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Summary

Motivation

This thesis is motivated by the
3n + 1 Conjecture: Iterated application of the mapping

if n even,

T:7Z—2Z, nr— {2
{3”2“ if n odd

to any positive integer yields 1 after a finite number of steps, i.e.
VneN FkeNy: o’ =1

This conjecture has been made by Lothar Collatz in the 1930s, and is still open today.
Conjugating the Collatz mapping 7" by a permutation o of Z which maps positive integers
to positive integers and fixes 1 turns the 3n + 1 Conjecture into the following equivalent
assertion:

vneN FkeNy: nT" = 1.

The 3n+1 Conjecture is true if and only if there is such a permutation ¢ that 77 maps all
integers n > 1 to smaller positive integers. Hence the problem is to find a certain normal
form of the Collatz mapping.

Dealing with arbitrary permutations of infinite sets is difficult, both by means of theory
and as well by means of computation. One might want to get a better understanding at
least of those permutations which look ‘similar’ to the Collatz mapping. The bijective
residue class-wise affine mappings form a class of such permutations.

Jeffrey C. Lagarias maintains a comprehensive annotated bibliography [Lag05] on the
3n + 1 Conjecture. In its most recent version at the time of writing these lines, it lists
193 references.

None of the articles which are referenced there describes a group theoretic approach.
Also none of them investigates the structure of groups which are generated by bijective
residue class-wise affine mappings, i.e. by permutations ‘similar to the Collatz mapping’.
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Basic Definitions

Let R denote an infinite euclidean ring, which has at least one prime ideal and all of whose
proper residue class rings are finite. Further assume that there is a mapping |.| : R — R,
which assigns certain ‘standard associates’ to the ring elements. In case R = Z, let the
standard associate be the absolute value.

We call a mapping f : R — R residue class-wise affine, or in short an rcwa mapping,
if there is a nonzero element m € R such that the restrictions of f to the residue classes
r(m) € R/mR are all affine. In different words, this means that for any residue class r(m),
there are coefficients a,(m), by(m), cr(m) € R such that the restriction of the mapping f to
the set r(m) = {r + km|k € R} is given by

r(m) * bTm
f‘r(m): 7"(771)—>R7 n — Ar(m) - T+ ().

Cr(m)
We call m the modulus of f, and use the notation Mod(f). To make this definition
unique, we assume that m is chosen multiplicatively minimal and that m = |m|. To

ensure uniqueness of the coefficients, we further assume that gcd(ar(m), br(m), cr(m)) =1
and that ¢, = [Crom)l-

The residue class-wise affine mappings of R form a monoid (= semigroup with 1) under
composition of mappings (Lemma 1.3.4, Part (1)). We denote this monoid by Rewa(R),
and call its submonoids residue class-wise affine monoids.

The bijective residue class-wise affine mappings of R form a proper subgroup of the
symmetric group Sym(R) (Lemma 1.3.4, Part (2)). We denote this group by RCWA(R),
and call its subgroups residue class-wise affine groups.

There are two entirely different classes of residue class-wise affine mappings, -groups
and -monoids. One of these classes consists of those mappings, groups and monoids,
which have a very uncomplicated and easy structure. The other consists of those whose
structure is complicated and often very difficult to investigate:

Let G < Rewa(R) be a residue class-wise affine monoid. Assume that there is a
nonzero element of R which is a multiple of the moduli of all elements of G. Then we
say that G is tame, and call the standard associate of the multiplicatively minimal such
element the modulus Mod(G) of G. Otherwise we say that G is wild, and set Mod(G) := 0.

We call a mapping f € Rewa(R) tame resp. wild, if the cyclic monoid generated by f
is tame resp. wild. According to Lemma 1.8.4, Part (2), a tame element of RCWA(Z)
generates a tame cyclic group. However a group generated by two or more tame mappings
is in general not tame.

Let m € R\ {0} and f € Rewa(R). Further let I'y,, be the directed graph whose
vertices are the residue classes (mod m), in which there is an edge from r,(m) to ro(m) if
and only if there is an n € r1(m) such that n/ € r9(m). Then we call ', the transition
graph of f with respect to the modulus m. Transition graphs encode a significant amount
of information about the underlying residue class-wise affine mappings.
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Aim

The aim of this thesis is to investigate the structure of the group RCWA(Z) of all residue
class-wise affine bijections of the ring of integers.

Results

It is shown that the group RCWA(Z)

is not finitely generated (Theorem 2.1.1),

has finite subgroups of any isomorphism type (Theorem 2.1.2),

has a trivial centre (Corollary 2.1.6),

does not have a nontrivial solvable normal subgroup (Corollary 2.1.6),

acts highly transitively on Z (Theorem 2.1.5) and hence has only nontrivial normal
subgroups which act highly transitively on Z as well (Corollary 2.1.6),

is a group of homoeomorphisms of Z endowed with a topology by taking the set of
all residue classes as a basis (Theorem 2.2.3),

has, given two of its subgroups, always a subgroup which is isomorphic to their
direct product (Corollary 2.3.3),

acts transitively on the set of nonempty unions of finitely many residue classes of Z
distinct from Z itself (Theorem 2.4.1),

contains a monomorphic image of any finite extension G > N of a subdirect prod-
uct N of finitely many infinite dihedral groups (Corollary 2.6.5),

has only finitely many conjugacy classes of elements of given odd order, but infinitely
many conjugacy classes of elements of given even order (Conclusion 2.7.2),

has a normal subgroup which is generated by images of the elements v : n — n+1,
¢:n— —nand 7 :n+— n+ (—1)" under certain explicitly given monomorphisms

of the group RCWA(Z) into itself (Theorem 2.9.4), and

permits an epimorphism onto the group Z* (Theorem 2.12.8).

Many of the theorems listed above are formulated in a more general context for groups
RCWA(R) over euclidean rings R.

vii
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Further the following is shown:

e The homomorphisms from a given group G of odd order to RCWA(Z) are para-
metrized up to inner automorphisms of RCWA(Z) by the nonempty subsets of the
set of all equivalence classes of transitive finite-degree permutation representations
of G (Theorem 2.6.7).

e Assume that char(R) = 0 and that the exponent of R* is finite. Suppose addition-
ally that R has a residue class ring of cardinality 2. Then there are arbitrary large
[ € N such that for any partition P of R into [ residue classes the following holds:
Each 1 # N <RCWA(R) has a subgroup which acts on P as a full symmetric group
(Theorem 2.10.6).

e The subgroup RCWA™(Z) < RCWA(Z) consisting of all class-wise order-preserving
elements permits an epimorphism onto the group (Z, +) (Theorem 2.11.9).

e There is no residue class-wise affine permutation o of Z which maps positive integers
to positive integers and fixes 1 such that 77 is monotonous almost everywhere
(Theorem 3.11 and Remark 3.12).

Finally, Section 2.13 gives an outlook on open questions concerning the group RCWA(Z).

Algorithmic Aspects

Any residue class-wise affine mapping can be described by a finite number of ring elements.
An immediate consequence of this is that if R is countable, then the group RCWA(R) and
the monoid Rewa(R) are countable as well. This fact basically makes residue class-wise
affine mappings and -groups accessible to computational investigations.

Quite a number of constructive proofs in this thesis describe algorithms which can be
translated more or less directly into GAP [GAP04] code. This has been done in the RCWA
package [Koh05] (see http://www.gap-system.org/Packages/rcwa.html).

The manual of RCWA has a chapter which lists function names and short descriptions
of the corresponding algorithms. In about 20 instances, it refers to theorems or proofs in
this thesis.

Almost all of the many examples given in this thesis have been created with the help
of the RCWA package. Computational investigations of lots of examples helped to find
many of the results which eventually have been proven by purely theoretical means.

viil



Examples

The residue class-wise affine mappings with modulus 1 are the affine mappings. Examples
of such mappings are v € RCWA(Z) : n — n+ 1 and ¢ € RCWA(Z) : n — —n.

The permutation 7 € RCWA(Z) : n — n+ (—1)" has modulus 2, and is an involution
which interchanges the residue classes 0(2) and 1(2). Obviously, 7 is tame.

The Collatz mapping 7" mentioned above is also a residue class-wise affine mapping
with modulus 2. It is surjective, but not injective: The preimage of a given integer n
under 7" is {(2n —1)/3,2n} if n = 2 mod 3, and {2n} otherwise. The mapping 7" is wild.
This is basically the reason why the 3n + 1 Conjecture is difficult to prove.

Appendix A describes criteria for distinguishing tame and wild mappings.

In 1932, Lothar Collatz investigated the wild bijective residue class-wise affine mapping

2 if n=0mod 2,

o € RCWA(Z): n +— {3 if p=1mod 4,

3”4_1 if n =3 mod 4.

The cycle structure of the permutation a has not been completely determined so far. In
Example 2.9.9, this permutation is factored into residue class-wise affine involutions which
interchange two residue classes each.

The permutation

o it P=0  mod (z2+1),

@+ +)P+s if P=1 mod (2% 4 1),
§ EROWAMR[a)): P { 70

(s41)Pya? if P=x mod (2% + 1),

e )P4EEe) i p = (p4-1) mod (a2 + 1)

fixes the degree of any polynomial. Therefore it has only finite cycles. However it is easy
to show that £ is wild, thus in particular has infinite order. This implies that there is
no upper bound on the cycle lengths. The group RCWA(Z) has also elements of infinite
order which have only finite cycles. For an example see Section B.4.

The permutation
(352,2y) it 2 €1(2),
or € Sym(Z x Z):  (z,y) — < (%,y) if 2 € 0(6)U2(6),
(2.20+1) if = €4(6)
acts on the x - coordinate as the Collatz mapping 7 (cp. Example 3.13).

Further examples are discussed in Appendix B.
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CHAPTER 1

Introduction

1.1 Basic Definitions

In the following, we define a class of mappings of rings to themselves.
The set of these mappings of a given ring with countably many elements is countable,
and is accessible to computational investigations.

First of all, we need to specify which rings we intend to consider:

1.1.1 Definition In this thesis, let R always denote an infinite euclidean ring which has
at least one prime ideal and all of whose proper residue class rings are finite.

Further we assume that a mapping |.| : R — R is given which maps each element of R
to some ‘standard associate’. In case R = 7Z, let this be the absolute value. Greatest
common divisors and least common multiples are always normed via |.|.

Now we can define our mappings:

1.1.2 Definition We call a mapping f : R — R residue class-wise affine, or in short an
rcwa mapping, if there is a nonzero element m € R such that the restrictions of f to the
residue classes r(m) € R/mR are all affine. In different words, this means that for any
residue class r(m) there are coefficients Ar(m), Or(m), Cr(m) € R such that the restriction of
the mapping f to the set r(m) = {r + km|k € R} is given by

r(m) * 1+ Oriam)

flogmy: 7(m) = R, n —
Cr(m)

We call m the modulus of f, and use the notation Mod( f). To make this unique, we assume
that m is chosen multiplicatively minimal and that m = |m|. To ensure uniqueness of the
coefficients, we further assume that ged(a,(m), brm), Crmy) = 1 and that ¢.qn) = [cr(m)-

1



Chapter 1. Introduction

Further we define the

Multiplier Mul f 1 h
o Multiplier Mult(f) of f by ) S Crm), the

e Divisor Div(f) of f by T(m}ggl/chr(m), and the

e Prime Set P(f) of f by the set of prime divisors of Mod(f) - Mult(f) - Div(f).

1.1.3 Examples In the following, some examples of rcwa mappings are given:

1. In a certain sense the Collatz mapping 7" which has already been mentioned in the
Summary is something like the ‘prototype’ of an recwa mapping.

It is Mod(T") = Div(T) = 2, Mult(7') = 3 and P(T") = {2,3}. The mapping T is
surjective, but not injective — given n = 2 (3) we have T-1(n) = {(2n — 1)/3, 2n}.

2. An example of a bijective rcwa mapping which has already been considered by
Lothar Collatz as well is

37” if n =0 mod 2,

a€Sym(Z): n — {3Eif n=1mod 4,

3”4_1 if n =3 mod 4.

The permutation o maps the residue class 0(2) bijectively to 0(3), the residue class
1(4) bijectively to 1(3) and the residue class 3(4) bijectively to 2(3). It is Mod(«) =
Div(a) = 4, Mult(a) = 3 and P(«) = {2,3}. Further it is Vn € Z (—n)* = —(n®),
or in different words, the mapping « centralizes the involution ¢ : n +— —n. The
only fixed points of a are -1, 0 and 1. It seems likely that the only finite cycles of
the permutation « are the transpositions £(2 3), the 5-cycles £(4 6 9 7 5) and the
12-cycles +(44 66 99 74 111 83 62 93 70 105 79 59).

3. The permutation

e )p if P=0 mod (2% + 1),
(a2 +z+1)P+a i = 2

¢e Sym(]F2[x]) - P — WQ if P=1 mod ($ + 1),
(e )Pa? if P=gx mod (2% + 1),
(m2+x+;gi1+(w2+x) if P=(z+1)mod (z*+1)

fixes the degree of any polynomial. Therefore it has only finite cycles. However
it is easy to show that £ has infinite order, thus that there is no upper bound on
the cycle lengths. We have Mod(¢) = Div(§) = 2? + 1, Mult(¢) = 22 + = + 1 and
PE)={z+ 1,2 +z+1}.




1.1 Basic Definitions

1.1.4 Definition We will repeatedly use the following notation:

1. By definition, R is an euclidean ring. As is well known, this implies that R is in
particular a principal ideal domain and a unique factorization domain. We denote
the set of prime elements of R by P(R).

2. We consider residue classes r(m) € R/mR from a set-theoretic point of view, and
write for n = r mod m apart from the common shorthand n = r (m) also n € r(m).

3. Let !R(m) denote a set of representatives for the residue classes (mod m). In case
R =17Z,let ®(m):={0,1..m — 1}.

4. We denote the quotient field of R by K.

For many purposes, it is convenient to introduce a partial order on R:

1.1.5 Definition We say that an element ny € R is greater (resp. smaller) than another
element ny € R, if |R/niR)| is greater (resp. smaller) than |R/nyR).

We say that a subset S C R is bounded if there is a constant ¢ € N such that
VneS |R/nR| < c.

Let (nx) C R be a sequence of elements of R such that limy_, |R/niR| = co. Then
we use the abbreviated notation limy_,., n; = 00.

It is easy to see that these definitions are in line with the usual definitions of ‘<’, ‘bounded’
etc. for R =Z.

We fix the mapping |.| for the rings R # Z which are used in this thesis explicitly:

1.1.6 Definition Given n € Z,), let |n| be the greatest product of primes p € = which
divides n. Given P € F,[z], let |P| be the quotient of the polynomial P by its leading
coefficient.

Obviously we need the affine groups of R and K:

1.1.7 Definition We denote the monoid of affine mappings of R by Aff(R), and the
group of bijective affine mappings (the affine group) of R by AFF(R). The elements of
AFF(R) are the mappings n — un-+k, u € R*, k € R. Analogously, we denote the affine
group of K by AFF(K). Where there is no risk of a misunderstanding, we identify affine
mappings of R resp. K with their restrictions to residue classes of R. Further we speak
of them as affine partial mappings of rcwa mappings.
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We will frequently need the following lemma about affine mappings of K:

1.1.8 Lemma Let o € AFF(K) : n— (an+b)/c, a,b,c € R, ged(a,b,c) = 1. Further
let r;m € R. Then the following hold:

1. {r*,am/c} C R = r(m)* = r*(am/c).
2. 7(m)*C R A {a,c} ¢ R = ord(a) =00 A #k e N: r(m)*" =r(m).
3. a € AFF(R) = r(m)Nr(m)* € {0, r(m)}.

Proof:

1. For t € R we have

N a(r+tm)+b ar+b atm N am
(r+tm)* = = + = r“+t —.
c c c ¢

This immediately implies our assertion.

2. The mapping o, k € N is given by n — (a*n+1bj,) /c* for a certain by, hence certainly
not the identity, if @ or ¢ is not a unit. The condition r(m)* C R implies am/c € R.
Hence by Assertion (1), o maps the residue class 7(m) onto 7" (a*m/c*). The
latter residue class can only be equal to r(m) if a and ¢ are units.

3. The condition o € AFF(R) implies that a and ¢ are units. Hence by Assertion (1),
the mapping o maps r(m) to r*(m). Obviously, two residue classes (mod m) are
either disjoint or equal. 0

A class of subsets of the ring R which is important in the context of this thesis is the
class of unions of finitely many residue classes. The Chinese Remainder Theorem and the
demanded finiteness of all proper residue class rings of R imply the following lemma:

1.1.9 Lemma The class of (set theoretic) unions of finitely many residue classes of R is
closed under forming unions, intersections and differences.

Given a partition of R into residue classes, there is a corresponding partition of 1 into
fractions of the form 1/n:

1.1.10 Lemma Let P = {ry(mq),...,r(m;)} be a partition of R into finitely many
residue classes. Then 1 = 1/|R/myR|+ ---+ 1/|R/myR)| is a partition of 1 into fractions
of the form 1/n.

We take the opportunity to remind that a partition of a set into subsets is — in contrast
to a covering — always a decomposition into disjoint subsets.

4



1.2 Images and Preimages Under rcwa Mappings

1.2 Images and Preimages Under rcwa Mappings

How do images of rcwa mappings look like, and what can be said about images and
preimages of ‘suitable’ subsets of R under rcwa mappings? — These questions are answered
by the following lemma:

1.2.1 Lemma The following hold:

1. The image of an rcwa mapping is always a union of finitely many residue classes of
R and a finite subset of R.

2. Assume that f € Rewa(R) is not constant on any residue class, and that S C R is
a union of finitely many residue classes. Then image and preimage of S under f are
unions of finitely many residue classes as well.

Proof:

1. Let f € Rewa(R), and set m := Mod(f). Assume that the restriction of f to a
residue class r(m) € R/mR is given by n — (ay(m)n+bpam))/Cr(m)- In case a,(ny =0
we have r(m)/ = {b,(n)}, and in case a,(n) # 0 Lemma 1.1.8, Assertion (1) tells us

that
r(m)! = Gr(m) - 1+ br(m) (ar(m) ' m) ‘
Cr(m) Cr(m)

We get the claimed assertion, since the image of f equals the union of the images
of all residue classes (mod m) under f, and since there are only finitely many of the
latter.

2. It is sufficient to prove the assertion for the case that S is a single residue class. Let
m = Mod(f). The intersection S, of S with a residue class r(m) is either empty
or a residue class. By Lemma 1.1.8, Assertion (1) the same holds for the image of
Sr(m) under the restriction of f to r(m).

Let m := Mult(f)-m. The intersection S}(m) of S with a residue class 7(m) is either
empty or a residue class as well. By Lemma 1.1.8, Assertion (1), the mapping f
maps any residue class (mod m) onto a union of residue classes (mod m). Hence the
preimage of the set gf(m) under f equals the union of its preimages under zero, one
or several affine partial mappings of f, thus is either empty or a union of finitely
many residue classes.

We get the assertion since R/mR and R/mR are finite and since the image (pre-
image) of S under f equals the union of the images (preimages) of the residue classes
Sr(m) (Sf(m)) under f O
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1.2.2 Example We would like to determine image and preimage of the residue class
0(5) under the Collatz mapping 7". In the terminology used in the proof of Lemma 1.2.1,
Assertion (2) we have S = 0(5), Soz) = SN0(2) = 0(10) and Sy2) = SN 1(2) = 5(10).
It follows Spey” = 0(10)/2 = 0(5) and Syy" = (3 -5(10) + 1)/2 = 8(15), and hence
ST = SO(Q)T U Sl(g)T = 0(5) U 8(15).

The determination of the preimage is a bit more work: Intersecting S with the residue
classes (mod m = Mult(T) - Mod(T) = 6) yields the sets Soe) = 0(30), Si) = 25(30),
Say = 20(30), Sse) = 15(30), Sye) = 10(30) and S5 = 5(30). Their preimages can
be determined partial mapping by partial mapping again (caution: 7' is not injective —
thus for 7 = 2 (3) both partial mappings have to be considered). In this way we get the
preimages 2-:0(30) = 0(60), 2-25(30) = 50(60), 2-20(30)U(2-20(30)—1)/3 = 40(60)U13(20),
2-15(30) = 30(60), 2 - 10(30) = 20(60) and 2 - 5(30) U (2-5(30) — 1)/3 = 10(60) U 3(20).
The full preimage of the residue class 0(5) under 7" is their union, hence 0(10) U 3(10).

In the following, it will often be convenient to assume that the ring R has one of the
following properties:

1.2.3 Definition We say that the ring R has the

o weak residue class decomposability property, if it has a residue class ring of cardinal-
ity 2, and the

e strong residue class decomposability property, if it even has residue class rings of any
nonzero finite cardinality.

Of course these terms need a justification:

1.2.4 Remark The ring R has the weak residue class decomposability property if and
only if any residue class of R can be written as a disjoint union of two other residue
classes.

If R has the weak residue class decomposabiliy property, we can conclude inductively
that a disjoint union of k residue classes of R can also be written as a disjoint union of
an arbitrary number k > k of residue classes of R.

The strong residue class decomposability property is equivalent to the condition that
any residue class can be decomposed into an arbitrary number of disjoint residue classes
with the same moduli.

1.2.5 Examples The rings Z, Z with 2 € 7, the ring of Gaussian integers and Fy[z]
for example have the weak residue class decomposability property. For example in Fy[z],
a residue class a(m) can be written as the union of a(z - m) and a + m(xz - m). The rings
Zxy with 2 ¢ 7 and F,[x] with ¢ # 2 do not have this property. The ring Z has even the
strong residue class decomposability property.




1.3 Composita and Inverses of rcwa Mappings

1.3 Composita and Inverses of rcwa Mappings

The subject of this thesis are residue class-wise affine groups.

But do the bijective residue class-wise affine mappings of the ring R indeed form a
group? — This question should be answered in this section.

Further it should be investigated in which way modulus, multiplier and divisor of the
product of two rcwa mappings depend on modulus, multiplier and divisor of the factors,
and what influence the inversion of a bijective rewa mapping has on these values.

1.3.1 Lemma (Composita and inverses of rcwa mappings.)

a) Let f and g be rcwa mappings of a ring R. Then f - g (f is applied first) is an rcwa
mapping of R as well, and the following hold:
1. Div(f)|Mod(f).

2. Mod(f - ¢g)| Mod(f) - Mod(g) sowie
Mod(f - g)| Div(f) - lem(Mod(f), Mod(g))-

Vk € N Mod(f*)| Div(f)*=1 - Mod(f).
Mult(f - g)] Mult(f) - Mult(g).

Div(f - g)| Div(f) - Div(g).

P(f-9) CP(f)UP(g)

S vk W

b) Let o be a bijective rcwa mapping of R. Then o~ is one as well. If the restriction of
o to a residue class r(m) is given by n — (ar(m) - 7 + by(m))/Cr(m), then the following
hold:

Mod(o™1)|(Mult(0) - Mod(#))/ 86, -

Mult(o)| Mod(c71).

Mult(c~!) = Div(o).

Div(c™!) = Mult(o).

P(oc™) =P(0).

vk N =

c) Let f, 0, 01 and oy be rewa mappings of R and let o, 0y and oy be bijective. Then
the following hold:

1. Mod(f7)| Mult(s) - Mod(e)? - Mod(f).
2. Mod([oy, 09])| Mult(cy) - Mult(os) - Mod(ay)? - Mod(02)?.
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Proof:

a) Let f and g be rcwa mappings of the ring R. Further let m; := Mod(f) and
my = Mod(g).

The compositum of an affine partial mapping of f and an affine partial mapping of ¢
is affine as well. Which of the two affine partial mappings of f and ¢ are applied one
after another when evaluating n/¢ depends only on n mod (m; - Div(f) - my).
Further the product my - Div(f) - m, is nonzero, since by definition, the ring R does
not contain divisors of zero. Consequently, f - g is an rcwa mapping as well.

Let a,b,c € R. Further let r(ms) € R/myR. By Lemma 1.1.8, Assertion (1), the
image of r(my) under the mapping n — a - n + b is the residue class a - 7 + b(a - my).
This residue class can only be a subset of 0(c) if ¢|a - my. If a and ¢ are coprime, this
requires ¢|my. This is Assertion (1).

Let mg, :== Mod(f - g). We have to prove the divisibility relations my,|(my - m,) and
myq| Div(f) - lem(mys, my) (2). An element m € R is a multiple of my, if m¢|m, and
if it depends only on n mod m which residue class (mod m,) the image of n under f
belongs to. By definition, the value n mod mj determines the affine partial mapping
of f which is applied to n. Which residue class (mod m,) the image of n under a
fixed affine partial mapping of f belongs to is determined by n mod (Div(f) - my).
Thus we have mg,|lem(my, Div(f)-my), and thus the second of the claimed divisibility
relations. Due to Div(f)|my (Assertion (1)) the first relation holds as well. In case
g = f, from my,| Div(f) - lem(my, m,) we can inductively conclude Assertion (3).

Assume that the mappings f and g are given by

r(my) T+ brim
ot — Grtmy) Mms) form € r(my¢), where r(mys) € R/msR, and
Cr(my)

— ar(mg) N br(mg)

- for n € r(m,), where r(my) € R/myR.
CT(mg)

We have

Ury (m ) Ora (mg) T F (Qry () Ory (m) T Ory(mg) Cri(m )

nf9 —

Cry (my)Cra(my)

for ri(my) € R/msR and ry(m,) € R/myR depending on n mod my,. From this
we can immediately read off the assertions Mult(f - g)| Mult(f) - Mult(g) (4) and
Div(f - g)| Div(f) - Div(g) (5). Now, Assertion (6) concerning the prime set of f - g
follows immediately from the definition.




1.3 Composita and Inverses of rcwa Mappings

b)

Let o be a bijective rcwa mapping of R, and let m := Mod(o).

The inverse of o is composed from the inverses of the restrictions 0|T(m) of o to the
residue classes (mod m). The sources of these mappings are the images of the residue
classes r(m) € R/mR under o. Due to (a.1), Lemma 1.1.8, Assertion (1) tells us that
they are residue classes as well. Thus the mapping o~ is residue class-wise affine, as
claimed.

Obviously, the modulus of 0~! divides the least common multiple of the moduli of the
residue classes r(m)?. If we have

r(m) ° brm
0-|7’m: n = a() n ()7
(m) Crm)

then Lemma 1.1.8, Assertion (1) tells us that

r(m br m r(m) °
rm)r = G’ ()<a<> m>.
Cr(m) Cr(m)

Thus we get Assertion (1). Further we have

Cr(m) * 1 — br(m)

a*1|r(m)a: n — arim

From this we can immediately read off that inversion interchanges multiplier and
divisor (Assertions (3) and (4)). Assertion (2) is an immediate consequence of (4)
and (a.1). It follows also immediately that P(c~') C P(c). Since all of our argumen-
tation remains valid when we interchange the roles of o and o~ !, we get the equality
which is claimed in (5).

Let o, 01 and o5 be bijective rewa mappings of the ring R, and let f be an arbitrary
rcwa mapping of R. Using (a.2) and (b.1), we get the following chain of divisors:

Mod(f?) | Mod(c™") - Mod(f) - Mod(c) | Mult(c) - Mod(c)? - Mod(f),
This is Assertion (1). In the same way we get

Mod([o1, 05]) | Mod(o;!) - Mod(oy ') - Mod(o) - Mod (o)
| Mult(c) - Mult(c,) - Mod(oy)? - Mod(a2)?,

which is Assertion (2). O
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1.3.2 Examples Let 7" be the Collatz mapping and take o from Examples 1.1.3. Then
we have

2 if ne0(3), 2 if neo0(3),
als onoe AL if pe1(3), and o '-T: no— {2n if nel1(3),
L if noe 2(3) 2n+1 if n € 2(3).

The reader can immediately check the validity of the assertions of Lemma 1.3.1 in these
examples:

f Q a ! T at.T
Mod(f) 4 3 2 3
Mult( f) 3 4 3 2
Div(f) 4 3 2 3
P(f) 12,3} 12,3} 12,3} 2.3}

1.3.3 Definition Let
e Rcwa(R) denote the set of all rewa mappings of the ring R, and

e RCWA(R) denote the set of all bijective rcwa mappings of the ring R.

1.3.4 Lemma The following hold:
1. The set Rewa(R) forms a monoid under composition of mappings.

2. The set RCWA(R) forms a group under composition of mappings. This group is a
proper subgroup of Sym(R).

3. The cardinalities of the sets R, Rewa(R) and RCWA(R) are the same.
Proof:

1. Since the identity mapping is an rcwa mapping, this assertion follows immediately
from Lemma 1.3.1a.

2. The fact that RCWA(R) is a subgroup of Sym(R) is an immediate consequence of
Lemma 1.3.1. This subgroup is proper for reasons of cardinality: By Assertion (3),
the sets R and RCWA(R) have the same cardinalities, but it is well-known that the
one of Sym(R) is greater.

3. Given y € R, the mapping x — x + y is a bijective rcwa mapping. Thus the
sets Rewa(R) and RCWA(R) have at least the same cardinality as R. Since any
rcwa mapping is determined by a finite number of coefficients from R and since by
definition the ring R is infinite, their cardinality is not greater. O

10
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1.4 rcwa Groups and rcwa Monoids

1.4.1 Definition We call a submonoid of Rewa(R) a residue class-wise affine monoid
over R. Accordingly, we call a subgroup of RCWA(R) a residue class-wise affine group
over R. For these terms, we also use the abbreviated forms rcwa monoid resp. rcwa

group.

At this point we take the opportunity to recall that any group is in particular also a
monoid, hence a semigroup with one. Hence in the following we use the term monoid as
a generic term.

The terms modulus, multiplier, divisor and prime set can be transferred to rcwa groups
and -monoids in a natural way:

1.4.2 Definition We define the modulus, the multiplier and the divisor of an rcwa
monoid by the least common multiple of the moduli, multipliers resp. divisors of its
elements. In case there is no finite least common multiple, we take in the former case the
value 0 and in the latter two cases the value co. We define the prime set P(G) of an rcwa
monoid by the union of the prime sets of its elements.

1.4.3 Lemma Let G, H < Rewa(R) be rewa monoids, and let o € RCWA(R). Then the
following hold:

1. G is an rewa group = Mult(G)|Mod(G),
Div(G)| Mod(G),

H < G = Mod(H)|Mod(G),

H <G = P(H) € P(G),

G is an rewa group = Mult(G) = Div(G),

S

G is an rewa group = P(G) is the set of prime divisors of Mod(G), and
7. Mod(G?)| Mult(o) - Mod(c)? - Mod(G).
In this context, let 0|0 and col0.

Proof: Assertion (2) is an immediate consequence of Lemma 1.3.1a, Assertion (1) and the
definition of the divisor and the modulus of an rcwa monoid. We get Assertion (1) when
we additionally use Lemma 1.3.1b, Assertion (2). Assertion (3) and (4) are immediate
consequences of the definition of the modulus resp. the prime set of an rcwa monoid.
Assertion (5) follows from Lemma 1.3.1b, Assertion (3) and (4). Assertion (6) follows
from (1) and (2) and the definition of the prime set of an rcwa group. Assertion (7) is an
immediate consequence of Lemma 1.3.1c, Assertion (1). U

11
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1.5 rcwa Representations of Groups

Let K be a category. A K-representation of a group G is an homomorphism
v: G — Autg(X)

for an object X of K. In representation theory, usually K is the category of finite-
dimensional vector spaces over a field or the category of finite-dimensional modules over
a ring. The following notion of representation fits seamlessly into this general framework:

1.5.1 Definition Let G be a group. We call an homomorphism ¢ : G — RCWA(R) a
residue class-wise affine representation, or shortly rcwa representation, of G over R. In
case R = 7, we call ¢ also an integral rcwa representation.

1.5.2 Examples We would like to illustrate this definition by giving a few examples:

1. It is a straightforward calculation to check that a faithful rcwa representation of the
Sylow 3 - subgroup

G =1{((1,2,3)(4,6,5)(7,8,9), (1,4,7)(2,5,8)(3,6,9))
of Sy is given by
v: G — RCWA(Z),

) Y

n if ne€0(3)uU2(3),
(1,2,3)(4,6,5)(7,8,9) +— |[s1: n—qn+6 if ne1(9)
n—3 if ne4(9)uT7(9).

n if ne€0(9)U6(9),
3n+18 if n € 1(9),

(1,4,7)(2,5,8)(3,6,9) — |[s5: n— n+2 if ne2(9)Ub(9)

e if n e 3(9),

3n—9 if ne4(9)uT(9

(9)

n—17 if n € 8(9).

)
)

)

It is Mod(G¥) = 27, Mult(G¥) = Div(G¥) = 3, and P(G¥) = {3}.
2. We define vy(4), v34) € RCWA(Z) by

n+4 if nel(4), n+4 if ne3(4),
n ] resp. n — )
n otherwise, n otherwise

12
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and take the mapping o from Examples 1.1.3. Then the rcwa representation
(Yol SlO — RCWA(Z), (1 2346 8) = [Oé, 1/1(4)@], (3 5769 10) = [Oé, V3(4)Oé},

is faithful — this can be checked easily using RCWA .

It is Mod([av, v1(aya]) = Mod([av, v34ya]) = 18. The commutator [a, 144y is given
by

nt2 if n € 6(18),
n—5 if n e 15(18).

We have Mod(S{;) = 18, Mult(S{,) = Div(S{,) = 2, and P(S3,) = {2, 3}.

3. Let F':= (g;, i € N) be the free abelian group of countably infinite rank. Then

i 3 — 9t—1 A
p: F — RCWA(Z), ¢g; — (hl.: A n»—>{n+2 if n=2 (2),)

n otherwise

is a faithful rcwa representation of F. It is Mod(F¥) = 0, Mult(F¥) = Div(F¥) = 1,
and P(F?) = {2}.

1.6 Transition Graphs of rcwa Mappings

In the sequel, we will see that it is very useful to assign directed graphs to rcwa mappings
in the following manner:

1.6.1 Definition Let f € Rewa(R) and m € R\{0}. We define the transition graph I'¢,,
of f for modulus m as follows:

e The vertices are the residue classes (mod m).

e There is an edge from r{(m) to ry(m) if and only if there is an n € r;(m) such that
n € ry(m).

Thus I'y,, is a directed graph which may have loops. In case m = Mod(f) we abbreviate
Fﬁm by Ff.

13
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The following elementary properties can be derived immediately from the definition:

1.6.2 Lemma Let f € Rewa(R), 0 € RCWA(R) and m, my, my € R. Then the following
hold:

1. Every vertex of the graph I';,, has an outgoing edge. If f is surjective, then fur-
thermore each vertex of I'y,,, has an ingoing edge.

2. The graph I'y,,, is the quotient of I'f,,,.,m, by the equivalence relation on the set of
vertices induced by congruence (mod my).

3. The graph I';-1 ,,, can be constructed from I'; ,,, by reversing all edges.

1.6.3 Example The graph given below is e.g. the transition graph of an rcwa mapping
g of order 7 and an rcwa mapping h of order 12 (in both cases for modulus 6).

The vertices and the associated affine partial mappings of h are given in brackets, as
far as they are different from those of g. For reasons of nicer typesetting, we abbreviate
affine mappings n — (an + b)/c here and in all further figures showing transition graphs
by (an 4+ b)/c.

(0(6)) (3(6))
3(6) 0(6)
) \W 2%
5(6) 2(6) —
b 3 3
(n—2)
1(6) 4(6)

This graph has one cyclus of length 3 and one of length 4. Iterated application of the
mapping g to an integer n causes both cycles to be passed consecutively, whereas iterated
application of h causes only one of the cycles to be passed — which one depends on
n mod 12. Hence the order of ¢ is 3 + 4 = 7, while the order of h is lem(3,4) = 12.
In particular we see that it is possible to ‘twist’ a 7-cycle into an rcwa mapping with
modulus 6.

Much more involved examples of transition graphs can be found in Appendix B.

14



1.7 Integral, Balanced and Class-Wise Order-Preserving Mappings

We can not only determine transition graphs of given rcwa mappings. If we would like to
construct a mapping with given properties, it is often a good idea first to construct the
graph and then to assign affine mappings to its vertices resp. edges:

1.6.4 Example We would like to construct a permutation o € RCWA(Z) of order 257
with modulus 32.

For this purpose let I'; 32 be a directed graph with the 32 vertices 0(32),...,31(32),
15 cycles of length 16 and one cyclus of length 17. Further, 15 vertices of I'; 32 should
belong to all cycles, 15 vertices should exclusively belong to one of the cycles of length 16
each and 2 vertices should exclusively belong to the cyclus of length 17.

We get the permutation o by assigning affine mappings to the edges resp. vertices of
this graph. We choose these mappings in such a way that a cycle of the permutation o
always passes all the cycles of I', 3, one after the other. The length of such a cycle is
1516 + 17 = 257. In this way, we can for example construct the following mapping:

16n+2 if n€0(32),
16n+18 if ne1(2)\ —1(32),
n—31 if ne —1(32),

n if ne16(32),

n+16  if ne 2(32)U 4(32)U 6(32)U---U14(32),
n—14  if ne18(32)U20(32) U22(32) U--- U 30(32).

o € RCWA(Z), n —

We see that the order of an element 0 € RCWA(Z) can be a prime which is considerably
greater than Mod(o).

1.7 Integral, Balanced and Class-Wise Order-Preserving Mappings

1.7.1 Definition We call an rcwa mapping f € Rewa(R)
e integral if Div(f) =1,
o balanced, if the sets of prime divisors of Mult(f) and Div(f) are the same, and

e class-wise order-preserving if R is ordered and all affine partial mappings of f are
order-preserving.

We call an rcwa monoid integral, balanced resp. class-wise order-preserving if all of its
elements have the respective property. We denote the subgroup of RCWA(R) formed by
the bijective class-wise order-preserving mappings by RCWA™(R).

15
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1.7.2 Remark An rcwa mapping is integral ‘if it does not involve fractions’. Thus inte-
gral rcewa mappings have a particularly simple structure. Easy density arguments show
that a surjective integral rcwa mapping is even bijective, and that the multiplier of a bi-
jective integral rcewa mapping equals 1 as well. Thus due to Lemma 1.3.1, Assertion (a.4),
(a.5), (b.3) and (b.4), the bijective integral rcwa mappings form a subgroup of RCWA(R).
By Lemma 1.3.1a, Assertion (3), raising an integral rcwa mapping to some power does
not increase its modulus.

Balancedness is a substantially weaker property than integralness. We will see that
balancedness is a necessary condition for the boundedness of the moduli of the powers of
the respective rcwa mapping.

An rcwa mapping of Z is class-wise order-preserving if and only if its affine partial
mappings are order-preserving, i.e. of the form n — (an + b)/c with a > 0.

1.7.3 Remark The subgroup RCWAT(Z) < RCWA(Z) is not normal:
For example the mapping v°® where v : n+— n+1 and gy : n — (—1)"*!-n is given
by n+— —n + (—1)". Thus in contrast to v itself it is not class-wise order-preserving,.

1.8 A Notion of Tameness for rcwa Mappings and rcwa Monoids

Some rcwa mappings, -groups, -monoids and -representations have a considerably easier
structure than others:

1.8.1 Definition We say that the following objects are tame:
1. An rcwa monoid whose modulus is nonzero.
2. An rcwa mapping which generates a tame cyclic monoid.
3. An rcwa representation whose image is tame.

If an rcwa monoid, an rcwa mapping resp. an rcwa representation is not tame, we say
that it is wild.

1.8.2 Remark A mapping f € Rewa(R) is tame if and only if the set {Mod(f*)|k € N}
of the moduli of its powers is bounded. Integral rcwa mappings and finitely generated
integral rcwa monoids are always tame.

16
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Tameness is a class invariant:

1.8.3 Lemma Let 0 € RCWA(R). Then the following hold:
1. f € Rewa(R) tame = f7 tame.
2. G < Rewa(R) tame = G tame.
3. G < RCWA(R) tame = G tame.

Proof: Assertion (2) is a consequence of Lemma 1.4.3, Assertion (7). Assertion (3) is a
special case of (2), and Assertion (1) follows from (2), since by definition an rcwa mapping
is tame if and only if it generates a tame cyclic monoid. 0

A tame bijective rcwa mapping generates always even a tame cyclic group:

1.8.4 Lemma The following hold:
1. The multiplier of a bijective rcwa mapping is bounded by a function in its modulus.

2. Bijective rcwa mappings generate tame cyclic groups.

Proof:

1. Let 0 € RCWA(R) and set m := Mod(c). Since o is bijective, the images of the
residue classes r(m) € R/mR under o form a partition of R. By Lemma 1.1.8,
Assertion (1) this partition consists of single residue classes and has the form

_ ’ ’ ar(m)'m>
R = po (Gt Y
U (e

r(m)eR/mR Cr(m

where we use the notation from Definition 1.1.2. By Lemma 1.3.1a, Assertion (1) we
have Vr(m) € R/mR ¢ (m|m. Thus the multiplier of o divides the least common
multiple of the moduli of the residue classes in this partition. By Lemma 1.1.10
there is a partition

1

1 —=
T(m)é/mR |R/aT(m)R| ’ |R/mR|/|R/CT(m)R|

of 1 into fractions of the form 1/n. It is well-known from elementary number theory
that an upper bound on the number of fractions in such a sum enforces an upper
bound on the denominators. This proves our assertion.

2. From Assertion (1) and Lemma 1.3.1b, Assertion (1) we conclude that there is an
upper bound on the modulus of the inverse of a bijective rcwa mapping with a given
modulus. 0

17
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1.8.5 Examples We would like to illustrate the terms tame and wild by giving a few
examples:

1. The Collatz mapping T is wild. More precisely we have Vk € N Mod(T*) = 2*.
This is a major reason for the difficulty of proving the 3n + 1 Conjecture. If the
mapping 7" would be tame, there would be a upper bound on the number of affine
partial mappings of its powers T%. Therefore, under this circumstance verifying the
3n + 1 Conjecture would be merely a computational task.

2. The groups G¥ and S}, from Examples 1.5.2, Part (1) and (2) are finite, thus in
particular tame.
In contrast to this, the representation from Examples 1.5.2, Part (3) is wild, although
all elements of its image are tame.

3. The mappings 3, 37! € RCWA(Z) given by

o if ne0(b), o if ne0(3),
xl if noe 1(5), el if noe 1(3),
no— 3= if ne2(5), resp. n o (%L if ne2(9),
=2 if n e 3(5), ez if noe 5(9),
ol if noe 4(5) et if e 8(9)

are mutually inverse. Assume that 5%||n for some k € N. Then we obviously have
vl € {0,...,k} 5*7!||n?". Hence the value n®*" mod 5 is not already determined
by n mod 5*7!. Using Lemma 1.3.1a, Part (2) we can conclude that Mod(S*) =
Mod(B3)* = 5%, thus in particular that 3 is wild. By Lemma 1.8.4, Part (2) this
implies that 37! is wild as well.

4. Let F := (f1, f2) be the free abelian group of rank 2. Further let a be as in
Examples 1.1.3, and let 3 be as above. Then

2 F — RCWA<Z)7 fl = Q, f2 = ﬂa
is a wild rcwa representation of F'.

5. It is possible to show that the mappings g and h from Example 1.6.3 generate a
tame infinite group. The modulus of this group is 12.

18



CHAPTER 2

Residue Class-Wise Affine Groups

2.1 How ‘Large’" is RCWA(Z)?

In this section we prove the following assertions:

The group RCWA(Z)
e is not finitely generated,
e has finite subgroups of any isomorphism type, and
e acts highly transitively on Z.

As far as this is possible without significant additional efforts, these assertions are gener-
alized to groups RCWA(R) over suitable rings R other than Z.

2.1.1 Theorem If the ring R contains infinitely many prime elements, then RCWA(R)
is not finitely generated.

Proof: For any prime element p € R there is an element of RCWA(R) with prime set
{p} — for example

n+p if pln,

n otherwise.

o) € RCWA(R): n +— {

Furthermore the prime set of an rcwa mapping is always finite. Now the assertion follows
immediately from Lemma 1.3.1, Assertion (a.6) and (b.5). O
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Every finite group can be embedded into RCWA(Z):

2.1.2 Theorem Assume R = Z or R = Z) for a finite set of primes 7. Then, any finite
symmetric group S,, has a faithful rcwa representation over R. Given a positive integer
m > 1, an example of such a representation is

n+1 if n=0 (m),
Om: Sm — RCWA(R), (12) — [7:R— R, n—<n—1 if n=1 (m), |,
n otherwise.
n+1 it n=0,1,...,m—2 (m),
(12...m) —|o:R—=R n—Sn—(m-1) if n=m—1 (m), ,
n otherwise.

where in case R = Z we put m := m, and in case R = Z,) we let m be the least positive
integer > m, whose prime divisors are elements of .

It remains to show that the group RCWA(R) acts highly transitively on R. For this we
need two elementary lemmata. The first one is an assertion concerning affine mappings
from residue classes onto residue classes:

2.1.3 Lemma Let r(m) and 7(m) be residue classes of R. Then there are affine mappings
from the quotient field K of R onto itself, which map r(m) bijectively onto 7(m). These
mappings have the form f = f - fo(u, k) with

fi € AFF(K) : n s Tt (mi—mr)

m

and
fo(u, k) € AFF(R) : n —— un+7(1 —u)+km

for an u € R* and a k € R. All affine mappings which map the residue class 7(m)
bijectively onto itself can be represented in the form fo(u, k) for suitable u and k.

Proof: By Lemma 1.1.8, Assertion (1) it is r(m)/t = #(1m). It remains to show that the
mappings f2(u, k) map the residue class 7(m) bijectively onto itself, and that there are
no further affine mappings which do the same. For this purpose let

a:7(m)— R, n— (an+b)/c (a,b,c € R)

be an affine mapping. It holds that {r*, am/c} C R, and without loss of generality we can
assume that ged(a,b,c¢) = 1 and that ¢ = |¢|. By Lemma 1.1.8, Assertion (1) the image
of « is the residue class (a7 + b)/c mod am/c. Thus source and image of a are equal if
and only if a/c € R* and if there is furthermore a k € R such that b = 7(c—a)+km. The
standardization ¢ = |¢| yields ¢ = 1, and we get the assertion since non-constant affine
mappings are injective. 0
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We can put together the affine mappings described in Lemma 2.1.3 and build rcwa map-
pings from them — this yields the following ‘partition transitivity lemma’:

2.1.4 Lemma Let S be a union of finitely many residue classes of R, and let k be a
positive integer. Further let R = r1(m1) U --- Urg(my) and S = 71 (m) U --- U T(m) be
partitions of R resp. S into k residue classes, each, and let n; € r;(m;) resp. n; € 7;(m;) be
arbitrary representatives. Then by Lemma 2.1.3 there are affine mappings whose sources
are the residue classes r1(m1), ..., r,(my) and which can be combined to form an injective
mapping f € Rewa(R) such that

Vi€ {1,... .k} (ritm) = #i(m) And = ).

It follows immediately from this construction that Mod( f)|lem(my, ..., my). If the ring R
has the weak residue class decomposability property, then by Remark 1.2.4 we can replace
the residue classes r;(m;), 7;(1;) by unions of finitely many residue classes.

Now it is easy to prove the last of the three assertions made above:

2.1.5 Theorem The group RCWA(R) acts highly transitively on R.

Proof: Let k € N. We have to show that given two k-tuples (ni,...,ng) and (R, ..., 7)
of pairwisely different elements of R, there is always a permutation o € RCWA(R) such
that (n{,...,n7) = (A1,...,ng). We choose a € R\ (R* U {0}). Further let e € N
be large enough such that no two n;,n; and no two n,,n; lie in the same residue class
(mod a). Finally, we choose N1, ..., " Rr/aer) a0d Ti1, . .., TYR/eer| i such a way that
the sets {ni,...,ng/er|} and {N, ..., NRr/aer|} become sets of representatives for the
residue classes (mod a®). Now the assertion follows from Lemma 2.1.4, applied to the
partitions

\R/a°R| \R/a°R|
R= | m) = U mla®)
i=1 i=1
with the requirement Vi € {1,...,|R/a°R|} n{ = n; for the representatives. O

Theorem 2.1.5 has a considerable impact on the structure of possible nontrivial normal

subgroups of RCWA(R):

2.1.6 Corollary Using [DM96], Corollary 7.2A we can conclude that a nontrivial normal
subgroup of RCWA(R) must act highly transitively on R as well. Since an abelian group
can act at most l-transitively on a set, the centre of RCWA(R) is trivial. Since any
highly transitive permutation group has a subgroup which acts on a set of cardinality 5
as an alternating group of degree 5, the group RCWA(R) does not even have a solvable
nontrivial normal subgroup.
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2.2 The Firstenberg Topology

The group RCWA(R) becomes a group of homoeomorphisms once the ring R is endowed
with a suitable topology. Lemma 1.1.9 is a good starting point for this:

2.2.1 Definition We define the Furstenberg topology on R as the topology which is
induced by taking the set of all residue classes as a basis. In the following, we always
regard the ring R also as a topological space with this topology.

2.2.2 Remark In case R = 7Z this is the topology which has been introduced by Harry
Fiirstenberg in his topological proof [Fiir55] that there are infinitely many primes.

2.2.3 Theorem The following hold:
1. The topological space R is a Hausdorff space.
2. Residue classes are both open and closed.
3. rcwa mappings are continuous.

4. Preimages of unions of finitely many residue classes of R under rcwa mappings are
unions of finitely many residue classes as well.

5. The group RCWA(R) is a group of homoeomorphisms.

Proof: Let ny,ns € R be two distinct points. We choose an m € R\ {0} which does not
divide ny—ngy. Then the residue classes nq(m) and ny(m) are disjoint open neighbourhoods
of ny and ny. This yields Assertion (1). By definition, all nontrivial residue class rings of R
are finite. This implies Assertion (2). We get Assertion (3) and (4) just like Lemma 1.2.1,
Assertion (2), when we additionally take into consideration that the preimage of a set
under a constant affine partial mapping of an rcwa mapping f is either empty or a residue
class (mod Mod(f)). We conclude Assertion (5) from Lemma 1.2.1, Assertion (2) and
Lemma 1.3.4, Assertion (2). O

2.3 Restriction Monomorphisms

In the following we will see that the groups RCWA(R) have proper subgroups which are
isomorphic to the whole of RCWA(R) itself. It will turn out to be convenient to consider
isomorphisms from RCWA(R) to such subgroups:
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2.3 Restriction Monomorphisms

2.3.1 Definition Given an injective rcwa mapping f and an rcwa mapping g of R, let
gy be the uniquely determined rcwa mapping which pointwisely fixes the complement of
the image of f and makes the following diagram commutative:

9

R R

f f

R R
9

We call the mapping ¢ : Rewa(R) — Rewa(R), g +— gf the restriction monomorphism
associated to f. Where there is no risk of confusion, we identify the restriction monomor-
phism 7, with its restriction to RCWA(R).

2.3.2 Theorem The restriction monomorphisms 7y are well-defined mappings, and they
are indeed monomorphisms. Furthermore, the mappings 7y : RCWA(R) — RCWA(R)™
are permutation isomorphisms.

Proof: Due to the required injectivity of f, restriction monomorphisms are indeed well-
defined injective mappings. For this conclusion it is not even necessary that we know that
we are dealing with recwa mappings. Furthermore since f is an rcwa mapping, images of
rcwa mappings under the restriction monomorphism associated to f are rcwa mappings
as well. It is also easy to see that restriction monomorphisms are homomorphisms — given
any two mappings ¢;, g2 € Rewa(R), by definition all three rectangles in the following
diagram commute:

S
f fL f
R—9 .p_® .p
f /
R (g192)™ . B

This yields (g1g2)™ = ¢1'¢5’. The equality (¢7')™ = (¢™)~! for bijective g can be

obtained directly from the definition by following the horizontal arrows in the reverse
direction. Since the mapping f is bijective as a mapping from R onto im f, the restriction
monomorphism 7 just causes a ‘renumbering’ n +— n’/ of the points. Thus 7; is a
permutation isomorphism. 0
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2.3.3 Corollary Using Theorem 2.3.2 and Theorem 2.1.5, we can conclude that for any
possible image im f of an injective rcwa mapping f, the group RCWA(R) has a subgroup
which is permutation isomorphic to RCWA(R) itself, acts highly transitively on im f
and fixes R\ im f pointwise. A consequence of this is that the class of groups which
have faithful rcwa representations over R is closed under forming direct products: Given
G, H < RCWA(R), choose a € R\ (R*U{0}) and ring elements by, by € R which are not
congruent (mod a). Then

G x H = (Gr—ontn Jrumontis) < RCWA(R).

Assume that R has the weak residue class decomposability property and let Sy, 52 C R
be nonempty unions of finitely many residue classes of R. Then, using Lemma 2.1.4 we
can conclude that there are injective rcwa mappings f; and fy of R such that im f; = 53
and im fy = S5. Looking a bit ahead on Theorem 2.4.1 reveals that there further is a
permutation 0 € RCWA(R) such that S{ = S,. This yields (im 7y, )7 = im7y,. Hence in
particular all images of restriction monomorphisms which are not inner automorphisms
are mutually conjugate in RCWA(R).

2.4 Transitivity on Sets of Unions of Residue Classes

In Theorem 2.1.5 we have already shown that the group RCWA(R) acts highly transi-
tively on the underlying ring R. It is similarly easy to prove an assertion concerning the
transitivity of the action of RCWA(R) on the set of unions of residue classes. Of course
without making assumptions concerning disjointness of the sets in question, we cannot
get more than 1-transitivity:

2.4.1 Theorem If the ring R has the weak residue class decomposability property, then
the group RCWA(R) acts transitively on the set of unions of finitely many residue classes
distinct from () and R itself.

Proof: Let () # S1, 52 € R be unions of finitely many residue classes. We have to show
that 30 € RCWA(R) : S7 = S,. Since R has the weak residue class decomposability
property, and since by Lemma 1.1.9, complements of unions of finitely many residue
classes are unions of finitely many residue classes as well, we get the claimed assertion by
applying Lemma 2.1.4 to the partitions R = S; U (R\ S1) = So U (R\ S2). O
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2.4.2 Example We would like to construct a mapping 0 € RCWA(Z) which maps the
residue class 1(2) onto the union of the residue classes 2(5) and 3(5).

For this purpose we write 1(2) as union of 1(4) and 3(4), and the complement Z \ 1(2)
as union of 0(6), 2(6) and 4(6).

Using Lemma 2.1.3 we construct affine mappings which map 1(4) onto 2(5), 3(4) onto
3(5), 0(6) onto 0(5), 2(6) onto 1(5) resp. 4(6) onto 4(5). Putting these mappings together
yields the desired mapping

(4)
(4)
0 € RCWA(Z), n — (30 if n € 0(6)
(6)
(6)

The condition in Theorem 2.4.1 that R has the weak residue class decomposability prop-
erty is essential:

2.4.3 Remark If the ring R does not have the weak residue class decomposability prop-
erty, the group RCWA(R) acts in general not transitively on the set of nonempty unions
of residue classes of R distinct from R itself. In case R = Zs) for example it is not pos-
sible to write a union of an even number of residue classes as a union of an odd number
of residue classes and vice versa. Furthermore, in this case the parity of the number of
residue classes in such a union is invariant under rcwa mappings. Hence the action of
RCWA(Z)) on the set of unions of residue classes is intransitive.

Apart from considering the action of RCWA(R) on the set of unions of residue classes, we
can also consider the action of this group act on an element of this set. At this point it
is convenient to introduce the notion of a Jordan set. Since this term might not be well-
known to every reader, we give the commonly used definition (cp. e.g. [DM96], Chapter 7,
Section 4):

2.4.4 Definition Let G be a group which acts on a set S. The set S is called a Jordan
set and the complement S¢ := S\ S is called a Jordan complement if the action of the
pointwise stabilizer G(g,,y on S is transitive and if |S;| > 1. If S¢ is finite and if G acts
at least |S¢| + 1-fold transitively on S, then S; and S¢ are called improper. In this case,
Sc¢ is a Jordan complement already for reasons of cardinality. The Jordan set S; and the
Jordan complement S¢ are called proper if S¢ is infinite or G' does not act |S¢| + 1-fold
transitively on S. The group G is called a Jordan group if it acts transitively on S and if it
has at least one proper Jordan complement. If G (g acts k-fold transitively resp. highly
transitively on S, the Jordan set S is called k-fold transitive resp. highly transitive as
well.
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2.4.5 Remark If R has the weak residue class decomposability property, then we con-
clude from Corollary 2.3.3 that RCWA(R) is a Jordan group. Further we see that all
nonempty unions of finitely many residue classes of R are both highly transitive Jordan
sets and highly transitive Jordan complements.

2.4.6 Theorem Assume that the ring R has the weak residue class decomposability
property. Then the Jordan sets for RCWA(R) in R are precisely the open sets and the
Jordan complements are precisely the closed sets. All Jordan sets are highly transitive.

Proof: We know from Theorem 2.2.3, Assertion (5) that RCWA(R) is a group of ho-
moeomorphisms of R. By Theorem 2.2.3, Assertion (2) the Fiirstenberg topology has a
basis consisting of sets which are both open and closed. Further, Theorem 2.1.5 tells us
that RCWA(R) acts transitively on R. Hence we can conclude from [BMMNOSg|, Sec-
tion 11.1.2; that the Jordan sets resp. the Jordan complements for RCWA(R) in R are
at most the open sets resp. closed sets. It remains to show that all open sets are indeed
highly transitive Jordan sets.

By Remark 2.4.5 unions of finitely many residue classes are highly transitive Jordan
sets. Let S C R be open. Without loss of generality, we can assume that S = U2, r;(m;).
This can be rewritten as S = U, (r;(m;) U rip1(m;41)). Thus the set S is a union of
a connected family of highly transitive Jordan sets, and as is such due to [BMMNOS],
Corollary 10.10 a highly transitive Jordan set as well. O

Ben Green and Terence Tao have shown in in [GT04] that the set of primes contains
arithmetic progressions of arbitrary length. This motivates the following considerations.

2.4.7 Definition The elements of the orbits {1,2,..., Z}AH(Z), [ € N are called arith-
metic progressions of length |. Accordingly, saying that a set S C Z contains arithmetic
progressions of arbitrary length means

VieNdneZ,meN: {n,n+m,n+2m,...,n+(l—1)m} CS.

2.4.8 Theorem The property of a set that it contains arithmetic progressions of arbi-
trary length is invariant under the action of RCWA(Z). This means that given S C Z
and o € RCWA(Z), the set S? has this property if and only if also S has it.

Proof: Let S C 7Z be a set which contains arithmetic progressions of arbitrary length,
and let 0 € RCWA(Z). Further let [ € N. It is sufficient to show that S? contains
an arithmetic progression of length . If we set m := Mod (o), then the set S contains
an arithmetic progression of length m - I. We denote this progression by A. Obviously,
there is a residue class r(m) € Z/mZ such that |ANr(m)| > [. This intersection is an
arithmetic progression as well, just like its image (A N 7(m))°lem C S° under the affine
mapping o, (m)- O
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A further invariant is the following:

2.4.9 Theorem The property of a set S C 7Z \ {0} that the series Y, cg ﬁ diverges

is invariant under the action of the point stabilizer RCWA(Z), in the same sense as in
Theorem 2.4.8.

Proof: The assertion holds since given 0 € RCWA(Z),, the quotients |n|/|n?| and |n?|/|n|
are defined for n € Z \ {0} and bounded. O

2.4.10 Remark G. Szekeres has conjectured that even any set S C Z\ {0} such that the
series >, car ﬁ diverges contains arithmetic progressions of arbitrary length (cp. [ET36]).
This conjecture is still open today (cp. [GT04]). Theorem 2.4.9 reduces this problem to
a set of representatives under the action of RCWA(Z),.

2.5 Tame Groups and Respected Partitions

In the following we begin with considerations concerning the action of suitable rcwa
groups on partitions of R into single residue classes. In the next section they will lead to
a complete classification of tame rcwa groups.

First of all, we give a lemma about the orbits of certain residue classes under the
action of tame groups:

2.5.1 Lemma Let G < RCWA(R) be tame and let m be a multiple of Mod(G). Then
the orbit of a residue class r(m) under the action of G is a set of finitely many disjoint
residue classes.

Proof: By the choice of m, the restriction of an element g € G to r(m) is always affine.
From this we can conclude that the restriction of an element of G to any element of the
orbit © of 7(m) under the action of G is affine as well: Let 7(m) € 2 and g € G be chosen
arbitrarily. We have to show that g|z) is affine. Due to our assumption, thereis an h € G
such that r(m)" = 7(1m). As we already know, the mappings hl,(x) and (hg)|.n) are affine.
Since AFF(K) is a group, this implies that the mappings A~ |7(z) and b |zn) - (hg)|rm) =
(h™hg)|7(m) = gl7@m) are affine as well. Since by Lemma 1.1.8 the image of a residue class
under a bijective affine mapping is also a residue class provided that it is a subset of R,
the orbit  contains only single residue classes. Lemma 1.4.3, Assertion (1) tells us that
Mult(G)|m, i.e. that Vg € G Mult(g)|m. Thus due to Lemma 1.1.8, Assertion (1), the
moduli of all of the residue classes in Q divide m?. Counting the residue classes of R
which satisfy this requirement yields [Q| < 32y,,2 |[R/tR| < co. Assume that the orbit
contains two residue classes which intersect nontrivially, i.e. that there is an 7(m) € Q
and a g € G such that 7(m)? N7(m) ¢ {0,7(m)}. Further assume that g|7) is given by
n — (an + b)/c for certain a,b,c € R. Then, Lemma 1.1.8, Assertion (3) tells us that at
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least one of the coefficients a, ¢ is not a unit. Finally, Lemma 1.1.8, Assertion (2) yields
a contradiction to the finiteness of €. (]

2.5.2 Definition Let P be a partition of R into finitely many residue classes. We say
that an rewa group G < RCWA(R) respects the partition P, if it naturally acts on P as
a permutation group, and if all restrictions of elements of G to residue classes in P are
affine. We say that a mapping 0 € RCWA(R) respects the partition P, if the cyclic group
generated by o does so.

In this situation, we denote the permutation which is induced by ¢ on P by op.
Similarly, we denote the permutation group which is induced by G on P by Gp.

We take the symbol Sym(P) to denote an arbitrary rcwa group which respects the
partition P and acts on it as full symmetric group. Accordingly, we write Sym(P) < G
to denote that G' has a subgroup which respects the partition P and acts on it as full
symmetric group.

Let S be a set of sets. Then we denote the union of the elements of S by US.
Analogously, we denote the intersection of the elements of S by NS.

2.5.3 Example Let g,h € RCWA(Z) be the permuttions of order 7 resp. 12 defined in
Example 1.6.3. They are given by

2n+2 if n € 0(3), 2n+2 if n € 0(3),
n+4 if ne1(6), n—2 if nel(6),
n o {2 if ne2(6), resp. n — (% if n € 2(6),
n—4 if ne€4(6), n—1 if ne€4(6),
n—2 if neb5(6) n+1 if ne5(6).

The group G := (g, h) respects the partition
P={ 0(12), 1(12), 3(12), 4(12), 5(12),
6(12), 7(12), 9(12),10(12),11(12),
2(24), 8(24),14(24),20(24) }
of Z, and we have
Gp = <(1, 11,2,5,3,12,4)(6,13,7,10,8,14,9),
(1,11,2,10)(3,12,4)(5,6,13,7)(8,14,9)).
The order of Gp is 322560 = 2!9.3%.5 .7, and the derived subgroup G’ is perfect and
has index 2. The kernel of the action of G on P is a free abelian group of rank 6. The

computations for this and all following examples have been carried out using GAP [GAP04]
and RCWA [Koh05].
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2.5.4 Lemma A tame rcwa group G < RCWA(R) is integral if and only if it respects
the partition R/Mod(G)R of R.

Proof: Let m := Mod(G) # 0 and choose an arbitrary element g € G. It is sufficient to
show that the mapping ¢ is integral if and only if it permutes the residue classes (mod m).
The latter assertion holds since by Lemma 1.1.8, Assertion (1) the image of a residue class
(mod m) under an affine mapping o € AFF(K) is a residue class (mod m) as well if and

only if « € AFF(R). O

2.5.5 Example Let m € N and let ¢,, as in Theorem 2.1.2. Then Lemma 2.5.4 tells us
that the group G := S,,”™ respects the partition

Z/mZ = {0(m),1(m),2(m),...,m—1(m)}.
Further it holds Gz/mz = Sy, hence the action of G' on Z/mZ is faithful.

2.5.6 Lemma Let G, H < RCWA(R) be rcwa groups, let P be a partition of R which
is respected by G and H and let 0 € RCWA(R) be affine on any element of P. Then the
following hold:

1. The group (G, H) < RCWA(R) respects P as well.

2. The group G° respects the partition P?, and the groups Gp and G%. are permuta-
tion isomorphic to each other.

Proof:

1. By assumption, all elements of G and all elements of H permute the residue classes
in the partition P, and are furthermore affine on all residue classes in P. This
implies the same for arbitrary products of elements of G with elements of H, or
in different words, for arbitrary elements of the subgroup of RCWA(R) which is
generated by G and H.

2. We have assumed that 0 € RCWA(R) is affine on any element of P. Hence by
Lemma 1.1.8, Assertion (1), P? is also a partition of R into single residue classes.
The group G acts on it, and even respects it due to our assumption concerning o.
The mapping o induces a permutation isomorphism from Gp to G%.. O

2.5.7 Example We consider the group G which is given in Example 2.5.5. The mapping
v :n — n+ 1 has infinite order, and ¢ : n +— —n is not class-wise order-preserving. Since
the group G is finite and class-wise order-preserving, it contains neither v nor ¢. The
group H := (v,<) respects the partition Z/mZ as well. By Lemma 2.5.6, Assertion (1)
the same holds for the group (G, H) generated by G and H.
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The following theorem will turn out to be important for obtaining a classification of those
groups which have faithful tame rcwa representations over R:

2.5.8 Theorem A group G < RCWA(R) is tame if and only if it respects a partition
of R into finitely many residue classes.

Proof: First assume that G is tame. Let m := Mod(G) and denote the residue classes
(mod m) by r;(m), 1 =1,...,|R/mR|. We construct the desired partition P of R using
the following algorithm:

1. Puti:=1and P :=0.
2. If r;(m) € UP, put D :=r;(m) \ UP, otherwise continue with step 4.

3. By Lemma 1.1.9, the set D is a union of finitely many residue classes. Put m :=
lem(m, Mod(D)), and assume that D = 7 (m) U ---U7,(m). For j =1,... k, put
P := P UT;(m)® — by Lemma 2.5.1, the orbits of the residue classes 7;(7m) under
the action of GG are finite sets of disjoint single residue classes.

4. If i < |R/mR)|, put i :== i+ 1 and continue with step 2. Otherwise done.

We have to form at most |R/mR| < oo difference sets D, and all of them are unions of
finitely many residue classes. Further the orbits of the residue classes in these unions are
finite as well. This yields |P| < oo.

Proving the other direction is trivial, since obviously the modulus of the group divides
the least common multiple of the moduli of the residue classes in a respected partition. [J

2.5.9 Remark By Theorem 2.5.8, a tame group G < RCWA(R) respects a partition P
of R. If the action of G on R is transitive, then P is a block system. Hence the action of G
on R is imprimitive, thus at most 1-transitive. Using Corollary 2.1.6, we can conclude
that a nontrivial tame group cannot be a normal subgroup of RCWA(R).

2.5.10 Corollary A mapping 0 € RCWA(R) is tame if and only if there is a k € N such
that o* is integral.

Proof: First assume that 0 € RCWA(R) is tame. Then, Theorem 2.5.8 tells us that the
cyclic group (o) respects a partition P. If k is the order of the permutation which is
induced by ¢ on P, then o* fixes and respects the partition P. We conclude that o is
tame. Proving the opposite direction is trivial. 0

2.5.11 Example Let g, h and P be as in Example 2.5.3. Then we have ord((gh)p) = 20.
Accordingly, (gh)® fixes the partition P, hence the mapping (gh)% is integral.
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From Theorem 2.5.8 we can derive an easy criterion for deciding whether a given bijective
rcwa mapping is wild:

2.5.12 Conclusion Let 0 € RCWA(R) be not balanced. Then o is wild.

Proof: Assume that the mapping o is not balanced, but tame. Then by Theorem 2.5.8,
o respects a partition P of R into finitely many residue classes. Since the mapping o is
not balanced, there is a prime element p € P(R) which divides Div(c), but not Mult(o)
or vice versa. Due to Lemma 1.3.1b, Assertion (3) and (4), without loss of generality we
can assume the former. Using Lemma 1.1.8, Assertion (1), we conclude that there is a
cycle (ro(myg), ..., ri—1(my—1)) € P such that 3i € {0,...,1—1} : p[(mi/M(+1) moa 1), but
35 €40,...,0 =1} ¢ p|(M(j+1) moa1/m;). Obviously this yields a contradiction. O

2.5.13 Examples By Conclusion 2.5.12, the mappings « and £ from Examples 1.1.3 are
both wild. However, by far not all balanced bijections are tame — see e.g. the example

om+3 if neod),
2n+4 if n € 1(3)
whron o _
5 lfn€2(6),
(6)

RT% if neb(6

with v : n +— n + 1. In the same time, the mapping vv® is an example of a product of
tame mappings which itself is not tame.

In Conclusion 2.5.12, at least the condition that o is surjective cannot simply be
omitted — see the example f € Rewa(Z), n — 2n.

The knowledge about respected partitions we have assembled so far permits us to reveal
a strong relationship between tame and integral rcwa groups:

2.5.14 Theorem Assume that R has the strong residue class decomposability property.
Then exactly those mappings g € RCWA(R) and exacty those finitely generated groups
G < RCWA(R) are tame which are conjugate to an integral mapping resp. group.

Proof: It is sufficient to prove the assertion for rcwa groups. Due to Remark 1.8.2 and
Lemma 1.8.3, Assertion (3), finitely generated rcwa groups which are conjugate to integral
groups are tame. Hence it is sufficient to prove that tame rcwa groups are always conjugate
to integral groups. Thus let G < RCWA(R) be tame. By Theorem 2.5.8, the group G
respects a partition P of R into finitely many residue classes. Due to our condition on R,
we can choose an m € R such that |R/mR| = |P|. By Lemma 2.1.4, there is now a
mapping 0 € RCWA(R) which is affine on all residue classes in P and which induces
a bijection from P to R/mR. Lemma 2.5.6, Assertion (2) tells us that the group G
respects the image of this bijection, and Lemma 2.5.4 reveals that G is integral. U
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2.5.15 Example Let G be the group from Example 2.5.3. As we have seen there, the
group G respects a partition Pg of length 14. Just as described in the proof of Theo-
rem 2.5.14, we can construct a mapping ¢ which maps the partition Pg onto the partition
7147 = {0(14),...,13(14)}:

T if ne 0(12),
=l if ne 1(12),
7"6_9 if ne 3(12),
mel0 o if ne 4(12),
=l if ne 5(12),
m2 o if ne 6(12),
. 6
o € RCWA(Z): n — 2 i e o(12

6

M2 if noe 10(12),

m2 e if n e 11(12),

el if ne 2(24),

Ml if ne 8(24),

Tn+46 :
5 if nel4d

THls if e 20(24).

(12)
(12)
(12)
(12)
(12)
(12)
™13 if pe 7(12),
(12)
(12)
(12)
(24)
(24)
(24)
(24)

Then G7 is integral, and we have Mod(G?) = 14.

Once we know how orbits under the action of affine groups look like, it is straightforward
to give a description of the orbits under the action of tame rcwa groups on the underlying
ring:

2.5.16 Theorem Let G < RCWA(R) be tame and let 2 C R be an orbit on R under
the action of G. Then there is a residue class r(m) C R and a subgroup U < AFF(R)
which acts on r(m), such that €2 is the union of the images of an orbit of U on r(m) under
finitely many non-constant affine mappings.

Proof: By Theorem 2.5.8, there is a partition P of R into finitely many residue classes
such that G acts naturally on P and such that the restriction of an arbitrary element
of G to one of the elements of P is always affine. Let N be the kernel of the action of G
on P. Due to Lemma 2.1.3, the group N acts on an arbitrary residue class in P as a
subgroup of AFF(R). The quotient G/N is isomorphic to a subgroup of Sym(P), hence in
particular finite. Thus any orbit of N on R has only finitely many images under elements
of G. Due to the choice of P, this yields the claimed assertion. O
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In case R = 7Z this has the following consequences:

2.5.17 Conclusion The orbits under the action of subgroups of

AFF(Z)=(v:n—n+1, ¢:n— —n)

on residue classes of Z are either sets of cardinality 1 or 2 or unions of one or two residue
classes. Thus Theorem 2.5.16 tells us that an orbit on Z under the action of a tame group
is either finite or a union of finitely many residue classes.

In general, the orbits on R under the action of a tame group can be computed easily. In
particular, it is usually easy to decide whether a given tame group acts transitively on
the underlying ring. We would like to illustrate this by giving an example:

2.5.18 Example Using RCWA | it is easy to check that the group G = (g,h) from
Example 2.5.3 acts transitively on Z. For example the cyclic group ([g, h]) acts transitively
on the residue class 2(6), the orbit of this residue class under the action of G is

Q= {2(6), 1(3),0(6) U5(6),3(6) U5(6),3(6) U 2(12),0(6) U 2(12),
3(6) U 8(12),0(6) U 8(12),1(6) U8(12),1(6) U 2(12), 4(6) U 8(12),
4(6) U 2(12),4(6) U 5(6), 1(6) U 5(6), 0(6) U 4(6), 3(6) U 4(6),
0(6) U 1(6), 1(6) U 3(6),0(3),5(6) U 2(12),5(6) U 8(12)},

and the union of the 21 elements of 2 is Z. By the way, it should be remarked that the
action of G on 2 is primitive and that the induced permutation group is isomorphic to Ss.

2.6 Tame rcwa Representations of Groups

The following theorem gives a complete classification of those groups which have faithful
tame rcwa representations over R. In order to prove the existence of such representations
of the respective groups, we use an enhanced version of the construction which is shown
in Theorem 2.1.2. The proof of the other direction, i.e. that indeed all tame rcwa groups
have the given structure, is based on the use of respected partitions.
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2.6.1 Theorem A group G has a faithful tame rcwa representation over R if and only
if there is an m € N such that G is isomorphic to a subgroup of the wreath product
AFF(R) 1Sy

Proof:

a)

We have to show that a subgroup of AFF(R)S,,, m € N has always a tame rcwa
representation over R. Obviously it is sufficient to construct such a representation of

the group AFF(R)S,, itself. We choose a € R\ (R* U{0}), and set
a-n if n¢0(a™1),
0 € RCWA(R): n +— Sn/a™ ! if ne0(a™t)\ 0(a™),
n if ne0(a™)

and

a-n if n ¢ 0(a),
7€ RCWA(R): n +— <n/a if n € 0(a)\ 0(a?),
n if n € 0(a?).
Then we have already (o, 7) = S,,, since an m-cycle and a transposition on the par-
tition P of R\ 0(a™) into the sets Sy, := {n € R | a*|n, a* 1 {n}, k=0,...,m—1
generate the full symmetric group on P. Now we have to ‘incorporate’ the affine group
of R. For this purpose we make use of the monomorphism
¢: AFF(R) — RCWA(R), (n—u-n+k) — au,k),

where a(u, k) is given by

u-n+r-(1—u)+k-am if ner(a) for r#0,
n r——
n if n € 0(a)

(cp. Lemma 2.1.3). The support of the image of ¢ is Sy. This is one of the m sets
which are permuted by (o, 7). Consequently we have (o, 7, a(u, k)) = AFF(R) S,
where u runs through a set of generators of R* and k runs through a set of generators
of (R, +).

Further we see that the modulus of this group is a™, hence that it is indeed tame.

Let G < RCWA(R) be tame. We have to show that there is an m € N such that G is
isomorphic to a subgroup of AFF(R)S,,. By Theorem 2.5.8, there is a partition P of R
into finitely many residue classes, such that G acts naturally on P as a permutation
group, and that the restriction of an element of G to an element of P is always affine.
The kernel of the action of G on P is obviously isomorphic to a subgroup of AFF(R)”!.
Hence G itself is isomorphic to a subgroup of AFF(R)Sp|, as claimed. U
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In order to handle the case char(R) # 0 as well, we have built the construction of a faithful
representation of S,, in the first part of the proof upon the multiplicative instead of upon
the additive structure of R. In Theorem 2.1.2 we have used the 1 as a non-torsion element
of (R,+). Here we have used a non-torsion element a of the monoid (R, -) instead.

Theorem 2.6.1 gives rise to a method for determining matrix representations of tame
groups over K. Before discussing this, we have to introduce some notation which will
sometimes be useful in the sequel:

2.6.2 Definition In the following, we call the faithful representation

¢: AFF(K) — GL(2,K), (z+— ax+b) — (8 l{)

the standard representation of AFF(K).

2.6.3 Corollary Any tame group G < RCWA(R) has a faithful matrix representation
over K.

Proof: By Theorem 2.6.1, any tame group G < RCWA(R) is isomorphic to a subgroup
of AFF(R)S,, for sufficiently large m. Hence it is sufficient to show that the group
AFF(R)S,, itself has a faithful matrix representation over K. It is well-known that
AFF(R) has a faithful K-representation of degree 2 (cp. Definition 2.6.2) and that S,,
has one of degree m — for example take the ‘natural’ representation via permutation
matrices. Hence the obvious bijection from the wreath product of these groups to the
group of all 2m x 2m block permutation matrices whose nonzero blocks lie in the image
of the standard representation of AFF(R) is the desired faithful representation. O]

2.6.4 Example The group G in Example 2.5.3 respects a partition of length 14. Hence
it has a faithful matrix representation of degree 2 - 14 = 28 over Q.

In conjunction with Theorem 2.6A in [DM96], Theorem 2.6.1 permits the following con-
clusion:

2.6.5 Corollary Let k € N. Then a finite extension G> N of a subgroup N < AFF(R)’C
can always be embedded into AFF(R)?S,,, provided that m is at least equal to the product
of k and the least degree of a faithful permutation representation of G/N. Hence such a
group has always a tame rcwa representation over R.
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Over certain rings, finitely generated tame rcwa groups are even finite:

2.6.6 Corollary If finitely generated subgroups of AFF(R) are finite, then finitely gen-
erated tame rcwa groups G < RCWA(R) are finite as well.

Proof: If finitely generated subgroups of AFF(R) are even finite, then the same holds for
finitely generated subgroups of AFF(R)NS,, for any m € N: Assume that there would be an
infinite finitely generated subgroup. Then the kernel N of the action of this subgroup on
the set of the m blocks would have finite index, hence would be infinite as well. However,
according to Theorem 1.6.11 in [Rob96]|, N would also be finitely generated. Since not
all projections of the infinite group N onto one of the m blocks can be finite, this yields
a contradiction. Using Theorem 2.6.1 completes the proof. 0

The polynomial rings [F,[z] satisfy the requirements of Corollary 2.6.6. This holds since
they have nonzero characteristic, since their group of units is finite and since the partition
which is induced by the degree mapping is invariant under multiplication with units.
Obviously, Corollary 2.6.6 is not applicable to rings of characteristic 0 — on these for
example the tame mapping v : n — n + 1 has infinite order.

In the following, we would like to classify the rcwa representations of certain ‘suitable’
groups over R up to conjugation:

2.6.7 Theorem Assume that R has the weak residue class decomposability property.
Further suppose that G is a finite group whose order is coprime to the orders of the
torsion elements of AFF(R). Then the rcwa representations of the group G over R are
parametrized up to conjugacy by the nonempty subsets of the set of all equivalence classes
of its transitive finite-degree permutation representations.

Proof: We have to show that there is a one-to-one correspondence between conjugacy
classes of rcwa representations of G over R and sets of non-equivalent transitive finite-
degree permutation representations of G. Since G is finite we only have to consider tame
representations. Let ¢; : G — H; < RCWA(R), i € {1,2} be such representations, and
let P; and P, be respected partitions of H; resp. Hy (cp. Theorem 2.5.8).

In the following, let ¢ € {1,2}. Due to the coprimality condition and due to the
finiteness of G, the kernel of the action of H; on P; is trivial. Hence we have (H;)p, = H;.
Let €, ; be the orbits of (H;)p, on P;, and let H, ; be the transitive permutation groups
which are induced by H; on ; ;. Since the action of H; on P; is faithful, the groups
H; ; induce on the sets US); ; C R infinite series of finite permutation groups which are
permutation-isomorphic to H;;. We have to show that H; and H, are conjugate in
RCWA(R) if and only if the sets of pairwisely not permutation-isomorphic groups Hj ;
and H,; are the same.

This condition is obviously necessary, since non-isomorphic permutation groups are not
even conjugate in the full symmetric group Sym(R). This means that the correspondence
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to be established is at least well-defined, if read from the left to the right. In order to
check that the condition is also sufficient, we have to think about how different numbers of
mutually permutation-isomorphic groups H; ; and H,; can be ‘conjugated one upon the
other’. For this purpose we refine the partitions P; as follows, to obtain partitions P; which
are respected by the groups H; as well and such that the groups (Hz)p are permutation-
isomorphic:

1. Let H; be the set of the groups H, ;, and initialize P; by P;.
2. Choose an H; ; € H;.

3. Let ji1,...,Jik be the indices of the groups in H; U Hy with are permutation-
isomorphic to Hy ;. If k1 = ks, continue with step (5).

4. Put t; :=lem(ky, k2)/k;, and for any Q € {€; 5, ..., ;,, } do the following:

e Choose a residue class r(m) € Q.

e Write r(m) as a disjoint union of ¢; residue classes r1(my), ..., (my,) — this is
possible due to the condition that R has the weak residue class decomposability
property.

e Put 751 = 752\5_2
e Forl e {l1,...,t;} put 751 = 751 U?“l(mz)Hi-

Obviously, the groups H; still respect the partitions P;. Since the kernel of the action
of H; on P; is trivial, furthermore the permutation isomorphy types of the transitive
permutation groups induced on subsets of these partitions remain invariant.

Now, H, induces on P; the same number lem(kq, ko) of images which are permuta-
tion-isomorphic to H; ; as H, does on Ps.

5. Put Hl = HZ \ {H’imji,l’ Ce 7Hi7ji,kl-}‘
6. If H; # 0, continue with step (2), otherwise done.

Due to Lemma 2.1.4 and Lemma 2.5.6, Assertion (2) there is a 0 € RCWA(R) such that
H? respects the partition P, and such that (H? ), is permutation-isomorphic to (H1)p,.
The groups (HY)p, and (H;)p, are now conjugate in in Sym(P,) < RCWA(R). This
means that also (H1)p and (Hs)p, are conjugate in RCWA(R). Due to the faithfulness
of their action on the given respected partitions, the groups H; and H, are conjugate in
RCWA(R) as well. This shows the injectivity of our correspondence.

It is always possible to embed a direct product of transitive finite-degree permutation
groups into Sym(P) < RCWA(R) without fixed points, provided that its degree equals the
cardinality of P. Due to the condition that R has the weak residue class decomposability
property, there is always a partition P of R of suitable length. Thus our correspondence
is surjective as well. 0
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2.6.8 Example We would like to count the equivalence classes of rcwa representations
of the non-abelian group Go; of order 21 over Z. The faithful transitive permutation rep-
resentations of this group are the regular representation of degree 21 and a representation
of degree 7 on the cosets of a cyclic subgroup of order 3. Further there is a transitive
representation of degree 3, whose kernel is the normal subgroup of Gs; of order 7. Fi-
nally as always there is of course the trivial representation. Thus there are in total 4
non-equivalent transitive permutation representations. Since a set of cardinality 4 has
exactly 2* — 1 = 15 nonempty subsets, we conclude from Theorem 2.6.7 that the number
of non-equivalent rewa representations of Gg; over Z equals 15. The faithful ones are (not
in general, but in this case) the ones which belong to those sets which contain at least one
of the faithful representations. These sets can be counted easily — there are exactly 12 of
them. Of course instead of Z we could also have taken any other base ring which satisfies
the conditions of the theorem, hence e.g. Fy[x] or Z(,), and would have gotten the same
results.

2.7 Conjugacy Classes of RCWA(R)

The following corollary of Theorem 2.6.7 tells us the number of conjugacy classes of
RCWA(R) of elements of a given finite order:

2.7.1 Corollary (Number of conjugacy classes of torsion elements in RCWA(R).) As-
sume that the ring R has the weak residue class decomposability property, and let r € N.
Then the following hold:

a) If the ring R has a torsion unit whose order is not coprime to r, then RCWA(R) has
infinitely many conjugacy classes of elements of order r.

b) If r is coprime to the orders of all torsion elements of AFF(R), then RCWA(R) has
exactly as many conjugacy classes of elements of order r as there are subsets of the
set of divisors of r whose least common multiple is 7.

Proof:

a) It is sufficient to describe how to construct an rcwa mapping of order r which has
exactly a given number k of fixed points. We can even restrict ourselves to those k
which are one more than the cardinality of a suitably chosen residue class ring of R.
In this context we recall that permutations with different numbers of fixed points are
not even conjugate in the full symmetric group.

Let uw # 1 be a torsion unit of R whose order divides r. Further let a € R\ (R*U{0}).
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We choose m € R such that |[R/mR| =k — 1, and set

o, € RCWA(R): n —— un+ (n mod m)(1 —u), and

a-n if n¢0(a"),
o, € RCWA(R): n +— Sn/a"" if ne0(a1)\0(a"),
u-n if ne0(a").

The permutation o, has the same order as u. Its fixed points are the k — 1 elements
of ®R(m). The permutation o, has order r, and the single fixed point 0.

Now let f1, fo € Rewa(R) be injective mappings, whose images form a partition of the
ring R — such mappings exist by Lemma 2.1.4. Since we have ord(u)|r, the mapping
o = 0,'' -0,'? is a permutation of order r which has exactly k fixed points, as desired.
b) Here we can apply Theorem 2.6.7. This only requires using the well-known formula

for the number of transitive permutation representations of cyclic groups. U

2.7.2 Conclusion By Corollary 2.7.1, the group RCWA(Z) has
e infinitely many conjugacy classes of elements of a given even order, but only
e finitely many conjugacy classes of elements of a given odd order.

If R has characteristic 0, Corollary 2.7.1 is always applicable. Over rings of characteris-
tic p, it still covers the element orders which are not divisible by p.

2.8 More About Respected Partitions

In the preceding three sections, we have already seen that the concept of a respected
partition plays a key role in the proofs of various assertions concerning the structure of
rcwa groups.

In this section these investigations will be continued. Concretely, we will investigate
how to take influence on the permutation which a tame mapping induces on a respected
partition by choosing that partition suitably. This is interesting in the context of looking
for normal subgroups of RCWA(R). Further we investigate under which conditions on R
all tame mappings even have finite order. Finally we derive a criterion when there is a
tame mapping which maps a given partition of R into finitely many residue classes onto
a given other partition of R into the same number of residue classes.
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First of all, we need a lemma concerning the refinability of respected partitions:

2.8.1 Lemma Let G < RCWA(R) be tame, let P be a respected partition of G and let
t € N be the cardinality of a residue class ring of R. Then P can be refined to another
respected partition P of G of length t - |P)|.

Proof: Due to the condition that R has a residue class ring of cardinality ¢, we can always
write a residue class 7(m) € P as a union of ¢ residue classes 1 (m), ..., r(m) with equal
moduli. This yields a partition P of R into ¢ - |P| residue classes. Since G respects P,
the restrictions of the elements of G to residue classes r(m) € P are all affine. Hence
the images of the residue classes r1(m), ..., r(m) in a partition of r(m) under an element
g € G form always a partition of the image of r(m) under g into residue classes with equal
moduli. We conclude that the group G acts on the partition P as well. O

It is obviously not true that two given tame groups have always a common tame super-
group. But we can show the following:

2.8.2 Lemma If R has the strong residue class decomposability property, then two given
tame groups G, H < RCWA(R) have always conjugate tame supergroups.

Proof: Let Pg and Py be respected partitions of G resp. H. Due to the condition that
R has residue class rings of any nonzero finite cardinality, Lemma 2.8.1 tells us that
Pe and Py can be refined to respected partitions Pg and Py of G of the same length
I := lem(|Pgl, |Pu|). By Lemma 2.1.4, there is a mapping ¢ € RCWA(R) which is
affine on any element of P¢, such that PG = Py. If we set G := G° and H := H°

then by Lemma 2.5.6, Assertion (2) the group G respects the partition Py and the
group H respects the partition Pi. By Lemma 2.5.6, Assertion (1) the two groups
G = (G,H) > G and H := (G, H) > H respect the part1t1ons Pe resp. Py as well.
Hence by Theorem 2.5.8 they are tame. Further we have Go = U

An immediate consequence is the following:

2.8.3 Conclusion Assume that the ring R has the strong residue class decomposability
property, and let g,h € RCWA(R) be tame. Then there is a ¢ € RCWA(R) such that
the group generated by g and h? is tame, thus in particular that the mapping g - h? is
tame.

2.8.4 Remark It it not easily possible to assign a sign to a tame rcwa mapping g. A
simple-minded idea would be just to set the sign of g equal to the sign of the induced
permutation on a respected partition.

The problem with this is that the respected partition is not determined uniquely.
Often a tame mapping respects partitions on which it induces odd permutations as well
as partitions on which it induces even permutations.
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For example, the mapping v € RCWA(Z) : n — n + 1 respects the trivial partition
and the partitions {0(2),1(2)} and {0(3),1(3),2(3)} of Z. The corresponding induced
partitions are the identity, a transposition and a 3-cycle.

Anyway, we can prove the following lemma:

2.8.5 Lemma Assume that char(R) = 0, that R has the weak residue class decompos-
ability property and that the exponent of the group of units of R is finite. Then for any
tame mapping o € RCWA(R) of infinite order there is an e € N and a respected partition
P of o¢ on which o° induces a transposition. Given | € N, it is further possible to choose
e and P such that |P| > 1.

Proof: By Theorem 2.5.8 and Lemma 2.8.1, the mapping o respects a partition P of
length > [. Let e; := ord(op), €5 := exp(R*) and e := ey - e5. Then 0°! respects and fixes
the partition P. Hence by Lemma 2.1.3, the affine partial mappings of ¢! on the residue
classes r(m) € P have the form n — un+r(l—u,.)+ l;:,,m for some u, € R* and I;;r € R.
By computing powers in AFF(R), we see that the affine partial mappings of ¢ = g¢2 on
the same residue classes have the form n — n+ k,m with k, € R. Due to ord(c) = oo we
have o¢ # 1. Hence we can choose a residue class r(m) € P such that k, # 0. Now P can
be refined to a new partition P which is respected by o€ as well. We do this as follows:
Firstly, we choose a residue class 7(m) € P and split it into residue classes (mod k,m).
Secondly, we further split one of the latter residue classes into two residue classes. This is
possible due to the condition that R has the weak residue class decomposability property.
By Lemma 1.1.10, these two residue classes have necessarily the same modulus m with
|R/mR| = 2 - |R/k,mR|, since the only partition of 1 into exactly two fractions of the
form 1/n is 1 = 1/2 + 1/2. The affine partial mapping n +— n + k.m maps the residue
classes (mod k., m) onto themselves and interchanges the two residue classes mentioned
before. Since by construction the permutation (0¢)p fixes the ‘rest’ of P, it induces a
transposition on this partition as desired. 0

It should be mentioned that the condition char(R) = 0 has not been used anywhere in the
proof. But this condition is redundant, i.e. leaving it away would not make the assertion
anything stronger:

2.8.6 Theorem Assume that char(R) # 0 and exp(R*) < co. Then all tame mappings
o € RCWA(R) have finite order.

Proof: Let p := char(R), let 0 € RCWA(R) be tame and let P be a respected partition
of 0. Further let e := ord(op) - exp(R*). Then o¢ respects and fixes the partition P, and
the affine partial mappings of o¢ have the form n — n + k- Mod(c®) for certain k € R.
We can immediately conclude that the affine partial mappings of (c¢)? have the form
n— n—+p-k-Mod(c¢) = n, which completes the proof of our assertion. O
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The construction used in the proof of Lemma 2.8.5 should be illustrated in an example:

2.8.7 Example Assume that the mappings g and h and the partition P are the same as
in Example 2.5.3. The ring of integers obviously satisfies the conditions, and the product
o := gh is a tame mapping of infinite order. Thus Lemma 2.8.5 can be applied to o.
Hence there is an e € N and a refinement P’ of P such that ¢° induces a transposition
on P’. An easy calculation yields ord(op) = 20 =: e, and we have exp(Z*) = 2 =: es.
Hence eje; = 40 =: e. Another easy calculation shows that ¢¢ is given by

n+120 if n € 0(6)U1(6),
n +— ¢n—96 if ne2(6),
n—48 if n e 3(6) U4(6) U5(6).

We now decide to split the residue class 3(12) into 4 residue classes (mod 48), and set
P = (P\{3(12)})U{3(48),15(48),27(48),39(48) }. Further we choose among the residue
classes (mod 48) the residue class 3(48) and split it into 2 residue classes (mod 96), thus
we set P’ := (P \ {3(48)}) U {3(96),51(96)}. Now we have

P = {0(12),1(12), 4(12), 5(12), 6(12), 7(12), 9(12),10(12),11(12),
2(24),8(24), 14(24), 20(24), 15(48), 27(48), 39(48), 3(96),51(96)},

and the mapping o¢ induces on P’ the transposition (3(96),51(96)).

By Lemma 2.1.4, given two partitions of R into the same number of residue classes there
is always a bijective rcwa mapping which maps the one onto the other. We would like
to investigate under which circumstances the latter mapping can be chosen to be tame.
The resulting condition can likely best be formulated using a property of certain weighted
graphs:

2.8.8 Definition Let I" be a finite simple graph with vertices v;, ¢ € {1,...,k}. Further
assume that the vertices v; have weights n; € N. We call the graph I' balancable if it is
possible to reach a state in which all n; are equal in a finite number of steps as follows:

1. Choose a pair of adjacent vertices (v;,v;) of I.
2. Put n; :==n; +1 and n; :=n; + 1.
3. If not all n; are equal then continue with step (1), otherwise done.

The author does not know whether the question if a given graph is balancable is algorith-
mically decidable or not.
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2.8.9 Theorem Assume that the ring R has the weak residue class decomposability
property, let k € N and let

P = {rir(mi1),ria(mia), ..., rig(mig)}, @€ {1,2}

be partitions of R into k residue classes, each. Further let I" be the bipartite graph with the
2k vertices r; j(m; j), where two of these are adjacent if and only if their intersection as sets
is nonempty. Let m be the least common multiple of the moduli of the residue classes in
Py and P,. To the vertices r; j(m; ;) of I', we assign the weights n; ; := |R/mR|/|R/m ; R)|.
Assume that the graph I' is balancable and that G < RCWA(R) is an rcwa group such
that Sym(P) < G for any partition P of R into a sufficiently large finite number of residue
classes. Then there is a tame element o € G such that Py = Ps.

Proof: Due to Lemma 2.1.4, Theorem 2.5.8 and Lemma 2.8.1 it is sufficient to show that
the partitions P; and P, have a common refinement P = {r;(m;y),ra(ms),...,ri(my)}
such that for any j, the residue classes r; ;(my ;) and 75 j(msy ;) are unions of the same
number of residue classes r;(m;) from P. Let m := lem; ; m; ;. Now a vertex r; ;j(m; ;) of T
is the union of exactly n; ; residue classes (mod m). Since I' is balancable and since R has
the weak residue class decomposability property, the desired partition P can be obtained
from the partition R/mR using the method described in Definition 2.8.8 — adding 1 to
n;; corresponds to splitting a residue class in ;;(m; ;) into two disjoint other residue
classes. Note in this context that the splitted residue class lies also in exactly one vertex
r3—ij(ms—; ;) of I' adjacent to r;;(m; ;). Note also that the vertex r3;_; ;(ms—;;) can be
chosen freely among the vertices adjacent to r; ;(m; ;) by making a suitable choice of the
residue class to be splitted. O

2.8.10 Example As a little example, we construct a tame mapping 0 € RCWA(Z)
such that P{ = P, where Py := {0(2),1(4),3(4)} and Py := {0(3),1(3),2(3)}. It
is easy to see that in this example I' is the complete bipartite graph with 6 vertices.
The vertices 0(2),1(4),3(4),0(3), 1(3), 2(3) of I" have the weights 6,3, 3,4,4,4 (cp. Theo-
rem 2.8.9). We check that I" is balancable by using the method given in Definition 2.8.8.
For this we consecutively increment the weights for the pairs (1(4),0(3)), (1(4),0(3)),
(1(4),1(3)), (3(4),1(3)), (3(4),2(3)) and (3(4),2(3)) of vertices of I. Further we have
m = lem(2, 3,4) = 12, thus we start with the partition Z/127Z. Refining the partitions P;
and P, correspondingly yields

{0(12),2(12),4(12), 6(12), 8(12),10(12)} U {1(12), 5(12),9(12)} U {3(12), 7(12), 11(12)}
resp.

{0(12),3(12), 6(12),9(12)} U {1(12), 4(12), 7(12), 10(12)} U {2(12), 5(12), 8(12), 11(12)}.
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Decompositions of residue classes corresponding to the mentioned manipulations of the

weights of the vertices of I' are for example (in an order consistent with the above speci-

fications)

9(12) ~ 9(24) U21(24), 9(24) ~ 9(48) U 33(48), 1(12) ~ 1(24) U 13(24),
7(12) ~ 7(24) U19(24), 11(12) ~ 11(24) U23(24), 11(24) ~ 11(48) U 35(48).
This yields the partition
P = {0(12), 2(12), 4(12),6(12),8(12),10(12), 1(24),13(24), 5(12),
9(48),33(48),21(24),3(12),7(24),19(24), 11(48), 35(48),23(24) }.

Now using Lemma 2.1.4 it is easy to construct a mapping o which has the desired prop-

erties. We get e.g.
n if ne 0(12)uU1(12) U11(12),
n+1 if ne 2(12)
n—1 if ne 3(12) u5(12),
n+ 2 if ne 4(12)
dn—15 if ne 6(12)

c € RCWA(Z): n —— S4n+1 if ne 8(12)
2n+1 if n e 10(12),

nts if ne 7(24),

ntd if ne 9(24),

3 if n € 19(24),

n—1 if n € 21(24).

By the way, the mapping ¢ is not only tame but even has finite order — it is easy to check
that ord(c) = 30. If we would not have required the resulting mapping to be tame, we
simply could have taken the mapping a from Examples 1.1.3 — it is also Py = Ps.

2.9 The Group Generated by the Tame Mappings in RCWA(Z)

In the preceding sections we have investigated the structure of tame rcwa mappings and
-groups. It is natural to ask for the structure of the subgroup N of RCWA(Z) which is
generated by all tame mappings.

Due to Lemma 1.8.3 this subgroup is normal. In this section, an elegant set of gener-
ators of this normal subgroup will be given.

Apart from this, Collatz’ permutation o from Examples 1.1.3 is factored into 73 factors
from the mentioned set of generators and an integral mapping. This shows constructively
that a € N.
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2.9.1 Definition Let v € RCWA(R) : n — n+ 1, ¢ € RCWA(Z) : n — —n and
7 € RCWA(Z) : n — n + (—1)". Using the restriction monomorphisms introduced in
Definition 2.3.1, we derive from these three mappings certain basic ‘building blocks’ for
tame rcwa mappings:

1. Given a residue class r(m) of R, we define the class shift v,y € RCWA(R) by

V7Tn»—>mn+'r

2. Given a residue class r(m) of Z, we define the class reflection ¢,y € RCWA(Z) by

§7r'm—>7nn+r

3. Given two disjoint residue classes r1(my) and r2(m2) of Z, we define the class trans-
POSTLION Ty, (my)ra(me) € RCWA(Z) by 77+, where

2
mln2—|—7“1 if neo2),
M= i (my),ra(ma) € RCW&(Z) PN
O —
man (2” m2) it ne12)

maps the residue class 0(2) resp. 1(2) onto r1(my) resp. ra(msg) (cp. Lemma 2.1.3).

To ensure uniqueness, in this context we always assume that for any residue class r(m)
we have r € R(m). In case R = Z, let R(m) := {0, 1..m — 1}.

2.9.2 Remark As can be seen easily and as is suggested by the terms, a class shift
Vrim) € RCWA(R) and a class reflection ¢,y € RCWA(Z) are given by

—n+2r if ner(m),

n otherwise.

n+m if ne€rim),
n F—— .
n otherwise,

resp. n +— {

A class transposition 7, (m,) rs(m,) 1S an involution which interchanges the disjoint residue
classes 1 (my) and ro(ms). Concretely: It is

man + (mira — mar) if né€ri(m),
my
Tri(m1),r2(m2) € RCWA<Z>7 n min o+ (m27“1 _ m1T2> if ne 7"2(7712),
ma
n otherwise.

It is immediate that T, (m,)rs(ms) = Tro(ma),r (mi)-

Due to Corollary 2.3.3, the mappings v,(m), Sr(m) T€SP. Tri(m1),ra(me) distinct from v,
¢ resp. T are conjugate to all other members of the respective class. Thus if a normal
subgroup of RCWA(Z) contains such a mapping, it already contains the whole class.
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2.9.3 Theorem All tame mappings in RCWA(Z) can be written as products of class
shifts vy, class reflections () and class transpositions Ty, (m.),rs(ms)-

Proof: Since finite symmetric groups are generated by transpositions and since the map-
pings vp(m) and () generate the largest subgroup of AFF(Z) which acts on the residue
class r(m), the assertion follows immediately from Theorem 2.5.8. O

An obvious consequence is the following:

2.9.4 Theorem The normal subgroup N <RCWA(Z) is generated by class shifts, class
reflections and class transpositions.

Hence the group N is in particular generated by images of the three mappings v, ¢ and 7
under restriction monomorphisms. Due to v = (n — —n) - (n — —n+ 1) this implies also
that all elements of NV can be written as products of involutions.

2.9.5 Example Let g be the mapping of order 7 given in Example 2.5.3. Then it is
straightforward to check that g = T0(6),1(6) " T0(6),5(6) * T0(6),3(6) * T0(6),4(6) * T1(3),2(6) is a factor-
ization of ¢ into class transpositions.

On a first glance it looks like a plausible conjecture that the mappings v, (), S m) and
Try (m1),ra(mg) WoUld generate a balanced subgroup of RCWA(Z). This would imply that
N # RCWA(Z). But the following example shows that N is not balanced:

2.9.6 Example Products of class transpositions are not necessarily balanced. Even
more: multiplier and divisor of such a product can also be coprime. For example let

1 1= T1(6),008) * T5(6)4(8)> 02 *= To(4),1(6) * T2(4),5(6) aNd 03 1= To(6)1(12) * Ta(6),712)- L hen it is

It if e 0(8), L2 if noe 0(4),

n—d if pel =2 if pel

)

3 ); 3
)
)

op: no— 38 if ped oy: mo— 3 f pe2

=8 if ne5(6), 4 if ne 5(6),

n otherwise, n otherwise,

2n —3 if n € 2(6),
ntd if nel1(12),
and o3: n —— (2n—1 if n € 4(6),
ntl if ne’(

n otherwise.
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The mappings o1, 02 and o3 are involutions whose product is given by

L i e 2(4),

(
n+1 if nel(6
n if n € 3(6),
n i e 0(12
(
(

010903 . n ——
2

n—3 if ne4(12
n—1 if ne5(6)U8(12).

This example yields

2.9.7 Remark The following hold:

e Balancedness is not a class invariant. For example 010503 is not balanced, but it is
Mult((o10903)7?) = Div((o10903)7?) = 36.

e Also wild mappings can be conjugate to their inverse via an involution. For example
it is (0109)72 = (0102) 7", and it is easy to check that oy0 is wild.

e The group (o1, 09) is wild and isomorphic to D.,. Hence the infinite dihedral group
has a faithful wild rcwa representation over Z.

It seems reasonable to conjecture that Definition 2.9.1 gives in fact a set of generators for
the whole of RCWA(Z):

2.9.8 Conjecture It is N = RCWA(Z).

2.9.9 Example As mentioned above, the permutation « from Examples 1.1.3 has al-
ready been investigated by other people. Giinther Wirsching [Wir96] for example cites
an article of Jeffrey C. Lagarias [Lag85], which states that Lothar Collatz has mentioned
the mapping o' in his notebook under the date July 1, 1932. Further he states that it
would be unknown so far whether the cycle

(...32435738513445302027 18128 11151013 1723314155 ...)

of this permutation is finite or infinite.

Here we would like to factor the permutation « into the generators vy(m), < m) and
Try(m1),ra(mg) Of the normal subgroup N << RCWA(Z). The fact that all affine partial
mappings of a have a factor 3 in their numerator and a power of 2 in their denominator
makes factoring this mapping much harder than factoring a balanced mapping.
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Let 01,09, 03 be defined as in Example 2.9.6. If we set 0 := 010903 and

9 = vt T3(144),139(288) * T75(144),235(288) * T101(144),43(288) * T27(36),23(72) * T17(36),47(72)
© T70(72),71(144) © T65(72),143(144) * T29(144),91(288) * 727(36),70(72) * T17(36),3(72) * 729(72),187(288)
© T65(72),283(288) * 73(36),8(72) * 75(36),32(72) * T15(36),56(72) * 73(36),91(288) * T5(36),187(288)
© T15(36),283(288) * 723(24),7(48) * 78(24),33(48) * T13(24),43(96) * T17(36),91(288) * 729(36),283(288)
© T4(12),20(24) * T21(24),19(48) * T29(36),283(288) * 73(36),1(48) * T15(36),25(48) * T727(36),11(48)
* T5(36),35(48) * T17(36),36(48) * 729(36),9(48) * T33(48),91(288) * 720(24),187(288) * T7(48),283(288)

co-vt ot

then af~! is integral, thus in particular tame. Hence according to Theorem 2.9.3, it is a
product of mappings Vy(m), Sr(m) and Tp (m1)ra(ms)- NOW the given factorization of 6 tells
us that o can be written as a product of such mappings as well.

The mapping ¢ with multiplier 3 and divisor 2 plays a key role in this example,
since a division of a by a suitable power of ¢ yields a quotient in which the powers of 2
and 3 are relatively evenly distributed on the numerators and denominators of the affine
partial mappings. The next step in the construction was the elimination of the prime
factor 3 from multiplier and divisor. The final step was the reduction of a mapping with
multiplier 4, divisor 4 and modulus 288 to an integral mapping a~! of order 101616.

The above factorization of a has been obtained using a trial-and-error approach in
multiple interactive sessions with the RCWA package. The task can be compared with
solving the Rubik’s Cube — the analogue to the moves of the latter are multiplications by
class transpositions and class shifts. A major difference is that the Rubik’s Cube is finite.
This example has lead to the development of a general factorization method for elements
of RCWA(Z) and its implementation in RCWA. This method so far has not been proven
to terminate always, thus has not yet led to a proof of Conjecture 2.9.8.

Transpositions in finite symmetric groups cannot be written as commutators. For class
transpositions in RCWA(Z) things look different:

2.9.10 Lemma Class transpositions can be written as commutators. Thus in particular
they are elements of RCWA(Z)'.

Proof: It is easy to check that 7 = |1y, 73], where

n+1 if ne0(4),
n+2 if nel(),
n if ne2(4),
n—3 if ne 3(4).

n+1 if ne0(4)Ul(4),
T n—sn—2 if ne24), and T n—
n if ne3(4)

This decomposition can be transferred to a given class transposition 7, (m,)rs(ms) Py
switching to images under the restriction monomorphism associated to the mapping
Fry (m1),r2(mo) from the definition of a class transposition in 2.9.1. O
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The representation of 7 as a commutator which is given in the proof of Lemma 2.9.10 can
be obtained from the equation (12)(34) = [(123), (124)] by switching to images under the
rcwa representation ¢4 of Sy given in Theorem 2.1.2.

There are not many possible values for the order of the commutator of two class shifts:

2.9.11 Lemma Assume that char(R) = 0. Then the following holds:

oo if ri(my) € ro(ma) V ri(my) 2 ro(ma),
ord([Vry (my), Vra(ma))) = 1 If 71(my) = ro(mg) V ri(my) Nra(ma) = 0,

3 otherwise.

Proof: Obviously we have supp([Vy, (m,), Vro(ms)]) € 71(m1) U r2(my). The case that the
residue classes ri(my) and ro(msg) are either disjoint or equal is trivial. We consider
the case that a proper subset relation holds. Without loss of generality we can assume
that 71(my) C ro(mg) — otherwise we simply switch to considering the inverse of the
commutator. An easy calculation yields

n—my if n=ry (my),
[Vri(m1)s Vra(ma)] € RCWA(R), n —— Sn+my if n=r+my (my),

n otherwise,

hence due to our condition that char(R) = 0 we are done. In the remaining case we set
r(m) :=r1(my) Nra(ms) and get

n + mo if n=r (m),
- if n=
[Vrl(ml)’ Vrg(mg)] S RCWA(R), n +—— n—=im 1n T+ my (m)a

n+my—me if n=r+ms (m),

n otherwise.

It is easy to check that this permutation has order 3. U

The attempt to obtain a comparable result for products of two class transpositions yields
a larger amount of different cases which presently do not seem like being reasonably easy
to distinguish. For example one gets mappings of different finite orders (vague conjecture:
exactly those dividing 60, except of 5 — in any case, all of these orders are possible and
no further ones have been found so far) and mappings of infinite order either with infinite
cycles or only with finite cycles.
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2.10 Conditions on Normal Subgroups of RCWA(R)

In this section we will derive conditions on normal subgroups of RCWA(R). In particular
we will investigate whether a normal subgroup of RCWA(R) must have a nontrivial tame
subgroup, and if so, how ‘large’ it must be.

First of all, we need the following lemmata:

2.10.1 Lemma Let 0 € RCWA(R). Further let m := Mod(c), and let v € RCWA(R)
be an integral mapping which respects and fixes the partition R/mR of R. Then the
commutator ¢ := [0, V] is integral.

Proof: Let a be an arbitrary affine partial mapping of ¢. By definition and due to
Lemma 2.1.3, the mapping « is the product of

an affine partial mapping az-1: n+— (cyn —by)/a; of o7

an affine partial mapping a,-1 : n+— uyn +ri(1 —uy) + kym of v 1

an affine partial mapping «a, : n +— (agn + by)/ce of o and

an affine partial mapping «,, : n — ugn + ro(1 — ug) + kam of v

for certain coefficients ai, as, b1, bs, c1,Co,71,70, k1, ks € R and uy,us € R*. Since the
mapping v respects and fixes the partition R/mR, we have a; = ag, by = by and ¢; = ¢s.
Let ¢ be the standard representation of AFF(K). Since the determinant of a product of
matrices is the product of the determinants of the factors, we have

det(a?) = det(a,-1%) - det(a,-1%) - det(a,?) - det(a,?)

c a
:fl'ul'fl'lbg = ul-uQERX.
ay €1
Thus since R*NR # () we also know that & € AFF(R). But this means that the mapping ¢
is integral, as claimed. 0

2.10.2 Lemma In the situation of Lemma 2.10.1, the commutator |o,vo] is tame.

2 -1 1/)0 —

Proof: It is [0, v0] = 07 (vo)tove = 072070 = (07 '0¥)° = [o,v]°. We get the claimed
assertion by Lemma 2.10.1 and Lemma 1.8.3, Assertion (1). O

2.10.3 Example Lemma 2.10.2 is the reason why the two commutators [o, 1140 and
[ov, v3gya] in Examples 1.5.2 are tame.
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There is no normal subgroup which except of 1 contains only wild elements:

2.10.4 Lemma If N < RCWA(R) is a nontrivial normal subgroup, then N contains an
integral element g # 1.

Proof: Let 0 € N\ {1} and let m := Mod(c). Without loss of generality we can assume
that there is a residue class r(m) such that r(m)? # r(m) — otherwise o already would

be integral. Put v := v, and g := [o,v] = 0~ '¢”. By definition of a normal subgroup,
we have g € N. Further since r(m)? # r(m), it is g # 1. However by Lemma 2.10.1, the
mapping g is integral. (]

Furthermore, provided that the group (R, +) is not periodic we can show that a normal
subgroup must even have tame elements of infinite order:

2.10.5 Lemma Assume that char(R) = 0 and that N <<RCWA(R) is a nontrivial normal
subgroup. Then N has an integral element g of infinite order.

Proof: By Lemma 2.10.4, N has an integral element g # 1. Without loss of generality
we can assume that ord(§) < oo — otherwise g would already be the desired element.
Put m := Mod(g). By Lemma 2.5.4, the mapping ¢ respects the partition R/mR. We
choose a residue class 7(m) such that §|,n,) # 1, and set v := (). Finally we set
g := [g,v] = g7'¢". By definition of a normal subgroup, it is ¢ € N. Further since
g and v are integral, g is integral as well. Lemma 2.5.6, Assertion (1) tells us that g
respects the partition R/mR also. Hence it suffices to show that r(m)?¢ = r(m) and that
ord(gly(m)) = co. We have to distinguish two different cases:

1. It is 7(m)? = r(m). Then due to Lemma 2.1.3 the restriction §l,(m) is given by
n+— un+r(1 —u) + km for certain k € R and v € R*. Given n € r(m) we have

=1
n — u'ln—ukm —rut = 1)

p—1 —1 -1 -1
— u n—(u k+1)m—ru " —1)
g
—— n—um
= n+ (1 —u)m,
hence n = n+ (1 — u)m = r (m). Assume that we would have u = 1. Then by
the choice of r(m) at least k must be nonzero. This contradicts with the condition

char(R) = 0 and our assumption that ord(g§) < oo. Thus we have u # 1. Since
char(R) = 0, the permutation g is the desired element.

2. Tt is 7(m)9 # r(m). In this case, given n € r(m) it holds that

gt g1
n — n

p1 g*l g v
— N _— n —— n+m,

since 9" ¢ r(m). Hence the affine partial mapping lr@m) is given by n— n +m.
Thus since char(R) = 0, the permutation g¢ is the desired element. O
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By Lemma 2.8.5, a tame rcwa mapping of infinite order induces a transposition on a
suitably chosen partition. Together with the preceding lemma we can conclude that a
nontrivial normal subgroup of RCWA(R) must have ‘pretty large’ tame subgroups:

2.10.6 Theorem Assume that char(R) = 0. Further suppose that the exponent of
the group of units of R is finite and that R has the weak residue class decomposability
property. Then there are arbitrary large | € N such that for any partition P of R into [
residue classes the following holds: Each 1 # N <RCWA(R) has a subgroup which acts
on P as a full symmetric group.

Proof: Let ' € N be arbitrary. By Lemma 2.10.5, N has an integral element g of infinite
order. By Lemma 2.8.5 there is an exponent e € N and a respected partition P of g° such
that I’ < |P| =: [, on which ¢¢ induces a transposition. Since a finite symmetric group does

not have a proper normal subgroup which contains a transposition, Sym(?) < RCWA(R)
implies already Sym(P) < N. If P is an arbitrary partition of R into [ residue classes,
then by Lemma 2.1.4 there is a 0 € RCWA(R) such that P? = P. By Lemma 2.5.6,

Assertion (2) this implies that Sym(P)” = Sym(P). Due to the condition that N is a
normal subgroup of RCWA(R), we can conclude that Sym(P) < N, as claimed. O

It should be emphasized that the theorem does not claim ‘Then there is an [y € N such that
for any partition P of R into [ > [ residue classes the following holds: ...”. Furthermore,
so far we cannot tell anything about partitions of ‘small’ length in this context.

Theorem 2.10.6 shows by other means than Corollary 2.1.6 that the group RCWA(Z)
does not have nontrivial solvable normal subgroups.

2.11 A Normal Subgroup of RCWA+(Z)

The group RCWA™(Z) of class-wise order-preserving bijective rewa mappings of Z has a
nontrivial normal subgroup. In this section we will construct this normal subgroup as the
kernel of an epimorphism from RCWA™(Z) to (Z,+).

2.11.1 Definition Let r(m) be a residue class and let a : n — (an + b)/c be an order-
preserving affine mapping whose source is r(m). We define the determinant of «a by

b
det = —.
(@) = —
Further we define the determinant of an rcwa mapping 0 € RCWA™(Z) with modulus m
by the sum of the determinants of its affine partial mappings, i.e. it is

det(o) = > det(o]rm))

r(m)€Z/mZ
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It is not intuitive that this yields an homomorphism. It is not even obvious that the
determinant of an element ¢ € RCWA™(Z) is always an integer. In fact, evaluating
the above expression for an arbitrary rcwa mapping usually does not yield an integer —
injectivity, surjectivity and class-wise order-preservingness are all crucial. The author got
the idea to consider this mapping during computational investigations with RCWA.

2.11.2 Remark Let 0 € RCWAT(Z) and m := Mod(o). As in the definition of an rcwa
mapping, we denote the coefficients of o by @, (), by(m) and ¢,(m), i.e. the restriction O'|T(m)
of o to a residue class r(m) € Z/mZ is given by n — (a,m)n + br(m))/Cram). Then the
following holds:

br(m

det(0) = — 3 _ 15 1( m) G+ brim) _T>
m r(m)EZ/mZ a""(m) m .=y \Ar(m) Cr(m)

g

122 (erim 1—m m2 r

m =5\ Gr(m) 2 = (r4+m)o —r°
In the sequel it will turn out to be useful to consider residue classes with distinguished
representatives:

2.11.3 Definition We denote a residue class r(m) with distinguished representative r
by [r/m]. The image [r/m]* of such a residue class under an affine mapping « is defined
as the residue class r(m)® with distinguished representative r®. Let k& € N. We call a

decomposition
r] [ r+m r+((k—1)m
{m] B [k‘m} N [ km } Jou [ km ]

of a residue class [r/m| representative stabilizing.

Let P be a partition of Z into finitely many residue classes with distinguished rep-
resentatives. We call a refinement of P representative stabilizing if it is obtained by
representative stabilizing decomposition of residue classes in P.

We assign rational numbers to residue classes with distinguished representatives:

2.11.4 Definition Given a residue class [r/m], we set

([ = % -
ml) = m 2
Given a partition P of Z into finitely many residue classes with distinguished representa-

tives we set
o = = ()

[r/m]eP
Further we set § (Z) :=§(P) — |5 (P)].
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It has to be shown that § (Z) is well-defined:

2.11.5 Lemma The value § (Z) is independent of the choice of the partition P.

Proof: We have to show that §(P) mod 1 is invariant under representative stabilizing
refinement of P as well as under changes of the distinguished representatives of the residue
classes in P. For a residue class [r/m] and k € N, we have

5({7’]) _% 1 r (k=DF k  kr  14---+(k-1) /;;

ml) Tm 2 T m T 2% 2 km i -
_’S(r—l—im_l) B kifé({r—l—im])
=\ km 2) = km '

It follows that § (P) is invariant under representative stabilizing refinement of the parti-
tion P. Furthermore, for a residue class [r/m] and k € Z we have

(2]) - 5ed - g - o)

Hence changes of the choice of the distinguished representatives of the residue classes can
change § (P) only by an integer. O

2.11.6 Remark We can explicitly determine § (Z) —itis § (Z) = §([0/1]) =0/1—1/2—
|0/1 —1/2| = 1/2. However, we will not need this value in the sequel.

2.11.7 Definition Let 0 € RCWA(Z). We call a partition P of Z into finitely many
residue classes with distinguished representatives a base for o if all restrictions of o to
residue classes [r/m]| € P are affine.

2.11.8 Lemma Let o : n +— (an + b)/c be an order-preserving affine mapping whose
source is a residue class [r/m]. Then we have

(] - o[ - o = o[
Let 0 € RCWA™(Z), and let P be a base for o. From the above we get
§(P?) = §(P)+det(o)
and from this by inserting into the definition, that
§(Z) = §(2°) = §(Z)+det(o) — [6(Z) + det(o)].

Now we have all necessary prerequisites for being able to prove that the determinant
mapping is indeed an epimorphism from RCWA™(Z) to (Z,+):
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2.11.9 Theorem The mapping
RCWAY(Z) — (Z,+), o — det(o)
is an epimorphism.

Proof: Let 01,09,0 € RCWAT(Z). We have to show that det(o) is an integer, that
det(c™!) = —det(0), that det(o102) = det(oy) + det(oy), and that there is a class-wise
order-preserving bijective rcwa mapping of Z with determinant 1.

1. We would like to show that det(c) € Z. By Lemma 2.11.8 we have
0 (2) = §(2)+det(o) — [§ (Z) + det(a)].
Thus det(o) = [§(Z) + det(o) ]| € Z.

2. We would like to show that det(c™!) = —det(s). Let m := Mod(c), and denote
the coefficients of o by a,(m), by(m) and c¢,,). By definition, the restriction of o to
a residue class 7(m) contributes the summand b, ;) /(M - @) to the determinant
of o. The image of r(m) under o is 77(m - ay(m)/cr(m)). Since we have a,(,) > 0,
the restriction of ¢=! to this residue class contributes the summand

Gm) by brm

M rn)  Cr(m) M Q)

to the determinant of ¢~'. This in turn is the additive inverse of the contribution
of o|,(m) to the determinant of o, and we get the claimed assertion.

3. We want to show that det(oy05) = det(o1) +det(oz). Let m := Mod(oy) - Mod(o3).
By construction, the partition P := {[0/m], [L/m],...,[(m —1)/m]} is a base for o,
and o9. Furthermore it is easy to see that it is a base for o109 as well, and that P!
is a base for oy. Hence by Lemma 2.11.8, we have

§ (P) +det(o102) = §(P7*??) = §(P') +det(02) = §(P)+ det(or) + det(oy).

Subtracting § (P) from the leftmost and the rightmost term yields the claimed
assertion.

4. We have already shown that the determinant mapping is an homomorphism from
RCWA™(Z) onto (Z,+). Tt is indeed even an epimorphism, since the mapping
v € RCWAT(Z) : n+— n+1 lies in the preimage of 1. O
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2.11.10 Remark Wolfgang Rump has contributed the idea to assign the value r/m—1/2
to a residue class [r/m], and to determine how this invariant changes when one applies
an affine mapping to [r/m)].

2.11.11 Examples Class shifts obviously have determinant 1. Mappings of finite order,
commutators and their products lie in the kernel of the determinant mapping. As an
example that inversion does not change the absolute value of the determinant, we have a
look at the mapping ¢ from Example 2.5.15: It is

det(c™) 1<0+1+3+5+11+2+13+7+11+23 53 19 23 4)
g = _ —_ —_ — e _ —_ —_— _— =
14 6 2 3 6 6 2 3 6 6 3 6 3

__1<0_1 06 9 10 1t 12 13 76 o 22 23

24 7 7 T T 7 7 7 7 7 7

SRR APRL N O TP

[ N 7 7 7 7 7 7

= —det(o).

For purposes of illustrating the additivity of the determinant mapping, we have a look at
the mappings a and  from 1.1.3 resp. 1.8.5 and their product: It is

13 4 7 2 95 8 1 2 1
det _ gy B2 7 2 2 8 1 2 1
et(af) <+ Tt T T3 79 g

[\
\]
)
LN
— ©

- L T R Ro- S SNy
20 2t 3 27 27 27 27 9 27

1 1 1 1 1 1 2 4
= (0r5r0-3) 50+ 555 +5)

= det(a) + det(f).

We can easily determine the maximal subgroups of RCWA™(Z) containing the kernel of
the determinant epimorphism:

2.11.12 Remark Let K be the kernel of the determinant epimorphism, p be a prime
number and v : n +— n+ 1. Then the subgroup K, := (K, v?) < RCWAT(Z) has index p,
hence is maximal. The intersection of all subgroups K, is K. This implies that the
Frattini subgroup of RCWA™(Z) is a subgroup of K.
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2.12 A Normal Subgroup of RCWA(Z)

2.12 A Normal Subgroup of RCWA(Z)

In this section we will construct an epimorphism from RCWA(Z) onto Z*.

Reflecting the common term for the epimorphism S,, — Z*, we will call it the sign
mapping.

Transpositions in the symmetric group S,, cannot be written as products of two trans-
positions. In contrast, class transpositions in RCWA(Z) can be written as products of
two other class transpositions. For this reason the sign mapping considered here cannot
be derived directly from the one of finite symmetric groups. It is rather derived from an
epimorphism AFF(Z) — Z* by a lift from AFF(Z) to the whole of RCWA(Z).

Anyway, for argumentational purposes it is more convenient to use the determinant
mapping as a starting point for our construction:

2.12.1 Definition We set exp : z — 2™, Further let 7(m) C Z be a residue class. We
define the sign of an affine mapping « : n +— (an + b)/c with source r(m) by

1
exp <2 det(a)) it a>0,
sgn(a) := 1 N
exp (2 det(a) — — + 2) if a <0,
m

where det(a) := b/(|a|m). Further we define the sign of a mapping 0 € RCWA(Z) with
modulus m by

(@) = T sen(ohon)
r(m)eZ/mZ

2.12.2 Remark Let 0 € RCWA(Z), and let m := Mod(c). Using the same notation for
the coefficients of ¢ as in Remark 2.11.2, we have

det(o) + 1 > (m—2r)

m
sgn(o) = (=1) r(m): ap(m)<0 7

where we extend the determinant mapping via

1 bTm
det(o) == > det(olym) = — _r(m)

(m)€Zfmi2 (om) € mz, 1 0rm)|
to the whole of RCWA(Z).

The generalized notion of a ‘determinant’ in Definition 2.12.1 and Remark 2.12.2 does not
make much sense itself. It is introduced here merely for purposes of illustrating relations
between the determinant mapping and the sign mapping and of helping in the proof that
the sign mapping is indeed an epimorphism.
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Chapter 2. Residue Class-Wise Affine Groups

In the proof of the assertion that the determinant mapping is an epimorphism, we have in-
troduced an invariant § ([r/m]) of residue classes [r/m] with distinguished representatives.
A similar construction is useful in the proof of the assertion that the sign mapping has
the claimed properties. However, in this context it is not sufficient to fix representatives
only:

2.12.3 Definition From now on, we assume that the residue classes [r/m] are also ori-
ented, i.e. that their moduli carry signs. By definition, applying an affine mapping to
such a residue class changes this sign if and only if the mapping is order-reversing. Let
k € N. We call a decomposition

5] - [l 2]

of a residue class [r/m]| representative stabilizing and orientation-preserving.

Let P be a partition of Z into finitely many oriented residue classes with distinguished
representatives. Then we call a refinement of P representative stabilizing and orientation-
preserving if it is obtained by representative stabilizing and orientation-preserving decom-
position of residue classes in P.

We assign complex numbers with absolute value 1 to residue classes [r/m]:

2.12.4 Definition Let [r/m] be an oriented residue class with distinguished representa-
tive. Then we set

ey [ ) e
([ D exp(—;a([;D> if m < 0.

For residue classes r(m) without distinguished representative and without fixed orienta-
tion, we always assume m > 0 and r € {0,...,m — 1}, and set ¢(r(m)) = o([r/m]).
Given a partition P of Z into finitely many oriented residue classes with distinguished
representatives, we set

om = 1 e(5)

[r/m]leP

Further we set 0 (Z) := (—1)¢- 2 (P), where we choose € € {0, 1} such that ¢ (Z) = exp (t)
with ¢ € [0, ],
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2.12 A Normal Subgroup of RCWA(Z)

We have to show that ¢ (Z) is well-defined:

2.12.5 Lemma Let P be a partition of Z into finitely many oriented residue classes with
distinguished representatives. Then the following hold:

1. The value ¢ (P) is invariant under representative stabilizing and orientation-preser-

ving refinements of P.

2. Changes of the distinguished representatives of the residue classes in P can only

change the sign of ¢ (P).

3. Changes of the orientations of the residue classes in P affect only the sign of 0 (P).

In particular, the value 0 (Z) does not depend on the choice of the partition P, hence is

well-defined.
Proof:

1. For any residue class [r/m| with positive modulus m and any k € N the following

holds:

()

e ([50])

If m < 0, just the signs of all exponents are changed. This does not affect the
validity of the given chain of equalities. It follows that ¢ (P) is invariant under
representative stabilizing and orientation-preserving refinements of P.
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Chapter 2. Residue Class-Wise Affine Groups

2. For any m > 0 and k € Z, the following holds:

!([5]) = =G ()

If m < 0, again just the signs of all exponents are changed, and again this does not
affect the validity of the given chain of equalities. Thus changing the distinguished
representative of a residue class in P can at most change the sign of ¢ (P).

3. Changing the orientation of a residue class [r/m| € P changes ¢ (P) by a factor of
([]) e (5(5-))
—ml/) _ 2\-m_2)) _ 1y _
T = T/r 1 = eXp( ) = -1
() = GE-3)
m 2\m 2

as claimed. m

2.12.6 Remark In fact we can explicitly determine ¢ (Z): It is

0(Z) = exp (;(S(Z)> = exp (i) = i

However, we will not need this value in the sequel.
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2.12 A Normal Subgroup of RCWA(Z)

Similar assertions hold as for det(«) and § ([r/m]):

2.12.7 Lemma Let o be an affine mapping with source r(m). Then we have

o) = o([z]) w0

Let 0 € RCWA(Z), and let P be a partition of Z into finitely many oriented residue
classes with distinguished representatives. Then it holds that

e(P?) = o(P)-sgn(o),

thus
0(27) = (=1)°-2(Z) -sgn(o)
for suitable € € {0, 1}.

Proof: We assume that the mapping « is given by n — (an + b)/c for certain coefficients
a,b,c € Z. In case a > 0 we get the assertion directly from Lemma 2.11.8. Hence we can
assume without loss of generality that a < 0. It holds that

() - ()

r 1>> b r . 1
—_— — — .eX —_— —
m 2 P 2lalm  m 2

thus our first assertion.

We get the corresponding assertion for an rewa mapping ¢ and a partition P, when we
refine P to a base for o by representative stabilizing and orientation-preserving decom-
position of residue classes in P, and apply the assertion proven above to the restrictions
of o to the residue classes in P. This is permitted due to Lemma 2.12.5. 0
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Chapter 2. Residue Class-Wise Affine Groups

2.12.8 Theorem The mapping
RCWA(Z) — Z*, o — sgn(o)
is an epimorphism.

Proof: Let 01,09,0 € RCWA(Z). We have to show that sgn(o) is a unit of Z, that
sgn(o™!) = sgn(o)™!, that sgn(cy09) = sgn(oy) -sgn(oz) and that there is a bijective rewa
mapping of Z with sign -1.

1. We would like to show that the sign of ¢ is indeed a unit of Z. By Lemma 2.12.7,
we have 0(Z) = 0(Z°) = (—1)- 0(Z) - sgn(o) for a suitable € € {0,1}. Division of
the leftmost and the rightmost term by € (Z) yields the claimed assertion.

2. We would like to show that sgn(oc~!) = sgn(o)~!. Obviously it is sufficient to show
this for the restriction of o to some residue class r(m). Thus let

ar +b <|a|m> an+b
) n —

C

a: r(m) —

C Cc

be such a restriction. Then we have

4, ar+b <]a|m
at ——— | ——
c

cn—b

) = ), w e

C a

If @ > 0, we have sgn(a™') = exp (—b/(2am)) = sgn(a)™!, and if a < 0, we have

Sn(oz_l) — exp [ — —b _(CLT—Fb)/C_’_l — ex b _ar—|—b+1
° — P\ 2eam/d lam/cl " 2) = TP\alm ” TJajm " 2
e b r b n 1 o b r 1
= ex - _ o - _ x o2
P m m am 2 P 2am  m 2
= sgn(a)™,
as claimed.

3. We would like to show that sgn(oy03) = sgn(oy) -sgn(os). Let P be a partition of Z
into finitely many oriented residue classes with distinguished representatives. By
Lemma 2.12.7, we have

0(P)-sgn(oio9) = 0(P77?) = 0(P%)-sgn(oy) = €(P)-sgn(oy) - sgn(os).
Dividing the leftmost and the rightmost term by ¢ (P) yields the claimed assertion.

4. The sign of the mapping ¢ € RCWA(Z) : n+— —n is -1. O
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2.12 A Normal Subgroup of RCWA(Z)

In Definition 2.9.1 we have seen three infinite classes of bijective rcwa mappings of Z, which
either generate RCWA(Z) or a proper normal subgroup thereof (cp. Theorem 2.9.4). We
would like to determine the signature of these mappings:

2.12.9 Lemma Given a residue class r(m) of Z, we have sgn(vy(m)) = sgn(Sym)) = —1.
Given two disjoint residue classes 71(m1) and ro(ms) of Z, we have sgn(T,, (m,)rs(ms)) = 1.

Proof: Insertion into the expression given in Remark 2.12.2 yields

1 /0 0 m
<+---++) +0
and
1 /2r 0 1
(++...>+(m—2r)
as well as
1
(mlrg — Moty + mory — mlT’g)
Sgn(Trl(m1),T2(m2)> = (_1)m1m2 = 1

In the last-mentioned case we use that the modulus of the class transposition 7., (m,),r(m2)
divides myms, and that r;(m;) (i € {1,2}) can be written as a union of mgs_; residue
classes (mod myms). O

2.12.10 Example Collatz’ permutation « given in Examples 1.1.3 has determinant 0,
and thus the sign (—1)° = 1. By Lemma 2.12.9, the sign of the class reflection ¢ is -1.
Theorem 2.12.8 tells us that sgn(a-<i(5)) = —1. Fur purposes of illustration, we will check
this directly: It is

3 it ne0(2))\4(10),

=T if e 1(20),

(
(20)
el if noe 3(20) UT7(20) U 11(20) U 19(20),
=t if o€ 4(10),
(20)

Q-G N
2
% if n € 5(20)U9(20) U 13(20) U 17(20),

=5nt9 i e 15(20).

4
Insertion into the expression given in Remark 2.12.2 yields det(a - ¢5) = £ and the
‘correcting term’ 55((20 —2-1) 4+ (20 —2-4) + (20 — 2 - 14) 4+ (20 — 2 - 15)) = 2 in the

exponent. From this we get — as expected — the sign (—1)%/°3/5 = —1.
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Chapter 2. Residue Class-Wise Affine Groups

By Remark 2.12.2, the sign of a mapping ¢ € RCWA™(Z) equals (—1)(?), Further due
to Lemma 2.12.9, class shifts and class reflections have sign -1. Hence the following holds:

2.12.11 Corollary Let m € N and r € Z. Then the following diagram commutes:

|
- L "1
2
/\/
N
Z
RCWA(Z) (Z,+)
% det
ker sgn RCWA*(Z)
% id
1 ker det

The vertical and horizontal sequences are short exact.
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2.13 Open Questions

2.12.12 Remark Which other values could an epimorphism from RCWA(Z) to Z* take
for class shifts, class reflections and class transpositions?

Under the assumption that our epimorphism is invariant under restriction monomor-
phisms, the image of a class transposition must be 1 since 7 = Ty4),1(4) * T2(4),3¢4)- The
equality < - Spe2) * S1(2) - l/l_é) = 1 enforces furthermore that class shifts and class reflections
must have the same image.

Consequently, the sign mapping is the only epimorphism from RCWA(Z) to Z* which
is invariant under restriction monomorphisms, and whose kernel does not contain the
mormal subgroup which is generated by all class shifts, class reflections and class trans-
positions (cp. Theorem 2.9.4).

2.13 Open Questions

The following questions remain open:

e Is the normal series RCWA(Z) > kersgn > 1 already a composition series?
Does the group RCWA(Z) have further normal subgroups?
If yes: How do the corresponding factor groups look like?

e [s the kernel of the sign mapping resp. the kernel of the determinant mapping
simple?

If not: Which normal subgroups do these groups have?

e Is the group RCWA(Z) generated by the tame mappings?

If so: Does it have finite diameter with respect to this set of generators, and if yes,
which diameter?

e Does the group RCWA(Z) have nontrivial outer automorphisms?
e Are finitely generated subgroups of RCWA(Z) even finitely presented?

e Given k € N, is there always an rcwa group which acts k-transitively, but not
k + 1-transitively on one of its infinite orbits?

e Do the groups GL(n,Z) resp. the free group of rank 2 have monomorphic images

in RCWA(Z)?

e [s the membership- and / or conjugacy problem in finitely generated subgroups of
RCWA(Z) algorithmically decidable? For both problems, RCWA provides methods

which cover certain cases.
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CHAPTER 3

Trajectories and Monotonizations

The 3n + 1 Conjecture makes an assertion about the sequence n, n”, nTQ, ... produced by
iterated application of the Collatz mapping T to a positive integer n.

It is natural to ask what happens when we replace the Collatz mapping by some
other mapping. In order to get interesting results, it is inevitable to restrict the class of
mappings to consider. It seems to be a suitable choice to decide to investigate the class
of rewa mappings in this context.

So far, questions of this kind have not been touched in this thesis. In this chapter
they should be addressed in short.

3.1 Definition Let f : R — R be a mapping, and let n € R. Then the sequence
(n'" Vien, is called the trajectory of f starting at n.

For purposes of illustration, we list a few examples of trajectories of the Collatz mapping:

3.2 Examples The trajectories of 71" starting at 15, 27, -5 resp. -17 are

15,23, 35,53, 80, 40,20,10,5,8,4,2,1, resp.

27,41,62,31,47,71,107,161, 242,121, 182,91, 137, 206, 103, 155, 233, 350, 175,
263,395,593, 890, 445, 668, 334, 167, 251, 377, 566, 283, 425, 638, 319, 479, 719,
1079, 1619, 2429, 3644, 1822,911, 1367, 2051, 3077, 4616, 2308, 1154, 577, 866, 433,
650, 325,488, 244,122, 61,92, 46, 23, 35, 53, 80, 40, 20, 10, 5, 8,4, 2,1, resp.
—5,—7,—10, =5, resp.

—17,—25,—-37,—55, —82, —41, —61, —91, —136, —68, —34, —17,

where we have stopped at 1 resp. at the end of a cycle.
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Chapter 3. Trajectories and Monotonizations

3.3 Remark During the past half century, many people have tried to prove the 3n + 1
Conjecture. The methods these people have used for this purpose vary very much. In
any case, dynamical systems and analytical density estimates have to be mentioned in
this context. Lagarias’ annotated bibliography [Lag05] provides undoubtedly the best
overview on the work done so far on this problem.

A very nice discussion of the 3n + 1 Conjecture under the aspect of the underlying
dynamical system and a detailed elementary discussion of further aspects can be found in
Ginther Wirsching’s Habilitationsschrift [Wir96]. Wirsching’s thesis has also appeared
as a Springer Lecture Notes volume [Wir98]. Wirsching’s work is focussed on trying to
prove that all numbers ny € N\ 0(3) have positive predecessor density, i.e. that

1.2.....KY|3keNy: nT* =

This assertion is closely related to the 3n + 1 Conjecture, but it neither implies it nor
is implied by it. A sketch of a proof with three gaps formulated as conjectures is given
in [Wir03].

The 3n + 1 Conjecture essentially claims that any trajectory of the Collatz mapping

intersects nontrivially with a certain finite set of integers. In different words this means
that it is contracting in the following sense:

3.4 Definition Let f : R — R be an arbitrary mapping from the ring R to itself. We
call an ascending sequence Sy C 57 € Sy C ... of subsets of R such that

1. Sy is a finite set which satisfies Sg =Sy, that
2. for any k € N, the set Sy is the whole preimage of Sx_; under f, and that
3. R=UpZy Sk-

a contraction sequence of f. If there is such a sequence we call f contracting and call the
set Sy the contraction centre of f.

3.5 Remark Contraction sequence and -centre of a contracting mapping f € Rewa(R)
are determined uniquely. Thus we can talk about the contraction sequence and the con-
traction centre of f. If f is contracting and o € Sym(R), then f? is contracting as well —
if (Sk)ken, is a contraction sequence of f, then (S7)ken, is a contraction sequence of f.
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3.6 Examples These definitions should be illustrated in a few examples.

1. The author conjectures that the Collatz mapping T is contracting, and that its
contraction centre is

So ={ —136,—-91, —82, —68, —61, —55, —41,
—37,-34,-25,—-17,-10,—-7,-5,—1,0,1,2 }.
Showing this would prove the 3n+1 Conjecture. The sets S, Ss, . .., Sa5 then would

have the cardinalities 30, 42, 66, 95, 138, 187, 258, 345, 467, 627, 848, 1138, 1529,
2041, 2731, 3646, 4865, 6485, 8651, 11529, 15384, 20506, 27312, 36379 resp. 48497.

2. The author conjectures that the mapping

el if ged(n,6) =1,

_n
ged(n,6)

T; € Rewa(Z), n —— {

otherwise

is contracting and that its contraction centre is
So = { — 360, —206, —103, —66, —60, —59, —38, —19, —17, —11, —10, =5, —3, —1, 0,
1,2,4,19, 38, 65,67, 143,167, 195, 228, 235, 429, 501, 585, 823, 1103, 1287,
2206, 2521, 2881, 3861,4412,5042, 8824, 10084 }.
This is not obvious — e.g. the 4361th number in the trajectory of 17 starting at 9595

is the first one which lies in Sj, and the maximum of this sequence which is taken
at position 1855 is 4526676671782427461185178001773394074428338782272.

3. The author conjectures that the mapping

fo € Rewa(Z): n — & 6

is contracting as well, and that its contraction centre has at least cardinality 443.
The trajectory starting at 3224 approaches the fixed point 2 only after 19949562
steps and after ascending to approx. 3 - 10?7, Note that the product of the
coefficients in the numerators (5 -7 - 11° = 46585) is only a bit smaller than the
product of the coefficients in the denominators (6° = 46656). A consequence of this
is that the absolute value of the image of an integer n under the mapping fs is ‘on
average’ smaller than |n| by a factor of /46585/46656 ~ 0.999746. It is obvious
that the last consideration is purely heuristic.
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Chapter 3. Trajectories and Monotonizations

4. A further mapping which the author conjectures to be contracting is

sl if n e 3(5),

mE2 if e 4(5).

(5)

(5)

fs € Rewa(Z) : n — 3L if n e 2(5)
(5)

; (5)

It holds ¥n € Z (—n)® = —(n'5). Provided its existence, the contraction centre
of f5 has at least cardinality 3659 =1+2-(1-1+5-5+1-141+6-277): Fixed
points of f5 are 0 and +1, cycles of length 5 are £(4 6 8 5 7), (10 14 20 28 17),
+(29 41 57 34 48), £(35 49 69 97 58) and £(50 70 98 59 83), members of least
absolute value of 141-cycles are +89 and members of least absolute value of 277-
cycles are £2536, £3199, £12571, 13075, £16564 and £27589. It is not clear
whether the mentioned 6 pairs of 277-cycles just arise ‘by random’ or whether there
is some deeper reason for their existence.

Already in the Summary it has been mentioned that for proving the 3n + 1 Conjecture it
would be enough to find a permutation o € (Sym(Z)gyy):1 such that Vn € N\ {1} n™ < n.
Since T is surjective, it is equivalent to require that 7' is monotonous ‘almost everywhere’.
This motivates the following definition:

3.7 Definition Let R be ordered, e.g. R € {Z,Z}. We call a mapping f € Rcwa(R)
monotonizable if there is a permutation ¢ € Sym(R) such that f? is monotonous. We
call it rcwa-monotonizable if o can even be chosen to be an rcwa mapping. Further we
call f nearly (rcwa-)monotonizable if there is a o € Sym(R) (0 € RCWA(R)) and a finite
set S C R such that f7 is monotonous on R\ S.

In order to get information on dependencies between these properties of an rcwa mapping,
we need the following lemma:

3.8 Lemma Assume that f € Rcewa(R) is not injective and that Mult(f) # 0. Then
there is a residue class ro(mg) and two disjoint residue classes r1(my) and r3(ms) of R
such that ro(mg) = r1(my)! = ro(ms)’.

Proof: Let m := Mod(f). Due to our condition that the mapping f is not injective, there
are two residue classes 71(m) and 79(m) whose images under f are not disjoint. Due to
the condition that Mult(f) # 0, by Lemma 1.1.8, Assertion (1), 71(m)’ and 7y(m)/ are
residue classes as well. Therefore ro(mg) := 71 (m)/ N#y(m)/ is also a residue class. The
preimages r1(my) and rq(ms) of ro(mg) under the affine partial mappings of f on 7 (m)
resp. To(m) are residue classes by Lemma 1.1.8, Assertion (1). Further they are disjoint,
since they are subsets of distinct residue classes (mod m). 0
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3.9 Lemma Let f € Rcwa(Z) be surjective, not injective and nearly monotonizable.
Then f is contracting.

Proof: Let S C Z be a finite set and ¢ € Sym(Z) such that f? is monotonous on
Z\ S. Like f also f7 is surjective and not injective. Consequently, the application of f¢
decreases the absolute value of all except of finitely many n € Z (look at the graph of the
function f?!). This implies that f is contracting, and using Remark 3.5 completes the
proof of our assertion. 0

In the proof of the main theorem of this section, we need the following lemma:

3.10 Lemma The following holds: Vf € Rewa(R) Jc € R: |zf| < Mult(f) - |=| + c.

Proof: We get the assertion by taking upper bounds on the absolute values of the images
under affine partial mappings of f. O

We get a quite restrictive condition for rcwa-monotonizability:

3.11 Theorem Assume that f € Rewa(Z) \ RCWA(Z) is surjective and (nearly) rcwa-
monotonizable. Suppose further that Mult(f) # 0. Then there is a k € N such that there
are at most finitely many n € Z such that |n/"| > |n).

Proof: By assumption we can choose a mapping 0 € RCWA(Z) and a finite subset S C Z
such that p := f7 € Rewa(Z) is monotonous on Z\ S. Surjectivity and non-injectivity are
inherited from f to u, and due to Lemma 1.3.1, Assertion (a.4) and (b.3) it is Mult(u) # 0.
Consequently, by Lemma 3.8 there is a residue class r(m) C Z such that each n € r(m)
has at least two distinct preimages under p. From the surjectivity of p, the monotonity
of pon Z\ S and the finiteness of S we conclude that there is a constant ¢ € N such that

VneZ |n*| < “|n| + ¢,

m+1
and induction over k € N yields

k m k
vkeNVneZ |nt| < (m+1> a4+ ke

For arbitrary & € N we have n/ " = no v If we choose k such that

() < T
m+1 2 - Mult(o) - Div(o) ’
then by Lemma 1.3.1b, Assertion (3) and Lemma 3.10 it holds that

k —1,k k 1

‘nf ) = ‘ng K 0‘ < Div(o) - (m) “In|-Mult(o) +k-c+ < Z|n|+k-c+
m+ 1 2

for some constant ¢ depending on o¢. Since neither k nor ¢ nor ¢ depends on n, this

completes our proof. O
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Chapter 3. Trajectories and Monotonizations

Is there a 0 € RCWA(Z) such that T is monotonous? — No, things are not that easy!:

3.12 Remark Using Theorem 3.11 we can conclude that the Collatz mapping 7' is not
nearly rcwa-monotonizable: The mapping T is surjective and not injective, and it is
Mult(7T') # 0. But if n = 2*m — 1 for arbitrary k,m € N, we have

ko 3Fn4 (3F—2F
nT = n—i—(2k )>n.

In order to get a conjugate 7% which is monotonous almost everywhere we thus would
have to look at mappings ¢ € Sym(Z) \ RCWA(Z). In particular the quotient n’/n
must not be bounded — its boundedness for rcwa mappings is in fact what the proof of
Theorem 3.11 is based on.

At the end of this short chapter we would like to show that the Collatz mapping can be
extended to a permutation of Z? in a natural way:

3.13 Example The mapping

(325,2y)  if w€1(2),
or € Sym(Z?) . (z,y) — (%,y) if € 0(6)U2(6),

(3.20+1) if =€4(6)

is a permutation which acts on the z-coordinate just like the Collatz mapping 7. Its
inverse o' is given by

(2x,y) if z€0(3)U1(3),

) if = €2(3)andy e 0(2),
) if z€2(3)andyel1(2).

The mapping or is affine on the residue classes r(m) € Z*/{(6,0), (0,1))Z2, and o' is
affine on the residue classes r(m) € Z*/((3,0), (0, 2))Z>.
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APPENDIX A

Wildness Criteria

In this appendix we would like to discuss the question how to recognize whether a given
rcwa mapping is tame or wild.

One criterion whose application is algorithmically very cheap has already been men-
tioned before (non-balancedness, cp. Conclusion 2.5.12).

In the following we will obtain two further such criteria:

A surjective rcwa mapping is wild if
1. it is not injective, or if

2. one of its transition graphs has a weakly connected component which is not strongly
connected.

The proofs are essentially based on lemmata concerning the density of images and preim-
ages of open sets under rcwa mappings.

The asymptotic density of a set S C N of positive integers is defined by

1,2,...

n—oo n

=:d,

The asymptotic density is also called natural density provided that the sequence (d,,)nen
converges.

It is easy to see that given a positive integer k, the asymptotic resp. natural density
of k-5 is %—times the asymptotic resp. natural density of S itself. Furthermore, adding
a constant to the elements of a set does not change its density.

These facts are very convenient w.r.t. considerations concerning rcwa mappings. This

motivates the following definition:
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A.1 Definition Given a residue class r(m) C R, we set i(r(m)) := 1/|R/mR|. Given
S C R we further set #(R\ S) := 1 — §(S), and given two subsets S1,S2 C R, we set
H(S1 U Sy) i= K(S1) 4+ K(S2) — K1(S1 N Sy).

These settings induce a notion of density for open and closed subsets of R. We call
1(S) the natural density of S.

By the modulus Mod(S) of an open or closed subset S C R we denote the least |m)|
such that S can be written as union of residue classes (mod m). If there is no such m,
we set Mod(S) := 0.

This notion of density complies in a natural way with the generally used definition of the
natural density of a set of integers given above.

For convenience we use the following shorthand for preimages:

A.2 Convention In the following, we write nd™" resp. S/ to denote the full preimage
of an element n resp. a set S under a mapping f.

We need a few basic lemmata concerning density and modulus of images and preimages
of open sets under rcwa mappings:

A.3 Lemma Let S C R be open. Further let a« € AFF(K) : n — (an + b)/c and
f € Rewa(R). Then the following hold:

1. S*C R = p(S%) = u(S)-|R/cR|/|R/aR].
2. 1(ST)y < u(S) - |R/Div(f)R|.
3. Mod(S7 )| Mod(f) - Mod(S).

In this context, let 0]0.

Proof: By definition, the set of residue classes is a basis for our topology on R. Conse-
quently, the open set S is a union of residue classes.

1. This assertion follows from Lemma 1.1.8, Assertion (1), applied to the elements of
a partition of .S into residue classes.

2. This assertion follows from (1), applied to the affine partial mappings of f and to the
intersections of S with the residue classes (mod Mod(f)). Images under constant
affine partial mappings have natural density 0, thus can be ignored in this context.

3. The case Mod(S) = 0 is trivial. Hence without loss of generality we can assume
that Mod(S) # 0. Let m := Mod(f) and n € R. By definition, n/ mod Mod(S)
determines whether n/ is in S or not. This value in turn is determined by n mod m
and nflnem mod Mod(S), hence by n mod lem(m, Div(f) - Mod(S)). Applying
Lemma 1.3.1a, Assertion (1) finishes the proof. O
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We need a term which denotes the sum of the densities of the images of the affine partial
mappings of an affine mapping;:

A.4 Definition Let f € Rewa(R) and let m := Mod(f). Further suppose that the re-
strictions of f to the residue classes r(m) € R/mR are given by n = (ay(m)n=+Dbrm))/Crm)-
Then we define the image density puimg(f) of f by

if Mult(f)50 1 |R/Cr(m)R|
Himg(f) = Z w(r(m)¥) = S — ( 2y mrm) 77
: r(m)eR/mR |R/mR| r(m)ER/mR |R/ar(m)R’
The right ‘=" is justified by Lemma A.3, Assertion (1).

From Definition A.4 we immediately read off that the image density of an recwa mapping
with given multiplier and divisor can neither be arbitrary large nor arbitrary small, and
that the denominator of the fraction is bounded as well:

A.5 Lemma Given f € Rewa(R), we have 1/|R/Mult(f)R| < pimg(f) < |R/Div(f)R)|
and |R/Mod(f)R| - |R/Mult(f)R| - pimg(f) € No.

Stronger assertions hold under the assumption that the corresponding mapping is injec-
tive, surjective or even bijective:

A.6 Lemma Let f € Rewa(R). Then the following hold:
1. f is injective = flimg(f) < 1.
2. f is surjective = pimg(f) > 1.
3. f is bijective = pimg(f) = 1.

In Assertion (1) and (2), equality holds for mappings f without constant affine partial
mappings if and only if f is bijective.

Proof: The assertions follow from the additivity of the density function and from the
setting #(R) := 1. O

Multiplying by a surjective, but not injective mapping increases the image density:

A.7 Lemma Let f,g € Rewa(R) be surjective rewa mappings without constant affine
partial mappings, and assume that f is not injective. Then flimg(f - §) > Himg(9)-

Proof: By Lemma 3.8, there is a residue class r9(mp) and two disjoint residue classes
ri(m1) and ro(mg) of R such that 7i(m1)! = ra(ma)f = ro(me). Let m, := Mod(g).
Then the residue classes 79(my) and 7(mg) intersect nontrivially. Let ro(m) be their
intersection. Due to the surjectivity of f it iS fimg(f - g) = fimg(g) + #(ro(m)?) > timg(9),
which had to be shown. 0
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Now we can show the validity of the first-mentioned criterion:

A.8 Theorem If f € Rewa(R) is surjective but not injective, then f is wild.

Proof: Assume that f is tame. Let m := Mod((f)). Then the restrictions f*|,., (k € N)
of powers of f to residue classes (mod m) are affine. Due to Lemma 1.1.8, Assertion (1)
the images of the residue classes r(m) under the powers f* are either single residue
classes as well, or (caused by constant partial mappings) sets of cardinality 1. We have
to distinguish two different cases:

1. The mapping f has a constant partial mapping f|, ) = n. In this case, due to
the surjectivity of the mapping f and the choice of m there is an infinite sequence
ro(m),r3(m), r4(m),... of pairwisely distinct residue classes (mod m) such that
Vk € N f*|,, ) = n. Since R/mR is finite this yields a contradiction.

2. The mapping f does not have a constant partial mapping. In this case, we know from
Lemma A.7 that Vk € N fimg(f*™) > fimg(f*). By Lemma A5, |[R/Div(f*)R| is
an upper bound on pine(f*). From Lemma 1.3.1a, Assertion (1) we know that
|R/Div(f*)R| < |R/mR|. Using the ‘denominator bound’ from Lemma A.5, we
conclude that the sequence (Mult(f*))zen is not bounded.

If we set d := |R/mR| + 2, then we can choose a ko € N and a residue class
ri(m) € R/mR such that p(r(m)f™) < 1/|R/mR|?. According to the above,
r1(m)!™ =: ro(m) is a residue class as well, and from Lemma A.3, Assertion (2) and
Lemma 1.3.1a, Assertion (1) we conclude that Vk € N (ro(m)") < 1/|R/mR|%1.

Using the method described below, we show that there is an exponent e € N such
that for any k € N and any r(m) € R/mR we have p(r(m)’*™") < 1/|R/mR)|:

1. Put ¢ := 2.

2. Since the mapping f* is surjective, there is a residue class r;(m) € R/mR such
that #(r;(m)/™ Nr;_y(m)) = 1/|R/mR|?. By the choice of m, for any k € Ny the
mappings f(— Dkt (o and f (i=Dkotk| . are affine and differ at most by
their sources. Hence Zusing this inequality one can conclude inductively that

plri(m)”™) < [R/mBIH - p(r(m)) < 1/|R/mR|*E

and that M(Ti(m)fik_ﬁk) < 1/|R/mR|%%. Thus in particular for i < |R/mR]
no image of r;(m)?™® under a power of f can have an intersection of density
> 1/|R/mR|* with any residue class r;(m) ().

3. If i < |R/mR)|, put i := i+ 1 and continue with step (2), otherwise done.
Due to (x) the |R/mR)| residue classes r;(m) € R/mR which we get this way are

pairwisely distinct. Hence the above-mentioned inequality for the density holds for
e :=|R/mR| - ko. This is a contradiction to the assumption that f is surjective. [
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A.9 Examples Three of the four possible combinations of (non-) injectivity and (non-)
surjectivity do not permit a conclusion whether the respective recwa mapping is tame or
wild — examples over Z:

tame wild
-injective, | f € Rewa(Z): [ € Rewa(Z):
—surjective m if ne0?), 3 if ne0(2),
n — n —
2n+2 if n € 1(2). 2n+2 if n € 1(2).
injective, f € Rewa(Z) : n+— 2n. f € Rewa(Z):
—surjective 3n if ne0(2)
n o 2 ’
3n+2 if nel(2).
-injective, | Does not exist, see Theorem A.8. | T € Rewa(Z):
surjective n if neo0(2)
n o <2 ’
Sl e 1(2)
(cp. Examples 1.1.3).
bijective v € RCWA(Z) : n+—n+ 1. a € RCWA(Z):
3 if ne0(2),
no— 3 p e 1(4),
-l if n e 3(4)
(cp. Examples 1.1.3).

A.10 Lemma Let f € Rewa(R). Assume that there is a union of finitely many residue
classes of R which is a proper subset of its image and a proper superset of its preimage
under f. Then f is wild.

Proof: Let Sy be such a union of finitely many residue classes, and let S be the preimage
of Sy under f. By Theorem 2.2.3, Assertion (4), the set S; is a union of finitely may
residue classes as well, and hence has a strictly smaller natural density than Sy. Our
conditions imply that images of elements outside S; lie outside Sy, hence in particular
outside S;. Thus since the image of S; under f is a proper superset of Sy, the preimage
Sy of Sy under f is a proper subset of S;. We can iterate this argumentation and get a
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Appendix A. Wildness Criteria

descending chain Sy 2 S; 2 S2 2 ... of unions of finitely many residue classes such that
Sky1 is always the full preimage of Sy under f.

Assume that f is tame, and set m := Mod((f)). By Lemma 1.4.3, Assertion (2) we
have Vk € N Div(f*)|m. Since S is the image of S under f*, the quotients £(.Sp)/ £(S)
hence are bounded by |R/mR| due to Lemma A.3, Assertion (2). Now we can easily
conclude that limy_o #(Sk)/ #(Sk+1) = 1, and hence limy_,o, Mod(S;) = oo. But since
Sy, is the preimage of Sy under f*, we know from Lemma A.3, Assertion (3) that it holds
also that Vk € N Mod(Sy)|m - Mod(Sp). This is a contradiction. O

Using Lemma A.10 we can show the validity of the second criterion:

A.11 Theorem Let f € Rewa(R) be surjective, and assume that there is an m € N such
that the transition graph I'y,, of f for modulus m has a weakly connected component
which is not strongly connected. Then f is wild.

Proof: According to the conditions, for suitable m we can choose a strongly connected
component Iy of 'y, which is a proper subgraph of a weakly connected component T'g.
Since Iy is a finite graph, we can assume without loss of generality that Iy is connected
to the rest of I'y by outgoing edges only: Otherwise we could follow an ingoing edge in
reverse direction and would enter another strongly connected component and so on, until
reaching a ‘source’ which satisfies our condition after a finite number of steps.

Let S € R be the union of the vertices of I'y. Since f is surjective, the image of
S under f is a proper superset of S. By the choice of I'y this implies further that the
preimage of S under f is a proper subset of S. Now, Lemma A.10 tells us that f is wild,
as claimed. U

A.12 Example We take the mapping « from Examples 1.1.3, and set v : n — n + 1.
The transition graph of the mapping vv* for modulus 6 looks as follows:

n+/‘ %‘JA
2n+3

n+2 2(6)% %3(6) 2n+3

n+3
\[ ﬁ#l

This graph is weakly connected but not strongly connected. A strongly connected compo-
nent without ingoing edges is {2(6)}. Consequently, by Theorem A.11 the mapping vv*
is wild.
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APPENDIX B

Examples

In this appendix we would like to discuss several examples of residue class-wise affine
mappings and -groups in detail.

The structure of tame rcwa groups has been completely determined in Theorem 2.6.1.
In contrast, the question for the structure of wild rcwa groups is difficult. The same
holds for the question how orbits under their action on the underlying ring may look like.
The following examples should illustrate this. However, in the same time they should
demonstrate that wild rcwa groups are accessible to computational investigations as well.

B.1 Structure of a Wild rcwa Group

Let a be Collatz” permutation given in Examples 1.1.3. Further let § be defined as in
Examples 1.8.5, Part (3), and let v : n+— n + 1. We investigate the group G := («, 3, v).

Maybe the permutations a and (3 generate a free group of rank 2. In any case, adding
the generator v yields a multitude of nontrivial relations. For example it is easy to
check with RCWA that ord([a3,?]) = 396 = 2% - 3% 11, ord([af3,v%]) = 182 =27 13,
ord([aB3, V%)) = 24, ord([aB, v'¥]) = ord([aB, v*°%]) = 25, ord([3?, v1T]) = 5256 = 72-73 =
23 .3%. 73 and ord([3?, v*]) = 29. For illustrational purposes we explicitly write down
one of these commutators:

3n — 605 if ne€0(9)uUT

n+196 if ne 1(9) U4

3n—125 if n€3(9) U6

[aB, € G: n — {n—124 if n € 2(27) U 14(27) U 20(27) U 23(27),
n—604 if n e 5(27),

11586 if n e 8(27)

3

108 if nel11(27)U17(27).
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Further, computational investigations suggest the following relations:

1. Given k € Z it holds that
[, V] wild < ged(k,6) = 1, and

if k=0,

if ke 3(6)U{-22l,

if ke 4(12) U8(12),

if ke2(4)U1(6)Us(6)U0(12)\ {—2,0,2}.

ord([e, *]) =

800[\’)}—‘

2. Given k € Z it holds that

if k=0,

if ke 5(15)U10(15),

if ke 3(45)U 6(45)U 9(45) U 18(45)

U 27(45) U 36(45) U 39(45) U 42(45),

6 if ke {-2,2},

if ke 13(45) U 17(45) U 28(45) U 32(45),
oo (tame) if k€ (0(15) U 2(45) U 12(45) U 21(45)

U 24(45) U 33(45) U 43(45)) \ {—2,0,2},
oo (wild) if k€ 1(15)uU 4(15)U 7(15)
U 8(15) U 11(15) U 14(15).

ord([8,v*]) =

3. It holds Vk € N\ {2,4,6,12,24,184,356} ord([af3,v*]) € {10,15,00}.
4. Given k € Z it holds that

1 if k=0,

4 if ke9(18),

5 if ke {-6,6},

7 if k€ 61(144) U83(144),

9 if ke 16(48)U32(48) U 8(144) U 136(144),
17 if k € 134(288) U 154(288),

70 if ke {-10,10},

90 if ke {—14,14},

oo otherwise.

ord([a?, V¥]) =

The naturally arising question whether the group G is finitely presented remains open.
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B.2 On Automorphisms of RCWA(Z)

B.2 On Automorphisms of RCWA(Z)

Both of the mappings v and « from the preceding section have infinite order. Is there an
automorphism of RCWA(Z) which maps v to a?

The mapping v is tame, while « is wild. Hence by Lemma 1.8.3, Assertion (1) such
an automorphism cannot be inner. So far, nothing is known about possible outer auto-
morphisms of RCWA(Z). Our question can be answered anyway:

We have v~ = v~ thus in RCWA(Z) the mapping v is conjugate to its inverse.
Further it is
_ Mod () I
lim ————~ = =
k—oo Mod(a=F) k—oo 3k

Hence by Lemma 1.3.1c, Assertion (1) the mappings o and a~! are not conjugate in
RCWA(Z). This implies a negative answer to our question.

B.3 Orbits Under the Action of a Wild rcwa Group

Conclusion 2.5.17 gives a complete description of orbits under the action of tame rcwa
groups on Z. But how do orbits under the action of wild rcwa groups look like?

Obviously there are finite and infinite orbits under the action of such groups. This
section focusses on those groups whose orbits are all finite.

On the polynomial rings F,[z] the degree mapping induces a partition into finite sub-
sets, which is fixed by suitable wild rcwa mappings and -groups (cp. Examples 1.1.3,
Part (3)). In contrast, it is not at all obvious whether there are wild rcwa groups over Z
whose orbits on Z are all finite. Here we would like to describe an example of a wild group
G < RCWA(Z) which seems to have this property. Let the generators oy and oy of G be
given by

3t if ne1( 6),

n if ne0(4), 2
_ 2n it ne3(9),
n+— ¢n+1 if nel(d)U2(4), resp. n — ¢ .
n3if e 6(18)
n—2 if ne3(4) 3 ’
n otherwise.

The product of these two mappings is wild. This can be seen by looking at the restriction
of the mapping o := 010, to the residue class 3(12): It is o|312) = 01]3012) - 2|3012)71 =
o1l3(12)- 02102 = (n = n—2)-(n+— (3n+3)/2) = n+— (3n—3)/2. It is easy to check that
for o € AFF(Q) : n— (3n—3)/2it is Vk € N 3(12)N3(12)*" = 3(12-3%). Consequently,
12 - 3% is a lower bound on the modulus of the mapping ¢*. This implies that ¢ is wild.
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Both of the mappings o1 and o5 have order 3, and both have fixed points. Thus as a

consequence of Theorem 2.6.7 they are conjugate in ROCWA(Z). It is 0 = oy, where

3”—2’1 if ne

Mm-S if ne

Il if pe

1(
2(
3(
0 e RCWA(Z): n — 332 if nc 0(16
A(
8(

)

Y
Y

)

)

)

i )
It if n e 4(16),
)
)-

(

8

In—72 :
T if neg

2 if e 12(16

—_
D

9

The group G acts on the set {1,2,3,5,6,7,12,24} as E(8) : Fo; (GAP notation, order
821 = 168) and on {17,18,19, 29, 30, 31,48, 60,96} as PI'L(2,8).

Further, results of computational investigations suggest that all orbits under the action
of G on Z are finite, and that G is isomorphic to the free product of two cyclic groups of
order 3.

It is however not even clear that the permutation ¢ indeed has only finite cycles.
Trying to answer this question, we restrict ¢ to the ‘relevant’ connected component of
the transition graph I', 36 and remove vertices which are superfluous in the given context.
‘Removing’ a vertex r(m) means that we take it away, and if there were vertices 1 (m;)
and rs(ms) such that there was an ingoing edge from ri(m;) to r(m) and an outgoing
edge from 7(m) to ro(ms), then we join these two edges to an edge from 71 (my) to ro(ms).
The affine mapping corresponding to the vertex r1(mq) is in turn multiplied by the one
corresponding to r(m).

This yields a permutation which has only finite cycles if and only if the same holds
for o itself. In this way for example we can construct the mapping

3 if pe 3(12),
thif ne 6(12),
ntlif pe 5(36),
n_9 f 24(36
o e RCWA(Z): n 3 if n € 24(36),
2n if n € 12(36) U 21(36),
Mm+2 if ne 2(36)U29(36),
n+1 if ne€14(36) U17(36) U 26(36)
n otherwise,

whose transition graph for modulus 36 is depicted in Figure B.3.1. The numbers in
brackets denote the minimal length of a cycle passing the respective vertex. Cycles which
are not members of an infinite series are not considered.
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B.3 Orbits Under the Action of a Wild rcwa Group

[16] (10] (4]

B
2(36) 5(36) 24(36) z 29(36)

n—9
3

[10] 14(36)

17(36) [

110] 6(36)
3n+6
2
7 30(36) 18(36) 14
3n+6
2

3n+6

Figure B.3.1: Transition graph of ¢’ for modulus 36.
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B.4 A Wild rcwa Mapping Without Infinite Cycles

The mapping ¢’ in the previous section is still relatively complicate. Also rather than in
this particular case, we are interested in the general question whether there are wild rcwa
mappings of Z without infinite cycles at all. Thus in this section we will try to construct
a ‘least complicate’ such mapping.

One possible approach is to take a closer look at the mapping ¢’ and to think about
reasons why this mapping seems to have only finite cycles, and in which way one could
construct a similar, but simpler-structured mapping. These considerations are mostly
heuristic, and describing them in detail would be lengthy. For this reason we give and
discuss only the result in form of the mapping

R 1= T2(4),3(4) - T3(4),8(12) " T4(6),8(12) - N FH——

3(12)
O ) ——> a0 ——> 8<12>ﬁ 11(12)
7(12)

Figure B.4.1: Transition graph of .

84



B.4 A Wild rcwa Mapping Without Infinite Cycles

For reasons of clarity, we have bundled the vertices 2(12), 6(12) and 10(12) into one
vertex 2(4). In order to shed a light on the relation to the transition graph of ¢’ given in
Figure B.3.1, we list which vertices of the one graph correspond to which vertices of the
other:

e 2(4) « 6(36) U 18(36) U 30(36) e 8(12) < 24(36)

e 3(12) < 2(36) e 11(12) « 29(36)

o 4(12) < 12(36) e All other vertices of I',s 35 have turned
out to be not needed and have been

o 7(12) « 17(36) left away.

Due to the loop around the vertex 2(4) it is obvious that x is wild, and checking bijectivity
is straightforward. But why do all cycles of x have finite length?

For r(m) € {2(4),3(12),4(12),7(12),8(12),11(12)} we set ay(m) := Klr(m), and con-
vince ourselves that Oéz( )044(12)048(12)067(12) = 1 and (18(12)0(11(12) = 062(4)_1. Now it is
possible to figure out that except of (-1,-4), the permutation x has only cycles of length
Il =1 (3), and that for any & € Ny the set of integers belonging to cycles of length
l =3k + 1 is given by

1(4)U0(12) U {-2} if k=0, resp.

U ((2(4)\ Te,)\ U (2 n 2(4)”“”)) Y

Further one can see that the sets Cy, k € Ny form a partition of Z\ {—4, —1} into disjoint
nonempty subsets. For this purpose it is in principle sufficient to convince oneself that
for no n € 2(4) the loop around 2(4) is passed infinitely often, that for any & € N there is
an n € 2(4) such that the cycle which n belongs to passes the vertex 2(4) exactly k times
(choose e.g. n := 21 —2) and that passing the loop for one time is compensated by one
‘detour’” 8(12) — 11(12) — 8(12). (Cp. the relations of the affine partial mappings given
above.) Using RCWA we get

Ck =

Ci = 2(24)U3(24) U 18(24) U 19(24) U 4(36) U 28(36) U 8(72) U 56(72),
C, = 6(48)UT(48) U 38(48) U39(48) U 10(72) U 11(72) U 58(72) U 59(72)
U 16(108) U 88(108) U 20(144) U 116(144) U 32(216) U 176(216), and
C; = 14(96) U 15(96) U 78(96) U 79(96) U 22(144) U 23(144) U 118(144) U 119(144)

U 34(216) U 35(216) U 178(216) U 179(216) U 44(288) U 236(288)
U 52(324) U 268(324) U 68(432) U 356(432) U 104(648) U 536(648).
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Further simplifications of the construction of £ do not seem to be possible. It is relatively
easy to see that no vertex can simply be left away. It is further necessary that the modulus
of the mapping has at least two distinct prime divisors. The two prime divisors are needed
to construct a vertex which intersects nontrivially with its image, but is neither subset
nor superset of it. Such a vertex is crucial for the construction. The choice of 6 or 10 as
modulus of the mapping would not leave enough room for the rest of the construction. It
is obvious that these considerations are purely heuristic. They are given exclusively for
illustrational purposes.

In the following we give some cycle length statistics for the permutation . For this
we consider all cycles which intersect nontrivially with the interval [1,12%]:

Cycle length | Number of cycles | Cycle length | Number of cycles
1 6912 = 2% . 33 25 13
4 1728 = 26 . 33 28 7
7 864 = 25 .33 31 3
10 432 =24.33 34 2
13 216 = 23 - 33 37 1
16 108 =22 . 3 40 1
19 54 =21 .33 43 0
22 27 =20.33 46 0

B.5 Concatenation of Finite Cycles

We modify the mapping x a bit: We expand the cyclus 8(12) — 11(12) — 8(12) of its
transition graph given in Figure B.4.1 by inserting a ‘trifurcation’. For example, this may
yield the mapping

Sn+2 if ne 2(4)
ntl if ne 8(12),
2n if ne 4(12),
FEROWAZ): n oo L3 nellliy)
3n+33 if ne 1(12) U9(12),

3n—39 if ne 5(12)
m—4 if ne 0(12)

(12)

n—1 if ne 3(12) U7(12).

The transition graph I'; 12 of £ for modulus 12 looks as follows:
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B.5 Concatenation of Finite Cycles

Int2 2(4) % 4(12 % 8(12)

n+1
%
\ I / n})‘r 3
n |
|
1
‘

1(12) 5(12) 9(12)
2n—4 3n—39
3n+33 3n+33
0(12)

Figure B.5.1: Transition graph of k.

Again for reasons of clarity we have bundled suitable vertices together. It is immediate
to see that -2 is the only fixed point of &, and using RCWA it is easy to check that the
set of numbers belonging to 4-cycles is given by

2(24) U 3(24) U 18(24) U 19(24) U 4(36) U 28(36) U 8(72) U 56(72) U {25, 71,108, 212}
C 2(4) U3(12) U 4(12) U 7(12) U 8(12) U {25, 71, 108, 212}.

Apart from this, £ has a cycle of a given finite length [ > 4 if and only if I = 4 (5) and
[ > 74. However not all cycles of & are finite — more precisely, there is exactly one infinite
cycle. This cycle passes the residue classes (mod 12) acyclically, and the asymptotic
density of the set of its elements is strictly positive. Computational investigations suggest
a density of %. The set of integers belonging to finite cycles seems to have density 1 —% = %.
Provided that these assertions hold, we get a partition of Z into the set of fixed points
(of density 0), the set of integers belonging to 4-cycles (of density ), the set of integers
belonging to cycles of length [ = 4 (5) with [ > 74 (of density 2) and the set of integers
forming the infinite cycle (of density % as well).

We would like to take a closer look at this. Similar as above, we define the affine mappings

Qr(m) = Rlp(m) for

r(m) € {2(4),0(12), 1(12), 3(12), 4(12), 5(12), 7(12), 8(12), 9(12), 11(12) }.

87




Appendix B. Examples

In order to enable the reader to recognize the corresponding paths in the transition graph,
we do not identify equal mappings .,y with one another. We get the following equalities:

L. Qlo(4)Qa(12)8(12) X3(12) = (X2(4)4(12)Xg(12) X7(12) = L.

2. Vk € Ny 040(12)048(12)%(12)a2(4)k+4044(12)048(12)0411(12)041(12)%(12)&8(12)0411(12)%(12)040(12)
CY&;(12)Oézs(u)CY2(4)2044(12)CYE;(12)0411(12)049(12)CY0(12)048(12)CY3(12)042(4)3a4(12)048(12)CY11(12)CV1(12)
040(12)048(12)0411(12)045(12)040(12)048(12)047(12)042(4)2044(12)048(12)0411(12)045(12)040(12)048(12)047(12)
062(4)3064(12)068(12)0611(12)(041(12)(10(12)068(12)0611(12))k+20¢5(12)060(12)048(12)047(12)042(4) Q4(12)
ag(12)11(12)X5(12) = L.

3. Vk € Ny 040(12)08(12)0411(12)041(12)a0(12)048(12)0411(12)049(12)040(12)048(12)613(12)02(4)2614(12)
a8(12)0411(12)049(12)a0(12)048(12)CY3(12)042(4)k+40¢4(12)048(12)0411(12)041(12)040(12)048(12)0411(12)
069(12)040(12)068(12)043(12)(12(4)2044(12)068(12)0411(12)049(12)060(12)048(12)063(12)042(4)3064(12)048(12)
0611(12)041(12)040(12)048(12)0411(12)045(12)040(12)048(12)047(12)042(4)2044(12)048(12)0411(12)045(12)040(12)
048(12)047(12)062(4)3044(12) (048(12)0411(12)041(12)040(12))ka8(12)0411(12)a1(12) = (n = n+ 324).

Here the equalities (1) correspond to the cycles of length 4, the equalities (2) correspond
to the cycles of length | = 4 (5) with [ > 74 and the equalities (3) correspond to the
infinite cycle. In the last-mentioned case the path underlying the given equation is passed
consecutively for different k. If we start the first ‘round” at n = 0, then computational
investigations suggest that the value of k in the rth round equals the valuation of the 2-adic
number r + 3%, 4%. Thus in a certain sense we can say that the infinite cycle is an acyclic
concatenation of finite cycles of lengths I, = 4 (5), where the ‘starting points’ n € 0(324)
are shifted by 324 each time.

B.6 An ‘Erratic’ Cycle Almost Covering Z

It is possible to extend the constructions given in the previous section even further. Look-
ing at the mapping x, we have noticed that the loop around the vertex 2(4) and the pair
of edges connecting the vertices 8(12) and 11(12) act in a certain sense as ‘counterparts’.
With reasonable experience in such constructions it is possible to combine three such
pairs to a permutation w which except of the fixed points 4, 6 and 8 and the transpo-
sitions (—17 — 45), (13 36) and (17 48) consists of only one single cycle. This cycle
passes the residue classes (mod Mod(w) = 36) acyclically, and comprises all integers
n € 7\ {—45,—17,4,6,8,13,17,36,48}. The transition graph of w for modulus 36 is
depicted in Figure B.6.1. For reasons of clarity, we have again bundled suitable vertices
together.
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B.6 An ‘Erratic’ Cycle Almost Covering Z

n—14
3n+11 3
2(36) 9(12) &———— 5(36)
n+14 n+3
1 n+3 2n+14
3
3n=4 4(12) é———— 20(36) &———— 12(36) . 17(36)
n+3
3n—4 3
2 2n—8
22(36) 10(36)
n—=_8 n+9
14(36) 1(36)
n—+4 n+3
3n2—6 124 2n+10
3n—6 6(12)% 24(36) 0(36) ; 13(36)
2
n+3
n+t3 3
n+15 3
15(36) 25(36)
n—11 n+9
26(36) 34(36)
3n—8 2n—5
2 ni13 nT—G 2n—11
In-8 8(12) & 7(36) < 27(30) . 19(36)
n—>6
n=6 T3
n—"7 3
3n+6 nt2

Figure B.6.1: Transition graph of w.
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Note that the support of a cycle of a tame mapping can be the whole of Z (example:
v :n +— n+ 1), but that by Conclusion 2.5.17 it can never be the complement of a
nonempty finite set. An example of a part of the infinite cycle of the permutation w is
(...-19 -24 -7 -8 -14 -22 -18 -30 48 -72 -23 -36 -11 -2 9 -5 -1 3 4 -10
21 -6 -12 0 1 10 12 5 -3 2 16 22 14 18 24 72 25 34 63 19 27 7 20
26 15 ...). It seems that the quotient max{0“"|0 < n < Nmax}/Nmax i N0t bounded.
E.g. for nma.e = 101,102, ...,10° its integral part takes the values 2, 10, 32, 81, 430 resp.
4649. Sometimes integers with small absolute value appear in the cycle ‘relatively far
away from 0’ — e.g. it is 04" = 9 and 0" = 249. The permutation w can be factored
into elements of the set of generators given in Section 2.9: It is

w = 7/5(;1;6) : ng(éﬁ) " V24(36) * V33(36) * V35(36)
- ((1,5,2,11,7,6,29, 26, 35, 27, 16, 31, 30,28, 3,13, 17, 14, 23, 15, 19, 18, 25)
(4,33,34,8,21,22,32)(9,10,20)(12, 24, 36))¥2¢
© T1(12),0(36) * T5(12),12(36) * 79(12),27(36) * T1(4),4(12) * T7(12),2(36) * T11(12),3(36)
* T4(18),0(36) * 76(18),12(36) * 78(18),27(36)»
where ¢, denotes the integral rcwa representation of the symmetric group S,, given
in Theorem 2.1.2. It is much easier to determine this factorization than to obtain the

factorization of the mapping « in Example 2.9.9. The reason for this is simply that w is
balanced, but « is not. From the above factorization we immediately read off that

det(w) = -1+ -14+1414+14+0+0+0+04+04+0+0+0+0+0 = 1.

B.7 An Example for the ‘Connected Component Criterion’

In this section we would like to give a larger example for the application of the ‘wildness
criterion” in Theorem A.11. Let o; be defined as in Section B.3. It is possible to choose
6 € RCWA(Z) such that ¢ and ¢ := o, - ¢ are given by

n if ne 0( 4),
3n+3 :
sn it e 4), 5 if ne 1( 4),
2 - 2n+3 if ne 2(12),
2n+1 if n e 3( 6), .
no— < ‘ resp. n — sn—2 if ne 3(12)uUT7(12),
n-l if ne7(12)
3 ’ 2 if ne 6(12)
. 3 )
n otherwise ]
n+1 if ne10(12),
o —3 if nell(12).

The transition graph I's ;2 depicted in Figure B.7.1 is weakly connected, but not strongly
connected.
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B.7 An Example for the ‘Connected Component Criterion’

3n+3
2
3(12) 1(12)
n—2
n 3n+3 3n+3
3 2 3n+3 2
2

3n+3

w|3
S——
&ﬂ/
—_
(\&}
N—

Figure B.7.1: Transition graph of ¢ for modulus 12.

Thus by Theorem A.11, the mapping & is wild. The vertex 6(12) has outgoing edges only.
A strongly connected component of I'; 12 which has only ingoing edges is formed by the
vertices 1(12), 3(12) and 9(12). It is obvious that any trajectory enters this connected
component after a finite number of steps. It is also easy to see that except of (1 3), the

permutation & does not have nontrivial finite cycles. A ‘typical’ cycle of & is (... 1458
486 162 54 18 6 2 7 5 9 15 13 21 33 51 49 75 73 111 109 165 249 375 ...).

Computational investigations of lots of further examples can be found in the manual of
the GAP package RCWA [Koh05].
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Notation

M; |M]; 0 Set; cardinality of M; empty set. fﬁ;;ﬁl‘;
MUN Union of M and N.
MNON Intersection of M and N.
M\ N Set-theoretic difference of M and N.
UM; "M Union / intersection of the elements of M,

where M is a set of sets.
id Identity mapping.
ol M7 Image of the element x / the set M under the mapping f.
a! 71; M Preimage of the element = / the set M under the mapping f.
f-9, fg Compositum of the mappings f and g;

the mapping f is applied first.
flm Restriction of the mapping f to the set M.
im f Image of the mapping f.
ker ¢ Kernel of the homomorphism ¢.
N Set of positive integers. Hings and
Ny Set of nonnegative integers.
/ Ring of integers.
Ly, Ly (Semi-)localisation of Z at p resp. .
Q Rational field.
F, Field with ¢ elements.
F,[z] Polynomial ring in one variable over F,.
R Euclidean ring all of those residue class rings are finite.
K Quotient field of the ring R.
char(R),
char(K) Characteristic of the ring R / field K.
R* Group of units of the ring R.
Aff(R) Monoid of affine mappings of the ring R.
AFF(R) Group of bijective affine mappings of the ring R.
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Notation

AFF(K) Affine group of the field K.
r(m) Residue class r (mod m).
R(m) Set of representatives for the residue classes (mod m);
we always assume that (r mod m) € R(m).
P(R) Set of prime elements of the ring R.
D, q Prime(-power), if not specified otherwise.
alb ‘a divides b’.
pF(In pFn, but pF { n.
ged Greatest common divisor.
lem Least common multiple.
det(A) Determinant of the matrix A.
exp(z) Function exp: C — C, z — 2™,
ng;f; G Group, unless specified otherwise.
Notation (g1, - - ,gn) Group resp. monoid generated by g1, ..., gn.
|G| Order of the group G.
ord(g) Order of the group element g.
exp(G) Exponent of the group G ( = lem of the orders of the elements).
lg, ] Commutator of g and h; [g, h] = g *h ™ gh.
Z(G) Centre of G.
Ce(H) Centralizer of H in G.
N¢(H) Normalizer of H in G.
Aut(G) Automorphism group of G.
H<d ‘H is normal subgroup of G’.
|G : H| Index of H in G.
Gx H Direct product of the groups G and H.
GxH Semidirect product of the groups G and H (G is normal).
G P Wreath product of the group G with the permutation group P.
Gy Stabilizer of the point x under the action of G.
G Pointwise stabilizer of M under the action of G.
Gimy Setwise stabilizer of M under the action of G.
2% M¢ Orbit of the point x / the set of points M
under the action of G.
supp(g) Support of the permutation g.
supp(G) Support of the permutation group G.
é‘iﬁispsf C, Cyclic group of order n.
D, Dihedral group of degree n (of order 2n).
S,/Sym(M)  Symmetric group of degree n / on the set M.
A, Alternating group of degree n.
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GL(n, q)

General linear group of degree n over F,,.

SL(n, q) Special linear group of degree n over F,.
PSL(n, q) Projective special linear group of degree n over [F,.
I'L(n,q) General semilinear group of degree n over F,.
PT'L(n, q) Projective semilinear group of degree n over F,.
Rewa(R) Monoid of all residue class-wise affine s\fissti‘fﬁiljss'
(rcwa-) mappings of the ring R Mappings,
(— Definition 1.3.3). Croups and
RCWA(R) Group of all bijective rcwa mappings of the ring R
(— Definition 1.3.3).
RCWAT(R) Group of all class-wise order-preserving bijective
rcwa mappings of the (ordered) ring R
(— Definition 1.7.1).
Mod( f) Modulus of the rcwa mapping f
(— Definition 1.1.2).
Mod(G) Modulus of the rewa monoid / of the rewa group G
(— Definition 1.4.2).
Mult( f) Multiplier of the rewa mapping f
(— Definition 1.1.2).
Mult(G) Multiplier of the rewa monoid / of the rewa group G
(— Definition 1.4.2).
Div(f) Divisor of the rcwa mapping f
(— Definition 1.1.2).
Div(G) Divisor of the rewa Monoid / of the rewa group G
(— Definition 1.4.2).
P(f) Prime set of the rewa mapping f
(— Definition 1.1.2).
P(G) Prime set of the rewa monoid / of the rewa group G
(— Definition 1.4.2).
r(m), br(m), ~ Coefficients of an rewa mapping on the residue class 7(m)
Cr(m) (— Definition 1.1.2).
L¢m Transition graph of the rcwa mapping f for modulus m
(— Definition 1.6.1).
H(M) Natural density of M C R
(— Definition A.1).
img (f) Image density of the rcwa mapping f
(— Definition A.4).
e Restriction monomorphism associated to the rcwa mapping f

(— Definition 2.3.1).
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Notation

P

op

Vr(m)s Sr(m);
Try(m1),ra2(ma)
v,q, T

Partition of the ring R into finitely many residue classes,

unless specified otherwise.

Permutation induced by the tame rcwa mapping o
on the respected partition P

(— Definition 2.5.2).

Permutation group induced by the tame rcwa group G
on the respected partition P

(— Definition 2.5.2).

Tame rcwa group which respects the partition P
and acts on it as full symmetric group

(— Definition 2.5.2).

Determinant of the rewa mapping 0 € RCWA™T(Z)

(— Definition 2.11.1).

Residue class r(m) with fixed representative r

(— Definition 2.11.3),

in Section 2.12 additionally with signed modulus

(— Definition 2.12.3).

Mapping 6 : [r/m]+— r/m —1/2

(— Definition 2.11.4).
Sign of the rewa mapping
(— Definition 2.12.1).

Mapping ¢ : [r/m] +— et o(fr/ml)/2

(— Definition 2.12.4).

Class shift, class reflection, class transposition

(— Definition 2.9.1).

Mapping v:n+—n+1,¢:n— —nresp. 7:n+—n+ (—1)

(— Definition 2.9.1).

f

n
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