsInjective
f, 14
IsIntegral
f, 18
G,33
IsNaturalRCWA_GFgx
G, 46
IsNaturalRCWA_Z
G, 46
IsNaturalRCWA_Z_pi
G, 46
IsomorphismMatrixGroup
G,34
IsomorphismPermGroup
G,34
IsomorphismRcwaGroup
G, 30
IsomorphismRcwaGroupOverz
G, 30
IsRcwaGroup
G, 46
IsRcwaGroupOverGFgx
G, 46
IsRcwaGroupOverz
G, 46
IsRcwaGroupOverZOrZ_pi
G, 46

IsRcwaGroupOverZ_pi

101

G, 46
IsRcwaMapping

f, 28
IsRcwaMappingOfGFgx

f, 28
IsRcwaMappingOfZz

f, 28
IsRcwaMappingOfZOrZ_pi

f, 28
IsRcwaMappingOfZ_pi

f, 28
IsRcwaMappingStandardRep, 28
IsSurjective

f, 14
IsTame

f, 14

G,33
IsTransitive

G, Integers36

KernelOfActionOnRespectedPartition

G, 45

LargestSourcesOfAffineMappings
f, 19
LaTeX
f, 13
LaTeXAndXDVI
f, 14
LaTeX0bj
f, 13
LikelyContractionCentre
f, maxn, bound27
LocalizedRcwaMapping
f, p, 25
Loops
f, 23

mKnot

m, 17
Mod

f, 16

G, 33
Modulus

f, 16

G,33
modulus

definition, 8

RCWA

ModulusOfRcwaGroup
G,33
MovedPoints
G, 36
g,15
Mult
f, 18
G,33
Multiplier
f, 18
G,33
multiplier
definition,8
Multpk
f, p, k, 20

NrConjugacyClassesOfRCWAZOfOrder
ord,41

OrbitsModulo
f,m, 21
OrbitsModulo
G, m,40
Order
g,14

PermutationOpNC

g, P, OnPoints44
PreImage

f, 15
PreImageElm

f, 15
PreImagesElm

f, 15
PreImagesRepresentative

phi, g,35
PreImagesRepresentatives

phi, g,36
PrimeSet

f, 18

G,33
PrimeSwitch

p,11

p, k,11
Print

f, 13

G, 29

Projections

102

G, m,40

Random
RCWA(2), 43
RankOfKernelOfActionOnRespectedPartition
G, 45
RCWA
R, 29
rcwa group
class-wise order-preserving3
definition, 8
divisor, 33
integral,33
membership tes83
modulus,33
multiplier, 33
prime set33
tame,8
wild, 8
rcwa mapping
arithmetic operations,4
balanced18
class-wise order-preservingd
definition, 8
divisor, 8
images underl5
integral,18
modulus,3
multiplier, 8
tame,8
transition graph21
wild, 8
RCWABuildManual, 98
RcwaGroupByPermGroup
G, 30
RCWAInfo, 97
RcwaMapping
coeffs,12
cycles,12
m, values]12
P1,P212
perm, rangel2
pi, coeffs,12
g, m, coeffs 12
R, coeffs, 12
R, m, coeffs12
RcwaMappingsFamily

RCWA

R, 28
RCWATest, 97
RepresentativeAction
G, src, dest, acB7
RCWA(Integers), P1, P38
RCWA(Integers), f, g41
RepresentativeActionPreImage
G, src, dest, act, B8
RespectedPartition
G,44
9,44
RespectedPartitionLong
G,44
g,44
RespectedPartitionShort
G,44
0,44
RespectsPartition
G,44
9,44
RestrictedPerm
g,15
Restriction
G, f,42
g,f, 42
RightInverse
f, 25
Root
f, k, 25

SemilocalizedRcwaMapping
f, pi, 25
SetOnWhichMappingIsClassWise
Constant20
OrderPreserving0
OrderReversing20
ShortCycles
G, S, maxing39
ShortCycles
f, maxing,41
ShortOrbits
G, S, maxing39
Sign
0,18
Sinks
f, 22

Size

G,33
Sources
f, 22
SplittedClassTransposition
G, 16
String
f, 13
G,29
StructureDescription
G,31
Support
G, 36
g,15

tame

rcwa group8

rcwa mapping8
Trajectory

f, n, length,23

f, n, length, m23

f, n, length, whichcoeff23

f, n, terminal,23

f, n, terminal, m23

f, n, terminal, whichcoeffs23
TransitionGraph

f,m, 21
TransitionMatrix

f,m, 22

View
f, 13
G, 29

wild
rcwa group8
rcwa mappingsg
WreathProduct
G, P32
G, 732

103

