
Browse

(Version 0.9)

Thomas Breuer
Frank L übeck

Thomas Breuer — Email: Thomas.Breuer@Math.RWTH-Aachen.De
— Homepage:http://www.math.rwth-aachen.de/˜Thomas.Breuer

Frank L übeck — Email: Frank.Luebeck@Math.RWTH-Aachen.De
— Homepage:http://www.math.rwth-aachen.de/˜Frank.Luebeck

mailto://Thomas.Breuer@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Thomas.Breuer
mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck

Browse 2

Copyright

c© 2006 by Thomas Breuer and Frank Lübeck
We adopt the copyright regulations ofGAP as detailed in the copyright notice in theGAP manual.

Contents

1 Introduction and Overview 6
1.1 Introduction . 6
1.2 Overview . 6

1.2.1 Thencurses interface . 6
1.2.2 Applications ofncurses . 7
1.2.3 The interface to browse two-dimensional arrays. 7
1.2.4 Applications of the generic functionNCurses.BrowseGeneric 7

2 Interface to the ncurses Library 8
2.1 Thencurses Library . 8

2.1.1 Setting the terminal. 8
2.1.2 Manipulating windows. 9
2.1.3 Manipulating panels . 10
2.1.4 Getting keyboard input. 11
2.1.5 Writing to windows. 11
2.1.6 Line drawing characters. 12
2.1.7 Text attributes and colors. 13
2.1.8 Miscellaneous function. 14

2.2 Thencurses GAP functions . 14
2.2.1 NCurses.ColorAttr . 14
2.2.2 NCurses.SetTerm. 15
2.2.3 NCurses.IsAttributeLine. 15
2.2.4 NCurses.ConcatenationAttributeLines. 16
2.2.5 NCurses.RepeatedAttributeLine. 16
2.2.6 NCurses.PutLine. 17
2.2.7 NCurses.WidthAttributeLine. 17
2.2.8 NCurses.Grid. 17
2.2.9 NCurses.WBorder . 18
2.2.10 NCurses.SaveWin . 18

3 Utilities using ncurses 19
3.1 ncurses utilities . 19

3.1.1 NCurses.Alert. 19
3.1.2 NCurses.Select. 20
3.1.3 NCurses.GetLineFromUser. 21
3.1.4 NCurses.Pager. 21

3

Browse 4

3.1.5 Selection of help matches. 22
3.2 A Demo Function. 22

3.2.1 NCurses.Demo. 22

4 Browsing Tables inGAP usingncurses – The User Interface 23
4.1 Features Supported by the FunctionNCurses.BrowseGeneric 24
4.2 Data Structures used byNCurses.BrowseGeneric 25

4.2.1 BrowseData.IsBrowseTableCellData. 25
4.2.2 BrowseData.BlockEntry. 26
4.2.3 BrowseData.IsBrowseTable. 26

4.3 The FunctionNCurses.BrowseGeneric . 29
4.3.1 NCurses.BrowseGeneric. 29

5 Browsing Tables inGAP usingncurses – The Programming Interface 30
5.1 Navigation Steps in Browse Tables. 30
5.2 Modes in Browse Tables. 31
5.3 Browse Applications . 32
5.4 Predefined Browse Functionalities. 32

5.4.1 BrowseData. 32
5.4.2 BrowseData.SetReplay. 37
5.4.3 BrowseData.AlertWithReplay. 38
5.4.4 BrowseData.actions.ShowHelp. 38
5.4.5 BrowseData.actions.SaveWindow. 39
5.4.6 BrowseData.actions.QuitMode. 39
5.4.7 BrowseData.actions.Error. 39

6 Examples of Applications based onNCurses.BrowseGeneric 40
6.1 The OperationBrowse . 40

6.1.1 Browse . 40
6.2 Character Table Display. 40

6.2.1 Browse (for character tables). 41
6.3 Table of Marks Display. 42

6.3.1 Browse (for tables of marks). 42
6.4 Table of Contents ofAtlasRep . 43

6.4.1 BrowseAtlasInfo . 43
6.5 Access toGAP Manuals – a Variant . 44

6.5.1 BrowseGapManuals. 44
6.6 Overview of theGAP Bibliography. 45

6.6.1 BrowseBibliography . 46
6.7 A Puzzle. 46

6.7.1 BrowsePuzzle. 47
6.8 Peg Solitaire. 47

6.8.1 PegSolitaire. 48
6.9 Rubik’s Cube . 49

6.9.1 BrowseRubiksCube. 49
6.10 Changing Sides. 50

6.10.1 BrowseChangeSides. 50

Browse 5

6.11 Sudoku . 51
6.11.1 Sudoku.Init . 51
6.11.2 Sudoku.Place. 52
6.11.3 Sudoku.RandomGame. 52
6.11.4 Sudoku.SimpleDisplay. 53
6.11.5 Sudoku.OneSolution. 53
6.11.6 Sudoku.UniqueSolution. 54
6.11.7 PlaySudoku. 54
6.11.8 Sudoku.HTMLGame. 55

Chapter 1

Introduction and Overview

1.1 Introduction

The motivation of the packageBrowse was to provide better functionality for displaying two-
dimensional arrays of data (e.g., character tables): moving through the data without loosing row and
column labels, searching for text, displaying extra information, hiding information, allowing interac-
tive user input, ...

We wanted to achieve this by using the capabilities of the terminal emulations in whichGAP is
running, and not by some external graphical user interface. For this we have chosen to use the widely
availableC-library ncurses, see [NCu]. It contains functions to find out terminal capabilities, to
change properties of terminals, to place text, to handle several windows with overlapping, ... To use
these functions the terminal is switched to avisual modeso that the display of the non-visual mode of
your terminal in whichGAP is running is not clobbered.

Browse has now three levels of functionality:

A low level interface toncurses This may be interesting for all kinds of applications which want
to display text with some markup including colors, maybe in several windows, using the avail-
able capabilities of a terminal.

A medium level interface to a generic functionNCurses.BrowseGeneric (4.3.1) This is for
displaying two-dimensional arrays of data, handles labels for rows and columns, searching,
sorting, binding keys to actions, ... Look here, if you want to implement such applications for
further kinds of data.

Applications of these interfacesWe provide some applications of thencurses interface and of the
genericNCurses.BrowseGeneric (4.3.1) function. These may be interesting for end users, and
also as examples for programmers of further applications. This includes (of course) a method
for browsing through character tables, functions for browsing through data collections, several
games, and an interface for demos.

Users interested only in these applications should perhaps just tryNCurses.Demo().

1.2 Overview

1.2.1 The ncurses interface

6

Browse 7

Chapter2 describesGAP’s interface to thencurses C-library. The importedC-functions are shortly
explained, but for further details we refer to the documentation of that library. There are also a
few utility functions onGAP level, such asNCurses.SetTerm (2.2.2), which simplify the use of the
library.

The concept of anattribute line, seeNCurses.IsAttributeLine (2.2.3), helps to deal with text
with markup for its display in a terminal window.

This chapter is for users who want to write their own applications ofncurses.

1.2.2 Applications of ncurses

In Chapter3 we describe some interactive applications of thencurses interface. For example, there
is NCurses.Select (3.1.2) for asking a user to choose one or several of a given list of items. There
is also a demo functionNCurses.Demo (3.2.1) which we use to demonstrate features of theBrowse
package, but it may be interesting for other kinds of demos as well.

1.2.3 The interface to browse two-dimensional arrays

Chapters4 and5 describe the interface to a generic functionNCurses.BrowseGeneric (4.3.1) which
can be used for an interactive display of two-dimensional arrays of data. The first of these covers the
basic functionality which may be sufficient for many applications and the second gives more technical
details. With interactive display we mean that it is not only possible to scroll through the data, but one
can search for strings, sort by rows or columns, select entries, bind arbitrary actions to keys, ask for
help, and more.

1.2.4 Applications of the generic functionNCurses.BrowseGeneric

In Chapter6 we describe several applications which are using the genericNCurses.BrowseGeneric
(4.3.1) interface introduced before. They are provided as prototype applications and so we include
some implementation remarks in their documentation.

Users who just want to use these applications hopefully do not need to read thisBrowse manual,
all applications are coming with built-in help windows.

There are different kinds of applications. First, there are methods for browsing through character
tables and tables of marks (our original motivation for this package). Then there are applications for
browsing through data collections, e.g., the data available through theAtlasRep package, theGAP
bibliography or the sections of theGAP manuals. Finally, there are several games like Sam Loyd’s
fifteen puzzle (generalized), peg solitaire, and Sudoku (including functions to create new puzzles and
to solve puzzles).

Chapter 2

Interface to the ncurses Library

In this chapter we describe theGAP interface to theGNU curses/ncurses C-library. This library
contains routines to manipulate the contents of terminal windows. It allows one to write programs
which should work on a wide variety of terminal emulations with different sets of capabilities.

This technical chapter is intended for readers who want to program new applications using the
ncurses functionality. If you are only interested in the functionNCurses.BrowseGeneric (4.3.1)
from this package or some of its applications you can skip this chapter.

Detailed documentation of thencurses library is probably available in your operating system (try
man ncurses) and from the web (see for example [NCu]). Here, we only give short reminders about
the functions provided in theGAP interface and explain how to use theGAP functions.

2.1 The ncurses Library

In this section we list the functions from the GNUncurses library and itspanel extension which are
made available inGAP via theBrowse package. See the following section2.2 for explanations how
to use these functions from withinGAP.

The basic objects to manipulate are calledwindows, they correspond to rectangular regions of the
terminal screen. Windows can overlap butncurses cannot handle this for the display. Therefore
windows can be wrapped inpanels, they provide a display depth for windows and it is possible to
move panels to the top and bottom of the display or to hide a panel.

We will not import all the functions of thencurses library to GAP. For example, there are many
pairs of functions with the same name except for a leadingw (like move andwmove for moving the
cursor in a window). Here, we only import the versions withw, which get a window as first argument.
The functions withoutw are for thencurses standard screen windowstdscr which is available as
window 0 in GAP. Similarly, there are functions with the same name except for an extran (like
waddstr andwaddnstr for placing a string into a window). Here, we only import the safer functions
with n which get the number of characters to write as argument. (More convenient functions are then
implemented on theGAP level.)

2.1.1 Setting the terminal

We first list flags for setting the basic behavior of a terminal. Withsavetty/resetty a setting can be
stored and recovered.

savetty() This stores the current setting of the terminal in a buffer.

8

Browse 9

resetty() This resets the terminal to what was stored in the last call tosavetty.

cbreak()/nocbreak() In cbreak mode each input character from a terminal is directly for-
warded to the application (but seekeypad). With nocbreak this only happens after a newline
or return is typed.

keypad(win, bool) If set totrue some special input like arrow or function keys can be read as
single characters from the input (such keys actually generate certain sequences of characters),
see also2.1.4. (Thewin argument is irrelevant.)

echo() /noecho() This determines if input characters are automatically echoed by the terminal at
the current cursor position.

curs set(vis) This determines the visibility of the cursor. The argumentvis=0 makes the cursor
invisible. Withvis=1 it becomes visible; some terminals allow also higher levels of visibility.

wtimeout(win, delay) Heredelay determines a timeout in milliseconds for reading charac-
ters from the input of a window. Negative values mean infinity, that is a blocking read.

nl() /nonl() With nl a return on input is translated to a newline character and a newline on output
is interpreted as return and linefeed.

intrflush(win, bool) This flag determines if after an interrupt pending output to the terminal
is flushed. (Thewin argument is irrelevant.)

idlok(win, bool) With true the library tries to use a hardware line insertion functionality (in
particular for scrolling).

scrollok(win, bool) If set totrue moving the cursor down from the last line of a window
causes scrolling of the whole window, otherwise nothing happens.

leaveok(win, bool) If set to true a refresh of the window leaves the cursor at its current
location, otherwise this is not guaranteed.

clearok(win, bool) If set totrue the next refresh of the window will clear the screen com-
pletely and redraw everything.

immedok(win, bool) If set to true all changes of the window will automatically also call a
wrefresh.

raw() /noraw() Similar to cbreak, usually not needed (see thencurses documentation for de-
tails).

2.1.2 Manipulating windows

In ncurses an arbitrary number of windows which correspond to rectangular regions (maybe overlap-
ping) of the screen can be handled. You should always delete windows which are no longer needed.
To get a proper display of overlapping windows (which may occur by recursively called functions
using this library) we suggest that you always wrap windows in panels, see2.1.3.

For functions which involve coordinates recall that the upper left corner of the screen or internally
of any window has the coordinates (0,0).

Browse 10

newwin(nlines, ncols, y, x) This creates a new window whose upper left corner has the
coordinates (y,x) on the screen and hasnlines lines andncols columns, if this is possible.
The argumentsnlines andncols can be zero, then their maximal possible values are assumed.

delwin(win) Deletes a window.

mvwin(win, y, x) Moves the upper left corner of the window to the given coordinates, if the
window still fits on the screen. With panels don’t use this function, but usemove panel men-
tioned below.

wrefresh(win) Writing to a window only changes some internal buffers, this function copies the
window content to the actual display screen. You don’t need this function if you wrap your
windows in panels, useupdate panels anddoupdate instead.

doupdate() Use this function to update the content of your display screen to the current content
of all windows. If your terminal is not yet in visual mode this function changes to visual mode.

endwin() Use this function to leave the visual mode of your terminal.

getbegyx(win) Get the coordinates of the upper left corner of a window on the screen.

getmaxyx(win) Get the number of lines and columns of a window.

2.1.3 Manipulating panels

Wrap windows in panels to get a proper handling of overlapping windows on the display. Don’t forget
to delete a panel before deleting the corresponding window.

new panel(win) Create a panel for a window.

del panel(pan) Delete a panel.

update panels() Use this function to copy changes of windows and panels to a screen buffer.
Then calldoupdate() to update the display screen.

move panel(pan, y, x) Move top left corner of a panel wrapped window to coordinates (y,x)
if possible.

hide panel(pan) /show panel(pan) Hide or show, respectively, the content of a panel on the
display screen.

top panel(pan) /bottom panel(pan) Move a panel to the top or bottom of all panels, re-
spectively.

panel below(pan) /panel above(pan) Return the panel directly below or above the given
one, respectively.

Browse 11

2.1.4 Getting keyboard input

If you want to read input from the user first adjust the terminal settings ofcbreak, keypad, echo,
wtimeout andcurs set to your needs, see2.1.1. The basic functions are as follows.

wgetch(win) Reads one character from user input (returned as integer). Ifwtimeout was set with
a positivedelay then the function returnsfalse if there was no input fordelay milliseconds.
Note that innocbreak mode typed characters reach the application only after typing a return.
If the keypad flag is set totrue some special keys can be read like single characters; the keys
are explained below. (Note that there is only one input queue for all windows.)

ungetch(char) Puts back the characterchar on the input queue.

Some terminals allow one to read special keys like one character, we import some of the symbolic
names of such keys intoGAP. You can check for such characters by comparing with the components
of the recordNCurses.keys, these are

UP/DOWN/LEFT/RIGHT the arrow keys

PPAGE/NPAGEthe page up and page down keys

HOME/END the home and end keys

BACKSPACE/DC the backspace and delete keys

IC the insert key

ENTER the enter key

F1/F2/../F24 the function keys

MOUSEa pseudo key to detect mouse events

A1/A3/B2/C1/C3 the keys around the arrow keys on a num pad

It can happen that on a specific keyboard there is no key for some of these. Also, not all terminals can
interpret all of these keys. You can check this with the function

has key(key) Checks if the special keykey is recognized by the terminal.

2.1.5 Writing to windows

The display of text inncurses windows has two aspects. The first is to get actual characters on the
screen. The second is to specify attributes which influence the display, for example normal or bold
fonts or colors. This subsection is for the first aspect. Possible attributes are explained below in2.1.7.

wmove(win, y, x) Moves the cursor to position (y,x), recall that the coordinates are zero based,
(0,0) being the top left corner.

waddnstr(win, str, len) Writes the stringstr to the window starting from the current cur-
sor position. Writes at mostlen characters. At end of line the cursor moves to the beginning of
next line. The behavior at the end of the window depends on the setting ofscrollok, see2.1.1.

Browse 12

waddch(win, char) Writes a character to the window at the current cursor position and moves
the cursor on. The characterchar is given as integer and can include attribute information.

wborder(win, charlist) Draws a border around the window. Ifcharlist is a plain
list of eight GAP characters these are taken for left/right/top/bottom sides and top-
left/top-right/bottom-left/bottom-right corners. Otherwise default characters are used. (See
NCurses.WBorder (2.2.9) for a more user friendly interface.)

wvline(win, char, len) Writes a vertical line of lengthlen (or as long as fitting into the
window) starting from the current cursor position to the bottom, using the characterchar. If
char=0 the default character is used.

whline(win, char, len) Same aswvline but for horizontal lines starting from the cursor
position to the right.

werase(win) Deletes all characters in the window.

wclear(win) Like werase, but also callsclearok.

wclrtobot(win) Deletes all characters from cursor position to the right and bottom.

wclrtoeol(win) Deletes all characters from cursor position to end of line.

winch(win) Returns the character at current cursor position, as integer and including color and
attribute information.

getyx(win) Returns the current cursor position.

waddstr(win, str) Delegates towaddnstr(win, str, Length(str)).

2.1.6 Line drawing characters

For drawing lines and grids in a terminal window you should use some ”virtual” characters which
are available as components of the recordNCurses.lineDraw. On some terminals these are nicely
displayed as proper lines (on others they are simulated by ASCII characters). These are:

BLOCKsolid block

BOARDboard of squares

BTEE/LTEE/RTEE/TTEE bottom/left/right/top tee

BULLET bullet

CKBOARDchecker board

DARROW/LARROW/RARROW/UARROWdown/left/right/up arrow

DEGREEdegree symbol

DIAMONDdiamond

GEQUALgreater than or equal

Browse 13

HLINE/VLINE horizontal/vertical line

LANTERNlantern symbol

LEQUAL less than or equal

LLCORNER/LRCORNER/ULCORNER/URCORNERlower left/lower right/upper left/upper right cor-
ner

NEQUALnot equal

PI letter pi

PLMINUS plus-minus

PLUS crossing lines like a plus

S1/S3/S7/S9 scan line 1/3/7/9

STERLING pound sterling

2.1.7 Text attributes and colors

In addition to the actual characters to be written to the screen the way they are displayed can be
changed by additionalattributes. (There should be no danger to mix up this notion of attributes with
the one introduced in (Reference: Attributes).) The available attributes are stored in the record
NCurses.attrs, they are

NORMALnormal display with no extra attributes.

STANDOUTdisplays text in the best highlighting mode of the terminal.

UNDERLINEunderlines the text.

REVERSEdisplay in reverse video by exchanging the foreground and background color.

BLINK displays the text blinking.

DIM displays the text half bright.

BOLD displays the text in a bold font.

Note that not all of these work with all types of terminals, or some may cause the same display.
Furthermore, ifNCurses.attrs.has colors is true there is a listNCurses.attrs.ColorPairs
of attributes to set the foreground and background color. These should be accessed indirectly with
NCurses.ColorAttr (2.2.1). Attributes can be combined by adding their values (internally, they are
represented by integers). They can also be added to the integer representing a character for use with
waddch.

The library functions for setting attributes are:

wattrset(win, attr) This sets the default (combined) attributes for a window which is added
to all characters written to it; usingNCurses.attrs.NORMAL as attribute is a reset.

Browse 14

wattron(win, attr) /wattroff(win, attr) This sets or unsets one or some default at-
tributes of the window without changing the others.

wattr get(win) This returns the current default attribute and default color pair of a window.

wbkgdset(win, attr) This is similar towattrset but you can also add a character toattr
which is used as default instead of blanks.

wbkgd(win, attr) This function changes the attributes for all characters in the window toattr,
also used for further characters written to that window.

2.1.8 Miscellaneous function

We also provide thencurses functionmnap(msec) which is a sleep formsec milliseconds.

2.2 The ncurses GAP functions

The functions of thencurses library are used withinGAP very similarly to theirC equivalents. The
functions are available as components of a recordNCurses with the name of theC function (e.g.,
NCurses.newwin).

In GAP thencurses windows are accessed via integers (as returned byNCurses.newwin). The
standard screenstdscr from thencurses library is available as window number0. But this should
not be used; to allow recursive applications ofncurses always create a new window, wrap it in a
panel and delete both when they are no longer needed.

Each window can be wrapped in one panel which is accessed by the same integer. (Window0
cannot be used with a panel.)

Coordinates in windows are the same zero based integers as in the correspondingC functions. The
interface of functions whichreturncoordinates is slightly different from theC version; they just return
lists of integers and you just give the window as argument, e.g.,NCurses.getmaxyx(win) returns a
list [nrows, ncols] of two integers.

Characters to be written to a window can be given either asGAP characters like’a’ or as integers
like INT CHAR(’a’) = 97. If you use the integer version you can also add attributes including color
settings to it for use withNCurses.waddch.

When writing an application decide about an appropriate terminal setting for your vi-
sual mode windows, see2.1.1 and the utility functionNCurses.SetTerm (2.2.2) below. Use
NCurses.savetty() andNCurses.resetty() to save and restore the previous setting.

We also provide some higher level functionality for displaying marked up text, see
NCurses.PutLine (2.2.6) andNCurses.IsAttributeLine (2.2.3).

We now describe some utility functions for putting text on a terminal window.

2.2.1 NCurses.ColorAttr

♦ NCurses.ColorAttr(fgcolor, bgcolor) (function)

♦ NCurses.attrs.has colors (global variable)

Returns: an attribute for setting the foreground and background color to be used on a terminal
window (it is aGAP integer).

The return value can be used like any other attribute as described in2.1.7. The arguments
fgcolor andbgcolor can be given as strings, allowed are those in["black", "red", "green",

Browse 15

"yellow", "blue", "magenta", "cyan", "white"]. These are the default foreground colors 0
to 7 on ANSI terminals. Alternatively, the numbers 0 to 7 can be used directly as arguments.

Note that terminals can be configured in a way such that these named colors are not the colors
which are actually displayed.

The variableNCurses.attrs.has colors (2.2.1) is set totrue or false if the terminal supports
colors or not, respectively. If a terminal does not support colors thenNCurses.ColorAttr always
returnsNCurses.attrs.NORMAL.

For an attribute setting the foreground color with the default background color of the terminal use
-1 asbgcolor or the same asfgcolor.

Example
gap> win := NCurses.newwin(0,0,0,0);; pan := NCurses.new_panel(win);;
gap> defc := NCurses.defaultColors;;
gap> NCurses.wmove(win, 0, 0);;
gap> for a in defc do for b in defc do
> NCurses.wattrset(win, NCurses.ColorAttr(a, b));
> NCurses.waddstr(win, Concatenation(a,"/",b,"\t"));
> od; od;
gap> NCurses.update_panels();; NCurses.doupdate();;
gap> NCurses.napms(5000); # show for 5 seconds
gap> NCurses.endwin();; NCurses.del_panel(pan);; NCurses.delwin(win);;

2.2.2 NCurses.SetTerm

♦ NCurses.SetTerm([record]) (function)

This function provides a unified interface to the various terminal setting functions ofncurses
listed in 2.1.1. The optional argument is a record with components which are assigned totrue or
false. Recognised components are:cbreak, echo, nl, intrflush, leaveok, scrollok, keypad,
raw (with the obvious meaning if set totrue or false, respectively).

The default, if no argument is given, isrec(cbreak := true, echo := false, nl :=
false, intrflush := false, leaveok := true, scrollok := false, keypad := true).
(This is a useful setting for many applications.) If there is an argumentrecord, then the given
components overwrite the corresponding defaults.

2.2.3 NCurses.IsAttributeLine

♦ NCurses.IsAttributeLine(obj) (function)

Returns: true if the argument describes a string with attributes.
An attribute linedescribes a string with attributes. It is represented by either a string or a dense

list of strings, integers, and Booleans immediately following integers, where at least one list entry
mustnot be a string. (The reason is that we want to be able to distinguish between an attribute line
and a list of such lines, and that the case of plain strings is perhaps the most usual one, so we do not
want to force wrapping each string in a list.) The integers denote attribute values such as color or font
information, the Booleans denote that the attribute given by the preceding integer is set or reset.

If an integer is not followed by a Boolean then it is used as the attribute for the following charac-
ters, that is it overwrites all previously set attributes. Note that in some applications the variant with
explicit Boolean values is preferable, because such a line can nicely be highlighted just by prepending
aNCurses.attrs.STANDOUT attribute.

Browse 16

For an overview of attributes, see2.1.7.
Example

gap> NCurses.IsAttributeLine("abc");
true
gap> NCurses.IsAttributeLine(["abc", "def"]);
false
gap> NCurses.IsAttributeLine([NCurses.attrs.UNDERLINE, true, "abc"]);
true
gap> NCurses.IsAttributeLine(""); NCurses.IsAttributeLine([]);
true
false

The empty stringis an attribute line whereas theempty list (which is not in IsStringRep,
seeIsStringRep (Reference: IsStringRep)) is not an attribute line.

2.2.4 NCurses.ConcatenationAttributeLines

♦ NCurses.ConcatenationAttributeLines(lines[, keep]) (function)

Returns: an attribute line.
For a list lines of attribute lines (see NCurses.IsAttributeLine (2.2.3)),

NCurses.ConcatenationAttributeLines returns the attribute line obtained by concatenat-
ing the attribute lines inlines.

If the optional argumentkeep is true then attributes set in an entry oflines are valid also for the
following entries oflines. Otherwise (in particular if there is no second argument) the attributes are
reset toNCurses.attrs.NORMAL between the entries oflines.

Example
gap> plain_str:= "hello";;
gap> with_attr:= [NCurses.attrs.BOLD, "bold"];;
gap> NCurses.ConcatenationAttributeLines([plain_str, plain_str]);
"hellohello"
gap> NCurses.ConcatenationAttributeLines([plain_str, with_attr]);
["hello", 2097152, "bold"]
gap> NCurses.ConcatenationAttributeLines([with_attr, plain_str]);
[2097152, "bold", 0, "hello"]
gap> NCurses.ConcatenationAttributeLines([with_attr, with_attr]);
[2097152, "bold", 0, 2097152, "bold"]
gap> NCurses.ConcatenationAttributeLines([with_attr, with_attr], true);
[2097152, "bold", 2097152, "bold"]

2.2.5 NCurses.RepeatedAttributeLine

♦ NCurses.RepeatedAttributeLine(line, width) (function)

Returns: an attribute line.
For an attribute lineline (see NCurses.IsAttributeLine (2.2.3)) and a positive integer

width, NCurses.RepeatedAttributeLine returns an attribute line withwidth displayed charac-
ters (seeNCurses.WidthAttributeLine (2.2.7)) that is obtained by concatenating sufficiently many
copies ofline and cutting off a tail if applicable.

Example
gap> NCurses.RepeatedAttributeLine("12345", 23);
"12345123451234512345123"

Browse 17

gap> NCurses.RepeatedAttributeLine([NCurses.attrs.BOLD, "12345"], 13);
[2097152, "12345", 0, 2097152, "12345", 0, 2097152, "123"]

2.2.6 NCurses.PutLine

♦ NCurses.PutLine(win, y, x, lines[, skip]) (function)

Returns: true if lines were written, otherwisefalse.
The argumentlines can be a list of attribute lines (seeNCurses.IsAttributeLine (2.2.3)) or a

single attribute line. This function writes the attribute lines to windowwin at and below of positiony,
x.

If the argumentskip is given, it must be a nonnegative integer. In that case the firstskip charac-
ters of each given line are not written to the window (but the attributes are).

2.2.7 NCurses.WidthAttributeLine

♦ NCurses.WidthAttributeLine(line) (function)

Returns: number of displayed characters in an attribute line.
For an attribute lineline (seeNCurses.IsAttributeLine (2.2.3)), the function returns the num-

ber of displayed characters ofline.

Example
gap> NCurses.WidthAttributeLine("abcde");
5
gap> NCurses.WidthAttributeLine([NCurses.attrs.BOLD, "abc",
> NCurses.attrs.NORMAL, "de"]);
5

2.2.8 NCurses.Grid

♦ NCurses.Grid(win, trow, brow, lcol, rcol, rowinds, colinds) (function)

This function draws a grid of horizontal and vertical lines on the windowwin, using the line
drawing characters explained in2.1.6. The given arguments specify the top and bottom row of the
grid, its left and right column, and lists of row and column numbers where lines should be drawn.

Example
gap> fun := function() local win, pan;
> win := NCurses.newwin(0,0,0,0);
> pan := NCurses.new_panel(win);
> NCurses.Grid(win, 2, 11, 5, 22, [5, 6], [13, 14]);
> NCurses.PutLine(win, 12, 0, "Press <Enter> to quit");
> NCurses.update_panels(); NCurses.doupdate();
> NCurses.wgetch(win);
> NCurses.endwin();
> NCurses.del_panel(pan); NCurses.delwin(win);
> end;;
gap> fun();

Browse 18

2.2.9 NCurses.WBorder

♦ NCurses.WBorder(win[, chars]) (function)

This is a convenient interface to thencurses function wborder. It draws a border around the
window win. If no second argument is given the default line drawing characters are used, see2.1.6.
Otherwise,chars must be a list ofGAP characters or integers specifying characters, possibly with
attributes. Ifchars has length 8 the characters are used for the left/right/top/bottom sides and top-
left/top-right/bottom-left/bottom-right corners. Ifchars contains 2 characters the first is used for
the sides and the second for all corners. Ifchars contains just one character it is used for all sides
including the corners.

2.2.10 NCurses.SaveWin

♦ NCurses.SaveWin(win) (function)

♦ NCurses.StringsSaveWin(cont) (function)

♦ NCurses.RestoreWin(win, cont) (function)

♦ NCurses.ShowSaveWin(cont) (function)

Returns: a GAP object describing the contents of a window.
These functions can be used to save and restore the contents ofncurses windows.

NCurses.SaveWin returns a list[nrows, ncols, chars] giving the number of rows, number of
columns, and a list of integers describing the content of windowwin. The integers in the latter contain
the displayed characters plus the attributes for the display.

The function NCurses.StringsSaveWin translates datacont in form of the output of
NCurses.SaveWin to a list of nrows strings giving the text of the rows of the saved window, and
ignoring the attributes. You can view the result withNCurses.Pager (3.1.4).

The argumentcont for NCurses.RestoreWin must be of the same format as the output of
NCurses.SaveWin. The content of the saved window is copied to the windowwin, starting from
the top-left corner as much as it fits.

The utility NCurses.ShowSaveWin can be used to display the output ofNCurses.SaveWin (as
much of the top-left corner as fits on the screen).

Chapter 3

Utilities using ncurses

In this chapter we describe the usage of some example applications of thencurses interface provided
by theBrowse package. They may be of interest by themselves, or they may be used as utility functions
within larger applications.

3.1 ncurses utilities

If you call the functions NCurses.Alert (3.1.1), NCurses.Select (3.1.2),
NCurses.GetLineFromUser (3.1.3), orNCurses.Pager (3.1.4) from anotherncurses application in
visual mode, you should refresh the windows that are still open, by callingNCurses.update panels
and NCurses.doupdate afterwards, see Section2.1.3 and 2.1.2. Also, if the cursor shall be
hidden after that, you should callcurs set with argument0, see Section2.1.1, since the cursor is
automatically made visible inNCurses.endwin.

3.1.1 NCurses.Alert

♦ NCurses.Alert(messages, timeout[, attrs]) (function)

Returns: the integer corresponding to the character entered, orfail.
In visual mode,Print cannot be used for messages. An alternative is given byNCurses.Alert.
Let messages be either an attribute line or a nonempty list of attribute lines, andtimeout be a

nonnegative integer.NCurses.Alert showsmessages in a bordered box in the middle of the screen.
If timeout is zero then the box is closed after any user input, and the integer corresponding to

the entered key is returned. Iftimeout is a positive numbern, say, then the box is closed aftern
milliseconds, andfail is returned.

If the optional argumentattrs is given, it must be an integer representing attributes such as
the components ofNCurses.attrs (see Section2.1.7) or the return value ofNCurses.ColorAttr
(2.2.1); these attributes are used for the border of the box. The default isNCurses.attrs.NORMAL.

Example
gap> NCurses.Alert("Hello world!", 1000);
fail
gap> NCurses.Alert(["Hello world!",
> ["Hello ", NCurses.attrs.BOLD, "bold!"]], 1500,
> NCurses.ColorAttr("red", -1) + NCurses.attrs.BOLD);
fail

19

Browse 20

3.1.2 NCurses.Select

♦ NCurses.Select(poss[, single[, none]]) (function)

Returns: Position or list of positions, orfalse.
This function allows the user to select one or several items from a given list. In the simplest case

poss is a list of attribute lines (seeNCurses.IsAttributeLine (2.2.3)), each of which should fit on
one line. ThenNCurses.Select displays these lines and lets the user browse through them. After
pressing the RETURN key the index of the highlighted item is returned. Note that attributes in your
lines should be switched on and off separately bytrue/false entries such that the lines can be nicely
highlighted.

The optional argumentsingle must betrue (default) orfalse. In the second case, an arbitrary
number of items can be marked and the function returns the list of their indices.

If single is true a third argumentnone can be given. If it istrue then it is possible to leave the
selection without choosing an item, in this casefalse is returned.

More details can be given to the function by giving a record as argumentposs. It can have the
following components:

items The list of attribute lines as described above.

single Boolean with the same meaning as the optional argumentsingle.

none Boolean with the same meaning as the optional argumentnone.

size The size of the window like the first two arguments ofNCurses.newwin (default is[0, 0],
as big as possible).

begin Top-left corner of the window like the last two arguments ofNCurses.newwin (default is
[0, 0], top-left of the screen).

attribute An attribute used for the display of the window (default isNCurses.attrs.NORMAL).

border Set totrue if the window should be displayed with a border (default isfalse).

header An attribute line used as header line (the default depends on the settings ofsingle and
none).

hint An attribute line used as hint in the last line of the window (the default depends on the settings
of single andnone).

Example
gap> index := NCurses.Select(["Apples", "Pears", "Oranges"]);
gap> index := NCurses.Select(rec(
> items := ["Apples", "Pears", "Oranges"],
> single := false,
> border := true,
> begin := [5, 5],
> size := [8, 60],
> header := "Choose fruits",
> attribute := NCurses.ColorAttr("yellow","red")));

Browse 21

3.1.3 NCurses.GetLineFromUser

♦ NCurses.GetLineFromUser(pre) (function)

Returns: User input as string.
This function can be used to get an input string from the user. It opens a one line window and

writes the given stringpre into it. Then it waits for user input. After hitting the RETURN key the
typed line is returned as a string toGAP. If the user exits via hitting the ESC key instead of hitting
the RETURN key, the function returnsfalse. (The ESC key may be recognized as input only after a
delay of about a second.)

Some simple editing is possible during user input: The LEFT, RIGHT, HOME and END keys, the
INSERT/REPLACE keys, and the BACKSPACE/DELETE keys are supported.

Instead of a string,pre can also be a record with the componentprefix, whose value is the string
described above. The following optional components of this record are supported.

window The window with the input field is created relative to this window, the default is 0.

begin This is a list with the coordinates of the upper left corner of the window with the input field,
relative to the window described by thewindow component; the default is[y-4, 2], where
y is the height of this window.

default This string appears as result when the window is opened, the default is an empty string.

Example
gap> str := NCurses.GetLineFromUser("Your Name: ");;
gap> Print("Hello ", str, "!\n");

3.1.4 NCurses.Pager

♦ NCurses.Pager(lines[, border[, ly, lx, y, x]]) (function)

This is a simple pager utility for displaying and scrolling text. The argumentlines can be a list of
attribute lines (seeNCurses.IsAttributeLine (2.2.3)) or a string (the lines are separated by newline
characters) or a record. In case of a record the following components are recognized:

More details can be given to the function by using a record as argumentposs. It can have the
following components:

lines The list of attribute lines or a string as described above.

start Line number to start the display.

size The size[ly, lx] of the window like the first two arguments ofNCurses.newwin (default is
[0, 0], as big as possible).

begin Top-left corner[y, x] of the window like the last two arguments ofNCurses.newwin (de-
fault is[0, 0], top-left of the screen).

attribute An attribute used for the display of the window (default isNCurses.attrs.NORMAL).

border Either one oftrue/false to show the pager window with or without a standard border. Or
it can be string with eight, two or one characters, giving characters to be used for a border, see
NCurses.WBorder (2.2.9).

Browse 22

hint A text for usage info in the last line of the window.

As an abbreviation the information fromborder, size andbegin can also be specified in optional
arguments.

Example
gap> lines := List([1..100],i-> ["line ",NCurses.attrs.BOLD,String(i)]);;
gap> NCurses.Pager(lines);

3.1.5 Selection of help matches

After loading theBrowse packageGAP’s help system behaves slightly different when a request yields
several matches. The matches are shown viaNCurses.Select (3.1.2) and one can choose one match
for immediate display. It is possible to not choose a match and the?<nr> syntax still works.

If you want the original behavior defineNoSelectHelpMatches := false; in yourGAP session
or .gaprc file, see (Reference: The .gaprc file).

3.2 A Demo Function

3.2.1 NCurses.Demo

♦ NCurses.Demo([inputs]) (function)

Let inputs be a list of records, each with the componentstitle (a string),inputblocks (a list
of strings, each describing someGAP statements), and optionallyfooter (a string) andcleanup (a
string describingGAP statements). The default isNCurses.DemoDefaults.

NCurses.Demo lets the user choose an entry frominputs, viaNCurses.Select (3.1.2), and then
executes theGAP statements in the first entry of theinputblocks list of this entry; these strings,
together with the values oftitle andfooter, are shown in a window, at the bottom of the screen.
The effects of calls to functions usingncurses are shown in the rest of the screen. After the exe-
cution of the statements (which may require user input), the user can continue with the next entry
of inputblocks, or return to theinputs selection (and thus cancel the currentinputs entry), or
return to the execution of the beginning of the currentinputs entry. At the end of the current entry of
inputs, the user returns to theinputs selection.

TheGAP statements in thecleanup component, if available, are executed whenever the user does
not continue; this is needed for deleting panels and windows that are defined in the statements of the
current entry.

Note that theGAP statements are executed in theglobal scope, that is, they have the same ef-
fect as if they would be entered at theGAP prompt. Initially, NCurses.Demo sets the value of
BrowseData.defaults.work.windowParameters to the parameters that describe the part of the
screen above the window that shows the inputs; so applications ofNCurses.BrowseGeneric (4.3.1)
use automatically the maximal part of the screen as their window. It is recommended to to use a screen
with at least 80 columns and at least 37 rows.

Chapter 4

Browsing Tables inGAP usingncurses
– The User Interface

As stated in Section1.1, one aim of theBrowse package is to provide tools for the quite usual task to
show a two-dimensional array or certain rows and columns of it on a character screen in a formatted
way, to navigate in this array via key strokes, and to search for strings, to sort the array by row or
column values etc. The idea is that one starts with an array of data, themain table. Optionally, labels
for each row of the main table are given, which are also arranged in an array (with perhaps several
columns), therow labels table; analogously, acolumn labels tableof labels for the columns of the
main table may be given. The row labels are shown to the left of the main table, the column labels
are shown above the main table. The space above the row labels and to the left of the column labels
can be used for a fourth table, thecorner table, with information about the labels or about the main
table. Optionally, aheaderand afootermay be shown above and below these four tables, respectively.
Header and footer are not separated into columns. So the shown window has the following structure.

header
corner column labels

row main
labels table

footer

If not the whole tables fit into the window then only subranges of rows and columns of the main table
are shown, together with the corresponding row and column labels. Also in this case, the row heights
and column widths are computed w.r.t. the whole table not w.r.t. the shown rows and columns. This
means that the shown row labels are unchanged if the range of shown columns is changed, the shown
column labels are unchanged if the range of shown rows is changed, and the whole corner table is
always shown.

The current chapter describes the user interface forstandard applicationsof this kind, i. e., those
applications for which one just has to collect the data to be shown in a record –which we call abrowse
table– without need for additionalGAP programming.

Section4.1gives an overview of the features available in standard browse table applications, and
Section4.2 describes the data structures used in browse tables. Finally, Section4.3 introduces the
functionNCurses.BrowseGeneric (4.3.1), which is the generic function for showing browse table in
visual mode.

23

Browse 24

For technical details needed to extend these applications and to build other applications, see Chap-
ter5.

Examples of browse table applications are shown in Chapter6.

4.1 Features Supported by the FunctionNCurses.BrowseGeneric

Standard applications of the functionNCurses.BrowseGeneric (4.3.1) have the following function-
ality. Other applications may provide only a subset, or add further functionality, see Chapters5 and6.

Scrolling: The subranges of shown rows and columns of the main table can be modified, such that
the focus area is moved to the left, to the right, up, or down; depending on the context, the focus
is moved by one character, by one table cell or a part of it, by the window height/width (minus
one character or minus one table cell).

Selecting: A cell, row, or column of the main table can be selected; then it is shown highlighted on
the screen (by default using the attributeNCurses.attrs.STANDOUT, see Section2.1.7). The
selection can be moved inside the main table to a neighboring cell, row, or column; this causes
also scrolling of the main table when the window borders are reached.

Searching: A search string is entered by the user, and the first matching cell becomes selected; one
can search further for the next matching cell. Global search parameters define what matching
means (case sensitive or not, search for substrings or complete words) and what the first and the
next matching cells are (search in the whole table or just in the selected row or column, search
for whole words or prefixes or suffixes, search forwards or backwards).

Sorting: If a row or column is selected then the main table can be sorted w.r.t. the entries in this row
or column. Global sort parameters describe for example whether one wants to sort ascending
or descending, or case sensitive or not.

Sorting and Categorizing: If a column is selected then the main table can be sorted w.r.t. the entries
in this column, and additionally these entries are turned intocategory rows, i. e., additional rows
are added to the main table, appearing immediately above the table rows with a fixed value in
the selected column, and showing this column value. (There should be no danger to mix up
this notion of categories with the one introduced in (Reference: Categories).) The category
rows can becollapsed(that is, the table rows that belong to this category row are not shown)
or expanded(that is, the corresponding table rows are shown). Some of the global search
parameters affect the category rows, for example, whether the category rows shall involve a
counter with the number of corresponding data rows. With additional programming, one can
achieve that a row of the browse table appears under several category rows.

Help: Depending on the application and on the situation, different sets of user inputs may be available
and different meanings of these inputs are possible. An overview of the currently available
inputs and their meanings can be opened in each situation, by hitting the ? key.

Re-entering: When one has calledNCurses.BrowseGeneric (4.3.1) with a browse table,
and returns from visual mode to theGAP prompt after some navigation steps, calling
NCurses.BrowseGeneric again with this table will enter visual mode in the same situation
where it was left. For example, the cell in the top-left position will be the same as before, and

Browse 25

if a cell was selected before then this cell will be selected now. (One can avoid this behavior
using the optional second argument ofNCurses.BrowseGeneric.)

Logging: The integers corresponding to the user inputs in visual mode are collected in a list that is
stored in the componentdynamic.log of the browse table. It can be used for repeating the
inputs with the replay feature. (For browse table applications that give the user no access to
the browse table itself, one can force the log to be assigned to the componentlog of the global
variableBrowseData, see Section5.4.1.)

Replay: Instead of interactively hitting keys in visual mode, one can prescribe the user inputs to a
browse table via a “replay record”; the inputs are then processed with given time intervals. The
easiest way to create a meaningful replay record is via the functionBrowseData.SetReplay
(5.4.2), with argument thedynamic.log component of the browse table in question that was
stored in an interactive session.

The following features are not available in standard applications. They require additional pro-
gramming.

Clicking: One possible action is to “click” a selected cell, row, or column. It depends on the applica-
tion what the effect is. A typical situation is that a correspondingGAP object is added to the list
of return values ofNCurses.BrowseGeneric (4.3.1). Again it depends on the application what
this GAP object is. In order to use this feature, one has to provide a record whose components
areGAP functions, see Section5.4.1for details.

Return Value: The functionNCurses.BrowseGeneric (4.3.1) may have an application dependent
return value. A typical situation is that a list of objects corresponding to those cells is returned
that were “clicked” in visual mode. In order to use this feature, one has to assign the desired
value to the componentdynamic.Return of the browse table.

4.2 Data Structures used byNCurses.BrowseGeneric

4.2.1 BrowseData.IsBrowseTableCellData

♦ BrowseData.IsBrowseTableCellData(obj) (function)

Returns: true if the argument is a list or a record in a supported format.
A table cell data objectdescribes the input data for the contents of a cell in a browse table. It is

represented by either an attribute line (seeNCurses.IsAttributeLine (2.2.3)), for cells of height
one, or a list of attribute lines or a record with the componentsrows, a list of attribute lines, and
optionallyalign, a substring of"bclt", which describes the alignment of the attribute lines in the
table cell – bottom, horizontally centered, left, and top alignment; the default is right and vertically
centered alignment. (Note that the height of a table row and the width of a table column can be larger
than the height and width of an individual cell.)

Example
gap> BrowseData.IsBrowseTableCellData("abc");
true
gap> BrowseData.IsBrowseTableCellData(["abc", "def"]);
true
gap> BrowseData.IsBrowseTableCellData(rec(rows:= ["ab", "cd"],
> align:= "tl"));

Browse 26

true
gap> BrowseData.IsBrowseTableCellData("");
true
gap> BrowseData.IsBrowseTableCellData([]);
true

The empty stringis a table cell data object of height one and width zero whereas theempty list
(which is not inIsStringRep, seeIsStringRep (Reference: IsStringRep)) is a table cell data
object of height zero and width zero.

4.2.2 BrowseData.BlockEntry

♦ BrowseData.BlockEntry(tablecelldata, height, width) (function)

Returns: a list of attribute lines.
For a table cell data objecttablecelldata (seeBrowseData.IsBrowseTableCellData (4.2.1))

and two positive integersheight andwidth, BrowseData.BlockEntry returns a list ofheight at-
tribute lines of displayed lengthwidth each (seeNCurses.WidthAttributeLine (2.2.7)), that rep-
resents the formatted version oftablecelldata.

If the rows of tablecelldata have different numbers of displayed characters then they are
filled up to the desired numbers of rows and columns, according to the alignment prescribed by
tablecelldata; the default alignment is right and vertically centered.

Example
gap> BrowseData.BlockEntry("abc", 3, 5);
[" ", " abc", " "]
gap> BrowseData.BlockEntry(rec(rows:= ["ab", "cd"],
> align:= "tl"), 3, 5);
["ab ", "cd ", " "]

4.2.3 BrowseData.IsBrowseTable

♦ BrowseData.IsBrowseTable(obj) (function)

Returns: true if the argument record has the required components and is consistent.
A browse tableis a GAP record that can be used as the first argument of the function

NCurses.BrowseGeneric (4.3.1).
The supported components of a browse table arework anddynamic, their values must be records:

The components inwork describe that part of the data that are not likely to depend on user interactions,
such as the table entries and their heights and widths. The components indynamic describe that part of
the data that is intended to change with user interactions, such as the currently shown top-left entry of
the table, or the current status w.r.t. sorting. For example, suppose you callNCurses.BrowseGeneric
(4.3.1) twice with the same browse table; the second call enters the table in the same status where it
was leftafter the first call if the componentdynamic is kept, whereas one has to reset (which usually
simply means to unbind) the componentdynamic if one wants to start in the same status asbeforethe
first call.

The following components are the most important ones for standard browse applications. All
these components belong to thework record. For other supported components (ofwork as well as of
dynamic) and for the meaning of the term “mode”, see Section5.2.

Browse 27

main is the list of lists of table cell data objects that form the matrix to be shown. There is no
default for this component. (It is possible to compute the entries of the main table on demand,
see the description of the componentMain in Section5.4.1. In this situation, the value of the
componentmain can be an empty list.)

header describes a header that shall be shown above the column labels. The value is either a list
of attribute lines (“static header”) or a function or a record whose component names are names
of available modes of the browse table (“dynamic header”). In the function case, the function
must take the browse table as its only argument, and return a list of attribute lines. In the record
case, the values of the components must be such functions. It is assumed that the number of
these lines depends at most on the mode. The default is an empty list, i. e., there is no header.

footer describes a footer that shall be shown below the table. The value is analogous to that of
footer. The default is an empty list, i. e., there is no footer.

labelsRow is a list of row label rows, each being a list of table cell data objects. These rows are
shown to the left of the main table. The default is an empty list, i. e., there are no row labels.

labelsCol is a list of column information rows, each being a list of table cell data objects. These
rows are shown between the header and the main table. The default is an empty list, i. e., there
are no column labels.

corner is a list of lists of table cell data objects that are printed in the upper left corner, i. e., to the
left of the column label rows and above the row label columns. The default is an empty list.

sepRow describes the separators above and below rows of the main table and of the row labels table.
The value is either an attribute line or a (not necessarily dense) list of attribute lines. In the
former case, repetitions of the attribute line are used as separators below each row and above
the first row of the table; in the latter case, repetitions of the entry at the first position (if bound)
are used above the first row, and repetitions of the last bound entry before the(i +2)-th position
(if there is such an entry at all) are used below thei-th table row. The default is an empty string,
which means that there are no row separators.

sepCol describes the separators in front of and behind columns of the main table and of the column
labels table. The format of the value is analogous to that of the componentsepRow; the default
is the string" " (whitespace of width one).

sepLabelsCol describes the separators above and below rows of the column labels table and of
the corner table, analogously tosepRow. The default is an empty string, which means that there
are no column label separators.

sepLabelsRow describes the separators in front of and behind columns of the row labels table and
of the corner table, analogously tosepCol. The default is an empty string.

We give a few examples of standard applications.
The first example defines a small browse table by prescribing ony the componentwork.main, so

the defaults for row and column labels (no such labels), and for separators are used. The table cells
are given by plain strings, so they have height one. Usually this table will fit on the screen.

Browse 28

Example
gap> m:= 10;; n:= 5;;
gap> xpl1:= rec(work:= rec(
> main:= List([1 .. m], i -> List([1 .. n],
> j -> String([i, j])))));;
gap> BrowseData.IsBrowseTable(xpl1);
true

In the second example, also row and column labels appear, and different separators are used. The
table cells have height three. Also this table will usually fit on the screen.

Example
gap> m:= 6;; n:= 5;;
gap> xpl2:= rec(work:= rec(
> main:= List([1 .. m], i -> List([1 .. n],
> j -> rec(rows:= List([-i*j, i*j*1000+j, i-j], String),
> align:= "c"))),
> labelsRow:= List([1 .. m], i -> [String(i)]),
> labelsCol:= [List([1 .. n], String)],
> sepRow:= "-",
> sepCol:= "|",
>));;
gap> BrowseData.IsBrowseTable(xpl2);
true

The third example additionally has a static header and a dynamic footer, and the table cells involve
attributes. This table will usually not fit on the screen.

Example
gap> m:= 30;; n:= 25;;
gap> xpl3:= rec(work:= rec(
> header:= [" Example 3"],
> main:= List([1 .. m], i -> List([1 .. n],
> j -> rec(rows:= [String(-i*j),
> [NCurses.attrs.BOLD, true,
> NCurses.attrs.ColorPairs[56+1], true,
> String(i*j*1000+j),
> NCurses.attrs.NORMAL, true],
> String(i-j)],
> align:= "c"))),
> labelsRow:= List([1 .. 30], i -> [String(i)]),
> sepLabelsRow:= " % ",
> labelsCol:= [List([1 .. 30], i -> [
> NCurses.attrs.ColorPairs[56+4], true,
> String(i),
> NCurses.attrs.NORMAL, true])],
> sepLabelsCol:= "=",
> sepRow:= "*",
> sepCol:= " |",
> footer:= t -> [Concatenation("top-left entry is: ",
> String(t.dynamic.topleft{ [1, 2] }))],
>));;
gap> BrowseData.IsBrowseTable(xpl3);
true

Browse 29

The fourth example illustrates that highlighting may not work properly for browse tables contain-
ing entries whose attributes are not set with explicit Boolean values, seeNCurses.IsAttributeLine
(2.2.3). Call NCurses.BrowseGeneric with the browse tablexpl4, and select an entry (or a column
or a row): Only the middle row of each selected cell will be highlighted, because only in this row, the
color attribute is switched on with an explicittrue.

Example
gap> xpl4:= rec(
> defc:= NCurses.defaultColors,
> wd:= Maximum(List(˜.defc, Length)),
> ca:= NCurses.ColorAttr,
> fs:= FormattedString,
> work:= rec(
> header:= ["Examples of NCurses.ColorAttr"],
> main:= List(˜.defc, i -> List(˜.defc,
> j -> [[˜.ca(i, j), ˜.fs(i, ˜.wd)], # no true!
> [˜.ca(i, j), true, ˜.fs("on", ˜.wd)],
> [˜.ca(i, j), ˜.fs(j, ˜.wd)]])), # no true!
> labelsRow:= List(˜.defc, i -> [String(i)]),
> labelsCol:= [List(˜.defc, String)],
> sepRow:= "-",
> sepCol:= [" |", "|"],
>));;
gap> BrowseData.IsBrowseTable(xpl4);
true

4.3 The Function NCurses.BrowseGeneric

4.3.1 NCurses.BrowseGeneric

♦ NCurses.BrowseGeneric(t[, arec]) (function)

Returns: an application dependent value, or nothing.
NCurses.BrowseGeneric is used to show the browse tablet (seeBrowseData.IsBrowseTable

(4.2.3)) in a formatted way on a text screen, and allows the user to navigate in this table.
The optional argumentarec, if given, must be a record whose componentswork anddynamic,

if bound, are used to provide defaults for missing values in the corresponding components oft.
The default forarec and for the components not provided inarec is BrowseData.defaults,
seeBrowseData (5.4.1), the functionBrowseData.SetDefaults sets these default values.

At least the componentwork.main must be bound int, with value a list of list of table cell data
objects, seeBrowseData.IsBrowseTableCellData (4.2.1).

When the window or the screen is too small for the browse table, according to its component
work.minyx, the table will not be shown in visual mode, andfail is returned. (This holds also if
there would be no return value of the call in a large enough screen.) Thus one should check forfail
results of programmatic calls ofNCurses.BrowseGeneric, and one should better not admitfail as
a regular return value.

Most likely, NCurses.BrowseGeneric will not be called on the command line, but the browse
tablet will be composed by a suitable function which then callsNCurses.BrowseGeneric, see the
examples in Chapter6.

Chapter 5

Browsing Tables inGAP usingncurses
– The Programming Interface

This chapter describes some aspects of the internals of the browse table handling. The relevant ob-
jects areaction functionsthat implement the individual navigation steps (see Section5.1), modesthat
describe the sets of available navigation steps in given situations (see Section5.2), andbrowse appli-
cationsthat are given by the combination of several modes (see Section5.3). Most of the related data
is stored in the global variableBrowseData (5.4.1). For more details, one should look directly at the
code in the filelib/browse.gi of theBrowse package.

5.1 Navigation Steps in Browse Tables

Navigating in a browse table means that after entering visual mode by calling
NCurses.BrowseGeneric (4.3.1), the user hits one or several keys, and if this input is in a
given set of admissible inputs then a corresponding function is executed with argument the browse
table. The function call then may change components in this table (recommended: components in its
dynamic component), such that the appearance in the window may be different afterwards, and also
the admissible inputs and their effects may have changed.

The relation between the admissible inputs and the corresponding functions is application de-
pendent. However, it is recommended to associate the same input to the same function in different
situations; for example, the ? key and the F1 key should belong to a function that shows a help win-
dow (see Section5.4.4), theQ key and the ESC key should belong to a function that exits the current
mode (Note that the ESC key may be recognized as input only after a delay of about a second.), the
Q key should belong to a function that exits the browse application (see Section5.4.6), the F2 key
should belong to a function that saves the current window contents in a global variable (see Section
5.4.5), and the E key should belong to a function that enters a break loop (see Section5.4.7). The
ENTER and RETURN keys should belong to a “click” on a selected table entry, and if a category row
is selected then they should expand/collapse this category.

When the first characters of an admissible input have been entered, one can delete the last entered
character via the DELETE and BACKSPACE keys. It is not possible to make these keys part of an
admissible input.

Each such function is wrapped into a record with the componentsaction (the function itself) and
helplines (a list of attribute lines that describes what the function does). The help lines are used by
the help feature ofNCurses.BrowseGeneric, see Section5.4.4.

30

Browse 31

The action functions need not return anything. Whenever the shown screen shall be recomputed
after the function call, the componentdynamic.changed of the browse table must be set totrue by
the action functions.

5.2 Modes in Browse Tables

In different situations, different inputs may be admissible for the same browse table, and different
functions may belong to the same input. For example, the meaning of “moving down” can be different
depending on whether a cell is selected or not.

The set of admissible user inputs and corresponding functions for a particular situation is collected
in a modeof the browse table. (There should be no danger to mix up this notion of mode with the
“visual mode” introduced in Section1.1.) A mode is represented by a record with the components
name (a string used to associate the mode with the components ofheader, headerLength, footer,
footerLength, Click, and for the help screen),flag (a string that describes properties of the mode
but that can be equal for different modes),actions (a list of records describing the navigation steps
that are admissible in the mode, see Section5.1), andShowTables (the function used to eventually
print the current window contents, the default isBrowseData.ShowTables). Due to the requirement
that each admissible user input uniquely determines a corresponding function, no admissible user
input can be a prefix of another admissible input, for the same mode.

Navigation steps (see Section5.1) can change the current mode or keep the mode. It is recom-
mended that each mode has an action to leave this mode; also an action to leave the browse table
application is advisable.

In a browse table, all available modes are stored in the componentwork.availableModes, whose
value is a list of mode records. The value of the componentdynamic.activeModes is a list of mode
records that is used as a stack: Thecurrent modeis the last entry in this list, changing the current
mode is achieved by unbinding the last entry (so one returns to the mode from which the current
mode had been entered by adding it to the list), by adding a new mode record (so one can later
return to the current mode), or by replacing the last entry by another mode record. As soon as the
dynamic.activeModes list becomes empty, the browse table application is left. (In this situation, if
the browse table had been entered from theGAP prompt then visual mode is left, and one returns to
theGAP prompt.)

The following modes are predefined by theBrowse package. Each of these modes admits the user
inputs ?, F1,Q, ESC, Q, F2, and E that have been mentioned in Section5.1.

browse This mode admits scrolling of the browse table by a cell or by a screen, searching for a string,
selecting a row, a column, or an entry, and expanding or collapsing all category rows.

help This mode is entered by callingBrowseData.ShowHelpTable; it shows a help window con-
cerning the actions available in the mode from which thehelp mode was entered. Thehelp
mode admits scrolling in the help table by a cell or by a screen. See Section5.4.4for details.

selectentry In this mode, one table cell is regarded as selected; this cell is highlighted using the
attribute in the componentwork.startSelect as a prefix of each attribute line, see the remark
in Section2.2.3. The mode admits moving the selection by one cell in the four directions,
searching for a string and for further occurrences of this string, expanding or collapsing the
current category row or all category rows, and executing the “click” function of this mode,
provided that the componentwork.Click.("select entry") of the browse table is bound.

Browse 32

selectrow This is like theselect entry mode, except that a whole row of the browse table is
highlighted. Searching is restricted to the selected row, and “click” refers to the function
work.Click.("select row").

selectrow and entry This is a combination of theselect entry mode and theselect row mode.

selectcolumn This is like theselect row mode, just a column is selected not a row.

selectcolumn and entry This is like theselect row and entry mode, just a column is selected
not a row.

5.3 Browse Applications

The data in a browse table together with the set of its available modes and the stack of active modes
forms a browse application. So the part of or all functionality of theBrowse package can be available
(“standard application”), or additional functionality can be provided by extending available modes or
adding new modes.

WhenNCurses.BrowseGeneric (4.3.1) has been called with the browse tablet, say, the follow-
ing loop is executed.

1. If the list t.dynamic.activeModes is empty then exit the browse table, and if the component
t.dynamic.Return is bound then return its value. Otherwise proceed with step 2.

2. If t.dynamic.changed istrue then call theShowTables function of the current mode; this causes
a redraw of the window that shows the browse table. Then go to step 3.

3. Get one character of user input. If then the current user input string is the name of an action of the
current mode then call the corresponding action function and go to step 1; if the current user
input string is just a prefix of the name of some actions of the current mode then go to step 3;
if the current user input string is not a prefix of any name of an action of the current mode then
discard the last read character and go to step 3.

When one designs a new application, it may be not obvious whether some functionality shall be
implemented via one mode or via several modes. As a rule of thumb, introducing a new mode is
recommended when one needs a new set of admissible actions in a given situation, and also if one
wants to allow the user to perform some actions and then to return to the previous status.

5.4 Predefined Browse Functionalities

5.4.1 BrowseData

♦ BrowseData (global variable)

This is the record that contains the global data used by the functionNCurses.BrowseGeneric
(4.3.1). The components areactions, defaults, and several capitalized names for which the values
are functions.

BrowseData.actions is a record containing the action records that are provided by the package,
see Section5.1. These actions are used in standard applications ofNCurses.BrowseGeneric (4.3.1).
Of course there is no problem with using actions that are not stored inBrowseData.actions.

Browse 33

BrowseData.defaults is a record that contains the defaults for the browse table used as the first
argument ofNCurses.BrowseGeneric (4.3.1). Important components have been described above,
seeBrowseData.IsBrowseTable (4.2.3), in the sense that these components provide default values
of work components in browse tables. Here is a list of further interesting components.

The following components are provided inBrowseData.defaults.work.

windowParameters is a list of four nonnegative integers, denoting the arguments of
NCurses.newwin for the window in which the browse table shall be shown. The default is
[0, 0, 0, 0], i. e., the window for the browse table is the full screen.

minyx is a list of length two, the entries must be either nonnegative integers, denoting the minimal
number of rows and columns that are required by the browse table, or unary functions that return
these values when they are applied to the browse table; this is interesting for applications that
do not support scrolling, or for applications that may have large row or column labels tables.
The default is a list with two functions, the return value of the first function is the sum of the
heights of the table header, the column labels table, the first table row, and the table footer,
and the return value of the second function is the sum of widths of the row labels table and the
width of the first column. (If the header/footer is given by a function then this part of the table
is ignored in theminyx default.)

align is a substring of"bclt", which describes the alignment of the browse table in the win-
dow. The meaning and the default are the same as forBrowseData.IsBrowseTableCellData
(4.2.1). (Of course this is relevant only if the table is smaller than the window.)

headerLength describes the lengths of the headers in the modes for whichheader functions are
provided. The value is a record whose component names are names of modes and the corre-
sponding components are nonnegative integers. This component is ignored if theheader com-
ponent is unbound or bound to a list, missing values are computed by calls to the corresponding
header function as soon as they are needed.

footerLength corresponds tofooter in the same way asheaderLength to header.

Main if bound to a function then this function can be used to compute missing values for the com-
ponentmain; this way one can avoid computing/storing allmain values at the same time. The
access to the entries of the main matrix is defined as follows: IfmainFormatted[i][j] is
bound then take it, ifmain[i][j] is bound then take it and compute the formatted version,
if Main is a function then call it with arguments the browse table,i, andj, and compute the
formatted version, otherwise compute the formatted version ofwork.emptyCell. (For the con-
dition whether entries inmainFormatted can be bound, see below in the description of the
componentcacheEntries.)

cacheEntries describes whether formatted values of the entries in the matrices given by the
componentscorner, labelsCol, labelsRow, main, and of the corresponding row and col-
umn separators shall be stored in the componentscornerFormatted, labelsColFormatted,
labelsRowFormatted, andmainFormatted. The value must be a Boolean, the default is
false; it should be set totrue only if the tables are reasonably small.

cornerFormatted is a list of lists of formatted entries corresponding to thecorner com-
ponent. Each entry is either an attribute line or a list of attribute lines (with the same

Browse 34

number of displayed characters), the values can be computed from the input format with
BrowseData.FormattedEntry. The entries are stored in this component only if the component
cacheEntries has the valuetrue. The default is an empty list.

labelsColFormatted corresponds tolabelsCol in the same way ascornerFormatted to
corner.

labelsRowFormatted corresponds tolabelsRow in the same way ascornerFormatted to
corner.

mainFormatted corresponds tomain in the same way ascornerFormatted to corner.

m0 is the maximal number of rows in the column labels table. If this value is not bound then it is
computed from the componentscorner andlabelsCol.

n0 is the maximal number of columns incorner andlabelsRow.

m is the maximal number of rows inlabelsRow andmain. This valuemustbe set in advance if the
values ofmain are computed using aMain function, and if the number of rows inmain is larger
than that inlabelsRow.

n is the maximal number of columns inlabelsCol andmain. This valuemustbe set in advance if
the values ofmain are computed using aMain function, and if the number of columns inmain
is larger than that inlabelsCol.

heightLabelsCol is a list of 2m0+1 nonnegative integers, the entry at positioni is the max-
imal height of the entries in thei-th row of cornerFormatted and labelsColFormatted.
Values that are not bound are computed on demand from the table entries, with the function
BrowseData.HeightLabelsCol. (So if one knows the needed heights in advance, it is ad-
visable to set the values, in order to avoid that formatted table entries are computed just for
computing their size.) The default is an empty list.

widthLabelsRow is the corresponding list of 2n0+1 maximal widths of entries in
cornerFormatted andlabelsRowFormatted.

heightRow is the corresponding list of 2m+1 maximal heights of entries inlabelsRowFormatted
andmainFormatted.

widthCol is the corresponding list of 2n+1 maximal widths of entries inlabelsColFormatted
andmainFormatted.

emptyCell is a table cell data object to be used as the default for unbound positions in the four
matrices. The default is the empty list.

sepCategories is an attribute line to be used repeatedly as a separator below expanded category
rows. The default is the string"-".

startCollapsedCategory is a list of attribute lines to be used as prefixes of unhidden but
collapsed category rows. For categories of leveli, the last bound entry before the(i + 1)-th
position is used. The default is a list of length one, the entry is the boldface variant of the string
"> ", so collapsed categories on different levels are treated equally.

Browse 35

startExpandedCategory is a list of attribute lines to be used as prefixes of expanded category
rows, analogously tostartCollapsedCategory. The default is a list of length one, the entry
is the boldface variant of the string"* ", so expanded categories on different levels are treated
equally.

startSelect is an attribute line to be used as a prefix of each attribute line that belongs to a
selected cell. The default is to switch the attributeNCurses.attrs.STANDOUT on, see Sec-
tion 2.1.7.

Click is a record whose component names are names of available modes of the browse table. The
values are unary functions that take the browse table as their argument. If the actionClick is
available in the current mode and the corresponding input is entered then the function in the
relevant component of theClick record is called.

availableModes is a list whose entries are the mode records that can be used when one navigates
through the browse table, see Section5.2.

SpecialGrid is a function that takes a browse table and a record as its arguments. It is called by
BrowseData.ShowTables after the current contents of the window has been computed, and it is
intended to draw an individual grid into the table that fits better than anything that can be speci-
fied in terms of row and column separators. (If other functions thanBrowseData.ShowTables
are used in some modes of the browse table, these functions must deal with this aspect them-
selves.) The default is to do nothing.

The following components are provided inBrowseData.defaults.dynamic.

changed is a Boolean that must be set totrue by action functions whenever a refresh of the window
is necessary; it is automatically reset tofalse after the refresh.

indexRow is a list of positive integers. The entryk at positioni means that thek-th row in the
mainFormatted table is shown as thei-th row. Note that depending on the current status of
the browse table, the rows ofmainFormatted (and ofmain) may be permuted, or it may even
happen that a row inmainFormatted is shown several times, for example under different cate-
gory rows. It is assumed (as a “sort convention”) that theevenpositions inindexRow point to
evennumbers, and that the subsequentodd positions (corresponding to the following separa-
tors) point to the subsequentoddnumbers. The default value is the list[1,2, . . . ,m], wherem is
the number of rows inmainFormatted (including the separator rows, som is always odd).

indexCol is the analogous list of positive integers that refers to columns.

topleft is a list of four positive integers denoting the current topleft position of the main table.
The value[i, j,k, l] means that the topleft entry is indexed by thei-th entry inindexRow, the
j-th entry inindexCol, and thek-th row andl -th column inside the corresponding cell. The
default is[1,1,1,1].

isHiddenRow is a list of Booleans, of the same length as theindexRow value. If the entry at
position i is true then thei-th row is currently not shown; a typical situation is that the row
belongs to a collapsed category row. It is assumed (as a “hide convention”) that the value at any
even position equals the value at the subsequent odd position. The default is that all entries are
false.

Browse 36

isHiddenCol is the corresponding list forindexCol.

activeModes is a list of mode records that are contained in theavailableModes list of thework
component of the browse table. The current mode is the last entry in this list. The default de-
pends on the application,BrowseData.defaults prescribes the list containing only the mode
with name component"browse".

selectedEntry is a list [i, j]. If i = j = 0 then no table cell is selected, otherwisei and j are the
row and column index of the selected cell. (Note thati and j are always even.) The default is
[0,0].

selectedCategory is a list [i, l]. If i = l = 0 then no category row is selected, otherwisei andl
are the row index and the level of the selected category row. (Note thati is always even.) The
default is[0,0].

searchString is the last string for which the user has searched in the table. The default is the
empty string.

searchParameters is a list of parameters that are modified by the function
BrowseData.SearchStringWithStartParameters. If one sets these parameters in a
search then these values hold also for subsequent searches. So it may make sense to set the
parameters to personally preferred ones.

sortFunctionForColumnsDefault is a function with two arguments used to compare two
entries in the same column of the main table (or two category row values). The default is the
function \<. (Note that this default may be not meaningful if some of the rows or columns
contain strings representing numbers.)

sortFunctionForRowsDefault is the analogous function for comparing two entries in the
same row of the main table.

sortFunctionsForRows is a list of comparison functions, if thei-th entry is bound then it re-
places thesortFunctionForRowsDefault value when the table is sorted w.r.t. thei-th row.

sortFunctionsForColumns is the analogous list of functions for the case that the table is sorted
w.r.t. columns.

sortParametersForRowsDefault is a list of parameters for sorting the main table w.r.t. en-
tries in given rows, e. g., whether one wants to sort ascending or descending.

sortParametersForColumnsDefault is the analogous list of parameters for sorting w.r.t.
given columns. In addition to the parameters for rows, also parameters concerning category
rows are available, e. g., whether the data columns that are transformed into category rows shall
be hidden afterwards or not.

sortParametersForRows is a list that contains ar positioni, if bound, a list of parameters that
shall replace those insortParametersForRowsDefault when the table is sorted w.r.t. thei-th
row

sortParametersForColumns is the analogous list of parameters lists for sorting w.r.t.
columns.

Browse 37

categories describes the current category rows. The value is a list[l1, l2] wherel1 is asortedlist
[i1, i2, ..., ik] of positive integers andl2 is a list of lengthk where thej-th entry has the form
[i j , l j ,v j ,sj ,h j]. This means that above thei j -th table row (w.r.t. the componentindexRow),
there is a category row at levell j , which is hidden ifh j is true, and otherwise the shown
value is the attribute linev j and the separator below the category row is a repetition ofsj . The
default value is[[], []]. (Note that this “hide convention” makes sense mainly if together
with a hidden category row, also the category rows on higher levels and the corresponding
data rows are hidden – but this property isnot checked.) Categories are computed with the
CategoryValue function in thework component of the browse table.

log describes the session log which is currently written. The value is a list of positive inte-
gers, representing the user inputs in the current session. WhenGAP returns from a call to
NCurses.BrowseGeneric (4.3.1), one can access the log list of the user interactions in the
browse table as the value of its componentdynamic.log.

If BrowseData.logStore had been set totrue before NCurses.BrowseGeneric (4.3.1)
had been called then the list can also be accessed as the value ofBrowseData.log. If
BrowseData.logStore is unbound or has a value different fromtrue thenBrowseData.log
is not written. (This can be interesting in the case of browse table applications where the user
does not get access to the browse table itself.)

replay describes the non-interactive input for the current browse table. The value is a record with
the componentslogs (a dense list of records, the default is an empty list) andpointer (a pos-
itive integer, the default is 1). Ifpointer is a position inlogs then currently thepointer-th
record is processed, otherwise the browse table has exhausted its non-interactive part, and re-
quires interactive input. The records inlog have the componentssteps (a list of user inputs,
the default is an empty list),position (a positive integer denoting the current position in the
steps list if the log is currently processed, the default is 1),replayInterval (the timeout be-
tween two steps in milliseconds if the log is processed, the default is 0), andquiet (a Boolean,
true if the steps shall not be shown on the screen until the end of the log is reached, the default
is false).

5.4.2 BrowseData.SetReplay

♦ BrowseData.SetReplay(data) (function)

This function sets and resets the value ofBrowseData.defaults.dynamic.replay.
When BrowseData.SetReplay is called with a listdata as its argument then the entries are

assumed to describe user inputs for a browse table for whichNCurses.BrowseGeneric (4.3.1) will
be called afterwards, such that replay of the inputs runs. (Valid input lists can be obtained from the
componentdynamic.log of the browse table in question.)

WhenBrowseData.SetReplay is called with the only argumentfalse, the component is un-
bound (so replay is disabled, and thus calls toNCurses.BrowseGeneric will require interactive user
input).

The replay feature should be used by initially setting the input list, then running the replay (perhaps
several times), and finally unbinding the inputs, such that subsequent uses of other browse tables do
not erroneously expect their input inBrowseData.defaults.dynamic.replay.

Browse 38

Note that the value ofBrowseData.defaults.dynamic.replay is used in a call to
NCurses.BrowseGeneric only if the browse table in question does not have a component
dynamic.replay before the call.

5.4.3 BrowseData.AlertWithReplay

♦ BrowseData.AlertWithReplay(t, messages[, attrs]) (function)

Returns: an integer representing a (simulated) user input.
The functionBrowseData.AlertWithReplay is a variant ofNCurses.Alert (3.1.1) that is

adapted for the replay feature of the browse tablet, see Section4.1. The argumentsmessages and
attrs are the same as the corresponding arguments ofNCurses.Alert, the argumenttimeout of
NCurses.Alert is taken from the browse tablet, as follows. IfBrowseData.IsDoneReplay returns
true for t thentimeout is zero, so a user input is requested for closing the alert box; otherwise the
requested input character is fetched fromt.dynamic.replay.

No alert box is shown ifBrowseData.IsQuietSession returns true when called with
t.dynamic.replay, otherwise the alert box is closed after the time (in milliseconds) that is given
by thereplayInterval value of the current entry int.dynamic.replay.logs.

The function returns either the return value of the call toNCurses.Alert (in the interactive case)
or the value that was fetched from the current replay record (in the replay case).

5.4.4 BrowseData.actions.ShowHelp

♦ BrowseData.actions.ShowHelp (global variable)

There are two predefined ways for showing an overview of the admissible inputs and their mean-
ing in the current mode of a browse table. The functionBrowseData.ShowHelpTable displays
this overview in a browse table (using thehelp mode), andBrowseData.ShowHelpPager uses
NCurses.Pager.

Technically, the only difference between these two functions is thatBrowseData.ShowHelpTable
supports the replay feature ofNCurses.BrowseGeneric, whereasBrowseData.ShowHelpPager
simply does not call the pager in replay situations.

The action recordBrowseData.actions.ShowHelp is associated with the user inputs ?
or F1 in standardNCurses.BrowseGeneric applications, and it is recommended to do the
same in otherNCurses.BrowseGeneric applications. This action calls the function stored
in the componentwork.ShowHelp of the browse table, the default (i. e., the value of
BrowseData.defaults.work.ShowHelp) is BrowseData.ShowHelpTable.

Example
gap> xpl1.work.ShowHelp:= BrowseData.ShowHelpPager;;
gap> BrowseData.SetReplay("?Q");
gap> Unbind(xpl1.dynamic);
gap> NCurses.BrowseGeneric(xpl1);
gap> xpl1.work.ShowHelp:= BrowseData.ShowHelpTable;;
gap> BrowseData.SetReplay("?dQQ");
gap> Unbind(xpl1.dynamic);
gap> NCurses.BrowseGeneric(xpl1);
gap> BrowseData.SetReplay(false);
gap> Unbind(xpl1.dynamic);

Browse 39

5.4.5 BrowseData.actions.SaveWindow

♦ BrowseData.actions.SaveWindow (global variable)

The functionBrowseData.actions.SaveWindow.action asks the user to enter the name of a
globalGAP variable, usingNCurses.GetLineFromUser (3.1.3). If this variable name is valid and if
no value is bound to this variable yet then the current contents of the window of the browse table that
is given as the argument is saved in this variable, usingNCurses.SaveWin (2.2.10).

5.4.6 BrowseData.actions.QuitMode

♦ BrowseData.actions.QuitMode (global variable)

♦ BrowseData.actions.QuitTable (global variable)

The functionBrowseData.actions.QuitMode.action unbinds the current mode in the browse
table that is given as its argument (see Section5.2), so the browse table returns to the mode from which
this mode had been called. If the current mode is the only one, first the user is asked for confirmation
whether she really wants to quit the table; only if theY key is hit, the last mode is unbound.

The functionBrowseData.actions.QuitTable.action unbinds all modes in the browse table
that is given as its argument, without asking for confirmation; the effect is to exit the browse applica-
tion (see Section5.3).

5.4.7 BrowseData.actions.Error

♦ BrowseData.actions.Error (global variable)

After NCurses.BrowseGeneric (4.3.1) has been called, interrupting by hitting the CTRL-C keys
is not possible. It is recommended to provide the actionBrowseData.actions.Error for each mode
of a NCurses.BrowseGeneric application, which enters a break loop and admits returning to the
application. The recommended user input for this action is the E key.

Chapter 6

Examples of Applications based on
NCurses.BrowseGeneric

This chapter introduces the operationBrowse (6.1.1) and lists several examples how the function
NCurses.BrowseGeneric (4.3.1) can be utilized for renderingGAP related data or for playing games.
Each section describes the relevantGAP functions and briefly sketches the technical aspects of the
implementation; more details can be found in theGAP files.

Only Section6.3 describes a standard application in the sense of the introduction to Chapter4,
perhaps except for a special function that is needed to compare table entries. The other examples in
this chapter require some of the programming described in Chapter5.

6.1 The Operation Browse

6.1.1 Browse

♦ Browse(obj[, arec]) (operation)

This operation displays theGAP objectobj in a nice, formatted way, similar to the operation
Display (Reference: Display). The difference is thatBrowse is intended to usencurses facilities.

Currently there are methods for character tables (seeBrowse (6.2.1)) and for tables of marks
(seeBrowse (6.3.1)).

6.2 Character Table Display

TheGAP library provides aDisplay (Reference: Display) method for character tables that breaks the
table into columns fitting on the screen.Browse provides an alternative, using the standard facilities of
the functionNCurses.BrowseGeneric (4.3.1), i. e., one can scroll in the matrix of character values,
searching and sorting are provided etc.

The Browse method for character tables can be called instead ofDisplay. For convenience,
one can additionally make this function the defaultDisplay method for character tables, by assign-
ing it to the Display component in the global recordCharacterTableDisplayDefaults.User,
see (Reference: Printing Character Tables); for example, one can do this in one’s.gaprc
file, see (Reference: The .gaprc file). (This can be undone by unbinding the component
CharacterTableDisplayDefaults.User.Display.)

40

Browse 41

6.2.1 Browse (for character tables)

♦ Browse(tbl[, options]) (method)

This method displays the character tabletbl in a window. The optional recordoptions de-
scribes what shall be displayed, the supported components and the default values are described
in (Reference: Printing Character Tables).

The full functionality of the functionNCurses.BrowseGeneric (4.3.1) is available.

Example
gap> BrowseData.SetReplay(Concatenation(
> # scroll in the table
> "DRULdddddrrrrrlluu",
> # select an entry and move it around
> "seddrruuuddlll",
> # search for the pattern 135 (six times)
> "/135", [NCurses.keys.ENTER], "nnnnn",
> # deselect the entry, select the first column
> "qLsc",
> # sort and categorize by this column
> "sc",
> # select the first row, move down the selection
> "srdddd",
> # expand the selected category, scroll the selection down
> "xd",
> # and quit the application
> "Q"));
gap> Browse(CharacterTable("HN"));
gap> BrowseData.SetReplay(false);

Implementation remarks: The first part of the code in theBrowse method for character tables is
almost identical with the code for extracting the data to be displayed from the input data in theGAP
library functionCharacterTableDisplayDefault. The second part of the code transforms these
data into a browse table. Character names and (if applicable) indicator values are used as row labels,
and centralizer orders, power maps, and class names are used as column labels. The identifier of the
table is used as the static header. When an irrational entry is selected, a description of this entry is
shown in the dynamic footer.

Due to an extension of the standard modes inBrowseData (5.4.1) by two new actions, a pager
can be opened that gives an overview of all all irrationalities in the table, and an overview of all those
irrationalities that have been shown on the screen in the current call, respectively. The corresponding
user inputs are the I and theI key. (The names assigned to the irrationalities are generated column-
wise. If one just scrolls through the table, without jumping, then these names coincide with the names
generated by the defaultsDisplay method for character tables; this is in generalnot the case for
example when a row-wise search in the table is performed.)

In order to keep the required space small also for large character tables, caching of formatted
matrix entries is disabled, and the strings to be displayed are computed on demand with aMain
function in thework component of the browse table. For the same reason, the constant height one for
all table rows is set in advance, so one need not inspect a whole character if only a few values of it
shall be shown.

Browse 42

Special functions are provided for sorting (concerning the comparison of character values, which
can be integers or irrationalities) and categorizing the table by a column (the value in the category row
involves the class name of the column in question).

The code can be found in the filelib/ctbldisp.g of the package.

6.3 Table of Marks Display

TheGAP library provides aDisplay method for tables of marks that breaks the table into columns fit-
ting on the screen. Similar to the situation with character tables, see Section6.2, but with a much sim-
pler implementation,Browse provides an alternative based on the functionNCurses.BrowseGeneric
(4.3.1).

Browse can be called instead ofDisplay for tables of marks, cf. (Reference: Printing Tables
of Marks).

6.3.1 Browse (for tables of marks)

♦ Browse(tom[, options]) (method)

This method displays the table of markstom in a window. The optional recordoptions de-
scribes what shall be displayed, the supported components and the default values are described
in (Reference: Printing Tables of Marks).

The full functionality of the functionNCurses.BrowseGeneric (4.3.1) is available.

Example
gap> BrowseData.SetReplay(Concatenation(
> # scroll in the table
> "DDRRR",
> # search for the (exact) value 100 (three times)
> "/100",
> [NCurses.keys.DOWN, NCurses.keys.DOWN, NCurses.keys.RIGHT],
> [NCurses.keys.DOWN, NCurses.keys.DOWN, NCurses.keys.DOWN],
> [NCurses.keys.RIGHT, NCurses.keys.ENTER], "nn",
> # no more occurrences of 100, confirm
> [NCurses.keys.ENTER],
> # and quit the application
> "Q"));
gap> Browse(TableOfMarks("A10"));
gap> BrowseData.SetReplay(false);

Implementation remarks: Rows and columns are indexed by their positions. The identifier of the
table is used as the static header, there is no footer.

In order to keep the required space small also for large tables of marks, caching of formatted matrix
entries is disabled, and the strings to be displayed are computed on demand with aMain function in
thework component of the browse table. For the same reason, the constant height one for the table
rows is set in advance. (For example, the table of marks of the group with identifier"O8+(2)", with
11171 rows and columns, can be shown withBrowse in a GAP session requiring about 100 MB.)

The code can be found in the filelib/tomdisp.g of the package.

Browse 43

6.4 Table of Contents ofAtlasRep

TheGAP packageAtlasRep (see [WPN+04]) is an interface to a database of representations and re-
lated data. The table of contents of this database can be displayed via the functionDisplayAtlasInfo
(AtlasRep: DisplayAtlasInfo) of this package. TheBrowse package provides an alternative based on
the functionNCurses.BrowseGeneric (4.3.1); one can scroll, search, and fetch representations for
later use.

6.4.1 BrowseAtlasInfo

♦ BrowseAtlasInfo() (function)

Returns: the list of “clicked” representations.
This function shows the table of contents of theGAP packageAtlasRep in a browse table, cf.

Section (AtlasRep: Accessing Data of the AtlasRep Package) in the package manual. When one
“clicks” on one of the table rows or entries then a browse table with an overview of the available
representations for this group is shown, and “clicking” on one of its rows adds this representation to
the list of return values ofBrowseAtlasInfo.

The full functionality of the functionNCurses.BrowseGeneric (4.3.1) is available.
The following example shows howBrowseAtlasInfo can be used to fetch permutation repre-

sentations of the alternating groupsA5 andA6: We search for the group name"A5" in the overview
table, and the first cell in the table row forA5 becomes selected; hitting the ENTER key causes a new
window to be opened, with an overview of the available representations forA5; moving down by one
row and hitting the ENTER key again causes the second representation to be added to the result list,
the second window is closed, and we are back in the overview table; we move the selection down
twice (to the row for the groupA6), and choose the first representation for this group; finally we leave
the table, and the return value is the list with the data for the two representations.

Example
gap> d:= [NCurses.keys.DOWN];; r:= [NCurses.keys.RIGHT];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "/A5", # Find the string A5 ...
> d, d, r, # ... such that just the word matches,
> c, # start the search,
> c, # click the table entry A5,
> d, # move down by one row,
> c, # click the row for this representation,
> d, d, # move down by two rows,
> c, # click the table entry A6,
> c, # click the first row,
> "Q")); # and quit the application.
gap> tworeps:= BrowseAtlasInfo();;
gap> BrowseData.SetReplay(false);
gap> if fail in tworeps then
> Print("no access to the Web ATLAS\n");
> else
> Print(List(tworeps, x -> x.identifier[1]), "\n");
> fi;
["A5", "A6"]

Browse 44

Implementation remarks: The first browse table shown has a static header, no footer and
row labels, one row of column labels describing the type of data summarized in the columns.
When a row is selected, the “click” functionality opens a new window (via a second level call to
NCurses.BrowseGeneric (4.3.1)), in which a browse table with the list of available representations
for the given group is shown; in this table, “click” results in adding the selected representation to the
result list, and leaving the second level table, So one returns to the first browse table and can choose
further representations, perhaps of other groups. When the first level table is left, the list of chosen
representations is returned.

This function is available only if theGAP packageAtlasRep is available.
The code can be found in the filelib/atlasbrowse.g of the package.

6.5 Access toGAP Manuals – a Variant

A Browse adapted way to access several manuals is to show the hierarchy of books, chapters, sections,
and subsections as collapsible category rows, and to regard the contents of each subsection as a data
row of a matrix with only one column.

This application is mainly intended as an example with table cells that exceed the screen, and as
an example with several category levels.

6.5.1 BrowseGapManuals

♦ BrowseGapManuals([start]) (function)

This function displays the contents of theGAP manuals (the mainGAP manuals as well as the
loaded package manuals) in a window. The optional argumentstart describes the initial status, ad-
missible values are the strings"inline/collapsed", "inline/expanded", "pager/collapsed",
and"pager/expanded".

In the inline cases, the parts of the manuals are shown in the browse table, and in thepager
case, the parts of the manuals are shown in a different window when they are “clicked”, using the
user’s favourite help viewer, see (Reference: Changing the Help Viewer).

In thecollapsed case, all category rows are collapsed, and the first row is selected; typical next
steps are moving down the selection and expanding single category rows. In theexpanded case, all
category rows are expanded, and nothing is selected; a typical next step in theinline/expanded
case is a search for a string in the manuals. (Note that searching in quite slow: For viewing a part of
a manual, the file with the corresponding section is read intoGAP, the text is formatted, the relevant
part is cut out from the section, perhaps markup is stripped off, and finally the search is performed in
the resulting strings.)

If no argument is given then the user is asked for selecting an initial status, usingNCurses.Select
(3.1.2).

The full functionality of the functionNCurses.BrowseGeneric (4.3.1) is available.

Example
gap> BrowseData.SetReplay("xdxdzzzQ"); # expand a Tutorial section
gap> BrowseGapManuals("inline/collapsed");
gap> BrowseData.SetReplay(Concatenation(
> "/Browse", [NCurses.keys.ENTER], # search for "Browse"
> "xdxddxdzzz", # expand a section
> "Q")); # and quit

Browse 45

gap> BrowseGapManuals("inline/collapsed");
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a dynamic header showing the name of the cur-
rently selected manual, no footer, no row or column labels, and exactly one column of fixed width
equal to the screen width. The category rows are precomputed, i. e., they do not arise from a table
column; this way, the contents of each data cell can be computed on demand, as soon as it is shown
on the screen, in particular the category hierarchy is computed without reading the manuals intoGAP.
Also, the data rows are not cached. There is no return value. The heights of many cells are bigger
than the screen height, so scrolling is a mixture of scrolling to the next cell and scrolling inside a cell.
The different initial states are realized via executing different initial steps before the table is shown to
the user.

For the variants that show the manuals in a pager, the code temporarily replaces theshow function
of the default viewer"screen" (see (Reference: Changing the Help Viewer)) by a function that
usesNCurses.Pager (3.1.4). Note that in the case that the manual bit in question fits into one screen,
the defaultshow function writes this text directly to the screen, but this is used already by the browse
table.

The implementation should be regarded as a sketch.
For example, the markup available in the text file format ofGAPDoc manuals (using ESC se-

quences) is stripped off instead of being transferred to the attribute lines that arise, because of the
highlighting problem mentioned in Section2.2.3.

Some heuristics used in the code are due to deficiencies of the manual formats.
For the inline variant of the browse table, the titles of chapters, sections, and subsections arenot

regarded as parts of the actual text since they appear already as category rows; however, the functions
of theGAP help system deliver the texttogether withthese titles, so these lines must be stripped off
afterwards.

The category hierarchy representing the tables of contents is created from themanual.six files of
the manuals. These files do not contain enough information for determining whether several functions
define the same subsection, in the sense that there is a common description text after a series of manual
lines introducing different functions. In such cases, the browse table contains a category row for each
of these functions (with its own number), but the corresponding text appears only under thelast of
these category rows, the data rows for the others are empty. (This problem does not occur in the
GAPDoc manual format because this introduces explicit subsection titles, involving only thefirst of
several function definitions.)

Also, index entries and sectioning entries inmanual.six files of manuals inGAPDoc format are
not explicitly distinguished.

The code can be found in the filelib/manual.g of the package.

6.6 Overview of the GAP Bibliography

The GAP documentation contains a bibliography ofGAP related publications, see [GAP].
Browse provides access to this information inGAP, using the standard facilities of the function
NCurses.BrowseGeneric (4.3.1), i. e., one can scroll in the list, search for entries, sort by year,
sort and categorize by authors etc.

TheBrowse package contains a (perhaps outdated) version of this bibliography. One can get an
updated version as follows.

Browse 46

wget -N http://www.gap-system.org/Doc/Bib/gap-publishednicer.bib

6.6.1 BrowseBibliography

♦ BrowseBibliography([bibfiles]) (function)

Returns: a list of strings representing BibTeX entries.
This function shows the list of BibTeX entries in the files given by the strings in the listbibfiles.

If no argument is given then the filebibl/gap-publishednicer.bib in theBrowse package direc-
tory is taken. The return value is a list of strings that contain the BibTeX entries that have been
“clicked” in visual mode.

The full functionality of the functionNCurses.BrowseGeneric (4.3.1) is available.

Example
gap> # sort and categorize by year, scroll down, expand a category row
gap> BrowseData.SetReplay("scrrscsedddddxdddddQ");
gap> BrowseBibliography();;
gap> # sort & categorize by authors, expand all category rows, scroll down
gap> BrowseData.SetReplay("scscXseddddddQ");
gap> BrowseBibliography();;
gap> # sort and categorize by journal, search for a journal name, expand
gap> BrowseData.SetReplay(Concatenation("scrrrsc/J. Algebra",
> [NCurses.keys.ENTER], "nxdddQ"));
gap> BrowseBibliography();;
gap> BrowseData.SetReplay(false);

Implementation remarks: The browse table has a static header, no footer and row labels, one row
of column labels is given by the descriptions of the table columns (authors, title, year, journal). For
categorizing by authors, a specialCategoryValues function is provided that distributes the authors
to different category rows, such that each entry appears once for each of its authors in the categorized
table. When a data row or an entry in this row is selected, “click” adds the corresponding BibTeX
entry to the result list. The width of the title column is preset, in order to avoid computing all values
in advance; note that the contents of this column is formatted as a paragraph, using the function
FormatParagraph.

For three columns, the sort parameters are customized as follows: The authors column does not
become hidden when the table is categorized according to this column, sorting by year yields a de-
scending order, and the category rows arising from the three columns show the numbers of the data
rows that belong to them.

This function requires some of the utilities provided by theGAP packageGAPDoc (see [LN06]),
such asFormatParagraph, NormalizedWhitespace, NormalizeNameAndKey, ParseBibFiles,
andPrintBibAsBib.

The code can be found in the filelib/gapbibl.g of the package.

6.7 A Puzzle

We consider anm by n rectangle of squares numbered from 1 tomn−1, the bottom right square is
left empty. The numbered squares are permuted by successively exchanging the empty square and a
neighboring square such that in the end, the empty cell is again in the bottom right corner.

Browse 47

7 13 14 2
1 4 15 11
6 8 3 9
10 5 12

The aim of the game is to order the numbered squares via these moves.
For the casem = n = 4, the puzzle is known under the name “Sam Loyd’s Fifteen”, see [Bog]

and [OR] for more information and references.

6.7.1 BrowsePuzzle

♦ BrowsePuzzle([m, n[, pi]]) (function)

Returns: a record describing the initial and final status of the puzzle.
This function shows the rectangle in a window.
The argumentsm andn are the dimensions of the rectangle, the default for both values is 4. The

initial distribution of the numbers in the squares can be prescribed via a permutationpi, the default is
a random element in the alternating group on the points 1,2, . . . ,mn−1. (Note that the game has not
always a solution.)

In any case, the empty cell is selected, and the selection can be moved to neighboring cells via the
arrow keys.

The return value is a record with the componentsdim (the pair[m, n]), init (the initial per-
mutation),final (the final permutation), andsteps (the number of steps that were needed).

Example
gap> BrowseData.SetReplay(Concatenation(
> BrowsePuzzleSolution.steps, "Q"));
gap> BrowsePuzzle(4, 4, BrowsePuzzleSolution.init);;
gap> BrowseData.SetReplay(false);

An implementation using mouse clicks instead of key strokes is available in theGAP packageXGAP
(see [CN04]).

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individualminyx function. Only one mode is
needed in which one cell is selected, and besides the standard actions for quitting the table, asking for
help, and saving the current window contents, only the four moves via the arrow keys are admissible.

Some standardNCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the filelib/puzzle.g of the package.

6.8 Peg Solitaire

Peg solitaire is a board game for one player. The game board consists of several holes some of which
contain pegs. In each step of the game, one peg is moved horizontally or vertically to an empty hole
at distance two, by jumping over a neighboring peg which is then removed from the board.

Browse 48

◦ ◦ ◦
◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦
◦ ◦ ◦

We consider the game that in the beginning, exactly one hole is empty, and in the end, exactly one peg
is left.

6.8.1 PegSolitaire

♦ PegSolitaire([format][,][nrholes][,][twoModes]) (function)

This function shows the game board in a window.
If the argumentformat is one of the strings"small" or "large" then small or large pegs are

shown, the default is"small".
Three shapes of the game board are supported, with 33, 37, and 45 holes, respectively; this number

can be specified via the argumentnrholes, the default is 33. In the cases of 33 and 45 holes, the
position of both the initial hole and the destination of the final peg is the middle cell, whereas in the
case of 37 holes, the initial hole is in the top left position and the final peg has to be placed in the
bottom right position.

If a BooleantwoModes is entered as an argument then it determines whether a browse table with
one or two modes is used; the defaultfalse yields a browse table with only one mode.

In any case, one cell of the board is selected, and the selection can be moved to neighboring cells
via the arrow keys. A peg in the selected cell jumps over a neighboring peg to an adjacent hole via the
j key followed by the appropriate arrow key.

Example
gap> for n in [33, 37, 45] do
> BrowseData.SetReplay(Concatenation(
> PegSolitaireSolutions.(String(n)), "Q"));
> PegSolitaire(n);
> od;
gap> BrowseData.SetReplay(false);

For more information such as variations of the game and references, see [Köla]. Also the solutions
stored in the variablePegSolitaireSolutions have been taken from this web page.

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individualminyx function. In fact, two imple-
mentations are provided. The first one needs only one mode in which one cell is selected; moving the
selection and jumping with the peg in the selected cell in one of the four directions are the supported
user actions. The second implementation needs two modes, one for moving the selection and one for
jumping.

Some standardNCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the filelib/solitair.g of the package.

Browse 49

6.9 Rubik’s Cube

We visualize the transformations of Rubik’s magic cube in a model that is given by “unfolding” the
faces and numbering them as follows.

1 2 3
4 top 5
6 7 8

9 10 11 17 18 19 25 26 27 33 34 35
12 left 13 20 front 21 28 right 29 36 back 37
14 15 16 22 23 24 30 31 32 38 39 40

41 42 43
44 down 45
46 47 48

Clockwise turns of the six layers (top, left, front, right, back, and down) are represented by the fol-
lowing permutations.

Example
gap> cubegens := [
> (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)(11,35,27,19),
> (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35),
> (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11),
> (25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24),
> (33,35,40,38)(34,37,39,36)(3, 9,46,32)(2,12,47,29)(1,14,48,27),
> (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)
>];;

GAP computations analyzing this permutation group have been part of the announcements ofGAP 3
releases. For aGAP 4 equivalent, see [Sch]. For more information and references (notGAP related)
about Rubik’s cube, see [Kölb].

6.9.1 BrowseRubiksCube

♦ BrowseRubiksCube([format][,][pi]) (function)

This function shows the model of the cube in a window.
If the argumentformat is one of the strings"small" or "large" then small or large cells are

shown, the default is"small".
The argumentpi is the initial permutation of the faces, the default is a random permutation in the

cube group, see (Reference: Random).
Supported user inputs are the keysT, L, F, R, B, andD for clockwise turns of the six layers, and the

corresponding capital letters for counter-clockwise turns. If the terminal supports colors, according to
the global variableNCurses.attrs.has colors (2.2.1), the inputS switches between a screen that
shows only the colors of the faces and a screen that shows the numbers; the color screen is the default.

The return value is a record with the componentsinputs (a string describing the user inputs),
init, andfinal (the initial and final permutation of the faces, respectively). (Theinputs component
can be used for the replay feature, see the example below.)

In the following example, a word in terms of the generators is used to initialize the browse table,
and then the letters in this word are used as a series of input steps, except that in between, the display
is switched once from colors to numbers and back.

Browse 50

Example
gap> choice:= List([1 .. 30], i -> Random([1 .. 6]));;
gap> input:= List("tlfrbd", INT_CHAR){ choice };;
gap> BrowseData.SetReplay(Concatenation(
> input{ [1 .. 20] },
> "s", # switch to number display
> input{ [21 .. 25] },
> "s", # switch to color display
> input{ [26 .. 30] },
> "Q"));; # quit the browse table
gap> BrowseRubiksCube(Product(cubegens{ choice }));;
gap> BrowseData.SetReplay(false);

Implementation remarks: The cube is implemented via a browse table, without row and column labels,
with static header, dynamic footer, and individualminyx function. Only one mode is needed, and
besides the standard actions for quitting the table, asking for help, and saving the current window
contents, only the twelve moves and the switch between color and number display are admissible.

Switching between the two display formats is implemented via a functionwork.Main, so this
relies onnot caching the formatted cells inwork.main.

Row and column separators of the browse table are whitespace of height and width one. The
separating lines are drawn using an individualSpecialGrid function in the browse table. Note that
the relevant cells do not form a rectangular array.

Some standardNCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the filelib/rubik.g of the package.

6.10 Changing Sides

We consider a 5 by 5 board of squares filled with two types of stones, as follows. The square in the
middle is left empty.

× × × × ×
◦ × × × ×
◦ ◦ × ×
◦ ◦ ◦ ◦ ×
◦ ◦ ◦ ◦ ◦

The aim of the game is to exchange the two types of stones via a sequence of single steps that
move one stone to the empty position on the board. Only those moves are allowed that increase or
decrease one coordinate by 2 and increase or decrease the other by 1; these are the allowed moves of
the knight in chess.

This game has been part of the MacTutor system [OR00].

6.10.1 BrowseChangeSides

♦ BrowseChangeSides() (function)

Browse 51

This function shows the game board in a window.
Each move is encoded as a sequence of three arrow keys; there are 24 admissible inputs.

Example
gap> for entry in BrowseChangeSidesSolutions do
> BrowseData.SetReplay(Concatenation(entry, "Q"));
> BrowseChangeSides();
> od;
gap> BrowseData.SetReplay(false);

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individualminyx function. Only one mode is
needed, and besides the standard actions for quitting the table, asking for help, and saving the current
window contents, only moves via combinations of the four arrow keys are admissible.

The separating lines are drawn using an individualSpecialGrid function in the browse table.
Some standardNCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and

searching, are not available in this application.
The code can be found in the filelib/knight.g of the package.

6.11 Sudoku

We consider a 9 by 9 board of squares. Some squares are initially filled with numbers from 1 to 9.
The aim of the game is to fill the empty squares in such a way that each row, each column, and each
of the marked 3 by 3 subsquares contains all numbers from 1 to 9. Aproper Sudoku gameis defined
as one with a unique solution. Here is an example.

5

1 5 4 6 2

9 5 3

6 4

8

8 9 5 3

5

4 7 2

9 1 8

TheBrowse package contains functions to create, play and solve these games. There are basic com-
mand line functions for this, which we describe first, and there is a user interfacePlaySudoku (6.11.7)
which is implemented using the generic browse functionality described in Chapter4.

6.11.1 Sudoku.Init

♦ Sudoku.Init([arg]) (function)

Returns: A record describing a Sudoku board orfail.
This function constructs a record describing a Sudoku game. This is used by the other functions

described below. There a several possibilities for the argumentarg.

Browse 52

arg is a string The entries of a Sudoku board are numbered row-wise from 1 to 81. A board is
encoded as a string as follows. If one of the numbers 1 to 9 is in entryi then the corresponding
digit character is written in positioni of the string. If an entry is empty any character, except
’1’ to ’9’ or ’|’ is written in positioni of the string. Trailing empty entries can be left out.
Afterwards’|’-characters can be inserted in the string (for example to mark line ends). Such
strings can be used forarg.

arg is a matrix A Sudoku board can also be encoded as a 9 by 9-matrix, that is a list of 9 lists of
length 9, whose (i,j)-th entry is the (i,j)-th entry of the board as integer if it is not empty. Empty
entries of the board correspond to unbound entries in the matrix.

arg is a list of integers Instead of the matrix just described the argument can also be given by the
concatenation of the rows of the matrix (so, a list of integers and holes).

Example
gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;

6.11.2 Sudoku.Place

♦ Sudoku.Place(game, i, n) (function)

♦ Sudoku.Remove(game, i) (function)

Returns: The changedgame.
Heregame is a record describing a Sudoku board, as returned bySudoku.Init (6.11.1). The

argumenti is the number of an entry, counted row-wise from 1 to 81, andn is an integer from 1 to 9
to be placed on the board. These functions changegame.

Sudoku.Place tries to place numbern on entryi. It is an error if entryi is not empty. The
number is not placed ifn is already used in the row, column or subsquare of entryi. In this case the
componentgame.impossible is bound.

Sudoku.Remove tries to remove the number placed on positioni of the board. It does not change
the board if entryi is empty, or if entryi was given when the boardgame was created. In the latter
casegame.impossible is bound.

Example
gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;
gap> Sudoku.Place(game, 1, 3);; # 3 is already in first row
gap> IsBound(game.impossible);
true
gap> Sudoku.Place(game, 1, 2);; # 2 is not in row, col or subsquare
gap> IsBound(game.impossible);
false

6.11.3 Sudoku.RandomGame

♦ Sudoku.RandomGame([seed]) (function)

Returns: A pair [str, seed] of string and seed.
The optional argumentseed, if given, must be an integer. If not given some random integer from

the currentGAP session is used. This function returns a random proper Sudoku game, where the board

Browse 53

is described by a stringstr, as explained inSudoku.Init (6.11.1). With the sameseed the same
board is returned.

The games computed by this function have the property that after removing any given entry the
puzzle does no longer have a unique solution.

Example
gap> Sudoku.RandomGame(5833750);
[" 1 2 43 2 68 72 8 6 2 1 9 8 8 3 \
9 47 3 7 18 ", 5833750]
gap> last = Sudoku.RandomGame(last[2]);
true

6.11.4 Sudoku.SimpleDisplay

♦ Sudoku.SimpleDisplay(game) (function)

Displays a Sudoku board on the terminal. (But seePlaySudoku (6.11.7) for a fancier interface.)
Example

gap> game := Sudoku.Init(" 3 68 | 85 1 69| 97 53| 79 |\
> 6 47 |45 2 |89 2 1 | 4 8 7 | ");;
gap> Sudoku.SimpleDisplay(game);
3 | 6|8
85| 1| 69
9|7 | 53

| |79

6 | 47|
45 | 2 |

89 | 2| 1
4 | 8| 7

| |

6.11.5 Sudoku.OneSolution

♦ Sudoku.OneSolution(game) (function)

Returns: A completed Sudoku board that solvesgame, or fail.
Heregame must be a Sudoku board as returned bySudoku.Init (6.11.1). It is not necessary that

game describes a proper Sudoku game (has a unique solution). It may have several solutions, then one
random solution is returned. Or it may have no solution, thenfail is returned.

Example
gap> Sudoku.SimpleDisplay(Sudoku.OneSolution(Sudoku.Init(" 3")));
493|876|251
861|542|739
527|193|648

942|618|573
156|739|482
738|425|916

289|354|167

Browse 54

375|961|824
614|287|395

6.11.6 Sudoku.UniqueSolution

♦ Sudoku.UniqueSolution(game) (function)

Returns: A completed Sudoku board that solvesgame, or false, or fail.
Heregame must be a Sudoku board as returned bySudoku.Init (6.11.1). It is not necessary that

game describes a proper Sudoku game. If it has several solutions, thenfalse is returned. If it has no
solution, thenfail is returned. Otherwise a board with the unique solution is returned.

Example
gap> s := " 5 | 154 6 2 |9 5 3 |6 4 | 8 |8 9 53\
> | 5 | 4 7 2| 91 8 ";;
gap> sol := Sudoku.UniqueSolution(Sudoku.Init(s));;
gap> Sudoku.SimpleDisplay(sol);
438|219|576
715|436|928
962|758|314

694|573|281
153|862|749
827|941|653

281|695|437
546|387|192
379|124|865

6.11.7 PlaySudoku

♦ PlaySudoku([arg]) (function)

Returns: A record describing the latest status of a Sudoku board.
This function allows one to solve Sudoku puzzles interactively. There are several possibilities for

the optional argumentarg. It can either be a string, matrix or list of holes and integers as described
in Sudoku.Init (6.11.1), or a board as returned bySudoku.Init (6.11.1). Furthermorearg can be
an integer or not be given, in that caseSudoku.RandomGame (6.11.3) is called to produce a random
game.

The usage of this function is self-explanatory, pressing the ? key displays a help screen. Here, we
mention two keys with a particular action: Pressing theH key you get a hint, either an empty entry
is filled or the program tells you that there is no solution (so you must delete some entries and try
others). Pressing theS key the puzzle is solved by the program or it tells you that there is no or no
unique solution.

Implementation remarks: The game board is implemented via a browse table, without row and
column labels, with static header, dynamic footer, and individualminyx function. Two modes are
supported, with the standard actions for quitting the table and asking for help; one cell is selected in
each mode. The first mode provides actions for moving the selected cell via arrow keys, for changing
the value in the selected cell, for getting a hint or the (unique) solution. (Initial entries of the matrix
cannot be changed via user input. They are shown in boldface.) The second mode serves for error
handling: When the user enters an invalid number, i. e., a number that occurs already in the current

Browse 55

row or column or subsquare, then the application switches to this mode, which causes that a message
is shown in the footer, and the invalid entry is shown in red and blinking; similarly, error mode is
entered if a hint or solution does not exist.

The separating lines are drawn using an individualSpecialGrid function in the browse table,
since they cannot be specified within the generic browse table functions.

Some standardNCurses.BrowseGeneric (4.3.1) functionality, such as scrolling, selecting, and
searching, are not available in this application.

The code can be found in the filelib/sudoku.g of the package.

6.11.8 Sudoku.HTMLGame

♦ Sudoku.HTMLGame(game) (function)

♦ Sudoku.LaTeXGame(game) (function)

Returns: A string with HTML or LATEX code, respectively.
The argument of these functions is a record describing a Sudoku game. These functions return

code for including the current status of the board into a webpage or a LATEX document.

References

[Bog] Alexander Bogomolny. Sam Loyd’s Fifteen. http://www.cut-the-
knot.org/pythagoras/fifteen.shtml. 47

[CN04] F. Celler and M. Neunḧoffer. XGAP, a graphical user interface forGAP.
http://www.math.rwth-aachen.de/˜Max.Neunhoeffer/xgap4, May 2004. RefereedGAP
package.47

[GAP] A bibliography ofGAP related publications.http://www.gap-system.org/Doc/Bib/gap-
publishednicer.bib. 45

[Köla] Jürgen K̈oller. Peg Solitaire.http://www.mathematische-basteleien.de/solitaire.htm. 48

[Kölb] Jürgen K̈oller. Rubik’s Cube.http://www.mathematische-basteleien.de/rubikscube.htm.
49

[LN06] F. Lübeck and M. Neunḧoffer. GAPDoc, a Meta Package forGAP Documentation.
http://www.math.rwth-aachen.de/˜Frank.Luebeck/GAPDoc, Jan 2006.GAP package.46

[NCu] The ncurses C library.http://dickey.his.com/ncurses/ncurses.faq.html. 6, 8

[OR] J. J. O’Connor and E. F. Robertson. http://www-history.mcs.st-
and.ac.uk/HistTopics/Mathematicalgames.html. 47

[OR00] J. J. O’Connor and E. F. Robertson. Mathematical MacTutor.http://www-groups.dcs.st-
and.ac.uk/˜edmund/mactutor.html, 2000. 50

[Sch] Martin Scḧonert. Analyzing Rubik’s Cube withGAP. http://www.gap-
system.org/Doc/Examples/rubik.html. 49

[WPN+04] R. A. Wilson, R. A. Parker, S. Nickerson, J. N. Bray, and T. Breuer. Atlas-
Rep, aGAP Interface to the Atlas of Group Representations.http://www.math.rwth-
aachen.de/˜Thomas.Breuer/atlasrep, Apr 2004. RefereedGAP package.43

56

http://www.cut-the-knot.org/pythagoras/fifteen.shtml
http://www.cut-the-knot.org/pythagoras/fifteen.shtml
http://www.math.rwth-aachen.de/~Max.Neunhoeffer/xgap4
http://www.gap-system.org/Doc/Bib/gap-publishednicer.bib
http://www.gap-system.org/Doc/Bib/gap-publishednicer.bib
http://www.mathematische-basteleien.de/solitaire.htm
http://www.mathematische-basteleien.de/rubikscube.htm
http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
http://dickey.his.com/ncurses/ncurses.faq.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Mathematical_games.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Mathematical_games.html
http://www-groups.dcs.st-and.ac.uk/~edmund/mactutor.html
http://www-groups.dcs.st-and.ac.uk/~edmund/mactutor.html
http://www.gap-system.org/Doc/Examples/rubik.html
http://www.gap-system.org/Doc/Examples/rubik.html
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep

Index

action record of a browse table,30
attribute line,7
attributes of text,13

Browse, 40
for character tables,41
for tables of marks,42

BrowseAtlasInfo, 43
BrowseBibliography, 46
BrowseChangeSides, 50
BrowseData, 32
BrowseData.actions.Error, 39
BrowseData.actions.QuitMode, 39
BrowseData.actions.QuitTable, 39
BrowseData.actions.SaveWindow, 39
BrowseData.actions.ShowHelp, 38
BrowseData.AlertWithReplay, 38
BrowseData.BlockEntry, 26
BrowseData.FormattedEntry,34
BrowseData.HeightLabelsCol,34
BrowseData.IsBrowseTable, 26
BrowseData.IsBrowseTableCellData, 25
BrowseData.IsDoneReplay,38
BrowseData.IsQuietSession,38
BrowseData.log,25, 37
BrowseData.logStore,37
BrowseData.SetReplay, 37
BrowseData.ShowHelpPager,38
BrowseData.ShowHelpTable,38
BrowseData.ShowTables,31
BrowseGapManuals, 44
BrowsePuzzle, 47
BrowseRubiksCube, 49

categorizing a browse table,24
click on an entry of a browse table,25
collapsed category row,24
colors as text attributes,6
colors, availability,15

column labels of a browse table,23
corner table of a browse table,23

displayed characters,17

expanded category row,24

footer of a browse table,23

game,6, 46, 47, 49–51

header of a browse table,23
help window for a browse table,24
hide convention,35, 37

log of a browse table session,25

main table of a browse table,23
mode of a browse table,31

NCurses.Alert, 19
NCurses.attrs.has colors, 14
NCurses.BrowseGeneric, 29
NCurses.ColorAttr, 14
NCurses.ConcatenationAttributeLines,

16
NCurses.Demo, 22
NCurses.GetLineFromUser, 21
NCurses.Grid, 17
NCurses.IsAttributeLine, 15
NCurses.Pager, 21
NCurses.PutLine, 17
NCurses.RepeatedAttributeLine, 16
NCurses.RestoreWin, 18
NCurses.SaveWin, 18
NCurses.Select, 20
NCurses.SetTerm, 15
NCurses.ShowSaveWin, 18
NCurses.StringsSaveWin, 18
NCurses.WBorder, 18
NCurses.WidthAttributeLine, 17

57

Browse 58

PegSolitaire, 48
PlaySudoku, 54

replay of a browse table session,25
return value of a browse table session,25
row labels of a browse table,23

scrolling in a browse table,24
searching in a browse table,24
SearchStringWithStartParameters,36
selecting entries of a browse table,24
solitaire game,47
sort convention,35
sorting a browse table,24
Sudoku.HTMLGame, 55
Sudoku.Init, 51
Sudoku.LaTeXGame, 55
Sudoku.OneSolution, 53
Sudoku.Place, 52
Sudoku.RandomGame, 52
Sudoku.Remove, 52
Sudoku.SimpleDisplay, 53
Sudoku.UniqueSolution, 54

visual mode,6

