
RCWA

Residue Class-Wise Affine Groups

Version 2.1.7

September 1, 2006

Stefan Kohl

Stefan Kohl — Email: kohl@mathematik.uni-stuttgart.de
— Homepage:http://www.cip.mathematik.uni-stuttgart.de/˜kohlsn
— Address: Institut f̈ur Geometrie und Topologie

Universiẗat Stuttgart
70550 Stuttgart
Germany

mailto://kohl@mathematik.uni-stuttgart.de
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn

RCWA 2

Abstract

RCWA is a package forGAP 4 which provides methods for investigatingResidueClass-Wise Affine groups
by means of computation. Residue class-wise affine groups are countable permutation groups acting on the
integers, whose elements are bijective residue class-wise affine mappings.

A mapping f : Z → Z is calledresidue class-wise affineprovided that there is a positive integerm such
that the restrictions off to the residue classes (modm) are all affine. This means that for any residue class
r(m) ∈ Z/mZ there are coefficientsar(m),br(m),cr(m) ∈ Z such that the restriction of the mappingf to the set
r(m) = {r +km|k∈ Z} is given by

f |r(m) : r(m)→ Z, n 7→
ar(m) ·n+br(m)

cr(m)
.

“Many” residue class-wise affine groups act multiply transitively onZ or on subsets thereof. The class of groups
which can faithfully be represented as residue class-wise affine groups is closed under forming wreath products
with finite groups and with the infinite cyclic group(Z,+). It includes free groups of any rank, all free products
of finite groups and certain divisible torsion groups. It also contains finitely generated groups with unsolvable
membership problem. The group which is generated by allclass transpositions– these are involutions which
interchange two disjoint residue classes – is a simple group which has subgroups of all mentioned types and
whose class of isomorphism types of subgroups is closed under the above operations.

Despite of what has been said in the preceding paragraph, still not very much is known about the structure of
residue class-wise affine groups. This package is intended to serve as a tool for obtaining a better understanding
of their rich and interesting group theoretical and combinatorial structure.

Residue class-wise affine groups can be generalized in a natural way to euclidean rings other than the ring
of integers. While this package undoubtedly provides most functionality for residue class-wise affine groups
over the integers, at least rudimentarily it also covers the cases that the underlying ring is a semilocalization
of Z or a polynomial ring in one variable over a finite field.

The original motivation for investigating residue class-wise affine groups comes from the famous 3n+ 1
Conjecture, which is an assertion about a surjective, but not injective residue class-wise affine mapping.

Residue class-wise affine groups are introduced in the author’s thesisRestklassenweise affine Gruppen.
This thesis is published athttp://deposit.ddb.de/cgi-bin/dokserv?idn=977164071 (Archivserver
Deutsche Bibliothek). A copy of this thesis and an english translation thereof are distributed with this package.

Copyright

c© 2003 - 2006 by Stefan Kohl. This package is distributed under the GNU General Public License.

Acknowledgements

I am very grateful to Bettina Eick for communicating this package and for her kind help in improving its
documentation. Further I would like to thank the two anonymous referees for their constructive criticism and
their helpful suggestions. I am also very grateful to Laurent Bartholdi for inviting me to give a talk on the
subject in Lausanne in April 2006, and for his hint on how to construct wreath products of residue class-wise
affine groups with(Z,+). I would like to thank Otto H. Kegel, Katrin Tent and Oliver Röndigs for their related
invitations to Freiburg resp. Bielefeld in February and March 2006.

http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071

Contents

1 Preface 6
1.1 Motivation . 6
1.2 Groups which can be represented. 6
1.3 Purpose of this package. 7
1.4 Scope of this package. 7

2 Residue Class-Wise Affine Mappings 8
2.1 Basic definitions. 8
2.2 Entering residue class-wise affine mappings. 9

2.2.1 ClassShift (r, m) . 10
2.2.2 ClassReflection (r, m) . 10
2.2.3 ClassTransposition (r1, m1, r2, m2). 11
2.2.4 PrimeSwitch (p) . 11
2.2.5 RcwaMapping (R, m, coeffs). 12
2.2.6 LaTeXObj (f) . 13

2.3 Basic functionality for rcwa mappings. 14
2.4 Factoring rcwa mappings. 16

2.4.1 FactorizationIntoCSCRCT (g). 16
2.4.2 mKnot (m) . 17

2.5 Determinant and sign. 17
2.5.1 Determinant (g). 17
2.5.2 Sign (g) . 18

2.6 Attributes and properties derived from the coefficients. 18
2.7 Functionality related to the affine partial mappings. 19

2.7.1 LargestSourcesOfAffineMappings (f). 19
2.7.2 Multpk (f, p, k) . 20
2.7.3 FixedPointsOfAffinePartialMappings (f). 20

2.8 Transition graphs and transition matrices. 21
2.8.1 TransitionGraph (f, m). 21
2.8.2 OrbitsModulo (f, m) . 21
2.8.3 FactorizationOnConnectedComponents (f, m). 21
2.8.4 TransitionMatrix (f, m) . 22
2.8.5 Sources (f) . 22
2.8.6 Sinks (f) . 22
2.8.7 Loops (f) . 23

2.9 Trajectories . 23

3

RCWA 4

2.9.1 Trajectory (f, n, length). 23
2.9.2 Trajectory (f, n, length, whichcoeffs). 23
2.9.3 IncreasingOn (f) . 24
2.9.4 GluckTaylorInvariant (a). 24

2.10 Localizations of rcwa mappings of the integers. 25
2.10.1 LocalizedRcwaMapping (f, p). 25

2.11 Extracting roots of rcwa mappings. 25
2.11.1 Root (f, k) . 25

2.12 Special functions for non-bijective mappings. 25
2.12.1 RightInverse (f). 25
2.12.2 CommonRightInverse (l, r). 26
2.12.3 ImageDensity (f) . 26

2.13 Probabilistic guesses on the behaviour of trajectories. 27
2.13.1 LikelyContractionCentre (f, maxn, bound). 27
2.13.2 GuessedDivergence (f). 27

2.14 The categories and families of rcwa mappings. 28
2.14.1 IsRcwaMapping (f). 28
2.14.2 RcwaMappingsFamily (R). 28

3 Residue Class-Wise Affine Groups 29
3.1 Constructing residue class-wise affine groups. 29

3.1.1 RCWA (R) . 29
3.1.2 IsomorphismRcwaGroupOverZ (G). 30
3.1.3 StructureDescription (G). 31

3.2 Direct products and wreath products. 31
3.2.1 DirectProduct (G1, G2, ...). 32
3.2.2 WreathProduct (G, P). 32

3.3 The membership test. 33
3.4 Basic attributes and properties of rcwa groups. 33
3.5 Permutation- and matrix representations. 34

3.5.1 IsomorphismPermGroup (G). 34
3.5.2 IsomorphismMatrixGroup (G). 34

3.6 Factoring elements into generators. 35
3.6.1 PreImagesRepresentative (phi, g). 35
3.6.2 PreImagesRepresentatives (phi, g). 36

3.7 The action of an rcwa group on the underlying ring. 36
3.7.1 IsTransitive (G, Integers). 36
3.7.2 RepresentativeAction (G, src, dest, act). 37
3.7.3 RepresentativeActionPreImage (G, src, dest, act, F). 38
3.7.4 RepresentativeAction (RCWA(Integers), P1, P2). 38
3.7.5 ShortOrbits (G, S, maxlng). 39
3.7.6 Projections (G, m) . 40
3.7.7 Ball (G, p, d, act) . 40

3.8 Conjugacy in RCWA(Z) . 40
3.8.1 IsConjugate (RCWA(Integers), f, g). 40
3.8.2 RepresentativeAction (RCWA(Integers), f, g). 41
3.8.3 NrConjugacyClassesOfRCWAZOfOrder (ord). 41

RCWA 5

3.9 Restriction and induction. 42
3.9.1 Restriction (g, f) . 42
3.9.2 Induction (g, f) . 42

3.10 Getting pseudo-random elements of RCWA(Z). 43
3.11 Special attributes for tame rcwa groups. 44

3.11.1 RespectedPartition (G). 44
3.11.2 ActionOnRespectedPartition (G). 44
3.11.3 KernelOfActionOnRespectedPartition (G). 45
3.11.4 IntegralConjugate (G) . 45

3.12 Some general utility functions. 46
3.13 The categories of rcwa groups. 46

3.13.1 IsRcwaGroup (G). 46

4 Examples 47
4.1 Factoring Collatz’ permutation of the integers. 47
4.2 An rcwa mapping which seems to be contracting, but very slow. 49
4.3 Checking a result by P. Andaloro. 51
4.4 Two examples by Matthews and Leigh. 52
4.5 Exploring the structure of a wild rcwa group. 54
4.6 A wild rcwa mapping which has only finite cycles. 56
4.7 An abelian rcwa group over a polynomial ring. 60
4.8 A tame group generated by commutators of wild permutations. 61
4.9 Checking for solvability. 64
4.10 Some examples over (semi)localizations of the integers. 65
4.11 Twisting 257-cycles into an rcwa mapping with modulus 32. 68
4.12 The behaviour of the moduli of powers. 69
4.13 Images and preimages under the Collatz mapping. 70
4.14 A group which acts 4-transitively on the positive integers. 72
4.15 A group which acts 3-transitively, but not 4-transitively on Z. 81
4.16 Grigorchuk groups . 84
4.17 Forward orbits of a monoid with 2 generators. 86
4.18 Representations of the free group of rank 2. 87
4.19 Representations of the modular group PSL(2,Z). 88

5 The Algorithms Implemented in RCWA 90

6 Installation and auxiliary functions 97
6.1 Requirements. 97
6.2 Installation . 97
6.3 The Info class of the package. 97

6.3.1 InfoRCWA . 97
6.4 The testing routine . 97

6.4.1 RCWATest . 97
6.5 Building the manual. 98

6.5.1 RCWABuildManual . 98

Chapter 1

Preface

1.1 Motivation

The development of this package has originally been inspired by the famous 3n+1-Conjecture. This
conjecture asserts that iterated application of the Collatz mapping

T : Z−→ Z, n 7−→

{
n
2 if n even,
3n+1

2 if n odd

to any given positive integer eventually yields 1.
The 3n+1-Conjecture has been made by Lothar Collatz in the 1930s, and is still lacking a proof

today. Jeffrey C. Lagarias has written and maintains a comprehensive annotated bibliography [Lag06],
which currently lists about 200 references to publications related to Collatz’ conjecture. None of the
articles mentioned there tries to attack the problem by means of group theory or investigates the
structure of groups generated by bijective mappings which are “similar to the Collatz mapping”, i.e.
residue class-wise affine. In fact, residue class-wise affine groupsapparently have not been treated
anywhere in the literature before.

After having investigated these objects for a couple of years, the author feels that this is a gap
which is worth to be filled.

1.2 Groups which can be represented

This section lists some types of groups which are known to be representable as residue class-wise
affine groups. Proofs of most of the results have not yet appeared in print, but can be found in the
preprintA Simple Group Generated by Involutions Interchanging Residue Classes of the Integerson
the author’s homepage.

Obviously, the infinite dihedral group〈n 7→−n,n 7→ n+1〉 can be represented. Further the class of
representable groups is closed under forming direct products and under forming wreath products with
finite groups and with the infinite cyclic group(Z,+). Free groups and free products of finite groups
can be represented as well. Further there are divisible torsion groups and finitely generated groups
with unsolvable membership problem which have faithful residue class-wise affine representations.
In principle this package permits to construct and investigate groups of all mentioned types.

The group which is generated by allclass transpositions– these are involutions which interchange
two disjoint residue classes, seeClassTransposition (2.2.3) – is a simple group which contains all
the above groups. It has uncountably many simple subgroups.

6

RCWA 7

1.3 Purpose of this package

So far, compared to classes of groups like for example matrix groups, finite permutation groups or
polycyclic groups, only relatively basic facts about residue class-wise affine groups are known. This
package is intended to serve as a tool for obtaining a better understanding of their rich and interesting
group theoretical and combinatorial structure.

1.4 Scope of this package

This package being a research tool which can be applied in various ways to various different problems,
it is simply not possible to say what can be found out with its help about which mappings or groups.
The best way to get an idea about this is likely to experiment with the examples discussed in this
manual and included in the filepkg/rcwa/examples/examples.g.

Of course this package often does not provide an out-of-the-box solution for a given problem.
At the beginning the user may perhaps notice long runtimes for seemingly easy things. But with
some experience he will learn to estimate how long something will take and to see why raising some
harmlessly-looking mapping to the 20th power would take terabytes of memory, while one can easily
find out nontrivial things about groups which look much more complicate. Quite often it is possible
to find an answer for a given question by using an interactive trial-and-error approach.

Among many other results, with substancial help of this package the author has found a proof that
the group generated by all class transpositions is simple. Interactive sessions with this package have
also lead to the development of a method for factoring residue class-wise affine permutations into
involutions which have a particularly simple structure (seeFactorizationIntoCSCRCT (2.4.1)).

Chapter 2

Residue Class-Wise Affine Mappings

This chapter gives the basic definitions, describes how to enter residue class-wise affine mappings and
how to compute with them. The functionality of this package which is dedicated to residue class-wise
affine groups is described in detail in the next chapter.

2.1 Basic definitions

In the abstract, already a brief definition of residue class-wise affine groups over the ring of integers
has been given. In this section it follows a slightly generalized and more formal version of this
definition. In the same time some useful notation is introduced.

Let R be an infinite euclidean domain which is not a field and all of whose proper residue class
rings are finite. A mappingf : R→R is calledresidue class-wise affine, or for short anrcwamapping,
if there is anm∈ R\ {0} such that the restrictions off to the residue classesr(m) ∈ R/mRare all
affine. This means that for any residue classr(m) there are coefficientsar(m),br(m),cr(m) ∈Rsuch that
the restriction of the mappingf to the setr(m) = {r +km|k∈ R} is given by

f |r(m) : r(m)→ R, n 7→
ar(m) ·n+br(m)

cr(m)
.

The valuem is called themodulusof f . It is understood that all fractions are reduced, i.e. that
gcd(ar(m),br(m),cr(m)) = 1, and thatm is chosen multiplicatively minimal. Apart from the restrictions
imposed by the condition that the image of any residue classr(m) under f must be a subset ofR and
that one cannot divide by 0, the coefficientsar(m), br(m) andcr(m) can be any ring elements. The lcm
of the coefficientsar(m) in the numerators is called themultiplier of f , and the lcm of the coefficients
cr(m) in the denominators is called thedivisor of f .

Theproduct f·g of some rcwa mappingsf andg is their composition as mappings, wheref is
applied first. Theinverseof a bijective rcwa mapping is its inverse mapping.

The set RCWA(R) :={ σ∈ Sym(R) | σ is residue class-wise affine} is closed under multiplication
and taking inverses (this can be verified easily), hence forms a subgroup of Sym(R). A subgroup of
RCWA(R) is called aresidue class-wise affinegroup, or for short anrcwagroup.

There are two entirely different classes of rcwa mappings and -groups. One of these classes
comprises what could be called the “trivial cases”. The members of the other have typically a quite
complicate structure and are in often very difficult to investigate. Accordingly, the former are called
tameand the latter are calledwild. By definition, an rcwa mapping istameif the set of moduli of its
powers is bounded, and an rcwa group istameif the set of moduli of its elements is bounded.

8

RCWA 9

2.2 Entering residue class-wise affine mappings

Entering an rcwa mapping intoRCWA in general requires specifying the underlying ringR, the mod-
ulusm and the coefficientsar(m), br(m) andcr(m) for r(m) running over the residue classes (modm).
For the sake of simplicity, in this section we describe how to enter rcwa mappings ofR= Z. This is
likely the most prominent and certainly the best-supported case. For the general constructor for rcwa
mappings, seeRcwaMapping (2.2.5).

The easiest way to enter an rcwa mapping ofZ is byRcwaMapping(coeffs). Herecoeffs is
a list ofm coefficient triplescoeffs[r +1] = [ar(m), br(m), cr(m)], wherer runs from 0 tom−1.

If some coefficientcr(m) is zero or if images of some integers under the mapping to be defined
would not be integers, an error message is printed and a break loop is entered. For example, the
coefficient triple[1,1,3] is not allowed at the first position. The reason for this is that not all integers
congruent to 0 + 1 = 1 modm are divisible by 3.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]); # The Collatz mapping.
<rcwa mapping of Z with modulus 2>
gap> [IsSurjective(T), IsInjective(T)];
[true, false]
gap> SetName(T,"T"); Display(T);

Surjective rcwa mapping of Z with modulus 2

n mod 2 | nˆT
---------------------------------------+--------------------------------------
0 | n/2
1 | (3n + 1)/2

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]); SetName(a,"a");
<rcwa mapping of Z with modulus 3>
gap> IsBijective(a);
true
gap> Display(a); # This is Collatz’ permutation:

Bijective rcwa mapping of Z with modulus 3

n mod 3 | nˆa
---------------------------------------+--------------------------------------
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

gap> Support(a);
Z \ [-1, 0, 1]
gap> Cycle(a,44);
[44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]

RCWA 10

There is computational evidence for the conjecture that any residue class-wise affine permutation ofZ
can be factored into members of the following three series of rcwa mappings of particularly simple
structure (cp.FactorizationIntoCSCRCT (2.4.1)):

2.2.1 ClassShift (r, m)

♦ ClassShift(r, m) (function)

♦ ClassShift(ResidueClass(r, m)) (function)

Returns: The class shiftνr(m).
The class shiftνr(m) is the rcwa mapping ofZ which mapsn ∈ r(m) to n+ m and which fixes

Z \ r(m) pointwisely. Enclosing the argument list in list brackets is permitted.
Example

gap> Display(ClassShift(5,12));

Tame bijective rcwa mapping of Z with modulus 12, of order infinity

n mod 12 | nˆClassShift(5,12)
---------------------------------------+--------------------------------------

0 1 2 3 4 6 7 8 9 10 11 | n
5 | n + 12

2.2.2 ClassReflection (r, m)

♦ ClassReflection(r, m) (function)

♦ ClassReflection(ResidueClass(r, m)) (function)

Returns: The class reflectionςr(m).
Theclass reflectionςr(m) is the rcwa mapping ofZ which mapsn∈ r(m) to −n+ 2r and which

fixesZ \ r(m) pointwisely. Enclosing the argument list in list brackets is permitted.
Example

gap> Display(ClassReflection(5,9));

Bijective rcwa mapping of Z with modulus 9, of order 2

n mod 9 | nˆClassReflection(5,9)
---------------------------------------+--------------------------------------
0 1 2 3 4 6 7 8 | n
5 | -n + 10

RCWA 11

2.2.3 ClassTransposition (r1, m1, r2, m2)

♦ ClassTransposition(r1, m1, r2, m2) (function)

♦ ClassTransposition(ResidueClass(r1, m1), ResidueClass(r2, m2)) (function)

Returns: The class transpositionτr1(m1),r2(m2).
Theclass transpositionτr1(m1),r2(m2) is an involution which interchanges the disjoint residue classes

r1(m1) and r2(m2) of Z and which fixes the complement of their union pointwisely. Enclosing the
argument list in list brackets is permitted. The residue classesr1(m1) and r2(m2) are stored as an
attributeTransposedClasses.

Example

gap> Display(ClassTransposition(1,2,8,10));

Bijective rcwa mapping of Z with modulus 10, of order 2

n mod 10 | nˆClassTransposition(1,2,8,10)
---------------------------------------+--------------------------------------

0 2 4 6 | n
1 3 5 7 9 | 5n + 3
8 | (n - 3)/5

It can be shown that the group which is generated by all class transpositions is simple.
The permutations of the following kind play an important role in factoring bijective rcwa mappings

into class shifts, class reflections and class transpositions (cp.FactorizationIntoCSCRCT (2.4.1)):

2.2.4 PrimeSwitch (p)

♦ PrimeSwitch(p) (function)

♦ PrimeSwitch(p, k) (function)

Returns: In the one-argument form theprime switchσp := τ0(8),1(2p) · τ4(8),−1(2p) · τ0(4),1(2p) ·
τ2(4),−1(2p) · τ2(2p),1(4p) · τ4(2p),2p+1(4p), and in the two-argument form the restriction ofσp by n 7→ kn.

For an odd primep, the prime switchσp is a bijective rcwa mapping ofZ with modulus 4p,
multiplier p and divisor 2.

Example

gap> Display(PrimeSwitch(3));

Wild bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆPrimeSwitch(3)
---------------------------------------+--------------------------------------

0 | n/2
1 7 | n + 1
2 6 10 | (3n + 4)/2
3 9 | n
4 | n - 3
5 8 11 | n - 1

RCWA 12

There are propertiesIsClassShift, IsClassReflection, IsClassTransposition and
IsPrimeSwitch which indicate whether a given rcwa mapping belongs to the corresponding series.

In the sequel, a description of the general-purpose constructor for rcwa mappings is given. This
might look a bit technical on a first glance, but knowing all possible ways of entering an rcwa mapping
is by no means necessary for understanding this manual or for using this package.

2.2.5 RcwaMapping (R, m, coeffs)

♦ RcwaMapping(R, m, coeffs) (method)

♦ RcwaMapping(R, coeffs) (method)

♦ RcwaMapping(coeffs) (method)

♦ RcwaMapping(perm, range) (method)

♦ RcwaMapping(m, values) (method)

♦ RcwaMapping(pi, coeffs) (method)

♦ RcwaMapping(q, m, coeffs) (method)

♦ RcwaMapping(P1, P2) (method)

♦ RcwaMapping(cycles) (method)

Returns: An rcwa mapping.
In all cases the argumentR is the underlying ring,m is the modulus andcoeffs is the coefficient

list. A coefficient list for an rcwa mapping with modulusm consists of|R/mR| coefficient triples
[ar(m), br(m), cr(m)]. Their ordering is determined by the ordering of the representatives of the residue
classes (modm) in the sorted list returned byAllResidues(R, m). In caseR= Z this means that the
coefficient triple for the residue class 0(m) comes first and is followed by the one for 1(m), the one
for 2(m) and so on. In case one or several of the argumentsR, m andcoeffs are omitted or replaced
by other arguments, the former are either derived from the latter or default values are taken. The
meaning of the other arguments is defined in the detailed description of the particular methods given
in the sequel. The above methods return the rcwa mapping

(a) of R with modulusmodulus and coefficientscoeffs, resp.

(b) of R = Z or R = Z(π) with modulusLength(coeffs) and coefficientscoeffs, resp.

(c) of R = Z with modulusLength(coeffs) and coefficientscoeffs, resp.

(d) of R = Z, acting on any setrange+k*Length(range) like the permutationperm onrange, resp.

(e) of R = Z with modulusmodulus and values prescribed by the listval, which consists of 2·modulus
pairs giving preimage and image for 2 points per residue class (modmodulus), resp.

(f) of R = Z(π) with modulusLength(coeffs) and coefficientscoeffs (the set of primesπ denoting
the underlying ring is passed as argumentpi), resp.

(g) of R = GF(q)[x] with modulusmodulus and coefficientscoeffs, resp.

(h) a bijective rcwa mapping which induces a bijection between the partitionsP1 andP2 of R into
residue classes and which is affine on the elements ofP1, resp.

(i) a bijective rcwa mapping with “residue class cycles” as given bycycles. The latter is a list of
lists of pairwise disjoint residue classes which the mapping should permute cyclically, each.

The methods for the operationRcwaMapping perform a number of argument checks, which can be
skipped by usingRcwaMappingNC instead.

RCWA 13

Example

gap> x := Indeterminate(GF(2),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(2),1);
GF(2)[x]
gap> RcwaMapping(R,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R)); # (a)
<rcwa mapping of GF(2)[x] with modulus x+Z(2)ˆ0>
gap> RcwaMapping(Z_pi(2),[[1/3,0,1]]); # (b)
Rcwa mapping of Z_(2): n -> 1/3 n
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]); # (c)
<rcwa mapping of Z with modulus 3>
gap> RcwaMapping((1,2,3),[1..4]); # (d)
<bijective rcwa mapping of Z with modulus 4, of order 3>
gap> T = RcwaMapping(2,[[1,2],[2,1],[3,5],[4,2]]); # (e)
true
gap> RcwaMapping([2],[[1/3,0,1]]); # (f)
Rcwa mapping of Z_(2): n -> 1/3 n
gap> RcwaMapping(2,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R)); # (g)
<rcwa mapping of GF(2)[x] with modulus x+Z(2)ˆ0>
gap> a = RcwaMapping(List([[0,3],[1,3],[2,3]],ResidueClass),
> List([[0,2],[1,4],[3,4]],ResidueClass)); # (h)
true
gap> RcwaMapping([List([[0,2],[1,4],[3,8],[7,16]],ResidueClass)]); # (i)
<bijective rcwa mapping of Z with modulus 16, of order 4>
gap> Cycle(last,ResidueClass(0,2));
[0(2), 1(4), 3(8), 7(16)]

In most cases the output of theView method does not describe an rcwa mapping completely. In
these cases the output is enclosed in brackets. There are methods installed forDisplay, Print and
String. ThePrinted representation of an rcwa mapping isGAP - readable if and only if thePrinted
representation of the elements of the underlying ring is so. There is also a method forLaTeX:

2.2.6 LaTeXObj (f)

♦ LaTeXObj(f) (method)

♦ LaTeX(f) (method)

Returns: A LATEX representation of the rcwa mappingf.
The output makes use of the LATEX macro packageamsmath. If the optionFactorization is

set, a factorization off into class shifts, class reflections, class transpositions and prime switches is
printed (cp.FactorizationIntoCSCRCT (2.4.1)). For rcwa mappings with modulus greater than 1,
an indentation byIndentation characters can be specified by setting this option value accordingly.

Example

gap> Print(LaTeXObj(T));
n \ \longmapsto \
\begin{cases}
\frac{n}{2} & \text{if} \ n \in 0(2), \\
\frac{3n + 1}{2} & \text{if} \ n \in 1(2).

\end{cases}

RCWA 14

Example

gap> Print(LaTeXObj(Comm(a,ClassShift(0,4)):Factorization));
&\nu_{4(8)} \cdot \nu_{0(8)}ˆ{-1}

\cdot \tau_{0(8),4(8)} \cdot \tau_{5(16),11(16)}
\cdot \tau_{4(8),11(16)}

There is an operationLaTeXAndXDVI which displays an rcwa mapping in anxdvi window. This
works as follows: The string returned by theLaTeXObj - method described above is inserted into a
LATEX template file. This file is LATEX’ed, and the result is shown withxdvi. Calling Display with
optionxdvi has the same effect. The operationLaTeXAndXDVI is only available on UNIX systems,
and requires suitable installations of LATEX andxdvi.

2.3 Basic functionality for rcwa mappings

Checking whether two rcwa mappings are equal is cheap. Rcwa mappings can be multiplied, thus
there is a method for*. Bijective rcwa mappings can also be inverted, thus there is a method for
Inverse. The latter method is usually accessed by raising a mapping to some power with negative
exponent. Multiplying, inverting and computing powers of tame rcwa mappings is cheap. Computing
powers of wild mappings is usually expensive – runtime and memory requirements normally grow
approximately exponentially with the exponent. How expensive multiplying a couple of wild map-
pings is, varies very much. In any case, the amount of memory required for storing an rcwa mapping
is proportional to its modulus. Whether a given mapping is tame or wild can be determined by the
operationIsTame. There are methods forOrder, which can not only compute a finite order, but can
also detect infinite order.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation.
gap> List([-4..4],k->Modulus(aˆk));
[256, 64, 16, 4, 1, 3, 9, 27, 81]
gap> IsTame(T) or IsTame(a);
false
gap> IsTame(ClassShift(0,1)) and IsTame(ClassTransposition(0,2,1,2));
true
gap> Tˆ2*a*T*aˆ-3;
<rcwa mapping of Z with modulus 768>
gap> (ClassShift(1,3)*ClassReflection(2,7))ˆ1000000;
<bijective rcwa mapping of Z with modulus 21>

There are methods installed forIsInjective, IsSurjective, IsBijective andImage.
Example

gap> [IsInjective(T), IsSurjective(T), IsBijective(a)];
[false, true, true]
gap> Image(RcwaMapping([[2,0,1]]));
0(2)

RCWA 15

Images of elements, of finite sets of elements and of unions of finitely many residue classes of the
source of an rcwa mapping can be computed withˆ, the same symbol as used for exponentiation and
conjugation. The same works for partitions of the source into a finite number of residue classes.

Example

gap> 15ˆT;
23
gap> ResidueClass(1,2)ˆT;
2(3)
gap> List([[0,3],[1,3],[2,3]],ResidueClass)ˆa;
[0(2), 1(4), 3(4)]

For computing preimages of elements under rcwa mappings, there are methods forPreImageElm and
PreImagesElm. The preimage of a finite set of ring elements or of a union of finitely many residue
classes under an rcwa mapping can be computed usingPreImage.

Example

gap> PreImagesElm(T,8);
[5, 16]
gap> PreImage(T,ResidueClass(Integers,3,2));
Z \ 0(6) U 2(6)
gap> M := [1];; l := [1];;
gap> while Length(M) < 10000 do M := PreImage(T,M); Add(l,Length(M)); od; l;
[1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208, 277,
367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458, 8608, 11472]

There is a method for the operationSupport for computing the support of a bijective rcwa mapping.
A synonym forSupport isMovedPoints. There is also a method forRestrictedPerm for computing
the restriction of a bijective rcwa mapping to a union of residue classes which it fixes setwisely.

Example

gap> List([a,aˆ2],Support);
[Z \ [-1, 0, 1], Z \ [-3, -2, -1, 0, 1, 2, 3]]
gap> RestrictedPerm(ClassShift(0,2)*ClassReflection(1,2),ResidueClass(0,2));
<rcwa mapping of Z with modulus 2>
gap> last = ClassShift(0,2);
true

Rcwa mappings can be added and subtracted pointwisely. However, please note that the set of rcwa
mappings of a ring does not form a ring under+ and*.

Example

gap> b := ClassShift(0,3) * a;;
gap> [Image((a + b)), Image((a - b))];
[2(4), [-2, 0]]

RCWA 16

There are operationsModulus (abbreviatedMod) andCoefficients for extracting the modulus resp.
the coefficient list of a given rcwa mapping. The meaning of the return values is as described in
the previous section. General documentation for most operations mentioned in this section can be
found in theGAP reference manual. For rcwa mappings of rings other thanZ, not for all operations
applicable methods are available.

2.4 Factoring rcwa mappings

Factoring group elements into elements of some “nice” set of generators is often helpful. The fol-
lowing can be seen as an attempt towards getting a satisfactory solution of this problem for the group
RCWA(Z):

2.4.1 FactorizationIntoCSCRCT (g)

♦ FactorizationIntoCSCRCT(g) (attribute)

♦ Factorization(g) (method)

Returns: A factorization of the bijective rcwa mappingg into class shifts, class reflections and
class transpositions, provided that such a factorization exists and the method finds it.

The method may returnfail, stop with an error message or run into an infinite loop. If it returns
a result, this result is always correct.

By default, prime switches are taken as one factor. If the optionExpandPrimeSwitches is set,
they are each decomposed into the 6 class transpositions given in the definition (seePrimeSwitch
(2.2.4)). By default, the factoring process begins with splitting off factors from the right. This can
be changed by setting the optionDirection to "from the left". By default, a reasonably coarse
respected partition of the integral mapping occuring in the final stage of the algorithm is computed.
This can be suppressed by setting the optionShortenPartition equal tofalse. By default, at the
end it is checked whether the product of the determined factors indeed equalsg. This check can be
suppressed by setting the optionNC.

The problem of obtaining a factorization as described is algorithmically difficult, and this factor-
ization routine is currently perhaps the most sophisticated part of theRCWA package. Information
about the progress of the factorization process can be obtained by setting the info level of the Info
classInfoRCWA (6.3.1) to 2.

Example

gap> Factorization(Comm(ClassShift(0,3)*ClassReflection(1,2),ClassShift(0,2)));
[ClassReflection(2,3), ClassShift(2,6)ˆ-1, ClassTransposition(0,6,2,6),
ClassTransposition(0,6,5,6)]

For purposes of demonstrating the capabilities of the factorization routine, in Section4.1Collatz’
permutation is factored. Lothar Collatz has investigated this permutation in 1932. Its cycle structure
is unknown so far.

Class transpositions can be written as products of any given numberk of class transpositions, as
long as the underlying ring has a residue class ring of cardinalityk. Such a decomposition can be
obtained bySplittedClassTransposition(ct,k).

Obtaining a factorization of a bijective rcwa mapping into class shifts, class reflections and class
transpositions is particularly difficult if multiplier and divisor are coprime. A prototype of permuta-
tions which have this property has been introduced in a different context in [Kel99]:

RCWA 17

2.4.2 mKnot (m)

♦ mKnot(m) (function)

Returns: The permutationgm as introduced in [Kel99].
The argumentm must be an odd integer≥ 3.

Example

gap> Display(mKnot(5));

Wild bijective rcwa mapping of Z with modulus 5

n mod 5 | nˆmKnot(5)
---------------------------------------+--------------------------------------
0 | 6n/5
1 | (4n + 1)/5
2 | (6n - 2)/5
3 | (4n + 3)/5
4 | (6n - 4)/5

In his article, Timothy P. Keller shows that a permutation of this type cannot have infinitely many
cycles of any given finite length.

2.5 Determinant and sign

2.5.1 Determinant (g)

♦ Determinant(g) (method)

♦ Determinant(g, S) (method)

Returns: The determinant of the bijective rcwa mappingg.
The determinantof an affine mappingn 7→ (an+ b)/c whose source is a residue classr(m) is

defined byb/|a|m. This definition is extended additively to determinants of rcwa mappings and their
restrictions to unions of residue classes.

Using the notation from the definition of an rcwa mapping, thedeterminantdet(σ) of an rcwa
mappingσ is given by

1
m

(
∑

r(m)∈R/mR

br(m)

|ar(m)|

)
.

The determinant mapping is an epimorphism from the group of all class-wise order-preserving bijec-
tive rcwa mappings ofZ to (Z,+), see [Koh05], Theorem 2.11.9.

If a residue class unionS is given as an additional argument, the method returns the determinant
of the restriction ofg to S.

Example

gap> List([ClassTransposition(0,4,5,12),ClassShift(3,7)],Determinant);
[0, 1]
gap> Determinant(ClassTransposition(0,4,5,12)*ClassShift(3,7)ˆ100);
100

RCWA 18

2.5.2 Sign (g)

♦ Sign(g) (attribute)

Returns: The sign of the bijective rcwa mappingg.
Using the notation from the definition of an rcwa mapping, thesignof a bijective rcwa mappingσ

of Z is defined by

(−1)

det(σ)+
1
m

 ∑
r(m): ar(m)<0

(m−2r)


.

The sign mapping is an epimorphism from RCWA(Z) to the groupZ× of units of Z, see [Koh05],
Theorem 2.12.8. Therefore the kernel of the sign mapping is a normal subgroup of RCWA(Z) of
index 2.

Example

gap> List([ClassTransposition(3,4,2,6),ClassShift(0,3),ClassReflection(2,5)],Sign);
[1, -1, -1]
gap> Sign (ClassTransposition(3,4,2,6)*ClassShift(0,3)*ClassReflection(2,5));
1

2.6 Attributes and properties derived from the coefficients

A number of basic attributes and properties of an rcwa mapping are derived immediately from the
coefficients of its affine partial mappings. This holds for example for the multiplier and the divisor.
These two values are stored as attributesMultiplier and Divisor, or in shortMult resp. Div.
The prime setof an rcwa mapping is the set of prime divisors of the product of its modulus and its
multiplier. It is stored as an attributePrimeSet. An rcwa mapping is calledintegral if its divisor
equals 1. An rcwa mapping is calledbalancedif its multiplier and divisor have the same prime
divisors. An integral mapping has the propertyIsIntegral and a balanced mapping has the property
IsBalanced. An rcwa mapping of the ring of integers or of one of its semilocalizations is called
class-wise order-preservingif and only if all coefficientsar(m) in the numerators of the affine partial
mappings are positive. The corresponding property isIsClassWiseOrderPreserving.

RCWA 19

Example

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> IsBijective(u);; Display(u);

Bijective rcwa mapping of Z with modulus 5

n mod 5 | nˆf
---------------------------------------+--------------------------------------
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> Multiplier(u);
9
gap> Divisor(u);
5
gap> PrimeSet(u);
[3, 5]
gap> IsIntegral(u) or IsBalanced(u);
false
gap> IsClassWiseOrderPreserving(u);
true

2.7 Functionality related to the affine partial mappings

2.7.1 LargestSourcesOfAffineMappings (f)

♦ LargestSourcesOfAffineMappings(f) (attribute)

Returns: The coarsest partition ofSource(f) on whose elements the rcwa mappingf is affine.

Example

gap> LargestSourcesOfAffineMappings(ClassShift(3,7));
[Z \ 3(7), 3(7)]
gap> LargestSourcesOfAffineMappings(ClassReflection(0,1));
[Integers]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> List([u, uˆ-1], LargestSourcesOfAffineMappings);
[[0(5), 1(5), 2(5), 3(5), 4(5)], [0(3), 1(3), 2(9), 5(9), 8(9)]]
gap> kappa := ClassTransposition(2,4,3,4) * ClassTransposition(4,6,8,12)
> * ClassTransposition(3,4,4,6);; SetName(kappa,"kappa");
gap> LargestSourcesOfAffineMappings(kappa);
[2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12)]

RCWA 20

2.7.2 Multpk (f, p, k)

♦ Multpk(f, p, k) (operation)

Returns: The union of the residue classesr(m) such thatpk||ar(m) if k≥ 0, and the union of the
residue classesr(m) such thatpk||cr(m) if k≤ 0. In this context,m denotes the modulus andar(m) and
cr(m) denote the coefficients off as introduced in the definition of an rcwa mapping.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> [Multpk(T,2,-1), Multpk(T,3,1)];
[Integers, 1(2)]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> [Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1)];
[[], 0(5) U 2(5), Z \ 0(5) U 2(5), Integers]

2.7.3 FixedPointsOfAffinePartialMappings (f)

♦ FixedPointsOfAffinePartialMappings(f) (attribute)

Returns: A list of the sets of fixed points of the affine partial mappings of the rcwa mappingf in
the quotient field of its source.

The returned list contains entries for the restrictions off to all residue classes moduloMod(f).
A list entry can either be an empty set, the source off or a set of cardinality 1. The ordering of the
entries corresponds to the ordering of the residues inAllResidues(Source(f),m).

Example

gap> FixedPointsOfAffinePartialMappings(ClassShift(0,2));
[[], Rationals]
gap> List([1..3],k->FixedPointsOfAffinePartialMappings(Tˆk));
[[[0], [-1]], [[0], [1], [2], [-1]],
[[0], [-7], [2/5], [-5], [4/5], [1/5], [-10], [-1]]]

There are attributesSetOnWhichMappingIsClassWise (-OrderPreserving, -Constant,
-OrderReversing) which store the union of the residue classes (modMod(f)) on which an rcwa
mappingf of Z or of a semilocalization thereof is class-wise order-preserving, class-wise constant
resp. class-wise order-reversing.

Example

gap> List([ClassTransposition(1,2,0,4),ClassShift(2,3),ClassReflection(2,5)],
> SetOnWhichMappingIsClassWiseOrderPreserving);
[Integers, Integers, Z \ 2(5)]
gap> SetOnWhichMappingIsClassWiseConstant(RcwaMapping([[2,0,1],[0,4,1]]));
1(2)
gap> SetOnWhichMappingIsClassWiseOrderReversing(ClassReflection(13,17));
13(17)

RCWA 21

2.8 Transition graphs and transition matrices

2.8.1 TransitionGraph (f, m)

♦ TransitionGraph(f, m) (operation)

Returns: The transition graph of the rcwa mappingf for modulusm.
Thetransition graphΓ f ,m of f for modulusm is defined as follows:

1. The vertices are the residue classes (modm).

2. There is an edge fromr1(m) to r2(m) if and only if there is somen∈ r1(m) such thatnf ∈ r2(m).

The assignment of the residue classes (modm) to the vertices of the graph corresponds to the ordering
of the residues inAllResidues(Source(f),m). The result is returned in the format used by the
packageGRAPE.

Example

gap> TransitionGraph(ClassShift(0,1),6);
rec(isGraph := true, order := 6, group := Group(()),
schreierVector := [-1, -2, -3, -4, -5, -6],
adjacencies := [[2], [3], [4], [5], [6], [1]],
representatives := [1, 2, 3, 4, 5, 6], names := [1, 2, 3, 4, 5, 6])

2.8.2 OrbitsModulo (f, m)

♦ OrbitsModulo(f, m) (operation)

Returns: The partition ofAllResidues(Source(f),m) corresponding to the weakly connected
components of the transition graph of the rcwa mappingf for modulusm.

Example

gap> OrbitsModulo(ClassTransposition(0,2,1,4),8);
[[0, 1, 4], [2, 5, 6], [3], [7]]

2.8.3 FactorizationOnConnectedComponents (f, m)

♦ FactorizationOnConnectedComponents(f, m) (operation)

Returns: The set of restrictions of the rcwa mappingf to the weakly connected components of
its transition graphΓ f ,m.

The product of the returned mappings isf. They have pairwise disjoint supports, hence any two
of them commute.

Example

gap> sigma := ClassTransposition(1,4,2,4) * ClassTransposition(1,4,3,4)
> * ClassTransposition(3,9,6,18) * ClassTransposition(1,6,3,9);;
gap> List(FactorizationOnConnectedComponents(sigma,36),Support);
[33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36),
<union of 23 residue classes (mod 36)> \ [-6, 3]]

RCWA 22

2.8.4 TransitionMatrix (f, m)

♦ TransitionMatrix(f, m) (operation)

Returns: The transition matrix of the rcwa mappingf for modulusm.
Let M be this matrix. Then for any two residue classesr1(m), r2(m)∈R/mR, the entryMr1(m),r2(m)

is defined by

Mr1(m),r2(m) :=
|R/mR|
|R/m̂R|

·
∣∣{r(m̂) ∈ R/m̂R| r ∈ r1(m)∧ r f ∈ r2(m)

}∣∣ ,
wherem̂ is the product ofm and the square of the modulus off. The assignment of the residue
classes (modm) to the rows and columns of the matrix corresponds to the ordering of the residues in
AllResidues(Source(f),m).

The transition matrix is a weighted adjacency matrix of the corresponding transition graph
TransitionGraph(f,m). The sums of the rows of a transition matrix are always equal to 1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Display(TransitionMatrix(Tˆ3,3));
[[1/8, 1/4, 5/8],
[0, 1/4, 3/4],
[0, 3/8, 5/8]]

2.8.5 Sources (f)

♦ Sources(f) (attribute)

Returns: A list of unions of residue classes modulo the modulusm of the rcwa mappingf, as
described below.

The returned list contains an entry for any strongly connected component of the transition graph
of f for modulusMod(f) which has only outgoing edges. The list entry corresponding to such a
component is the union of the vertices belonging to it.

Example

gap> Sources(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[0(4)]

2.8.6 Sinks (f)

♦ Sinks(f) (attribute)

Returns: (SeeSources (2.8.5), with “outgoing” replaced by “ingoing”.)

Example

gap> Sinks(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[1(4)]

RCWA 23

2.8.7 Loops (f)

♦ Loops(f) (attribute)

Returns: The list of non-isolated vertices of the transition graph of the rcwa mappingf for
modulusMod(f) which carry a loop.

Example

gap> Loops(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[0(4), 1(4)]

2.9 Trajectories

2.9.1 Trajectory (f, n, length)

♦ Trajectory(f, n, length) (method)

♦ Trajectory(f, n, length, m) (method)

♦ Trajectory(f, n, terminal) (method)

♦ Trajectory(f, n, terminal, m) (method)

Returns: The firstlength iterates in the trajectory of the rcwa mappingf starting atn, resp. the
initial part of the trajectory of the rcwa mappingf starting atn which ends at the first occurence of an
iterate in the setterminal. If the argumentm is given, the iterates are reduced (modm).

To save memory when computing long trajectories containing huge iterates, the reduction (modm)
is done each time before storing an iterate. In place of the ring elementn, the methods also accept a
finite set of ring elements or a union of residue classes.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Trajectory(T,27,16); Trajectory(T,27,25,5);
[27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103, 155]
[2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 3, 0, 0, 3, 0, 3, 0, 0, 3]
gap> Trajectory(T,15,[1]); Trajectory(T,15,[1],2);
[15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1]
[1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]
gap> Trajectory(T,ResidueClass(Integers,3,0),Integers);
[0(3), 0(3) U 5(9), 0(3) U 5(9) U 7(9) U 8(27),
<union of 20 residue classes (mod 27)>, <union of 73 residue classes (mod

81)>, Z \ 10(81) U 37(81), Integers]

2.9.2 Trajectory (f, n, length, whichcoeffs)

♦ Trajectory(f, n, length, whichcoeffs) (method)

♦ Trajectory(f, n, terminal, whichcoeffs) (method)

Returns: Either the listc of triples of coprime coefficients such that for anyk it holds that
nˆ(fˆ(k-1)) = (c[k][1]*n + c[k][2])/c[k][3] or the last entry of that list, depending on
whetherwhichcoeffs is "AllCoeffs" or "LastCoeffs".

RCWA 24

The meanings of the argumentslength and terminal are the same as in the methods for
the operationTrajectory described above. In general, computing only the last coefficient triple
(whichcoeffs = "LastCoeffs") needs considerably less memory than computing the entire list.

Example

gap> Trajectory(T,27,[1],"LastCoeffs");
[36472996377170786403, 195820718533800070543, 1180591620717411303424]
gap> (last[1]*27+last[2])/last[3];
1

2.9.3 IncreasingOn (f)

♦ IncreasingOn(f) (attribute)

♦ DecreasingOn(f) (attribute)

Returns: The union of all residue classesr(m) such that|R/ar(m)R| > |R/cr(m)R| resp.
|R/ar(m)R| < |R/cr(m)R|, whereR denotes the source,m the modulus andar(m), br(m) andcr(m) the
coefficients off as introduced in the definition of an rcwa mapping.

Example

gap> List([1..3],k->IncreasingOn(Tˆk));
[1(2), 3(4), 3(4) U 1(8) U 6(8)]
gap> List([1..3],k->DecreasingOn(Tˆk));
[0(2), Z \ 3(4), 0(4) U 2(8) U 5(8)]
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation.
gap> List([-2..2],k->IncreasingOn(aˆk));
[Z \ 1(8) U 7(8), 0(2), [], Z \ 0(3), 1(9) U 4(9) U 5(9) U 8(9)]

2.9.4 GluckTaylorInvariant (a)

♦ GluckTaylorInvariant(a) (function)

Returns: The invariant introduced in [GT02]. This is (∑l
i=1ai · ai modl+1)/(∑l

i=1a2
i), wherel

denotes the length ofa.
The argumenta must be a list of integers. In [GT02] it is shown that ifa is a trajectory of the

‘original’ Collatz mappingn 7→ (n/2 if n even, 3n+ 1 if n odd) starting at an odd integer≥ 3 and
ending at 1, then the invariant lies in the interval]9/13,5/7[.

Example

gap> C := RcwaMapping([[1,0,2],[3,1,1]]);;
gap> List([3,5..49],n->Float(GluckTaylorInvariant(Trajectory(C,n,[1]))));
[0.701053, 0.696721, 0.708528, 0.707684, 0.706635, 0.695636, 0.711769,
0.699714, 0.707409, 0.693833, 0.710432, 0.706294, 0.714242, 0.699935,
0.714242, 0.705383, 0.706591, 0.698198, 0.712222, 0.714242, 0.709048,
0.69612, 0.714241, 0.701076]

RCWA 25

2.10 Localizations of rcwa mappings of the integers

2.10.1 LocalizedRcwaMapping (f, p)

♦ LocalizedRcwaMapping(f, p) (function)

♦ SemilocalizedRcwaMapping(f, pi) (function)

Returns: The rcwa mapping ofZ(p) resp.Z(π) with the same coefficients as the rcwa mappingf
of Z.

The argumentp resp. pi must be a prime resp. a set of primes, and the argumentf must be an
rcwa mapping ofZ whose modulus is a power ofp, resp. whose modulus has only prime divisors
which lie inpi.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Cycle(LocalizedRcwaMapping(T,2),131/13);
[131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13, 419/13,
635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13, 1231/13,
1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13]

2.11 Extracting roots of rcwa mappings

2.11.1 Root (f, k)

♦ Root(f, k) (method)

Returns: An rcwa mappingg such thatgˆk=f, provided that such a mapping exists and that there
is a method available which can determine it.

Example

gap> Root(ClassTransposition(0,2,1,2),100);
<bijective rcwa mapping of Z with modulus 8>
gap> lastˆ100 = ClassTransposition(0,2,1,2);
true

2.12 Special functions for non-bijective mappings

2.12.1 RightInverse (f)

♦ RightInverse(f) (attribute)

Returns: A right inverse of the injective rcwa mappingf, i.e. a mappingg such thatfg = 1.

Example

gap> twice := RcwaMapping([[2,0,1]]);
Rcwa mapping of Z: n -> 2n
gap> twice * RightInverse(twice);
IdentityMapping(Integers)

RCWA 26

2.12.2 CommonRightInverse (l, r)

♦ CommonRightInverse(l, r) (operation)

Returns: A mappingd such thatld = rd = 1.
The mappingsl andr must be injective, and their images must form a partition of their source.

Example

gap> twice := RcwaMapping([[2,0,1]]); twiceplus1 := RcwaMapping([[2,1,1]]);
Rcwa mapping of Z: n -> 2n
Rcwa mapping of Z: n -> 2n + 1
gap> Display(CommonRightInverse(twice,twiceplus1));

Rcwa mapping of Z with modulus 2

n mod 2 | nˆf
---------------------------------------+--------------------------------------
0 | n/2
1 | (n - 1)/2

2.12.3 ImageDensity (f)

♦ ImageDensity(f) (attribute)

Returns: The image densityof the rcwa mappingf.
In the notation introduced in the definition of an rcwa mapping, theimage densityof an rcwa

mappingf is defined by1
m ∑r(m)∈R/mR|R/cr(m)R|/|R/ar(m)R|. The image density of an injective rcwa

mapping is≤ 1, and the image density of a surjective rcwa mapping is≥ 1 (this can be seen easily).
Thus in particular the image density of a bijective rcwa mapping is 1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> List([T, ClassShift(0,1), RcwaMapping([[2,0,1]])], ImageDensity);
[4/3, 1, 1/2]

Given an rcwa mappingf, the functionInjectiveAsMappingFrom returns a setS such that the
restriction off to S is injective, and such that the image ofS underf is the entire image off.

Example

gap> InjectiveAsMappingFrom(T);
0(2)

RCWA 27

2.13 Probabilistic guesses on the behaviour of trajectories

This section describes some functionality for getting “educated guesses” on the overall behaviour
of the trajectories of a given rcwa mapping. Its contents have deliberately been separated from the
documentation of the non-probabilistic functionality related to trajectories of rcwa mappings.

2.13.1 LikelyContractionCentre (f, maxn, bound)

♦ LikelyContractionCentre(f, maxn, bound) (operation)

Returns: A list of ring elements (see below).
This operation tries to compute thecontraction centreof the rcwa mappingf. Assuming its

existence this is the unique finite subsetS0 of the source off on whichf induces a permutation and
which intersects nontrivially with any trajectory off. The mappingf is assumed to becontracting,
i.e. to have such a contraction centre. As in general contraction centres are likely not computable, the
methods for this operation are probabilistic and may return wrong results. The argumentmaxn is a
bound on the starting value andbound is a bound on the elements of the trajectories to be searched. If
the limit bound is exceeded, an Info message on Info level 3 ofInfoRCWA is given.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> S0 := LikelyContractionCentre(T,100,1000);
#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.
The returned result can only be regarded as a rough guess.
See ?LikelyContractionCentre for information on how to improve this guess.
[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1, 0,
1, 2]

2.13.2 GuessedDivergence (f)

♦ GuessedDivergence(f) (operation)

Returns: A floating point value which is intended to be a rough guess on how fast the trajectories
of the rcwa mappingf diverge (return value greater than 1) or converge (return value smaller than 1).

Nothing particular is guaranteed.
Example

gap> GuessedDivergence(T);
#I Warning: GuessedDivergence: no particular return value is guaranteed.
0.866025

RCWA 28

2.14 The categories and families of rcwa mappings

2.14.1 IsRcwaMapping (f)

♦ IsRcwaMapping(f) (filter)

♦ IsRcwaMappingOfZ(f) (filter)

♦ IsRcwaMappingOfZ pi(f) (filter)

♦ IsRcwaMappingOfGFqx(f) (filter)

Returns: true if f is an rcwa mapping resp. an rcwa mapping of the ring of integers resp. an
rcwa mapping of a semilocalization of the ring of integers resp. an rcwa mapping of a polynomial
ring in one variable over a finite field, andfalse otherwise.

Often the same methods can be used for rcwa mappings of the ring of integers and of its semilo-
calizations. For this reason there is a categoryIsRcwaMappingOfZOrZ pi which is the union of
IsRcwaMappingOfZ andIsRcwaMappingOfZ pi. The internal representation of rcwa mappings is
calledIsRcwaMappingStandardRep.

2.14.2 RcwaMappingsFamily (R)

♦ RcwaMappingsFamily(R) (function)

Returns: The family of rcwa mappings of the ringR.

Chapter 3

Residue Class-Wise Affine Groups

This chapter describes the functionality provided by this package for computing with residue class-
wise affine groups.

3.1 Constructing residue class-wise affine groups

Residue class-wise affine groups can be constructed using eitherGroup, GroupByGenerators or
GroupWithGenerators as usual, cp. theGAP reference manual.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));
<rcwa group over Z with 2 generators>
gap> IsTame(G); Size(G); IsSolvable(G); IsPerfect(G);
true
infinity
false
false

There are methods for the operationsView, Display, Print andString which are applicable to rcwa
groups. All rcwa groups over a ringR are subgroups of RCWA(R). The group RCWA(R) itself is not
finitely generated, thus cannot be constructed in the way described above. It is handled as a special
case:

3.1.1 RCWA (R)

♦ RCWA(R) (function)

Returns: The group RCWA(R) of all residue class-wise affine permutations of the ringR.

Example

gap> RCWA_Z := RCWA(Integers);
RCWA(Z)

29

RCWA 30

Example

gap> One(RCWA_Z); Size(RCWA_Z); IsFinitelyGeneratedGroup(RCWA_Z);
IdentityMapping(Integers)
infinity
false
gap> IsSolvable(RCWA_Z) or IsPerfect(RCWA_Z);
false
gap> Centre(RCWA_Z);
Trivial rcwa group over Z
gap> IsSubgroup(RCWA_Z,G);
true

There is a method for the operationRandom which generates pseudo-random elements of
RCWA(Z) – see Section3.10.

Another way of constructing an rcwa group is taking the image of an rcwa representation:

3.1.2 IsomorphismRcwaGroupOverZ (G)

♦ IsomorphismRcwaGroupOverZ(G) (attribute)

♦ IsomorphismRcwaGroup(G) (attribute)

Returns: A monomorphism from the groupG to RCWA(Z).
Currently there are methods available for finite groups, for free products of finite groups and for

free groups. The method for free products of finite groups uses the Table-Tennis Lemma (cp. e.g.
Section II.B. in [dlH00]), and the method for free groups uses an adaptation of the construction given
on page 27 in [dlH00] from PSL(2,C) to RCWA(Z).

In case G is a finite-degree permutation group, the image under a specific embedding
can be obtained byRcwaGroupByPermGroup(G). The resulting groupH satisfies the relation
Action(HˆClassShift(0,1),[1..LargestMovedPoint(G)]) = G.

Example

gap> F := FreeProduct(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3)),
> SymmetricGroup(3));
<fp group on the generators [f1, f2, f3, f4, f5]>
gap> IsomorphismRcwaGroup(F);
[f1, f2, f3, f4, f5] -> [<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 24>,
<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 72>,
<bijective rcwa mapping of Z with modulus 36>]

gap> IsomorphismRcwaGroup(FreeGroup(2));
[f1, f2] -> [<wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8>]

gap> F2 := Image(last);
<wild rcwa group over Z with 2 generators>

RCWA 31

3.1.3 StructureDescription (G)

♦ StructureDescription(G) (method)

Returns: A string which describes the structure of the rcwa groupG to some extent.
The attributeStructureDescription for finite groups is documented in theGAP Reference

Manual. Therefore we describe here only issues which are specific to infinite groups, and in particular
to rcwa groups.

Wreath products are denoted bywr, and free products are denoted by*. The infinite cyclic group
(Z,+) is denoted byZ, the infinite dihedral group is denoted byD0 and free groups of rank 2,3,4, . . .
are denoted byF2, F3, F4, While for finite groups the symbol. is used to denote a non-split
extension, for rcwa groups in general it stands for an extension which may be split or not. For wild
groups in most cases it happens that there is a large section on which no structural information can be
obtained. Such sections of the group with unknown structure are denoted by<unknown>. In general,
the structure of a section denoted by<unknown> can be very complicate and very difficult to exhibit.
While for isomorphic finite groups always the same structure description is computed, this cannot be
guaranteed for isomorphic rcwa groups.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));;
gap> StructureDescription(G);
"(Z x Z x Z x Z x Z x Z x Z) . (C2 x S7)"
gap> G := Group(ClassTransposition(0,2,1,4),
> ClassShift(2,4),ClassReflection(1,2));;
gap> StructureDescription(G:short);
"Zˆ2.((S3xS3):2)"
gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),
> CyclicGroup(2))));;
gap> G := DirectProduct(PSL2Z,F2);
<wild rcwa group over Z with 4 generators>
gap> StructureDescription(G);
"(C3 * C2) x F2"
gap> G := WreathProduct(G,CyclicGroup(IsRcwaGroupOverZ,infinity));
<wild rcwa group over Z with 5 generators>
gap> StructureDescription(G);
"((C3 * C2) x F2) wr Z"
gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;
gap> G := Group(Collatz,ClassShift(0,1));;
gap> StructureDescription(G:short);
"<unknown>.Z"

3.2 Direct products and wreath products

The class of groups which can faithfully be represented as rcwa groups is closed under forming direct
products, wreath products with finite groups and wreath products with the infinite cyclic group(Z,+).
For information on how direct products and wreath products of subgroups of RCWA(Z) are embedded
in RCWA(Z), see Section3.9below.

RCWA 32

3.2.1 DirectProduct (G1, G2, ...)

♦ DirectProduct(G1, G2, ...) (method)

Returns: An rcwa group isomorphic to the direct product of the rcwa groups overZ given as
arguments.

There is certainly no unique or canonical way to embed a direct product of rcwa groups into
RCWA(Z). This method chooses to embed the groupsG1, G2, G3 ... via restrictions byn 7→ mn,
n 7→ mn+1, n 7→ mn+2 ... (→ Restriction (3.9.1)), wherem denotes the number of groups given
as arguments.

Example

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> F2xF2 := DirectProduct(F2,F2);
<wild rcwa group over Z with 4 generators>
gap> Image(Projection(F2xF2,1)) = F2;
true

3.2.2 WreathProduct (G, P)

♦ WreathProduct(G, P) (method)

♦ WreathProduct(G, Z) (method)

Returns: An rcwa group isomorphic to the wreath product of the rcwa groupG overZ with the
finite permutation groupP, resp. with the infinite cyclic groupZ.

The first-mentioned method embeds theDegreeAction(P)th direct power ofG using the method
for DirectProduct, and lets the permutation groupP act naturally on the set of residue classes
modulo DegreeAction(P). The second-mentioned method restricts (→ Restriction (3.9.1))
the groupG to the residue class 3(4), and maps the generator of the infinite cyclic groupZ to
ClassTransposition(0,2,1,2) * ClassTransposition(0,2,1,4).

Example

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> F2wrA5 := WreathProduct(F2,AlternatingGroup(5));;
gap> Embedding(F2wrA5,1);
[<wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8>] ->

[<wild bijective rcwa mapping of Z with modulus 40>,
<wild bijective rcwa mapping of Z with modulus 40>]

gap> Embedding(F2wrA5,2);
[(1,2,3,4,5), (3,4,5)] ->
[<bijective rcwa mapping of Z with modulus 5, of order 5>,
<bijective rcwa mapping of Z with modulus 5, of order 3>]

gap> ZwrZ := WreathProduct(Group(ClassShift(0,1)),Group(ClassShift(0,1)));
<wild rcwa group over Z with 2 generators>
gap> Embedding(ZwrZ,1);
[ClassShift(0,1)] ->
[<tame bijective rcwa mapping of Z with modulus 4, of order infinity>]
gap> Embedding(ZwrZ,2);
[ClassShift(0,1)] -> [<wild bijective rcwa mapping of Z with modulus 4>]

RCWA 33

3.3 The membership test

There is a method for the operationin. Given an rcwa groupG and an rcwa mappingg, this method
tries to decide whetherg is an element ofG or not. It can always decide this question ifG is tame. For
wild groups this is sometimes not the case. On Info level 2 ofInfoRCWA the method gives information
on reasons whyg is an element ofG or not.

The direct product of two free groups of rank 2 can faithfully be represented as an rcwa group.
According to [Mih58] this implies that in general the membership problem for rcwa groups is algo-
rithmically undecidable.

Example

gap> G := Group(ClassShift(0,3),ClassTransposition(0,3,2,6));;
gap> ClassShift(2,6)ˆ7*ClassTransposition(0,3,2,6)*ClassShift(0,3)ˆ-3 in G;
true
gap> ClassShift(0,1) in G;
false

3.4 Basic attributes and properties of rcwa groups

There is a method available for the operationSize. An rcwa group is finite if and only if it is tame
and its action on a suitably chosen respected partition (seeRespectedPartition (3.11.1)) is faithful.
Hence the problem of computing the order of an rcwa group reduces to the problem of deciding
whether it is tame, the problem of deciding whether it acts faithfully on a respected partition and the
problem of computing the order of the finite permutation group induced on the respected partition.

Basic attributes derived from the affine partial mappings of the elements of an rcwa group and
their coefficients areModulus, Multiplier, Divisor andPrimeSet. Themodulusof an rcwa group
is the lcm of the moduli of its elements in case such an lcm exists and 0 otherwise. Themultiplier
resp.divisor of an rcwa group is the lcm of the multipliers resp. divisors of its elements in case such
an lcm exists and∞ otherwise. Theprime setof an rcwa group is the union of the prime sets of its
elements. There are shorthandsMod, Mult andDiv defined forModulus, Multiplier resp.Divisor.
Technically, the modulus of an rcwa group is stored as an attributeModulusOfRcwaGroup.

A tame rcwa group, i.e. one with modulus 0, has the propertyIsTame. An rcwa group is calledin-
tegral resp.class-wise order-preservingif all of its elements are so. There are corresponding methods
available forIsIntegral andIsClassWiseOrderPreserving.

Example

gap> g1 := RcwaMapping((1,2),[1..2]);;
gap> g2 := RcwaMapping((1,2,3),[1..3]);;
gap> g3 := RcwaMapping((1,2,3,4,5),[1..5]);;
gap> List([g1,g2,g3],Modulus);
[2, 3, 5]
gap> G := Group(g1,g2,g3);;
gap> Size(G);
265252859812191058636308480000000
gap> List([Modulus,Multiplier,Divisor,PrimeSet,
> IsIntegral,IsClassWiseOrderPreserving],f->f(G));
[30, 1, 1, [2, 3, 5], true, true]

RCWA 34

3.5 Permutation- and matrix representations

3.5.1 IsomorphismPermGroup (G)

♦ IsomorphismPermGroup(G) (method)

Returns: An isomorphism from the finite rcwa groupG to a finite-degree permutation group.

Example

gap> IsomorphismPermGroup(Group(ClassTransposition(0,2,1,2),
> ClassTransposition(0,3,1,3)));
[ClassTransposition(0,2,1,2), ClassTransposition(0,3,1,3)] ->
[(1,2)(3,4)(5,6), (1,2)(4,5)]

3.5.2 IsomorphismMatrixGroup (G)

♦ IsomorphismMatrixGroup(G) (attribute)

Returns: An isomorphism from the rcwa groupG to a matrix group, provided thatG embeds into
a matrix group and that there is a suitable method available. Both conditions are fulfilled ifG is tame.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(2,4));
<rcwa group over Z with 2 generators>
gap> phi := IsomorphismMatrixGroup(G);;
gap> FieldOfMatrixGroup(Image(phi));
Rationals
gap> DegreeOfMatrixGroup(Image(phi));
10
gap> Display(GeneratorsOfGroup(Image(phi))[1]*One(GF(5)));
. 3 2 . .
. 1 . .
. 3 2
. 1
. . . . 1
. 1
2 1
. 1
. . 2 1
. . . 1
gap> Display(GeneratorsOfGroup(Image(phi))[2]*One(GF(5)));
1
. 1
. . 1 4
. . . 1
. . . . 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

RCWA 35

3.6 Factoring elements into generators

3.6.1 PreImagesRepresentative (phi, g)

♦ PreImagesRepresentative(phi, g) (method)

Returns: A representative of the set of preimages ofg under the homomorphismphi from a free
group to an rcwa group overZ.

This method can be used for factoring elements of rcwa groups overZ into generators. It can
also be used for finding nontrivial relations among the generators if the respective group is not free
and the method returns a factorization which does not happen to be equal to one which is already
known. The homomorphismphi must map the generators of the free group to the generators of the
rcwa group one-by-one. This method is also suitable for wild groups. The implementation is based
onRepresentativeActionPreImage (3.7.3).

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation.
gap> nu := RcwaMapping([[1,1,1]]);; # n -> n + 1.
gap> SetName(nu,"nu"); SetName(a,"a"); # For displaying purposes.
gap> G := Group(a,nu);
<rcwa group over Z with 2 generators>
gap> phi := EpimorphismFromFreeGroup(G);
[a, nu] -> [a, nu]
gap> F := Source(phi);
<free group on the generators [a, nu]>
gap> w := Comm(F.1ˆ2*F.2ˆ4,F.1*F.2ˆ3);
nuˆ-4*aˆ-2*nuˆ-3*a*nuˆ4*a*nuˆ3
gap> g := wˆphi;
<bijective rcwa mapping of Z with modulus 8>
gap> pre := PreImagesRepresentative(phi,g);
nuˆ-4*aˆ-1*nuˆ-1*aˆ-1*nuˆ3*a*nuˆ-1*a*nuˆ3
gap> rel := w/pre; # pre <> w --> We have a nontrivial relation!
nuˆ-4*aˆ-2*nuˆ-3*a*nuˆ5*aˆ-1*nuˆ-3*a*nu*a*nuˆ4
gap> rel := relˆ(F.2ˆ-4*F.1ˆ-1); # Cyclically reduced form.
aˆ-1*nuˆ-3*a*nuˆ5*aˆ-1*nuˆ-3*a*nu
gap> relˆphi;
IdentityMapping(Integers)

RCWA 36

3.6.2 PreImagesRepresentatives (phi, g)

♦ PreImagesRepresentatives(phi, g) (operation)

Returns: A list of representatives of the set of preimages ofg under the homomorphismphi
from a free group to an rcwa group overZ.

Quite frequently, computing several preimages is not harder than computing just one, i.e. often
several preimages are found simultaneously. This operation is called byPreImagesRepresentative
(3.6.1), which simply chooses the shortest representative. For a slightly more concise description see
there.

Example

gap> w := Comm(F.1*F.2,Comm(F.1,F.2ˆ2)); # We continue the example above.
nuˆ-1*aˆ-1*nuˆ-2*aˆ-1*nuˆ2*aˆ2*nu*aˆ-1*nuˆ-2*a*nuˆ2
gap> g := wˆphi;
<bijective rcwa mapping of Z with modulus 16>
gap> pre := PreImagesRepresentatives(phi,g);
[nuˆ-1*aˆ-2*nuˆ-2*a*nuˆ2*a*nuˆ-1*aˆ-1*nuˆ2*a,
nuˆ-1*aˆ-1*nuˆ-2*aˆ-1*nuˆ2*aˆ2*nuˆ-1*aˆ-1*nuˆ2*a]

gap> rel := pre[1]/pre[2];
nuˆ-1*aˆ-2*nuˆ-2*a*nuˆ2*aˆ-1*nuˆ-2*a*nuˆ2*a*nu
gap> rel := (relˆ(F.2ˆ-1*F.1ˆ-1))ˆ-1; # Cyclically reduced form.
nuˆ-2*aˆ-1*nuˆ2*a*nuˆ-2*aˆ-1*nuˆ2*a
gap> relˆphi;
IdentityMapping(Integers)

3.7 The action of an rcwa group on the underlying ring

The support, i.e. set of moved points, of an rcwa group can be determined bySupport or
MovedPoints (these are synonyms). Sometimes testing for transitivity on the underlying ring is fea-
sible. This is e.g. the case for tame groups overZ. Further it is often possible to determine group
elements which map a given tuple of elements of the underlying ring to a given other tuple, if such
elements exist.

3.7.1 IsTransitive (G, Integers)

♦ IsTransitive(G, Integers) (method)

Returns: true if the rcwa groupG acts transitively onZ andfalse otherwise.
If G is wild, this may fail or run into an infinite loop.

Example

gap> G := Group(ClassTransposition(1,2,0,4),ClassShift(0,2));;
gap> IsTransitive(G,Integers);
true

RCWA 37

3.7.2 RepresentativeAction (G, src, dest, act)

♦ RepresentativeAction(G, src, dest, act) (method)

Returns: An element ofG which mapssrc to dest under the action given byact.
If an element satisfying this condition does not exist, this method either returnsfail or runs into

an infinite loop. The problem to decide whethersrc anddest lie in the same orbit under the action
of G in general seems to be hard. The method is based onRepresentativeActionPreImage (3.7.3),
and it basically just computes an image under an epimorphism. As this involves multiplications of
rcwa mappings, this can be quite expensive if the groupG is wild, the preimage is a rather long word
and coefficient explosion happens to occur.

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation.
gap> G := Group(a,ClassShift(1,4));
<rcwa group over Z with 2 generators>
gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],OnTuples);
<bijective rcwa mapping of Z with modulus 12>
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
---------------------------------------+--------------------------------------

0 2 3 6 8 11 | n
1 7 10 | n - 3
4 | n + 1
5 9 | n + 4

gap> List([7,4,9],n->nˆelm);
[4, 5, 13]
gap> elm := RepresentativeAction(G,[5,4,9],[13,5,4],OnTuples);
<bijective rcwa mapping of Z with modulus 9>
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 9

n mod 9 | nˆf
---------------------------------------+--------------------------------------
0 | 4n/9
1 | (8n - 26)/9
2 | (8n + 2)/9
3 | (8n + 3)/9
4 | (16n - 19)/9
5 | (16n + 37)/9
6 | (8n + 33)/9
7 | (16n - 49)/9
8 | (16n + 7)/9

gap> RepresentativeAction(G,[7,4,9],[4,5,8],OnTuples);
<bijective rcwa mapping of Z with modulus 256>

RCWA 38

3.7.3 RepresentativeActionPreImage (G, src, dest, act, F)

♦ RepresentativeActionPreImage(G, src, dest, act, F) (operation)

Returns: The result ofRepresentativeAction(G,src,dest,act) as word in generators.
The argumentF is a free group whose generators are used as letters of the returned word. Note that

the dependency is just in the opposite direction than suggested above (RepresentativeAction calls
RepresentativeActionPreImage) and that the evaluation of the word sometimes takes much more
time than its determination. For this reason,RepresentativeActionPreImage is sometimes much
faster thanRepresentativeAction. The used algorithm is based on computing balls of increasing
radius aroundsrc anddest until they intersect nontrivially. It avoids multiplying rcwa mappings. Of
course the other warnings given in the description ofRepresentativeAction (3.7.2) apply to this
operation as well.

Example

gap> g := ClassTransposition(0,2,1,2)*ClassShift(0,3);; SetName(g,"g");
gap> h := ClassTransposition(3,4,4,6)*ClassReflection(0,4);; SetName(h,"h");
gap> G := Group(g,h);;
gap> F := FreeGroup("g","h");; phi := EpimorphismByGenerators(F,G);;
gap> w1 := RepresentativeActionPreImage(G,[1,2,3,4],[2,3,5,7],OnPoints,F);
hˆ-1*gˆ3*hˆ-1*gˆ-1*hˆ-2
gap> elm1 := w1ˆphi;
<bijective rcwa mapping of Z with modulus 864>
gap> List([1,2,3,4],n->nˆelm1); # ‘OnPoints’ permits reordering
[2, 7, 3, 5]
gap> w2 := RepresentativeActionPreImage(G,[1,2,3,4],[2,3,5,7],OnTuples,F);
g*hˆ-1*gˆ-1*hˆ-1*gˆ-2*h*gˆ-2*hˆ2*gˆ-1*h*g
gap> elm2 := w2ˆphi;
<bijective rcwa mapping of Z with modulus 432>
gap> List([1,2,3,4],n->nˆelm2); # ‘OnTuples’ does not permit reordering
[2, 3, 5, 7]

3.7.4 RepresentativeAction (RCWA(Integers), P1, P2)

♦ RepresentativeAction(RCWA Z, P1, P2) (method)

Returns: An element of RCWA(Z) which maps the partitionP1 to P2.
The argumentsP1 andP2 must be partitions of the underlying ringR into the same number of

disjoint unions of residue classes. The method recognizes the optionIsTame. If this option is set, the
returned mapping is tame provided that there is a tame mapping which satisfies the given condition. If
the optionIsTame is not set and the partitionsP1 andP2 both consist entirely of single residue classes,
then the returned mapping is affine on any residue class inP1.

Example

gap> P1 := List([[0,3],[1,3],[2,9],[5,9],[8,9]],ResidueClass);
[0(3), 1(3), 2(9), 5(9), 8(9)]
gap> P2 := List([[0,2],[1,8],[5,16],[3,4],[13,16]],ResidueClass);
[0(2), 1(8), 5(16), 3(4), 13(16)]
gap> elm := RepresentativeAction(RCWA(Integers),P1,P2);
<bijective rcwa mapping of Z with modulus 9>

RCWA 39

Example

gap> P1ˆelm = P2;
true
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 9

n mod 9 | nˆf
---------------------------------------+--------------------------------------
0 3 6 | 2n/3
1 4 7 | (8n - 5)/3
2 | (16n + 13)/9
5 | (4n + 7)/9
8 | (16n - 11)/9

gap> elm := RepresentativeAction(RCWA(Integers),P1,P2:IsTame);
<tame bijective rcwa mapping of Z with modulus 1152>
gap> P := RespectedPartition(elm);;
gap> Length(P);
313
gap> elm := RepresentativeAction(RCWA(Integers),
> [ResidueClass(1,3),Union(ResidueClass(0,3),ResidueClass(2,3))],
> [Union(ResidueClass(2,5),ResidueClass(4,5)),
> Union(ResidueClass(0,5),ResidueClass(1,5),ResidueClass(3,5))]);
<bijective rcwa mapping of Z with modulus 6>
gap> [ResidueClass(1,3),Union(ResidueClass(0,3),ResidueClass(2,3))]ˆelm;
[2(5) U 4(5), Z \ 2(5) U 4(5)]

3.7.5 ShortOrbits (G, S, maxlng)

♦ ShortOrbits(G, S, maxlng) (operation)

♦ ShortCycles(g, S, maxlng) (operation)

Returns: A list of all finite orbits of the rcwa groupG resp. of all finite cycles of the bijective
rcwa mappingg of length at mostmaxlng which intersect nontrivially with the setS.

Example

gap> G := Group(ClassTransposition(1,4,2,4) * ClassTransposition(1,4,3,4),
> ClassTransposition(3,9,6,18) * ClassTransposition(1,6,3,9));;
gap> List(ShortOrbits(G,[-15..15],100),orb->StructureDescription(Action(G,orb)));
["A15", "A4", "1", "1", "C3", "1", "((C2 x C2 x C2) : C7) : C3", "1", "1",
"C3", "A19"]

gap> ShortCycles(mKnot(5),[1..100],20);
[[1], [2], [3], [4], [5, 6], [7, 8],
[9, 10, 12, 14, 16, 13, 11], [15, 18],
[17, 20, 24, 28, 23, 19, 22, 26, 21],
[45, 54, 64, 76, 61, 49, 58, 47, 56],
[59, 70, 84, 100, 120, 144, 172, 206, 165, 198, 159, 190, 228, 183, 147,

176, 141, 113, 91, 73]]

RCWA 40

3.7.6 Projections (G, m)

♦ Projections(G, m) (operation)

Returns: The projections of the rcwa groupG to the unions of residue classes (modm) which it
fixes setwisely.

The corresponding partition of a set of representatives for the residue classes (modm) can be
obtained by the operationOrbitsModulo(G,m).

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassShift(3,4));;
gap> Projections(G,4);
[[ClassTransposition(0,2,1,2), ClassShift(3,4)] ->

[<bijective rcwa mapping of Z with modulus 4>,
IdentityMapping(Integers)],

[ClassTransposition(0,2,1,2), ClassShift(3,4)] ->
[<bijective rcwa mapping of Z with modulus 4>,

<bijective rcwa mapping of Z with modulus 4>]]
gap> List(last,phi->Support(Image(phi)));
[0(4) U 1(4), 2(4) U 3(4)]

3.7.7 Ball (G, p, d, act)

♦ Ball(G, p, d, act) (method)

♦ Ball(G, g, d) (method)

Returns: The ball of radiusd around the pointp under the actionact of the groupG, resp. the
ball of radiusd around the elementg in the groupG.

All balls are understood w.r.t.GeneratorsOfGroup(G). As element tests can be expensive, the
latter method does not check whetherg is indeed an element ofG. The methods require that point
comparisons resp. element comparisons are cheap. They are not only applicable to rcwa groups.

Example

gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),
> CyclicGroup(2))));
<wild rcwa group over Z with 2 generators>
gap> List([1..10],k->Length(Ball(PSL2Z,0,k,OnPoints)));
[3, 4, 6, 8, 12, 16, 24, 32, 48, 64]
gap> List([1..10],k->Length(Ball(PSL2Z,[0,1],k,OnTuples)));
[4, 8, 14, 22, 34, 50, 74, 106, 154, 218]
gap> Ball(Group((1,2),(2,3),(3,4)),(),2);
[(), (3,4), (2,3), (2,3,4), (2,4,3), (1,2), (1,2)(3,4), (1,2,3), (1,3,2)]

3.8 Conjugacy in RCWA(Z)

3.8.1 IsConjugate (RCWA(Integers), f, g)

♦ IsConjugate(RCWA(Integers), f, g) (method)

Returns: true if the bijective rcwa mappingsf andg are conjugate in RCWA(Z), andfalse
otherwise.

RCWA 41

The author does not know a general way to solve the conjugacy problem for elements of
RCWA(Z), thus the method may fail or run into an infinite loop.

Example

gap> IsConjugate(RCWA(Integers),ClassTransposition(0,2,1,4),
> ClassTransposition(1,2,0,4));
true
gap> IsConjugate(RCWA(Integers),ClassTransposition(0,2,1,4),ClassShift(0,1));
false

In its 2-argument form,ShortCycles(f,maxlng) returns a list of all cycles off of length at
mostmaxlng which do not correspond to cycles consisting of residue classes. The cycles are sorted
by increasing length. If for some value ofmaxlng the listsList(ShortCycles(f,maxlng),Length)
andList(ShortCycles(g,maxlng),Length) differ, thenf andg are clearly not conjugate.

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation.
gap> ShortCycles(a,5);
[[0], [1], [-1], [2, 3], [-3, -2], [4, 5, 7, 9, 6],
[-9, -6, -4, -5, -7]]

3.8.2 RepresentativeAction (RCWA(Integers), f, g)

♦ RepresentativeAction(RCWA(Integers), f, g) (method)

Returns: An rcwa mappingx such thatfˆx = g, if such anx exists andfail otherwise.
This method may fail for the same reasons asIsConjugate (3.8.1).

Example

gap> rep := RepresentativeAction(RCWA(Integers),ClassTransposition(0,2,1,4),
> ClassTransposition(1,2,0,4));
<bijective rcwa mapping of Z with modulus 32>
gap> ClassTransposition(0,2,1,4)ˆrep = ClassTransposition(1,2,0,4); # check
true
gap> Factorization(rep);
[ClassTransposition(0,2,3,16), ClassTransposition(1,4,11,16),
ClassTransposition(2,8,3,16), ClassTransposition(6,8,11,16),
ClassTransposition(1,2,2,8), ClassTransposition(0,4,6,8)]

3.8.3 NrConjugacyClassesOfRCWAZOfOrder (ord)

♦ NrConjugacyClassesOfRCWAZOfOrder(ord) (function)

Returns: The number of conjugacy classes of RCWA(Z) of elements of orderord, as given in
Corollary 2.7.1 (b) in [Koh05].

Example

gap> List([2,105],NrConjugacyClassesOfRCWAZOfOrder);
[infinity, 218]

RCWA 42

3.9 Restriction and induction

There are monomorphisms from the group RCWA(Z) into itself. The support of the image of such a
monomorphism is the image of a given injective rcwa mapping. Therefore these monomorphisms are
calledrestriction monomorphisms. Taking images of rcwa groups under restrictions by rcwa mappings
with pairwise distinct images permits forming their direct product and their wreath product with some
finite permutation group, regardless of whether they are tame or not (cp. Section3.2).

3.9.1 Restriction (g, f)

♦ Restriction(g, f) (operation)

♦ Restriction(G, f) (operation)

Returns: The restriction of the rcwa mappingg resp. the rcwa groupG by the injective rcwa
mappingf.

By definition, the restrictiongf of an rcwa mappingg by an injective rcwa mappingf is the unique
rcwa mapping which satisfies the equationf ·gf = g· f and which fixes the complement of the image
of f pointwisely. Iff is bijective, the restriction ofg by f is just the conjugate ofg underf.

The restriction of an rcwa groupG by an injective rcwa mappingf is defined as the group whose
elements are the restrictions of the elements ofG by f. The restriction ofG by f acts on the image off
and fixes its complement pointwisely.

Example

gap> F2tilde := Restriction(F2,RcwaMapping([[5,3,1]]));
<wild rcwa group over Z with 2 generators>
gap> Support(F2tilde);
3(5)

3.9.2 Induction (g, f)

♦ Induction(g, f) (operation)

♦ Induction(G, f) (operation)

Returns: The inductionof the rcwa mappingg resp. the rcwa groupG by the injective rcwa
mappingf.

By definition, induction is the right inverse of restriction. This means that it is
Induction(Restriction(g,f),f) = g resp.Induction(Restriction(G,f),f) = G. The map-
pingg resp. the groupG must not move points outside the image off.

Example

gap> Induction(F2tilde,RcwaMapping([[5,3,1]])) = F2;
true

RCWA 43

3.10 Getting pseudo-random elements of RCWA(Z)

There is a method for the operationRandom for RCWA(Z). This method is designed to be suitable for
generating interesting examples. No particular distribution is guaranteed.

Example

gap> elm := Random(RCWA(Integers));
<bijective rcwa mapping of Z with modulus 60>
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
---------------------------------------+--------------------------------------

0 2 4 6 8 10 | 3n + 2
1 5 9 | -n + 2
3 7 | (n - 7)/2
11 | (-n + 20)/3

The elements which are returned by this method are obtained by multiplying class shifts (see
ClassShift (2.2.1)), class reflections (seeClassReflection (2.2.2)) and class transpositions (see
ClassTransposition (2.2.3)). These factors can be retrieved by factoring:

Example

gap> Factorization(elm);
[ClassTransposition(0,2,3,4), ClassTransposition(3,4,4,6),
ClassShift(0,2)ˆ-1, ClassReflection(3,4), ClassReflection(1,4)]

An auxiliary function which is used in this context for choosing the class transpositions is
ClassPairs(m). This function returns a list of 4-tuples(r1,m1, r2,m2) of integers corresponding
to the pairs of disjoint residue classesr1(m1) andr2(m2) with m1,m2 ≤m.

Example

gap> List(ClassPairs(4),ClassTransposition);
[ClassTransposition(0,2,1,2), ClassTransposition(0,2,1,4),
ClassTransposition(0,2,3,4), ClassTransposition(0,3,1,3),
ClassTransposition(0,3,2,3), ClassTransposition(0,4,1,4),
ClassTransposition(0,4,2,4), ClassTransposition(0,4,3,4),
ClassTransposition(1,2,0,4), ClassTransposition(1,2,2,4),
ClassTransposition(1,3,2,3), ClassTransposition(1,4,2,4),
ClassTransposition(1,4,3,4), ClassTransposition(2,4,3,4)]

gap> List(last,TransposedClasses);
[[0(2), 1(2)], [0(2), 1(4)], [0(2), 3(4)], [0(3), 1(3)],
[0(3), 2(3)], [0(4), 1(4)], [0(4), 2(4)], [0(4), 3(4)],
[1(2), 0(4)], [1(2), 2(4)], [1(3), 2(3)], [1(4), 2(4)],
[1(4), 3(4)], [2(4), 3(4)]]

RCWA 44

3.11 Special attributes for tame rcwa groups

There is a couple of attributes which a priori make only sense for tame rcwa groups. In the sequel,
these attributes are described in detail.

With their help, various structural information about a given tame rcwa group can be obtained.
For example there are methods forIsSolvable and IsPerfect available for tame rcwa groups,
while testing wild groups for solvability or perfectness is currently not always feasible. It is often also
possible to compute the derived subgroup of a tame rcwa group.

3.11.1 RespectedPartition (G)

♦ RespectedPartition(G) (attribute)

♦ RespectedPartition(g) (attribute)

Returns: A respected partition of the rcwa groupG resp. of the rcwa mappingg.
A respected partitionof G resp.g is a partition of the underlying ringR into a finite number of

residue classes on whichG resp. the cyclic group generated byg acts in a natural way as a permutation
group, and on whose elements all elements ofG resp. all powers ofg are affine. Such a partition exists
if and only if G resp.g is tame (see [Koh05], Theorem 2.5.8).

Related attributes areRespectedPartitionShort and RespectedPartitionLong. They are
used to denote respected partitions consisting of residue classesr(m) wherem divides the modulus
of G resp.g, resp. where the modulus ofG resp.g dividesm.

There is an operationRespectsPartition(G,P) resp.RespectsPartition(g,P), which tests
whetherG resp.g respects a given partitionP. The permutation induced byg on P can be computed
efficiently usingPermutationOpNC(g,P,OnPoints).

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));
<rcwa group over Z with 2 generators>
gap> IsTame(G);
true
gap> Size(G);
infinity
gap> P := RespectedPartition(G);
[3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12)]

3.11.2 ActionOnRespectedPartition (G)

♦ ActionOnRespectedPartition(G) (attribute)

Returns: The action of the tame rcwa groupG onRespectedPartition(G).
Example

gap> H := ActionOnRespectedPartition(G);
Group([(3,7)(5,8), (3,4,5,6)])
gap> H = Action(G,P);
true
gap> StructureDescription(H);
"C2 x S4"

RCWA 45

3.11.3 KernelOfActionOnRespectedPartition (G)

♦ KernelOfActionOnRespectedPartition(G) (attribute)

♦ RankOfKernelOfActionOnRespectedPartition(G) (attribute)

Returns: The kernel of the action of the tame rcwa groupG onRespectedPartition(G), resp.
the rank of the largest free abelian subgroup of this kernel.

The method forKernelOfActionOnRespectedPartition uses the packagePolycyclic [EN03].
Example

gap> K := KernelOfActionOnRespectedPartition(G);
<rcwa group over Z with 3 generators>
gap> RankOfKernelOfActionOnRespectedPartition(G);
3
gap> Index(G,K);
48
gap> List(GeneratorsOfGroup(K),Factorization);
[[ClassShift(0,4)ˆ2], [ClassShift(2,4)ˆ2], [ClassShift(1,6)ˆ2]]
gap> IsomorphismPcpGroup(K);
[<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 6>] -> [g6*g10, g8*g12, g14*g16
]

3.11.4 IntegralConjugate (G)

♦ IntegralConjugate(G) (attribute)

♦ IntegralConjugate(g) (attribute)

Returns: Some integral conjugate of the tame rcwa groupG resp. of the tame bijective rcwa
mappingg in the group RCWA(Z).

Such conjugates exist, see [Koh05], Theorem 2.5.14. In general there are infinitely
many of them. An rcwa mapping mappingx such thatGˆx=IntegralConjugate(G) resp.
gˆx=IntegralConjugate(g) is stored as an attributeIntegralizingConjugator.

Example

gap> IsIntegral(IntegralConjugate(G));
true
gap> GˆIntegralizingConjugator(G) = IntegralConjugate(G);
true
gap> RespectedPartition(G);
[3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12)]
gap> RespectedPartition(G)ˆIntegralizingConjugator(G);
[0(8), 1(8), 2(8), 3(8), 4(8), 5(8), 6(8), 7(8)]
gap> last = RespectedPartition(IntegralConjugate(G));
true

RCWA 46

Example

gap> Display(IntegralizingConjugator(G));

Bijective rcwa mapping of Z with modulus 24

n mod 24 | nˆf
---------------------------------------+--------------------------------------

0 8 16 | n + 2
1 13 | (2n + 16)/3
2 10 18 | n + 1
3 9 15 21 | (4n - 12)/3
4 12 20 | n
5 11 17 23 | (4n - 17)/3
6 14 22 | n - 1
7 19 | (2n + 7)/3

3.12 Some general utility functions

RCWA introduces a few small utility functions which can be used for groups in general:
The function GeneratorsAndInverses(G) returns a list of generators ofG and their in-
verses,EpimorphismByGenerators(G,H) is a shorthand forGroupHomomorphismByImages(G,H,
GeneratorsOfGroup(G),GeneratorsOfGroup(H)) (there is also anNC version of this) and the func-
tion AllProducts(l,k) returns the list of all products ofk entries of the listl.

3.13 The categories of rcwa groups

3.13.1 IsRcwaGroup (G)

♦ IsRcwaGroup(G) (filter)

♦ IsRcwaGroupOverZ(G) (filter)

♦ IsRcwaGroupOverZ pi(G) (filter)

♦ IsRcwaGroupOverGFqx(G) (filter)

Returns: true if G is an rcwa group resp. an rcwa group over the ring of integers resp. an rcwa
group over a semilocalization of the ring of integers resp. an rcwa group over a polynomial ring in
one variable over a finite field, andfalse otherwise.

Often the same methods can be used for rcwa groups over the ring of integers and over its semilo-
calizations. For this reason there is a categoryIsRcwaGroupOverZOrZ pi which is the union of
IsRcwaGroupOverZ andIsRcwaGroupOverZ pi. To allow distinguishing the entire group RCWA(R)
from others by means of the method selection, it has the characteristic propertyIsNaturalRCWA Z
resp. one of the propertiesIsNaturalRCWA Z pi or IsNaturalRCWA GFqx, depending on whetherR
is the ring of integers, one of its semilocalizations or a univariate polynomial ring over a finite field.

Chapter 4

Examples

This chapter discusses a number of “nice” examples of rcwa mappings and -groups in detail. All of
them show different aspects of the package, and the order in which they appear is entirely arbitrary.
In particular they are not ordered by degree of interestingness or difficulty.

The rcwa mappings defined in this chapter (and in fact many more) can be found in the file
pkg/rcwa/examples/examples.g, so there is no need to extract them from the manual files. This
file can be read into the currentGAP session by issueingRCWAReadExamples();.

The examples are typically far from discussing the respective aspects exhaustively. It is quite
likely that in many instances by just a few little modifications or additional easy commands you can
find out interesting things yourself – have fun!

4.1 Factoring Collatz’ permutation of the integers

In 1932, Lothar Collatz mentioned in his notebook the following permutation of the integers:
Example

gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;
gap> SetName(Collatz,"Collatz"); Display(Collatz);

Rcwa mapping of Z with modulus 3

n mod 3 | nˆCollatz
---------------------------------------+--------------------------------------
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

This permutation has a few finite cycles:
Example

gap> ShortCycles(Collatz,[-50..50],50);
[[-111, -74, -99, -66, -44, -59, -79, -105, -70, -93, -62, -83],
[-9, -6, -4, -5, -7], [-3, -2], [-1], [0], [1], [2, 3],
[4, 5, 7, 9, 6], [44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]]

47

RCWA 48

The cycle structure of Collatz’ permutation has not been completely determined yet. In particular it is
not known whether the cycle containing 8 is finite or infinite. Nevertheless, the factorization routine
included in this package can determine a factorization of this permutation into class transpositions,
i.e. involutions interchanging two disjoint residue classes:

Example

gap> Length(Factorization(Collatz));
212

Setting the Info level ofInfoRCWA equal to 2 (simply issueRCWAInfo(2);) causes the factorization
routine to display detailed information on the progress of the factoring process. For reasons of saving
space, this is not done in this manual.

We would like to get a factorization into fewer factors. Firstly, we try to factor the inverse – just
like the various options interpreted by the factorization routine, this has influence on decisions taken
during the factoring process:

Example

gap> Length(Factorization(Collatzˆ-1));
129

This is already a shorter product, but can still be improved. We remember themKnot’s, of which the
permutationmKnot(3) looks very similar to Collatz’ permutation. Therefore it is straightforward to
try to factor bothmKnot(3) andCollatz/mKnot(3), and to look whether the sum of the numbers of
factors is less than 129:

Example

gap> KnotFacts := Factorization(mKnot(3));;
gap> QuotFacts := Factorization(Collatz/mKnot(3));;
gap> List([KnotFacts,QuotFacts],Length);
[59, 9]
gap> CollatzFacts := Concatenation(QuotFacts,KnotFacts);
[ClassTransposition(0,6,4,6), ClassTransposition(0,6,5,6),
ClassTransposition(0,6,3,6), ClassTransposition(0,6,1,6),
ClassTransposition(0,6,2,6), ClassTransposition(2,3,4,6),
ClassTransposition(0,3,4,6), ClassTransposition(2,3,1,6),
ClassTransposition(0,3,1,6), ClassTransposition(0,36,35,36),
ClassTransposition(0,36,22,36), ClassTransposition(0,36,18,36),
ClassTransposition(0,36,17,36), ClassTransposition(0,36,14,36),
ClassTransposition(0,36,20,36), ClassTransposition(0,36,4,36),
ClassTransposition(2,36,8,36), ClassTransposition(2,36,16,36),
ClassTransposition(2,36,13,36), ClassTransposition(2,36,9,36),
ClassTransposition(2,36,7,36), ClassTransposition(2,36,6,36),
ClassTransposition(2,36,3,36), ClassTransposition(2,36,10,36),
ClassTransposition(2,36,15,36), ClassTransposition(2,36,12,36),
ClassTransposition(2,36,5,36), ClassTransposition(21,36,28,36),
ClassTransposition(21,36,33,36), ClassTransposition(21,36,30,36),
ClassTransposition(21,36,23,36), ClassTransposition(21,36,34,36),
ClassTransposition(21,36,31,36), ClassTransposition(21,36,27,36),
ClassTransposition(21,36,25,36), ClassTransposition(21,36,24,36),

RCWA 49

ClassTransposition(26,36,32,36), ClassTransposition(26,36,29,36),
ClassTransposition(10,18,35,36), ClassTransposition(5,18,35,36),
ClassTransposition(10,18,17,36), ClassTransposition(5,18,17,36),
ClassTransposition(8,12,14,24), ClassTransposition(6,9,17,18),
ClassTransposition(3,9,17,18), ClassTransposition(0,9,17,18),
ClassTransposition(6,9,16,18), ClassTransposition(3,9,16,18),
ClassTransposition(0,9,16,18), ClassTransposition(6,9,11,18),
ClassTransposition(3,9,11,18), ClassTransposition(0,9,11,18),
ClassTransposition(6,9,4,18), ClassTransposition(3,9,4,18),
ClassTransposition(0,9,4,18), ClassTransposition(0,6,14,24),
ClassTransposition(0,6,2,24), ClassTransposition(8,12,17,18),
ClassTransposition(7,12,17,18), ClassTransposition(8,12,11,18),
ClassTransposition(7,12,11,18), PrimeSwitch(3)ˆ-1,
ClassTransposition(7,12,17,18), ClassTransposition(2,6,17,18),
ClassTransposition(0,3,17,18), PrimeSwitch(3)ˆ-1, PrimeSwitch(3)ˆ-1,
PrimeSwitch(3)ˆ-1]

gap> Product(CollatzFacts) = Collatz; # Check.
true

The factorsPrimeSwitch(3) are products of 6 class transpositions (cp.PrimeSwitch (2.2.4)). At
the end of Section4.6, a much smaller factorization task is performed “manually” for purposes of
illustration.

4.2 An rcwa mapping which seems to be contracting, but very slow

The iterates of an integer under the Collatz mappingT seem to approach its contraction centre – this
is the finite set where all trajectories end up after a finite number of steps – rather quickly and do not
get very large before doing so (of course this is a purely heuristic statement as the 3n+1 Conjecture
has not been proven so far!):

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;
gap> S0 := LikelyContractionCentre(T,100,1000);
#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.
The returned result can only be regarded as a rough guess.
See ?LikelyContractionCentre for information on how to improve this guess.
[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1, 0,
1, 2]

gap> S0ˆT = S0; # This holds by definition of the contraction centre.
true
gap> List([1..40],n->Length(Trajectory(T,n,S0)));
[1, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6, 11,
11, 8, 16, 8, 70, 13, 13, 13, 67, 5, 18, 10, 10, 15, 15, 15, 23, 7]

gap> Maximum(List([1..1000],n->Length(Trajectory(T,n,S0))));
113
gap> Maximum(List([1..1000],n->Maximum(Trajectory(T,n,S0))));
125252

RCWA 50

The following mapping seems to be contracting as well, but its trajectories are much longer:
Example

gap> f6 := RcwaMapping([[1,0,6],[5, 1,6],[7,-2,6],
> [11,3,6],[11,-2,6],[11,-1,6]]);;
gap> SetName(f6,"f6");
gap> Display(f6);

Rcwa mapping of Z with modulus 6

n mod 6 | nˆf6
---------------------------------------+--------------------------------------
0 | n/6
1 | (5n + 1)/6
2 | (7n - 2)/6
3 | (11n + 3)/6
4 | (11n - 2)/6
5 | (11n - 1)/6

gap> S0 := LikelyContractionCentre(f6,1000,100000);;
#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.
The returned result can only be regarded as a rough guess.
gap> Trajectory(f6,25,S0);
[25, 21, 39, 72, 12, 2]
gap> List([1..100],n->Length(Trajectory(f6,n,S0)));
[2, 2, 3, 4, 2, 2, 3, 2, 2, 5, 7, 2, 8, 17, 3, 16, 2, 4, 17, 6, 5, 2, 5, 5,
6, 2, 4, 2, 15, 2, 2, 3, 2, 5, 13, 3, 2, 3, 4, 2, 8, 4, 4, 2, 7, 19, 23517,
3, 9, 3, 2, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 2, 4, 19, 12, 23511, 8,
23513, 10, 2, 13, 13, 3, 2, 23517, 7, 20, 7, 9, 9, 6, 12, 8, 6, 18, 14,
23516, 31, 12, 23545, 4, 21, 19, 5, 2, 17, 17, 13, 19, 6, 23515]

gap> Maximum(Trajectory(f6,47,S0));;
736339177776247330443187705477107581873369010805146980871580925673774229545698\
886054

Computing the trajectory of 3224 takes quite a while – this trajectory ascends to about 3· 102197,
before it approaches the fixed point 2 after 19949562 steps.

When constructing the mappingf6, the denominators of the partial mappings have been chosen
to be equal and the numerators have been chosen to be numbers coprime to the common denominator,
whose product is just a little bit smaller than theModulus(f6)th power of the denominator. In the
example we have 5·7·113 = 46585 and 66 = 46656.

Although the trajectories ofT are much shorter than those off6, it seems likely that this does
not make the problem of deciding whether the mappingT is contracting essentially easier – even for
mappings with much shorter trajectories thanT the problem seems to be equally hard. A solution can
usually only be found in trivial cases, i.e. for example when there is somek such that applying thekth
power of the respective mapping to any integer decreases its absolute value.

RCWA 51

4.3 Checking a result by P. Andaloro

In [And00], P. Andaloro has shown that proving that trajectories of integersn ∈ 1(16) under the
Collatz mapping always contain 1 would be sufficient to prove the 3n+1 Conjecture. In the sequel,
this result is verified byRCWA. Checking that the union of the images of the residue class 1(16) under
powers of the Collatz mappingT containsZ\0(3) is obviously enough. Thus we putS:= 1(16), and
successively unite the setSwith its image underT:

Example

gap> S := ResidueClass(Integers,16,1);
1(16)
gap> S := Union(S,SˆT);
1(16) U 2(24)
gap> S := Union(S,SˆT);
1(12) U 2(24) U 17(48) U 33(48)
gap> S := Union(S,SˆT);
<union of 30 residue classes (mod 144)>
gap> S := Union(S,SˆT);
<union of 42 residue classes (mod 144)>
gap> S := Union(S,SˆT);
<union of 172 residue classes (mod 432)>
gap> S := Union(S,SˆT);
<union of 676 residue classes (mod 1296)>
gap> S := Union(S,SˆT);
<union of 810 residue classes (mod 1296)>
gap> S := Union(S,SˆT);
<union of 2638 residue classes (mod 3888)>
gap> S := Union(S,SˆT);
<union of 33 residue classes (mod 48)>
gap> S := Union(S,SˆT);
<union of 33 residue classes (mod 48)>
gap> Union(S,ResidueClass(Integers,3,0)); # Et voila ...
Integers

Further similar computations are shown in Section4.13.

RCWA 52

4.4 Two examples by Matthews and Leigh

In [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories of the following (sur-
jective, but not injective) mappings are acyclic (modx) and divergent:

Example

gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(2),1);
GF(2)[x]
gap> ML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)ˆ3,1,x]]*One(R));;
gap> ML2 := RcwaMapping(R,x,[[1,0,x],[(x+1)ˆ2,1,x]]*One(R));;
gap> SetName(ML1,"ML1"); SetName(ML2,"ML2");
gap> Display(ML1);

Rcwa mapping of GF(2)[x] with modulus x

P mod x | PˆML1
--------------------------+---
0*Z(2) | P/x
Z(2)ˆ0 | ((xˆ3+xˆ2+x+Z(2)ˆ0)*P + Z(2)ˆ0)/x

gap> Display(ML2);

Rcwa mapping of GF(2)[x] with modulus x

P mod x | PˆML2
--------------------------+---
0*Z(2) | P/x
Z(2)ˆ0 | ((xˆ2+Z(2)ˆ0)*P + Z(2)ˆ0)/x

gap> List([ML1,ML2],IsSurjective);
[true, true]
gap> List([ML1,ML2],IsInjective);
[false, false]
gap> traj1 := Trajectory(ML1,One(R),16);
[Z(2)ˆ0, xˆ2+x+Z(2)ˆ0, xˆ4+xˆ2+x, xˆ3+x+Z(2)ˆ0, xˆ5+xˆ4+xˆ2, xˆ4+xˆ3+x,
xˆ3+xˆ2+Z(2)ˆ0, xˆ5+xˆ2+Z(2)ˆ0, xˆ7+xˆ6+xˆ5+xˆ3+Z(2)ˆ0,
xˆ9+xˆ7+xˆ6+xˆ5+xˆ3+x+Z(2)ˆ0, xˆ11+xˆ10+xˆ8+xˆ7+xˆ6+xˆ5+xˆ2,
xˆ10+xˆ9+xˆ7+xˆ6+xˆ5+xˆ4+x, xˆ9+xˆ8+xˆ6+xˆ5+xˆ4+xˆ3+Z(2)ˆ0,
xˆ11+xˆ8+xˆ7+xˆ6+xˆ4+x+Z(2)ˆ0, xˆ13+xˆ12+xˆ11+xˆ8+xˆ7+xˆ6+xˆ4,
xˆ12+xˆ11+xˆ10+xˆ7+xˆ6+xˆ5+xˆ3]

gap> traj2 := Trajectory(ML2,(xˆ3+x+1)*One(R),16);
[xˆ3+x+Z(2)ˆ0, xˆ4+x+Z(2)ˆ0, xˆ5+xˆ3+xˆ2+x+Z(2)ˆ0, xˆ6+xˆ3+Z(2)ˆ0,
xˆ7+xˆ5+xˆ4+xˆ2+x, xˆ6+xˆ4+xˆ3+x+Z(2)ˆ0, xˆ7+xˆ4+xˆ3+x+Z(2)ˆ0,
xˆ8+xˆ6+xˆ5+xˆ4+xˆ3+x+Z(2)ˆ0, xˆ9+xˆ6+xˆ3+x+Z(2)ˆ0,
xˆ10+xˆ8+xˆ7+xˆ5+xˆ4+x+Z(2)ˆ0, xˆ11+xˆ8+xˆ7+xˆ5+xˆ4+xˆ3+xˆ2+x+Z(2)ˆ0,
xˆ12+xˆ10+xˆ9+xˆ8+xˆ7+xˆ5+Z(2)ˆ0, xˆ13+xˆ10+xˆ7+xˆ4+x,
xˆ12+xˆ9+xˆ6+xˆ3+Z(2)ˆ0, xˆ13+xˆ11+xˆ10+xˆ8+xˆ7+xˆ5+xˆ4+xˆ2+x,
xˆ12+xˆ10+xˆ9+xˆ7+xˆ6+xˆ4+xˆ3+x+Z(2)ˆ0]

RCWA 53

The pattern which Matthews and Leigh used to show the divergence of the above trajectories can be
recognized easily by looking at the corresponding Markov chains with the two states 0 modx and
1 modx:

Example

gap> traj1modx := Trajectory(ML1,One(R),400,x);;
gap> traj2modx := Trajectory(ML2,(xˆ3+x+1)*One(R),600,x);;
gap> List(traj1modx{[1..200]},val->Position([Zero(R),One(R)],val)-1);
[1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> List(traj2modx{[1..200]},val->Position([Zero(R),One(R)],val)-1);
[1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 1,
1, 0,
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1,
1, 1]

What is important here are the lengths of the intervals between two changes from one state to the
other:

Example

gap> ChangePoints := l -> Filtered([1..Length(l)-1],pos->l[pos]<>l[pos+1]);;
gap> Diffs := l -> List([1..Length(l)-1],pos->l[pos+1]-l[pos]);;
gap> Diffs(ChangePoints(traj1modx)); # The pattern in the first ...
[1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, 16, 32, 64, 32, 32,
64]

gap> Diffs(ChangePoints(traj2modx)); # ... and in the second example.
[1, 7, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1,
1, 1,
1, 193, 1,
1, 1,
1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> Diffs(ChangePoints(last)); # Make this a bit more obvious.
[1, 3, 1, 7, 1, 15, 1, 31, 1, 63, 1]

This looks clearly acyclic, thus the trajectories diverge. Needless to say however that this computa-
tional evidence does not replace the proof along these lines given in the article cited above, but just
sheds a light on the idea behind it.

RCWA 54

4.5 Exploring the structure of a wild rcwa group

In this example, a simple attempt to should be made to investigate the structure of a given wild group
by finding orders of torsion elements. In general, determining the structure of a given wild group
seems to be a very hard task. First of all, the group in question has to be defined:

Example

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> SetName(u,"u");
gap> Display(u);

Rcwa mapping of Z with modulus 5

n mod 5 | nˆu
---------------------------------------+--------------------------------------
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> nu := ClassShift(0,1);;
gap> G := Group(u,nu);
<rcwa group over Z with 2 generators>
gap> IsTame(G);
false

Now we would like to know which orders torsion elements ofG can have – taking a look at the above
generators it seems to make sense to try commutators:

Example

gap> l := Filtered([0..100],k->IsTame(Comm(u,nuˆk)));
[0, 2, 3, 5, 6, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 27, 28, 30, 32,
33, 35, 36, 39, 40, 42, 43, 45, 47, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63,
65, 66, 69, 70, 72, 73, 75, 77, 78, 80, 81, 84, 85, 87, 88, 90, 92, 93, 95,
96, 99, 100]

gap> List(l,k->Order(Comm(u,nuˆk)));
[1, 6, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity, infinity, 3,
5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, infinity, infinity, infinity,
5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity, infinity, 3, 5, 7,
infinity, 7, infinity, 3, 5, 5, 3, 5, infinity, infinity, infinity, 5, 3,
5, 5, 3]

RCWA 55

Example

gap> Display(Comm(u,nuˆ13));

Bijective rcwa mapping of Z with modulus 9

n mod 9 | nˆf
---------------------------------------+--------------------------------------
0 3 6 | n + 5
1 4 7 | 3n - 9
2 8 | n - 11
5 | (n + 16)/3

gap> Order(Comm(u,nuˆ13));
7
gap> u2 := uˆ2;
<wild bijective rcwa mapping of Z with modulus 25>
gap> Filtered([1..16],k->IsTame(Comm(u2,nuˆk))); # k < 15 -> commutator wild!
[15]
gap> Order(Comm(u2,nuˆ15));
infinity
gap> u2nu17 := Comm(u2,nuˆ17);
<bijective rcwa mapping of Z with modulus 81>
gap> orbs := ShortOrbits(Group(u2nu17),[-100..100],100);;
gap> List(orbs,Length);
[72, 72, 73, 72, 73, 72, 72, 73, 72, 72, 72, 73, 72, 72, 73, 72, 72, 73, 72,
72, 73, 72, 72]

gap> Lcm(last);
5256
gap> u2nu17ˆ5256; # This element has indeed order 2ˆ3*3ˆ2*73 = 5256.
IdentityMapping(Integers)
gap> u2nu18 := Comm(u2,nuˆ18);
<bijective rcwa mapping of Z with modulus 81>
gap> orbs := ShortOrbits(Group(u2nu18),[-100..100],100);;
gap> List(orbs,Length);
[22, 22, 22, 21, 22, 22, 22, 21, 21, 22, 22, 21, 22, 21, 22, 22, 21, 22, 22,
21, 22, 22, 21]

gap> Lcm(last);
462
gap> u2nu18ˆ462; # This is an element of order 2*3*7*11 = 462.
IdentityMapping(Integers)
gap> Order(Comm(u2,nuˆ20));
29
gap> Order(Comm(u2,nuˆ25));
9
gap> Order(Comm(u2,nuˆ30));
15

Thus even this rather simple-minded approach reveals various different orders of torsion elements,
and the involved primes are also not all very “small”.

RCWA 56

4.6 A wild rcwa mapping which has only finite cycles

Some wild rcwa mappings ofZ have only finite cycles. In this section, a permutation is examined
which can be shown to be such a mapping and which is likely to be something like a “minimal”
example.

OverR = GF(q)[x], the degree function gives rise to a partition ofR into finite sets which is left
invariant by suitable wild rcwa mappings. OverR= Z the situation looks different – there is no such
“natural” partition into finite sets which can be fixed by a wild rcwa mapping.

Example

gap> kappa := RcwaMapping([[1,0,1],[1,0,1],[3,2,2],[1,-1,1],
> [2,0,1],[1,0,1],[3,2,2],[1,-1,1],
> [1,1,3],[1,0,1],[3,2,2],[2,-2,1]]);;
gap> SetName(kappa,"kappa");
gap> List([-5..5],k->Modulus(kappaˆk));
[7776, 1296, 432, 72, 24, 1, 12, 72, 144, 864, 1728]
gap> Display(kappa);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆkappa
---------------------------------------+--------------------------------------

0 1 5 9 | n
2 6 10 | (3n + 2)/2
3 7 | n - 1
4 | 2n
8 | (n + 1)/3
11 | 2n - 2

gap> List([-32..32],n->Length(Cycle(kappa,n)));
[4, 1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 7, 1, 10, 10, 4, 1, 7, 7, 1, 1, 7, 7,
4, 1, 4, 4, 2, 1, 1, 2, 1, 1, 4, 4, 4, 1, 7, 7, 4, 1, 7, 7, 1, 1, 10, 10,
7, 1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 4, 1, 13, 13, 7]

gap> List([2..14],k->Maximum(List([1..2ˆk],n->Length(Cycle(kappa,n)))));
[4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]
gap> List([2..14],k->Length(Cycle(kappa,2ˆk-2)));
[4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]
gap> Cycle(kappa,2ˆ12-2);
[4094, 6142, 9214, 13822, 20734, 31102, 46654, 69982, 104974, 157462,
236194, 354292, 708584, 236195, 472388, 157463, 314924, 104975, 209948,
69983, 139964, 46655, 93308, 31103, 62204, 20735, 41468, 13823, 27644,
9215, 18428, 6143, 12284, 4095]

gap> last mod 12;
[2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 8, 11, 8, 11, 8, 11, 8, 11,
8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 3]

gap> lengthstatistics := Collected(List(ShortOrbits(Group(kappa),
> [1..12ˆ4],100),Length));
[[1, 6912], [4, 1728], [7, 864], [10, 432], [13, 216],
[16, 108], [19, 54], [22, 27], [25, 13], [28, 7], [31, 3],
[34, 2], [37, 1], [40, 1]]

RCWA 57

We would like to determine a partition ofZ into unions of cycles of equal length:
Example

gap> C := [Difference(Integers,MovedPoints(kappa))];; pow := [kappaˆ0];;
gap> rc := function(r,m) return ResidueClass(r,m); end;;
gap> for i in [1..3] do
> Add(pow,kappaˆi);
> C[i+1] := Difference(rc(2,4),
> Union(Union(C{[1..i]}),
> Union(List([0..i],
> j->Intersection(rc(2,4)ˆpow[j+1],
> rc(2,4)ˆ(pow[i-j+1]ˆ-1))))));
> od;
gap> C;
[1(4) U 0(12) U [-2], 2(24) U 18(24), 6(48) U 38(48) U 10(72) U 58(72),
<union of 38 residue classes (mod 864)>]

gap> List(C,S->Length(Cycle(kappa,S)));
[1, 4, 7, 10]
gap> Cycle(kappa,C[1]);
[1(4) U 0(12) U [-2]]
gap> Cycle(kappa,C[2]);
[2(24) U 18(24), 4(36) U 28(36), 8(72) U 56(72), 3(24) U 19(24)]
gap> cycle7 := Cycle(kappa,C[3]);;
gap> for S in cycle7 do View(S); Print("\n"); od;
6(48) U 38(48) U 10(72) U 58(72)
10(72) U 58(72) U 16(108) U 88(108)
16(108) U 88(108) U 32(216) U 176(216)
11(72) U 59(72) U 32(216) U 176(216)
11(72) U 59(72) U 20(144) U 116(144)
7(48) U 39(48) U 20(144) U 116(144)
6(48) U 7(48) U 38(48) U 39(48)
gap> cycle10 := Cycle(kappa,C[4]);;
gap> for S in cycle10 do View(S); Print("\n"); od;
<union of 38 residue classes (mod 864)>
<union of 38 residue classes (mod 1296)>
<union of 12 residue classes (mod 648)>
<union of 12 residue classes (mod 648)>
<union of 22 residue classes (mod 1296)>
<union of 12 residue classes (mod 432)>
<union of 22 residue classes (mod 864)>
<union of 12 residue classes (mod 288)>
<union of 14 residue classes (mod 288)>
<union of 16 residue classes (mod 288)>
gap> List(cycle10,Density);
[19/432, 19/648, 1/54, 1/54, 11/648, 1/36, 11/432, 1/24, 7/144, 1/18]
gap> List(last,Float);
[0.0439815, 0.029321, 0.0185185, 0.0185185, 0.0169753, 0.0277778, 0.025463,
0.0416667, 0.0486111, 0.0555556]

gap> Sum(last2);
47/144
gap> Density(Union(cycle10));
47/432

RCWA 58

Example

gap> P := List(C,S->Union(Cycle(kappa,S)));;
gap> for S in P do View(S); Print("\n"); od;
1(4) U 0(12) U [-2]
<union of 18 residue classes (mod 72)>
<union of 78 residue classes (mod 432)>
<union of 282 residue classes (mod 2592)>
gap> P2 := AsUnionOfFewClasses(P[2]);
[2(24), 3(24), 18(24), 19(24), 4(36), 28(36), 8(72), 56(72)]
gap> Permutation(kappa,P2);
(1,5,7,2)(3,6,8,4)
gap> P3 := AsUnionOfFewClasses(P[3]);
[6(48), 7(48), 38(48), 39(48), 10(72), 11(72), 58(72), 59(72), 16(108),
88(108), 20(144), 116(144), 32(216), 176(216)]

gap> Permutation(kappa,P3);
(1,5,9,13,6,11,2)(3,7,10,14,8,12,4)
gap> P4 := AsUnionOfFewClasses(P[4]);
[14(96), 15(96), 78(96), 79(96), 22(144), 23(144), 118(144), 119(144),
34(216), 35(216), 178(216), 179(216), 44(288), 236(288), 52(324), 268(324),
68(432), 356(432), 104(648), 536(648)]

gap> Permutation(kappa,P4);
(1,5,9,15,19,10,17,6,13,2)(3,7,11,16,20,12,18,8,14,4)
gap> List(P,S->Set(List(Intersection([1..12ˆ4],S),n->Length(Cycle(kappa,n)))));
[[1], [4], [7], [10]]
gap> Set(List(Intersection([1..12ˆ4],Difference(Integers,Union(P))),
> n->Length(Cycle(kappa,n))));
[13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

Finally, the permutationkappa should be factored into involutions (this time “by hand”, for purposes
of illustration):

Example

gap> elm1 := kappa;
kappa
gap> Multpk(elm1,2,1)ˆelm1;
8(12)
gap> Multpk(elm1,2,-1)ˆelm1;
4(6)
gap> fact1 := ClassTransposition(4,6,8,12);;

RCWA 59

Example

gap> elm2 := elm1/fact1;
<bijective rcwa mapping of Z with modulus 12>
gap> Display(elm2);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
---------------------------------------+--------------------------------------

0 1 4 5 9 | n
2 6 10 | 3n + 2
3 7 11 | n - 1
8 | (n + 1)/3

gap> Multpk(elm2,3,1)ˆelm2;
8(12)
gap> Multpk(elm2,3,-1)ˆelm2;
3(4)
gap> fact2 := ClassTransposition(3,4,8,12);;
gap> elm3 := elm2/fact2;
<bijective rcwa mapping of Z with modulus 4>
gap> Display(elm3);

Bijective rcwa mapping of Z with modulus 4

n mod 4 | nˆf
---------------------------------------+--------------------------------------
0 1 | n
2 | n + 1
3 | n - 1

gap> fact3 := ClassTransposition(2,4,3,4);;
gap> elm4 := elm3/fact3;
IdentityMapping(Integers)
gap> kappafacts := [fact3, fact2, fact1];
[ClassTransposition(2,4,3,4), ClassTransposition(3,4,8,12),
ClassTransposition(4,6,8,12)]

gap> kappa = Product(kappafacts);
true

RCWA 60

4.7 An abelian rcwa group over a polynomial ring

In this section, a wild rcwa group over GF(4)[x] should be invstigated, which happens to be abelian.
Of course in general, rcwa groups also over this ring are usually far from being abelian (see below).
We start by defining this group:

Example

gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(4),1);
GF(2ˆ2)[x]
gap> e := One(GF(4));;
gap> p := xˆ2 + x + e;; q := xˆ2 + e;;
gap> r := xˆ2 + x + Z(4);; s := xˆ2 + x + Z(4)ˆ2;;
gap> cg := List(AllResidues(R,xˆ2), pol -> [p, p * pol mod q, q]);;
gap> ch := List(AllResidues(R,xˆ2), pol -> [r, r * pol mod s, s]);;
gap> g := RcwaMapping(R, q, cg);
<rcwa mapping of GF(2ˆ2)[x] with modulus xˆ2+Z(2)ˆ0>
gap> h := RcwaMapping(R, s, ch);
<rcwa mapping of GF(2ˆ2)[x] with modulus xˆ2+x+Z(2ˆ2)ˆ2>
gap> List([g,h],Order);
[infinity, infinity]
gap> List([g,h],IsTame);
[false, false]
gap> G := Group(g,h);
<rcwa group over GF(2ˆ2)[x] with 2 generators>
gap> IsAbelian(G);
true

Now we compute the action of the groupG on one of its orbits, and make some statistics of the orbits
of G containing polynomials of degree less than 4:

Example

gap> orb := Orbit(G,xˆ5);
[xˆ5, xˆ5+xˆ4+xˆ2+Z(2)ˆ0, xˆ5+xˆ3+xˆ2+Z(2ˆ2)*x+Z(2)ˆ0, xˆ5+xˆ3,
xˆ5+xˆ4+xˆ3+xˆ2+Z(2ˆ2)ˆ2*x+Z(2ˆ2)ˆ2, xˆ5+x, xˆ5+xˆ4+xˆ3, xˆ5+xˆ2+Z(2ˆ2)ˆ2*x,
xˆ5+xˆ4+xˆ2+x, xˆ5+xˆ3+xˆ2+Z(2ˆ2)ˆ2*x+Z(2)ˆ0, xˆ5+xˆ4+Z(2ˆ2)*x+Z(2ˆ2),
xˆ5+xˆ3+x, xˆ5+xˆ4+xˆ3+xˆ2+Z(2ˆ2)*x+Z(2ˆ2), xˆ5+xˆ4+xˆ3+x+Z(2)ˆ0,
xˆ5+xˆ2+Z(2ˆ2)*x, xˆ5+xˆ4+Z(2ˆ2)ˆ2*x+Z(2ˆ2)ˆ2]

gap> H := Action(G,orb);
Group([(1,2,4,7,6,9,12,14)(3,5,8,11,10,13,15,16),
(1,3,6,10)(2,5,9,13)(4,8,12,15)(7,11,14,16)])

gap> IsAbelian(H); # check ...
true
gap> Exponent(H);
8
gap> Collected(List(ShortOrbits(G,AllResidues(R,xˆ4),100),Length));
[[1, 4], [2, 6], [4, 12], [8, 24]]

RCWA 61

Changing the generators a little causes the group structure to change a lot:
Example

gap> cg[1][2] := cg[1][2] + (xˆ2 + e) * p * q;;
gap> ch[7][2] := ch[7][2] + x * r * s;;
gap> g := RcwaMapping(R, q, cg);; h := RcwaMapping(R, s, ch);;
gap> G := Group(g,h);
<rcwa group over GF(2ˆ2)[x] with 2 generators>
gap> orb := Orbit(G,Zero(R));;
gap> Length(orb);
87
gap> Collected(List(orb,DegreeOfLaurentPolynomial));
[[1, 2], [2, 4], [3, 16], [4, 64], [infinity, 1]]
gap> H := Action(G,orb);
<permutation group with 2 generators>
gap> IsNaturalAlternatingGroup(H);
true
gap> orb := Orbit(G,xˆ6);;
gap> Length(orb);
512
gap> H := Action(G,orb);
<permutation group with 2 generators>
gap> IsNaturalSymmetricGroup(H) or IsNaturalAlternatingGroup(H);
false
gap> blk := Blocks(H,[1..512]);;
gap> List(blk,Length);
[128, 128, 128, 128]
gap> Action(H,blk,OnSets);
Group([(1,2)(3,4), (1,3)(2,4)])

Thus the modified group has a quotient isomorphic to the alternating group of degree 87, and a quotient
isomorphic to some wreath product or a subgroup thereof acting transitively, but not primitively on
512 points.

4.8 A tame group generated by commutators of wild permutations

In this section, we have a look at 3 wild rcwa mappings whose commutators generate tame groups:
Example

gap> a := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);;
gap> b := RcwaMapping([[3,0,2],[3,13,4],[3,0,2],[3,-1,4]]);;
gap> c := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,11,4]]);;
gap> SetName(a,"a"); SetName(b,"b"); SetName(c,"c");
gap> List([a,b,c],IsTame);
[false, false, false]
gap> ab := Comm(a,b);; ac := Comm(a,c);; bc := Comm(b,c);;
gap> SetName(ab,"[a,b]"); SetName(ac,"[a,c]"); SetName(bc,"[b,c]");
gap> List([ab,ac,bc],Order);
[6, 6, 12]

RCWA 62

Now we would like to have a look at [a,b] ...
Example

gap> Display(ab);

Bijective rcwa mapping of Z with modulus 18, of order 6

n mod 18 | nˆ[a,b]
---------------------------------------+--------------------------------------

0 2 3 8 9 11 12 17 | n
1 10 | 2n - 5
4 7 13 16 | n + 3
5 14 | 2n - 4
6 | (n + 2)/2
15 | (n - 5)/2

... form the group generated by [a,b] and [a,c] and compute its action on one of its orbits:
Example

gap> G := Group(ab,ac);
<rcwa group over Z with 2 generators>
gap> orb := Orbit(G,1);
[-15, -12, -7, -6, -5, -4, -3, -2, -1, 1]
gap> H := Action(G,orb);
Group([(2,5,8,10,7,6), (1,3,6,9,4,5)])
gap> Size(H);
3628800
gap> Size(G); # G acts faithfully on orb.
3628800

Hence the groupG is isomorphic to the symmetric group on 10 points and acts faithfully on the orbit
containing 1. Another question is which groups arise if we take as generators eitherab, ac or bc and
the involution which maps any integer to its additive inverse:

Example

gap> t := ClassReflection(0,1);;
gap> Display(t);
Bijective rcwa mapping of Z: n -> -n
gap> G := Group(ab,t);
<rcwa group over Z with 2 generators>
gap> Size(G);
7257600
gap> phi := IsomorphismPermGroup(G);
[[a,b], ClassReflection(0,1)] ->
[(1,36,12,27,9,15)(2,34,10,25,7,13)(3,35,11,26,8,14),
(1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(20,21)(22,36)(23,

35)(24,34)(25,33)(26,32)(27,31)(28,30)]
gap> StructureDescription(Image(phi));
"C2 x S10"

RCWA 63

Thus the group generated byab andt is isomorphic to C2×S10 . The next group is an extension of a
perfect group of order 960:

Example

gap> G := Group(ac,t);;
gap> Size(G);
3840
gap> H := Image(IsomorphismPermGroup(G));;
gap> P := DerivedSubgroup(H);;
gap> Size(P);
960
gap> IsPerfect(P);
true
gap> PerfectGroup(PerfectIdentification(P));
A5 2ˆ4’

The last group is infinite:
Example

gap> G := Group(bc,t);;
gap> Size(G);
infinity
gap> Order(bc*t);
infinity
gap> Modulus(G);
18
gap> RespectedPartition(G);
[1(9), 2(9), 4(9), 5(9), 7(9), 8(9), 0(18), 3(18), 6(18), 9(18), 12(18),
15(18)]

gap> ActionOnRespectedPartition(G);
Group([(1,5,8,2,4,12)(3,9,6,11), (1,6)(2,5)(3,4)(8,12)(9,11)])
gap> StructureDescription(last);
"S10"
gap> RankOfKernelOfActionOnRespectedPartition(G);
9

RCWA 64

4.9 Checking for solvability

Is the group generated by the permutationsa andb from the last paragraph solvable?
This group is wild. Presently there is no general method available for testing wild rcwa groups

for solvability. But nevertheless, for the given group we can obtain a negative answer to this question.
The idea is to find a subgroupU which acts on a finite setS of integers, and which induces onS a
non-solvable finite permutation group:

Example

gap> a := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);; SetName(a,"a");
gap> b := RcwaMapping([[3,0,2],[3,13,4],[3,0,2],[3,-1,4]]);; SetName(b,"b");
gap> G := Group(a,b);;
gap> ShortOrbits(Group(Comm(a,b)),[-10..10],100);
[[-10], [-9], [-30, -21, -14, -13, -11, -8], [-7], [-6],
[-12, -5, -4, -3, -2, 1], [-1], [0], [2], [3],
[4, 5, 6, 7, 10, 15], [8], [9]]

gap> S := [4, 5, 6, 7, 10, 15];;
gap> Cycle(Comm(a,b),4);
[4, 7, 10, 15, 5, 6]
gap> elm := RepresentativeAction(G,S,Permuted(S,(1,4)),OnTuples);
<bijective rcwa mapping of Z with modulus 81>
gap> List(S,n->nˆelm);
[7, 5, 6, 4, 10, 15]
gap> U := Group(Comm(a,b),elm);
<rcwa group over Z with 2 generators>
gap> Action(U,S);
Group([(1,4,5,6,2,3), (1,4)])
gap> IsNaturalSymmetricGroup(last);
true

Thus the subgroupU induces onS a natural symmetric group of degree 6. Therefore the groupG is not
solvable, as claimed. We conclude this example by factoring the group elementelm into generators:

Example

gap> F := FreeGroup("a","b");
<free group on the generators [a, b]>
gap> RepresentativeActionPreImage(G,S,Permuted(S,(1,4)),OnTuples,F);
aˆ-2*bˆ-2*a*b*aˆ-1*b*a*bˆ-2*a
gap> aˆ-2*bˆ-2*a*b*aˆ-1*b*a*bˆ-2*a = elm;
true

RCWA 65

4.10 Some examples over (semi)localizations of the integers

We start with something one can observe when trying to “transfer” an rcwa mapping from the ring of
integers to one of its localizations:

Example

gap> a2 := LocalizedRcwaMapping(a,2);
<rcwa mapping of Z_(2) with modulus 4>
gap> IsSurjective(a2); # As expected
true
gap> IsInjective(a2); # Why not??
false
gap> 0ˆa2;
0
gap> (1/3)ˆa2; # That’s the reason!
0

The above can also be explained easily by pointing out that the modulus of the inverse ofa is 3, and
that 3 is a unit ofZ(2). Moving toZ(2,3) solves this problem:

Example

gap> a23 := SemilocalizedRcwaMapping(a,[2,3]);
<rcwa mapping of Z_(2, 3) with modulus 4>
gap> IsBijective(a23);
true

We get additional finite cycles, e.g.:
Example

gap> List(ShortOrbits(Group(a23),[0..50]/5,50),orb->Cycle(a23,orb[1]));
[[0], [1/5, 2/5, 3/5],
[4/5, 6/5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5], [1],
[2, 3], [14/5, 21/5, 17/5],
[16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 78/5, 117/5, 89/5,

68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5, 113/5, 86/5,
129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5, 51/5, 37/5, 29/5,
23/5], [4, 6, 9, 7, 5]]

gap> List(last,Length);
[1, 3, 11, 1, 2, 3, 34, 5]
gap> List(ShortOrbits(Group(a23),[0..50]/7,50),orb->Cycle(a23,orb[1]));
[[0], [-1/7, 1/7], [2/7, 3/7, 4/7, 6/7, 9/7, 5/7], [1], [2, 3],
[4, 6, 9, 7, 5]]

gap> List(last,Length);
[1, 2, 6, 1, 2, 5]

RCWA 66

But the group structure remains invariant under the “transfer” of a group with prime set{2,3} from Z
to Z(2,3):

Example

gap> b23 := SemilocalizedRcwaMapping(b,[2,3]);;
gap> c23 := SemilocalizedRcwaMapping(c,[2,3]);;
gap> ab23 := Comm(a23,b23);
<rcwa mapping of Z_(2, 3) with modulus 18>
gap> ac23 := Comm(a23,c23);
<rcwa mapping of Z_(2, 3) with modulus 18>
gap> G := Group(ab23,ac23);
<rcwa group over Z_(2, 3) with 2 generators>
gap> S := Intersection(Enumerator(Rationals){[1..200]},Z_pi([2,3]));
[-12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -12/5, -11/5, -2, -9/5, -12/7,
-8/5, -11/7, -10/7, -7/5, -9/7, -6/5, -8/7, -12/11, -1, -10/11, -6/7,
-9/11, -4/5, -8/11, -5/7, -7/11, -3/5, -4/7, -6/11, -5/11, -3/7, -2/5,
-4/11, -2/7, -3/11, -1/5, -2/11, -1/7, -1/11, 0, 1/13, 1/11, 1/7, 2/13,
2/11, 1/5, 3/13, 3/11, 2/7, 4/13, 4/11, 5/13, 2/5, 3/7, 5/11, 6/13, 7/13,
6/11, 4/7, 3/5, 8/13, 7/11, 9/13, 5/7, 8/11, 10/13, 4/5, 9/11, 11/13, 6/7,
10/11, 12/13, 1, 12/11, 8/7, 13/11, 6/5, 9/7, 7/5, 10/7, 11/7, 8/5, 12/7,
9/5, 2, 11/5, 12/5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

gap> orbs := ShortOrbits(G,S,50);;
gap> List(orbs,Length);
[10, 10, 1, 10, 1, 10, 10, 10, 10, 10, 1, 10, 10, 10, 1, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1,
10, 1, 10, 10, 10, 1, 1, 10, 1, 10]

gap> ForAll(orbs,orb->IsNaturalSymmetricGroup(Action(G,orb)));
true

“Transferring” a non-invertible rcwa mapping from the ring of integers to some of its
(semi)localizations can also turn it into an invertible one:

Example

gap> v := RcwaMapping([[6,0,1],[1,-7,2],[6,0,1],[1,-1,1],
> [6,0,1],[1, 1,2],[6,0,1],[1,-1,1]]);;
gap> SetName(v,"v");
gap> Display(v);

Rcwa mapping of Z with modulus 8

n mod 8 | nˆv
---------------------------------------+--------------------------------------
0 2 4 6 | 6n
1 | (n - 7)/2
3 7 | n - 1
5 | (n + 1)/2

RCWA 67

Example

gap> IsInjective(v);
true
gap> IsSurjective(v);
false
gap> Image(v);
Z \ 4(12) U 8(12)
gap> Difference(Integers,last);
4(12) U 8(12)
gap> v2 := LocalizedRcwaMapping(v,2);
<rcwa mapping of Z_(2) with modulus 8>
gap> IsBijective(v2);
true
gap> Display(v2ˆ-1);

Bijective rcwa mapping of Z_(2) with modulus 4

n mod 4 | nˆf
---------------------------------------+--------------------------------------
0 | 1/3 n / 2
1 | 2 n + 7
2 | n + 1
3 | 2 n - 1

gap> S := ResidueClass(Z_pi(2),2,0);; l := [S];;
gap> for i in [1..10] do Add(l,l[Length(l)]ˆv2); od;
gap> l; # Visibly v2 is wild ...
[0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512), 0(1024),
0(2048)]

gap> w2 := RcwaMapping(Z_pi(2),[[1,0,2],[2,-1,1],[1,1,1],[2,-1,1]]);;
gap> v2w2 := Comm(v2,w2);; SetName(v2w2,"[v2,w2]"); v2w2ˆ-1;;
gap> Display(v2w2);

Bijective rcwa mapping of Z_(2) with modulus 8

n mod 8 | nˆ[v2,w2]
---------------------------------------+--------------------------------------
0 3 4 7 | n
1 | n + 4
2 6 | 3 n
5 | n - 4

Again, viewed as an rcwa mapping of the integers the commutator given at the end of the example
would not be surjective.

RCWA 68

4.11 Twisting 257-cycles into an rcwa mapping with modulus 32

We define an rcwa mappingx of order 257 with modulus 32. The easiest way to construct such a
mapping is to prescribe a transition graph and then to assign suitable affine mappings to its vertices.

Example

gap> x := RcwaMapping(
> [[16, 2, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],
> [1, 16, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],
> [1, 16, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],
> [1, 16, 1], [16, 18, 1], [1, 16, 1], [16, 18, 1],
> [1, 0, 16], [16, 18, 1], [1,-14, 1], [16, 18, 1],
> [1,-14, 1], [16, 18, 1], [1,-14, 1], [16, 18, 1],
> [1,-14, 1], [16, 18, 1], [1,-14, 1], [16, 18, 1],
> [1,-14, 1], [16, 18, 1], [1,-14, 1], [1,-31, 1]]);;
gap> SetName(x,"x"); Display(x);

Rcwa mapping of Z with modulus 32

n mod 32 | nˆx
---------------------------------------+--------------------------------------

0 | 16n + 2
1 3 5 7 9 11 13 15 17 19 21 23 |
25 27 29 | 16n + 18
2 4 6 8 10 12 14 | n + 16
16 | n/16
18 20 22 24 26 28 30 | n - 14
31 | n - 31

gap> Order(x);
257
gap> Cycle(x,[1],0);
[0, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30, 16, 1, 34, 50, 36,
52, 38, 54, 40, 56, 42, 58, 44, 60, 46, 62, 48, 3, 66, 82, 68, 84, 70, 86,
72, 88, 74, 90, 76, 92, 78, 94, 80, 5, 98, 114, 100, 116, 102, 118, 104,
120, 106, 122, 108, 124, 110, 126, 112, 7, 130, 146, 132, 148, 134, 150,
136, 152, 138, 154, 140, 156, 142, 158, 144, 9, 162, 178, 164, 180, 166,
182, 168, 184, 170, 186, 172, 188, 174, 190, 176, 11, 194, 210, 196, 212,
198, 214, 200, 216, 202, 218, 204, 220, 206, 222, 208, 13, 226, 242, 228,
244, 230, 246, 232, 248, 234, 250, 236, 252, 238, 254, 240, 15, 258, 274,
260, 276, 262, 278, 264, 280, 266, 282, 268, 284, 270, 286, 272, 17, 290,
306, 292, 308, 294, 310, 296, 312, 298, 314, 300, 316, 302, 318, 304, 19,
322, 338, 324, 340, 326, 342, 328, 344, 330, 346, 332, 348, 334, 350, 336,
21, 354, 370, 356, 372, 358, 374, 360, 376, 362, 378, 364, 380, 366, 382,
368, 23, 386, 402, 388, 404, 390, 406, 392, 408, 394, 410, 396, 412, 398,
414, 400, 25, 418, 434, 420, 436, 422, 438, 424, 440, 426, 442, 428, 444,
430, 446, 432, 27, 450, 466, 452, 468, 454, 470, 456, 472, 458, 474, 460,
476, 462, 478, 464, 29, 482, 498, 484, 500, 486, 502, 488, 504, 490, 506,
492, 508, 494, 510, 496, 31]

gap> Length(last);
257

RCWA 69

4.12 The behaviour of the moduli of powers

In this section some examples are given, which illustrate how different the series of the moduli of
powers of a given rcwa mapping of the integers can look like.

Example

gap> List([0..4],i->Modulus(aˆi));
[1, 4, 16, 64, 256]
gap> List([0..6],i->Modulus(abˆi));
[1, 18, 18, 18, 18, 18, 1]
gap> g := RcwaMapping([[2,2,1],[1, 4,1],[1,0,2],[2,2,1],[1,-4,1],[1,-2,1]]);;
gap> h := RcwaMapping([[2,2,1],[1,-2,1],[1,0,2],[2,2,1],[1,-1,1],[1, 1,1]]);;
gap> List([0..7],i->Modulus(gˆi));
[1, 6, 12, 12, 12, 12, 6, 1]
gap> List([1..20],i->Modulus((gˆ3*h)ˆi));
[12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> List([0..3],i->Modulus(uˆi));
[1, 5, 25, 125]
gap> v6 := RcwaMapping([[-1,2,1],[1,-1,1],[1,-1,1]]);;
gap> List([0..6],i->Modulus(v6ˆi));
[1, 3, 3, 3, 3, 3, 1]
gap> w8 := RcwaMapping([[-1,3,1],[1,-1,1],[1,-1,1],[1,-1,1]]);;
gap> List([0..8],i->Modulus(w8ˆi));
[1, 4, 4, 4, 4, 4, 4, 4, 1]
gap> z := RcwaMapping([[2, 1, 1],[1, 1,1],[2, -1,1],[2, -2,1],
> [1, 6, 2],[1, 1,1],[1, -6,2],[2, 5,1],
> [1, 6, 2],[1, 1,1],[1, 1,1],[2, -5,1],
> [1, 0, 1],[1, -4,1],[1, 0,1],[2,-10,1]]);;
gap> SetName(z,"z");
gap> IsBijective(z);
true
gap> Display(z);

Bijective rcwa mapping of Z with modulus 16

n mod 16 | nˆz
---------------------------------------+--------------------------------------

0 | 2n + 1
1 5 9 10 | n + 1
2 | 2n - 1
3 | 2n - 2
4 8 | (n + 6)/2
6 | (n - 6)/2
7 | 2n + 5
11 | 2n - 5
12 14 | n
13 | n - 4
15 | 2n - 10

RCWA 70

Example

gap> List([0..25],i->Modulus(zˆi));
[1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256,
256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024]

gap> e1 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[2,0,1]]);;
gap> e2 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[1,0,1],
> [1,4,1],[2,0,1],[1,0,1],[1,0,1]]);;
gap> List([e1,e2],Order);
[infinity, infinity]
gap> List([1..20],i->Modulus(e1ˆi));
[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
gap> List([1..20],i->Modulus(e2ˆi));
[8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4]
gap> SetName(e1,"e1"); SetName(e2,"e2");
gap> Display(e2);

Bijective rcwa mapping of Z with modulus 8, of order infinity

n mod 8 | nˆe2
---------------------------------------+--------------------------------------
0 4 | n + 4
1 5 | 2n
2 | n/2
3 6 7 | n

gap> e2ˆ2 = Restriction(RcwaMapping([[1,2,1]]),RcwaMapping([[4,0,1]]));
true

4.13 Images and preimages under the Collatz mapping

We have a look at the images of the residue class 1(2) under powers of the Collatz mapping.
Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; S0 := ResidueClass(Integers,2,1);;
gap> S1 := S0ˆT;
2(3)
gap> S2 := S1ˆT;
1(3) U 8(9)
gap> S3 := S2ˆT;
2(3) U 4(9)
gap> S4 := S3ˆT;
Z \ 0(3) U 5(9)
gap> S5 := S4ˆT;
Z \ 0(3) U 7(9)
gap> S6 := S5ˆT;
Z \ 0(3)
gap> S7 := S6ˆT;
Z \ 0(3)

RCWA 71

Thus the image gets stable after applying the mappingT for the 6th time. HenceT6 maps the residue
class 1(2) surjectively onto the union of the residue classes 1(3) and 2(3), which is setwisely stabilized
by T. Now we would like to determine the preimages of 1(3) resp. 2(3) in 1(2) underT6. The residue
class 1(2) has to be the disjoint union of these sets.

Example

gap> U := Intersection(PreImage(Tˆ6,ResidueClass(Integers,3,1)),S0);
<union of 11 residue classes (mod 64)>
gap> V := Intersection(PreImage(Tˆ6,ResidueClass(Integers,3,2)),S0);
<union of 21 residue classes (mod 64)>
gap> AsUnionOfFewClasses(U);
[1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64), 51(64),
59(64)]

gap> AsUnionOfFewClasses(V);
[3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64),
37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64)]

gap> Union(U,V) = S0 and Intersection(U,V) = []; # consistency check
true

The images of the residue class 0(3) under powers ofT look as follows:
Example

gap> S0 := ResidueClass(Integers,3,0);
0(3)
gap> S1 := S0ˆT;
0(3) U 5(9)
gap> S2 := S1ˆT;
0(3) U 5(9) U 7(9) U 8(27)
gap> S3 := S2ˆT;
<union of 20 residue classes (mod 27)>
gap> S4 := S3ˆT;
<union of 73 residue classes (mod 81)>
gap> S5 := S4ˆT;
Z \ 10(81) U 37(81)
gap> S6 := S5ˆT;
Integers
gap> S7 := S6ˆT;
Integers

Thus every integer is the image of a multiple of 3 underT6. This means that it would be sufficient to
prove the 3n+1 Conjecture for multiples of 3. We can obtain the corresponding result for multiples
of 5 as follows:

Example

gap> S := [ResidueClass(Integers,5,0)];
[0(5)]
gap> for i in [1..12] do Add(S,S[i]ˆT); od;

RCWA 72

Example

gap> for s in S do View(s); Print("\n"); od;
0(5)
0(5) U 8(15)
0(5) U 4(15) U 8(15)
0(5) U 2(15) U 4(15) U 8(15) U 29(45)
<union of 73 residue classes (mod 135)>
<union of 244 residue classes (mod 405)>
<union of 784 residue classes (mod 1215)>
<union of 824 residue classes (mod 1215)>
<union of 2593 residue classes (mod 3645)>
<union of 2647 residue classes (mod 3645)>
<union of 2665 residue classes (mod 3645)>
<union of 2671 residue classes (mod 3645)>
1(3) U 2(3) U 0(15)
gap> Union(S[13],ResidueClass(Integers,3,0));
Integers
gap> List(S,Si->Float(Density(Si)));
[0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267, 0.678189,
0.711385, 0.7262, 0.731139, 0.732785, 0.733333]

4.14 A group which acts 4-transitively on the positive integers

In this section, we would like to show that the groupG generated by the two wild mappings
Example

gap> a := RcwaMapping([[3,0,2],[3,1,4],[3,0,2],[3,-1,4]]);;
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> SetName(a,"a"); SetName(u,"u"); G := Group(a,u);;

which we have already investigated in earlier examples acts 4-transitively on the set of positive inte-
gers. Obviously, it acts on the set of positive integers. First we show that this action is transitive. We
start by checking in which residue classes sufficiently large positive integers are mapped to smaller
ones by a suitable group element:

Example

gap> List([a,aˆ-1,u,uˆ-1],DecreasingOn);
[1(2), 0(3), 0(5) U 2(5), 2(3)]
gap> Union(last);
Z \ 4(30) U 16(30) U 28(30)

We see that we cannot always choose such a group element from the set of generators and their
inverses – otherwise the union would beIntegers.

RCWA 73

Example

gap> List([a,aˆ-1,u,uˆ-1,aˆ2,aˆ-2,uˆ2,uˆ-2],DecreasingOn);
[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9)]

gap> Union(last); # Still not enough ...
Z \ 4(90) U 58(90) U 76(90)
gap> List([a,aˆ-1,u,uˆ-1,aˆ2,aˆ-2,uˆ2,uˆ-2,a*u,u*a,(a*u)ˆ-1,(u*a)ˆ-1],
> DecreasingOn);
[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9),
3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3), 3(9) U 4(9) U 8(9)]

gap> Union(last); # ... but that’s it!
Integers

Finally, we have to deal with “small” integers. We use the notation for the coefficients of rcwa
mappings introduced at the beginning of this manual. Letcr(m) > ar(m). Then we easily see that
(ar(m)n+ br(m))/cr(m) > n impliesn < br(m)/(cr(m)−ar(m)). Thus we can restrict our considerations
to integersn < bmax, wherebmax is the largest second entry of a coefficient triple of one of the group
elements in our list:

Example

gap> List([a,aˆ-1,u,uˆ-1,aˆ2,aˆ-2,uˆ2,uˆ-2,a*u,u*a,(a*u)ˆ-1,(u*a)ˆ-1],
> f->Maximum(List(Coefficients(f),c->c[2])));
[1, 1, 4, 2, 7, 7, 56, 28, 25, 17, 17, 11]
gap> Maximum(last);
56

Thus this upper bound is 56. The rest is easy – all we have to do is to check that the orbit containing 1
contains also all other positive integers less than or equal to 56:

Example

gap> S := [1];;
gap> while not IsSubset(S,[1..56]) do
> S := Union(S,Sˆa,Sˆu,Sˆ(aˆ-1),Sˆ(uˆ-1));
> od;
gap> IsSubset(S,[1..56]);
true

Checking 2-transitivity is computationally harder, and in the sequel we will omit some steps which
are in practice needed to find out “what to do”. The approach taken here is to show that the stabilizer
of 1 in G acts transitively on the set of positive integers greater than 1. We do this by similar means
as used above for showing the transitivity of the action ofG on the positive integers. We start by
determining all products of at most 5 generators and their inverses, which stabilize 1 (taking at most
4-generator products would not suffice!):

RCWA 74

Example

gap> gens := [a,u,aˆ-1,uˆ-1];;
gap> tups := Concatenation(List([1..5],k->Tuples([1..4],k)));;
gap> Length(tups);
1364
gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],
> l->PositionSublist(tup,l)=fail));;
gap> Length(tups);
484
gap> stab := [];;
gap> for tup in tups do
> n := 1;
> for i in tup do n := nˆgens[i]; od;
> if n = 1 then Add(stab,tup); fi;
> od;
gap> Length(stab);
118
gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i])));;
gap> ForAll(stabelm,elm->1ˆelm=1); # Check.
true

The resulting products have various different not quite small moduli:
Example

gap> List(stabelm,Modulus);
[4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243, 256,
400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135, 150, 75, 225,
81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561, 1024, 1600, 192,
1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100, 180, 192, 192, 108,
972, 1728, 972, 8748, 1600, 400, 320, 80, 1600, 2500, 300, 2500, 625, 625,
75, 675, 75, 75, 135, 405, 600, 120, 600, 1875, 75, 225, 405, 225, 225,
675, 243, 2187, 729, 2187, 216, 216, 243, 2187, 1944, 2187, 19683, 576,
144, 576, 432, 81, 81, 729, 2187, 5184, 324, 8748, 243, 2187, 19683, 26244,
19683]

gap> Lcm(last);
12597120000
gap> Collected(Factors(last));
[[2, 10], [3, 9], [5, 4]]

Similar as before, we determine for any of the above mappings the residue classes whose elements
larger than the largestbr(m) - coefficient of the respective mapping are mapped to smaller integers:

RCWA 75

Example

gap> decs := List(stabelm,DecreasingOn);;
gap> List(decs,Modulus);
[2, 3, 8, 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400, 48,
200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81, 243, 81,
243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400, 400, 48, 144,
1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324, 144, 324, 972, 400,
400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25, 75, 75, 75, 45, 135, 600,
120, 150, 1875, 75, 225, 135, 225, 225, 675, 243, 729, 243, 729, 108, 216,
243, 729, 162, 729, 2187, 144, 144, 144, 144, 81, 81, 243, 729, 1296, 324,
972, 243, 729, 2187, 1458, 2187]

gap> Lcm(last);
174960000

Since the least common multiple of the moduli of these unions of residue classes is as large as
174960000, directly forming their union and checking whether it is equal to the set of integers would
take relatively much time and memory. However, starting with the set of integers and subtracting the
above sets one-by-one in a suitably chosen order is cheap:

Example

gap> SortParallel(decs,stabelm,
> function(S1,S2)
> return First([1..100],k->Factorial(k) mod Modulus(S1) = 0)
> < First([1..100],k->Factorial(k) mod Modulus(S2) = 0);
> end);
gap> S := Integers;;
gap> for i in [1..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then maxind := i; break; fi;
> od;
0(2)
2(6) U 4(6)
<union of 8 residue classes (mod 30)>
<union of 19 residue classes (mod 90)>
<union of 114 residue classes (mod 720)>
<union of 99 residue classes (mod 720)>
<union of 57 residue classes (mod 720)>
<union of 54 residue classes (mod 720)>
<union of 41 residue classes (mod 720)>
<union of 35 residue classes (mod 720)>
<union of 8 residue classes (mod 720)>
4(720) U 94(720) U 148(720) U 238(720)
<union of 24 residue classes (mod 5760)>
<union of 72 residue classes (mod 51840)>
<union of 48 residue classes (mod 51840)>
<union of 192 residue classes (mod 259200)>
<union of 168 residue classes (mod 259200)>
<union of 120 residue classes (mod 259200)>
<union of 96 residue classes (mod 259200)>

RCWA 76

<union of 72 residue classes (mod 259200)>
<union of 60 residue classes (mod 259200)>
<union of 48 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 12 residue classes (mod 259200)>
<union of 24 residue classes (mod 777600)>
<union of 12 residue classes (mod 777600)>
111604(194400) U 14404(777600) U 208804(777600)
[]

Similar as above, it remains to check that the “small” integers all lie in the orbit containing 2. Ob-
viously, it is sufficient to check that any integer greater than 2 is mapped to a smaller one by some
suitably chosen element of the stabilizer under consideration:

Example

gap> Maximum(List(stabelm{[1..maxind]},
> f->Maximum(List(Coefficients(f),c->c[2]))));
6581
gap> Filtered([3..6581],n->Minimum(List(stabelm,elm->nˆelm))>=n);
[4]

We have to treat 4 separately:
Example

gap> 1ˆ(u*a*uˆ2*aˆ-1*u);
1
gap> 4ˆ(u*a*uˆ2*aˆ-1*u);
3

Now we know that any positive integer greater than 1 lies in the same orbit under the action of the
stabilizer of 1 inG as 2, thus that this stabilizer acts transitively onN \ {1}. But this means that we
have established the 2-transitivity of the action ofG onN.

In the following, we essentially repeat the above steps to show that this action is indeed 3-
transitive:

Example

gap> tups := Concatenation(List([1..6],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],
> l->PositionSublist(tup,l)=fail));;
gap> stab := [];;
gap> for tup in tups do
> l := [1,2];
> for i in tup do l := List(l,n->nˆgens[i]); od;
> if l = [1,2] then Add(stab,tup); fi;
> od;
gap> Length(stab);
212

RCWA 77

Example

gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i])));;
gap> decs := List(stabelm,DecreasingOn);;
gap> SortParallel(decs,stabelm,
> function(S1,S2) return First([1..100],k->Factorial(k) mod Modulus(S1) = 0)
> < First([1..100],k->Factorial(k) mod Modulus(S2) = 0);
> end);
gap> S := Integers;;
gap> for i in [1..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then break; fi;
> od;
Z \ 1(8) U 7(8)
<union of 151 residue classes (mod 240)>
<union of 208 residue classes (mod 720)>
<union of 51 residue classes (mod 720)>
<union of 45 residue classes (mod 720)>
<union of 39 residue classes (mod 720)>
<union of 33 residue classes (mod 720)>
<union of 23 residue classes (mod 720)>
<union of 19 residue classes (mod 720)>
<union of 17 residue classes (mod 720)>
<union of 16 residue classes (mod 720)>
<union of 14 residue classes (mod 720)>
<union of 8 residue classes (mod 720)>
<union of 7 residue classes (mod 720)>
238(360) U 4(720) U 148(720) U 454(720)
<union of 38 residue classes (mod 5760)>
<union of 37 residue classes (mod 5760)>
<union of 25 residue classes (mod 5760)>
<union of 21 residue classes (mod 5760)>
<union of 17 residue classes (mod 5760)>
<union of 16 residue classes (mod 5760)>
<union of 138 residue classes (mod 51840)>
<union of 48 residue classes (mod 51840)>
<union of 32 residue classes (mod 51840)>
<union of 20 residue classes (mod 51840)>
<union of 16 residue classes (mod 51840)>
<union of 68 residue classes (mod 259200)>
<union of 42 residue classes (mod 259200)>
<union of 32 residue classes (mod 259200)>
<union of 26 residue classes (mod 259200)>
<union of 25 residue classes (mod 259200)>
<union of 11 residue classes (mod 259200)>
<union of 10 residue classes (mod 259200)>
<union of 7 residue classes (mod 259200)>
13414(129600) U 2164(259200) U 66964(259200) U 228964(259200)
2164(259200) U 66964(259200) U 228964(259200)
[]

RCWA 78

Example

gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),c->c[2]))));
515816
gap> smallnum := [4..515816];;
gap> for i in [1..Length(stabelm)] do
> smallnum := Filtered(smallnum,n->nˆstabelm[i]>=n);
> od;
gap> smallnum;
[]

The same for 4-transitivity:
Example

gap> tups := Concatenation(List([1..8],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],
> l->PositionSublist(tup,l)=fail));;
gap> stab := [];;
gap> for tup in tups do
> l := [1,2,3];
> for i in tup do l := List(l,n->nˆgens[i]); od;
> if l = [1,2,3] then Add(stab,tup); fi;
> od;
gap> Length(stab);
528
gap> stabelm := [];;
gap> for i in [1..Length(stab)] do
> elm := One(G);
> for j in stab[i] do
> if Modulus(elm) > 10000 then elm := fail; break; fi;
> elm := elm * gens[j];
> od;
> if elm <> fail then Add(stabelm,elm); fi;
> od;
gap> Length(stabelm);
334
gap> decs := List(stabelm,DecreasingOn);;
gap> SortParallel(decs,stabelm,
> function(S1,S2)
> return First([1..100],k->Factorial(k) mod Modulus(S1) = 0)
> < First([1..100],k->Factorial(k) mod Modulus(S2) = 0);
> end);

RCWA 79

Example

gap> S := Integers;;
gap> for i in [1..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then maxind := i; break; fi;
> od;
Z \ 1(8) U 7(8)
<union of 46 residue classes (mod 72)>
<union of 20 residue classes (mod 72)>
4(18)
<union of 28 residue classes (mod 576)>
<union of 22 residue classes (mod 576)>
<union of 21 residue classes (mod 576)>
40(72) U 4(144) U 94(144) U 346(576) U 418(576)
<union of 16 residue classes (mod 576)>
<union of 15 residue classes (mod 576)>
4(144) U 94(144) U 346(576) U 418(576)
<union of 30 residue classes (mod 5184)>
<union of 26 residue classes (mod 5184)>
<union of 6 residue classes (mod 1296)>
<union of 504 residue classes (mod 129600)>
<union of 324 residue classes (mod 129600)>
<union of 282 residue classes (mod 129600)>
<union of 239 residue classes (mod 129600)>
<union of 218 residue classes (mod 129600)>
<union of 194 residue classes (mod 129600)>
<union of 154 residue classes (mod 129600)>
<union of 97 residue classes (mod 129600)>
<union of 85 residue classes (mod 129600)>
<union of 77 residue classes (mod 129600)>
<union of 67 residue classes (mod 129600)>
<union of 125 residue classes (mod 259200)>
<union of 108 residue classes (mod 259200)>
<union of 107 residue classes (mod 259200)>
<union of 101 residue classes (mod 259200)>
<union of 100 residue classes (mod 259200)>
<union of 84 residue classes (mod 259200)>
<union of 80 residue classes (mod 259200)>
<union of 76 residue classes (mod 259200)>
<union of 70 residue classes (mod 259200)>
<union of 66 residue classes (mod 259200)>
<union of 54 residue classes (mod 259200)>
<union of 53 residue classes (mod 259200)>
<union of 47 residue classes (mod 259200)>
<union of 43 residue classes (mod 259200)>
<union of 31 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 23 residue classes (mod 259200)>
<union of 13 residue classes (mod 259200)>
57406(129600) U 115006(129600) U 192676(259200) U 250276(259200)
57406(129600) U 192676(259200) U 250276(259200) U 374206(388800)

RCWA 80

57406(129600) U 192676(259200) U 250276(259200)
250276(259200) U 57406(388800) U 316606(388800) U 451876(777600)
316606(388800) U 451876(777600) U 509476(777600) U 768676(777600)
<union of 18 residue classes (mod 3110400)>
451876(777600) U 509476(777600) U 705406(777600) U 768676(777600) U 2649406(
3110400)
451876(777600) U 705406(777600) U 768676(777600) U 2649406(3110400)
451876(777600) U 705406(777600) U 2649406(3110400)
705406(777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)
<union of 14 residue classes (mod 9331200)>
2260606(2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)
4593406(6998400) U 15091006(27993600) U 17559076(27993600) U 24557476(
27993600)
<union of 14 residue classes (mod 83980800)>
18590206(20995200) U 24557476(83980800) U 45552676(83980800) U 71078206(
83980800)
[]
gap> Maximum(List(stabelm{[1..maxind]},
> f->Maximum(List(Coefficients(f),c->c[2]))));
58975
gap> smallnum := [5..58975];;
gap> for i in [1..maxind] do
> smallnum := Filtered(smallnum,n->nˆstabelm[i]>=n);
> od;
gap> smallnum;
[]

There is even some evidence that the degree of transitivity of the action ofG on the positive integers
is higher than 4:

Example

gap> phi := EpimorphismFromFreeGroup(G);
[a, u] -> [a, u]
gap> F := Source(phi);
<free group on the generators [a, u]>
gap> words := List([5..20],
> n->RepresentativeActionPreImage(G,[1,2,3,4,5],
> [1,2,3,4,n],OnTuples,F));
[<identity ...>, aˆ-3*uˆ4*a*uˆ-2*aˆ2, aˆ-2*u*aˆ-1*u*aˆ-1*u*aˆ-1*u*aˆ-1*uˆ-1*a

, aˆ4*uˆ-2*aˆ-4, aˆ-1*uˆ-4*a, uˆ2*aˆ-1*uˆ2*aˆ-1*uˆ-2, uˆ-2*aˆ-2*uˆ4,
aˆ-1*uˆ2*a, aˆ-1*uˆ-6*a, aˆ2*uˆ4*aˆ2*uˆ2, uˆ-4*a*uˆ-2*aˆ-3,
aˆ-1*uˆ-2*aˆ-3*uˆ4*aˆ2, aˆ3*uˆ2*a*uˆ2, a*uˆ-4*a*uˆ-4*aˆ-2,
uˆ-2*a*uˆ2*a*uˆ-2, uˆ-4*aˆ2*uˆ2]

RCWA 81

4.15 A group which acts 3-transitively, but not 4-transitively on Z

In this section, we would like to show that the wild groupG generated by the two tame mappings
n 7→ n+1 andτ1(2),0(4) acts 3-transitively, but not 4-transitively on the set of integers.

Example

gap> G := Group(ClassShift(0,1),ClassTransposition(1,2,0,4));
<rcwa group over Z with 2 generators>
gap> IsTame(G);
false
gap> (G.1ˆ-2*G.2)ˆ3*(G.1ˆ2*G.2)ˆ3; # G is not the free product C_infty * C_2.
IdentityMapping(Integers)
gap> Display(G);

Wild rcwa group over Z, generated by

[
Tame bijective rcwa mapping of Z: n -> n + 1

Bijective rcwa mapping of Z with modulus 4, of order 2

n mod 4 | nˆClassTransposition(1,2,0,4)
---------------------------------------+--------------------------------------
0 | (n + 2)/2
1 3 | 2n - 2
2 | n

]

This group acts transitively onZ, since already the cyclic group generated by the first of the two
generators does so. Next we have to show that it acts 2-transitively. We essentially proceed as in the
example in the previous section, by checking that the stabilizer of 0 acts transitively onZ\{0}.

Example

gap> gens := [ClassShift(0,1)ˆ-1,ClassTransposition(1,2,0,4),ClassShift(0,1)];;
gap> tups := Concatenation(List([1..6],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],
> l->PositionSublist(tup,l)=fail));;
gap> Length(tups);
189
gap> stab := [];;
gap> for tup in tups do
> n := 0;
> for i in tup do n := nˆgens[i+2]; od;
> if n = 0 then Add(stab,tup); fi;
> od;
gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;
gap> Collected(List(stabelm,Modulus));
[[4, 6], [8, 4], [16, 3]]

RCWA 82

Example

gap> decs := List(stabelm,DecreasingOn);
[0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4), 0(8),
3(8)]

gap> Union(decs);
Integers

Similar as in the previous section, it remains to check that the integers with “small” absolute value all
lie in the orbit containing 1 under the action of the stabilizer of 0:

Example

gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),c->AbsInt(c[2])))));
21
gap> S := [1];;
gap> for elm in stabelm do S := Union(S,Sˆelm,Sˆ(elmˆ-1)); od;
gap> IsSubset(S,Difference([-21..21],[0])); # Not yet ..
false
gap> for elm in stabelm do S := Union(S,Sˆelm,Sˆ(elmˆ-1)); od;
gap> IsSubset(S,Difference([-21..21],[0])); # ... but now!
true

Now we have to check for 3-transitivity. Since we cannot find for every residue class an element of
the pointwise stabilizer of{0,1} which properly divides its elements, we also have to take additions
and subtractions into consideration. Since the moduli of all of our stabilizer elements are quite small,
simply looking at sets of representatives is cheap:

Example

gap> tups := Concatenation(List([1..10],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],
> l->PositionSublist(tup,l)=fail));;
gap> Length(tups);
3069
gap> stab := [];
[]
gap> for tup in tups do
> l := [0,1];
> for i in tup do l := List(l,n->nˆgens[i+2]); od;
> if l = [0,1] then Add(stab,tup); fi;
> od;
gap> Length(stab);
10
gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;
gap> Maximum(List(stabelm,Modulus));
8
gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),c->AbsInt(c[2])))));
8

RCWA 83

Example

gap> decsp := List(stabelm,elm->Filtered([9..16],n->nˆelm<n));
[[9, 13], [10, 12, 14, 16], [12, 16], [9, 13], [12, 16],
[9, 11, 13, 15], [9, 11, 13, 15], [12, 16], [12, 16],
[9, 11, 13, 15]]

gap> Union(decsp);
[9, 10, 11, 12, 13, 14, 15, 16]
gap> decsm := List(stabelm,elm->Filtered([-16..-9],n->nˆelm>n));
[[-15, -13, -11, -9], [-16, -12], [-16, -12], [-15, -11],
[-16, -14, -12, -10], [-15, -11], [-15, -11], [-16, -14, -12, -10],
[-16, -14, -12, -10], [-15, -11]]

gap> Union(decsm);
[-16, -15, -14, -13, -12, -11, -10, -9]
gap> S := [2];;
gap> for elm in stabelm do S := Union(S,Sˆelm,Sˆ(elmˆ-1)); od;
gap> IsSubset(S,Difference([-8..8],[0,1]));
true

At this point we have established 3-transitivity. It remains to check that the groupG does not act
4-transitively. We do this by checking that it is not transitive on 4-tuples (mod 4). Sincen mod 8
determines the image ofn under a generator ofG (mod 4), it suffices to compute (mod 8):

Example

gap> orb := [[0,1,2,3]];;
gap> extend := function ()
> local gen;
> for gen in gens do
> orb := Union(orb,List(orb,l->List(l,n->nˆgen) mod 8));
> od;
> end;;
gap> repeat
> old := ShallowCopy(orb);
> extend(); Print(Length(orb),"\n");
> until orb = old;
7
27
97
279
573
916
1185
1313
1341
1344
1344
gap> Length(Set(List(orb,l->l mod 4)));
120
gap> last < 4ˆ4;
true

RCWA 84

This shows thatG is not 4-transitive onZ. The corresponding calculation for 3-tuples looks as follows:
Example

gap> orb := [[0,1,2]];;
gap> repeat
> old := ShallowCopy(orb);
> extend(); Print(Length(orb),"\n");
> until orb = old;
7
27
84
207
363
459
503
512
512
gap> Length(Set(List(orb,l->l mod 4)));
64
gap> last = 4ˆ3;
true

Needless to say that the latter kind of argumentation is not suitable for proving, but only for disproving
k-transitivity.

4.16 Grigorchuk groups

In this section, we show how to construct finite quotients of the two infinite periodic groups in-
troduced by Rostislav Grigorchuk in [Gri80] with the help of RCWA. The first of these, nowa-
days known as “Grigorchuk group”, is investigated in an example given on theGAP website – see
http://www.gap-system.org/Doc/Examples/grigorchuk.html. TheRCWA package permits a
simpler and more elegant construction of the finite quotients of this group: The functionTopElement
given on the mentioned webpage gets unnecessary, and the functionSequenceElement can be sim-
plified as follows:

SequenceElement := function (r, level)

return Permutation(Product(Filtered([1..level-1],k->k mod 3 <> r),
k->ClassTransposition(2ˆ(k-1)-1, 2ˆ(k+1),

2ˆk+2ˆ(k-1)-1, 2ˆ(k+1))),
[0..2ˆlevel-1]);

end;

http://www.gap-system.org/Doc/Examples/grigorchuk.html

RCWA 85

The actual constructors for the generators are modified as follows:

a := level -> Permutation(ClassTransposition(0,2,1,2),[0..2ˆlevel-1]);
b := level -> SequenceElement(0,level);
c := level -> SequenceElement(2,level);
d := level -> SequenceElement(1,level);

All computations given on the webpage can now be done just as with the “original” construction of
the quotients of the Grigorchuk group. In the sequel, we construct finite quotients of the second group
introduced in [Gri80]:

Example

gap> FourCycle := RcwaMapping((4,5,6,7),[4..7]);
<bijective rcwa mapping of Z with modulus 4, of order 4>
gap> GrigorchukGroup2Generator := function (level)
> if level = 1 then return FourCycle; else
> return Restriction(FourCycle, RcwaMapping([[4,1,1]]))
> * Restriction(FourCycle, RcwaMapping([[4,3,1]]))
> * Restriction(GrigorchukGroup2Generator(level-1),
> RcwaMapping([[4,0,1]]));
> fi;
> end;;
gap> GrigorchukGroup2 := level -> Group(FourCycle,
> GrigorchukGroup2Generator(level));;

We can do similar things as shown in the example on theGAP webpage for the “first” Grigorchuk
group:

Example

gap> G := List([1..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.
[<rcwa group over Z with 2 generators>, <rcwa group over Z with 2 generators>

, <rcwa group over Z with 2 generators>,
<rcwa group over Z with 2 generators>]

gap> H := List([1..4],lev->Action(G[lev],[0..4ˆlev-1])); # Isomorphic perm.-gps.
[Group([(1,2,3,4), (1,2,3,4)]),
Group([(1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16),

(1,5,9,13)(2,6,10,14)(4,8,12,16)]),
<permutation group with 2 generators>,
<permutation group with 2 generators>]

gap> List(H,Size);
[4, 1024, 4294967296, 1329227995784915872903807060280344576]
gap> List(last,n->Collected(Factors(n)));
[[[2, 2]], [[2, 10]], [[2, 32]], [[2, 120]]]
gap> List(H,NilpotencyClassOfGroup);
[1, 6, 14, 40]

RCWA 86

4.17 Forward orbits of a monoid with 2 generators

The 3n+1 Conjecture asserts that the forward orbit of any positive integer under the Collatz mapping
T contains 1. In contrast, it seems likely that “most” trajectories of the two mappings

T±
5 : Z−→ Z, n 7−→

{
n
2 if n even,
5n±1

2 if n odd

diverge. However we can show by means of computation that the forward orbit of any positive integer
under the action of the monoid generated by the two mappingsT−

5 andT+
5 indeed contains 1. First of

all, we enter the generators:
Example

gap> T5m := RcwaMapping([[1,0,2],[5,-1,2]]);;
gap> T5p := RcwaMapping([[1,0,2],[5, 1,2]]);;

We look for a numberk such that for any residue classr(2k) there is a productf of k mappingsT±
5

whose restriction tor(2k) is given byn 7→ (an+b)/c wherec > a:
Example

gap> k := 1;;
gap> repeat
> maps := List(Tuples([T5m,T5p],k),Product);
> decr := List(maps,DecreasingOn);
> decreasable := Union(decr);
> Print(k,": "); View(decreasable); Print("\n");
> k := k + 1;
> until decreasable = Integers;
1: 0(2)
2: 0(4)
3: Z \ 1(8) U 7(8)
4: 0(4) U 3(16) U 6(16) U 10(16) U 13(16)
5: Z \ 7(32) U 25(32)
6: <union of 48 residue classes (mod 64)>
7: Integers

Thusk = 7 serves our purposes. To be sure that for any positive integern our monoid contains a
mapping f such thatnf < n, we still need to check this condition for “small”n. Since in casec > a
we have(an+b)/c≥ n if only if n≤ b/(c−a), we only need to check thosen which are not larger
than the largest coefficientbr(m) occuring in any of the products under consideration:

Example

gap> maxb := Maximum(List(maps,f->Maximum(List(Coefficients(f),t->t[2]))));
25999
gap> small := Filtered([1..maxb],n->ForAll(maps,f->nˆf>=n));
[1, 7, 9, 11]

RCWA 87

This means that except of 1, only forn ∈ {7,9,11} there is no product of 7 mappingsT±
5 which

mapsn to a smaller integer. We check that also the forward orbits of these three integers contain 1 by
successively computing preimages of 1:

Example

gap> S := [1];; k := 0;;
gap> repeat
> S := Union(S,PreImage(T5m,S),PreImage(T5p,S));
> k := k+1;
> until IsSubset(S,small);
gap> k;
17

4.18 Representations of the free group of rank 2

The free group of rank 2 embeds in RCWA(Z) – in fact it embeds even in the subgroup which is
generated by all class transpositions. An explicit embedding can be constructed by transferring the
construction of the so-called “Schottky groups” (cp. [dlH00], page 27) from PSL(2,C) to RCWA(Z)
(we use the notation from the cited book):

Example

gap> D := AllResidueClassesModulo(4);
[0(4), 1(4), 2(4), 3(4)]
gap> gamma1 := RepresentativeAction(RCWA(Integers),Difference(Integers,D[1]),D[2]);;
gap> gamma2 := RepresentativeAction(RCWA(Integers),Difference(Integers,D[3]),D[4]);;
gap> F2 := Group(gamma1,gamma2);
<rcwa group over Z with 2 generators>

We can do some checks:
Example

gap> X1 := Union(D{[1,2]});; X2 := Union(D{[3,4]});;
gap> IsSubset(X1,X2ˆgamma1) and IsSubset(X1,X2ˆ(gamma1ˆ-1))
> and IsSubset(X2,X1ˆgamma2) and IsSubset(X2,X1ˆ(gamma2ˆ-1));
true

The generators are products of 3 class transpositions, each:
Example

gap> Factorization(gamma1);
[ClassTransposition(0,2,1,2), ClassTransposition(3,4,5,8),
ClassTransposition(0,2,1,8)]

gap> Factorization(gamma2);
[ClassTransposition(0,2,1,2), ClassTransposition(1,4,7,8),
ClassTransposition(0,2,3,8)]

RCWA 88

The above construction is used byIsomorphismRcwaGroup (3.1.2) to embed free groups of any
rank≥ 2.

We give another only slightly different representation of the free group of rank 2. We verify that
it really is one by applying the so-calledTable-Tennis Lemma(see e.g. [dlH00], Section II.B.) to the
infinite cyclic groups generated by the two generators and to the same two setsX1 andX2 as above:

Example

gap> r1 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;
gap> r2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);;
gap> F2 := Group(r1ˆ2,r2ˆ2);; SetName(F2,"F_2");
gap> List(GeneratorsOfGroup(F2),IsTame);
[false, false]
gap> IsSubset(X1,X2ˆF2.1) and IsSubset(X1,X2ˆ(F2.1ˆ-1))
> and IsSubset(X2,X1ˆF2.2) and IsSubset(X2,X1ˆ(F2.2ˆ-1));
true
gap> [Sources(r1),Sinks(r1),Loops(r1)]; # compare with X1
[[0(4)], [1(4)], [0(4), 1(4)]]
gap> [Sources(r2),Sinks(r2),Loops(r2)]; # compare with X2
[[2(4)], [3(4)], [2(4), 3(4)]]
gap> IsSubset(X1,Union(Sinks(r1))) and IsSubset(X1,Union(Sinks(r1ˆ-1)))
> and IsSubset(X2,Union(Sinks(r2))) and IsSubset(X2,Union(Sinks(r2ˆ-1)));
true
gap> IsSubset(Union(Sinks(r1)),X2ˆF2.1) and
> IsSubset(Union(Sinks(r1ˆ-1)),X2ˆ(F2.1ˆ-1));
true
gap> IsSubset(Union(Sinks(r2)),X1ˆF2.2) and
> IsSubset(Union(Sinks(r2ˆ-1)),X1ˆ(F2.2ˆ-1));
true

Drawing the transition graphs ofr1 andr2 for modulus 4 may help understanding what is actually
done in this calculation. It is easy to see that the group generated byr1 andr2 is not free:

Example

gap> Order(r1/r2);
3

4.19 Representations of the modular group PSL(2,Z)

The modular group PSL(2,Z) embeds in the group generated by all class transpositions as well. We
give an embedding, and check that it really is one by applying the Table Tennis Lemma as in the
previous section:

Example

gap> PSL2Z := Group(ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),
> ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;
gap> List(GeneratorsOfGroup(PSL2Z),Order);
[3, 2]

RCWA 89

Example

gap> X1 := Difference(Integers,ResidueClass(0,3));
Z \ 0(3)
gap> X2 := ResidueClass(0,3);
0(3)
gap> IsSubset(X1,X2ˆPSL2Z.1) and IsSubset(X1,X2ˆ(PSL2Z.1ˆ2));
true
gap> IsSubset(X2,X1ˆPSL2Z.2);
true

A slightly different representation of PSL(2,Z) can be obtained by usingRCWA’s general method for
IsomorphismRcwaGroup for free products of finite groups:

Example

gap> Display(Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),
> CyclicGroup(2)))));

Wild rcwa group over Z, generated by

[

Bijective rcwa mapping of Z with modulus 4

n mod 4 | nˆf
---------------------------------------+--------------------------------------
0 | n + 2
1 3 | 2n - 2
2 | n/2

Bijective rcwa mapping of Z with modulus 2

n mod 2 | nˆf
---------------------------------------+--------------------------------------
0 | n + 1
1 | n - 1

]

Chapter 5

The Algorithms Implemented in RCWA

This chapter lists brief descriptions of most algorithms and methods implemented in this package.
These descriptions are kept very informal and short, and some of them provide only rudimentary
information. They are listed in alphabetical order. The word “trivial” as a description means that
essentially nothing is done except of storing or recalling one or several values, and “straightforward”
means that no sophisticated algorithm is used.

ActionOnRespectedPartition(G) “Straightforward” after having computed a respected
partition byRespectedPartition. One only needs to know how to compute images of residue
classes under affine mappings.

Ball(G,g,d) “Straightforward”.

Ball(G,p,d,act) “Straightforward”.

ClassReflection(r,m) “Trivial”.

ClassShift(r,m) “Trivial”.

ClassTransposition(r1,m1,r2,m2) See Remark 2.9.2 in [Koh05].

Coefficients(f) “Trivial”.

CommonRightInverse(l,r) (SeeRightInverse.)

DecreasingOn(f) Form the union of the residue classes which are determined by the coeffi-
cients as indicated.

Determinant(g) Evaluation of the given expression. For the mathematical meaning (epimor-
phism!), see Theorem 2.11.9 in [Koh05].

DirectProduct(G1,G2, ...) Restrict the groupsG1, G2, ... to disjoint residue classes.
SeeRestriction and Corollary 2.3.3 in [Koh05].

Display(f) “Trivial”.

Divisor(f) Lcm of coefficients, as indicated.

90

RCWA 91

FactorizationIntoCSCRCT(g) This uses a rather sophisticated method which will likely
some time be published elsewhere. At the moment termination is not guaranteed, but in case of
termination the result is certain. The strategy is roughly first to make the mapping class-wise
order-preserving and balanced, and then to remove all prime factors from multiplier and divisor
one after the other in decreasing order by dividing by appropriate class transpositions. The
remaining integral mapping can be factored almost similarly easily as a permutation of a finite
set can be factored into transpositions.

FactorizationOnConnectedComponents(f,m) Call GRAPE to get the connected com-
ponents of the transition graph, and then compute a partition of the suitably “blown up” coeffi-
cient list corresponding to the connected components.

FixedPointsOfAffinePartialMappings(f) “Straightforward”.

GuessedDivergence(f) Numerical computation of the limit of some series, which seems to
converge “often”. Caution!!!

Image(f) , Image(f,S) “Straightforward” if one can compute images of residue classes under
affine mappings and unite and intersect residue classes (Chinese Remainder Theorem). See
Lemma 1.2.1 in [Koh05].

ImageDensity(f) Evaluation of the given expression.

g in G (membership test) Test whether the mappingg or its inverse is in the list of generators
of G. If it is, returntrue. Test whether its prime set is a subset of the prime set ofG. If not,
returnfalse. Test whether the multiplier or the divisor ofg has a prime factor which does not
divide the multiplier ofG. If yes, returnfalse. Test ifG is class-wise order-preserving, andg
is not. If so, returnfalse. Test if the sign ofg is -1 and all generators ofG have sign 1. If yes,
returnfalse. Test if G is class-wise order-preserving, all generators ofG have determinant 0
andg has determinant6= 0. If yes, returnfalse. Test whether the support ofg is a subset of
the support ofG. If not, returnfalse. Test whetherG fixes the nonnegative integers setwisely,
butg does not. If yes, returnfalse.

If G is tame, proceed as follows: Test whether the modulus ofg divides the modulus ofG. If not,
returnfalse. Test whetherG is finite andg has infinite order. If so, returnfalse. Test whether
g is tame. If not, returnfalse. Compute a respected partitionP of G and the finite permutation
groupH induced byG on it (seeRespectedPartition). Check whetherg permutesP. If not,
returnfalse. Let h be the permutation induced byg on P. Check whetherh lies in H. If not,
returnfalse. Compute an elementg1 of G which acts onP like g. For this purpose, factorh into
generators ofH usingPreImagesRepresentative, and compute the corresponding product of
generators ofG. Letk := g/g1. The mappingk is always integral. Compute the kernelK of the
action ofG on P usingKernelOfActionOnRespectedPartition. Check whetherk lies in K.
This is done using the packagePolycyclic [EN03], and uses an isomorphism from a supergroup
of K which is isomorphic to the|P|-fold direct product of the infinite dihedral group and which
always containsk to a polycyclically presented group. Ifk lies in K, returntrue, otherwise
returnfalse.

If G is not tame, proceed as follows: Look for finite orbits ofG. If some are found, test whether
g acts on them, and whether the induced permutations lie in the permutation groups induced
by G. If for one of the examined orbits one of the latter two questions has a negative answer,

RCWA 92

then returnfalse. Look for a positive integermsuch thatg does not leave a partition ofZ into
unions of residue classes (modm) invariant which is fixed byG. If successful, returnfalse. If
not, try to factorg into generators ofG usingPreImagesRepresentative. If successful, return
true. If g is in G, this terminates after a finite number of steps. Both runtime and memory
requirements are exponential in the word length. Ifg is not inG, the method runs into an infinite
loop.

IncreasingOn(f) Form the union of the residue classes which are determined by the coeffi-
cients as indicated.

Induction(g,f) Computef * g * RightInverse(f).

Induction(G,f) Get a set of generators by applyingInduction(g,f) to the generatorsg of G.

InjectiveAsMappingFrom(f) The function starts with the entire source off as “preimage”
pre and the empty set as “image”im. It loops over the residue classes (modMod(f)). For any
such residue classcl the following is done: Firstly, the image ofcl underf is added toim.
Secondly, the intersection of the preimage of the intersection of the image ofcl underf andim
underf andcl is subtracted frompre.

IntegralConjugate(f) , IntegralConjugate(G) Uses the algorithm described in the
proof of Theorem 2.5.14 in [Koh05].

IntegralizingConjugator(f) , IntegralizingConjugator(G) Uses the algorithm
described in the proof of Theorem 2.5.14 in [Koh05].

Inverse(f) Essentially inversion of affine mappings. See Lemma 1.3.1, Part (b) in [Koh05].

IsClassWiseOrderPreserving(f) Test whether the first entry of all coefficient triples is
positive.

IsConjugate(RCWA(Integers),f,g) Test whetherf and g have the same order, and
whether either both or none of them is tame. If not, returnfalse.

If the mappings are wild, useShortCycles to search for finite cycles not belonging to an
infinite series, until their numbers for a particular length differ. This may run into an infinite
loop. If it terminates, returnfalse.

If the mappings are tame, use the method described in the proof of Theorem 2.5.14 in [Koh05]
to construct integral conjugates off andg. Then essentially use the algorithm described in
the proof of Theorem 2.6.7 in [Koh05] to compute “standard representatives” of the conjugacy
classes which the integral conjugates off andg belong to. Finally compare these standard
representatives, and returntrue if they are equal andfalse if not.

IsInjective(f) SeeImage.

IsIntegral(f) “Trivial”.

IsomorphismMatrixGroup(G) Use the algorithm described in the proof of Theorem 2.6.3
in [Koh05].

IsomorphismPermGroup(G) If the groupG is infinite, there is no isomorphism to a finite per-
mutation group, thus returnfail. Otherwise useActionOnRespectedPartition.

RCWA 93

IsomorphismRcwaGroup(G) The method for finite groups usesRcwaMapping, Part (d).

The method for free products of finite groups uses the Table-Tennis Lemma (which is also
known asPing-Pong Lemma, cp. e.g. Section II.B. in [dlH00]). It uses regular permutation rep-
resentations of the factorsGr (r = 0, . . . ,m−1) of the free product on residue classes modulo
nr := |Gr |. The basic idea is that since point stabilizers in regular permutation groups are trivial,
all non-identity elements map any of the permuted residue classes into their complements. To
get into a situation where the Table-Tennis Lemma is applicable, the method computes conju-
gates of the images of the mentioned permutation representations under bijective rcwa mappings
σr which satisfy 0(nr)σr = Z\ r(m).

The method for free groups uses an adaptation of the construction given on page 27 in [dlH00]
from PSL(2,C) to RCWA(Z). As an equivalent for the closed discs used there, the method takes
the residue classes modulo two times the rank of the free group.

IsSurjective(f) SeeImage.

IsTame(G) Checks whether the modulus of the group is non-zero.

IsTame(f) Application of the criteria given in Corollary 2.5.10 and 2.5.12 and Theorem A.8
and A.11 in [Koh05]. The criterion “surjective, but not injective means wild” (Theorem A.8
in [Koh05]) is the subject of [Koh06]. For applying the criterion of the existence of weakly-
connected components of the transition graph which are not strongly-connected (Theorem A.11
in [Koh05]), the packageGRAPE is needed.

In addition, some probabilistic methods are used. If the result depends on one of these, a
warning is displayed.

IsTransitive(G,Integers) Look for finite orbits, usingShortOrbits on a couple of inter-
vals. If a finite orbit is found, returnfalse. Test ifG is finite. If yes, returnfalse.

Search for an elementg and a residue classr(m) such that the restriction ofg to r(m) is given
by n 7→ n+m. Then the cyclic group generated byg acts transitively onr(m). The elementg is
searched among the generators ofG, its powers, its commutators, powers of its commutators and
products of few different generators. The search for such an element may run into an infinite
loop, as there is no guarantee that the group has a suitable element.

If suitableg andr(m) are found, proceed as follows:

SetS:= r(m). SetS:= S∪Sg for all generatorsg of G, and repeat this untilSremains constant.
This may run into an infinite loop.

If it terminates: IfS= Z, returntrue, otherwise returnfalse.

KernelOfActionOnRespectedPartition(G) First determine the abelian invariants of the
kernelK. For this, compute sufficiently many quotients of orders of permutation groups induced
by G on refinements of the stored respected partitionP by the order of the permutation group
induced byG on P itself. Then use a random walk through the groupG. Compute powers of
elements encountered along the way which fixP. Translate these kernel elements into elements
of a polycyclically presented group isomorphic to the|P|-fold direct product of the infinite
dihedral group (K certainly embeds in this group). UsePolycyclic [EN03] to collect indepen-
dent “nice” generators ofK. Proceed until the permutation groups induced byK on the refined
respected partitions all equal the initially stored quotients.

RCWA 94

LargestSourcesOfAffineMappings(f) Form unions of residue classes modulo the mod-
ulus of the mapping, whose corresponding coefficient triples are equal.

LaTeXObj(f) Collect residue classes those corresponding coefficient triples are equal.

LikelyContractionCentre(f,maxn,bound) Compute trajectories with starting values
from a given interval, until a cycle is reached. Abort if the trajectory exceeds the prescribed
bound. Form the union of the detected cycles.

LocalizedRcwaMapping(f,p) “Trivial”.

mKnot(m) “Straightforward”, following the definition given in [Kel99].

Modulus(G) Searches for a wild element in the group. If unsuccessful, tries to construct a re-
spected partition (seeRespectedPartition).

Modulus(f) “Trivial”.

MovedPoints(G) Needs only forming unions of residue classes and determining fixed points of
affine mappings.

Multiplier(f) Lcm of coefficients, as indicated.

Multpk(f,p,k) Form the union of the residue classes modulo the modulus of the mapping,
which are determined by the given divisibility criteria for the coefficients of the corresponding
affine mapping.

NrConjugacyClassesOfRCWAZOfOrder(ord) The class numbers are taken from Corol-
lary 2.7.1 in [Koh05].

OrbitsModulo(f,m) Use GRAPE to compute the connected components of the transition
graph.

OrbitsModulo(G,m) “Straightforward”.

Order(f) Test forIsTame. If the mapping is not tame, then returninfinity. Otherwise use
Corollary 2.5.10 in [Koh05].

PreImage(f,S) SeeImage.

PreImagesRepresentative(phi,g) , PreImagesRepresentatives(phi,g) As
indicated in the documentation of these methods. The underlying idea to successively compute
two balls around 1 andg until they intersect non-trivially is standard in computational group
theory. For rcwa groups it would mean wasting both memory and runtime to actually compute
group elements. Thus only images of tuples of points are computed and stored.

PrimeSet(f) , PrimeSet(G) “Straightforward”.

PrimeSwitch(p) Multiplication of rcwa mappings as indicated.

Print(f) “Trivial”.

f*g Essentially composition of affine mappings. See Lemma 1.3.1, Part (a) in [Koh05].

RCWA 95

Random(RCWA(Integers)) Computes a product of “randomly” chosen class shifts, class re-
flections and class transpositions. This seems to be suitable for generating reasonably good
examples.

RankOfKernelOfActionOnRespectedPartition(G) This performs basically the first
part of the computations done byKernelOfActionOnRespectedPartition.

RCWA(R) Attributes are set according to Theorem 2.1.1, Theorem 2.1.2, Corollary 2.1.6 and The-
orem 2.12.8 in [Koh05].

RcwaGroupByPermGroup(G) UsesRcwaMapping, Part (d).

RcwaMapping (a)-(c): “trivial”, (d): nˆperm - n for determining the coefficients, (e): “affine
mappings by values at two given points”, (f) and (g): “trivial”, (h) and (i): correspond to
Lemma 2.1.4 in [Koh05].

RepresentativeAction(G,src,dest,act) , RepresentativeActionPreImage
As indicated in the documentation of these methods. The underlying idea to successively
compute two balls aroundsrc and dest until they intersect non-trivially is standard in
computational group theory. Words standing for products of generators ofG are stored for any
image ofsrc or dest.

RepresentativeAction(G,P1,P2) Arbitrary mapping: see Lemma 2.1.4 in [Koh05]. Tame
mapping: see proof of Theorem 2.8.9 in [Koh05]. The former is almost trivial, while the latter
is a bit complicate and takes usually also much more time.

RepresentativeAction(RCWA(Integers),f,g) The algorithm used byIsConjugate
constructs actually also an elementx such thatfˆx = g.

RespectedPartition(f) , RespectedPartition(G) Uses the algorithm described in
the proof of Theorem 2.5.8 in [Koh05].

Restriction(g,f) Compute the action ofRightInverse(f) * g * f on the image off.

Restriction(G,f) Get a set of generators by applyingRestriction(g,f) to the generators
g of G.

RightInverse(f) “Straightforward” if one knows how to compute images of residue classes
under affine mappings, and how to compute inverses of affine mappings.

Root(f,k) If f is bijective, class-wise order-preserving and has finite order:

Find a conjugate off which is a product of class transpositions. Slice cycles∏l
i=2 τr1(m1),r i(mi)

of f a respected partitionP into cycles∏l
i=1 ∏k−1

j=0 τr1(km1),r i+ jmi(kmi) of thek-fold length on the
refined partition which one gets fromP by decomposing anyr i(mi) ∈ P into residue classes
(modkmi). Finally conjugate the resulting permutation back.

Other cases seem to be more difficult and are currently not covered.

SemilocalizedRcwaMapping(f,pi) “Trivial”.

ShortCycles(f,maxlng) Look for fixed points of affine partial mappings of powers off.

RCWA 96

ShortOrbits(G,S,maxlng) “Straightforward”.

SetOnWhichMappingIsClassWiseOrderPreserving(f) , etc. Form the union of the
residue classes modulo the modulus of the mapping, in whose corresponding coefficient triple
the first entry is positive, zero resp. negative.

Sign(g) Evaluation of the given expression. For the mathematical meaning (epimorphism!), see
Theorem 2.12.8 in [Koh05].

Size(G) Test whether one of the generators of the groupG has infinite order. If so, return
infinity. Test whether the groupG is tame. If not, returninfinity. Test whether
RankOfKernelOfActionOnRespectedPartition(G) is nonzero. If so, returninfinity.
Otherwise ifG is class-wise order-preserving, return the size of the permutation group induced
on the stored respected partition. IfG is not class-wise order-preserving, return the size of the
permutation group induced on the refinement of the stored respected partition which is obtained
by splitting each residue class into three residue classes with equal moduli.

StructureDescription(G) (Not described here.)

f+g Pointwise addition of affine mappings.

Trajectory(f,n,...) Iterated application of an rcwa mapping. In the methods computing
“accumulated coefficients” additionally composition of affine mappings.

TransitionGraph(f,m) “Straightforward” – just check a sufficiently long interval.

TransitionMatrix(f,m) Evaluation of the given expression.

ViewObj(f) “Trivial”.

WreathProduct(G,P) UsesDirectProduct to embed theDegreeAction(P)th direct power
of G, andRcwaMapping, Part (d) to embed the finite permutation groupP.

WreathProduct(G,Z) RestrictsG to the residue class 3(4), and encodes the generator ofZ as
τ0(2),1(2) · τ0(2),1(4). It is used that the images of 3(4) under powers of this mapping are pairwise
disjoint residue classes.

Chapter 6

Installation and auxiliary functions

6.1 Requirements

The RCWA package needs at leastGAP 4.4.7, ResClasses 2.3.3, GRAPE 4.0 [Soi02], Poly-
cyclic 1.1 [EN03] and GAPDoc 0.999 [LN02]. With possible exception of the most recent version
of ResClasses, all needed packages are already present in an up-to-date standardGAP installation.
TheRCWA package can be used under UNIX, under Windows and on the MacIntosh. It is completely
written in theGAP language and does neither contain nor require external binaries. In particular,
warnings concerning missing binaries whenGRAPE is loaded can savely be ignored.

6.2 Installation

Like any otherGAP package,RCWA must be installed in thepkg subdirectory of theGAP distribution.
This is accomplished by extracting the distribution file in this directory. If you have done this, you
can load the package as usual viaLoadPackage("rcwa");.

6.3 The Info class of the package

6.3.1 InfoRCWA

♦ InfoRCWA (info class)

This is the Info class of theRCWA package. See sectionInfo Functionsin the GAP Reference
Manual for a description of the Info mechanism. For convenience:RCWAInfo(n) is a shorthand for
SetInfoLevel(InfoRCWA,n).

6.4 The testing routine

6.4.1 RCWATest

♦ RCWATest() (function)

Returns: Nothing.
Performs tests of theRCWA package. Errors, i.e. differences to the correct results of the test

computations, are reported. The processed test files are in the directorypkg/rcwa/tst.

97

RCWA 98

6.5 Building the manual

The following routine is a development tool. As all files it generates are included in the distribution
file anyway, users will not need it.

6.5.1 RCWABuildManual

♦ RCWABuildManual() (function)

Returns: Nothing.
This function builds the manual of theRCWA package in the file formats LATEX, DVI, Postscript,

PDF, HTML and ASCII text. This is accomplished using theGAPDoc package by Frank L̈ubeck
and Max Neunḧoffer. Building the manual is possible only on UNIX systems and requires LATEX,
PDFLATEX anddvips.

References

[And00] P. Andaloro. On total stopping times under 3x+1 iteration.Fibonacci Quarterly, 38:73–78,
2000. 51

[dlH00] Pierre de la Harpe.Topics in Geometric Group Theory. Chicago Lectures in Mathematics,
2000. 30, 87, 88, 93

[EN03] Bettina Eick and Werner Nickel. Polycyclic. Computation with polycyclic
groups (version 1.1), 2003. GAP package, available at http://www.gap-
system.org/Packages/polycyclic.html.45, 91, 93, 97

[Gri80] Rostislav I. Grigorchuk. Burnside’s problem on periodic groups.Functional Anal. Appl.,
14:41–43, 1980.84, 85

[GT02] David Gluck and Brian D. Taylor. A new statistic for the 3x+1 problem.Proc. Amer. Math.
Soc., 130(5):1293–1301, 2002.24

[Kel99] Timothy P. Keller. Finite cycles of certain periodically linear permutations.Missouri J.
Math. Sci., 11(3):152–157, 1999.16, 17, 94

[Koh05] Stefan Kohl. Restklassenweise affine Gruppen. Dissertation, Universität
Stuttgart, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071, http://elib.uni-
stuttgart.de/opus/volltexte/2005/2448/. 17, 18, 41, 44, 45, 90, 91, 92, 93, 94, 95,
96

[Koh06] Stefan Kohl. Wildness of iteration of certain residue class-wise affine mappings.Adv. Appl.
Math., ?(?):approx. 8 pages, 2006. to appear.93

[Lag06] Jeffrey C. Lagarias. 3x+1 problem annotated bibliography, 2006.
http://arxiv.org/abs/math.NT/0309224.6

[LN02] Frank L̈ubeck and Max Neunḧoffer. GAPDoc (version 0.99). RWTH Aachen, 2002. GAP
package, available at http://www.gap-system.org/Packages/gapdoc.html.97

[Mih58] K. A. Mihailova. The occurence problem for direct products of groups.Dokl. Acad. Nauk.
SSSR, 119:1103–1105, 1958.33

[ML87] K. R. Matthews and G. M. Leigh. A generalization of the Syracuse algorithm inq[x]. J.
Number Theory, 25:274–278, 1987.52

[Soi02] Leonard Soicher.GRAPE – GRaph Algorithms using PErmutation groups (version 4.1).
Queen Mary, University of London, 2002. GAP package, available at http://www.gap-
system.org/Packages/grape.html.97

99

Index

ActionOnRespectedPartition
G, 44

AllProducts
l, k, 46

balanced
definition,18

Ball
G, g, d,40
G, p, d, act,40

ClassPairs
m, 43

ClassReflection
r(m), 10
r, m, 10

ClassShift
r(m), 10
r, m, 10

ClassTransposition
r1(m1), r2(m2),11
r1, m1, r2, m2,11

Coefficients
f, 16

Collatz conjecture,6
Collatz mapping,6
CommonRightInverse

l, r, 26

DecreasingOn
f, 24

Determinant
g, 17
g, S,17

DirectProduct
G1, G2, ...,32

Display
f, 13
G, 29

Div

f, 18
G, 33

Divisor
f, 18
G, 33

divisor
definition,8

EpimorphismByGenerators
G, H,46

Factorization
g, 16

FactorizationIntoCSCRCT
g, 16

FactorizationOnConnectedComponents
f, m, 21

FixedPointsOfAffinePartialMappings
f, 20

GeneratorsAndInverses
G, 46

GluckTaylorInvariant
a,24

Group, 29
GroupByGenerators, 29
GroupWithGenerators, 29
GuessedDivergence

f, 27

Image
f, 14

ImageDensity
f, 26

IncreasingOn
f, 24

Induction
G, f, 42
g, f, 42

InfoRCWA, 97

100

RCWA 101

InjectiveAsMappingFrom
f, 26

integral
definition,18

IntegralConjugate
G, 45
g, 45

IntegralizingConjugator
G, 45
g, 45

IsBalanced
f, 18

IsBijective
f, 14

IsClassWiseOrderPreserving
f, 18
G, 33

IsConjugate
RCWA(Integers), f, g,40

IsInjective
f, 14

IsIntegral
f, 18
G, 33

IsNaturalRCWA GFqx
G, 46

IsNaturalRCWA Z
G, 46

IsNaturalRCWA Z pi
G, 46

IsomorphismMatrixGroup
G, 34

IsomorphismPermGroup
G, 34

IsomorphismRcwaGroup
G, 30

IsomorphismRcwaGroupOverZ
G, 30

IsRcwaGroup
G, 46

IsRcwaGroupOverGFqx
G, 46

IsRcwaGroupOverZ
G, 46

IsRcwaGroupOverZOrZ pi
G, 46

IsRcwaGroupOverZ pi

G, 46
IsRcwaMapping

f, 28
IsRcwaMappingOfGFqx

f, 28
IsRcwaMappingOfZ

f, 28
IsRcwaMappingOfZOrZ pi

f, 28
IsRcwaMappingOfZ pi

f, 28
IsRcwaMappingStandardRep, 28
IsSurjective

f, 14
IsTame

f, 14
G, 33

IsTransitive
G, Integers,36

KernelOfActionOnRespectedPartition
G, 45

LargestSourcesOfAffineMappings
f, 19

LaTeX
f, 13

LaTeXAndXDVI
f, 14

LaTeXObj
f, 13

LikelyContractionCentre
f, maxn, bound,27

LocalizedRcwaMapping
f, p, 25

Loops
f, 23

mKnot
m, 17

Mod
f, 16
G, 33

Modulus
f, 16
G, 33

modulus
definition,8

RCWA 102

ModulusOfRcwaGroup
G, 33

MovedPoints
G, 36
g, 15

Mult
f, 18
G, 33

Multiplier
f, 18
G, 33

multiplier
definition,8

Multpk
f, p, k, 20

NrConjugacyClassesOfRCWAZOfOrder
ord,41

OrbitsModulo
f, m, 21

OrbitsModulo
G, m,40

Order
g, 14

PermutationOpNC
g, P, OnPoints,44

PreImage
f, 15

PreImageElm
f, 15

PreImagesElm
f, 15

PreImagesRepresentative
phi, g,35

PreImagesRepresentatives
phi, g,36

PrimeSet
f, 18
G, 33

PrimeSwitch
p, 11
p, k,11

Print
f, 13
G, 29

Projections

G, m,40

Random
RCWA(Z), 43

RankOfKernelOfActionOnRespectedPartition
G, 45

RCWA
R, 29

rcwa group
class-wise order-preserving,33
definition,8
divisor,33
integral,33
membership test,33
modulus,33
multiplier, 33
prime set,33
tame,8
wild, 8

rcwa mapping
arithmetic operations,14
balanced,18
class-wise order-preserving,18
definition,8
divisor,8
images under,15
integral,18
modulus,8
multiplier, 8
tame,8
transition graph,21
wild, 8

RCWABuildManual, 98
RcwaGroupByPermGroup

G, 30
RCWAInfo, 97
RcwaMapping

coeffs,12
cycles,12
m, values,12
P1, P2,12
perm, range,12
pi, coeffs,12
q, m, coeffs,12
R, coeffs,12
R, m, coeffs,12

RcwaMappingsFamily

RCWA 103

R, 28
RCWATest, 97
RepresentativeAction

G, src, dest, act,37
RCWA(Integers), P1, P2,38
RCWA(Integers), f, g,41

RepresentativeActionPreImage
G, src, dest, act, F,38

RespectedPartition
G, 44
g, 44

RespectedPartitionLong
G, 44
g, 44

RespectedPartitionShort
G, 44
g, 44

RespectsPartition
G, 44
g, 44

RestrictedPerm
g, 15

Restriction
G, f, 42
g, f, 42

RightInverse
f, 25

Root
f, k, 25

SemilocalizedRcwaMapping
f, pi, 25

SetOnWhichMappingIsClassWise
Constant,20
OrderPreserving,20
OrderReversing,20

ShortCycles
G, S, maxlng,39

ShortCycles
f, maxlng,41

ShortOrbits
G, S, maxlng,39

Sign
g, 18

Sinks
f, 22

Size

G, 33
Sources

f, 22
SplittedClassTransposition

G, 16
String

f, 13
G, 29

StructureDescription
G, 31

Support
G, 36
g, 15

tame
rcwa group,8
rcwa mapping,8

Trajectory
f, n, length,23
f, n, length, m,23
f, n, length, whichcoeffs,23
f, n, terminal,23
f, n, terminal, m,23
f, n, terminal, whichcoeffs,23

TransitionGraph
f, m, 21

TransitionMatrix
f, m, 22

View
f, 13
G, 29

wild
rcwa group,8
rcwa mapping,8

WreathProduct
G, P,32
G, Z,32

