SIAM REV. (© 1998 Society for Industrial and Applied Mathematics
Vol. 40, No. 3, pp. 685-691, September 1998 012

CALCULATION OF WEIGHTS IN FINITE DIFFERENCE
FORMULAS*

BENGT FORNBERGH

Abstract. The classical techniques for determining weights in finite difference formulas were ei-
ther computationally slow or very limited in their scope (e.g., specialized recursions for centered and
staggered approximations, for Adams—Bashforth-, Adams—Moulton-, and BDF-formulas for ODEs,
etc.). Two recent algorithms overcome these problems. For equispaced grids, such weights can be
found very conveniently with a two-line algorithm when using a symbolic language such as Mathe-
matica (reducing to one line in the case of explicit approximations). For arbitrarily spaced grids, we
describe a computationally very inexpensive numerical algorithm.

Key words. finite differences, weights, interpolation, linear multistep methods
AMS subject classifications. 65D25, 65D05, 65112, 65M06

PII. S0036144596322507

1. Introduction. Derivatives of grid-based functions are often approximated by
finite difference approximations. In a few special cases (e.g., for explicit approxima-
tions on equispaced grids), the optimal weights are known in closed form. Cases 1 and
2 in Table 1 show two such examples. Cases 3 to 6 illustrate more general situations.
The purpose of this note is to present two short algorithms for finding the optimal
weights in cases such as these (for derivatives of any order, approximated to any level
of accuracy). The first algorithm is limited to equispaced grids. When implemented
in a symbolic language (such as Mathematica or Maple), it provides the exact weights
for both explicit and implicit approximations. The second algorithm works equally
well also for irregular grid spacings. Although it is primarily geared towards explicit
approximations, a simple extension permits the derivation also of implicit formulas.
Since this second algorithm may need to be run a large number of times (e.g., for each
location on an irregular grid), it is presented in a numerical language (Fortran). In the
special case of approximating the zeroth derivative, it provides a fast computational
procedure for polynomial interpolation.

2. Algorithm for equispaced grids. One example suffices to illustrate both
why this algorithm works and how it is used. Consider for example Case 5 from
Table 1. Here, we want to find the coefficients which make the stencil

bof"(x —h) + b f"(x) + bof (@ + h) = cof(x — h) + e1f(x) + cof (¥ + h)

accurate for as high degree polynomials as possible. Substituting f(z) = e™“® gives

7w2[b067iw}1 + bl + b26iwh]6iwm ~ [60€7iwh +e + CQeiwh}eiwr'
The goal is to make the approximation as accurate as possible, if expanded locally

*Received by the editors October 10, 1996; accepted for publication May 12, 1997. This research
was supported by NSF (DMS-9706919).
http://www.siam.org/journals/sirev/40-3/32250.html
fDepartment of Applied Mathematics, University of Colorado, Boulder, CO 80309-0526
(fornberg@colorado.edu).

685

686 CLASSROOM NOTES

TABLE 1
Some tllustrative examples of commonly occurring types of finite difference approximations.

Case Description Example of finite difference formula Applicable Error level
method of sample formula;
Comment
FEzxplicit approximations
1 centered, f(z) =~ [7%]‘(1 — 2h) 14(7 2 O(h4)
regular grid + %f(:z: —h) — % (z)
+ 5f(z+h)
— 5 f(z+2h)]/h?
2 staggered, f(z) =~ (& fz— 2h) 1t 2 O(h%)
regular grid — %f(x —1in)

+ 2f(z+ $h)
- f@+5h)]/h

3 one-sided, f'(z + h) ~ [f(z — 3h) 1t 2 O(h*); example of
regular grid — 2f(z —2h) backward differentiation
+ 3f(x — h) (BDF) method for ODEs
— Af(z) + 25 f(= + h)]/h
4 partly one-sided, f"(3)~ 13 f(0)— 382r(1) 2 O(h?) if grid spacing
irregular grid + 4—52,)”(1) — %f@) proportional to h
+ 22 f(%) — 1315 £ (6)
Implicit approximations
5 centered, 1f"(x — h) + 10f" () 1, 2* O(h*); example of Collatz’
regular grid + 1f"(x + h) “Mehrstellenverfahren”

~ [12f(x — h) — 24f(z)
+ 12f(x + h)]/h?
6 one-sided, —3f(x —3h) + 52 f'(z — 2h) 1, 2~ O(h*); example of Adams-

regular grid - 2 f(x—h)+ 5 f () Bashforth method for
~ [—f(z) + f(z + h)]/h ODESs (Adams Moulton

methods are obtained similarly)

Notes: 11 indicates that also the briefer Taylor expansion method is applicable.

2* denotes method 2 with “fictitious point” extension.

around h = 0. Canceling the factors e’“*, and substituting e*" = ¢, i.e., iwh = In¢,

gives
2
{hlhg} |:b£0+bl+b2€:| ~ |:C£)+Cl+02£:|;

{lng}Q ot al+ el
h bo + 01& + b2§2'

At this point, we want the best possible accuracy when expanded around £ = 1. Padé
approximation of ((In¢)/h)? around & = 1, to order [2,2], will offer this

{mg}Q ~ (€—1)2 12 — 24€ + 12¢2

hf TR+ (E-1)+5(E—1)2) K21+ 106+ 1€2)

Similar Padé approximations have been used in the past for analysis of linear multistep
methods; see for example [5]. (Padé coefficients can be calculated rapidly from Taylor-
coefficients; see [1].)

In Mathematica (after having loaded the Padé package through <<Calculus‘Pade),
we get the desired weights by executing the two statements

CLASSROOM NOTES 687

0—0—0—0 < entries for f™

o—90— 90 —-0—8—6—09—0 <

entries for f

[P n i
P P

F1G. 1. Schematic illustration of how the notation used in the Padé weight algorithm relates to
a stencil shape; here shown in a staggared case with s = %, d=3,andn=717.

t=Pade[Log[x]~2,{x,1,2,2}];
{CoefficientList [Denominator[t],x],CoefficientList [Numerator[t],x]/h~2}

For more general finite difference approximations, we similarly use

t=Pade[x"s*Log[x] "m,{x,1,n,d}];
{CoefficientList[Denominator[t],x],CoefficientList [Numerator[t],x]/h m}

where

m order of derivative to be approximated,

s number of grid intervals in between the leftmost derivative and function
entries; select the sign “+” if the former is to the right of the latter, else
the sign “—.”

d number of grid intervals in between the left- and rightmost derivative
entries, and

n number of grid intervals in between the left- and rightmost function entries;

cf. Figure 1.
In Maple, the appropriate package is loaded by the command with (numapprox) :,
and the full code for the general case becomes

t:=pade (x"s*1n(x) m,x=1,[n,d]):
coeff (expand (denom(t)),x,i) $i=0..d;
coeff (expand (numer(t)),x,i)/h™m $i=0..n;

The three first test cases in Table 1 are explicit. The Padé denominator is then
of degree d = 0 and a simpler Taylor expansion can be used instead (this special case
was noted in [2]). No packages need now be preloaded, and the code reduces to one
single line, as follows:

In Mathematica:
CoefficientList [Normal [Series[x"s*Log[x] "m,{x,1,n}]/h"m],x]

In Maple:
coeff (expand(convert (taylor (x~s*1n(x) "m,x=1,n+1) ,polynom)),
x,i)/h™m $i=0..n;

To apply this algorithm to the test cases in Table 1, we choose the parameters as
shown in Table 2.

3. Algorithm for arbitrarily spaced grids. The following algorithm was first
outlined in pseudocode in 1988 [3]:

688 CLASSROOM NOTES

TABLE 2
Input parameters to the Mathematica or Maple algorithms for the different test cases.

Case m = s = n = d = Comment
1 2 2 4 0 Padé or Taylor
2 1 3/2 3 0
3 1 4 4 0 B
4 irregular grid - the algorithm is not applicable = ----------
5 2 0 2 2 Padé only
6 1 -3 1 3 -
Given:
z location at which we want to approximate the derivative (may
but need not be a grid point),
Zo,&1,...,&, grid point locations which the stencil is to extend over (distinct,
otherwise arbitrary),
n one less than the number of grid points, and
m highest derivative for which weights are sought,

subroutine weights returns

ck,ck ...,ck the optimal weights in approximations of the form

d*f L
Jk Ay dif(wm), k=0,1,...,m.
r=z =0

subroutine weights (z,x,n,nd,m,c)

c——v
c——- Input Parameters

c——- z location where approximations are to be accurate,
c-—- x(0:nd) grid point locations, found in x(0:n)

c——- n one less than total number of grid points; n must
c——-— not exceed the parameter nd below,

c——- nd dimension of x- and c-arrays in calling program
c--- x(0:nd) and c(0:nd,0:m), respectively,

c——- m highest derivative for which weights are sought,
c-—— Output Parameter

c——- c(0:nd,0:m) weights at grid locations x(0:n) for derivatives
c——-— of order 0:m, found in c(0:n,0:m)

c-—

implicit real*8 (a-h,o0-z)
dimension x(0:nd),c(0:nd,0:m)
cl = 1.0d40
cd = x(0)-z
do 10 k=0,m
do 10 j=0,n
10 c(j,k) = 0.0d0
c(0,0) = 1.0d0
do 50 i=1,n
mn = min(i,m)
c2 = 1.0d0
cb = c4

CLASSROOM NOTES 689

cd = x(i)-z
do 40 j=0,i-1
c3 = x(1)-x(3)
c2 = c2%c3
if (j.eq.i-1) then
do 20 k=mn,1,-1

20 c(i,k) = clx(k*c(i-1,k-1)-cb*c(i-1,k))/c2
c(i,0) = -cl*cb*c(i-1,0)/c2
endif
do 30 k=mn,1,-1
30 c(j,k) = (c4*c(j,k)-kxc(j,k-1))/c3
40 c(j,0) = c4xc(j,0)/c3
50 cl = c2
return
end

The following is a brief summary of its derivation.

Given the data values u; at the locations x;, i = 0, 1,...,n, the Lagrange inter-
polation polynomial based on the first 7 + 1 function values u; = u(z;), i =0,1,...,7
becomes

J
p](x) = ZLZ,]('T)UU] = 071,' -, N,
=0

where

(=) (x—zi1)(@—xiy1) - (v — ;)

(1) Lij(z) = (xi —xo) - (@ —wi—1) (X — Tig1) - (2 — 5)

Assuming for simplicity that we want the approximations to be accurate at x = 0, we
get

d*u(x)
dxk

- @"pj(2)

k
z=0 dx

J dkLij X
_ - (o)

dxk

2 : k
c U = ci7j-ui.

=0 i=0

=0 =0
(The second subscript for cf) ; denotes the stencil width; we abbreviate cf’ n 88 cf) By
Taylor’s formula

o g, ot
W2

=0 k=0

J K. (2
@ L) =Y Thial®)

dzk
k=0

L.e., the weights ¢} ; can be read off from the Taylor coefficients of L; ;(x). Equation
(1) implies the recursion relations

VRN G2) S
Li j(x) (a:i—xj)L”’l()

and

—1
Hi:o(xj —Ty)

Lj;(z) = {HJV:O(%_I o) } (x —wj-1)Lj-1,-1(x).

690 CLASSROOM NOTES

TABLE 3
Input parameters to subroutine weights for the different test cases.

Case z = x(0:%) = n = nd> m =
1 0 —2h, —h, 0, h, 2h 4 4 2
3 1; 1; 3
2 0 ~3h, ~1h, L, 3n 3 3 1
3 h —3h, —2h, —h, 0, h 4 4 1
1 1 7

4 3 0,3,1,2 3,6 5 5 3

5 implicit approximation - use “fictitious point” extension
6 _77_

Substitution of the Taylor series (2) into these leads to the following recursion relations
for its coefficients:

& 1

k—
(3) Cij = v — (‘chi’c,j—l - kCi,jil)v
02 (x; 1 —z,)
4 ek = v=0"d b (kT —m)
(4) 3. { Hi;})(xj—a:l,) (j=1,j—1 " Fi=1%—1,j 1)

Starting from the trivial 08,0 = 1 (and assuming any undefined weights to be zero),
all the required weights cﬁ ; follow recursively from (3) and (4). (The ratios of the
products in (4) are also easily evaluated recursively.)

The following are some notes regarding the implementation of the algorithm:

- Although the algorithm can be shown to be numerically robust, applying a
difference stencil to smooth data can lead to cancellation of significant digits
(especially when approximating high derivatives).

- A call to weights to obtain the coefficients for the mth derivative returns also
the coefficients for the kth derivative, k = 0, 1,...,m. These are “byprod-
ucts,” available at no additional computational cost.

- The code can be modified to return all the data above also for stencils which
extend only over zg, 1,...,2;, j = 0, 1,...,n—still at no additional cost
[4]. (This version is actually slightly shorter than the present one; ¢ is then a
3-D array, and less care needs to be taken to prevent premature overwritings
within it.)

- Calling weights with m = 0 gives the weights for polynomial interpolation
at a cost (to leading order) of 2n? floating point operations. This can be
compared to 1.5n2 operations to obtain Newton’s divided differences and
2.5n? operations for interpolation using the well-known algorithms by Aitken
and Neville. Particularly large savings are realized if several functions are to
be interpolated on the same grid; the weights can then be reused at a cost of
only 2n operations per case (this situation will arise already for a single data
function if it is given on a 2-D or 3-D Cartesian grid).

To apply subroutine weights to the examples in Table 1, we call it with input
parameters as seen in Table 3.

4. Extension to implicit formulas. Again, one case suffices to illustrate the
idea (described in [4] under “fictitious gridpoints” as a tool to incorporate boundary
information with pseudospectral methods). To obtain the weights in Case 5 (assuming
h =1 to keep the notation simple), let the grid points be located at z = —1, 0, 1.
Next, we introduce two more points anywhere, say at x = 2, 3 (requiring only that the
five points are distinct, and preferably not too closely clustered). The top section in

CLASSROOM NOTES 691

TABLE 4
Generation of weights for Case 5 using subroutine weights with two fictitious points.

=0 o) 1) f=D) FO)) F2) fB)
1 — 35 _ 26 19 _14 11
12 3 2 3 12
1 = 11 _5 1 1 _ 1
12 3 2 3 12
1 — _ 1 4 _5 4 _ 1
12 3 2 3 12
Adding multiples 1, 10, 1 of the three rows above give
1 10 1 = 12 —24 12 0 0

Table 4 is obtained by three separate calls to subroutine weights. These three lines
can then be linearly combined to produce zero weights at the fictitious points—thus
producing the desired stencil.

Compared to the “method of undetermined coefficients” (in this case, requiring a
formula 1- f”(=1) + aq f"(0) + o f"(1) — asf(=1) — aa f(0) — a5 (1) = 0 to be exact
for f = 1, o, 22, 2, 2* and then solving a linear system for «;, i = 1,...,5), the
fictitious point approach leads to smaller and typically better conditioned systems.
Very general implicit formulas can be obtained in this manner; different derivatives
can be present at same or different irregularly spaced points, etc.

Acknowledgment. Discussions with Professor André Weideman are gratefully
acknowledged.

REFERENCES

[1] C. M. BENDER AND S. A. ORszAG, Advanced Mathematical Methods for Scientists and Engi-
neers, McGraw—Hill, New York, 1978.

[2] J. K. CoHEN AND D. R. DE BAUN, Discrete approximation of linear functionals, Mathematica
Journal, 2, Issue 2 (1992), pp. 62-65.

[3] B. FORNBERG, Generation of finite difference formulas on arbitrarily spaced grids, Math. Com-
put., 51 (1988), pp. 699-706.

[4] B. FORNBERG, A Practical Guide to Pseudospectral Methods, Cambridge University Press, Cam-
bridge, UK, 1996.

[5] A.ISERLES, First Course in Numerical Analysis of Differential Equations, Cambridge University
Press, Cambridge, UK, 1996.

