GAPDoc

(Version 0.99999)

Frank L Ubeck
Max Neunhoffer

Frank L Ubeck — Email: Frank.Luebeck@Math.RWTH-Aachen.De
— Homepagehttp://www.math.rwth-aachen.de/ Frank.Luebeck

Max Neunhoffer — Email: Max.Neunhoeffer@Math.RWTH-Aachen.De
— Homepagehttp://www.math.rwth-aachen.de/ Max.Neunhoeffer

mailto://Frank.Luebeck@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Frank.Luebeck
mailto://Max.Neunhoeffer@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Max.Neunhoeffer

GAPDoc

Copyright

(© 2000 by Frank iibeck and Max Neuriffer
We adopt the copyright regulations ®@AP as detailed in the copyright notice in tB&P manual.

Contents

1 Introduction and Example
1.1 XML . e
1.2 Acompleteexample.
1.3 Somequestions e e e e e e

2 How To Type aGAPDoc Document

2.1 General XML Syntax. e
2.1.1 Headof XMLDocument,
212 COmMmMENtS
2.1.3 ProcessingInstructions.
2.1.4 Namesin XML and Whitespace
215 Elements. e
2.1.6 StartTags. o e e e e e
217 EndTags oo e
2.1.8 Combined Tags for Empty Elements.
2.1.9 Entities e
2.1.10 Special Charactersin XML
2100 CDATA .« v o o e e e e e e e e e e
2.1.12 Encoding ofan XML document.
2.1.13 Well Formed and Valid XML Documents

2.2 EnteringGAPDoc DOCUMENtS o o i
2.2.1 More SpecialCharacters,
2.2.2 Mathematical Formulae. o
2.23 MoreEntities.

3 The Document Type Definition

321 <BOOK>> v v i e e e e e e e
3.2.2 <TIitlePage > . v v v v v vt e e e e e
3.2.3 <Title> . o it e e e e e
324 <SUbLitle> . . . v i e e e e e e e
3.25 <Version> e e e e e
3.2.6 <TitleComment™ i i i i i i e e e e e e e
3.2.7 <AUthOr> o e e e e e
3.2.8 <Date> . .. e e e e e e

3.3

3.4

3.5

3.6

3.7

GAPDoc 4

3.2.9 <AAAresSs> . v it e e e e e e e e e e e e 20
3.2.10 <Rbstract>> e e e e e e e 20
3.2.11 <Copyright> o i e 20
3.2.12 <AcknowledgementsS>> i u e e e e e e e e e e e e 21
3.2.13 <Colophon>> . v v v v v i e e e e e e e e e 21
3.2.14 <TableOfContents> o i i i i i i e e e e e e 21
3.2.15 <Bibliography> v i i e e e e e e e e e e e 21
3.2.16 <ThelIndex>™ . . v v v v v v vt e e e e e e e e e e 21
Sectioning Elements. e 22
3.3 1 <Body> .o e e e e e e 22
3.3.2 <Chapter> . . . o i i e e e e e e e e e 22
3.3.3 <Heading>> i e e e e e e 23
3.3.4 <RPPendix>> . . . i e e e e e e e e e e e e 23
3.3.5 <Section> e e e e 23
3.3.6 <Subsection>> e e e e e 23
ManSection. e e e e e e 24
341 <ManSection>> i e e e e e e e e e 24
3.4.2 <FUNC o v v i e e e e e e e e e e e e 24
34.3 <OPEr> . v e e e e e 25
344 <Meth> . . . o e e 25
345 <FILL> . o e e e 25
34.6 <Prop> . o e e e e e e e e 26
AT <BEET> o e e e e e e e 26
34.8 <Var> ..o e e e e 26
349 <Fam> . .. e e 26
3.4.10 <InfoClassS>> . v v v v v i e e e e e e e e e e e e e e 27
Cross Referencingand Citations. 27
351 <Ref> . . . 27
352 <Label> . . . o e e e e 28
3.5.3 <Cite> . . e e 28
354 <Index™> . . o o i e e e e e e e 28
355 <URL> . . . o e 29
356 <Email>> e e e e e e 29
357 <HOmMEpage™ . . . v v v i e e e e e e e e e e e 29
Structural Elementslike Lists. o 29
3.6.1 <LIst> . .. 29
3.6.2 <Mark> .. e e e e e 30
3.6.3 <Ttem> . .. e e e e 30
3.6.4 <ENUIM> . . . o e e e e e e e e e e e 30
3.6.5 <Table> e e 30
Typesof Text e e e 31
3.7.1 <Emph>and<E> e e e e e e 31
3.7.2 <Quoted>and<Q> 31
3.7.3 <Keyword>and<K> i it i e 31
374 <Arg>and<A> e e 32
375 <Code>and<C> v it 32

3.7.6 <File>and<F> i i i e, 32

GAPDoc 5

3.7.7 <Button>and i e e 32
3.7.8 <Package™ . . . i e e e e e e e e 32
3.7.9 <Listing> 33
3.7.10 <Log>and<Example>> v v v v v v i e e e e e e 33
3.7.11 <MVerb> . . . e 33
3.8 Elements for Mathematical Formulae, 33
3.8.1 <Math>and<Display™ . . « v v v v v v e e e e e e 33
3.8.2 <M> L e e e e e e 34
3.9 Everythingelse. e 35
391 <ALE> L e 35
392 <Par>and<P> e 36
3.9.3
 L. e 36
Distributing a Document into Several Files 37
4.1 TheConventionS. o i i it 37
4.2 AToolfor CollectingaDocument. 38
4.2.1 ComposedXMLString. 38
The Converters 39
5.1 Producing Documentation from Source Files. 39
5.1.1 MakeGAPDocDoC. e 41
5.2 Parsing XML Documents e e 41
5.2.1 ParseTreeXMLString o i 41
5.2.2 DisplayXMLStructure 42
5.2.3 ApplyToNodesParseTree. i 42
5.2.4 CheckAndCleanGapDocTree. i v v i ii i .. 42
5.2.5 AddParagraphNumbersGapDocTree 43
5.3 TheConverters. 43
5.3.1 GAPDocz2LaTeX. o 43
5.3.2 GAPDOC2TEXL ot 44
5.3.3 GAPDoc2TextPrintTextFiles 44
5.3.4 AddPageNumbersToSix, 45
535 PrintSixFile. 45
5.3.6 GAPDOCZHTML e e e e e e 45
5.3.7 GAPDOC2HTMLPrintHTMLFiles. 47
5.4 Parsing BibTeX Files. 47
5.4.1 ParseBibFiles 47
5.4.2 NormalizeNameAndKey. 48
5.4.3 WriteBibFile 48
55 TextUtilities e 48
55.1 WHITESPACE e 49
552 TextAttr 49
5.5.3 FormatParagraph 50
5.5.4 SubstitutionSublist. 50
555 StripBeginEnd 50
5.5.6 StripEscapeSequences. 51

55.7 RepeatedString 51

GAPDoc

5.5.8 NumberDigits.
5.5.9 PositionMatchingDelimiter 0oL
5510 WordsString

5.6 PrintULtilities e e e

5.6.1 PrintTol.

5.6.2 StringPrint e
5.6.3 PrintFormattedString e

56.4 Page. e

5.6.5 StringFile
A The File 3k+1.xml

B The File gapdoc.dtd

51
51
52
52
52
52
53
53
53

54

56

Chapter 1

Introduction and Example

The main purpose of th&APDoc package is to define a file format for documentationGafr-
programs and -packages (s€&A[P07). The problem is that such documentation should be read-
able in several output formats. For example it should be possible to read the documentation inside
the terminal in whichGAP is running (a text mode) and there should be a printable version in high
typesetting quality (produced by some version gX) It is also popular to viewsAP’s online help

with a Web-browser via an HTML-version of the documentation. Nowadays one ca#TgEeahd
standard viewer programs to produce and view on the sareenor pdf-files with full support of
internal and external hyperlinks. Certainly there will be other interesting document formats and tools
in this direction in the future.

Our aim is to find dormat for writingthe documentation which allows a relatively easy translation
into the output formats just mentioned and which hopefully makes it easy to translate to future output
formats as well.

To make documentation written in tl@APDoc format directly usable, we also provide a set of
programs, called converters, which produce text-, hyperlinKeeKt and HTML-output versions of
aGAPDoc document. These programs are developed by the first named author. They run completely
insideGAP, i.e., no external programs are needed. You only needx andpdflatex to process the
IATEX output. These programs are described in Chapter

1.1 XML

The definition of theGAPDoc format uses XML, the “eXtendible Markup Language”. This is a
standard (defined by the W3C consortium, seep: //www.w3c.org) which lays down a syntax for
adding markup to a document or to some data. It allows to define document structures via introducing
markupelementsand certain relations between them. This is done @oeument type definition

The filegapdoc.dtd contains such a document type definition and is the central part &fAR®oc
package.

The easiest way for getting a good idea about this is probably to look at an example. The Ap-
pendixA contains a short but comple@APDoc document for a fictitious share package. In the next
section we will go through this document, explain basic facts about XML anGA®®Doc document
type, and give pointers to more details in later parts of this documentation.

In the last Sectiord..3 of this introductory chapter we try to answer some general questions about
the decisions which lead to tl@APDoc package.

http://www.w3c.org

GAPDoc 8

1.2 A complete example

In this section we recall the lines from the example document in Appehdird give some explana-

tions.
from 3k+1.xml
<?xml version="1.0" encoding="IS0-8859-1"?>

This line just tells a human reader and computer programs that the file is a document with XML
markup and that the text is encoded in the ISO-8859-1, also called ISO-latinl character set. This is a
nowadays widely used extension of the ASCII character set which contains all special characters of
Western European languages (e.g., German umlauts and French accented characters).
from 3k+1.xml
<!-- A complete "fake package" documentation
$Id: intro.xml,v 1.6 2002/12/23 10:03:20 gap Exp $
>

Everything in a XML file between < !--" and “-->" is a comment and not part of the document

content.
from 3k+1.xml

<!DOCTYPE Book SYSTEM "gapdoc.dtd">

This line says that the document contains markup which is defined in the systemgfilec . dtd
and that the markup obeys certain rules defined in that file (the emdihgneans “document type
definition”). It further says that the actual content of the document consists of an element with name

“Book”. And we can really see that the remaining part of the file is enclosed as follows:
from 3k+1.xml

<Book Name="3k+1">
[...] (content omitted)
</Book>

This demonstrates the basics of the markup in XML. This part of the document is an “element”. It
consists of the “start tag¢Book Name="3k+1">, the “element content” and the “end tag/Book>
(end tags always start witty). This element also has an “attributéime whose “value” is3k+1.

If you know HTML, this will look familiar to you. But there are some important differences: The
element nameook and attribute nameame arecase sensitiveThe value of an attribute muatways
be enclosed in quotes. In XMeveryelement has a start and end tag (which can be combined for
elements defined as “empty”, see for examyplebleOfContents/> below).

If you know BTEX, you are familiar with quite different types of markup, for example: The equiv-
alent of theBook element inATEX is \begin{document} ... \end{document}. The sectioning
in IATEX is not done by explicit start and end markup, but implicitly via heading commands like
\section. Other markup is done by using bracgsand putting some commands inside. And for
mathematical formulae one can use ther the stariandthe end of the markup. In XMkll markup
looks similar to that of th@ook element.

The content of the book starts with a title page.
from 3k+1.xml

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Author

GAPDoc 9

<Email>3kplusone@dev.null</Email>
</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.
</Copyright>
</TitlePage>

The content of theitlePage element consists again of elements. In Chaptere describe which
elements are allowed within Bit1ePage and that their ordering is prescribed in this case. In the
(stupid) name of the author you see that a German umlaut is used directly (in ISO-latin1 encoding).
Contrary to ATpX- or HTML-files this markup does not say anything about the actual layout of
the title page in any output version of the document. It just adds information abootethleingof
pieces of text.
Within theCopyright element there are two more things to learn about XML markup.Jhée>
is a complete element. It is a combined start and end tag. This shortcut is allowed for elements which
are defined to be always “empty”, i.e., to have no content. You may have already guesserl/that
is used as a paragraph separator. Note that empty lines do not separate paragrapfgXgs in L
The other construct we see herei®pyright;. This is an example of an “entity” in XML and
is a macro for some substitution text. Here we use an entity as a shortcut for a complicated expression
which makes it possible that the tercopyrightis printed as some text likec) in text terminal
output and as a copyright character in other output format&ARDoc we predefine some entities,
in particular certain “special characters” must be typed via entities, for examp)é " and “&” to
avoid a misinterpretation as XML markup. But also the special charactef§gx are written with
entities, since they need a different handling iATlgX and a text output format, sé21.10and2.2.1
for more details. It is possible to define additional entities for your document inside thhe TYPE
...> declaration, se2.2.3
Note that elements in XML must always be properly nested, as in this example. A construct like

<a>... is notallowed.
from 3k+1.xml

<TableOfContents/>

This is another example of an “empty element”. It just means that a table of contents for the whole
document should be included into any output version of the document.

After this the main text of the document follows inside certain sectioning elements:
from 3k+1.xml

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>
[...] (content omitted)
</Section>
<Section> <Heading>Program</Heading>
[...] (content omitted)
</Section>
</Chapter>
</Body>

These elements are used similarly t@hapter” and {section” in ETeX. But note that the explicit
end tags are necessary here.

GAPDoc 10

The sectioning commands allow to assign an optional attribute “Label”. This can be used for
referring to a section inside the document.
The text of the first section starts as follows. The whitespace in the text is unimportant and the

indenting is not necessary.

from 3k+1.xml
Let <M>k \in \N</M> be a natural number. We consider the sequence
<M>n(i, k), 1 \in \N,</M> with <M>n (1, k) = k</M> and else

Here we come to the interesting question how to type mathematical formula@iR@oc document.

We did not find any alternative for writing formulae ipX syntax. (There is MATHML, but even
simple formulae contain a lot of markup, become quite unreadable and they are cumbersome to type.
Furthermore there seem to be no tools available which translate such formulae in a nice wg{into T
and text.) So, formulae are typed asAfgX. There are three types of elements containing formulae:
“M”, “Math” and “Display”. The first two are for in-text formulae and the third is for displayed
formulae. Here “M” and “Math” are equivalent, when translatingAPDoc document intoATEX.

But they are handled differently for terminal text (and HTML) output. For the content of an “M"-
element there are defined rules for a translation into well readable terminal text. More complicated
formulae are in “Math” or “Display” elements and they are just printed as they are typed in text output.
So, to make a section well readable inside a terminal window you should try to put as many formulae
as possible into “M"-elements. In our example text we used the notation k) instead ofn_i (k)
because it is easier to read in text mode. See Seci@®and3.9for more details.

A few lines further on we find two non-internal references.
from 3k+1.xml
problem, see <Cite Key="Wi98"/> or

<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>

The first within the “Cite”-element is the citation of a book. @APDoc we use the widely used
BibTeX database format for reference lists. This does not use XML but has a well documented
structure which is easy to parse. And many people have collections of references readily available
in this format. The reference list in an output version of the document is produced with the empty

element
from 3k+1.xml

<Bibliography Databases="3k+1" />

close to the end of our example file. The attribute “Databases” give the name(s) of the database (
files which contain the references.

Putting a Web-address into an “URL’-element allows to create a hyperlink in output formats which
allow this.

The second section of our example contains a special kind of subsection defw@Doc.
from 3k+1.xml

<ManSection>

<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>

<Description>
This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, 1if <A>max is
given.

<Example>

GAPDoc 11

gap> ThreeKPlusOneSequence (101);
"Sorry, not yet implemented. Wait for Version 84 of the package"
</Example>
</Description>
</ManSection>

A “ManSection” contains the description of some function, operation, method, filter and so on. The
“Func”-element describes the name ofuaction (there are also similar elements “Oper”, “Meth”,

“Filt” and so on) and names for its arguments, optional arguments enclosed in square brackets. See
Section3.4for more details.

In the “Description” we write the argument names as “A’-elements. A good description of a
function should usually contain an example of its use. For this there are some verbatim-like elements
in GAPDaoc, like “Example” above (here, clearly, whitespace matters which causes a slightly strange
indenting).

The text contains an internal reference to the first section via the explicitly defined label
sec:theory.

The first section also contains a “Ref”-element which refers to the function described here. Note
that there is no explicit label for such a reference. The{®inc Name="ThreeKPlusOneSequence"
Arg="k[, max]"/>and<Ref Func="ThreeKPlusOneSequence"/> does the cross referencing (and
hyperlinking if possible) implicitly via the name of the function.

Here is one further element from our example document which we want to explain.
from 3k+1.xml

<TheIndex/>

This is again an empty element which just says that an output version of the document should contain
an index. Many entries for the index are generated automatically because the “Func” and similar
elements implicitly produce such entries. Itis also possible to include explicit additional entries in the
index.

1.3 Some questions

Are those XML files too ugly to read and edit? Just have a look and decide yourself. The markup
needs more characters than mgsX dr IATEX markup. But the structure of the document is
easier to see. If you configure your favorite editor well, you do not need more key strokes for
typing the markup than ifTeX.

Why do we not use ETEX alone? IATEX is good for writing books. BUtAIEX files are generally
difficult to parse and to process to other output formats like text for browsing in a terminal
window or HTML (or new formats which may become popular in the futuBPDoc markup
is one step more abstract thafigX insofar as it describes meaning instead of appearance of
text. The inner workings oI[EX are too complicated to learn without pain, which makes it
difficult to overcome problems that occur occasionally.

Why XML and not a newly defined markup language? XML is a standard that is more and more
widely used. Lots of people have thought about it. Years of experience with SGML went into
the design. It is easy to parse and lots of tools are already available and there will be more in
the future. (Our experience was however, that only a few of them are usable currently.)

Chapter 2

How To Type aGAPDoc Document

In this chapter we give a more formal description of what you need to start to type documentation
in GAPDoc XML format. Many details were already explained by example in Secti@wof the
introduction.

We donot answer the question “How tarrite a GAPDoc document?” in this chapter. You can
(hopefully) find an answer to this question by studying the example in the introductioh,Zead
learning about more details in the reference Chapter

The definite source for all details of the official XML standard with useful annotations is:

http://www.xml.com/axml/axml.html

Although this document must be quite technical, it is surprisingly well readable.

2.1 General XML Syntax

We will now discuss the pieces of text which can occur in a general XML document. We start with
those pieces which do not contribute to the actual content of the document.

2.1.1 Head of XML Document

Each XML document should have a head which states that it is an XML document in some encoding
and which XML-defined language is used. In case Gk®Doc document this should always look as
in the following example.

Example
<?xml version="1.0" encoding="IS0-8859-1"?>
<!DOCTYPE Book SYSTEM "gapdoc.dtd">

See2.1.12for a remark on the “encoding” statement.
(There may be local entity definitions inside e TYPE statement, see Subsectid2.3below.)

2.1.2 Comments

A “comment” in XML starts with the character sequenge!*-" and ends with the sequence->".
Between these sequences there must not be two adjacent dashes “

12

http://www.xml.com/axml/axml.html

GAPDoc 13

2.1.3 Processing Instructions

A “processing instruction” in XML starts with the character sequence™ followed by a name
(“xml1” is only allowed at the very beginning of the document to declare it being an XML document,
see2.1.7). After that any characters may follow, except that the ending sequenceariust not occur
within the processing instruction.

And now we turn to those parts of the document which contribute to its actual content.

2.1.4 Names in XML and Whitespace

A “name” in XML (used for element and attribute identifiers, see below) must start with a letter (in the
encoding of the document) or with a colorn’“or underscore *' character. The following characters
may also be digits, dots.” or dashes “".

This is a simplified description of the rules in the standard, which are concerned with lots of
unicode ranges to specify what a “letter” is.

Sequences only consisting of the following characters are considevdutaspaceblanks, tabs,

carriage return characters and new line characters.

2.1.5 Elements

The actual content of an XML document consists of “elements”. An element has some “content” with

a leading “start tag”4.1.9 and a trailing “end tag”Z.1.7. The content can contain further elements

but they must be properly nested. One can define elements whose content is always empty, those
elements can also be entered with a single combinedtad(.

2.1.6 Start Tags

A “start-tag” consists of a less-than-character ‘directly followed (without whitespace) by an ele-
ment name (seR.1.4, optional attributes, optional whitespace, and a greater-than-character “

An “attribute” consists of some whitespace and then its name followed by an equal=Sign *“
which is optionally enclosed by whitespace, and the attribute value, which is enclosed either in single
or double guotes. The attribute value may not contain the type of quote used as a delimiter or the
characters&” and “s”.

Note especially that no whitespace is allowed between the starihgtfaracter and the element
name. The quotes around an attribute value cannot be omitted. The names of elements and attributes
arecase sensitive

2.1.7 End Tags

An “end tag” consists of the two characters /
whitespace and a greater-than-charactet. “

directly followed by the element name, optional

2.1.8 Combined Tags for Empty Elements

Elements which always have empty content can be written with a single tag. This looks like a start
tag (see?2.1.6§ exceptthat the trailing greater-than-charactef™is substituted by the two character
sequence/>".

GAPDoc 14

2.1.9 Entities

An “entity” in XML is a macro for some substitution text. There are two types of entities.

A “character entity” can be used to specify characters in the encoding of the document (can be use-
ful for entering non-ASCII characters which you cannot manage to type in directly). They are entered
with a sequences?”, directly followed by either some decimal digits or ax’*and some hexadec-
imal digits, directly followed by a semicolon *. Using such a character entity is just equivalent to
typing the corresponding character directly.

Then there are references to “named entities”. They are entered with an ampersand character
“&" directly followed by a name which is directly followed by a semicolagri.” Such entities must
be declared somewhere by giving a substitution text. This text is included in the document and the
document is parsed again afterwards. The exact rules are a bit subtle but you probably want to use
this only in simple cases. Important entities &&PDoc are described i2.1.1Q 2.2.1and2.2.3

2.1.10 Special Characters in XML

We have seen that the less-than-charactérdnd the ampersand charactes’ ‘Start a tag or entity
reference in XML. To get these characters into the document text one has to use entity references,
namely “s1t;” to get “<” and “samp; ” to get “&”. Furthermore %gt;” should sometimes be used to
get “>".

Another possibility is to use @ATA statement explained 2 1.11

2.1.11 CDATA

Pieces of text which contain many characters which can be misinterpreted as markup can be enclosed
by the character sequenced fCDATA[” and “]]>". Everything between these sequences is consid-
ered as content of the document and is not further interpreted as XML text. All the rules explained
so far in this section daot applyto such a part of the document. The only document content which
cannot be entered directly insidecaaTA statement is the sequencg]*>". This can be entered as

“11> " outside thecDATA statement.
Example
A nesting of tags like <a> is not allowed.

2.1.12 Encoding of an XML document

We suggest to use the ISO-8859-1 or ISO-latinl encoding for wriliAag@Doc XML documents.

This character set contains the ASCII characters and all special characters from Western European
languages like German umlauts or French accented characters. Text in this character set can be used
directly with KTeX and many current default terminal fonts support this character set.

2.1.13 Well Formed and Valid XML Documents

We want to mention two further important words which are often used in the context of XML docu-
ments. A piece of text becomes a “well formed” XML document if all the formal rules described in
this section are fulfilled.

But this says nothing about the content of the document. To give this content a meaning one needs
a declaration of the element and corresponding attribute names as well as of named entities which are
allowed. Furthermore there may be restrictions how such elements can be nestedefifiition of

GAPDoc 15

an XML based markup languadggdone in a “document type definition”. An XML document which
contains only elements and entities declared in such a document type definition and obeys the rules
given there is called “valid (with respect to this document type definition)”.

The main file of theSAPDoc package igapdoc.dtd. This contains such a definition of a markup
language. We are not going to explain the formal syntax rules for document type definitions in this
section. But in Chapte3 we will explain enough about it to understand the §itevdoc.dtd and so
the markup language defined there.

2.2 Entering GAPDoc Documents

Here are some additional rules for writiAPDoc XML documents.

2.2.1 More Special Characters

Since one purpose @APDoc documents is to produce a high qual#ygX output version we have
to pay attention to characters with a special meaningTipXLor in XML. These are the following
characters:

CEU I ST g g g e e\ e e e e gnd 7 (the last one is a non-breakable
space, similar toAIEX’s “ ~” character).

The right way to access these symbols is by using “entities”2ske@ The following table shows
what to type to get these characters in the output text of the document.

&tamp;
&tlt;
&taot;
&hash;
$
&percent;
˜
&bslash;
&obrace;

lo\o'(/)':ﬂ=\//\f?’

|| —

&cbrace;

_ &uscore;

&circum;

Table: What to type for special characters in character data

Note that the first three have an extra “t” at the beginning in comparison with the standard entities
of XML described in2.1.10 The difference is necessary because for examglenip;” produces
“\&” for LATEX to actually get an ampersand character in the printed version. ddse;” if you want
to pass an ampersand character without a backslash in front directlgto L

Inside attribute values you shouhht use these entities. Instead use the corresponding characters
directly. The reason is that attribute values are often used as lab&lgXnand it is easier to process
this properly with the direct input of the characters.

Also, these entities amot used inside mathematical formulae, s2@.2below.

GAPDoc 16

2.2.2 Mathematical Formulae

Mathematical formulae iIGAPDoc are typed as irA[EX. They must be the content of one of three
types of GAPDoc elements concerned with mathematical formulagith”, “Display”, and “M" (see
Sections3.8.1and3.8.2for more details). The first two correspond 48gX’s math mode and display
math mode. The last one is a special form of theth” element type, that imposes certain restrictions
on the content. On the other hand the content ofieirelement is processed in a well defined way for
text terminal or HTML output.

The remarks about special character2.id.1do not apply to the content of these elements. But
the special charactersc” and “&” for XML must be entered via the entities describeit.100r by
using acDATA statement, se2.1.11

2.2.3 More Entities

In GAPDoc there are some more predefined entities:

&GAP; GAP
&GAPDoc; GAPDoc
&TeX; TeX
&LaTeX; IATEX
&BibTeX; BibTeX
&MeatAxe; MeatAxe
&XGAP; XGAP
©right; | ©

Table: Predefined Entities in thBAPDoc system

One can define further local entities right inside the headZske&) of aGAPDoc XML document

as in the following example.
Example
<?xml version="1.0" encoding="IS0-8859-1"?>

<!DOCTYPE Book SYSTEM "gapdoc.dtd"
[<!ENTITY MyEntity "some longish <E>text</E> possibly with markup">
1>

These additional definitions go into tke DOCTYPE tag in square brackets. Such new entities are used
like this: sMyEntity;

Chapter 3

The Document Type Definition

In this chapter we first explain what a “document type definition” is and then desgrildec . dtd in
detail. That file together with the current chapter define hawA&Doc document has to look like. It
can be found in the main directory of t&PDoc package and it is reproduced in Appen8ix

We do not give many examples in this chapter which is more intended as a formal reference
for all GAPDoc elements. Instead we provide an extra document with book e cExample
(also accessible from theAP online help). This uses all the constructs introduced in this chapter
and you can easily compare the source code and how it looks like in the different output formats.
Furthermore recall that many basic things about XML markup were already explained by example in
the introductory chaptet.

3.1 WhatisaDTD?

A document type definition (DTD) is a formal declaration of how an XML document has to be struc-
tured. Itis itself structured such that programs that handle documents can read it and treat the docu-
ments accordingly. There are for example parsers and validity checkers that use the DTD to validate
an XML document, se2.1.13

The main thing a DTD does is to specify which elements may occur in documents of a certain
document type, how they can be nested, and what attributes they can or must have. So, for each
element there is a rule.

Note that a DTD camotensure that a document which is “valid” also makes sense to the convert-
ers! It only says something about the formal structure of the document.

For the remaining part of this chapter we have divided the elemer@aPboc documents into
several subsets, each of which will be discussed in one of the next sections.

See the following three subsections to learn by example, how a DTD works. We do not want to be
too formal here, but just enable the reader to understand the declaratipnsior . dtd. For precise
descriptions of the syntax of DTD’s see again the official standard in:

http://www.xml.com/axml/axml.html

3.2 Overall Document Structure

A GAPDoc document contains on its top level exactly one element with rasne. This element is
declared in the DTD as follows:

17

http://www.xml.com/axml/axml.html

GAPDoc 18

3.2.1 <Book>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,
TheIndex?)>
<!ATTLIST Book Name CDATA #REQUIRED>

From gapdoc.dtd

After the keyworde LEMENT and the nameook there is a listin parentheses. This is a comma separated
list of names of elements which can occur (in the given order) in the contenBeflaelement.

Each name in such a list can be followed by one of the charact&rs *” or “+”, meaning that the
corresponding element can occur zero or one time, an arbitrary number of times, or at least once,
respectively. Without such an extra character the corresponding element must occur exactly once.
Instead of one name in this list there can also be a list of elements names separatechaydcters,

this denotes any element with one of the names (i|é.irfeans “or”).

So, thesook element must contain firstid t LlePage element, then an optionaébleOfContents
element, then @&ody element, then zero or more elements of tygeendix, then an optional
Bibliography element, and finally an optional element of type Index.

Note thatonly these elements are allowed in the content ofrihiek element. No other elements
ortext is allowed in between. An exception of this is that there may be whitespace between the end tag
of one and the start tag of the next element - this should be ignored when the document is processed
to some output format. An element like this is called an element with “element content”.

The second declaration starts with the keywsrdr.1ST and the element nangok. After that
there is a triple of whitespace separated parameters (in general an arbitrary number of such triples,
one for each allowed attribute name). The firgin(e) is the name of an attribute foreok element.

The seconddpaT2) is always the same for all of our declarations, it means that the value of the
attribute consists of “character data”. The third param#r@QUIRED means that this attribute must

be specified with angook element. Later we will also see optional attributes which are declared as
#IMPLIED.

3.2.2 <TitlePage >

From gapdoc.dtd

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

Within this element information for the title page is collected. Note that more than one author can
be specified. The elements must appear in this order because there is no sensible way to specify in a
DTD something like “the following elements may occur in any order but each exactly once”.

Before going on with the other elements inside thek element we explain the elements for the
title page.

3.2.3 <Title >

<!ELEMENT Title (%Text;)*>

From gapdoc.dtd

GAPDoc 19
Here is the last construct you need to understand for readipgoc.dtd. The expression%Text;”
is a so-called “parameter entity”. It is something like a macro within the DTD. It is defined as follows:

From gapdoc.dtd
<!ENTITY % Text "%InnerText; | List | Enum | Table">

This means, that every occurrence eféxt;” in the DTD is replaced by the expression
From gapdoc.dtd

$InnerText; | List | Enum | Table

which is then expanded further because of the following definition:
From gapdoc.dtd

<IENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index" >

These are the only two parameter entities we are using. They expand to lists of element names which
are explained in the sequahdthe keywordé¢PCDATA (concatenated with the “or” character”y.

So, the elementT(itle) is of so-called “mixed content”. It can contaparsed character data
which does not contain further markuppCDAT2) or any of the other above mentioned elements.
Mixed content must always have the asterisk qualifier (likeinle) such that any sequence of
elements (of the above list) and character data can be contained in @aelement.

The $Text; parameter entity is used in all places in the DTD, where “normal text” should be
allowed, including lists, enumerations, and tables fmgectioning elements.

The%InnerText; parameter entity is used in all places in the DTD, where “inner text” should be
allowed. This means, that no structures like lists, enumerations, and tables are allowed. This is used
for example in headings.

3.2.4 <Subtitle >

<!ELEMENT Subtitle (%Text;)*>

From gapdoc.dtd

Contains the subtitle of the document.

3.25 <Version >
From gapdoc.dtd

<!ELEMENT Version (#PCDATA|Alt)*>

Note that the version can only contain character data and no further markup elements (except for
which is necessary to resolve the entities describe2i2rd. The converters wilhot put the word
“Version” in front of the text in this element.

GAPDoc 20

3.2.6 <TitleComment >
From gapdoc.dtd

<!ELEMENT TitleComment (%Text;)*>

Sometimes a title and subtitle are not sufficient to give a rough idea about the content of a package.
In this case use this optional element to specify an additional text for the front page of the book. This
text should be short, use thestract element (se&.2.10 for longer explanations.

3.2.7 <Author >
From gapdoc.dtd

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->

As noted in the comment there may be more than one element of this type. This elements should
contain the name of an author and probablyEaai1-address and/or WWWemepage element for

this author, se®.5.6and3.5.7 You can also specify an individual postal address here, instead of
using theaddress element described below, sg£.9

3.2.8 <Date >

<!ELEMENT Date (#PCDATA)>

From gapdoc.dtd

Only character data is allowed in this element which gives a date for the document. No automatic
formatting is done.

3.2.9 <Address >
From gapdoc.dtd

<!ELEMENT Address (#PCDATA|Alt|Br)*>

This optional element can be used to specify a postal address of the author or the authors. If there are
several authors with different addresses then puktideess elements inside theuthor elements.

Use theBr element (se8.9.3 to mark the line breaks in the usual formatting of the address on a
letter.

Note that often it is not necessary to use this element because a postal address is easy to find via a
link to a personal web page.

3.2.10 <Abstract >

<!ELEMENT Abstract (%Text;)*>

From gapdoc.dtd

This element contains an abstract of the whole book.

3.2.11 <Copyright >
From gapdoc.dtd

<!ELEMENT Copyright (%Text;)*>

This element is used for the copyright notice. Note ¢hepyright; entity as described in section
2.2.3

GAPDoc 21

3.2.12 <Acknowledgements >
From gapdoc.dtd
<!ELEMENT Acknowledgements (%Text;)*>

This element contains the acknowledgements.

3.2.13 <Colophon >
From gapdoc.dtd

<!ELEMENT Colophon (%Text;)*>

The “colophon” page is used to say something about the history of a document.

3.2.14 <TableOfContents >

<!ELEMENT TableOfContents EMPTY>

From gapdoc.dtd

This element may occur in the»ok element after theitlePage element. If it is present, a table of
contents is generated and inserted into the document. Note that because this element is declared to be
EMPTY one can use the abbreviation

Example

<TableOfContents/>

to denote this empty element.

3.2.15 <Bibliography >
From gapdoc.dtd

<!ELEMENT Bibliography EMPTY>
<!ATTLIST Bibliography Databases CDATA #REQUIRED
Style CDATA #IMPLIED>

This element may occur in theook element after the lastppendix element. If it is present, a
bibliography section is generated and inserted into the document. The attriautesses must be
specified and refers to BibTeX databases. The databases must be separated by commashand must
have a.bib extension. A bibliography style may be specified with thele attribute. The optional
Style attribute (for ETgX output of the document) must also be specified without.thie: extension
(the default isalpha). See also sectioB.5.3for a description of theite element which is used to
include bibliography references into the text.

The reference for the format of BibTeX database file$ #1185 Appendix B].

3.2.16 <Thelndex >

<!ELEMENT ThelIndex EMPTY>

From gapdoc.dtd

This element may occur in theok element after th@ibliography element. If it is present, an
index is generated and inserted into the document. There are elem@&@®Bc which implicitly
generate index entries (e.g@unc (3.4.2) and there is an elemenhdex (3.5.4for explicitly adding
index entries.

GAPDoc 22

3.3 Sectioning Elements

A GAPDoc book is divided intochapters sections and subsections The idea is of course, that a
chapter consists of sections, which in turn consist of subsections. However for the sake of flexibility,
the rules are not too restrictive. Firstly, text is allowed everywhere in the body of the document (and
not only within sections). Secondly, the chapter level may be omitted. The exact rules are described
below.

Appendicesre a flavor of chapters, occurring after all regular chapters. There is a special type
of subsection calledMansection”. This is a subsection devoted to the description of a function,
operation or variable. It is analogous to a manpage in the UNIX environment. Usually each function,
operation, method, and so on should have its BawBection.

Cross referencing is done on the levebabsections, respectivelylanSections. The topics in
GAP’s online help are also pointing to subsections. So, they should not be too long.

We start our description of the sectioning elements “top-down”:

3.3.1 <Body>

The Body element marks the main part of the document. It must occur afterathiee0fContents
element. There is a big difference betwerside andoutsideof this element: Whereas regular text
is allowed nearly everywhere in tledy element and its subelements, this is not true forattside
This has also implications on the handling of whitespa@atsidesuperfluous whitespace is usually
ignored when it occurs between elemeniisside of the Body element whitespace matters because

character data is allowed nearly everywhere. Here is the definition in the DTD:

From gapdoc.dtd
<!ELEMENT Body (%Text;| Chapter | Section)*>

The fact thatChapter and Ssection elements are allowed here leads to the possibility to omit the
chapter level entirely in the document. For a descriptiogaTeit; see3.2.3

(Remark: The purpose of this element is to make sure thalidGAPDoc document has a correct
overall structure, which is only possible when the top elersent has element content.)

3.3.2 <Chapter >
From gapdoc.dtd
<!ELEMENT Chapter (%Text;| Heading | Section)*>

<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes —->

A Chapter element can havelambel attribute, such that this chapter can be referenced later on with
aRef element (see sectio®5.]). Note that you have to specify a label to reference the chapter as
there is no automatic labelling!

Chapter elements can contain text (for a descriptionsotxt; see3.2.3, Section elements,
andHeading elements.

The followingadditionalrule cannot be stated in the DTD because we wantater element to
have mixed content. There mustéeactly oneieading element in th&hapter element, containing
the heading of the chapter. Here is its definition:

GAPDoc 23

3.3.3 <Heading >

From gapdoc.dtd
<!ELEMENT Heading (%InnerText;)*>

This element is used for headingsdhapter, Section, Subsection, andAppendix elements. It
may only contairtInnerText; (for a description sed.2.3.

Each of the mentioned sectioning elements must contain exactly onertieedinhg element (i.e.,
one which is not contained in another sectioning element).

3.3.4 <Appendix >

From gapdoc.dtd
<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes ——>

The Appendix element behaves exactly likecaapter element (se®.3.2 except for the position
within the document and the numbering. While chapters are counted with numbers (1., 2., 3., ...) the
appendices are counted with capital letters (A., B., ...).

Again there is an optionalabel attribute used for references.

3.3.5 <Section >
From gapdoc.dtd

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection) *>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

A section element can havelabel attribute, such that this section can be referenced later on with a
Ref element (see sectidh5.1). Note that you have to specify a label to reference the section as there
is no automatic labelling!

Section elements can contain text (for a descriptionsotxt; see3.2.3, Heading elements,
and subsections.

There must be exactly one diregiading element in &ection element, containing the heading
of the section.

Note that a subsection is eithes@bsection element or aanSection element.

3.3.6 <Subsection >
From gapdoc.dtd

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes —->

Thesubsection element can havelzbel attribute, such that this subsection can be referenced later
on with aref element (see sectioB.5.1). Note that you have to specify a label to reference the
subsection as there is no automatic labelling!

Subsection elements can contain text (for a descriptionsakxt; see3.2.3, andHeading
elements.

There must be exactly onrading element in &ubsection element, containing the heading of
the subsection.

Another type of subsection isManSection, explained now:

GAPDoc 24

3.4 ManSection

ManSections are intended to describe a function, operation, method, variable, or some other technical
instance. Itis analogous to a manpage in the UNIX environment.

3.4.1 <ManSection >

From gapdoc.dtd

<!ELEMENT ManSection (((Func, Returns?) | (Oper, Returns?)
(Meth, Returns?) | (Filt, Returns?)
(Prop, Returns?) | (Attr, Returns?) |

Var | Fam | InfoClass)+, Description)>
<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes —-->

<!ELEMENT Returns (%$Text;)*>
<!ELEMENT Description (%Text;)*>

TheManSection element can havelambel attribute, such that this subsection can be referenced later
on with aref element (see sectidh5.1). But this is probably rarely necessary because the elements
Func and so on (explained below) generate automatically labels for cross referencing.

The content of alanSection element is one or more elements describing certain iten@Am
each of them optionally followed byreturns element, followed by @aescription element, which
containskText; (see3.2.3 describing it. (Remember to include examples in the description as often
as possible, se8.7.1Q. The classes of itemSAPDoc knows of are: functionsr{inc), operations
(oper), methods¥eth), filters Fi1t), properties¥rop), attributes £ttr), variables {ar), families
(Fam), and info classesiffoClass). OneManSection should only describe several of such items
when these are very closely related.

Each element for an item corresponding AP function can be followed by Beturns element.
In output versions of the document the string “Returns: ” will be put in front of the content text. The
text in therReturns element should usually be a short hint about the type of object returned by the
function. This is intended to give a good mnemonic for the use of a function (together with a good
choice of names for the formal arguments).

ManSectionS are also sectioning elements which count as subsections. A possible heading is
generated automatically from the first element.

3.4.2 <Func>

<!ELEMENT Func EMPTY>

<!ATTLIST Func Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used within BanSection element to specify the usage of a function. Tiae

attribute is required and its value is the name of the function. The value ofrthattribute (also

required) contains the full list of arguments including optional parts, which are denoted by square
brackets. The argument names can be separated by whitespace, commas or the square brackets for the
optional arguments, likegrp[, elm]" Or "xx[y[z]]".

GAPDoc 25

The name of the function is also used as label for cross referencing. When the name of the function
appears in the text of the document it shoaldaysbe written with theref element, se8.5.1 This
allows to use a unique typesetting style for function names and automatic cross referencing.

If the optionalLabel attribute is given, it is appended (with a colonn between) to the name of
the function for cross referencing purposes. The text of the label can also appear in the document text.
So, it should be a kind of short explanation.

Example
<Func Arg="x[, y]" Name="LibFunc" Label="for my objects"/>

The optionalcomm attribute should be a short description of the function, usually at most one line
long.

This element automatically produces an index entry with the name of the function and, if present,
the text of theLabel attribute as subentry (see aR2.16and3.5.9.

3.4.3 <Oper>

From gapdoc.dtd
<!ELEMENT Oper EMPTY>

<!ATTLIST Oper Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used withinenSection element to specify the usage of an operation. The attributes
are used exactly in the same way as inthec element (se8.4.2.

Note that multiple descriptions of the same operation may occur in a document because there
may be several declarations @AP. Furthermore there may be severahsSections for methods
of this operation (se8&.4.4 which also use the same name. For reference purposes these must be
distinguished by differertabel attributes.

3.4.4 <Meth>

<!ELEMENT Meth EMPTY>

<!ATTLIST Meth Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used withinigenSection element to specify the usage of a method. The attributes
are used exactly in the same way as inthec element (se8.4.2.

Frequently, an operation is implemented by several different methods. Therefore it seems to
be interesting to document them independently. This is possible by using the same method name
in different ManSections. It is however required that these subsections and those describing the
corresponding operation are distinguished by differemt1 attributes.

345 <Filt >

<!ELEMENT Filt EMPTY>
<!ATTLIST Filt Name CDATA #REQUIRED

From gapdoc.dtd

Label
Arg
Comm
Type

GAPDoc

CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED
CDATA #IMPLIED>

26

This element is used within BanSection element to specify the usage of a filter. The first four
attributes are used in the same way as inrthe: element (se8.4.9, except that thearg attribute is
optional.

The Type attribute can be any string, but it is thought to be something likec€gory” or
“Representation”.

3.4.6 <Prop >
From gapdoc.dtd

<!ELEMENT Prop EMPTY>

<!ATTLIST Prop Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

This element is used withindanSection element to specify the usage of a property. The attributes
are used exactly in the same way as inthec element (se8.4.2.

3.4.7 <Attr >

From gapdoc.dtd
<!ELEMENT Attr EMPTY>
<!ATTLIST Attr Name CDATA #REQUIRED

Label CDATA #IMPLIED

Arg CDATA #REQUIRED

Comm CDATA #IMPLIED>

This element is used withindanSection element to specify the usage of an attributeGixP). The
attributes are used exactly in the same way as irrthe element (se8.4.9.

3.4.8 <Var >

<!ELEMENT Var EMPTY>

<!ATTLIST Var Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used withindenSection element to document a global variable. The attributes are
used exactly in the same way as in theic element (se8.4.2 except that there is norg attribute.

3.49 <Fam>

<!ELEMENT Fam EMPTY>

<!ATTLIST Fam Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

From gapdoc.dtd

GAPDoc 27

This element is used within BanSection element to document a family. The attributes are used
exactly in the same way as in thenc element (se8.4.2 except that there is nirg attribute.

3.4.10 <InfoClass >

<!ELEMENT InfoClass EMPTY>

<!ATTLIST InfoClass Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

From gapdoc.dtd

This element is used withindanSection element to document an info class. The attributes are used
exactly in the same way as in thenc element (se8.4.2 except that there is nrg attribute.

3.5 Cross Referencing and Citations

Cross referencing in theAPDoc system is somewhat different to the usydX cross referencing
in so far, that a reference knows “which type of object” it is referencing. For example a “reference to
a function” is distinguished from a “reference to a chapter”. The idea of this is, that the markup must
contain this information such that the converters can produce better output. The HTML converter can
for example typeset a function reference just as the name of the function with a link to the description
of the function, or a chapter reference as a number with a link in the other case.

Referencing is done with the=f element:

3.5.1 <Ref>
From gapdoc.dtd

<!ELEMENT Ref EMPTY>

<!ATTLIST Ref Func CDATA #IMPLIED
Oper CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED

Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text | Number) #IMPLIED> <!-- normally automatic -->

The ref element is defined to bevpTY. If one of the attribute§unc, Oper, Meth, Prop, Attr,

Var, Fam, InfoClass, Chap, Sect, Subsect, Appendix iS given then there must be exactly one of
these, making the reference one to the corresponding objectLablae attribute can be specified in
addition to make the reference unique, for example if more than one method with a given name is

GAPDoc 28

present. (Note that there is no way to specify in the DTD that exactly one of the first listed attributes
must be given, this is an additional rule.)

A reference to aabel element defined below (s&e5.2 is done by giving the.abel attribute
and optionally therext attribute. If theText attribute is present its value is typeset in place of the
Ref element, if linking is possible (for example in HTML). If this is not possible, the section number
is typeset. This type of reference is also used for references to tables §sge

An external reference into another book can be specified by usirmpth@ane attribute. In this
case tha.abel attribute or, if this is not given, the function or section like attribute, is used to resolve
the reference. The generated reference points to the first hit when asking “?book name: label” inside
GAP.

The optional attributestyle can take only the valuegext and Number. It can be used with
references to sectioning units and it gives a hint to the converter programs, whether an explicit section
number is generated or text. Normally all references to sections generate numbers and references to
a GAP object generate the name of the corresponding object with some additional link or sectioning
information, which is the behavior gt yle="Text". In casestyle="Number" in all cases an explicit

section number is generated. So

Example
<Ref Subsect="Func" Style="Text"/> described in section
<Ref Subsect="Func" Style="Number"/>

produces: £Func>’ described in sectio3.4.2

352 <label >

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

From gapdoc.dtd

This element is used to define a label for referencing a certain position in the document, if this is
possible. If an exact reference is not possible (like in a printed version of the document) a reference
to the corresponding subsection is generated. The value oftkeattribute must be unique under

all Label elements.

3.5.3 <Cite >

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED
Where CDATA #IMPLIED>

From gapdoc.dtd

This element is for bibliography citations. ItisiPTY by definition. The attribut@ey is the key for
a lookup in a BibTeX database that has to be specified irBthe@iography element (sed.2.15.
The value of theihere attribute specifies the position in the document as in the correspordgg L
syntax\cite[Where value]{Key value}.

3.5.4 <lIndex >

<!ELEMENT Index (%InnerText;)*>
<!ATTLIST Index Key CDATA #IMPLIED
Subkey CDATA #IMPLIED>

From gapdoc.dtd

GAPDoc 29

This element generates an index entry. The text within the element is typeset in the index entry, which
is sorted under the value, that is specified inkhg andSubkey attributes. If they are not specified,
the typeset text itself is used as the key.

Note that allFunc and similar elements automatically generate index entries. Ifikhéndex
element 8.2.19 is not present in the document alldex elements are ignored.

3.55 <URL>
From gapdoc.dtd

<!ELEMENT URL (#PCDATA)> <!-- Can we define this better? -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

This element is for references into the internet. The text within the element should be a valid URL. It
is typeset in the document. For the case of an output document format that supports links the value of
the attributerext is typeset as visible text for the link.

3.5.6 <Email >

<!ELEMENT Email (#PCDATA)>

From gapdoc.dtd

This element type is the special case of an URL specifying an email address. The content of the
element should be the email address without any prefix like ¥to:”. This address is typeset by all
converters, also without any prefix. In the case of an output document format like HTML the converter
can produce a link with anfailto:” prefix.

3.5.7 <Homepage>
From gapdoc.dtd

<!ELEMENT Homepage (#PCDATA)>

This element type is the special case of an URL specifying a WWW-homepage. The content of the
element should be the valid URL specifying a world wide web page. In contrast tirthelement
the address is visible in all output formats.

3.6 Structural Elements like Lists

The GAPDoc system offers some limited access to structural elements like lists, enumerations, and
tables. Although it is possible to use &lTiEX constructs one always has to think about other output
formats. The elements in this section are guaranteed to produce something reasonable in all output
formats.

3.6.1 <List >
From gapdoc.dtd

<!ELEMENT List (((Mark,Item) | (BigMark,Item) |Item)+)>
<!ATTLIST List Only CDATA #IMPLIED
Not CDATA #IMPLIED>

GAPDoc 30

This element produces a list. Each item in the list corresponds ttxam element. Everyltem
element is optionally preceded byvark element. The content of this is used as a marker for the
item. Note that this marker can be a whole word or even a sentence. It will be typeset in some
emphasized fashion and most converters will provide some indentation for the rest of the item.
Theonly andNot attributes can be used to specify, that the list is included into the output by only
one type of converterngqly) or all but one type of converter¢t). Of course at most one of the two
attributes may occur in one element. The following values are allowed as of na@ex”, “ HTML”",
and “Text”. See also thalt element in3.9.1for more about text alternatives for certain converters.

3.6.2 <Mark >

<!ELEMENT Mark (%$InnerText;)*>

From gapdoc.dtd

This element is used in the st element to mark items. S&e6.1for an explanation.

3.6.3 <ltem >
From gapdoc.dtd

<!ELEMENT Item (%Text;)*>

This element is used in the st, Enum, andTable elements to specify the items. See sectidiis],
3.6.4 and3.6.5for further information.

3.6.4 <Enunt

From gapdoc.dtd
<!ELEMENT Enum (Itemt+)>

<!ATTLIST Enum Only CDATA #IMPLIED
Not CDATA #IMPLIED>

This element is used identically to thest element (sed.6.1) except that the items may not have
marks attached to them. Instead, the items are numbered automatically. The same comments about
theonly andNot attributes as above apply.

3.6.5 <Table >
From gapdoc.dtd

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED
Only CDATA #IMPLIED
Not CDATA #IMPLIED
Align CDATA #REQUIRED>
<!-- We allow | and 1,c,r, nothing else -->
<!ELEMENT Row (Item+)>
<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption ($InnerText;)*>

A table in GAPDoc consists of an optionataption element followed by a sequence ®fw and
HorLine elements. AlorLine element produces a horizontal line in the table&kok element consists
of a sequence aoftem elements as they also occuriimst andEnum elements. Th@nly andNot
attributes have the same functionality as described in.the element in3.6.1

GAPDoc 31

Thealign attribute is written like 8AIEX tabular alignment specifier but only the lettets,™ ¢,

“c”, and “|” are allowed meaning left alignment, right alignment, centered alignment, and a vertical
line as delimiter between columns respectively.

If the Label attribute is there, one can reference the table witlrttfeelement (se8.5.1) using
its Label attribute.

Usually only simple tables should be used. If you want a complicated table #igiédutput you
should provide alternatives for text and HTML output. Note that in HTML-4.0 there is no possibility
to interpret the 1" column separators arttbrLine elements as intended. There are lines between all
columns and rows or no lines at all.

3.7 Types of Text

This section covers the markup of text. Various types of “text” exist. The following elements are used
in the GAPDoc system to mark them. They mostly come in pairs, one long name which is easier to
remember and a shortcut to make the markup “lighter”.

Most of the following elements are thought to contain only character data and no further markup
elements. It is however necessary to allp elements to resolve the entities described in section
2.2.3

3.7.1 <Emph> and <E>
From gapdoc.dtd

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->
<!ELEMENT E ($InnerText;) *> <!-- the same as shortcut -->

This element is used to emphasize some piece of text. It may camtairrText; (see3.2.3.

3.7.2 <Quoted > and <Q>
From gapdoc.dtd

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

This element is used to put some piece of text into “ "-quotes. It may comtainerText; (see
3.2.3.

3.7.3 <Keyword > and <K>
From gapdoc.dtd
<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword —-->

<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->

This element is used to mark something asegword Usually this will be aGAP keyword such
as “if” or “for”. No further markup elements are allowed within this element except forthe
element, which is necessary.

GAPDoc 32

3.7.4 <Arg > and <A>

From gapdoc.dtd
<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->

<!ELEMENT A (#PCDATA|Alt)*> <!-- Arqgument (shortcut) -->

This element is used insidesscriptions in ManSections to mark something as argument(of
a function, operation, or such). It is guaranteed that the converters typeset those exactly as in the
definition of functions. No further markup elements are allowed within this element.

3.7.5 <Code> and <C>
From gapdoc.dtd

<!ELEMENT Code (#PCDATA|Alt)*> <!-- GAP code -->
<!ELEMENT C (#PCDATA|Alt)*> <!-- GAP code (shortcut) -->

This element is used to mark something as a piea@d€tlike for example aGAP expression. It is
guaranteed that the converters typeset this exactly as inithe ng element (compare secti@7.9
No further markup elements are allowed within this element.

3.7.6 <File >and<F>
From gapdoc.dtd

<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->
<!ELEMENT F (#PCDATA|ALlt)*> <!-- Filename (shortcut) -->

This element is used to mark something ddemameor a pathnamen the file system. No further
markup elements are allowed within this element.

3.7.7 <Button > and
From gapdoc.dtd

<!ELEMENT Button (#PCDATA|Alt) *> <!-- "Button" (also Menu, Key, ...) —-—>
<!ELEMENT B (#PCDATA|Alt) *> <!-— "Button" (shortcut) -->

This element is used to mark something dgitton It can also be used for other items in a graphical
user interface likenenusmenu entriesor keys No further markup elements are allowed within this
element.

3.7.8 <Package >

From gapdoc.dtd
<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

This element is used to mark something as a namepatkage This is for example used to define the
entitiesGAP, XGAP or GAPDoc (see sectiorz.2.3. No further markup elements are allowed within
this element.

GAPDoc 33

3.7.9 <Listing >

From gapdoc.dtd

<!ELEMENT Listing (#PCDATA)> <!-- This is just for GAP code listings -->

<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of
listed code, may appear in
output -->

This element is used to embed listings of programs into the document. Only character data and no
other elements are allowed in the content. You shawtuse the character entities described in
section2.2.3but instead type the characters directly. Only the general XML rules from settlon
apply. Note especially the usage af [CDATA[sections described there. It is guaranteed that all
converters use a fixed width font for typesettingst ing elements. Compare also the usage of the
Code andc elements irB.7.5

The Type attribute contains a comment about the type of listed code. It may appear in the output.

3.7.10 <Log> and <Example >

From gapdoc.dtd
<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic

example checking mechanism -->
<!ELEMENT Log (#PCDATA)> <!-- This not -—>

These two elements behave exactly like thet ing element (se&.7.9. They are thought for pro-
tocols of GAP sessions. The only difference between the two is thathple sections are intended
to be subject to an automatic manual checking mechanism used to ensure the correctnessmf the
manual whereasog is not touched by this.

3.7.11 <Verb>

There is one further type of verbatim-like element.
From gapdoc.dtd

<!ELEMENT Verb (#PCDATA)>

The content of such an element is guaranteed to be put into an output version exactly as it is using
some fixed width font. Before the content a new line is started. If the line after the end of the start tag
consists of whitespace only then this part of the content is skipped.

This element is intended to be used together withthieelement to specify pre-formatted ASCII
alternatives for complicatent splay formulae orTables.

3.8 Elements for Mathematical Formulae

3.8.1 <Math > and <Display >

From gapdoc.dtd

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula -->

<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

GAPDoc 34

These elements are used for mathematical formulae. As described in se2t@ihey correspond to
IATEX’s math and display math mode respectively.

The formulae are typed in as iATEX, exceptthat the standard XML entities, s@el.9(in par-
ticular the characters: and &), must be escaped - either by using the corresponding entities or by
enclosing the formula betweer [CDATA[” and “]] >". (The main reference forIEX is [Lam89.)

The only element type that is allowed within the formula elements is\tlgeor A element (see
3.7.4, which is used to typeset identifiers that are argumen@Ai® functions or operations.

In text and HTML output these formulae are shown/dgX source code. For simple formulae
(and you should try to make all your formulae simple!) there is the elemésge3.8.2 for which
there is a well defined translation into text, which can be used for text and HTML output versions
of the document. So, if possible try to avoid theth andDisplay elements or provide useful text
substitutes for complicated formulae wat elements (se8.9.1and3.7.1J).

3.8.2 <M>

From gapdoc.dtd
<!-- Math with well defined translation to text output -->
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>

The “M” element type is intended for formulae in the running text for which there is a sensible ASCI|I
version. For theATEX version of aGAPDoc document thel andMath elements are equivalent. The
remarks in3.8.1about special characters and the; element apply here as well. A document which
has all formulae enclosed inelements can be well readable in text terminal output and printed output
versions.

The following BTEX macros have a sensible ASCII translation and are guaranteed to be translated
accordingly by text (and HTML) converters:

GAPDoc 35

\ldots

\mid

\left

\right

\mathbb

\mathop

\limits

\cdot *
\ast *
\geq >=
\leq <=
\pmod mod
\equiv =
\rightarrow ->
\hookrightarrow | ->
\to ->
\longrightarrow | -->
\Rightarrow =>
\Longrightarrow| ==>
\ Leftarrow <=
\iff <=>
\mapsto ->
\leftarrow <-
\langle <
\rangle >
\setminus \

Table: IATEX macros with special text translation

In all other macros only the backslash is removed. Whitespace is normalized (to one blank) but
not removed. Note that whitespace is not added, so you may want to add a few more spaces than you
usually do in yourATEX documents.

Braces{} are removed in general, however pairs of double braces are converted to one pair of
braces. This can be used to writei>x" {12} </M> for x"12 and<M>x_{{i+1}}</M>forx_{i+1}.

3.9 Everything else

3.9.1 <Alt >

This element is used to specify alternatives for different output formats within normal text. See also

sections3.6.], 3.6.4 and3.6.5for alternatives in lists and tables.

From gapdoc.dtd

<!ELEMENT Alt (%$InnerText;)*> <!-- This is only to allow "Only" and
"Not" attributes for normal text -->

<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

GAPDoc 36

Of course exactly one of the two attributes must occur in one element. The attribute values must be one
word or a list of words, separated by spaces or commas. The words which are currently recognized by
the converter programs contained3APDoc are: “LaTex”, “ HTML”, and “Text”. If the only attribute
is specified then only the corresponding converter will include the content of the element into the
output document. If th&ot attribute is specified the corresponding converter will ignore the content
of the element. You can use other words to specify special alternatives for other conve®&pPdokt
documents.

We fix a rule for handling the content of ant element which is relevant farrML output. In
this content the special XML charactets > ands are not escaped. This allows to put HTML text
directly in theGAPDoc document, probably encloseddm [CDATA[and]]>.

Within the element onlgInnerText; (see3.2.3 is allowed. This is to ensure that the same set
of chapters, sections, and subsections show up in all output formats.

3.9.2 <Par > and <P>
From gapdoc.dtd

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -—>
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

ThisEMPTY element marks the boundary of paragraphs. Note that an empty line in the input does not
mark a new paragraph as opposed to #fig.convention.

(Remark: it would be much easier to parse a document and to understand its sectioning and
paragraph structure when there was an element wbostentis the text of a paragraph. But in
practice many paragraph boundaries are implicitly clear which would make it somewhat painful to
enclose each paragraph in extra tags. The introduction af treear elements as above delegates
this pain to the writer of a conversion program @&PDoc documents.)

3.9.3

From gapdoc.dtd

<!ELEMENT Br EMPTY> <!-- a forced line break --—>

This element can be used to force a line break in the output versiornsAfRoc element, it does not
start a new paragraph. Please, do not use this insteadanf @ement, this would often lead to ugly
output versions of your document.

Chapter 4

Distributing a Document into Several
Files

In GAPDoc there are facilities to distribute a single document over several files. This is for example
interesting, if one wants to store the documentation of some code in the same file as the code itself.
Or, if one just wants to store chapters of a document in separate files. There is a set of conventions
how this is done and some tools to collect the text for further processing.

4.1 The Conventions

Pieces of documentation that shall be incorporated into another document are marked as follows:
Example

<#GAPDoc Label="MyPiece">

<E>This</E> is the piece.

The hash characters are removed.
<#/GAPDoc>

This piece is then included into another file by a statement lk¢Include Label="MyPiece">
Here are the exact rules, how pieces are gathered:

¢ Alllines up to a line containing the character sequencéGiPDoc Label=""are ignored. The
characters on the same line before this sequence are stored as “prefix”. The characters after the
sequence up to the next double quotes character are stored as “label”. All other characters in
the line are ignored.

e The following lines up to a line containing the character sequergg ¢apDoc>" are stored
under the label. These lines are processed as follows: The longest possible substring from the
beginning of the line that equals the corresponding substring of the prefix is removed.

Having stored a list of labels and pieces of text gathered as above this can be used as follows.

e In GAPDoc documentation files all statements of the fora#Include Label="Key">" are
replaced by the sequence of lines stored under the kafel

e Additionally, every occurrence of a statement of the formc#fnclude SYSTEM
"Filename">"is replaced by the whole file stored under the namesnane in the file system.

37

GAPDoc 38

e These substitutions are done recursively (although one should probably avoid to use this exten-
sively).

Here is another example:

Example
<#GAPDoc Label="AnotherPiece"> some characters
This text is not indented.

This text is indented by one blank.

#Not indented.

#<#/GAPDoc>

replaces<#Include Label="AnotherPiece"> by
Example

This text is not indented.
This text is indented by one blank.
Not indented.

Since these rules are very simple it is quite easy to write a program in almost any programming
language which does this gathering of text pieces and the substitutio@gPiDoc there is theGAP
functionComposedXMLString (4.2.1) which does this.

Note that the XML-tag-like markup we have used here is not a legal XML markup, since the hash
character is not allowed in element names. The mechanism described here is a preprocessing step
which composes an XML document.

4.2 A Tool for Collecting a Document

4.2.1 ComposedXMLString

Q ComposedXMLString (path, main, source) (function)

Returns: XML document as string

This function returns a string containingGAPDoc XML document constructed from several
source files.

Herepath must be a path to some directory (as string or directory objeet)n the name of a
file in this directory andsource a list of file names, all of these relative path. The document is
constructed via the mechanism described in Seetitn

First the files given insource are scanned for chunks GfAPDoc-documentation marked by
<#GAPDoc Label="..."> and</#GAPDoc> pairs. Then the filemain is read and alk#Include

>-tags are substituted recursively by other files or chunks of documentation found in the first

step, respectively.
Example
gap> doc := ComposedXMLString("/my/dir", "manual.xml",
> ["../lib/func.gd", "../lib/func.gi"]);;

Chapter 5

The Converters

The GAPDoc package contains a set of programs which allow us to converiRDoc book into
several output versions and to make them availab@A®’s online help.

Currently the following output formats are provided: text for browsing inside a terminal running
GAP, IATEX with hyperref-package for cross references via hyperlinks and HTML for reading with
a Web-browser.

5.1 Producing Documentation from Source Files

Here we explain how to use the functions which are described in more detail in the following sec-
tions. We assume that we have the main fil@ook.xml of a book "MyBook™" in the directory
/my/book/path. This contains<#Include ...>-statements as explained in Chaptelhese refer
to some other files as well as pieces of text which are found in the comments ofzaghsmurce files
../lib/a.gdand../1ib/b.gi (relative to the path above). A BibTeX databaseook .bib for the
citations is also in the directory given above. We want to produce a text-, pdf-, postscript- and
HTML-version of the document.

All the commands shown in this Section are collected in the single funeti@aGAPDocDoc
(5.1.0.

First we construct the complete XML-document as a string WithposedxMLString (4.2.1).
This interprets recursively the#Include ...>-statements.

Example
gap> path := Directory ("/my/book/path");;
gap> main := "MyBook.xml";;
gap> files := ["../lib/a.gd", "../lib/b.gi"];;
gap> bookname := "MyBook";;

gap> str := ComposedXMLString(path, main, files);;

Then we parse the document and store its structure in a tree-like data structure. The commands for

this areParseTreeXMLString (5.2.1) andCheckAndCleanGapDocTree (5.2.9.
Example

gap> r := ParseTreeXMLString(str);;
gap> CheckAndCleanGapDocTree (r);
true

39

GAPDoc 40

We first produce aAEX version of the documentaPDoc2LaTeX (5.3.]) returns a string containing
the BTEX source. The utility functiorrilestring (5.6.5 writes the content of a string to a file, we

chooselyBook . tex.
Example

gap> 1 := GAPDoc2LaTeX(r);;
gap> FileString(Filename (path, Concatenation(bookname, ".tex")), 1);

Assuming that you have a sufficiently good installation gX Bvailable (se&aPDoc2LaTex (5.3.1)

for details) this can be processed with a series of commands like in the following example.
Example

cd /my/book/path

latex MyBook

bibtex MyBook

latex MyBook

makeindex MyBook

latex MyBook

mv MyBook.dvi manual.dvi
dvips -o manual.ps manual.dvi
rm MyBook.aux

pdflatex MyBook

pdflatex MyBook

mv MyBook.pdf manual.pdf

After this we have alvi-, pdf- and postscript version of the document in the fitesual.dvi,
manual.pdf andmanual.ps. The first two versions contain hyperlink information which can be used
with appropriate browsers for convenient reading of the document on screen (e.g., current versions of
xdvi, respectivelykpdf or acroread.

Furthermore we have produced a filgBook .pnr which is GAP-readable and contains the page
number information for each (sub-)section of the document. We will use this later.

Next we produce a text version which can be read in a terminal (window). The command is
GAPDoc2Text (5.3.9. This produces a record with the actual text and some additional information.
The text can be written chapter wise into files WitilPDoc2TextPrintTextFiles (5.3.3. The names
of these files arehap0.txt, chapl.txt and so on. The text contains some color markup using ANSI
escape sequences. One can use this with a terminal which interprets these sequences appropriately af-
ter setting theSAP variableANST_COLORS to true. For the bibliography we have to te@lhPDoc2Text

(5.3.2 the location of the BibTeX database by specifyingaah as second argument.
Example

gap> t := GAPDoc2Text (r, path);;
gap> GAPDoc2TextPrintTextFiles(t, path);

This command constructs all parts of the document including table of contents, bibliography and
index. The functiongormatParagraph (5.5.3 for formatting text paragraphs amdrseBibFiles
(5.4.]) for reading BibTeX files wittGAP may be of independent interest.

With the text version we have also produced the information which is used for searching with
GAP’s online help. We can add the page number information fromAfgXlversion of the document
and then print aanual . six file which is read byGAP when the document is loaded. This is done

with AddPageNumbersToSix (5.3.4 andpPrintSixFile (5.3.9.
Example
gap> AddPageNumbersToSix (r, Filename (path, "MyBook.pnr"));

gap> PrintSixFile(Filename (path, "manual.six"), r, bookname);

GAPDoc 41

Finally we produce an HTML version of the document and write it (chapter-wise) into files
chap0.html, chapl.html and so on. They can be read with any Web-browser. The com-
mands areGAPDoc2HTML (5.3. and GAPDoc2HTMLPrintHTIMLFiles (5.3.9. We also add
a link from manual.html tOo chap0.html. You may also add a filemanual.css, see
GAPDoc2HTMLPrintHTMLFiles (5.3.7) for more details. The argumepdth of GAPDoc2HTML (5.3.9

specifies the directory containing the BibTeX database files.
Example

gap> h := GAPDoc2HTML(r, path);;
gap> GAPDoc2HTMLPrintHIMLFiles (h, path);

5.1.1 MakeGAPDocDoc

{ MakeGAPDocDoc (path, main, files, bookname[, gaproot]) (function)

This function collects all the commands for producingyva-, pdf-, postscript-, text- and HTML-
version of aGAPDoc document as described in Sectiori

Note: If this function works for you depends on your operating system and installed software. It
will probably work on mostNTIX systems with a standaréTEX installation. If the function doesn't
work for you look at the source code and adjust it to your system.

Herepath must be the directory (as string or directory object) containing the maindile of
the document (given with or without thexm1 extension. The argument les is a list of (probably
source code) files relative tmth which contain pieces of documentation which must be included in
the document, see ChapterAnd bookname is the name of the book used BAP’s online help. The
optional argumentaproot must be a string which gives the relative path fromh to theGAP root
directory. If this is given, the HTML files are produced with relative paths to external books.

ExperimentalMakeGAPDocDoc can be called with additional argumeritsth™ and/or"MathML".
If these are given additional variants of the HTML conversion are called;zs@®c2HTML (5.3.6 for
details.

5.2 Parsing XML Documents

Arbitrary well-formed XML documents can be parsed and browsed by the following functions.

5.2.1 ParseTreeXMLString

Q ParseTreeXMLString(str) (function)
Returns: arecord which is root of a tree structure
This function parses an XML-document stored in stréng and returns the document in form of
atree.
A node in this tree corresponds to an XML element, or to some parsed character data. In the first

case it looks as follows:
Example Node

rec(name := "Book",
attributes := rec(Name := "EDIM"),
content := [... list of nodes for content ...],
start := 312,
stop := 15610,
next := 15611)

GAPDoc 42

This means thatstr[312..15610] looks like <Book Name="EDIM"> ... content ...
< /Book>.

The leaves of the tree encode parsed character data as in the following example:
Example Node

rec(name := "PCDATA",
content := "text without markup ")

This function checks whether the XML documentisll formed see2.1.13for an explanation. If an
error in the XML structure is found, a break loop is entered and the text around the position where the
problem starts is shown. Witthow () ; one can browse the original input in theger (Reference:
Pager), starting with the line where the error occurred. All entities are resolved when they are either
entities defined in th&APDoc package (in particular the standard XML entities) or if their definition
is included in the<!DOCTYPE . .> tag of the document.

Note thatParseTreexMLString does not parse and interpret the corresponding document type
definition (the.dtd-file given in the<!DOCTYPE ..> tag). Hence it also does not check tradidity
of the document (i.e., it is nealidating XML parsey.

If you are using this function to parse &APDoc document you can use
CheckAndCleanGapDocTree (5.2.4 for some validation and additional checking of the docu-
ment structure.

5.2.2 DisplayXMLStructure

Q DisplayXMLStructure(tree) (function)
This utility displays the tree structure of an XML document as it is returned by

ParseTreexMLString (5.2.1) (without thePCDATA leaves).
Since this is usually quite long the result is shown usingpthe:r (Reference: Pagey.

5.2.3 ApplyToNodesParseTree

O ApplyToNodesParseTree (tree, fun) (function)
{ AddRootParseTree(tree) (function)
{) RemoveRootParseTree (tree) (function)

The functionapplyToNodesParseTree applies a functioriun to all nodes of the parse treeee
of an XML document returned b8arseTreeXMLString (5.2.1).

The functionaddrootParseTree IS an application of this. It adds to all nodes a component
.root to which the top node treeree is assigned. These components can be removed afterwards
with RemoveRootParseTree.

And here are utilities for processit@APDoc XML documents.

5.2.4 CheckAndCleanGapDocTree

{ CheckAndCleanGapDocTree (tree) (function)
Returns: nothing
The argumentree of this function is a parse tree frorerseTreexMLString (5.2.1) of some
GAPDoc document. This function does an (incomplete) validity check of the document according to
the document type declarationdapdoc.dtd. It also does some additional checks which cannot be

GAPDoc 43

described in the DTD (like checking whether chapters and sections have a heading). For elements
with element content the whitespace between these elements is removed.

In case of an error the break loop is entered and the position of the error in the original XML
document is printed. Witlshow () ; one can browse the original input in tkeger (Reference:
Pagey).

5.2.5 AddParagraphNumbersGapDocTree

{Q AddParagraphNumbersGapDocTree (tree) (function)
Returns: nothing
The argument ree must be an XML tree returned arseTreexMLString (5.2.1) applied to a
GAPDoc document. This function adds to each node of the tree a composentt which is of form
[Chapter[, Section[, Subsection, Paragraph]]]. Here the first three numbers should be
the same as produced by thegX version of the document. Text before the first chapter is counted
as chaptep and similarly for sections and subsections. Some elements are always considered to start
a new paragraph.

5.3 The Converters

Here are more details about the conversion programSA®Doc XML documents.

5.3.1 GAPDoc2LaTeX

{ GAPDoc2LaTeX(tree) (function)

Returns: IATEX document as string

The argument ree for this function is a tree describing@PDoc XML document as returned
by ParseTreexMLString (5.2.1) (probably also checked wittheckAndCleanGapDocTree (5.2.9).

The output is a string containing a version of the document which can be written to a file and processed
with IATEX or pdfIATEX (and probably BibTeX andakeindex).

The output uses theeport document class and needs the followiAfEK packages:adwide,
amssymb, isolatinl, makeidx, color, fancyvrb, pslatex andhyperref. These are for example
provided by theeTeX-1.0 distribution of X (which in turn is used for mostgK packages of current
Linux distributions); se@ttp://www.tug.org/tetex/.

In particular, the resultingvi- or pdf-output contains (internal and external) hyperlinks which
can be very useful for online browsing of the document.

The BTEX processing also produces a file with extensipnr which isGAP readable and contains
the page numbers for all (sub)sections of the document. This can be ugsPtsyonline help; see
AddPageNumbersToSix (5.3.4). There is support for two types or XML processing instructions which
allow to change the options used for the document class or to add some extra lines to the preamble of
the BTEX document. They can be specified as in the following examples:
in top level of XML document

<?LaTeX Options="12pt"?>

<?LaTeX ExtraPreamble="\usepackage{blabla}
\newcommand{\bla}{blabla}

"?>

http://www.tug.org/tetex/

GAPDoc 44

A hint for large documents: In manyX installations one can easily reach some memory limitations
with documents which contain many (cross-)referenceseTeX you can look for a filecexmf.cnf
which allows to enlarge certain memory sizes.

This function works by running recursively through the document tree and calling a handler func-
tion for eachGAPDoc XML element. These handler functions are all quite easy to understand (the
greatest complications are some commands for index entries, labels or the output of page number
information). So it should be easy to adjust layout details to your own taste by slight modifications of
the program.

5.3.2 GAPDoc2Text

) GAPDoc2Text (tree[, bibpath][,] [width]) (function)
Returns: record containing text files as strings and other information
The argument ree for this function is a tree describing@PDoc XML document as returned
by ParseTreexMLString (5.2.1) (probably also checked wittheckAndCleanGapDocTree (5.2.49).
This function produces a text version of the document which can be usedswRrls online help
(with the "screen" viewer, seeSetHelpViewer (Reference: SetHelpViewe)). It includes title
page, bibliography and index. The bibliography is made from BibTeX databases. Their location must
be given with the argumemtibpath (as string or directory object).
The output is a record with one component for each chapter (with nagrieg1", ...,"Bib" and
"Ind"). Each such component is again a record with the following components:

text the text of the whole chapter as a string

ssnr list of subsection numbers in this chapter (like, 2, 1] for chapter 3, section 2, subsec-
tion 1)

linenr corresponding list of line numbers where the subsections start
len number of lines of this chapter

The result can be written into files with the commam@doc2TextPrintTextFiles (5.3.3.

As a side effect this function also producestheual . six information which is used for search-
ing in GAP’s online help. This is stored inree. six and can be printed intorganual . six file with
PrintSixFile (5.3.95 (preferably after producing &TigX version of the document as well and adding
the page number information taree.six, seeGAPDoc2LaTeX (5.3.1) andAddPageNumbersToSix
(5.3.9).

The text produced by this function contains color markup via ANSI escape sequences, see
TextAttr (5.5.2. To view the colored text you need a terminal which interprets these escape se-
qguences correctly and you have to set the variaba _COLORS to true (a good place for doing this
is your . gaprc file).

With the optional argumentidth a different length of the output text lines can be chosen. The
default is 76 and all lines in the resulting text start with two spaces. This looks good on a terminal
with a standard width of 80 characters and you probably don’t want to use this argument.

5.3.3 GAPDoc2TextPrintTextFiles

Q GAPDoc2TextPrintTextFiles(t[, path]) (function)
Returns: nothing

GAPDoc 45

The first argument must be a result returnedsbyboc2Text (5.3.9. The second argument is
a path for the files to write, it can be given as string or directory object. The text of each chapter is
written into a separate file with nam&ap0. txt, chapl.txt, ...,chapBib.txt, andchapInd.txt.

If you want to make your document accessible via@a® online help you must put at least these
files for the text version into a directory and use the name of this directory as an argument for one
of the commandseclarePackageDocumentation (Reference: DeclarePackageDocumentatign
orDeclarePackageAutoDocumentation (Reference: DeclarePackageAutoDocumentatignFur-
thermore you need to put the fitenual. six into this directory, seerintSixFile (5.3.9.

Optionally you can add thevi- andpdf-versions of the document which are produced with
GAPDoc2LaTeX (5.3.]) to this directory. The files must have the namesual.dvi andmanual . pdf,
respectively. Also you can add the files of the HTML version produced @#ittboc2HTML (5.3.6 to
this directory, se@APDoc2HTMLPrintHTMLFiles (5.3.7). The handler functions iGAP for this help
format detect automatically which of the optional formats of a book are actually available.

5.3.4 AddPageNumbersToSix

{ AddPageNumbersToSix (tree, pnrfile) (function)

Returns: nothing

Heretree must be the XML tree of &APDoc document, returned byarseTreeXMLString
(5.2.1). Runninglatex on the result ofsaPDoc2LaTex (5.3.1) (tree) produces a filenrfile (with
extension.pnr). The commandaprDoc2Text (5.3.2 (tree) creates a componentee.six which
contains all information about the document for thaP online help, except the page numbers in
the .dvi, .ps, .pdf versions of the document. This command adds the missing page number
information totree.six.

5.3.5 PrintSixFile

Q PrintSixFile(tree, bookname, fname) (function)
Returns: nothing
This function prints the.six file fname for a GAPDoc document stored inree with name
bookname. Such afile contains all information about the book which is needed iyAReonline help.
This information must first be created by calls@fDoc2Text (5.3.2 andAddPageNumbersToSix

(5.3.4).

5.3.6 GAPDoc2HTML

Q) GAPDOC2HTML (tree[, bibpath[, gaproot]][,][mtrans]) (function)
Returns: record containing HTML files as strings and other information
The argument ree for this function is a tree describing@PDoc XML document as returned
by ParseTreexMLString (5.2.1) (probably also checked wittheckAndCleanGapDocTree (5.2.49).
Without anmtrans argument this function produces an HTML version of the document which
can be read with any Web-browser and also be used @#AtiA's online help (se&etHelpViewer
(Reference: SetHelpViewe)). It includes title page, bibliography, and index. The bibliography is
made from BibTeX databases. Their location must be given with the argumegsdth (as string or
directory object, if not given the current directory is used). If the third argumghtoot is given and
is a string then this string is interpreted as relative pathA®’s root directory. Reference-URLSs to
external HTML-books which begin with th@AP root path are then rewritten to start with the given

GAPDoc 46

relative path. This makes the HTML-documentation portable provided a package is installed in some
standard location below th@AP root.

The output is a record with one component for each chapter (with naimesg1", ...,"Bib", and
"Ind"). Each such component is again a record with the following components:

text the text of an HTML file containing the whole chapter (as a string)

ssnrlist of subsection numbers in this chapter (like, 2, 1] for chapter 3, section 2, subsec-
tion 1)

Standard output format without: rans argument

The HTML code produced with this converter conforms to the W3C specification “XHTML 1.0
strict”, seehttp://www.w3.0rg/TR/xhtmll. First, this means that the HTML files are valid XML
files. Secondly, the extension “strict” says in particular that the code doesn't contain any explicit font
or color information.

Mathematical formulae are handled as in the text converteboc2Text (5.3.2. We don't want
to assume that the browser can use symbol fonts. Seareusers like to browse the online help
with 1ynx, seesetHelpViewer (Reference: SetHelpViewey, which runs inside the same terminal
windows asGAP.

Using a stylesheet file

The layout information for a browser should be specified in a cascading style sheet (CSS)
file. The GAPDoc package contains an example of such a style sheet, see thadilec.css
in the root directory of the package. This file conforms to the W3C specification CSS 2.0, see
http://www.w3.0rg/TR/REC-CSS2. You may just copy that file asanual.css into the directory
which contains the HTML version of your documentation. But, of course, you are free to adjust it
for your package, e.g., change colors or other layout details, add a background image, ... Each of the
HTML files produced by the converters contains a link to this local style sheet file ealhed1 . css.

Output format withut rans argument

Currently, there are two experimental variants of this converter available which handle mathemat-
ical formulae differently. They are accessed via the optionahliasins argument.

If this argument is set tdTth" itis assumed that you have installed thgK to HTML translation
programtth. This is used to translate the contents ofith#ath andbisplay elements into HTML
code. Note that the resulting code is not compliant with any standard. Formally it is “XHTML 1.0
Transitional”, it contains explicit font specifications and the characters of mathematical symbols are
included via their position in a “Symbol” font. Some graphical browsers can be configured to display
this in a useful manner, cheektp://hutchinson.belmont.ma.us/tth/ for more details.

If the mt rans argument is set tdMathML" it is assumed that you have installed the translation
programttm, see alstttp://hutchinson.belmont.ma.us/tth/). This is used to translate the
contents of thel, Math andDisplay elements to MathML 2.0 markup. The resulting files should
conform to the "XHTML 1.1 plus MathML 2.0” standard, seetp://www.w3.0rg/TR/MathML2/
for more details. It is expected that the next generation of graphical browsers will be able to render
such files (try for exampl&iozilla, at least 0.9.9). You must copy thesl and.css files from
GAPDocs mathml directory to the directory containing the output files. The translation withis
still experimental. The output of this converter variant is garbage for browsers which don’t support
MathML.

The result of this converter can be written to files with the command
GAPDOC2HTMLPrintHTMLFiles (5.3.7).

http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/REC-CSS2
http://hutchinson.belmont.ma.us/tth/
http://hutchinson.belmont.ma.us/tth/
http://www.w3.org/TR/MathML2/

GAPDoc 47

5.3.7 GAPDOC2HTMLPrintHTMLFiles

Q) GAPDOC2HTMLPrintHTMLFiles(t[, path]) (function)

Returns: nothing

The first argument must be a result returnedshypoc2HTML (5.3.6. The second argument is a
path for the files to write, it can be given as string or directory object. The text of each chapter is writ-
ten into a separate file with nameap0.html, chapl.html, ...,chapBib.html, andchapInd.html.

The experimental versions which are produced with or ttm use different names for the files,
namelychap0_sym.html, and so on for files which need symbol fonts am@p0_mm1.xml for files
with MathML translations.

You can make these files accessible via@#e online help by putting them into a directory and
using this as an argument for one of the commangds arePackageDocumentation (Reference:
DeclarePackageDocumentation or DeclarePackageAutoDocumentation (Reference: De-
clarePackageAutoDocumentatiol You may also want to put a fileanual . css into that directory,
SeeGAPDoc2HTML (5.3.6.

5.4 Parsing BibTeX Files

Here are functions for parsing, normalizing and printing reference lists in BibTeX format. The refer-
ence describing this format is§m85 Appendix B].

5.4.1 ParseBibFiles

{) ParseBibFiles(bibfile) (function)

Returns: list [1ist of bib-records, list of abbrevs, list of expansions]

This function parses a fileibfile (if this file does not exist the extensiobib is appended) in
BibTeX format and returns a list as follow$entries, strings, texts]. Hereentries is a list
of records, one record for each reference containediriile. Thenstrings is a list of abbrevia-
tions defined byestring-entries inbibfile andtexts is a list which contains in the corresponding
position the full text for such an abbreviation.

The records irentries store key-value pairs of a BibTeX reference in the forex (keyl =
valuel, ...). The names of the keys are converted to lower case. The type of the reference (i.e.,
book, article, ...) and the citation key are stored as componegts and. Label.

As an example consider the following BibTeX file.
my.bib

@string{ j = "Important Journal" }
@article{ AB2000, Author= "Fritz A. First and Sec, X. Y.",
TITLE="Short", journal = j, year = 2000 }

Example
gap> bib := ParseBibFiles ("my.bib");
[[rec(Type := "article", Label := "AB2000",
author := "Fritz A. First and Sec, X. Y.", title := "Short",
journal := "Important Journal", year := "2000")],

[Iljll]’
["Important Journal"]]

GAPDoc 48

5.4.2 NormalizeNameAndKey

O NormalizeNameAndKey (r) (function)

Returns: nothing

This function normalizes in a record describing a BibTeX referencep(seg:BibFiles (5.4.1)
theauthor and editor fields using the description irBm85 Appendix B 1.2]. The original entries
are stored inauthororig and.editororig.

Furthermore a short and a long citation key is generated.

We continue the example frorarseBibFiles (5.4.7).

Example
gap> NormalizeNameAndKey (bib[1][1]);
gap> bib[1][1];
rec(Type := "article", Label := "AB2000",
author := "First, F. A. and Sec, X. Y. ", title := "Short",
journal := "Important Journal", year := "2000",
authororig := "Fritz A. First and Sec, X. Y.", key := "FS00",
keylong := "firstsec2000")
5.4.3 WriteBibFile
O WriteBibFile(bibfile, bib) (function)

Returns: nothing

This is the converse dfarseBibFiles (5.4.1). Herebib must have a format as it is returned by
ParseBibFiles (5.4.7). A BibTeX file bibfile is written and the entries are formatted in a uniform
way. All given abbreviations are used while writing this file.

We continue the example frofvrmalizeNameAndKey (5.4.2. The command
Example

gap> WriteBibFile("nicer.bib", bib);

produces afileicer.bib as follows:

nicer.bib

@string{j = "Important Journal" }

Qarticle{ AB2000,

author = {First, F. A. and Sec, X. Y.},
title = {Short},

journal = i,

year = {2000},

key = {FS00},

authororig = {Fritz A. First and Sec, X. Y.},
keylong = {firstsec2000}

5.5 Text Utilities

This section describes some utility functions for handling texts widw®. They are used by the
functions in theGAPDoc package but may be useful for other purposes as well. We start with some
variables containing useful strings and go on with functions for parsing and reformatting text.

GAPDoc 49

5.5.1 WHITESPACE

{ WHITESPACE (global variable)
{ CAPITALLETTERS (global variable)
¢ SMALLLETTERS (global variable)
{ LETTERS (global variable)
O DIGITS (global variable)
{ HEXDIGITS (global variable)

These variables contain sets of characters which are useful for text processing. They are defined
as follows.

WHITESPACE " \n\t\r"

CAPITALLETTERS "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
SMALLLETTERS "abcdefghijklmnopgrstuvwxyz"

LETTERS concatenation of CAPITALLETTERS and SMALLLETTERS
DIGITS "0123456789"

HEXDIGITS "0123456789ABCDEFabcdef"

5.5.2 TextAttr

Q TextAttr (global variable)

The recordrextAttr contains strings which can be printed to change the terminal attribute for the
following characters. This only works with terminals which understand basic ANSI escape sequences.
Try the following example to see if this is the case for the terminal you are using. It shows the effect
of the foreground and background color attributes and of.thwed, .blink, .normal, .reverse
and.underscore which can partly be mixed.
Example
extra := ["CSI", "reset", "delline", "home"];;
for t in Difference (RecNames (TextAttr), extra) do

Print (TextAttr. (t), "TextAttr.", t, TextAttr.reset,"\n");
od;

The suggested defaults for colars. 7 are black, red, green, brown, blue, magenta, cyan, white. But
this may be different for your terminal configuration.
The escape sequencé=111ine deletes the content of the current line amdme moves the cursor

to the beginning of the current line.
Example

for i in [1..5] do
Print (TextAttr.home, TextAttr.delline, String(i,-6), "\c");
Sleep(1l);

od;

Whenever you use this in some printing routines you should make it optional. Use these attributes
only, when the variablensI_cOLORS has the value rue.

GAPDoc 50

5.5.3 FormatParagraph

{Q FormatParagraph(str[, len[, flush[, attr]]]) (function)
Returns: the formatted paragraph as string
This function formats a text given in the strisgr as a paragraph. The optional arguments have
the following meaning:

len the length of the lines of the resulting text (default &y

flush can be"left", "right", "center" Or "both", telling that lines should be flushed left,
flushed right, centered or left-right justified, respectively (defaulbisth™")

attr is a list of two strings; the first is prepended and the second appended to each line of the
result (can for example be used for indenting,", ""], or some markup;TextAttr.bold,
TextAttr.reset], defaultis("", ""])

This function tries to handle markup with the escape sequences explaimedtinctr (5.5.2 cor-
rectly.

Example
gap> str := "One two three four five six seven eight nine ten eleven.";;
gap> Print (FormatParagraph(str, 25, "left", ["/* ", " */"]));

/* One two three four five */

/* six seven eight nine ten */

/* eleven. */

5.5.4 SubstitutionSublist

Q SubstitutionSublist (list, sublist, new[, flag]) (function)

Returns: the changed list

This function looks for (non-overlapping) occurrences of a sublist i st inalist1ist (compare
PositionSublist (Reference: PositionSublisf) and returns a list where these are substituted with
the listnew.

The optional argumeritlag can either beéa11" (this is the default if not given) orone™". In the
second case only the first occurrencesoflist is substituted.

If sublist does notoccurinist thenlist itselfis returned (and notshallowCopy (1ist)).

Example
gap> SubstitutionSublist ("xababx", "ab", "a");
"xaax"
5.5.5 StripBeginEnd
Q StripBeginEnd(list, strip) (function)

Returns: changed string
Herelist andstrip must be lists. This function returns the sublist of list which does not contain
the leading and trailing entries which are entriesofip. If the result is equal taist thenlist

itself is returned.

Example
gap> StripBeginEnd(" ,a, b,c, """

"a, b’ C"

GAPDoc 51

5.5.6 StripEscapeSequences

{Q StripEscapeSequences(str) (function)
Returns: string without escape sequences
This function returns the string one gets from the string by removing all escape sequences
which are explained imextattr (5.5.9. If str does not contain such a sequence thenitself is
returned.

5.5.7 RepeatedString

Q RepeatedString(c, len) (function)

Here ¢ must be either a character or a string angh is a non-negative number. Then
RepeatedString returns a string of lengthen consisting of copies of.
Example

gap> RepeatedString(’=',51);

n n

gap> RepeatedString("*=",51);

Ml —k—kh—hk =k =k =k =k =k =k ==k =k =k =k =k =k =k =k =k =k =k =k =k =k =% T

5.5.8 NumberDigits

Q NumberDigits(str, base) (function)
Returns: integer
Q DigitsNumber(n, base) (function)

Returns: string

The argumenttr of NumberDigits must be a string consisting only of an optional leadirg
and characters if123456789abcde fABCDEF, describing an integer in babese with 2 < base < 16.
This function returns the corresponding integer.

The functiondbigitsNumber does the reverse.
Example

gap> NumberDigits ("1A3F",16);
6719

gap> DigitsNumber (6719, 16);
"1A3F"

5.5.9 PositionMatchingDelimiter

{Q PositionMatchingDelimiter(str, delim, pos) (function)
Returns: position as integer ofail
Herestr must be a string ange1im a string with two different characters. This function searches
the smallest positionr of the charactedelim[2] in str such that the number of occurrences of
delim[2] in str between positionsos+1 andr is by one greater than the corresponding number of
occurrences ofielim[1].

If such anr exists, it is returned. Otherwisgail is returned.
Example
gap> PositionMatchingDelimiter ("{}x{ab{c}d}", "{}", 0);
fail

gap> PositionMatchingDelimiter ("{}x{ab{c}d}", "{}", 1);

GAPDoc 52

2
gap> PositionMatchingDelimiter ("{}x{ab{c}d}", "{}", 6);
11

5.5.10 WordsString

O WordsString(str) (function)
Returns: list of strings containing the words
This returns the list of words of a text stored in the strinng. All non-letters are considered as

word boundaries and are removed.

Example
gap> WordsString("one_two \n three!?");

["Ol’le", "tWO", llthreell 1

5.6 Print Utilities

The following printing utilities turned out to be useful for interactive work with textsiP. But they
are more general and so we document them here.

5.6.1 PrintTol

O PrintTol(filename, fun) (function)
Q AppendTol (filename, fun) (function)

The argumentun must be a function without arguments. Everything which is printed by a call
fun () is printed into the filefilename. As with PrintTo (Reference: PrintTo) and AppendTo
(Reference: AppendTq this overwrites or appends to, respectively, a previous contehtlefame.

These functions can be particularly efficient when many small pieces of text shall be written to a
file, because no multiple reopening of the file is necessary.

Example

gap> f := function() local i;
> for i in [1..100000] do Print(i, "\n"); od; end;
gap> PrintTol ("nonsense", f); # now check the local file ‘nonsense’

5.6.2 StringPrint

{Q StringPrint (objl[, obij2[, ...]]) (function)
Q StringView(obj) (function)

These functions return a string containing the output Bf ant or ViewOb; call with the same
arguments.

This should be considered as a (temporary?) hack. It would be better tathave;y (Reference:
String) methods for allGAP objects and to have a genericint (Reference: Prinf)-function which
just interprets these strings.

GAPDoc 53

5.6.3 PrintFormattedString

Q PrintFormattedString(str) (function)

This function prints a stringtr. The difference t@rint (str); is that no additional line breaks
are introduced bgAP’s standard printing mechanism. This can be used to print lines which are longer
than the current screen width. In particular one can print text which contains escape sequences like
those explained imextAttr (5.5.9, where lines may have more characters thigible characters

5.6.4 Page
QPage(...) (function)
Q PageDisplay(obj) (function)

These functions are similar torint (Reference: Prinf) andDisplay (Reference: Display,
respectively. The difference is that the output is not sent directly to the screen, but is piped into the
current pager; seenGER (Reference: Page).
Example

gap> Page([1..1421]1+40);
gap> PageDisplay (CharacterTable ("Symmetric", 14));

5.6.5 StringFile

Q StringFile(filename) (function)
Q FileString(filename, str[, append]) (function)

The functionstringFile returns the content of filéilename as a string. This works efficiently
with arbitrary (binary or text) files. If something went wrong, this function retutasl .
Conversely the functionileString writes the content of a stringt r into the filefilename. If
the optional third argumentppend is given and equalsrue then the content oftr is appended to
the file. Otherwise previous content of the file is deleted. This function returns the number of bytes
written orfail if something went wrong.
Both functions are quite efficient, even with large files.

Appendix A

The File 3k+1.xml

Here is the complete source of the examphPDoc documentik+1.xml discussed in Sectioh.2

3k+1.xml
<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- A complete "fake package" documentation
$Id: app3kl.xml,v 1.2 2002/05/29 07:58:58 gap Exp $
-—>

<!DOCTYPE Book SYSTEM "gapdoc.dtd">
<Book Name="3k+1">

<TitlePage>
<Title>The <Package>ThreeKPlusOne</Package> Package</Title>
<Version>Version 42</Version>
<Author>Dummy Authdr
<Email>3kplusone@dev.null</Email>
</Author>

<Copyright>©right; 2000 The Author. <P/>
You can do with this package what you want.<P/> Really.
</Copyright>
</TitlePage>

<TableOfContents/>

<Body>
<Chapter> <Heading>The <M>3k+1</M> Problem</Heading>
<Section Label="sec:theory"> <Heading>Theory</Heading>
Let <M>k \in \N</M> be a natural number. We consider the sequence

<M>n (i, k), 1 \in \N,</M> with <M>n (1, k) = k</M> and else
<M>n(i+1, k) = n(i, k) / 2</M> if <M>n(i, k)</M> is even and
<M>n(i+l, k) = 3 n(i, k) + 1</M> if <M>n (i, k)</M> is odd.

<p/>

It is not known whether for any natural number <M>k \in \N</M>
there is an <M>m \in \N</M> with <M>n(m, k) = 1</M>.

<P/>

<Package>ThreeKPlusOne</Package> provides the function <Ref

54

GAPDoc

Func="ThreeKPlusOneSequence"/> to explore this for given
<M>n</M>. If you really want to know something about this
problem, see <Cite Key="Wi98"/> or
<URL>http://mathsrv.ku-eichstaett.de/MGF/homes/wirsching/</URL>
for more details (and forget this package).

</Section>

<Section> <Heading>Program</Heading>
In this section we describe the main function of this package.

<ManSection>
<Func Name="ThreeKPlusOneSequence" Arg="k[, max]"/>
<Description>

This function computes for a natural number <A>k the
beginning of the sequence <M>n(i, k)</M> defined in section
<Ref Sect="sec:theory"/>. The sequence stops at the first
<M>1</M> or at <M>n(<A>max, k)</M>, if <A>max is
given.

<Example>

gap> ThreeKPlusOneSequence (101);

"Sorry, not yet implemented. Wait for Version 84 of the package"

</Example>

</Description>
</ManSection>
</Section>
</Chapter>
</Body>

<Bibliography Databases="3k+1" />
<TheIndex/>

</Book>

55

Appendix B

The File gapdoc.dtd

For easier reference we repeat here the complete content of thedidec. dtd.
gapdoc.dtd

<?xml version="1.0" encoding="ISO-8859-1"?>
<l--

gapdoc.dtd - XML Document type definition for GAP documentation
By Frank Libeck and Max Neunhoffer

-—>
<!-- $Id: gapdoc.dtd,v 1.8 2002/12/23 10:03:20 gap Exp $ -—>
<!-- Note that this definition goes "bottom-up" because entities can only
be used after their definition in the file. --—>
<l--
Some entities:
-—>

<!-- The standard XML entities: —-—>

<!ENTITY 1t "&#60; ">
<IENTITY gt "ek62; ">
<!ENTITY amp "s#38; #38; ">

<!ENTITY apos "'">
<!ENTITY quot "e#34;">

<!-- The following are necessary because these characters have special
meanings in either XML or LaTeX: -->

<!ENTITY tamp
"<Alt Only='LaTeX’>\&</Alt><Alt Not='LaTeX’'><Alt
Only="HTML' >& amp; </Alt><Alt Not='HTML’>& </Alt></Alt>">
<!ENTITY tlt
"<Alt Only='LaTeX’>{\textless}</Alt><Alt Not='LaTeX’'><Alt
Only='HTML’ >& 1t; </Alt><Alt Not='HTML’>&1t;</Alt></Alt>">
<!ENTITY tgt
"<Alt Only='LaTeX’>{\textgreater}</Alt><Alt Not='LaTeX’><Alt

56

GAPDoc

Only='HTML’ >& gt ; </Alt><Alt Not=’HTML'>></Alt></Alt>">
<!ENTITY hash "<Alt Only='LaTeX’>\#</Alt><Alt Not='LaTeX’'>#</Alt>">
<!ENTITY dollar "<Alt Only=’LaTeX’>\$</Alt><Alt Not='LaTeX’>S$</Alt>">
<!ENTITY percent

"<Alt Only='LaTeX’>\%</ALlt><Alt Not='LaTeX’'>%</Alt>">
<IENTITY tilde

"<Alt Only='LaTeX’>{\textasciitilde}</Alt><Alt Not='LaTeX’'>"</Alt>">
<!ENTITY bslash

"<Alt Only='LaTeX’>{\textbackslash}</Alt><Alt Not='LaTeX’'>\</Alt>">
<!ENTITY obrace "<Alt Only='LaTeX’>\{</Alt><Alt Not='LaTeX'>{</Alt>">
<!ENTITY cbrace "<Alt Only='LaTeX’>\}</Alt><Alt Not='LaTeX'>}</Alt>">
<!ENTITY uscore

"<Alt Only='LaTeX’>{\textunderscore}</Alt><Alt Not='LaTeX’'>_</Alt>">
<!ENTITY circum

"<Alt Only='LaTeX’>{\textasciicircum}</Alt><Alt Not='LaTeX’'>"</Alt>">
<!ENTITY nbsp "<Alt Only='LaTeX’>"</Alt><Alt Not='LaTeX’'> </Alt>">

<l--

Our predefined entities:

<!ENTITY GAP "<Package>GAP</Package>">
<!ENTITY GAPDoc "<Package>GAPDoc</Package>">
<IENTITY TeX

"<Alt Only='TLaTeX’>{\TeX}</Alt><Alt Not='LaTeX’'>TeX</Alt>">
<!ENTITY LaTeX

"<Alt Only='LaTeX’>{\LaTeX}</Alt><Alt Not='LaTeX’'>LaTeX</Alt>">
<!ENTITY BibTeX

"<Alt Only='LaTeX’>{Bib\TeX}</Alt><Alt Not=’LaTeX’>BibTeX</Alt>">
<!ENTITY MeatAxe "<Package>MeatAxe</Package>">
<!ENTITY XGAP "<Package>XGAP</Package>">
<!ENTITY copyright

"<Alt Only='LaTeX’>{\copyright}</Alt><Alt Not='LaTeX’>(C)</Alt>">

The following describes the "innermost" documentation text which
can occur at various places in the document like for example
section headings. It does neither contain further sectioning
elements nor environments like Enums or Lists.

<!ENTITY % InnerText "#PCDATA |
Alt |
Emph | E |
Par | P | Br
Keyword | K | Arg | A | Quoted | Q | Code | C |
File | F | Button | B | Package |
M | Math | Display |
Example | Listing | Log | Verb |
URL | Email | Homepage | Address | Cite | Label |
Ref | Index" >

57

GAPDoc

<!ELEMENT Alt (%InnerText;)*> <!-- This is only to allow "Only" and
"Not" attributes for normal text -->
<!ATTLIST Alt Only CDATA #IMPLIED
Not CDATA #IMPLIED>

<!-- The following elements declare a certain block of InnerText to
have a certain property. They are non-terminal and can contain
any InnerText recursively. ——>

<!ELEMENT Emph (%InnerText;)*> <!-- Emphasize something -->

<!ELEMENT E ($InnerText;) *> <!-- the same as shortcut -->
<!-- The following is an empty element marking a paragraph boundary. -->

<!ELEMENT Par EMPTY> <!-- this is intentionally empty! -->
<!ELEMENT P EMPTY> <!-- the same as shortcut -->

<!-- And here is an element for forcing a line break, not starting
a new paragraph. -->

<!ELEMENT Br EMPTY> <!-- a forced line break -->

<!-- The following elements mark a word or sentence to be of a certain
kind, such that it can Dbe typeset differently. They are terminal
elements that should only contain character data. But we have to
allow Alt elements for handling special characters. For these
elements we introduce a long name - which is easy to remember -
and a short name - which vyou may prefer because of the shorter
markup. —-—>

<!ELEMENT Keyword (#PCDATA|Alt)*> <!-- Keyword -->

<!ELEMENT K (#PCDATA|Alt)*> <!-- Keyword (shortcut) -->
<!ELEMENT Arg (#PCDATA|Alt)*> <!-- Argument -->
<!ELEMENT A (#PCDATA|Alt)*> <!-- Argument (shortcut) -->

<!ELEMENT Code (#PCDATA|ALlt]|A)*> <!-- GAP code -->

<!ELEMENT C (#PCDATA|Alt|A)*> <!-- GAP code (shortcut) -->
<!ELEMENT File (#PCDATA|Alt)*> <!-- Filename -->

<!ELEMENT F (#PCDATA|Alt)*> <!-- Filename (shortcut) -->
<!ELEMENT Button (#PCDATA|Alt)*> <!-- "Button" (also Menu, Key) -->
<!ELEMENT B (#PCDATA|Alt)*> <!-- "Button" (shortcut) -->

<!ELEMENT Package (#PCDATA|Alt)*> <!-- A package name -->

<!ELEMENT Quoted (%InnerText;)*> <!-- Quoted (in quotes) text -->
<!ELEMENT Q (%InnerText;)*> <!-- Quoted text (shortcut) -->

58

GAPDoc
<!-- The following elements contain mathematical formulae. They are
terminal elements that contain character data in TeX notation. -->

<!-- Math with well defined translation to text output --—>
<!ELEMENT M (#PCDATA|A|Arg|Alt)*>

<!-- Normal TeX math mode formula -->
<!ELEMENT Math (#PCDATA|A|Arg|Alt)*>
<!-- TeX displayed math mode formula —-->

<!ELEMENT Display (#PCDATA|A|Arg|Alt)*>

<!-- The following elements contain GAP related text 1like code,
session logs or examples. They are all terminal elements and
consist of character data which is normally typeset verbatim. The
different types of the -elements only control how they are
treated. -—>

<!ELEMENT Example (#PCDATA)> <!-- This is subject to the automatic
example checking mechanism ——>
<!ELEMENT Log (#PCDATA)> <!-- This not -—>
<!ELEMENT Listing (#PCDATA)> <!-- This is just for code listings -->
<!ATTLIST Listing Type CDATA #IMPLIED> <!-- a comment about the type of
listed code, may appear in

output -->
<!-- One further verbatim element, this is truely verbatim without
any processing and intended for ASCII substitutes of complicated
displayed formulae or tables. --—>
<!ELEMENT Verb (#PCDATA)>
<!-- The following elements are for cross-referencing purposes like

URLs, citations, references, and the index. All these elements
are terminal and need special methods to make up the actual
output during document generation. -->

<!ELEMENT URL (#PCDATA|Alt)*> <!-- Can we define this better? -->
<!ATTLIST URL Text CDATA #IMPLIED> <!-- This is for output formats
that have links like HTML -->

<!-- The following two are actually URLs, but the element name determines
the type. ——>

<!ELEMENT Email (#PCDATA|Alt)*>
<!ELEMENT Homepage (#PCDATA|Alt)*>

<!-- Those who still want to give postal addresses can use the following
element. Use
 for specifying typical line breaks -->

<!ELEMENT Address (#PCDATA|Alt|Br)*>

<!ELEMENT Cite EMPTY>
<!ATTLIST Cite Key CDATA #REQUIRED

59

GAPDoc

Where CDATA #IMPLIED>

<!ELEMENT Label EMPTY>
<!ATTLIST Label Name CDATA #REQUIRED>

<!ELEMENT Ref EMPTY>

<!ATTLIST Ref Func CDATA #IMPLIED
Oper CDATA #IMPLIED
Meth CDATA #IMPLIED
Filt CDATA #IMPLIED
Prop CDATA #IMPLIED
Attr CDATA #IMPLIED
Var CDATA #IMPLIED
Fam CDATA #IMPLIED
InfoClass CDATA #IMPLIED
Chap CDATA #IMPLIED
Sect CDATA #IMPLIED

Subsect CDATA #IMPLIED
Appendix CDATA #IMPLIED
Text CDATA #IMPLIED

Label CDATA #IMPLIED
BookName CDATA #IMPLIED
Style (Text|Number) #IMPLIED> <!-- normally automatic -->

<!-- Note that only one attribute of Ref is used normally. BookName
and Style can be specified in addition to handle external
references and the typesetting style of the reference. -->

<!ELEMENT Index (%InnerText;)*>
<!ATTLIST Index Key CDATA #IMPLIED
Subkey CDATA #IMPLIED>

<l--
The following describes the normal documentation text which can
occur at various places in the document. It does not contain
further sectioning elements. In addition to InnerText it can contain
environments like enumerations, lists, and such.

-—>
<!ENTITY % Text "%InnerText; | List | Enum | Table">

<!ELEMENT Item (%Text;)*>
<!ELEMENT Mark ($InnerText;)*>
<!ELEMENT BigMark (%InnerText;)*>

<!ELEMENT List (((Mark,Item) | (BigMark,Item) |Item)+)>
<!ATTLIST List Only CDATA #IMPLIED
Not CDATA #IMPLIED>
<!ELEMENT Enum (Item+)>
<!ATTLIST Enum Only CDATA #IMPLIED
Not CDATA #IMPLIED>

60

GAPDoc

<!ELEMENT Table (Caption?, (Row | HorLine)+)>
<!ATTLIST Table Label CDATA #IMPLIED
Only CDATA #IMPLIED

Not CDATA #IMPLIED
Align CDATA #REQUIRED> <!-- A TeX tabular string -->
<!-- We allow | and 1,c,r, nothing else -->

<!ELEMENT Row (Itemt)>

<!ELEMENT HorLine EMPTY>
<!ELEMENT Caption (%InnerText;)*>

<l=-

We start defining some things within the overall structure:

<!-- The TitlePage consists of several sub-elements: -->

<!ELEMENT TitlePage (Title, Subtitle?, Version?, TitleComment?,
Author+, Date?, Address?, Abstract?, Copyright?,
Acknowledgements? , Colophon?)>

<!ELEMENT Title (%Text;)*>

<!ELEMENT Subtitle (%Text;)*>

<!ELEMENT Version (%Text;)*>

<!ELEMENT TitleComment (%Text;)*>

<!ELEMENT Author (%Text;)*> <!-- There may be more than one Author! -->
<!ELEMENT Date (%Text;)*>

<!ELEMENT Abstract (%Text;)*>

<!ELEMENT Copyright (%Text;)*>

<!ELEMENT Acknowledgements (%Text;)*>

<!ELEMENT Colophon (%Text;)*>

<!-- The following things just specify some information about the
corresponding parts of the Book: —-—>

<!ELEMENT TableOfContents EMPTY>

<!ELEMENT Bibliography EMPTY>

<!ATTLIST Bibliography Databases CDATA #REQUIRED
Style CDATA #IMPLIED>

<!ELEMENT TheIndex EMPTY>

<
Now we go on with the overall structure by defining the sectioning
structure, which includes the Synopsis element:

<!ELEMENT Subsection (%Text;| Heading)*>
<!ATTLIST Subsection Label CDATA #IMPLIED> <!-- For reference purposes —-->

<!ELEMENT ManSection (((Func, Returns?) | (Oper, Returns?)

61

GAPDoc
(Meth, Returns?) | (Filt, Returns?) |
(Prop, Returns?) | (Attr, Returns?) |

Var | Fam | InfoClass)+, Description)>
<!ATTLIST ManSection Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Returns (%Text;)*>
<!ELEMENT Description (%Text;)*>

<!-- Note that the ManSection element 1is actually a subsection with
respect to labelling, referencing, and counting of sectioning
elements. ——>

<!ELEMENT Func EMPTY>

<!ATTLIST Func Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!-- Note that Arg contains the full list of arguments, including
optional parts, which are denoted by square brackets [].
Arguments are separated by whitespace, commas count as
whitespace. -->

<!-- Note further that although Name and Label are CDATA (and not ID)
Label must make up a unique identifier. -->

<!ELEMENT Oper EMPTY>

<!ATTLIST Oper Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Meth EMPTY>

<!ATTLIST Meth Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Filt EMPTY>

<!ATTLIST Filt Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #IMPLIED
Comm CDATA #IMPLIED
Type CDATA #IMPLIED>

<!ELEMENT Prop EMPTY>

<!ATTLIST Prop Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Attr EMPTY>

62

GAPDoc

<!ATTLIST Attr Name CDATA #REQUIRED
Label CDATA #IMPLIED
Arg CDATA #REQUIRED
Comm CDATA #IMPLIED>

<!ELEMENT Var EMPTY>

<!ATTLIST Var Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Fam EMPTY>

<!ATTLIST Fam Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT InfoClass EMPTY>

<!ATTLIST InfoClass Name CDATA #REQUIRED
Label CDATA #IMPLIED
Comm CDATA #IMPLIED>

<!ELEMENT Heading (%$InnerText;)*>

<!ELEMENT Section (%Text;| Heading | Subsection | ManSection) *>
<!ATTLIST Section Label CDATA #IMPLIED> <!-- For reference purposes -->

<!ELEMENT Chapter (%Text;| Heading | Section)*>
<!ATTLIST Chapter Label CDATA #IMPLIED> <!-- For reference purposes —-->

<!-- Note that the entity %InnerText; is documentation that contains
neither sectioning elements nor environments like enumerations,
but only formulae, labels, references, citations, and other
terminal elements. -—>

<!ELEMENT Appendix (%Text;| Heading | Section)*>
<!ATTLIST Appendix Label CDATA #IMPLIED> <!-- For reference purposes ——>

<!-- Note that an Appendix 1s exactly the same as a Chapter. They
differ only in the numbering. -->

<l--

At last we define the overall structure of a gapdoc Book:
o s

<!ELEMENT Body (%Text;| Chapter | Section)*>

<!ELEMENT Book (TitlePage,
TableOfContents?,
Body,
Appendix*,
Bibliography?,

63

GAPDoc
TheIndex?)>
<!ATTLIST Book Name CDATA #REQUIRED>
<!-- Note that the -entity &Text; is documentation that contains

no further sectioning elements but possibly environments like
enumerations, and formulae, labels, references, and citations.
-—>

< >

64

References

[GAPO2] The GAP Group, Aachen, St AndrewssAP — Groups, Algorithms, and Programming,
Version 4.32002. http://www.gap-system.ord.

[Lam85] Leslie Lamport.IATEX: A Document Preparation SysterAddison-Wesley, 1985.21, 34,
47,48

65

Index

A, 32

Abstract, 20
Acknowledgements, 21
AddPageNumbersToSix, 45
AddParagraphNumbersGapDocTree, 43
AddRootParseTree, 42
Align, 30

Alt, 35

ANSI_COLORS 49
Appendix, 23
AppendTol, 52
ApplyToNodesParseTree, 42
Arg, 32

Attr, 26

Author, 20

B, 32
Bibliography, 21
Body, 22

Book, 18

Br, 36
Button, 32

c, 32

CAPITALLETTERS, 49
Caption, 30

Chapter, 22
CheckAndCleanGapDocTree, 42
Cite, 28

Code, 32

Colophon, 21
ComposedxXMLString, 38
Copyright, 20

Address, 20
Date, 20
Description, 24
DIGITS, 49
DigitsNumber, 51
Display, 33

66

DisplayXMLStructure, 42

E, 31
Email, 29
Emph, 31
Enum, 30
Example, 33

F, 32

Fam, 26

File, 32
FileString, 53
Filt, 25
FormatParagraph, 50
Func, 24

<#GAPDoc>, 37
GAPDOC2HTML, 45
GAPDOC2HTMLPrintHTMLFiles, 47
GAPDoc2LaTeX, 43
GAPDoc2Text, 44
GAPDoc2TextPrintTextFiles, 44

Heading, 23
HEXDIGITS, 49
Homepage, 29
HorLine, 30

<#Include>, 37
Index, 28
InfoClass, 27
Item, 30

K, 31
Keyword, 31

Label, 28
LETTERS, 49
List, 29
Listing, 33
Log, 33

GAPDoc

M, 34
MakeGAPDocDoc, 41
ManSection, 24
Mark, 30

Math, 33

Meth, 25

NormalizeNameAndKey, 48
NumberDigits, 51

Oper, 25

p, 36

Package, 32

Page, 53

PageDisplay, 53

Par, 36
ParseBibFiles, 47
ParseTreeXMLString, 41
PositionMatchingDelimiter, 51
PrintFormattedString, 53
PrintSixFile, 45
PrintTol, 52

Prop, 26

0,31
Quoted, 31

Ref, 27
RemoveRootParseTlree, 42
RepeatedString, 51
Returns, 24

Row, 30

Section, 23
SMALLLETTERS, 49
StringFile, 53
StringPrint, 52
StringView, 52
StripBeginEnd, 50
StripEscapeSequences, 51
Subsection, 23
SubstitutionSublist, 50
Subtitle, 19

Table, 30
TableOfContents, 21
TextAttr, 49
ThelIndex, 21

Title, 18
TitleComment, 20
TitlePage, 18

URL, 29

Var, 26

Version, 19

WHITESPACE, 49
WordsString, 52
WriteBibFile, 48

XML, 7

67

