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A line may take us hours, yet if it does not seem a moment’s thought
All our stitching and unstitching has been as nought.
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Chapter 1

Introduction

Scheme 48 is an implementation of the Scheme programming language as described
in the Revised5 Report on the Algorithmic Language Scheme [6]. It is based on a
compiler and interpreter for a virtual Scheme machine. Scheme 48 tries to be faithful
to the Revised5 Scheme Report, providing neither more nor less in the initial user
environment. (This is not to say that more isn’t available in other environments; see
below.)

Scheme 48 is under continual development. Please report bugs, especially in the
VM, especially core dumps, to scheme-48-bugs@s48.org. Include the version number
x.yy from the ”Welcome to Scheme 48 x.yy” greeting message in your bug report.
It is a goal of this project to produce a bullet-proof system; we want no bugs and,
especially, no crashes. (There are a few known bugs, listed in the doc/todo.txt file
that comes with the distribution.)

Send mail to scheme-48-request@s48.org to be put on a mailing list for announce-
ments, discussion, bug reports, and bug fixes.

The name ‘Scheme 48’ commemorates our having written the original version in
forty-eight hours, on August 6th and 7th, 1986.
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Chapter 2

User’s guide

This chapter details Scheme 48’s user interface: its command-line arguments, com-
mand processor, debugger, and so forth.

2.1 Command line arguments

A few command line arguments are processed by Scheme 48 as it starts up.
scheme48 [-i image] [-h heapsize] [-a argument . . . ]

-i image specifies a heap image file to resume. This defaults to a heap image that
runs a Scheme command processor. Heap images are created by the ,dump and
,build commands , for which see below.

-h heapsize specifies how much space should be reserved for allocation. Heapsize is
in words (where one word = 4 bytes), and covers both semispaces, only one of
which is in use at any given time (except during garbage collection). Cons cells
are currently 3 words, so if you want to make sure you can allocate a million
cons cells, you should specify -h 6000000 (actually somewhat more than this,
to account for the initial heap image and breathing room). The default heap size
is 3000000 words. The system will use a larger heap if the specified (or default)
size is less than the size of the image being resumed.

-a argument . . . is only useful with images built using ,build . The arguments are
passed as a list of strings to the procedure specified in the ,build command as
for example:

> (define (f a) (for-each display a) (newline) 0)
> ,build f foo.image
> ,exit
% scheme48vm -i foo.image -a mumble "foo x"
mumblefoo x
%

The usual definition of the s48 or scheme48 command is actually a shell script
that starts up the Scheme 48 virtual machine with a -i imagefile specifying the de-
velopment environment heap image and a -o vm-executable specifying the location
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of the virtual-machine executable (the executable is needed for loading external code
on some versions of Unix; see section 7.5 for more information). The file go in the
Scheme 48 installation source directory is an example of such a shell script.

2.2 Command processor

When you invoke the default heap image, a command processor starts running. The
command processor acts as both a read-eval-print loop, reading expressions, evaluat-
ing them, and printing the results, and as an interactive debugger and data inspector.
See Chapter 3 for a description of the command processor.

2.3 Editing

We recommend running Scheme 48 under GNU Emacs or XEmacs using the
cmuscheme48 command package. This is in the Scheme 48 distribution’s emacs/
subdirectory and is included in XEmacs’s scheme package. It is a variant of the
cmuscheme library, which comes to us courtesy of Olin Shivers, formerly of CMU.
You might want to put the following in your Emacs init file (.emacs ):

(setq scheme-program-name "scheme48")
(autoload ’run-scheme

"cmuscheme48"
"Run an inferior Scheme process."
t)

The Emacs function run-scheme can then be used to start a process running the pro-
gram scheme48 in a new buffer. To make the autoload and (require ...) forms
work, you will also need to put the directory containing cmuscheme and related files
in your emacs load-path:

(setq load-path
(append load-path ’(" scheme-48-directory/emacs")))

Further documentation can be found in the files emacs/cmuscheme48.el and
emacs/comint.el .

2.4 Performance

If you want to generally have your code run faster than it normally would, enter
inline-values mode before loading anything. Otherwise calls to primitives (like
+ and cons ) and in-line procedures (like not and cadr ) won’t be open-coded, and
programs will run more slowly.

The system doesn’t start in inline-values mode by default because the Scheme
report permits redefinitions of built-in procedures. With this mode set, such redefini-
tions don’t work according to the report, because previously compiled calls may have
in-lined the old definition, leaving no opportunity to call the new definition.

Inline-values mode is controlled by the inline-values switch. ,set
inline-values and ,unset inline-values turn it on and off.
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2.5 Disassembler

The ,dis command prints out the disassembled byte codes of a procedure.

> ,dis cons
cons

0 (protocol 2)
2 (pop)
3 (make-stored-object 2 pair)
6 (return)

>

The current byte codes are listed in the file scheme/vm/arch.scm . A somewhat
out-of-date description of them can be found in [5].

The command argument is optional; if unsupplied it defaults to the current focus
object (##).

The disassembler can also be invoked on continuations and templates.

2.6 Module system

This section gives a brief description of modules and related entities. For detailed
information, including a description of the module configuration language, see chap-
ter 4.

A module is an isolated namespace, with visibility of bindings controlled by mod-
ule descriptions written in a special configuration language. A module may be instan-
tiated as a package, which is an environment in which code can be evaluated. Most
modules are instantiated only once and so have a unique package. A structure is a
subset of the bindings in a package. Only by being included in a structure can a bind-
ing be made visible in other packages. A structure has two parts, the package whose
bindings are being exported and the set of names that are to be exported. This set of
names is called an interface. A module then has three parts:

• a set of structures whose bindings are to be visible within the module

• the source code to be evaluated within the module

• a set of exported interfaces

Instantiating a module produces a package and a set of structures, one for each of the
exported interfaces.

The following example uses define-structure to create a module that imple-
ments simple cells as pairs, instantiates this module, and binds the resulting structure
to cells . The syntax (export name . . . ) creates an interface containing name . . . .
The open clause lists structures whose bindings are visible within the module. The
begin clause contains source code.

(define-structure cells (export make-cell
cell-ref
cell-set!)
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(open scheme)
(begin (define (make-cell x)

(cons ’cell x))
(define cell-ref cdr)
(define cell-set! set-cdr!)))

Cells could also have been implemented using the record facility described in sec-
tion 5.10 and available in structure define-record-type .

(define-structure cells (export make-cell
cell-ref
cell-set!)

(open scheme define-record-types)
(begin (define-record-type cell :cell

(make-cell value)
cell?
(value cell-ref cell-set!))))

With either definition the resulting structure can be used in other modules by in-
cluding cells in an open clause.

The command interpreter is always operating within a particular package. Initially
this is a package in which only the standard Scheme bindings are visible. The bindings
of other structures can be made visible by using the ,open command described in
section 3.4 below.

Note that this initial package does not include the configuration language. Module
code needs to be evaluated in the configuration package, which can be done by using
the , config command:

> ,config (define-structure cells ...)
> ,open cells
> (make-cell 4)
’(cell . 4)
> (define c (make-cell 4))
> (cell-ref c)
4

2.7 Library

A number of useful utilities are either built in to Scheme 48 or can be loaded from
an external library. These utilities are not visible in the user environment by default,
but can be made available with the open command. For example, to use the tables
structure, do

> ,open tables
>

If the utility is not already loaded, then the ,open command will load it. Or, you
can load something explicitly (without opening it) using the load-package com-
mand:
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> ,load-package queues
> ,open queues

When loading a utility, the message ”Note: optional optimizer not invoked” is
innocuous. Feel free to ignore it.

See also the package system documentation, in chapter 4.
Not all of the the libraries available in Scheme 48 are described in this

manual. All are listed in files rts-packages.scm , comp-packages.scm ,
env-packages.scm , and more-packages.scm in the scheme directory of the
distribution, and the bindings they export are listed in interfaces.scm and
more-interfaces.scm in the same directory.
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Chapter 3

Command processor

This chapter details Scheme 48’s command processor, which incorporates both a read-
eval-print loop and an interactive debugger. At the > prompt, you can type either a
Scheme form (expression or definition) or a command beginning with a comma. In
inspection mode (see section 3.7) the prompt changes to : and commands no longer
need to be preceded by a comma; input beginning with a letter or digit is assumed to
be a command, not an expression. In inspection mode the command processor prints
out a menu of selectable components for the current object of interest.

3.1 Current focus value and ##

The command processor keeps track of a current focus value. This value is normally
the last value returned by a command. If a command returns multiple values the
focus object is a list of the values. The focus value is not changed if a command
returns no values or a distinguished ‘unspecific’ value. Examples of forms that re-
turn this unspecific value are definitions, uses of set! , and (if #f 0) . It prints as
#{Unspecific }.

The reader used by the command processor reads ## as a special expression that
evaluates to the current focus object.

> (list ’a ’b)

’(a b)

> (car ##)

’a

> (symbol->string ##)

"a"

> (if #f 0)

#{Unspecific }
> ##

"a"

>
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3.2 Command levels

If an error, keyboard interrupt, or other breakpoint occurs, or the ,push command
is used, the command processor invokes a recursive copy of itself, preserving the dy-
namic state of the program when the breakpoint occured. The recursive invocation
creates a new command level. The command levels form a stack with the current level
at the top. The command prompt indicates the number of stopped levels below the
current one: > or : for the base level and n> or n: for all other levels, where n is
the command-level nesting depth. The auto-levels switch described below can be
used to disable the automatic pushing of new levels.

The command processor’s evaluation package and the value of the
inspect-focus-value switch are local to each command level. They are
preserved when a new level is pushed and restored when it is discarded. The settings
of all other switches are shared by all command levels.

〈eof〉
Discards the current command level and resumes running the level down. 〈eof〉
is usually control-D at a Unix shell or control-C control-D using the Emacs
cmuscheme48 library.

,pop
The same as 〈eof〉.

,proceed [ exp ... ]
Proceed after an interrupt or error, resuming the next command level down,
delivering the values of exp . . . to the continuation. Interrupt continuations dis-
card any returned values. ,Pop and ,proceed have the same effect after an
interrupt but behave differently after errors. ,Proceed restarts the erroneous
computation from the point where the error occurred (although not all errors
are proceedable) while ,pop (and 〈eof〉) discards it and prompts for a new com-
mand.

,push
Pushes a new command level on above the current one. This is useful if the
auto-levels switch has been used to disable the automatic pushing of new
levels for errors and interrupts.

,reset [ number]
Pops down to a given level and restarts that level. Number defaults to zero,
,reset restarts the command processor, discarding all existing levels.

Whenever moving to an existing level, either by sending an 〈eof〉 or by using
,reset or the other commands listed above, the command processor runs all of the
dynamic-wind “after” thunks belonging to stopped computations on the discarded
level(s).

3.3 Logistical commands

,load filename . . .
Loads the named Scheme source file(s). Easier to type than (load " filename")
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because you don’t have to shift to type the parentheses or quote marks. (How-
ever, it is still possible to specify a filename as a Scheme string literal, with quote
marks—you’ll need this for filenames containing whitespace.) Also, it works in
any package, unlike (load " filename") , which will work only work in pack-
ages in which the variable load is defined appropriately.

,exit [ exp] Exits back out to shell (or executive or whatever invoked Scheme 48 in
the first place). Exp should evaluate to an integer. The integer is returned to the
calling program. The default value of exp is zero, which, on Unix, is generally
interpreted as success.

3.4 Module commands

There are many commands related to modules. Only the most commonly used mod-
ule commands are described here; documentation for the rest can be found in sec-
tion 4.8. There is also a brief description of modules, structures, and packages in
section 2.6 below.

,open structure . . .
Makes the bindings in the structures visible in the current package. The packages
associated with the structures will be loaded if this has not already been done
(the ask-before-loading switch can be used disable the automatic loading
of packages).

,config [ command]
Executes command in the config package, which includes the module configu-
ration language. For example, use

,config ,load filename

to load a file containing module definitions. If no command is given, the config
package becomes the execution package for future commands.

,user [ command]
This is similar to the ,config . It moves to or executes a command in the user
package (which is the default package when the Scheme 48 command processor
starts).

3.5 Debugging commands

,preview
Somewhat like a backtrace, but because of tail recursion you see less than you
might in debuggers for some other languages. The stack to display is chosen as
follows:

1. If the current focus object is a continuation or a thread, then that continua-
tion or thread’s stack is displayed.

2. Otherwise, if the current command level was initiated because of a break-
point in the next level down, then the stack at that breakpoint is displayed.
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3. Otherwise, there is no stack to display and a message is printed to that
effect.

One line is printed out for each continuation on the chosen stack, going from top
to bottom.

,run exp
Evaluate exp, printing the result(s) and making them (or a list of them, if exp
returns multiple results) the new focus object. The ,run command is useful
when writing command programs, which are described in section 3.8 below.

,trace name ...
Start tracing calls to the named procedure or procedures. With no arguments,
displays all procedures currently traced. This affects the binding of name, not
the behavior of the procedure that is its current value. Name is redefined to
be a procedure that prints a message, calls the original value of name, prints
another message, and finally passes along the value(s) returned by the original
procedure.

,untrace name ...
Stop tracing calls to the named procedure or procedures. With no argument,
stop tracing all calls to all procedures.

,condition
The ,condition command displays the condition object describing the error
or interrupt that initiated the current command level. The condition object be-
comes the current focus value. This is particularly useful in conjunction with
the inspector. For example, if a procedure is passed the wrong number of argu-
ments, do ,condition followed by ,inspect to inspect the procedure and its
arguments.

,bound? name
Display the binding of name, if there is one, and otherwise prints ‘Not bound ’.

,expand form
,expand-all form

Show macro expansion of form, if any. ,expand performs a single macro expan-
sion while ,expand-all fully expands all macros in form.

,where procedure
Display name of file containing procedure’s source code.

3.6 Switches

There are a number of binary switches that control the behavior of the command pro-
cessor. They can be set using the ,set and ,unset commands.

,set switch [on | off | ?]
This sets the value of mode-switch switch. The second argument defaults to on .
If the second argument is ? the value of switch is is displayed and not changed.
Doing ,set ? will display a list of the switches and their current values.
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,unset switch
,unset switch is the same as ,set switch off .

The switches are as follows:

batch
In ‘batch mode’ any error or interrupt that comes up will cause Scheme 48 to exit
immediately with a non-zero exit status. Also, the command processor doesn’t
print prompts. Batch mode is off by default.

auto-levels
Enables or disables the automatic pushing of a new command level when an
error, interrupt, or other breakpoint occurs. When enabled (the default), break-
points push a new command level, and 〈eof〉 (see above) or ,reset is required
to return to top level. The effects of pushed command levels include:

• a longer prompt

• retention of the continuation in effect at the point of errors

• confusion among some newcomers

With auto-levels disabled one must issue a ,push command immediately
following an error in order to retain the error continuation for debugging pur-
poses; otherwise the continuation is lost as soon as the focus object changes. If
you don’t know anything about the available debugging tools, then levels might
as well be disabled.

inspect-focus-value
Enable or disable ‘inspection’ mode, which is used for inspecting data structures
and continuations. Inspection mode is described in section 3.7.

break-on-warnings
Enter a new command level when a warning is produced, just as when an error
occurs. Normally warnings only result in a displayed message and the program
does not stop executing.

ask-before-loading
If on, the system will ask before loading modules that are arguments to the
,open command. Ask-before-loading is off by default.

> ,set ask-before-loading
will ask before loading modules
> ,open random
Load structure random (y/n)? y
>

load-noisily
When on, the system will print out the names of modules and files as they are
loaded. load-noisily is off by default.
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> ,set load-noisily
will notify when loading modules and files
> ,open random
[random /usr/local/lib/scheme48/big/random.scm]
>

inline-values
This controls whether or not the compiler is allowed to substitute variables’ val-
ues in-line. When inline-values mode is on, some Scheme procedures will
be substituted in-line; when it is off, none will. Section 2.4 has more information.

3.7 Inspection mode

There is a data inspector available via the ,inspect and ,debug commands or by
setting the inspect-focus-value switch. The inspector is particularly useful with
procedures, continuations, and records. The command processor can be taken out of
inspection mode by using the q command, by unsetting the inspect-focus-value
switch, or by going to a command level where the inspect-focus-value is not
set. When in inspection mode, input that begins with a letter or digit is read as a
command, not as an expression. To see the value of a variable or number, do (begin
exp) or use the ,run exp command.

In inspection mode the command processor prints out a menu of selectable com-
ponents for the current focus object. To inspect a particular component, just type the
corresponding number in the menu. That component becomes the new focus object.
For example:

> ,inspect ’(a (b c) d)
(a (b c) d)

[0] a
[1] (b c)
[2] d
: 1
(b c)

[0] b
[1] c
:

When a new focus object is selected the previous one is pushed onto a stack. You
can pop the stack, reverting to the previous object, with the u command, or use the
stack command to move to an earlier object.

Commands useful when in inspection mode:

• u (up) pop object stack

• m(more) print more of a long menu

• (...) evaluate a form and select result
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• q quit

• template select a closure or continuation’s template (Templates are the static
components of procedures; these are found inside of procedures and continu-
ations, and contain the quoted constants and top-level variables referred to by
byte-compiled code.)

• d (down) move to the next continuation (current object must be a continuation)

• menu print the selection menu for the focus object

Multiple selection commands (u, d, and menu indexes) may be put on a single
line.

All ordinary commands are available when in inspection mode. Similarly, the in-
spection commands can be used when not in inspection mode. For example:

> (list ’a ’(b c) ’d)
’(a (b c) d)
> ,1
’(b c)
> ,menu
[0] b
[1] c
>

If the current command level was initiated because of a breakpoint in the next level
down, then ,debug will invoke the inspector on the continuation at the point of the
error. The u and d (up and down) commands then make the inspected-value stack
look like a conventional stack debugger, with continuations playing the role of stack
frames. D goes to older or deeper continuations (frames), and u goes back up to more
recent ones.

3.8 Command programs

The exec package contains procedures that are used to execute the command proces-
sor’s commands. A command , foo is executed by applying the value of the identifier
foo in the exec package to the (suitably parsed) command arguments.

,exec [ command]
Evaluate command in the exec package. For example, use

,exec ,load filename

to load a file containing commands. If no command is given, the exec package
becomes the execution package for future commands.

The required argument types are as follows:

• filenames should be strings

• other names and identifiers should be symbols
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• expressions should be s-expressions

• commands (as for ,config and ,exec itself) should be lists of the form
( command-name argument ...) where command-name is a symbol.

For example, the following two commands are equivalent:

,config ,load my-file.scm

,exec (config ’(load "my-file.scm"))

The file scheme/vm/load-vm.scm in the source directory contains an example
of an exec program.

3.9 Building images

,dump filename [ identification]
Writes the current heap out to a file, which can then be run using the virtual
machine. The new image file includes the command processor. If present, iden-
tification should be a string (written with double quotes); this string will be part
of the greeting message as the image starts up.

,build exp filename
Like ,dump , except that the image file contains the value of exp, which should be
a procedure of one argument, instead of the command processor. When filename
is resumed, that procedure will be invoked on the VM’s -a arguments, which
are passed as a list of strings. The procedure should return an integer which
is returned to the program that invoked the VM. The command processor and
debugging system are not included in the image (unless you go to some effort
to preserve them, such as retaining a continuation).

Doing ,flush before building an image will reduce the amount of debugging
information in the image, making for a smaller image file, but if an error oc-
curs, the error message may be less helpful. Doing ,flush source maps
before loading any programs used in the image will make it still smaller. See
section 3.10 for more information.

3.10 Resource query and control

.

,time exp
Measure execution time.

,collect
Invoke the garbage collector. Ordinarily this happens automatically, but the
command tells how much space is available before and after the collection.

,keep kind
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,flush kind
These control the amount of debugging information retained after compiling
procedures. This information can consume a fair amount of space. kind is one of
the following:

• maps - environment maps (local variable names, for inspector)

• source - source code for continuations (displayed by inspector)

• names - procedure names (as displayed by write and in error messages)

• files - source file names

These commands refer to future compilations only, not to procedures that al-
ready exist. To have any effect, they must be done before programs are loaded.
The default is to keep all four types.

,flush
The flush command with no argument deletes the database of names of initial
procedures. Doing ,flush before a ,build or ,dump will make the result-
ing image significantly smaller, but will compromise the information content of
many error messages.

3.11 Threads

Each command level has its own set of threads. These threads are suspended when a
new level is entered and resumed when the owning level again becomes the current
level. A thread that raises an error is not resumed unless explicitly restarted using the
,proceed command. In addition to any threads spawned by the user, each level has
a thread that runs the command processor on that level. A new command-processor
thread is started if the current one dies or is terminated. When a command level is
abandoned for a lower level, or when a level is restarted using ,reset , all of the
threads on that level are terminated and any dynamic-wind “after” thunks are run.

The following commands are useful when debugging multithreaded programs:

,resume [ number]
Pops out to a given level and resumes running all threads at that level. Number
defaults to zero.

,threads
Invokes the inspector on a list of the threads running at the next lower command
level.

,exit-when-done [ exp]
Waits until all user threads have completed and then exits back out to shell (or
executive or whatever invoked Scheme 48 in the first place). Exp should evaluate
to an integer which is then returned to the calling program.
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3.12 Quite obscure

,go exp
This is like ,exit exp except that the evaluation of exp is tail-recursive with
respect to the command processor. This means that the command processor
itself can probably be GC’ed, should a garbage collection occur in the execution
of exp. If an error occurs Scheme 48 will exit with a non-zero value.

,translate from to
For load and the ,load command (but not for open- {in|out }put-file ),
file names beginning with the string from will be changed so that the initial from
is replaced by the string to. E.g.

,translate /usr/gjc/ /zu/gjc/

will cause (load "/usr/gjc/foo.scm") to have the same effect as (load
"/zu/gjc/foo.scm") .

,from-file filename form ... ,end
This is used by the cmuscheme48 Emacs library to indicate the file from which
the forms came. Filename is then used by the command processor to determine
the package in which the forms are to be evaluated.
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Chapter 4

Module system

This chapter describes Scheme 48’s module system. The module system is unique
in the extent to which it supports both static linking and rapid turnaround during
program development. The design was influenced by Standard ML modules[7] and
by the module system for Scheme Xerox[4]. It has also been shaped by the needs of
Scheme 48, which is designed to run both on workstations and on relatively small (less
than 1 Mbyte) embedded controllers.

Except where noted, everything described here is implemented in Scheme 48, and
exercised by the Scheme 48 implementation and some application programs.

Unlike the Common Lisp package system, the module system described here con-
trols the mapping of names to denotations, not the mapping of strings to symbols.

4.1 Introduction

The module system supports the structured division of a corpus of Scheme software
into a set of modules. Each module has its own isolated namespace, with visibility of
bindings controlled by module descriptions written in a special configuration language.

A module may be instantiated multiple times, producing several packages, just as
a lambda-expression can be instantiated multiple times to produce several different
procedures. Since single instantiation is the normal case, we will defer discussion of
multiple instantiation until a later section. For now you can think of a package as
simply a module’s internal environment mapping names to denotations.

A module exports bindings by providing views onto the underlying package. Such
a view is called a structure (terminology from Standard ML). One module may provide
several different views. A structure is just a subset of the package’s bindings. The
particular set of names whose bindings are exported is the structure’s interface.

A module imports bindings from other modules by either opening or accessing some
structures that are built on other packages. When a structure is opened, all of its
exported bindings are visible in the client package.

For example:

(define-structure foo (export a c cons)
(open scheme)
(begin (define a 1)

(define (b x) (+ a x))

17



(define (c y) (* (b a) y))))

(define-structure bar (export d)
(open scheme foo)
(begin (define (d w) (+ a (c w)))))

This configuration defines two structures, foo and bar . foo is a view on a package in
which the scheme structure’s bindings (including define and +) are visible, together
with bindings for a, b, and c . foo ’s interface is (export a c cons) , so of the
bindings in its underlying package, foo only exports those three. Similarly, structure
bar consists of the binding of d from a package in which both scheme ’s and foo ’s
bindings are visible. foo ’s binding of cons is imported from the Scheme structure
and then re-exported.

A module’s body, the part following begin in the above example, is evalu-
ated in an isolated lexical scope completely specified by the package definition’s
open and access clauses. In particular, the binding of the syntactic operator
define-structure is not visible unless it comes from some opened structure. Sim-
ilarly, bindings from the scheme structure aren’t visible unless they become so by
scheme (or an equivalent structure) being opened.

4.2 The configuration language

The configuration language consists of top-level defining forms for modules and in-
terfaces. Its syntax is given in figure 4.2.

A define-structure form introduces a binding of a name to a structure. A
structure is a view on an underlying package which is created according to the clauses
of the define-structure form. Each structure has an interface that specifies which
bindings in the structure’s underlying package can be seen via that structure in other
packages.

An open clause specifies which structures will be opened up for use inside the
new package. At least one structure must be specified or else it will be impossible to
write any useful programs inside the package, since define , lambda , cons , etc. will
be unavailable. Packages typically include scheme , which exports all bindings ap-
propriate to Revised5 Scheme, in an open clause. For building structures that export
structures, there is a defpackage package that exports the operators of the configu-
ration language. Many other structures, such as record and hash table facilities, are
also available in the Scheme 48 implementation.

The modify , subset , and prefix forms produce new views on existing struc-
tures by renaming or hiding exported names. Subset returns a new structure that
exports only the listed names from its 〈structure〉 argument. With-prefix returns
a new structure that adds 〈prefix〉 to each of the names exported by the 〈structure〉
argument. For example, if structure s exports a and b, then

(subset s (a))

exports only a and

(with-prefix s p/)
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〈configuration〉 −→ 〈definition〉∗
〈definition〉 −→ (define-structure 〈name〉 〈interface〉 〈clause〉∗)

| (define-structures (( 〈name〉 〈interface〉) ∗) 〈clause〉∗)
| (define-interface 〈name〉 〈interface〉)
| (define-syntax 〈name〉 〈transformer-spec〉)

〈clause〉 −→ (open 〈structure〉∗)
| (access 〈name〉∗)
| (begin 〈program〉)
| (files 〈filespec〉∗)
| (optimize 〈optimize-spec〉∗)
| (for-syntax 〈clause〉∗)

〈interface〉 −→ (export 〈item〉∗)
| 〈name〉
| (compound-interface 〈interface〉∗)

〈item〉 −→ 〈name〉
| ( 〈name〉 〈type〉)
| (( 〈name〉∗) 〈type〉)

〈structure〉 −→ 〈name〉
| (modify 〈structure〉 〈modifier〉∗)
| (subset 〈structure〉 ( 〈name〉∗))
| (with-prefix 〈structure〉 〈name〉)

〈modifier〉 −→ (expose 〈name〉∗)
| (hide 〈name〉∗)
| (rename ( 〈name〉0 〈name〉1) ∗)
| (alias ( 〈name〉0 〈name〉1) ∗)
| (prefix 〈name〉)

Figure 4.1: The configuration language.

exports a as p/a and b as p/b .
Both subset and with-prefix are simple macros that expand into uses of

modify , a more general renaming form. In a modify structure specification the
〈command〉s are applied to the names exported by 〈structure〉 to produce a new set
of names for the 〈structure〉’s bindings. Expose makes only the listed names visible.
Hide makes all but the listed names visible. Renamemakes each 〈name〉0 visible as
〈name〉1 name and not visible as 〈name〉0 , while alias makes each 〈name〉0 visible
as both 〈name〉0 and 〈name〉1. Prefix adds 〈name〉 to the beginning of each exported
name. The modifiers are applied from right to left. Thus

(modify scheme (prefix foo/) (rename (car bus))))

makes car available as foo/bus ..
The package’s body is specified by begin and/or files clauses. begin and

files have the same semantics, except that for begin the text is given directly in
the package definition, while for files the text is stored somewhere in the file sys-
tem. The body consists of a Scheme program, that is, a sequence of definitions and
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expressions to be evaluated in order. In practice, we always use files in preference
to begin ; begin exists mainly for expository purposes.

A name’s imported binding may be lexically overridden or shadowed by defining
the name using a defining form such as define or define-syntax . This will create
a new binding without having any effect on the binding in the opened package. For
example, one can do (define car ’chevy) without affecting the binding of the
name car in the scheme package.

Assignments (using set! ) to imported and undefined variables are not allowed.
In order to set! a top-level variable, the package body must contain a define form
defining that variable. Applied to bindings from the scheme structure, this restriction
is compatible with the requirements of the Revised5 Scheme report.

It is an error for two of a package’s opened structures to export two different bind-
ings for the same name. However, the current implementation does not check for this
situation; a name’s binding is always taken from the structure that is listed first within
the open clause. This may be fixed in the future.

File names in a files clause can be symbols, strings, or lists (Maclisp-style
“namelists”). A “.scm ” file type suffix is assumed. Symbols are converted to file
names by converting to upper or lower case as appropriate for the host operating
system. A namelist is an operating-system-independent way to specify a file ob-
tained from a subdirectory. For example, the namelist (rts record) specifies the
file record.scm in the rts subdirectory.

If the define-structure form was itself obtained from a file, then file names
in files clauses are interpreted relative to the directory in which the file containing
the define-structure form was found. You can’t at present put an absolute path
name in the files list.

4.3 Interfaces

define-interface
An interface can be thought of as the type of a structure. In its basic form it is just

a list of variable names, written (export name ...) . However, in place of a name
one may write ( name type) , indicating the type of name’s binding. The type field is
optional, except that exported macros must be indicated with type :syntax .

Interfaces may be either anonymous, as in the example in the introduction, or they
may be given names by a define-interface form, for example

(define-interface foo-interface (export a c cons))
(define-structure foo foo-interface ...)

In principle, interfaces needn’t ever be named. If an interface had to be given at the
point of a structure’s use as well as at the point of its definition, it would be impor-
tant to name interfaces in order to avoid having to write them out twice, with risk of
mismatch should the interface ever change. But they don’t.

Still, there are several reasons to use define-interface :

1. It is important to separate the interface definition from the package definitions
when there are multiple distinct structures that have the same interface — that
is, multiple implementations of the same abstraction.
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2. It is conceptually cleaner, and often useful for documentation purposes, to sep-
arate a module’s specification (interface) from its implementation (package).

3. Our experience is that configurations that are separated into interface definitions
and package definitions are easier to read; the long lists of exported bindings just
get in the way most of the time.

The compound-interface operator forms an interface that is the union of two
or more component interfaces. For example,

(define-interface bar-interface
(compound-interface foo-interface (export mumble)))

defines bar-interface to be foo-interface with the name mumble added.

4.4 Macros

Hygienic macros, as described in [2, 3], are implemented. Structures may export
macros; auxiliary names introduced into the expansion are resolved in the environ-
ment of the macro’s definition.

For example, the scheme structure’s delay macro is defined by the rewrite rule

(delay exp) =⇒ (make-promise (lambda () exp)).

The variable make-promise is defined in the scheme structure’s underlying pack-
age, but is not exported. A use of the delay macro, however, always accesses the
correct definition of make-promise . Similarly, the case macro expands into uses
of cond , eqv? , and so on. These names are exported by scheme , but their correct
bindings will be found even if they are shadowed by definitions in the client package.

4.5 Higher-order modules

There are define-module and define forms for defining modules that are intended
to be instantiated multiple times. But these are pretty kludgey — for example, com-
piled code isn’t shared between the instantiations — so we won’t describe them yet.
If you must know, figure it out from the following grammar.

〈definition〉 −→ (define-module ( 〈name〉 ( 〈name〉 〈interface〉) ∗)
〈definition〉∗
〈name〉)

| (define 〈name〉 ( 〈name〉 〈name〉∗))

4.6 Compiling and linking

Scheme 48 has a static linker that produces stand-alone heap images from module de-
scriptions. The programmer specifies a particular procedure in a particular structure
to be the image’s startup procedure (entry point), and the linker traces dependency
links as given by open and access clauses to determine the composition of the heap
image.
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There is not currently any provision for separate compilation; the only input to the
static linker is source code. However, it will not be difficult to implement separate
compilation. The unit of compilation is one module (not one file). Any opened or ac-
cessed structures from which macros are obtained must be processed to the extent of
extracting its macro definitions. The compiler knows from the interface of an opened
or accessed structure which of its exports are macros. Except for macros, a module
may be compiled without any knowledge of the implementation of its opened and ac-
cessed structures. However, inter-module optimization may be available as an option.

The main difficulty with separate compilation is resolution of auxiliary bindings
introduced into macro expansions. The module compiler must transmit to the loader
or linker the search path by which such bindings are to be resolved. In the case of the
delay macro’s auxiliary make-promise (see example above), the loader or linker
needs to know that the desired binding of make-promise is the one apparent in
delay ’s defining package, not in the package being loaded or linked.

4.7 Semantics of configuration mutation

During program development it is often desirable to make changes to packages and
interfaces. In static languages it may be necessary to recompile and re-link a program
in order for such changes to be reflected in a running system. Even in interactive Com-
mon Lisp implementations, a change to a package’s exports often requires reloading
clients that have already mentioned names whose bindings change. Once read re-
solves a use of a name to a symbol, that resolution is fixed, so a change in the way that
a name resolves to a symbol can only be reflected by re-read ing all such references.

The Scheme 48 development environment supports rapid turnaround in modu-
lar program development by allowing mutations to a program’s configuration, and
giving a clear semantics to such mutations. The rule is that variable bindings in a run-
ning program are always resolved according to current structure and interface bind-
ings, even when these bindings change as a result of edits to the configuration. For
example, consider the following:

(define-interface foo-interface (export a c))
(define-structure foo foo-interface

(open scheme)
(begin (define a 1)

(define (b x) (+ a x))
(define (c y) (* (b a) y))))

(define-structure bar (export d)
(open scheme foo)
(begin (define (d w) (+ (b w) a))))

This program has a bug. The variable b, which is free in the definition of d, has no
binding in bar ’s package. Suppose that b was supposed to be exported by foo , but
was omitted from foo-interface by mistake. It is not necessary to re-process bar
or any of foo ’s other clients at this point. One need only change foo-interface
and inform the development system of that change (using, say, an appropriate Emacs
command), and foo ’s binding of b will be found when procedure d is called.
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Similarly, it is also possible to replace a structure; clients of the old structure will
be modified so that they see bindings from the new one. Shadowing is also supported
in the same way. Suppose that a client package C opens a structure foo that exports
a name x , and foo ’s implementation obtains the binding of x as an import from some
other structure bar . Then C will see the binding from bar . If one then alters foo so
that it shadows bar ’s binding of x with a definition of its own, then procedures in C
that reference x will automatically see foo ’s definition instead of the one from bar
that they saw earlier.

This semantics might appear to require a large amount of computation on ev-
ery variable reference: The specified behavior requires scanning the package’s list of
opened structures, examining their interfaces, on every variable reference, not just at
compile time. However, the development environment uses caching with cache inval-
idation to make variable references fast.

4.8 Command processor support

While it is possible to use the Scheme 48 static linker for program development, it
is far more convenient to use the development environment, which supports rapid
turnaround for program changes. The programmer interacts with the development
environment through a command processor. The command processor is like the usual
Lisp read-eval-print loop in that it accepts Scheme forms to evaluate. However, all
meta-level operations, such as exiting the Scheme system or requests for trace output,
are handled by commands, which are lexically distinguished from Scheme forms. This
arrangement is borrowed from the Symbolics Lisp Machine system, and is reminiscent
of non-Lisp debuggers. Commands are a little easier to type than Scheme forms (no
parentheses, so you don’t have to shift), but more importantly, making them distinct
from Scheme forms ensures that programs’ namespaces aren’t cluttered with inap-
propriate bindings. Equivalently, the command set is available for use regardless of
what bindings happen to be visible in the current program. This is especially impor-
tant in conjunction with the module system, which puts strict controls on visibility of
bindings.

The Scheme 48 command processor supports the module system with a variety of
special commands. For commands that require structure names, these names are re-
solved in a designated configuration package that is distinct from the current package
for evaluating Scheme forms given to the command processor. The command proces-
sor interprets Scheme forms in a particular current package, and there are commands
that move the command processor between different packages.

Commands are introduced by a comma (, ) and end at the end of line. The com-
mand processor’s prompt consists of the name of the current package followed by a
greater-than (>).

,open structure∗

The ,open command opens new structures in the current package, as if the
package’s definition’s open clause had listed structure. As with open clauses
the visible names can be modified, as in

,open (subset foo (bar baz))
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which only makes the bar and baz bindings from structure foo visible.

,config
The ,config command sets the command processor’s current package to be
the current configuration package. Forms entered at this point are interpreted as
being configuration language forms, not Scheme forms.

,config command
This form of the ,config command executes another command in the current
configuration package. For example,

,config ,load foo.scm

interprets configuration language forms from the file foo.scm in the current
configuration package.

,config-package-is struct-name
The ,config-package-is command designates a new configuration package
for use by the ,config command and resolution of struct-names for other com-
mands such as ,in and ,open . See Section 4.9 for information on making new
configuration packages.

,in struct-name
The ,in command moves the command processor to a specified structure’s un-
derlying package. For example:

user> ,config
config> (define-structure foo (export a)

(open scheme))
config> ,in foo
foo> (define a 13)
foo> a
13

In this example the command processor starts in a package called user , but
the ,config command moves it into the configuration package, which has the
name config . The define-structure form binds, in config , the name foo
to a structure that exports a. Finally, the command ,in foo moves the com-
mand processor into structure foo ’s underlying package.

A package’s body isn’t executed (evaluated) until the package is loaded, which is
accomplished by the ,load-package command.

,in struct-name command
This form of the ,in command executes a single command in the specified pack-
age without moving the command processor into that package. Example:

,in mumble (cons 1 2)
,in mumble ,trace foo
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,user [ command]
This is similar to the ,config and ,in commands. It moves to or executes a
command in the user package (which is the default package when the Scheme 48
command processor starts).

,user-package-is name
The ,user-package-is command designates a new user package for use by
the ,user command.

,load-package struct-name
The ,load-package command ensures that the specified structure’s underly-
ing package’s program has been loaded. This consists of (1) recursively ensur-
ing that the packages of any opened or accessed structures are loaded, followed
by (2) executing the package’s body as specified by its definition’s begin and
files forms.

,reload-package struct-name
This command re-executes the structure’s package’s program. It is most use-
ful if the program comes from a file or files, when it will update the package’s
bindings after mutations to its source file.

,load filespec ...
The ,load command executes forms from the specified file or files in the current
package. ,load filespec is similar to (load " filespec") except that the name
load needn’t be bound in the current package to Scheme’s load procedure.

,for-syntax [ command]
This is similar to the ,config and ,in commands. It moves to or executes a
command in the current package’s “package for syntax,” which is the package
in which the forms f in (define-syntax name f) are evaluated.

,new-package
The ,new-package command creates a new package, in which only the stan-
dard Scheme bindings are visible, and moves the command processor to it.

,structure name interface
The ,structure command defines name in the configuration package to be a
structure with interface interface based on the current package.

4.9 Configuration packages

It is possible to set up multiple configuration packages. The default configuration
package opens the following structures:

• module-system , which exports define-structure and the other config-
uration language keywords, as well as standard types and type constructors
(:syntax , :value , proc , etc.).

• built-in-structures , which exports structures that are built into the initial
Scheme 48 image; these include scheme , threads , tables , and records .
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• more-structures , which exports additional structures that are available
in the development environment. A complete listing can be found in
the definition of more-structures-interface at the end of the file
scheme/packages.scm .

Note that it does not open scheme .
You can define additional configuration packages by making a package that opens

module-system and, optionally, built-in-structures , more-structures , or
other structures that export structures and interfaces.

For example:

> ,config (define-structure foo (export)

(open module-system

built-in-structures

more-structures))

> ,in foo

foo> (define-structure x (export a b)

(open scheme)

(files x))

foo>

Unfortunately, the above example does not work. The problem is that every en-
vironment in which define-structure is defined must also have a way to create
“reflective towers” (a misnomer; a better name would be “syntactic towers”). A new
reflective tower is required whenever a new environment is created for compiling the
source code in the package associated with a new structure. The environment’s tower
is used at compile time for evaluating the macro-source in

(define-syntax name macro-source)
(let-syntax (( name macro-source) ...) body)

and so forth. It is a “tower” because that environment, in turn, has to say what envi-
ronment to use if macro-source itself contains a use of let-syntax .

The simplest way to provide a tower maker is to pass on the one used by an ex-
isting configuration package. The special form export-reflective-tower cre-
ates an interface that exports a configuration package’s tower. The following exam-
ple uses export-reflective-tower and the ,structure command to obtain a
tower maker and create a new configuration environment.

> ,config ,structure t (export-reflective-tower-maker)

> ,config (define-structure foo (export)

(open module-system

t

built-in-structures

more-structures))
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4.10 Discussion

This module system was not designed as the be-all and end-all of Scheme module
systems; it was only intended to help us organize the Scheme 48 system. Not only
does the module system help avoid name clashes by keeping different subsystems in
different namespaces, it has also helped us to tighten up and generalize Scheme 48’s
internal interfaces. Scheme 48 is unusual among Lisp implementations in admitting
many different possible modes of operation. Examples of such multiple modes in-
clude the following:

• Linking can be either static or dynamic.

• The development environment (compiler, debugger, and command processor)
can run either in the same address space as the program being developed or in
a different address space. The environment and user program may even run on
different processors under different operating systems[8].

• The virtual machine can be supported by either of two implementations of its
implementation language, Prescheme.

The module system has been helpful in organizing these multiple modes. By forcing
us to write down interfaces and module dependencies, the module system helps us to
keep the system clean, or at least to keep us honest about how clean or not it is.

The need to make structures and interfaces second-class instead of first-class re-
sults from the requirements of static program analysis: it must be possible for the
compiler and linker to expand macros and resolve variable bindings before the pro-
gram is executed. Structures could be made first-class (as in FX[9]) if a type system
were added to Scheme and the definitions of exported macros were defined in inter-
faces instead of in module bodies, but even in that case types and interfaces would
remain second-class.

The prohibition on assignment to imported bindings makes substitution a valid
optimization when a module is compiled as a block. The block compiler first scans the
entire module body, noting which variables are assigned. Those that aren’t assigned
(only define d) may be assumed never assigned, even if they are exported. The op-
timizer can then perform a very simple-minded analysis to determine automatically
that some procedures can and should have their calls compiled in line.

The programming style encouraged by the module system is consistent with the
unextended Scheme language. Because module system features do not generally
show up within module bodies, an individual module may be understood by some-
one who is not familiar with the module system. This is a great aid to code presen-
tation and portability. If a few simple conditions are met (no name conflicts between
packages, and use of files in preference to begin ), then a multi-module program
can be loaded into a Scheme implementation that does not support the module sys-
tem. The Scheme 48 static linker satisfies these conditions, and can therefore run in
other Scheme implementations. Scheme 48’s bootstrap process, which is based on
the static linker, is therefore nonincestuous. This contrasts with most other integrated
programming environments, such as Smalltalk-80, where the system can only be built
using an existing version of the system itself.
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Like ML modules, but unlike Scheme Xerox modules, this module system is com-
positional. That is, structures are constructed by single syntactic units that compose
existing structures with a body of code. In Scheme Xerox, the set of modules that can
contribute to an interface is open-ended — any module can contribute bindings to any
interface whose name is in scope. The module system implementation is a cross-bar
that channels definitions from modules to interfaces. The module system described
here has simpler semantics and makes dependencies easier to trace. It also allows for
higher-order modules, which Scheme Xerox considers unimportant.
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Chapter 5

Libraries

Use the ,open command (section 3.4) or the module language (chapter 2.6) to open
the structures described below.

5.1 General utilities

These are in the big-util structure.

• (atom? value) → boolean

(atom? x) is the same as (not (pair? x)) .

• (null-list? list) → boolean

Returns true for the empty list, false for a pair, and signals an error otherwise.

• (neq? value value) → boolean

(neq? x y) is the same as (not (eq? x y)) .

• (n= number number) → boolean

(n= x y) is the same as (not (= x y)) .

• (identity value) → value
• (no-op value) → value

These both just return their argument. No-op is guaranteed not to be compiled in-line,
identity may be.

• (memq? value list) → boolean

Returns true if value is in list, false otherwise.

• (any? predicate list) → boolean

Returns true if predicate is true for any element of list.

• (every? predicate list) → boolean

Returns true if predicate is true for every element of list.

• (any predicate list) → value
• (first predicate list) → value
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Any returns some element of list for which predicate is true, or false if there are none.
First does the same except that it returns the first element for which predicate is true.

• (filter predicate list) → list
• (filter! predicate list) → list

Returns a list containing all of the elements of list for which predicate is true. The order
of the elements is preserved. Filter! may reuse the storage of list.

• (filter-map procedure list) → list

The same as filter except the returned list contains the results of applying procedure
instead of elements of list. (filter-map p l) is the same as (filter identity
(map p l)) .

• (partition-list predicate list) → list list
• (partition-list! predicate list) → list list

The first return value contains those elements list for which predicate is true, the
second contains the remaining elements. The order of the elements is preserved.
Partition-list! may reuse the storage of the list.

• (remove-duplicates list) → list

Returns its argument with all duplicate elements removed. The first instance of each
element is preserved.

• (delq value list) → list
• (delq! value list) → list
• (delete predicate list) → list

All three of these return list with some elements removed. Delq removes all elements
eq? to value. Delq! does the same and may modify the list argument. Delete
removes all elements for which predicate is true. Both delq and delete may reuse
some of the storage in the list argument, but won’t modify it.

• (reverse! list) → list

Destructively reverses list.

• (concatenate-symbol value . . . ) → symbol

Returns the symbol whose name is produced by concatenating the display ed repre-
sentations of value . . . .

(concatenate-symbol ’abc "-" 4) =⇒ ’abc-4

5.2 Pretty-printing

These are in the pp structure.

• (p value)
• (p value output-port)
• (pretty-print value output-port position)

Pretty-print value The current output port is used if no port is specified. Position is the
starting offset. Value will be pretty-printed to the right of this column.
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5.3 ASCII character encoding

These are in the structure ascii .

• (char->ascii char) → integer
• (ascii->char integer) → char

These are identical to char->integer and integer->char except that they use the
ASCII encodingASCII encoding (appendix A).

• ascii-limit integer
• ascii-whitespaces list of integers

Ascii-limit is one more than the largest value that char->ascii may return.
Ascii-whitespaces is a list of the ASCII values of whitespace characters (space,
horizontal tab, line feed (= newline), vertical tab, form feed, and carriage return).

5.4 Bitwise integer operations

These functions use the two’s-complement representation for integers. There is no
limit to the number of bits in an integer. They are in the structures bitwise and
big-scheme .

• (bitwise-and integer integer) → integer
• (bitwise-ior integer integer) → integer
• (bitwise-xor integer integer) → integer
• (bitwise-not integer) → integer

These perform various logical operations on integers on a bit-by-bit basis. ‘ior ’ is
inclusive OR and ‘xor ’ is exclusive OR.

• (arithmetic-shift integer bit-count) → integer

Shifts the integer by the given bit count, which must be an integer, shifting left for
positive counts and right for negative ones. Shifting preserves the integer’s sign.

• (bit-count integer) → integer

Counts the number of bits set in the integer. If the argument is negative a bitwise NOT
operation is performed before counting.

5.5 Byte vectors

These are homogeneous vectors of small integers (0 ≤ i ≤ 255). The functions
that operate on them are analogous to those for vectors. They are in the structure
byte-vectors .

• (byte-vector? value) → boolean
• (make-byte-vector k fill) → byte-vector
• (byte-vector b . . . ) → byte-vector
• (byte-vector-length byte-vector) → integer
• (byte-vector-ref byte-vector k) → integer
• (byte-vector-set! byte-vector k b)
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5.6 Sparse vectors

These are vectors that grow as large as they need to. That is, they can be indexed by
arbitrarily large nonnegative integers. The implementation allows for arbitrarily large
gaps by arranging the entries in a tree. They are in the structure sparse-vectors .

• (make-sparse-vector) → sparse-vector
• (sparse-vector-ref sparse-vector k) → value
• (sparse-vector-set! sparse-vector k value)
• (sparse-vector->list sparse-vector) → list

Make-sparse-vector , sparse-vector-ref , and sparse-vector-set! are
analogous to make-vector , vector-ref , and vector-set! , except that the in-
dices passed to sparse-vector-ref and sparse-vector-set! can be arbi-
trarily large. For indices whose elements have not been set in a sparse vector,
sparse-vector-ref returns #f .

Sparse-vector->list is for debugging: It returns a list of the consecutive ele-
ments in a sparse vector from 0 to the highest element that has been set. Note that the
list will also include all the #f elements for the unset elements.

5.7 Cells

These hold a single value and are useful when a simple indirection is required. The
system uses these to hold the values of lexical variables that may be set! .

• (cell? value) → boolean
• (make-cell value) → cell
• (cell-ref cell) → value
• (cell-set! cell value)

5.8 Queues

These are ordinary first-in, first-out queues. The procedures are in structure queues .

• (make-queue) → queue
• (queue? value) → boolean
• (queue-empty? queue) → boolean
• (enqueue! queue value)
• (dequeue! queue) → value

Make-queue creates an empty queue, queue? is a predicate for identifying queues,
queue-empty? tells you if a queue is empty, enqueue! and dequeue! add and
remove values.

• (queue-length queue) → integer
• (queue->list queue) → values
• (list->queue values) → queue
• (delete-from-queue! queue value) → boolean
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Queue-length returns the number of values in queue. Queue->list returns the
values in queue as a list, in the order in which the values were added. List->queue
returns a queue containing values, preserving their order. Delete-from-queue
removes the first instance of value from queue , using eq? for comparisons.
Delete-from-queue returns #t if value is found and #f if it is not.

5.9 Arrays

These provide N-dimensional, zero-based arrays and are in the structure arrays . The
array interface is derived from one invented by Alan Bawden.

• (make-array value dimension0 . . . ) → array
• (array dimensions element0 . . . ) → array
• (copy-array array) → array

Make-array makes a new array with the given dimensions, each of which must be
a non-negative integer. Every element is initially set to value. Array Returns a new
array with the given dimensions and elements. Dimensions must be a list of non-
negative integers, The number of elements should be the equal to the product of the
dimensions. The elements are stored in row-major order.

(make-array ’a 2 3) → {Array 2 3 }

(array ’(2 3) ’a ’b ’c ’d ’e ’f)
→ {Array 2 3 }

Copy-array returns a copy of array. The copy is identical to the array but does
not share storage with it.

• (array? value) → boolean

Returns #t if value is an array.

• (array-ref array index0 . . . ) → value
• (array-set! array value index0 . . . )
• (array->vector array) → vector
• (array-dimensions array) → list

Array-ref returns the specified array element and array-set! replaces the ele-
ment with value.

(let ((a (array ’(2 3) ’a ’b ’c ’d ’e ’f)))
(let ((x (array-ref a 0 1)))

(array-set! a ’g 0 1)
(list x (array-ref a 0 1))))
→ ’(b g)

Array->vector returns a vector containing the elements of array in row-major
order. Array-dimensions returns the dimensions of the array as a list.

• (make-shared-array array linear-map dimension0 . . . ) → array
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Make-shared-array makes a new array that shares storage with array and uses
linear-map to map indexes to elements. Linear-map must accept as many arguments as
the number of dimensions given and must return a list of non-negative integers that
are valid indexes into array. ¡

(array-ref (make-shared-array a f i0 i1 ...)
j0 j1 ...)

is equivalent to

(apply array-ref a (f j0 j1 ...))

As an example, the following function makes the transpose of a two-dimensional
array:

(define (transpose array)
(let ((dimensions (array-dimensions array)))

(make-shared-array array
(lambda (x y)

(list y x))
(cadr dimensions)
(car dimensions))))

(array->vector
(transpose

(array ’(2 3) ’a ’b ’c ’d ’e ’f)))
→ ’(a d b e c f)

5.10 Records

New types can be constructed using the define-record-type macro from the
define-record-types structure The general syntax is:

(define-record-type tag type-name
( constructor-name field-tag ...)
predicate-name
( field-tag accessor-name [ modifier-name])
...)

This makes the following definitions:

• type-name type
• ( constructor-name field-init . . . ) → type-name
• ( predicate-name value) → boolean
• ( accessor-name type-name) → value
• ( modifier-name type-name value)

Type-name is the record type itself, and can be used to specify a print method (see
below). Constructor-name is a constructor that accepts values for the fields whose tags
are specified. Predicate-name is a predicate that returns #t for elements of the type
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and #f for everything else. The accessor-names retrieve the values of fields, and the
modifier-name’s update them. Tag is used in printing instances of the record type and
the field-tags are used in the inspector and to match constructor arguments with fields.

• (define-record-discloser type discloser)

Define-record-discloser determines how records of type type are printed. Dis-
closer should be procedure which takes a single record of type type and returns a list
whose car is a symbol. The record will be printed as the value returned by discloser
with curly braces used instead of the usual parenthesis.

For example

(define-record-type pare :pare
(kons x y)
pare?
(x kar set-kar!)
(y kdr))

defines kons to be a constructor, kar and kdr to be accessors, set-kar! to be a
modifier, and pare? to be a predicate for a new type of object. The type itself is
named :pare . Pare is a tag used in printing the new objects.

By default, the new objects print as #{Pare }. The print method can be modified
using define-record-discloser :

(define-record-discloser :pare
(lambda (p) ‘(pare ,(kar p) ,(kdr p))))

will cause the result of (kons 1 2) to print as #{Pare 1 2 }.
Define-record-resumer (section 7.9.3) can be used to control how records are

stored in heap images.

5.10.1 Low-level access to records

Records are implemented using primitive objects exactly analogous to vectors. Every
record has a record type (which is another record) in the first slot. Note that use of
these procedures, especially record-set! , breaks the record abstraction described
above; caution is advised.

These procedures are in the structure records .

• (make-record n value) → record
• (record value . . . ) → record-vector
• (record? value) → boolean
• (record-length record) → integer
• (record-type record) → value
• (record-ref record i) → value
• (record-set! record i value)

These the same as the standard vector- procedures except that they operate on
records. The value returned by record-length includes the slot holding the
record’s type. (record-type x) is equivalent to (record-ref x 0) .
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5.10.2 Record types

Record types are themselves records of a particular type (the first slot of
:record-type points to itself). A record type contains four values: the name of
the record type, a list of the names its fields, and procedures for disclosing and re-
suming records of that type. Procedures for manipulating them are in the structure
record-types .

• (make-record-type name field-names) → record-type
• (record-type? value) → boolean
• (record-type-name record-type) → symbol
• (record-type-field-names record-type) → symbols

• (record-constructor record-type field-names) → procedure
• (record-predicate record-type) → procedure
• (record-accessor record-type field-name) → procedure
• (record-modifier record-type field-name) → procedure

These procedures construct the usual record-manipulating procedures.
Record-constructor returns a constructor that is passed the initial values
for the fields specified and returns a new record. Record-predicate returns a
predicate that return true when passed a record of type record-type and false other-
wise. Record-accessor and record-modifier return procedures that reference
and set the given field in records of the approriate type.

• (define-record-discloser record-type discloser)
• (define-record-resumer record-type resumer)

Record-types is the initial exporter of define-record-discloser (re-exported
by define-record-types described above) and define-record-resumer (re-
exported by external-calls (section 7.9.3)).

The procedures described in this section can be used to define new record-type-
defining macros.

(define-record-type pare :pare
(kons x y)
pare?
(x kar set-kar!)
(y kdr))

is (sematically) equivalent to

(define :pare (make-record-type ’pare ’(x y)))
(define kons (record-constructor :pare ’(x y)))
(define kar (record-accessor :pare ’x))
(define set-kar! (record-modifier :pare ’x))
(define kdr (record-accessor :pare ’y))

The “(semantically)” above is because define-record-type adds declarations,
which allows the type checker to detect some misuses of records, and uses more ef-
ficient definitions for the constructor, accessors, and modifiers. Ignoring the decla-
rations, which will have to wait for another edition of the manual, what the above
example actually expands into is:
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(define :pare (make-record-type ’pare ’(x y)))
(define (kons x y) (record :pare x y))
(define (kar r) (checked-record-ref r :pare 1))
(define (set-kar! r new)

(checked-record-set! r :pare 1 new))
(define (kdr r) (checked-record-ref r :pare 2))

Checked-record-ref and Checked-record-set! are low-level procedures that
check the type of the record and access or modify it using a single VM instruction.

5.11 Finite record types

The structure finite-types has two macros for defining ‘finite’ record types. These
are record types for which there are a fixed number of instances, all of which are cre-
ated at the same time as the record type itself. The syntax for defining an enumerated
type is:

(define-enumerated-type tag type-name
predicate-name
vector-of-instances-name
name-accessor
index-accessor
( instance-name ...))

This defines a new record type, bound to type-name, with as many instances as there
are instance-name’s. Vector-of-instances-name is bound to a vector containing the in-
stances of the type in the same order as the instance-name list. Tag is bound to a macro
that when given an instance-name expands into an expression that returns correspond-
ing instance. The name lookup is done at macro expansion time. Predicate-name is a
predicate for the new type. Name-accessor and index-accessor are accessors for the name
and index (in vector-of-instances) of instances of the type.

(define-enumerated-type color :color
color?
colors
color-name
color-index
(black white purple maroon))

(color-name (vector-ref colors 0)) → black
(color-name (color white)) → white
(color-index (color purple)) → 2

Finite types are enumerations that allow the user to add additional fields in the
type. The syntax for defining a finite type is:

(define-finite-type tag type-name
( field-tag ...)
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predicate-name
vector-of-instances-name
name-accessor
index-accessor
( field-tag accessor-name [ modifier-name])
...
(( instance-name field-value ...)

...))

The additional fields are specified exactly as with define-record-type . The field
arguments to the constructor are listed after the type-name; these do not include the
name and index fields. The form ends with the names and the initial field values for
the instances of the type. The instances are constructed by applying the (unnamed)
constructor to these initial field values. The name must be first and the remaining
values must match the field-tags in the constructor’s argument list.

(define-finite-type color :color
(red green blue)
color?
colors
color-name
color-index
(red color-red)
(green color-green)
(blue color-blue)
((black 0 0 0)

(white 255 255 255)
(purple 160 32 240)
(maroon 176 48 96)))

(color-name (color black)) → black
(color-name (vector-ref colors 1)) → white
(color-index (color purple)) → 2
(color-red (color maroon)) → 176

5.12 Sets over finite types

The structure enum-sets has a macro for defining types for sets of elements of fi-
nite types. These work naturally with the finite types defined by the finite-types
structure, but are not tied to them. The syntax for defining such a type is:

(define-enum-set-type id type-name predicate constructor
element-syntax element-predicate all-elements element-index-ref)

This defines id to be syntax for constructing sets, type-name to be a value represent-
ing the type, predicate to be a predicate for those sets, and constructor a procedure for
constructing one from a list.
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Element-syntax must be the name of a macro for constructing set elements from
names (akin to the tag argument to define-enumerated-type ). Element-predicate
must be a predicate for the element type, all-elements a vector of all values of the el-
ement type, and element-index-ref must return the index of an element within the all-
elements vector.

• (enum-set->list enum-set) → list
• (enum-set-member? enum-set enumerand) → boolean
• (enum-set=? enum-set enum-set) → boolean
• (enum-set-union enum-set enum-set) → enum-set
• (enum-set-intersection enum-set enum-set) → enum-set
• (enum-set-negation enum-set) → enum-set

Enum-set->list converts a set into a list of its elements. Enum-set-member? tests
for membership. Enum-set=? tests two sets of equal type for equality. (If its argu-
ments are not of the same type, enum-set=? raises an exception.) Enum-set-union
computes the union of two sets of equal type, enum-set-intersection computes
the intersection, and enum-set-negation computes the complement of a set.

Here is an example. Given an enumerated type:

(define-enumerated-type color :color
color?
colors
color-name
color-index
(red blue green))

we can define sets of colors:

(define-enum-set-type color-set :color-set
color-set?
make-color-set

color color? colors color-index)

> (enum-set->list (color-set red blue))
(#Color red #Color blue)
> (enum-set->list (enum-set-negation (color-set red blue)))
(#Color green)
> (enum-set-member? (color-set red blue) (color blue))
#t

5.13 Hash tables

These are generic hash tables, and are in the structure tables . Strictly speaking they
are more maps than tables, as every table has a value for every possible key (for that
type of table). All but a finite number of those values are #f .

• (make-table) → table
• (make-symbol-table) → symbol-table
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• (make-string-table) → string-table
• (make-integer-table) → integer-table
• (make-table-maker compare-proc hash-proc) → procedure
• (make-table-immutable! table)

The first four functions listed make various kinds of tables. Make-table returns
a table whose keys may be symbols, integer, characters, booleans, or the empty list
(these are also the values that may be used in case expressions). As with case ,
comparison is done using eqv? . The comparison procedures used in symbol, string,
and integer tables are eq? , string=? , and =.

Make-table-maker takes two procedures as arguments and returns a nullary
table-making procedure. Compare-proc should be a two-argument equality predi-
cate. Hash-proc should be a one argument procedure that takes a key and returns a
non-negative integer hash value. If ( compare-proc x y) returns true, then (= ( hash-
proc x) ( hash-proc y)) must also return true. For example, make-integer-table
could be defined as (make-table-maker = abs) .

Make-table-immutable! prohibits future modification to its argument.

• (table? value) → boolean
• (table-ref table key) → value or #f
• (table-set! table key value)
• (table-walk procedure table)

Table? is the predicate for tables. Table-ref and table-set! access and mod-
ify the value of key in table. Table-walk applies procedure, which must accept two
arguments, to every associated key and non-#f value in table .

• (default-hash-function value) → integer
• (string-hash string) → integer

Default-hash-function is the hash function used in the tables returned by
make-table , and string-hash it the one used by make-string-table .

5.14 Port extensions

These procedures are in structure extended-ports .

• (make-string-input-port string) → input-port
• (make-string-output-port) → output-port
• (string-output-port-output string-output-port) → string

Make-string-input-port returns an input port that that reads characters from the
supplied string. An end-of-file object is returned if the user reads past the end of the
string. Make-string-output-port returns an output port that saves the characters
written to it. These are then returned as a string by string-output-port-output .

(read (make-string-input-port "(a b)"))
→ ’(a b)

(let ((p (make-string-output-port)))
(write ’(a b) p)
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(let ((s (string-output-port-output p)))
(display "c" p)
(list s (string-output-port-output p))))
→ ’("(a b)" "(a b)c")

• (limit-output output-port n procedure)

Procedure is called on an output port. Output written to that port is copied to
output-port until n characters have been written, at which point limit-output re-
turns. If procedure returns before writing n characters, then limit-output also re-
turns at that time, regardless of how many characters have been written.

• (make-tracking-input-port input-port) → input-port
• (make-tracking-output-port output-port) → output-port
• (current-row port) → integer or #f
• (current-column port) → integer or #f
• (fresh-line output-port)

Make-tracking-input-port and make-tracking-output-port return ports
that keep track of the current row and column and are otherwise identical to their
arguments. Closing a tracking port does not close the underlying port. Current-row
and current-column return port’s current read or write location. They return #f if
port does not keep track of its location. Fresh-line writes a newline character to
output-port if (current-row port) is not 0.

(define p (open-output-port "/tmp/temp"))
(list (current-row p) (current-column p))

→ ’(0 0)
(display "012" p)
(list (current-row p) (current-column p))

→ ’(0 3)
(fresh-line p)
(list (current-row p) (current-column p))

→ ’(1 0)
(fresh-line p)
(list (current-row p) (current-column p))

→ ’(1 0)

5.15 Fluid bindings

These procedures implement dynamic binding and are in structure fluids . A fluid is
a cell whose value can be bound dynamically. Each fluid has a top-level value that is
used when the fluid is unbound in the current dynamic environment.

• (make-fluid value) → fluid
• (fluid fluid) → value
• (let-fluid fluid value thunk) → value(s)
• (let-fluids fluid0 value0 fluid1 value1 . . . thunk) → value(s)
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Make-fluid returns a new fluid with value as its initial top-level value. Fluid re-
turns fluid ’s current value. Let-fluid calls thunk , with fluid bound to value until
thunk returns. Using a continuation to throw out of the call to thunk causes fluid
to revert to its original value, while throwing back in causes fluid to be rebound to
value. Let-fluid returns the value(s) returned by thunk. Let-fluids is identical to
let-fluid except that it binds an arbitrary number of fluids to new values.

(let* ((f (make-fluid ’a))
(v0 (fluid f))
(v1 (let-fluid f ’b

(lambda ()
(fluid f))))

(v2 (fluid f)))
(list v0 v1 v2))
→ ’(a b a)

(let ((f (make-fluid ’a))
(path ’())
(c #f))

(let ((add (lambda ()
(set! path (cons (fluid f) path)))))

(add)
(let-fluid f ’b

(lambda ()
(call-with-current-continuation

(lambda (c0)
(set! c c0)))

(add)))
(add)
(if (< (length path) 5)

(c)
(reverse path))))

→ ’(a b a b a)

5.16 Shell commands

Structure c-system-function provides access to the C system() function.

• (have-system?) → boolean
• (system string) → integer

Have-system? returns true if the underlying C implementation has a command
processor. (System string) passes string to the C system() function and returns
the result.

(begin
(system "echo foo > test-file")
(call-with-input-file "test-file" read))

→ ’foo
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5.17 Sockets

Structure sockets provides access to TCP/IP sockets for interprocess and network
communication.

• (open-socket) → socket
• (open-socket port-number) → socket
• (socket-port-number socket) → integer
• (close-socket socket)
• (socket-accept socket) → input-port output-port
• (get-host-name) → string

Open-socket creates a new socket. If no port-number is supplied the system picks one
at random. Socket-port-number returns a socket’s port number. Close-socket
closes a socket, preventing any further connections. Socket-accept accepts a sin-
gle connection on socket, returning an input port and an output port for communicat-
ing with the client. If no client is waiting socket-accept blocks until one appears.
Get-host-name returns the network name of the machine.

• (socket-client host-name port-number) → input-port output-port

Socket-client connects to the server at port-number on the machine named host-
name. Socket-client blocks until the server accepts the connection.

The following simple example shows a server and client for a centralized UID
service.

(define (id-server)
(let ((socket (open-socket)))

(display "Waiting on port ")
(display (socket-port-number socket))
(newline)
(let loop ((next-id 0))

(call-with-values
(lambda ()

(socket-accept socket))
(lambda (in out)

(display next-id out)
(close-input-port in)
(close-output-port out)
(loop (+ next-id 1)))))))

(define (get-id machine port-number)
(call-with-values

(lambda ()
(socket-client machine port-number))

(lambda (in out)
(let ((id (read in)))

(close-input-port in)
(close-output-port out)
id))))
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5.18 Macros for writing loops

Iterate and reduce are extensions of named-let for writing loops that walk down
one or more sequences, such as the elements of a list or vector, the characters read
from a port, or an arithmetic series. Additional sequences can be defined by the user.
Iterate and reduce are in structure reduce .

5.18.1 Iterate

The syntax of iterate is:

(iterate loop-name
(( sequence-type element-variable sequence-data ...)

...)
(( state-variable initial-value)

...)
body-expression
[ final-expression])

Iterate steps the element-variables in parallel through the sequences, while each
state-variable has the corresponding initial-value for the first iteration and have later
values supplied by body-expression. If any sequence has reached its limit the value
of the iterate expression is the value of final-expression, if present, or the current
values of the state-variables, returned as multiple values. If no sequence has reached
its limit, body-expression is evaluated and either calls loop-name with new values for the
state-variables, or returns some other value(s).

The loop-name and the state-variables and initial-values behave exactly as in named-
let . The named-let expression

(let loop-name ((state-variable initial-value) ...)
body ...)

is equivalent to an iterate expression with no sequences (and with an explicit let
wrapped around the body expressions to take care of any internal define s):

(iterate loop-name
()
((state-variable initial-value) ...)

(let () body ...))

The sequence-types are keywords (they are actually macros of a particular form; it is
easy to add additional types of sequences). Examples are list* which walks down
the elements of a list and vector* which does the same for vectors. For each iteration,
each element-variable is bound to the next element of the sequence. The sequence-data
gives the actual list or vector or whatever.

If there is a final-expression, it is evaluated when the end of one or more sequences
is reached. If the body-expression does not call loop-name the final-expression is not eval-
uated. The state-variables are visible in final-expression but the sequence-variables are not.

The body-expression and the final-expression are in tail-position within the iterate .
Unlike named-let , the behavior of a non-tail-recursive call to loop-name is unspec-
ified (because iterating down a sequence may involve side effects, such as reading
characters from a port).
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5.18.2 Reduce

If an iterate expression is not meant to terminate before a sequence has reached its
end, body-expression will always end with a tail call to loop-name. Reduce is a macro
that makes this common case explicit. The syntax of reduce is the same as that of
iterate , except that there is no loop-name. The body-expression returns new values
of the state-variables instead of passing them to loop-name. Thus body-expression must
return as many values as there are state variables. By special dispensation, if there are
no state variables then body-expression may return any number of values, all of which
are ignored.

The syntax of reduce is:

(reduce (( sequence-type element-variable sequence-data ...)
...)

(( state-variable initial-value)
...)

body-expression
[ final-expression])

The value(s) returned by an instance of reduce is the value(s) returned by the
final-expression, if present, or the current value(s) of the state variables when the end
of one or more sequences is reached.

A reduce expression can be rewritten as an equivalent iterate expression by
adding a loop-var and a wrapper for the body-expression that calls the loop-var.

(iterate loop
(( sequence-type element-variable sequence-data ...)

...)
(( state-variable initial-value)

...)
(call-with-values (lambda ()

body-expression)
loop)

[ final-expression])

5.18.3 Sequence types

The predefined sequence types are:

• (list* elt-var list) syntax
• (vector* elt-var vector) syntax
• (string* elt-var string) syntax
• (count* elt-var start [ end [ step]]) syntax
• (input* elt-var input-port read-procedure) syntax
• (stream* elt-var procedure initial-data) syntax

For lists, vectors, and strings the element variable is bound to the successive ele-
ments of the list or vector, or the characters in the string.

For count* the element variable is bound to the elements of the sequence
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start, start + step, start + 2step, ..., end

inclusive of start and exclusive of end. The default step is 1. The sequence does not
terminate if no end is given or if there is no N > 0 such that end = start + Nstep (= is used
to test for termination). For example, (count* i 0 -1) doesn’t terminate because
it begins past the end value and (count* i 0 1 2) doesn’t terminate because it
skips over the end value.

For input* the elements are the results of successive applications of read-procedure
to input-port. The sequence ends when read-procedure returns an end-of-file object.

For a stream, the procedure takes the current data value as an argument and returns
two values, the next value of the sequence and a new data value. If the new data is #f
then the previous element was the last one. For example,

(list* elt my-list)

is the same as

(stream* elt list->stream my-list)

where list->stream is

(lambda (list)
(if (null? list)

(values ’ignored #f)
(values (car list) (cdr list))))

5.18.4 Synchronous sequences

When using the sequence types described above, a loop terminates when any of its
sequences reaches its end. To help detect bugs it is useful to have sequence types that
check to see if two or more sequences end on the same iteration. For this purpose there
is second set of sequence types called synchronous sequences. These are identical
to the ones listed above except that they cause an error to be signalled if a loop is
terminated by a synchronous sequence and some other synchronous sequence did
not reach its end on the same iteration.

Sequences are checked for termination in order, from left to right, and if a loop is
terminated by a non-synchronous sequence no further checking is done.

The synchronous sequences are:

• (list% elt-var list) syntax
• (vector% elt-var vector) syntax
• (string% elt-var string) syntax
• (count% elt-var start end [ step]) syntax
• (input% elt-var input-port read-procedure) syntax
• (stream% elt-var procedure initial-data) syntax

Note that the synchronous count% must have an end, unlike the nonsynchronous
count% .
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5.18.5 Examples

Gathering the indexes of list elements that answer true to some predicate.

(lambda (my-list predicate)
(reduce ((list* elt my-list)

(count* i 0))
((hits ’()))

(if (predicate elt)
(cons i hits)
hits)

(reverse hits))

Looking for the index of an element of a list.

(lambda (my-list predicate)
(iterate loop

((list* elt my-list)
(count* i 0))

() ; no state
(if (predicate elt)

i
(loop))))

Reading one line.

(define (read-line port)
(iterate loop

((input* c port read-char))
((chars ’()))

(if (char=? c #\newline)
(list->string (reverse chars))
(loop (cons c chars)))

(if (null? chars)
(eof-object)
; no newline at end of file
(list->string (reverse chars)))))

Counting the lines in a file. We can’t use count* because we need the value of the
count after the loop has finished.

(define (line-count name)
(call-with-input-file name

(lambda (in)
(reduce ((input* l in read-line))

((i 0))
(+ i 1)))))
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5.18.6 Defining sequence types

The sequence types are object-oriented macros similar to enumerations. A non-
synchronous sequence macro needs to supply three values: #f to indicate that it isn’t
synchronous, a list of state variables and their initializers, and the code for one iter-
ation. The first two methods are CPS’ed: they take another macro and argument to
which to pass their result. The synchronized? method gets no additional argu-
ments. The state-vars method is passed a list of names which will be bound to the
arguments to the sequence. The final method, for the step, is passed the list of names
bound to the arguments and the list of state variables. In addition there is a variable
to be bound to the next element of the sequence, the body expression for the loop, and
an expression for terminating the loop.

The definition of list* is

(define-syntax list*
(syntax-rules (synchronized? state-vars step)

((list* synchronized? (next more))
(next #f more))

((list* state-vars (start-list) (next more))
(next ((list-var start-list)) more))

((list* step (start-list) (list-var)
value-var loop-body final-exp)

(if (null? list-var)
final-exp
(let ((value-var (car list-var))

(list-var (cdr list-var)))
loop-body)))))

Synchronized sequences are the same, except that they need to provide a termina-
tion test to be used when some other synchronized method terminates the loop.

(define-syntax list%
(syntax-rules (sync done)

((list% sync (next more))
(next #t more))

((list% done (start-list) (list-var))
(null? list-var))

((list% stuff ...)
(list* stuff ...))))

5.18.7 Expanded code

The expansion of

(reduce ((list* x ’(1 2 3)))
((r ’()))

(cons x r))

is
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(let ((final (lambda (r) (values r)))
(list ’(1 2 3))
(r ’()))

(let loop ((list list) (r r))
(if (null? list)

(final r)
(let ((x (car list))

(list (cdr list)))
(let ((continue (lambda (r)

(loop list r))))
(continue (cons x r)))))))

The only inefficiencies in this code are the final and continue procedures, both
of which could be substituted in-line. The macro expander could do the substitution
for continue when there is no explicit proceed variable, as in this case, but not in
general.

5.19 Sorting lists and vectors

(This section, as the libraries it describes, was written mostly by Olin Shivers for the
draft of SRFI 32.)

The sort libraries in Scheme 48 include

• vector insert sort (stable)

• vector heap sort

• vector merge sort (stable)

• pure and destructive list merge sort (stable)

• stable vector and list merge

• miscellaneous sort-related procedures: vector and list merging, sorted predi-
cates, vector binary search, vector and list delete-equal-neighbor procedures.

• a general, non-algorithmic set of procedure names for general sorting and merg-
ing

5.19.1 Design rules

What vs. how There are two different interfaces: “what” (simple) and “how” (de-
tailed).

Simple you specify semantics: datatype (list or vector), mutability, and stability.

Detailed you specify the actual algorithm (quick, heap, insert, merge). Different algo-
rithms have different properties, both semantic and pragmatic, so these exports
are necessary.
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It is necessarily the case that the specifications of these procedures make state-
ments about execution “pragmatics.” For example, the sole distinction between
heap sort and quick sort—both of which are provided by this library—-is one of
execution time, which is not a “semantic” distinction. Similar resource-use state-
ments are made about “iterative” procedures, meaning that they can execute on
input of arbitrary size in a constant number of stack frames.

Consistency across procedure signatures The two interfaces share common proce-
dure signatures wherever possible, to facilitate switching a given call from one proce-
dure to another.

Less-than parameter first, data parameter after These procedures uniformly ob-
serve the following parameter order: the data to be sorted comes after the comparison
procedure. That is, we write

(sort < list)

not

(sort list <)

Ordering, comparison procedures and stability These routines take a < compar-
ison procedure, not a ≤ comparison procedure, and they sort into increasing order.
The difference between a < spec and a ≤ spec comes up in two places:

• the definition of an ordered or sorted data set, and

• the definition of a stable sorting algorithm.

We say that a data set (a list or vector) is sorted or ordered if it contains no adjacent
pair of values . . . x, y . . . such that y < x.

In other words, scanning across the data never takes a “downwards” step.
If you use a ≤ procedure where these algorithms expect a < procedure, you may

not get the answers you expect. For example, the list-sorted? procedure will
return false if you pass it a ≤ comparison procedure and an ordered list containing
adjacent equal elements.

A “stable” sort is one that preserves the pre-existing order of equal elements. Sup-
pose, for example, that we sort a list of numbers by comparing their absolute values,
i.e., using comparison procedure

(lambda (x y) (< (abs x) (abs y)))

If we sort a list that contains both 3 and -3:

. . . 3, . . . ,−3 . . .

then a stable sort is an algorithm that will not swap the order of these two elements,
that is, the answer is guaranteed to to look like

. . . 3,−3 . . .
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not
. . .− 3, 3 . . .

Choosing < for the comparison procedure instead of ≤ affects how stability is coded.
Given an adjacent pair x, y, (< y x) means “x should be moved in front of x”—
otherwise, leave things as they are. So using a ≤ procedure where a < procedure is
expected will invert stability.

This is due to the definition of equality, given a < comparator:

(and (not (< x y))
(not (< y x)))

The definition is rather different, given a ≤ comparator:

(and (<= x y)
(<= y x))

A “stable” merge is one that reliably favors one of its data sets when equal items
appear in both data sets. All merge operations in this library are stable, breaking ties
between data sets in favor of the first data set—elements of the first list come before
equal elements in the second list.

So, if we are merging two lists of numbers ordered by absolute value, the stable
merge operation list-merge

(list-merge (lambda (x y) (< (abs x) (abs y)))
’(0 -2 4 8 -10) ’(-1 3 -4 7))

reliably places the 4 of the first list before the equal-comparing -4 of the second list:

(0 -1 -2 4 -4 7 8 -10)

Some sort algorithms will not work correctly if given a ≤ when they expect a < com-
parison (or vice-versa).

In short, if your comparison procedure f answers true to ( f x x) , then

• using a stable sorting or merging algorithm will not give you a stable sort or
merge,

• list-sorted? may surprise you.

Note that you can synthesize a < procedure from a ≤ procedure with

(lambda (x y) (not (<= y x)))

if need be.
Precise definitions give sharp edges to tools, but require care in use. “Measure

twice, cut once.”

All vector operations accept optional subrange parameters The vector operations
specified below all take optional start /end arguments indicating a selected sub-
range of a vector’s elements. If a start parameter or start /end parameter pair is
given to such a procedure, they must be exact, non-negative integers, such that

0 ≤ start ≤ end ≤ (vector-length vector)

where vector is the related vector parameter. If not specified, they default to 0 and the
length of the vector, respectively. They are interpreted to select the range [start, end),
that is, all elements from index start (inclusive) up to, but not including, index end.
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Required vs. allowed side-effects List-sort! and List-stable-sort! are
allowed, but not required, to alter their arguments’ cons cells to construct the result
list. This is consistent with the what-not-how character of the group of procedures to
which they belong (the sorting structure).

The list-delete-neighbor-dups! , list-merge! and
list-merge-sort! procedures, on the other hand, provide specific algorithms,
and, as such, explicitly commit to the use of side-effects on their input lists in order to
guarantee their key algorithmic properties (e.g., linear-time operation).

5.19.2 Procedure specification

Structure name Functionality
sorting General sorting for lists and vectors
sorted Sorted predicates for lists and vectors
list-merge-sort List merge sort
vector-merge-sort Vector merge sort
vector-heap-sort Vector heap sort
vector-insert-sort Vector insertion sort
delete-neighbor-duplicates List and vector delete neighbor duplicates
binary-searches Vector binary search

Note that there is no “list insert sort” package, as you might as well always use list
merge sort. The reference implementation’s destructive list merge sort will do fewer
set-cdr! s than a destructive insert sort.

Procedure naming and functionality Almost all of the procedures described below
are variants of two basic operations: sorting and merging. These procedures are con-
sistently named by composing a set of basic lexemes to indicate what they do.

Lexeme Meaning
sort The procedure sorts its input data set by some < comparison proce-

dure.
merge The procedure merges two ordered data sets into a single ordered

result.
stable This lexeme indicates that the sort is a stable one.
vector The procedure operates upon vectors.
list The procedure operates upon lists.
! Procedures that end in ! are allowed, and sometimes required, to

reuse their input storage to construct their answer.

Types of parameters and return values In the procedures specified below,

• A < or = parameter is a procedure accepting two arguments taken from the spec-
ified procedure’s data set(s), and returning a boolean;

• Start and end parameters are exact, non-negative integers that serve as vector
indices selecting a subrange of some associated vector. When specified, they
must satisfy the relation

0 ≤ start ≤ end ≤ (vector-length vector)
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where vector is the associated vector.

Passing values to procedures with these parameters that do not satisfy these types is
an error.

If a procedure is said to return “unspecified,” this means that nothing at all is
said about what the procedure returns, not even the number of return values. Such
a procedure is not even required to be consistent from call to call in the nature or
number of its return values. It is simply required to return a value (or values) that may
be passed to a command continuation, e.g. as the value of an expression appearing as
a non-terminal subform of a begin expression. Note that in R5RS, this restricts such
a procedure to returning a single value; non-R5RS systems may not even provide this
restriction.

sorting —general sorting package

This library provides basic sorting and merging functionality suitable for general pro-
gramming. The procedures are named by their semantic properties, i.e., what they do
to the data (sort, stable sort, merge, and so forth).

• (list-sorted? < list) → boolean
• (list-merge < list1 list2) → list
• (list-merge! < list1 list2) → list
• (list-sort < lis) → list
• (list-sort! < lis) → list
• (list-stable-sort < list) → list
• (list-stable-sort! < list) → list
• (list-delete-neighbor-dups = list) → list
• (vector-sorted? < v [start [end]]) → boolean
• (vector-merge < v1 v2 [start1 [end1 [start2 [end2]]]]) → vector
• (vector-merge! < v v1 v2 [start [start1 [end1 [start2 [end2]]]]])
• (vector-sort < v [start [end]]) → vector
• (vector-sort! < v [start [end]])
• (vector-stable-sort < v [start [end]]) → vector
• (vector-stable-sort! < v [start [end]])
• (vector-delete-neighbor-dups = v [start [end]]) → vector

Procedure Suggested algorithm
list-sort vector heap or quick
list-sort! list merge sort
list-stable-sort vector merge sort
list-stable-sort! list merge sort
vector-sort heap or quick sort
vector-sort! or quick sort
vector-stable-sort vector merge sort
vector-stable-sort! merge sort

List-Sorted? and vector-sorted? return true if their input list or vector is in
sorted order, as determined by their < comparison parameter.
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All four merge operations are stable: an element of the initial list list1 or vector
vector1 will come before an equal-comparing element in the second list list2 or vector
vector2 in the result.

The procedures

• list-merge

• list-sort

• list-stable-sort

• list-delete-neighbor-dups

do not alter their inputs and are allowed to return a value that shares a common tail
with a list argument.

The procedure

• list-sort!

• list-stable-sort!

are “linear update” operators—they are allowed, but not required, to alter the cons
cells of their arguments to produce their results.

On the other hand, the list-merge! procedure make only a single, iterative,
linear-time pass over its argument list, using set-cdr! s to rearrange the cells of the
list into the final result —it works “in place.” Hence, any cons cell appearing in the
result must have originally appeared in an input. The intent of this iterative-algorithm
commitment is to allow the programmer to be sure that if, for example, list-merge!
is asked to merge two ten-million-element lists, the operation will complete without
performing some extremely (possibly twenty-million) deep recursion.

The vector procedures

• vector-sort

• vector-stable-sort

• vector-delete-neighbor-dups

do not alter their inputs, but allocate a fresh vector for their result, of length end−start.
The vector procedures

• vector-sort!

• vector-stable-sort!

sort their data in-place. (But note that vector-stable-sort! may allocate tempo-
rary storage proportional to the size of the input .)

Vector-merge returns a vector of length (end1 − start1 + (end2 − start2).
Vector-merge! writes its result into vector v, beginning at index start, for indices

less than end = start+(end1− start1)+(end2− start2). The target subvector v[start, end)
may not overlap either source subvector vector1[start1, end1) vector2[start2, end2).
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The ...-delete-neighbor-dups-... procedures: These procedures delete
adjacent duplicate elements from a list or a vector, using a given element-equality pro-
cedure. The first/leftmost element of a run of equal elements is the one that survives.
The list or vector is not otherwise disordered.

These procedures are linear time—much faster than the O(n2) general duplicate-
element deletors that do not assume any “bunching” of elements (such as the ones
provided by SRFI 1). If you want to delete duplicate elements from a large list or
vector, you can sort the elements to bring equal items together, then use one of these
procedures, for a total time of O(n log(n)).

The comparison procedure = passed to these procedures is always applied ( = x
y) where x comes before y in the containing list or vector.

• List-delete-neighbor-dups does not alter its input list; its answer may
share storage with the input list.

• Vector-delete-neighbor-dups does not alter its input vector, but rather
allocates a fresh vector to hold the result.

Examples:

(list-delete-neighbor-dups = ’(1 1 2 7 7 7 0 -2 -2))
=⇒ (1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2))
=⇒ #(1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2) 3 7)
=⇒ #(7 0 -2)

Algorithm-specific sorting packages

These packages provide more specific sorting functionality, that is, specific committ-
ment to particular algorithms that have particular pragmatic consequences (such as
memory locality, asymptotic running time) beyond their semantic behaviour (sorting,
stable sorting, merging, etc.). Programmers that need a particular algorithm can use
one of these packages.

sorted —sorted predicates

• (list-sorted? < list) → boolean
• (vector-sorted? < vector) → boolean
• (vector-sorted? < vector start) → boolean
• (vector-sorted? < vector start end) → boolean

Return #f iff there is an adjacent pair . . . x, y . . . in the input list or vector such
that y < x. The optional start/end range arguments restrict vector-sorted? to the
indicated subvector.
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list-merge-sort —list merge sort

• (list-merge-sort < list) → list
• (list-merge-sort! < list) → list
• (list-merge list1 < list2) → list
• (list-merge! list1 < list2) → list

The sort procedures sort their data using a list merge sort, which is stable. (The refer-
ence implementation is, additionally, a “natural” sort. See below for the properties of
this algorithm.)

The ! procedures are destructive—they use set-cdr! s to rearrange the cells of
the lists into the proper order. As such, they do not allocate any extra cons cells—they
are “in place” sorts.

The merge operations are stable: an element of list1 will come before an equal-
comparing element in list2 in the result list.

vector-merge-sort —vector merge sort

• (vector-merge-sort < vector [start [end [temp]]]) → vector
• (vector-merge-sort! < vector [start [end [temp]]])
• (vector-merge < vector1 vector2 [start1 [end1 [start2 [end2]]]]) → vector
• (vector-merge! < vector vector1 vector2 [start [start1 [end1 [start2 [end2]]]]])

The sort procedures sort their data using vector merge sort, which is stable. (The ref-
erence implementation is, additionally, a “natural” sort. See below for the properties
of this algorithm.)

The optional start/end arguments provide for sorting of subranges, and default to
0 and the length of the corresponding vector.

Merge-sorting a vector requires the allocation of a temporary “scratch” work vec-
tor for the duration of the sort. This scratch vector can be passed in by the client as the
optional temp argument; if so, the supplied vector must be of size ≤ end, and will not
be altered outside the range [start,end). If not supplied, the sort routines allocate one
themselves.

The merge operations are stable: an element of vector1 will come before an equal-
comparing element in vector2 in the result vector.

• Vector-merge-sort! leaves its result in vector[start, end).

• Vector-merge-sort returns a vector of length end − start.

• Vector-merge returns a vector of length (end1 − start1) + (end2 − start2).

• Vector-merge! writes its result into vector, beginning at index start, for indices
less than end = start + (end1 − start1) + (end2 − start2). The target subvector

vector[start, end)

may not overlap either source subvector

vector1[start1, end1), or vector2[start2, end2).
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vector-heap-sort —vector heap sort

• (vector-heap-sort < vector [start [end]]) → vector
• (vector-heap-sort! < vector [start [end]])

These procedures sort their data using heap sort, which is not a stable sorting algo-
rithm.

Vector-heap-sort returns a vector of length end−start. Vector-heap-sort!
is in-place, leaving its result in vector[start, end).

vector-insert-sort —vector insertion sort

• (vector-insert-sort < vector [start [end]]) → vector
• (vector-insert-sort! < vector [start [end]])

These procedures stably sort their data using insertion sort.

• Vector-insert-sort returns a vector of length end − start.

• Vector-insert-sort! is in-place, leaving its result in vector[start, end).

delete-neighbor-duplicates —list and vector delete neighbor duplicates

• (list-delete-neighbor-dups = list) → list
• (list-delete-neighbor-dups! = list) → list
• (vector-delete-neighbor-dups = vector [start [end]]) → vector
• (vector-delete-neighbor-dups! = vector [start [end]]) → end′

These procedures delete adjacent duplicate elements from a list or a vector, using a
given element-equality procedure =. The first/leftmost element of a run of equal
elements is the one that survives. The list or vector is not otherwise disordered.

These procedures are linear time—much faster than the O(n2) general duplicate-
element deletors that do not assume any “bunching” of elements (such as the ones
provided by SRFI 1). If you want to delete duplicate elements from a large list or
vector, you can sort the elements to bring equal items together, then use one of these
procedures, for a total time of O(n log(n)).

The comparison procedure = passed to these procedures is always applied

( = x y)

where x comes before y in the containing list or vector.

• List-delete-neighbor-dups does not alter its input list; its answer may
share storage with the input list.

• Vector-delete-neighbor-dups does not alter its input vector, but rather
allocates a fresh vector to hold the result.

• List-delete-neighbor-dups! is permitted, but not required, to mutate its
input list in order to construct its answer.
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• Vector-delete-neighbor-dups! reuses its input vector to hold the an-
swer, packing its answer into the index range [start, end′), where end′ is the non-
negative exact integer returned as its value. It returns end′ as its result. The
vector is not altered outside the range [start, end′).

Examples:

(list-delete-neighbor-dups = ’(1 1 2 7 7 7 0 -2 -2))
=⇒ (1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2))
=⇒ #(1 2 7 0 -2)

(vector-delete-neighbor-dups = ’#(1 1 2 7 7 7 0 -2 -2) 3 7)
=⇒ #(7 0 -2)

;; Result left in v[3,9):
(let ((v (vector 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6)))

(cons (vector-delete-neighbor-dups! = v 3)
v))

=⇒ (9 . #(0 0 0 1 2 3 4 5 6 4 4 5 5 6 6))

binary-searches —vector binary search

• (vector-binary-search < elt->key key vector [start [end]]) → integer or #f
• (vector-binary-search3 compare-proc vector [start [end]]) → integer or #f

vector-binary-search searches vector in range [start, end) (which default to 0
and the length of vector, respectively) for an element whose associated key is equal
to key. The procedure elt->key is used to map an element to its associated key. The
elements of the vector are assumed to be ordered by the < relation on these keys. That
is,

(vector-sorted? (lambda (x y) ( < ( elt-£¿£key x) ( elt-£¿£key y)))
vector start end) =⇒ true

An element e of vector is a match for key if it’s neither less nor greater than the key:

(and (not ( < ( elt-£¿£key e) key))
(not ( < key ( elt-£¿£key e))))

If there is such an element, the procedure returns its index in the vector as an exact
integer. If there is no such element in the searched range, the procedure returns false.

(vector-binary-search < car 4 ’#((1 . one) (3 . three)
(4 . four) (25 .

twenty-five)))
=⇒ 2
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(vector-binary-search < car 7 ’#((1 . one) (3 . three)
(4 . four) (25 .

twenty-five)))
=⇒ #f

Vector-binary-search3 is a variant that uses a three-way comparison proce-
dure compare-proc. Compare-proc compares its parameter to the search key, and returns
an exact integer whose sign indicates its relationship to the search key.

(compare-proc x) < 0 ⇒ x < search-key
(compare-proc x) = 0 ⇒ x = search-key
(compare-proc x) > 0 ⇒ x > search-key

(vector-binary-search3 (lambda (elt) (- (car elt) 4))
’#((1 . one) (3 . three)

(4 . four) (25 . twenty-five)))
=⇒ 2

5.19.3 Algorithmic properties

Different sort and merge algorithms have different properties. Choose the algorithm
that matches your needs:

Vector insert sort Stable, but only suitable for small vectors—O(n2).

Vector heap sort Not stable. Guaranteed fast—O(n log(n)) worst case. Poor locality
on large vectors. A very reliable workhorse.

Vector merge sort Stable. Not in-place—requires a temporary buffer of equal size.
Fast—O(n log(n))—and has good memory locality for large vectors.

The implementation of vector merge sort provided by this implementation is,
additionally, a “natural” sort, meaning that it exploits existing order in the input
data, providing O(n) best case.

Destructive list merge sort Stable, fast and in-place (i.e., allocates no new cons cells).
“Fast” means O(n log(n)) worse-case, and substantially better if the data is al-
ready mostly ordered, all the way down to linear time for a completely-ordered
input list (i.e., it is a “natural” sort).

Note that sorting lists involves chasing pointers through memory, which can be
a loser on modern machine architectures because of poor cache and page locality.
Sorting vectors has inherently better locality.

This implementation’s destructive list merge and merge sort implementations
are opportunistic—they avoid redundant set-cdr! s, and try to take long
already-ordered runs of list structure as-is when doing the merges.

Pure list merge sort Stable and fast—O(n log(n)) worst-case, and possibly O(n), de-
pending upon the input list (see discussion above).
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Algorithm Stable? Worst case Average case In-place
Vector insert Yes O(n2) O(n2) Yes
Vector quick No O(n2) O(n log(n)) Yes
Vector heap No O(n log(n)) O(n log(n)) Yes
Vector merge Yes O(n log(n)) O(n log(n)) No
List merge Yes O(n log(n)) O(n log(n)) Either

5.20 Regular expressions

This section describes a functional interface for building regular expressions and
matching them against strings. The matching is done using the POSIX regular ex-
pression package. Regular expressions are in the structure regexps .

A regular expression is either a character set, which matches any character in the
set, or a composite expression containing one or more subexpressions. A regular ex-
pression can be matched against a string to determine success or failure, and to deter-
mine the substrings matched by particular subexpressions.

5.20.1 Character sets

Character sets may be defined using a list of characters and strings, using a range or
ranges of characters, or by using set operations on existing character sets.

• (set character-or-string . . . ) → char-set
• (range low-char high-char) → char-set
• (ranges low-char high-char . . . ) → char-set
• (ascii-range low-char high-char) → char-set
• (ascii-ranges low-char high-char . . . ) → char-set

Set returns a set that contains the character arguments and the characters in any
string arguments. Range returns a character set that contain all characters between
low-char and high-char, inclusive. Ranges returns a set that contains all characters in
the given ranges. Range and ranges use the ordering induced by char->integer .
Ascii-range and ascii-ranges use the ASCII ordering. It is an error for a high-
char to be less than the preceding low-char in the appropriate ordering.

• (negate char-set) → char-set
• (intersection char-set char-set) → char-set
• (union char-set char-set) → char-set
• (subtract char-set char-set) → char-set

These perform the indicated operations on character sets.
The following character sets are predefined:

lower-case (set "abcdefghijklmnopqrstuvwxyz")
upper-case (set "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
alphabetic (union lower-case upper-case)
numeric (set "0123456789")
alphanumeric (union alphabetic numeric)
punctuation (set "!\"#$%&’()*+,-./:;<=>?@[\\]ˆ_‘{|}˜")
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graphic (union alphanumeric punctuation)
printing (union graphic (set #\space))
control (negate printing)
blank (set #\space (ascii->char 9)) ; 9 is tab
whitespace (union (set #\space) (ascii-range 9 13))
hexdigit (set "0123456789abcdefABCDEF")

The above are taken from the default locale in POSIX. The characters in whitespace
are space, tab, newline (= line feed), vertical tab, form feed, and carriage return.

5.20.2 Anchoring

• (string-start) → reg-exp
• (string-end) → reg-exp

String-start returns a regular expression that matches the beginning of the string
being matched against; string-end returns one that matches the end.

5.20.3 Composite expressions

• (sequence reg-exp . . . ) → reg-exp
• (one-of reg-exp . . . ) → reg-exp

Sequence matches the concatenation of its arguments, one-of matches any one of
its arguments.

• (text string) → reg-exp

Text returns a regular expression that matches the characters in string, in order.

• (repeat reg-exp) → reg-exp
• (repeat count reg-exp) → reg-exp
• (repeat min max reg-exp) → reg-exp

Repeat returns a regular expression that matches zero or more occurences of its reg-
exp argument. With no count the result will match any number of times (reg-exp*).
With a single count the returned expression will match reg-exp exactly that number of
times. The final case will match from min to max repetitions, inclusive. Max may be
#f , in which case there is no maximum number of matches. Count and min should
be exact, non-negative integers; max should either be an exact non-negative integer or
#f .

5.20.4 Case sensitivity

Regular expressions are normally case-sensitive.

• (ignore-case reg-exp) → reg-exp
• (use-case reg-exp) → reg-exp
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The value returned by ignore-case is identical its argument except that case will
be ignored when matching. The value returned by use-case is protected from
future applications of ignore-case . The expressions returned by use-case and
ignore-case are unaffected by later uses of the these procedures. By way of exam-
ple, the following matches "ab" but not "aB" , "Ab" , or "AB" .

(text "ab")

while

(ignore-case (test "ab"))

matches "ab" , "aB" , "Ab" , and "AB" and

(ignore-case (sequence (text "a")
(use-case (text "b"))))

matches "ab" and "Ab" but not "aB" or "AB" .

5.20.5 Submatches and matching

A subexpression within a larger expression can be marked as a submatch. When an
expression is matched against a string, the success or failure of each submatch within
that expression is reported, as well as the location of the substring matched be each
successful submatch.

• (submatch key reg-exp) → reg-exp
• (no-submatches reg-exp) → reg-exp

Submatch returns a regular expression that matches its argument and causes the re-
sult of matching its argument to be reported by the match procedure. Key is used
to indicate the result of this particular submatch in the alist of successful submatches
returned by match . Any value may be used as a key. No-submatches returns an
expression identical to its argument, except that all submatches have been elided.

• (any-match? reg-exp string) → boolean
• (exact-match? reg-exp string) → boolean
• (match reg-exp string) → match or #f
• (match-start match) → index
• (match-end match) → index
• (match-submatches match) → alist

Any-match? returns #t if string matches reg-exp or contains a substring that does,
and #f otherwise. Exact-match? returns #t if string matches reg-exp and #f other-
wise.

Match returns #f if reg-exp does not match string and a match record if it does
match. A match record contains three values: the beginning and end of the substring
that matched the pattern and an a-list of submatch keys and corresponding match
records for any submatches that also matched. Match-start returns the index of
the first character in the matching substring and match-end gives index of the first
character after the matching substring. Match-submatches returns an alist of sub-
match keys and match records. Only the top match record returned by match has a
submatch alist.
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Matching occurs according to POSIX. The match returned is the one with the low-
est starting index in string. If there is more than one such match, the longest is re-
turned. Within that match the longest possible submatches are returned.

All three matching procedures cache a compiled version of reg-exp. Subsequent
calls with the same reg-exp will be more efficient.

The C interface to the POSIX regular expression code uses ASCII nul as an end-
of-string marker. The matching procedures will ignore any characters following an
embedded ASCII nul s in string.

(define pattern (text "abc"))
(any-match? pattern "abc") → #t
(any-match? pattern "abx") → #f
(any-match? pattern "xxabcxx") → #t

(exact-match? pattern "abc") → #t
(exact-match? pattern "abx") → #f
(exact-match? pattern "xxabcxx") → #f

(match pattern "abc") → (# {match 0 3 })
(match pattern "abx") → #f
(match pattern "xxabcxx") → (# {match 2 5 })

(let ((x (match (sequence (text "ab")
(submatch ’foo (text "cd"))
(text "ef"))

"xxxabcdefxx")))
(list x (match-submatches x)))
→ (# {match 3 9 } ((foo . # {match 5 7 }))

(match-submatches
(match (sequence

(set "a")
(one-of (submatch ’foo (text "bc"))

(submatch ’bar (text "BC"))))
"xxxaBCd"))

→ ((bar . # {match 4 6 }))

5.21 SRFIs

‘SRFI’ stands for ‘Scheme Request For Implementation’. An SRFI is a descrip-
tion of an extension to standard Scheme. Draft and final SRFI documents, a
FAQ, and other information about SRFIs can be found at the SRFI web site at
http://srfi.schemers.org .

Scheme 48 includes implementations of the following (final) SRFIs:

• SRFI 1 – List Library

• SRFI 2 – and-let*
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• SRFI 5 – let with signatures and rest arguments

• SRFI 6 – Basic string ports

• SRFI 7 – Program configuration

• SRFI 8 – receive

• SRFI 9 – Defining record types

• SRFI 11 – Syntax for receiving multiple values

• SRFI 13 – String Library

• SRFI 14 – Character-Set Library (see note below)

• SRFI 16 – Syntax for procedures of variable arity

• SRFI 17 – Generalized set!

• SRFI 22 – Running Scheme Scripts on Unix

• SRFI 23 – Error reporting mechanism

• SRFI 25 – Multi-dimensional Array Primitives

• SRFI 26 – Notation for Specializing Parameters without Currying

• SRFI 27 – Sources of Random Bits

• SRFI 28 – Basic Format Strings

• SRFI 31 – A special form rec for recursive evaluation

• SRFI 37 – args-fold: a program argument processor

• SRFI 42 – Eager Comprehensions

• SRFI 45 – Primitives for Expressing Iterative Lazy Algorithms

Documentation on these can be found at the web site mentioned above.
SRFI 14 includes the procedure ->char-set which is not a standard Scheme iden-

tifier (in R5RS the only required identifier starting with - is - itself). In the Scheme 48
version of SRFI 14 we have renamed ->char-set as x->char-set .

The SRFI bindings can be accessed either by opening the appropriate structure (the
structure srfi- n contains SRFI n) or by loading structure srfi-7 and then using the
,load-srfi-7-program command to load an SRFI 7-style program. The syntax for
the command is

,load-srfi-7-program name filename

This creates a new structure and associated package, binds the structure to name in the
configuration package, and then loads the program found in filename into the package.

As an example, if the file test.scm contains
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(program (code (define x 10)))

this program can be loaded as follows:

> ,load-package srfi-7
> ,load-srfi-7-program test test.scm
[test]
> ,in test
test> x
10
test>
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Chapter 6

Threads

This chapter describes Scheme 48’s thread system: Scheme 48 threads are fully
preemptive; all threads (currently) run within a single operating system process.
Scheme 48 allows writing customized, nested schedulers, and provides numerous fa-
cilities for the synchronization of shared-memory programs, most importantly propos-
als for optimistic concurrency.

6.1 Creating and controlling threads

The bindings described in this section are part of the threads structure.

• (spawn thunk) → thread
• (spawn thunk name) → thread

Spawn creates a new thread, passes that thread to the current scheduler, and instructs
the scheduler to run thunk in that thread. The name argument (a symbol) associates a
symbolic name with the thread; it is purely for debugging purposes.

• (relinquish-timeslice)
• (sleep time-in-milliseconds)
• (terminate-current-thread)

Relinquish-timeslice instructs the scheduler to run another thread, thus relin-
quishing the timeslice of the current thread. Sleep does the same and asks the sched-
uler to suspend the current thread for at least time-in-milliseconds milliseconds before
resuming it. Finally, terminate-current-thread terminates the current thread.

Each thread is represented by a thread object. The following procedures operate
on that object:

• (current-thread) → thread
• (thread? thing) → boolean
• (thread-name thread) → name
• (thread-uid thread) → integer

Current-thread returns the thread object associated with the currently running
thread. Thread? is the predicate for thread objects. Thread-name extracts the name
of the thread, if one was specified in the call to spawn , #f otherwise. Thread-uid
returns the uid of the thread, a unique integer assigned by the thread system.

66



6.2 Advanced thread handling

The following bindings are part of the threads-internal structure:

• (terminate-thread! thread)
• (kill-thread! thread)

Terminate-thread! unwinds the thread associated with thread, running any pend-
ing dynamic-wind after thunks (in that thread), after which the thread terminates.
Kill-thread! causes the thread associated with thread to terminate immediately
without unwinding its continuation.

6.3 Debugging multithreaded programs

Debugging multithreaded programs can be difficult.
As described in section 3.11, when any thread signals an error, Scheme 48 stops

running all of the threads at that command level.
The following procedure (exported by the structure debug-messages ) is useful

in debugging multi-threaded programs.

• (debug-message element0 . . . )

Debug-message prints the elements to ‘stderr ’, followed by a newline. The only
types of values that debug-message prints in full are small integers (fixnums),
strings, characters, symbols, booleans, and the empty list. Values of other types are
abbreviated as follows:

pair (...)
vector #(...)
procedure #{procedure }
record #{<name of record type> }
all others ???

The great thing about debug-message is that it bypasses Scheme 48’s I/O and thread
handling. The message appears immediately, with no delays or errors.

6.4 Optimistic concurrency

Most of the bindings described in this section are part of the proposals structure—
the low-level bindings described at the very end of the section are part of the
low-proposals structure.

A proposal is a record of reads from and and writes to locations in memory. Each
thread has an associated current proposal (which may be #f ). The logging operations
listed below record any values read or written in the current proposal. A reading oper-
ation, such as provisional-vector-ref , first checks to see if the current proposal
contains a value for the relevent location. If so, that value is returned as the result of
the read. If not, the current contents of the location are stored in the proposal and then
returned as the result of the read. A logging write to a location stores the new value as
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the current contents of the location in the current proposal; the contents of the location
itself remain unchanged.

Committing to a proposal verifies that any reads logged in the proposal are still
valid and, if so, performs any writes that the proposal contains. A logged read is
valid if, at the time of the commit, the location contains the same value it had at the
time of the original read (note that this does not mean that no change occured, simply
that the value now is the same as the value then). If a proposal has an invalid read
then the effort to commit fails; no change is made to the value of any location. The
verifications and subsequent writes to memory are performed atomically with respect
to other proposal commit attempts.

• (call-ensuring-atomicity thunk) → value . . .
• (call-ensuring-atomicity! thunk)
• (ensure-atomicity exp ...) → value . . . syntax
• (ensure-atomicity! exp ...) syntax

If there is a proposal in place call-ensuring-atomicity and
call-ensuring-atomicity! simply make a (tail-recursive) call to thunk. If
the current proposal is #f they create a new proposal, install it, call thunk, and then
try to commit to the proposal. This process repeats, with a new proposal on each it-
eration, until the commit succeeds. Call-ensuring-atomicity returns whatever
values are returned by thunk on its final invocation, while ensure-atomicity!
discards any such values and returns nothing.

Ensure-Atomicity and ensure-atomicity! are macro versions
of call-ensuring-atomicity and call-ensuring-atomicity! :
(ensure-atomicity exp ...) expands into (call-ensuring-atomicity
(lambda () exp ...)) ; likewise for ensure-atomicity! and
call-ensuring-atomicity! .

• (provisional-car pair) → value
• (provisional-cdr pair) → value
• (provisional-set-car! pair value)
• (provisional-set-cdr! pair value)
• (provisional-cell-ref cell) → value
• (provisional-cell-set! cell value)
• (provisional-vector-ref vector i) → value
• (provisional-vector-set! vector i value)
• (provisional-string-ref vector i) → char
• (provisional-string-set! vector i char)
• (provisional-byte-vector-ref vector i) → k
• (provisional-byte-vector-set! vector i k)

These are all logging versions of their Scheme counterparts. Reads are checked when
the current proposal is committed and writes are delayed until the commit succeeds.
If the current proposal is #f these perform exactly as their Scheme counterparts.

The following implementation of a simple counter may not function properly
when used by multiple threads.

(define (make-counter)
(let ((value 0))
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(lambda ()
(set! value (+ value 1))
value)))

Here is the same procedure using a proposal to ensure that each increment oper-
ation happens atomically. The value of the counter is kept in a cell (see section 5.7 to
allow the use of logging operations.

(define (make-counter)
(let ((value (make-cell 0)))

(lambda ()
(ensure-atomicity

(lambda ()
(let ((v (+ (provisional-cell-ref value)

1)))
(provisional-cell-set! value v)
v))))))

Because ensure-atomicity creates a new proposal only if there is no existing
proposal in place, multiple atomic actions can be merged into a single atomic ac-
tion. For example, the following procedure increments an arbitrary number of coun-
ters at the same time. This works even if the same counter appears multiple times;
(step-counters! c0 c0) would add two to the value of counter c0 .

(define (step-counters! . counters)
(ensure-atomicity

(lambda ()
(for-each (lambda (counter)

(counter))
counters))))

(define-synchronized-record-type tag type-name
( constructor-name field-tag ...)
[( field-tag ...)]
predicate-name
( field-tag accessor-name [ modifier-name])
...)

This is the same as define-record-type except all field reads and writes are
logged in the current proposal. If the optional list of field tags is present then only
those fields will be logged.

• (call-atomically thunk) → value(s)
• (call-atomically! thunk)
• (atomically exp ...) → value(s) syntax
• (atomically! exp ...) syntax

Call-atomically and call-atomically! are identical to
call-ensuring-atomicity and call-ensuring-atomicity! except that they
always install a new proposal before calling thunk . The current proposal is saved and
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then restored after thunk returns. Call-atomically and Call-atomically!
are useful if thunk contains code that is not to be combined with any other operation.

Atomically and atomically! are macro versions of call-atomically and
call-atomically! : (atomically exp ...) expands into (call-atomically
(lambda () exp ...)) ; likewise for atomically! and call-atomically! .

• (with-new-proposal ( lose) exp ...) → value . . . syntax

With-new-proposal saves the current proposal, installs a new one, executes the
forms in the body, and returns whatever they returns. It also binds lose to a thunk re-
peating the procedure of installing a new procedure and running the body. Typically,
the body will call maybe-commit and, if that fails, call lose to try again.

The following procedures give access to the low-level proposal mechanism. They
are defined in the low-proposals structure.

• (maybe-commit) → boolean
• (make-proposal) → proposal
• (current-proposal) → proposal
• (set-current-proposal! proposal)

Maybe-commit verifies that any reads logged in the current proposal are still valid
and, if so, performs any writes that it contains. A logged read is valid if, at the time of
the commit, the location read contains the same value it had at the time of the original
read (note that this does not mean that no change occured, simply that the value now
is the same as the value then). Maybe-commit returns #t if the commit succeeds and
#f if it fails.

Make-proposal creates a new proposal. Current-proposal and
set-current-proposal access and set the current thread’s proposal. It is an
error to pass to set-current-proposal! a proposal that is already in use.

6.5 Condition variables

Condition variables (defined in the condvars structure) allow threads perform con-
dition synchronization: It allows threads to block, waiting for a specified condition—
associated with a condition variable—to occur, and other threads to wake up the wait-
ing threads when the condition is fulfilled.

Note that, in Scheme 48, condition variables work in conjunction with proposals,
not with mutex locks or semaphores, as in most other implementations of this concept.

• (make-condvar) → condvar
• (make-condvar id) → condvar
• (condvar? thing) → boolean
• (set-condvar-has-value?! condvar boolean)
• (condvar-has-value? condvar) → boolean
• (set-condvar-value! condvar value)
• (condvar-value condvar) → value
• (maybe-commit-and-wait-for-condvar condvar) → boolean
• (maybe-commit-and-set-condvar! condvar value) → boolean
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Make-condvar creates a condition variable. (The optional id argument is only for
debugging purposes; the discloser for condition variables prints it out if present.)
Condvar? is the predicate for condition variables.

Each condition variable has an associated value and a flag has-value? signalling
if the condition has already occured. The accessor for flag is condvar-has-value? ;
set-condvar-has-value?! sets it. Both are provisional operations and go
through the current proposal. Set-condvar-value! sets the value of the condi-
tion variable (provisionally), and condvar-value extracts it.

Maybe-commit-and-wait-for-condvar attempts to commit the cur-
rent proposal. If the commit succeeds, it suspends the current thread and
registers it with the condvar condition variable. Upon waking up again
maybe-commit-and-wait-for-condvar returns #t , If the commit fails,
maybe-commit-and-set-condvar returns #f .

Maybe-commit-and-set-condvar! sets the value of the condvar condition
variable to value, (provisionally) sets the has-value? flag to #t , and then attempt
to commit the current proposal. Upon success, it wakes up all suspended threads
registered with condvar and returns #t , otherwise, it returns #f .

6.6 Mutual exclusion

Scheme 48 also has more traditional mutual-exclusion synchronization abstractions,
specifically mutex locks and placeholders. Note that typically synchronization via
optimistic concurrency is usually preferable: Mutual exclusion often puts the running
program into an inconsistent state for the time of the inclusion, which has adverse
effects on modularity and interruptibility.

6.6.1 Locks

The locks structure contains bindings that implement standard mutex locks:

• (make-lock) → lock
• (lock? thing) → boolean
• (obtain-lock lock)
• (maybe-obtain-lock lock) → boolean
• (release-lock lock)

Make-lock creates a lock in the “released” state. Lock? is the predicate for locks.
Obtain-lock atomically checks if lock is in the “released” state. If it is, the lock

is put into the “obtained” state, and obtain-lock returns immediately. If the lock is
in the “obtained” state, the current thread is suspended and registered with the lock.
Maybe-obtain-lock , like obtain-lock , checks the state of lock: if it is “released,”
the lock is put into the “obtained” state, if it is “obtained,” maybe-obtain-lock
returns immediately. Maybe-obtain-lock returns #t if it was able to obtain the
lock, and #f otherwise.

Release-lock does nothing if lock is in the “released” state. If it is in
the “obtained” state, release-lock causes one of the threads suspended on an
obtain-lock lock operation to continue execution. If that thread is the last thread
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registered with the lock, the lock is transferred to the “released” state. In any case,
release-lock returns immediately.

6.6.2 Placeholders

The placeholders structure contains bindings for placeholders—thread-safe, write-
once variables, akin to ID-90 I-structures or CML I-variables.

The typical scenario for placeholders is that, say, a thread A computes a value
needed by another thread B at some unspecified time. Both threads share access to a
placeholder; when A has computed the value, it places it into the placeholder. When
B needs the value, it extracts it from placeholder, blocking if necessary.

• (make-placeholder) → placeholder
• (make-placeholder id) → placeholder
• (placeholder? thing) → boolean
• (placeholder-set! placeholder value)
• (placeholder-value placeholder) → value

Make-placeholder creates an empty placeholder. (The optional id argument is
only for debugging purposes; the discloser for placeholders prints it out if present.)
Placeholder? is the predicate for placeholders.

Placeholder-set! places a value into a placeholder. Doing this more than once
signals an error. Placeholder-value extracts the value from the placeholder and
returns it. If the placeholder is empty, it blocks the current thread until it becomes full.

6.7 Writing custom synchronization abstractions

The bindings explained in this section are part of the threads-internal structure.
They are concerned with suspending threads and making them runnable again upon
some later event.

Typically, a suspended thread needs to be recorded in a queue somewhere for later
waking-up. To allow a thread to be recorded in multiple queues (say, when it waits
for one of a number of events), such thread queues are ordinary queues containing cells
that, in turn, contain the thread objects themselves. Each thread has at most one such
cell associated with it which is shared among all queues (or other data structures)
holding on to the suspended thread. The cell is cleared when the thread is woken up.

• (thread-queue-empty? thread-queue) → boolean
• (maybe-dequeue-thread! thread-queue) → boolean

Thread-queue-empty? atomically checks whether the thread-queue thread queue is
empty, i.e., if it does not contain non-empty cells. Maybe-dequeue-thread! provi-
sionally dequeues a thread from thread-queue if it contains one. It returns the dequeued
thread or #f if the queue is empty.

• (maybe-commit-and-block cell) → boolean
• (maybe-commit-and-block-on-queue thread-queue) → boolean
• (maybe-commit-and-make-ready thread-or-queue) → boolean
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Maybe-commit-and-block attempts to commit the current proposal. If this suc-
ceeds, the current thread is blocked, the thread’s cell is set to cell, and #t is re-
turned. Otherwise, #f is returned. Maybe-commit-and-block-on-queue is like
maybe-commit-and-block , excepts that it creates a fresh cell for the thread and
enqueues it in thread-queue if the commit succeeds.

Maybe-commit-and-make-ready accepts either a thread object or a thread
queue as an argument. In either case, maybe-commit-and-make-ready tries to
commit the current proposal. If that succeeds, it maybe-commit-and-make-ready
makes its argument runnable: if thread-or-queue is a thread, that thread is made
runnable, if it is a thread queue, all threads on the queue are made runnable. (In
the latter case, none of the threads actually runs until all have been made runnable.)
Marybe-commit-and-make-ready returns #t if it succeeded, and #f otherwise.
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Chapter 7

Mixing Scheme 48 and C

This chapter describes an interface for calling C functions from Scheme, calling
Scheme functions from C, and allocating storage in the Scheme heap.. Scheme 48 man-
ages stub functions in C that negotiate between the calling conventions of Scheme and
C and the memory allocation policies of both worlds. No stub generator is available
yet, but writing stubs is a straightforward task.

7.1 Available facilities

The following facilities are available for interfacing between Scheme 48 and C:

• Scheme code can call C functions.

• The external interface provides full introspection for all Scheme objects. External
code may inspect, modify, and allocate Scheme objects arbitrarily.

• External code may raise exceptions back to Scheme 48 to signal errors.

• External code may call back into Scheme. Scheme 48 correctly unrolls the process
stack on non-local exits.

• External modules may register bindings of names to values with a central reg-
istry accessible from Scheme. Conversely, Scheme code can register shared bind-
ings for access by C code.

7.1.1 Scheme structures

The structure external-calls has most of the Scheme functions described here.
The others are in dynamic-externals , which has the functions for dynamic loading
and name lookup from Section 7.5, and shared-bindings , which has the additional
shared-binding functions described in Section 7.2.3.

7.1.2 C naming conventions

The names of all of Scheme 48’s visible C bindings begin with ‘s48 ’ (for procedures
and variables) or ‘S48 ’ (for macros). Whenever a C name is derived from a Scheme
identifier, we replace ‘- ’ with ‘ ’ and convert letters to lowercase for procedures and
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uppercase for macros. A final ‘?’ converted to ‘ p’ (‘ P’ in C macro names). A final
‘! ’ is dropped. Thus the C macro for Scheme’s pair? is S48 PAIR P and the one
for set-car! is S48 SET CAR. Procedures and macros that do not check the types of
their arguments have ‘unsafe ’ in their names.

All of the C functions and macros described have prototypes or definitions in the
file c/scheme48.h . The C type for Scheme values is defined there to be s48 value .

7.1.3 Garbage collection

Scheme 48 uses a copying garbage collector. The collector must be able to locate all
references to objects allocated in the Scheme 48 heap in order to ensure that storage is
not reclaimed prematurely and to update references to objects moved by the collector.
The garbage collector may run whenever an object is allocated in the heap. C variables
whose values are Scheme 48 objects and which are live across heap allocation calls
need to be registered with the garbage collectorgarbage collector. See section 7.9 for
more information.

7.2 Shared bindings

Shared bindings are the means by which named values are shared between Scheme
code and C code. There are two separate tables of shared bindings, one for values
defined in Scheme and accessed from C and the other for values going the other way.
Shared bindings actually bind names to cells, to allow a name to be looked up before
it has been assigned. This is necessary because C initialization code may be run before
or after the corresponding Scheme code, depending on whether the Scheme code is in
the resumed image or is run in the current session.

7.2.1 Exporting Scheme values to C

• (define-exported-binding name value) → shared-binding

• s48 value s48 get imported binding(char *name)
• s48 value S48 SHAREDBINDING REF(s48 value shared binding)

Define-exported-binding makes value available to C code under as name which
must be a string, creating a new shared binding if necessary. The C function
s48 get imported binding returns the shared binding defined for name, again
creating it if necessary. The C macro S48 SHAREDBINDING REF dereferences a
shared binding, returning its current value.

7.2.2 Exporting C values to Scheme

• void s48 define exported binding(char *name, s48 value v)

• (lookup-imported-binding string) → shared-binding
• (shared-binding-ref shared-binding) → value

These are used to define shared bindings from C and to access them from Scheme.
Again, if a name is looked up before it has been defined, a new binding is created for
it.
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The common case of exporting a C function to Scheme can be done using the macro
S48 EXPORTFUNCTION(name) . This expands into

s48 define exported binding(" name",
s48 enter pointer( name))

which boxes the function into a Scheme byte vector and then exports it. Note that
s48 enter pointer allocates space in the Scheme heap and might trigger a garbage
collection; see Section 7.9.

• (import-definition name) syntax
• (import-definition name c-name) syntax

These macros simplify importing definitions from C to Scheme. They expand into
(define name (lookup-imported-binding c-name))

where c-name is as supplied for the second form. For the first form c-name is derived
from name by replacing ‘- ’ with ‘ ’ and converting letters to lowercase. For example,
(import-definition my-foo) expands into

(define my-foo (lookup-imported-binding "my foo"))

7.2.3 Complete shared binding interface

There are a number of other Scheme functions related to shared bindings; these are in
the structure shared-bindings .

• (shared-binding? x) → boolean
• (shared-binding-name shared-binding) → string
• (shared-binding-is-import? shared-binding) → boolean
• (shared-binding-set! shared-binding value)
• (define-imported-binding string value)
• (lookup-exported-binding string)
• (undefine-imported-binding string)
• (undefine-exported-binding string)

Shared-binding? is the predicate for shared-bindings. Shared-binding-name
returns the name of a binding. Shared-binding-is-import? is true if the bind-
ing was defined from C. Shared-binding-set! changes the value of a binding.
Define-imported-binding and lookup-exported-binding are Scheme ver-
sions of s48 define exported binding and s48 lookup imported binding .
The two undefine- procedures remove bindings from the two tables. They do noth-
ing if the name is not found in the table.

The following C macros correspond to the Scheme functions above.

• int S48 SHAREDBINDING P(x)
• int S48 SHAREDBINDING IS IMPORTP(s48 value s b)
• s48 value S48 SHAREDBINDING NAME(s48 value s b)
• void S48 SHAREDBINDING SET(s48 value s b, s48 value v)
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7.3 Calling C functions from Scheme

There are three different ways to call C functions from Scheme, depending on how the
C function was obtained.

• (call-imported-binding binding arg0 . . . ) → value
• (call-external external arg0 . . . ) → value
• (call-external-value value name arg0 . . . ) → value

Each of these applies its first argument, a C function, to the rest of the arguments.
For call-imported-binding the function argument must be an imported binding.
For call-external the function argument must be an external bound in the current
process (see Section 7.5). For call-external-value value must be a byte vector
whose contents is a pointer to a C function and name should be a string naming the
function. The name argument is used only for printing error messages.

For all of these, the C function is passed the argi values and the value returned
is that returned by C procedure. No automatic representation conversion occurs for
either arguments or return values. Up to twelve arguments may be passed. There is
no method supplied for returning multiple values to Scheme from C (or vice versa)
(mainly because C does not have multiple return values).

Keyboard interrupts that occur during a call to a C function are ignored until the
function returns to Scheme (this is clearly a problem; we are working on a solution).

• (import-lambda-definition name ( formal ...)) syntax
• (import-lambda-definition name ( formal ...) c-name) syntax

These macros simplify importing functions from C. They define name to be a function
with the given formals that applies those formals to the corresponding C binding.
C-name, if supplied, should be a string. These expand into

(define temp (lookup-imported-binding c-name))
(define name

(lambda ( formal ...)
(call-imported-binding temp formal ...)))

If c-name is not supplied, it is derived from name by converting all letters to lowercase
and replacing ‘- ’ with ‘ ’.

7.4 Adding external modules to the Makefile

Getting access to C bindings from Scheme requires that the C code be compiled and
linked in with the Scheme 48 virtual machine and that the relevant shared bindings
be created. The Scheme 48 makefile has rules for compiling and linking external code
and for specifying initialization functions that should be called on startup. There are
three Makefile variables that control which external modules are included in the ex-
ecutable for the virtual machine (scheme48vm). EXTERNALOBJECTSlists the object
files to be included in scheme48vm, EXTERNALFLAGSis a list of ld flags to be used
when creating scheme48vm, and EXTERNALINITIALIZERS is a list of C procedures
to be called on startup. The procedures listed in EXTERNALINITIALIZERS should
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take no arguments and have a return type of void . After changing the definitions
of any of these variables you should do make scheme48vm to rebuild the virtual
machine.

7.5 Dynamic loading

External code can be loaded into a running Scheme 48 process and C object-file bind-
ings can be dereferenced at runtime and their values called (although not all ver-
sions of Unix support all of this). The required Scheme functions are in the structure
dynamic-externals .

• (dynamic-load string)

Dynamic-load loads the named file into the current process, raising an exception
if the file cannot be found or if dynamic loading is not supported by the operating
system. The file must have been compiled and linked appropriately. For Linux, the
following commands compile foo.c into a file foo.so that can be loaded dynami-
cally.

% gcc -c -o foo.o foo.c
% ld -shared -o foo.so foo.o

• (get-external string) → external
• (external? x) → boolean
• (external-name external) → string
• (external-value external) → byte-vector

These functions give access to values bound in the current process, and are used for
retrieving values from dynamically-loaded files. Get-external returns an external
object that contains the value of name, raising an exception if there is no such value in
the current process. External? is the predicate for externals, and external-name
and external-value return the name and value of an external. The value is re-
turned as byte vector of length four (on 32-bit architectures). The value is that which
was extant when get-external was called. The following two functions can be
used to update the values of externals.

• (lookup-external external) → boolean
• (lookup-all-externals) → boolean

Lookup-external updates the value of external by looking up its name in
the current process, returning #t if the name is bound and #f if it is not.
Lookup-all-externals calls lookup-external on all extant externals, return-
ing #f any are unbound.

• (call-external external arg0 . . . ) → value

An external whose value is a C procedure can be called using call-external . See
Section 7.3 for more information.

In some versions of Unix retrieving a value from the current process may require
a non-trivial amount of computation. We recommend that a dynamically-loaded file
contain a single initialization procedure that creates shared bindings for the values
exported by the file.
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7.6 Compatibility

Scheme 48’s old external-call function is still available in the structure
externals , which now also includes external-name and external-value . The
old scheme48.h file has been renamed old-scheme48.h .

7.7 Accessing Scheme data from C

The C header file scheme48.h provides access to Scheme 48 data structures. The
type s48 value is used for Scheme values. When the type of a value is known,
such as the integer returned by vector-length or the boolean returned by pair? ,
the corresponding C procedure returns a C value of the appropriate type, and not a
s48 value . Predicates return 1 for true and 0 for false.

7.7.1 Constants

The following macros denote Scheme constants:

• S48 FALSEis #f .

• S48 TRUEis #t .

• S48 NULL is the empty list.

• S48 UNSPECIFIC is a value used for functions which have no meaning-
ful return value (in Scheme 48 this value returned by the nullary procedure
unspecific in the structure util ).

• S48 EOF is the end-of-file object (in Scheme 48 this value is returned by the
nullary procedure eof-object in the structure i/o-internal ).

7.7.2 Converting values

The following macros and functions convert values between Scheme and C represen-
tations. The ‘extract’ ones convert from Scheme to C and the ‘enter’s go the other
way.

• int S48 EXTRACTBOOLEAN(s48 value)
• unsigned char s48 extract char(s48 value)
• char * s48 extract string(s48 value)
• char * s48 extract byte vector(s48 value)
• long s48 extract integer(s48 value)
• double s48 extract double(s48 value)
• s48 value S48 ENTERBOOLEAN(int)
• s48 value s48 enter char(unsigned char)
• s48 value s48 enter string(char *) (may GC)
• s48 value s48 enter byte vector(char *, long) (may GC)
• s48 value s48 enter integer(long) (may GC)
• s48 value s48 enter double(double) (may GC)
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S48 EXTRACTBOOLEAN is false if its argument is #f and true otherwise.
S48 ENTERBOOLEANis #f if its argument is zero and #t otherwise.

s48 extract string and s48 extract byte vector return pointers to the
actual storage used by the string or byte vector. These pointers are valid only until the
next garbage collection; see Section 7.9.

The second argument to s48 enter byte vector is the length of byte vector.
s48 enter integer() needs to allocate storage when its argument is too large

to fit in a Scheme 48 fixnum. In cases where the number is known to fit within a
fixnum (currently 30 bits including the sign), the following procedures can be used.
These have the disadvantage of only having a limited range, but the advantage of
never causing a garbage collection. S48 FIXNUMP is a macro that true if its argument
is a fixnum and false otherwise.

• int S48 TRUEP(s48 value)
• int S48 FALSE P(s48 value)

S48 TRUEP is true if its argument is S48 TRUEand S48 FALSE P is true if its argu-
ment is S48 FALSE.

• int S48 FIXNUMP(s48 value)
• long s48 extract fixnum(s48 value)
• s48 value s48 enter fixnum(long)
• long S48 MAXFIXNUMVALUE
• long S48 MIN FIXNUMVALUE

An error is signalled if s48 extract fixnum ’s argument is not a fixnum or if the ar-
gument to s48 enter fixnum is less than S48 MIN FIXNUMVALUEor greater than
S48 MAXFIXNUMVALUE(−229 and 229 − 1 in the current system).

7.7.3 C versions of Scheme procedures

The following macros and procedures are C versions of Scheme procedures. The
names were derived by replacing ‘- ’ with ‘ ’, ‘?’ with ‘ P’, and dropping ‘! .

• int S48 EQP(s48 value, s48 VALUE)
• int S48 CHARP(s48 value)

• int S48 PAIR P(s48 value)
• s48 value S48 CAR(s48 value)
• s48 value S48 CDR(s48 value)
• void S48 SET CAR(s48 value, s48 value)
• void S48 SET CDR(s48 value, s48 value)
• s48 value s48 cons(s48 value, s48 value) (may GC)
• long s48 length(s48 value)

• int S48 VECTORP(s48 value)
• long S48 VECTORLENGTH(s48 value)
• s48 value S48 VECTORREF(s48 value, long)
• void S48 VECTORSET(s48 value, long, s48 value)
• s48 value s48 make vector(long, s48 value) (may GC)

• int S48 STRING P(s48 value)
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• long S48 STRING LENGTH(s48 value)
• char S48 STRING REF(s48 value, long)
• void S48 STRING SET(s48 value, long, char)
• s48 value s48 make string(long, char) (may GC)

• int S48 SYMBOLP(s48 value)
• s48 value s48 SYMBOLTO STRING(s48 value)

• int S48 BYTE VECTORP(s48 value)
• long S48 BYTE VECTORLENGTH(s48 value)
• char S48 BYTE VECTORREF(s48 value, long)
• void S48 BYTE VECTORSET(s48 value, long, int)
• s48 value s48 make byte vector(long, int) (may GC)

7.8 Calling Scheme functions from C

External code that has been called from Scheme can call back to Scheme procedures
using the following function.

• s48 value s48 call scheme(s48 value p, long nargs, ...)

This calls the Scheme procedure p on nargs arguments, which are passed as addi-
tional arguments to s48 call scheme . There may be at most twelve arguments. The
value returned by the Scheme procedure is returned by the C procedure. Invoking any
Scheme procedure may potentially cause a garbage collection.

There are some complications that occur when mixing calls from C to Scheme
with continuations and threads. C only supports downward continuations (via
longjmp() ). Scheme continuations that capture a portion of the C stack have to
follow the same restriction. For example, suppose Scheme procedure s0 captures
continuation a and then calls C procedure c0 , which in turn calls Scheme procedure
s1 . Procedure s1 can safely call the continuation a, because that is a downward use.
When a is called Scheme 48 will remove the portion of the C stack used by the call
to c0 . On the other hand, if s1 captures a continuation, that continuation cannot be
used from s0 , because by the time control returns to s0 the C stack used by c0 will
no longer be valid. An attempt to invoke an upward continuation that is closed over
a portion of the C stack will raise an exception.

In Scheme 48 threads are implemented using continuations, so the downward re-
striction applies to them as well. An attempt to return from Scheme to C at a time
when the appropriate C frame is not on top of the C stack will cause the current thread
to block until the frame is available. For example, suppose thread t0 calls a C proce-
dure which calls back to Scheme, at which point control switches to thread t1 , which
also calls C and then back to Scheme. At this point both t0 and t1 have active calls to
C on the C stack, with t1 ’s C frame above t0 ’s. If thread t0 attempts to return from
Scheme to C it will block, as its frame is not accessible. Once t1 has returned to C
and from there to Scheme, t0 will be able to resume. The return to Scheme is required
because context switches can only occur while Scheme code is running. T0 will also
be able to resume if t1 uses a continuation to throw past its call to C.
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7.9 Interacting with the Scheme heap

Scheme 48 uses a copying, precise garbage collector. Any procedure that allocates ob-
jects within the Scheme 48 heap may trigger a garbage collection. Variables bound
to values in the Scheme 48 heap need to be registered with the garbage collector
so that the value will be retained and so that the variables will be updated if the
garbage collector moves the object. The garbage collector has no facility for updat-
ing pointers to the interiors of objects, so such pointers, for example the ones returned
by EXTRACTSTRING, will likely become invalid when a garbage collection occurs.

7.9.1 Registering objects with the GC

A set of macros are used to manage the registration of local variables with the garbage
collector.

• S48 DECLAREGCPROTECT(n)
• void S48 GCPROTECTn(s48 value 1, . . ., s48 value n)
• void S48 GCUNPROTECT()

S48 DECLAREGCPROTECT(n) , where 1 ≤ n ≤ 9, allocates storage for regis-
tering n variables. At most one use of S48 DECLAREGCPROTECTmay occur in a
block. S48 GCPROTECTn( v1, . . ., vn) registers the n variables (l-values) with the
garbage collector. It must be within scope of a S48 DECLAREGCPROTECT(n) and
be before any code which can cause a GC. S48 GCUNPROTECTremoves the block’s
protected variables from the garbage collector’s list. It must be called at the end of the
block after any code which may cause a garbage collection. Omitting any of the three
may cause serious and hard-to-debug problems. Notably, the garbage collector may
relocate an object and invalidate s48 value variables which are not protected.

A gc-protection-mismatch exception is raised if, when a C procedure returns
to Scheme, the calls to S48 GCPROTECT() have not been matched by an equal num-
ber of calls to S48 GCUNPROTECT().

Global variables may also be registered with the garbage collector.

• void S48 GCPROTECTGLOBAL(value)

S48 GCPROTECTGLOBALpermanently registers the variable value (an l-value) with
the garbage collector. There is no way to unregister the variable.

7.9.2 Keeping C data structures in the Scheme heap

C data structures can be kept in the Scheme heap by embedding them inside byte
vectors. The following macros can be used to create and access embedded C objects.

• s48 value S48 MAKEVALUE(type) (may GC)
• type S48 EXTRACTVALUE(s48 value, type)
• type * S48 EXTRACTVALUEPOINTER(s48 value, type)
• void S48 SET VALUE(s48 value, type, value)

S48 MAKEVALUEmakes a byte vector large enough to hold an object whose type
is type. S48 EXTRACTVALUEreturns the contents of a byte vector cast to type, and
S48 EXTRACTVALUEPOINTERreturns a pointer to the contents of the byte vector.
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The value returned by S48 EXTRACTVALUEPOINTER is valid only until the next
garbage collection.

S48 SET VALUEstores value into the byte vector.

7.9.3 C code and heap images

Scheme 48 uses dumped heap images to restore a previous system state. The
Scheme 48 heap is written into a file in a machine-independent and operating-system-
independent format. The procedures described above may be used to create objects
in the Scheme heap that contain information specific to the current machine, operat-
ing system, or process. A heap image containing such objects may not work correctly
when resumed.

To address this problem, a record type may be given a ‘resumer’ procedure. On
startup, the resumer procedure for a type is applied to each record of that type in the
image being restarted. This procedure can update the record in a manner appropriate
to the machine, operating system, or process used to resume the image.

• (define-record-resumer record-type procedure)

Define-record-resumer defines procedure, which should accept one argument, to
be the resumer for record-type. The order in which resumer procedures are called is
not specified.

The procedure argument to define-record-resumer may be #f , in which case
records of the given type are not written out in heap images. When writing a heap
image any reference to such a record is replaced by the value of the record’s first field,
and an exception is raised after the image is written.

7.10 Using Scheme records in C code

External modules can create records and access their slots positionally.

• s48 value s48 make record(s48 value) (may GC)
• int S48 RECORDP(s48 value)
• s48 value S48 RECORDTYPE(s48 value)
• s48 value S48 RECORDREF(s48 value, long)
• void S48 RECORDSET(s48 value, long, s48 value)

The argument to s48 make record should be a shared binding whose value is a
record type. In C the fields of Scheme records are only accessible via offsets, with
the first field having offset zero, the second offset one, and so forth. If the order of
the fields is changed in the Scheme definition of the record type the C code must be
updated as well.

For example, given the following record-type definition

(define-record-type thing :thing
(make-thing a b)
thing?
(a thing-a)
(b thing-b))
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the identifier :thing is bound to the record type and can be exported to C:

(define-exported-binding "thing-record-type" :thing)

Thing records can then be made in C:

static s48_value
thing_record_type_binding = S48_FALSE;

void initialize_things(void)
{

S48_GC_PROTECT_GLOBAL(thing_record_type_binding);
thing_record_type_binding =

s48_get_imported_binding("thing-record-type");
}

s48_value make_thing(s48_value a, s48_value b)
{

s48_value thing;
s48_DECLARE_GC_PROTECT(2);

S48_GC_PROTECT_2(a, b);

thing = s48_make_record(thing_record_type_binding);
S48_RECORD_SET(thing, 0, a);
S48_RECORD_SET(thing, 1, b);

S48_GC_UNPROTECT();

return thing;
}

Note that the variables a and b must be protected against the possibility of a garbage
collection occuring during the call to s48 make record() .

7.11 Raising exceptions from external code

The following macros explicitly raise certain errors, immediately returning to
Scheme 48. Raising an exception performs all necessary clean-up actions to properly
return to Scheme 48, including adjusting the stack of protected variables.

• s48 raise scheme exception(int type, int nargs, ...)

s48 raise scheme exception is the base procedure for raising exceptions. type
is the type of exception, and should be one of the S48 EXCEPTION. . . constants de-
fined in scheme48arch.h . nargs is the number of additional values to be in-
cluded in the exception; these follow the nargs argument and should all have type
s48 value . s48 raise scheme exception never returns.

The following procedures are available for raising particular types of exceptions.
Like s48 raise scheme exception these never return.
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• s48 raise argument type error(s48 value)
• s48 raise argument number error(int nargs, int min, int max)
• s48 raise range error(long value, long min, long max)
• s48 raise closed channel error()
• s48 raise os error(int errno)
• s48 raise out of memory error()

An argument type error indicates that the given value is of the wrong type. An argu-
ment number error is raised when the number of arguments, nargs , should be, but
isn’t, between min and max, inclusive. Similarly, a range error indicates that value is
not between between min and max, inclusive.

The following macros raise argument type errors if their argument does not have
the required type. S48 CHECKBOOLEANraises an error if its argument is neither #t
or #f .

• void S48 CHECKBOOLEAN(s48 value)
• void S48 CHECKSYMBOL(s48 value)
• void S48 CHECKPAIR(s48 value)
• void S48 CHECKSTRING(s48 value)
• void S48 CHECKINTEGER(s48 value)
• void S48 CHECKCHANNEL(s48 value)
• void S48 CHECKBYTE VECTOR(s48 value)
• void S48 CHECKRECORD(s48value)
• void S48 CHECKSHAREDBINDING(s48 value)

7.12 Unsafe functions and macros

All of the C procedures and macros described above check that their arguments have
the appropriate types and that indexes are in range. The following procedures and
macros are identical to those described above, except that they do not perform type
and range checks. They are provided for the purpose of writing more efficient code;
their general use is not recommended.

• char S48 UNSAFEEXTRACTCHAR(s48 value)
• char * S48 UNSAFEEXTRACTSTRING(s48 value)
• long S48 UNSAFEEXTRACTINTEGER(s48 value)
• long S48 UNSAFEEXTRACTDOUBLE(s48 value)

• long S48 UNSAFEEXTRACTFIXNUM(s48 value)
• s48 value S48 UNSAFEENTERFIXNUM(long)

• s48 value S48 UNSAFECAR(s48 value)
• s48 value S48 UNSAFECDR(s48 value)
• void S48 UNSAFESET CAR(s48 value, s48 value)
• void S48 UNSAFESET CDR(s48 value, s48 value)

• long S48 UNSAFEVECTORLENGTH(s48 value)
• s48 value S48 UNSAFEVECTORREF(s48 value, long)
• void S48 UNSAFEVECTORSET(s48 value, long, s48 value)

• long S48 UNSAFESTRING LENGTH(s48 value)
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• char S48 UNSAFESTRING REF(s48 value, long)
• void S48 UNSAFESTRING SET(s48 value, long, char)

• s48 value S48 UNSAFESYMBOLTO STRING(s48 value)

• long S48 UNSAFEBYTE VECTORLENGTH(s48 value)
• char S48 UNSAFEBYTE VECTORREF(s48 value, long)
• void S48 UNSAFEBYTE VECTORSET(s48 value, long, int)

• s48 value S48 UNSAFESHAREDBINDING REF(s48 value s b)
• int S48 UNSAFESHAREDBINDING P(x)
• int S48 UNSAFESHAREDBINDING IS IMPORTP(s48 value s b)
• s48 value S48 UNSAFESHAREDBINDING NAME(s48 value s b)
• void S48 UNSAFESHAREDBINDING SET(s48 value s b, s48 value value)

• s48 value S48 UNSAFERECORDTYPE(s48 value)
• s48 value S48 UNSAFERECORDREF(s48 value, long)
• void S48 UNSAFERECORDSET(s48 value, long, s48 value)

• type S48 UNSAFEEXTRACTVALUE(s48 value, type)
• type * S48 UNSAFEEXTRACTVALUEPOINTER(s48 value, type)
• void S48 UNSAFESET VALUE(s48 value, type, value)
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Chapter 8

Access to POSIX

This chapter describes Scheme 48’s interface to the POSIX C calls [1]. Scheme versions
of most of the functions in POSIX are provided. Both the interface and implementation
are new and are likely to change in future releases. Section 8.10 lists which Scheme
functions call which C functions.

Scheme 48’s POSIX interface will likely change significantly in the future. The
implementation is new and may have significant bugs.

The POSIX bindings are available in several structures:

posix-processes fork, exec, and friends
posix-process-data information about processes
posix-files files and directories
posix-i/o operations on ports
posix-time time functions
posix-users users and groups
posix-regexps regular expression matching
posix all of the above

Scheme 48’s POSIX interface differs from Scsh’s [10, 11] in several ways. The inter-
face here lacks Scsh’s high-level constructs and utilities, such as the process notation,
awk procedure, and parsing utilities. Scheme 48 uses distinct types for some values
that Scsh leaves as symbols or unboxed integers; these include file types, file modes,
and user and group ids. Many of the names and other interface details are different,
as well.

8.1 Process primitives

The procedures described in this section control the creation of processes and the exe-
cution of programs. They are in the structures posix-process and posix .

8.1.1 Process creation and termination

• (fork) → process-id or #f
• (fork-and-forget thunk)
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Fork creates a new child process and returns the child’s process-id in the parent and
#f in the child. Fork-and-forget calls thunk in a new process; no process-id is re-
turned. Fork-and-forget uses an intermediate process to avoid creating a zombie
process.

• (process-id? x) → boolean
• (process-id=? process-id0 process-id1) → boolean
• (process-id->integer process-id) → integer
• (integer->process-id integer) → process-id

Process-id? is a predicate for process-ids, process-id=? compares two
to see if they are the same, and process-id-uid returns the actual Unix id.
Process-id->integer and integer->process-id convert process ids to and
from integers.

• (process-id-exit-status process-id) → integer or #f
• (process-id-terminating-signal process-id) → signal or #f
• (wait-for-child-process process-id)

If a process terminates normally process-id-exit-status will return its exit
status. If the process is still running or was terminated by a signal then
process-id-exit-status will return #f . Similarly, if a child process was ter-
minated by a signal process-id-terminating-signal will return that sig-
nal and will return #f if the process is still running or terminated normally.
Wait-for-child-process blocks until the child process terminates. Scheme 48
may reap child processes before the user requests their exit status, but it does not
always do so.

• (exit status)

Terminates the current process with the integer status as its exit status.

8.1.2 Exec

• (exec program-name arg0 . . . )
• (exec-with-environment program-name env arg0 . . . )
• (exec-file filename arg0 . . . )
• (exec-file-with-environment filename env arg0 . . . )
• (exec-with-alias name lookup? maybe-env arguments)

All of these replace the current program with a new one. They differ in how the
new program is found, what its environment is, and what arguments it is passed.
Exec and exec-with-environment look up the new program in the search path,
while exec-file and exec-file-with-environment execute a particular file.
The environment is either inherited from the current process (exec and exec-file )
or given as an argument (...-with-environment ). Program-name and filename and
any argi should be strings. Env should be a list of strings of the form " name=value" .
The first four procedures add their first argument, program-name or filename, before the
arg0 . . . arguments.

Exec-with-alias is an omnibus procedure that subsumes the other four. Name
is looked up in the search path if lookup? is true and is used as a filename otherwise.
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Maybe-env is either a list of strings for the environment of the new program or #f in
which case the new program inherits its environment from the current one. Arguments
should be a list of strings; unlike with the other four procedures, name is not added to
this list (hence -with-alias ).

8.2 Signals

There are two varieties of signals available, named and anonymous. A named signal is
one for which we have a symbolic name, such as kill or pipe . Anonymous signals,
for which we only have the current operating system’s signal number, have no mean-
ing in other operating systems. Named signals preserve their meaning in image files.
Not all named signals are available from all OS’s and there may be multiple names for
a single OS signal number.

• (signal signal-name) → signal syntax
• (name->signal symbol) → signal or #f
• (integer->signal integer) → signal
• (signal? x) → boolean
• (signal-name signal) → symbol or #f
• (signal-os-number signal) → integer
• (signal=? signal0 signal1) → boolean

The syntax signal returns a (named) signal associated with signal-name.
Name->signal returns a (named) signal or #f if the the signal name is not supported
by the operating system. The signal returned by integer->signal is a named sig-
nal if integer corresponds to a named signal in the current operating system; otherwise
it returns an anonymous signal. Signal-name returns a symbol if signal is named
and #f if it is anonymous. Signal=? returns #t if signal0 and signal1 have the same
operating system number and #f if they do not.

8.2.1 POSIX signals

The following lists the names of the POSIX signals.
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abrt abort - abnormal termination (as by abort())
alrm alarm - timeout signal (as by alarm())
fpe floating point exception
hup hangup - hangup on controlling terminal or death of controlling process
ill illegal instruction
int interrupt - interaction attention
kill kill - termination signal, cannot be caught or ignored
pipe pipe - write on a pipe with no readers
quit quit - interaction termination
segv segmentation violation - invalid memory reference
term termination - termination signal
usr1 user1 - for use by applications
usr2 user2 - for use by applications
chld child - child process stopped or terminated
cont continue - continue if stopped
stop stop - cannot be caught or ignored
tstp interactive stop
ttin read from control terminal attempted by background process
ttou write to control terminal attempted by background process
bus bus error - access to undefined portion of memory

8.2.2 Other signals

The following lists the names of the non-POSIX signals that the system is currently
aware of.

trap trace or breakpoint trap
iot IOT trap - a synonym for ABRT
emt
sys bad argument to routine (SVID)
stkflt stack fault on coprocessor
urg urgent condition on socket (4.2 BSD)
io I/O now possible (4.2 BSD)
poll A synonym for SIGIO (System V)
cld A synonym for SIGCHLD
xcpu CPU time limit exceeded (4.2 BSD)
xfsz File size limit exceeded (4.2 BSD)
vtalrm Virtual alarm clock (4.2 BSD)
prof Profile alarm clock
pwr Power failure (System V)
info A synonym for SIGPWR
lost File lock lost
winch Window resize signal (4.3 BSD, Sun)
unused Unused signal
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8.2.3 Sending signals

• (signal-process process-id signal)

Send signal to the process corresponding to process-id.

8.2.4 Receiving signals

Signals received by the Scheme process can be obtained via one or more signal-queues.
Each signal queue has a list of monitored signals and a queue of received signals
that have yet to be read from the signal-queue. When the Scheme process receives
a signal that signal is added to the received-signal queues of all signal-queues which
are currently monitoring that particular signal.

• (make-signal-queue signals) → signal-queue
• (signal-queue? x) → boolean
• (signal-queue-monitored-signals signal-queue) → list of signals
• (dequeue-signal! signal-queue) → signal
• (maybe-dequeue-signal! queue-queue) → signal or #f

Make-signal-queue returns a new signal-queue that will monitor the sig-
nals in the list signals. Signal-queue? is a predicate for signal queues.
Signal-queue-monitored-signals returns a list of the signals currently mon-
itored by signal-queue. Dequeue-signal! and maybe-dequeue-signal both re-
turn the next received-but-unread signal from signal-queue. If signal-queue’s queue of
signals is empty dequeue-signal! blocks until an appropriate signal is received.
Maybe-dequeue-signal! does not block; it returns #f instead.

There is a bug in the current system that causes an erroneous deadlock error if
threads are blocked waiting for signals and no other threads are available to run. A
work around is to create a thread that sleeps for a long time, which prevents any
deadlock errors (including real ones):

> ,open threads
> (spawn (lambda ()

; Sleep for a year
(sleep (* 1000 60 60 24 365))))

• (add-signal-queue-signal! signal-queue signal)
• (remove-signal-queue-signal! signal-queue signal)

These two procedures can be used to add or remove signals from a signal-queue’s
list of monitored signals. When a signal is removed from a signal-queue’s list of mon-
itored signals any occurances of the signal are removed from that signal-queue’s pend-
ing signals. In other words, dequeue-signal! and maybe-dequeue-signal!
will only return signals that are currently on the signal-queue’s list of signals.

8.3 Process environment

These are in structures posix-process-data and posix .

91



8.3.1 Process identification

• (get-process-id) → process-id
• (get-parent-process-id) → process-id

These return the process ids of the current process and its parent. See section 8.1.1 for
operations on process ids.

• (get-user-id) → user-id
• (get-effective-user-id) → user-id
• (set-user-id! user-id)

• (get-group-id) → group-id
• (get-effective-group-id) → group-id
• (set-group-id! group-id)

Every process has both the original and effective user id and group id. The effective
values may be set, but not the original ones.

• (get-groups) → group-ids
• (get-login-name) → string

Get-groups returns a list of the supplementary groups of the current process.
Get-login-name returns a user name for the current process.

8.3.2 Environment variables

• (lookup-environment-variable string) → string or #f
• (environment-alist) → alist

Lookup-environment-variable looks up its argument in the environment list
and returns the corresponding value or #f if there is none. Environment-alist
returns the entire environment as a list of ( name-string . value-string) pairs.

8.4 Users and groups

User-ids and group-ids are boxed integers representing Unix users and groups. The
procedures in this section are in structures posix-users and posix .

• (user-id? x) → boolean
• (user-id=? user-id0 user-id1) → boolean
• (user-id->integer user-id) → integer
• (integer->user-id integer) → user-id

• (group-id? x) → boolean
• (group-id=? group-id0 group-id1) → boolean
• (group-id->integer group-id) → integer
• (integer->group-id integer) → group-id

User-ids and group-ids have their own own predicates and comparison, boxing, and
unboxing functions.

• (user-id->user-info user-id) → user-info
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• (name->user-info string) → user-info

These return the user info for a user identified by user-id or name.

• (user-info? x) → boolean
• (user-info-name user-info) → string
• (user-info-id user-info) → user-id
• (user-info-group user-info) → group-id
• (user-info-home-directory user-info) → string
• (user-info-shell user-info) → string

A user-info contains information about a user. Available are the user’s name, id,
group, home directory, and shell.

• (group-id->group-info group-id) → group-info
• (name->group-info string) → group-info

These return the group info for a group identified by group-id or name.

• (group-info? x) → boolean
• (group-info-name group-info) → string
• (group-info-id group-info) → group-id
• (group-info-members group-info) → user-ids

A group-info contains information about a group. Available are the group’s name,
id, and a list of members.

8.5 OS and machine identification

These procedures return strings that are supposed to identify the current OS and ma-
chine. The POSIX standard does not indicate the format of the strings. The procedures
are in structures posix-platform-names and posix .

• (os-name) → string
• (os-node-name) → string
• (os-release-name) → string
• (os-version-name) → string
• (machine-name) → string

8.6 Files and directories

These procedures are in structures posix-files and posix .

8.6.1 Directory streams

Directory streams are like input ports, with each read operation returning the next
name in the directory.

• (open-directory-stream name) → directory
• (directory-stream? x) → boolean
• (read-directory-stream directory) → name or #f
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• (close-directory-stream directory)

Open-directory-stream opens a new directory stream. Directory-stream?
is a predicate that recognizes directory streams. Read-directory-stream
returns the next name in the directory or #f if all names have been read.
Close-directory-stream closes a directory stream.

• (list-directory name) → list of strings

This is the obvious utility; it returns a list of the names in directory name.

8.6.2 Working directory

• (working-directory) → string
• (set-working-directory! string)

These return and set the working directory.

8.6.3 File creation and removal

• (open-file path file-options) → port
• (open-file path file-options file-mode) → port

Open-file opens a port to the file named by string path. The file-options argument
determines various aspects of the returned port. The optional file-mode argument is
used only if the file to be opened does not already exist. The returned port is an
input port if file-options includes read-only ; otherwise it returns an output port.
Dup-switching-mode can be used to open an input port for output ports opened
with the read/write option.

• (file-options file-option-name ...) → file-options syntax
• (file-options-on? file-options file-options) → boolean

The syntax file-options returns a file-option with the indicated options set.
File-options-on? returns true if its first argument includes all of the options listed
in the second argument. The following file options may be used with open-file .

create create file if it does not already exist; a file-
mode argument is required with this op-
tion

exclusive an error will be raised if this option and
create are both set and the file already
exists

no-controlling-tty if path is a terminal device this option
causes the terminal to not become the con-
trolling terminal of the process

truncate file is truncated
append writes are appended to existing contents
nonblocking read and write operations do not block
read-only port may not be written
read-write file descriptor may be read or written
write-only port may not be read
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Only one of the last three options may be used.
For example

(open-file "some-file.txt"
(file-options create write-only)
(file-mode read owner-write))

returns an output port that writes to a newly-created file that can be read by anyone
and written only by the owner. Once the file exists,

(open-file "some-file.txt"
(file-options append write-only))

will open an output port that appends to the file.
The append and nonblocking options and the read/write nature of the port can

be read using i/o-flags . The append and nonblocking options can be set using
set-i/o-flags! .

To keep port operations from blocking the Scheme 48 process, output ports are set
to be nonblocking at the time of creation (input ports are managed using select() ).
You can use set-i/o-flags! to make an output port blocking, for example just
before a fork, but care should be exercised. The Scheme 48 runtime code may get
confused if an I/O operation blocks.

• (set-file-creation-mask! file-mode)

Sets the file creation mask to be file-mode. Bits set in file-mode are cleared in the modes
of any files or directories created by the current process.

• (link existing new)

Link makes path new be a new link to the file pointed to by path existing. The two
paths must be in the same file system.

• (make-directory name file-mode)
• (make-fifo file-mode)

These two procedures make new directories and fifo files.

• (unlink path)
• (remove-directory path)
• (rename old-path new-path)

Unlink removes the link indicated by path. Remove-directory removes the indi-
cated (empty) directory. Renamemoves the file pointed to by old-path to the location
pointed to by new-path (the two paths must be in the same file system). Any other
links to the file remain unchanged.

• (accessible? path access-mode . more-modes) → boolean
• (access-mode mode-name) → access-mode syntax

Accessible? returns true if path is a file that can be accessed in the listed mode.
If more than one mode is specified accessible? returns true if all of the specified
modes are permitted. The mode-names are: read , write , execute , exists .
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8.6.4 File information

• (get-file-info name) → file-info
• (get-file/link-info name) → file-info
• (get-port-info fd-port) → file-info
Get-file-info and get-file/link-info both return a file info record for the
named file. Get-file-info follows symbolic links while get-file/link-info
does not. Get-port-info returns a file info record for the file which port reads from
or writes to. An error is raised if fd-port does not read from or write to a file descriptor.
• (file-info? x) → boolean
• (file-info-name file-info) → string
File-info? is a predicate for file-info records. File-info-name is the name
which was used to get file-info , either as passed to get-file-info or
get-file/link-info , or used to open the port passed to get-port-info .
• (file-info-type file-info) → file-type
• (file-type? x) → boolean
• (file-type-name file-type) → symbol
• (file-type type) → file-type syntax
File-info-type returns the type of the file, as a file-type object File types may be
compared using eq? . The valid file types are:

regular
directory
character-device
block-device
fifo
symbolic-link
socket
other

Symbolic-link and socket are not required by POSIX.
• (file-info-device file-info) → integer
• (file-info-inode file-info) → integer
The device and inode numbers uniquely determine a file.
• (file-info-link-count file-info) → integer
• (file-info-size file-info) → integer
These return the number of links to a file and the file size in bytes. The size is only
meaningful for regular files.
• (file-info-owner file-info) → user-id
• (file-info-group file-info) → group-id
• (file-info-mode file-info) → file-mode
These return the owner, group, and access mode of a file.
• (file-info-last-access file-info) → time
• (file-info-last-modification file-info) → time
• (file-info-last-info-change file-info) → time
These return the time the file was last read, modified, or had its status modified
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8.6.5 File modes

A file mode is a boxed integer representing a file protection mask.

• (file-mode permission-name ...) → file-mode syntax
• (file-mode? x) → boolean
• (file-mode+ file-mode . . . ) → file-mode
• (file-mode- file-mode0 file-mode1) → file-mode

File-mode is syntax for creating file modes. The mode-names are listed below.
File-mode? is a predicate for file modes. File-mode+ returns a mode that con-
tains all of permissions of its arguments. File-mode- returns a mode that has all of
the permissions of file-mode0 that are not in file-mode1.

• (file-mode=? file-mode0 file-mode1) → boolean
• (file-mode<=? file-mode0 file-mode1) → boolean
• (file-mode>=? file-mode0 file-mode1) → boolean

File-mode=? returns true if the two modes are exactly the same. File-mode<=?
returns true if file-mode0 has a subset of the permissions of file-mode1. File-mode>=?
is file-mode<=? with the arguments reversed.

• (file-mode->integer file-mode) → integer
• (integer->file-mode integer) → file-mode

Integer->file-mode and file-mode->integer translate file modes to and
from the classic Unix file mode masks. These may not be the masks used by the un-
derlying OS.

Permission name Bit mask
set-uid #o4000 set user id when executing
set-gid #o2000 set group id when executing
owner-read #o0400 read by owner
owner-write #o0200 write by owner
owner-exec #o0100 execute (or search) by owner
group-read #o0040 read by group
group-write #o0020 write by group
group-exec #o0010 execute (or search) by group
other-read #o0004 read by others
other-write #o0002 write by others
other-exec #o0001 execute (or search) by others

Names for sets of permissions
owner #o0700 read, write, and execute by owner
group #o0070 read, write, and execute by group
other #o0007 read, write, and execute by others
read #o0444 read by anyone
write #o0222 write by anyone
exec #o0111 execute by anyone
all #o0777 anything by anyone
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8.7 Time

These procedures are in structures posix-time and posix .
• (make-time integer) → time
• (current-time) → time
• (time? x) → boolean
• (time-seconds time) → integer
A time record contains an integer that represents time as the number of second since
the Unix epoch (00:00:00 GMT, January 1, 1970). Make-time and current-time
return time s, with make-time ’s using its argument while current-time ’s has the
current time. Time? is a predicate that recognizes time s and time-seconds returns
the number of seconds time represents.
• (time=? time time) → boolean
• (time<? time time) → boolean
• (time<=? time time) → boolean
• (time>? time time) → boolean
• (time>=? time time) → boolean
These perform various comparison operations on the time s.
• (time->string time) → string
Time->string returns a string representation of time in the following form.

"Wed Jun 30 21:49:08 1993
"

8.8 I/O

These procedures are in structures posix-i/o and posix .
• (open-pipe) → input-port + output-port
Open-pipe creates a new pipe and returns the two ends as an input port and an
output port.

A file descriptor port (or fd-port) is a port that reads to or writes from an OS
file descriptor. Fd-ports are returned by open-input-file , open-output-file ,
open-file , open-pipe , and other procedures.
• (fd-port? port) → boolean
• (port->fd port) → integer or #f

Fd-port? returns true if its argument is an fd-port. Port->fd returns the file de-
scriptor associated with or #f if port is not an fd-port.
• (remap-file-descriptors fd-spec . . . )
Remap-file-descriptors reassigns file descriptors to ports. The fd-specs indicate
which port is to be mapped to each file descriptor: the first gets file descriptor 0, the
second gets 1, and so forth. A fd-spec is either a port that reads from or writes to a file
descriptor, or #f , with #f indicating that the corresponding file descriptor is not used.
Any open ports not listed are marked ‘close-on-exec’. The same port may be moved
to multiple new file descriptors.

For example,
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(remap-file-descriptors (current-output-port)
#f
(current-input-port))

moves the current output port to file descriptor 0 and the current input port to file
descriptor 2.

• (dup fd-port) → fd-port
• (dup-switching-mode fd-port) → fd-port
• (dup2 fd-port file-descriptor) → fd-port

These change fd-port’s file descriptor and return a new port that uses ports’s old file de-
scriptor. Dup uses the lowest unused file descriptor and dup2 uses the one provided.
Dup-switching-mode is the same as dup except that the returned port is an input
port if the argument was an output port and vice versa. If any existing port uses the
file descriptor passed to dup2 , that port is closed.

• (close-all-but port . . . )

Close-all-but closes all file descriptors whose associated ports are not passed to it
as arguments.

• (close-on-exec? port) → boolean
• (set-close-on-exec?! port boolean)

Close-on-exec? returns true if port will be closed when a new program is exec’ed.
Set-close-on-exec?! sets port ’s close-on-exec flag.

• (i/o-flags port) → file-options
• (set-i/o-flags! port file-options)

These two procedures read and write various options for port . The options that can
be read are append , nonblocking , read-only , write-only , and read/write .
Only the append and nonblocking can be written.

• (port-is-a-terminal? port) → boolean
• (port-terminal-name port) → string

Port-is-a-terminal? returns true if port has an underlying file descriptor that is
associated with a terminal. For such ports port-terminal-name returns the name
of the terminal, for all others it returns #f .

8.9 Regular expressions

The procedures in this section provide access to POSIX regular expression matching.
The regular expression syntax and semantics are far too complex to be described here.
Because the C interface uses zero bytes for marking the ends of strings, patterns and
strings that contain zero bytes will not work correctly.

These procedures are in structures posix-regexps and posix .
An abstract data type for creating POSIX regular expressions is described in sec-

tion 5.20.

• (make-regexp string . regexp-options) → regexp
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• (regexp-option option-name) → regexp-option syntax

Make-regexp makes a new regular expression, using string as the pattern. The pos-
sible option names are:

extended use the extended patterns
ignore-case ignore case when matching
submatches report submatches
newline treat newlines specially

The regular expression is not compiled until it matched against a string, so any
errors in the pattern string will not be reported until that point.

• (regexp? x) → boolean

This is a predicate for regular expressions.

• (regexp-match regexp string start submatches? starts-line? ends-line?)
→ boolean or list of matches

• (match? x) → boolean
• (match-start match) → integer
• (match-end match) → integer

Regexp-match matches the regular expression against the characters in string,
starting at position start. If the string does not match the regular expression,
regexp-match returns #f . If the string does match, then a list of match records
is returned if submatches? is true, or #t is returned if it is not. Each match record
contains the index of the character at the beginning of the match and one more than
the index of the character at the end. The first match record gives the location of the
substring that matched regexp. If the pattern in regexp contained submatches, then the
results of these are returned in order, with a match records reporting submatches that
succeeded and #f in place of those that did not.

Starts-line? should be true if string starts at the beginning of a line and ends-line?
should be true if it ends one.

8.10 C to Scheme correspondence

The following table lists the Scheme procedures that correspond to particular C pro-
cedures. Not all of the Scheme procedures listed are part of the POSIX interface.

C procedure Scheme procedure(s)
access accessible?
chdir set-working-directory!
close close-input-port, close-output-port,

close-channel, close-socket
closedir close-directory-stream
creat open-file
ctime time->string
dup dup, dup-switching-mode
dup2 dup2
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C procedure Scheme procedure(s)
exec[l|v][e|p| ε] exec, exec-with-environment,

exec-file, exec-file-with-environment,
exec-with-alias

exit exit
fcntl io-flags, set-io-flags!,

close-on-exec, set-close-on-exec!
fork fork, fork-and-forget
fstat get-port-info
getcwd working-directory
getegid get-effective-group-id
getenv lookup-environment-variable,

environment-alist
geteuid get-effective-user-id
getgid get-group-id
getgroups get-groups
getlogin get-login-name
getpid get-process-id
getppid get-parent-process-id
getuid get-user-id
isatty port-is-a-terminal?
link link
lstat get-file/link-info
mkdir make-directory
mkfifo make-fifo
open open-file
opendir open-directory-stream
pipe open-pipe
read read-char, read-block
readdir read-directory-stream
rename rename
rmdir remove-directory
setgid set-group-id!
setuid set-user-id!
stat get-file-info
time current-time
ttyname port-terminal-name
umask set-file-creation-mask!
uname os-name, os-node-name,

os-release-name, os-version-name,
machine-name

unlink unlink
waitpid wait-for-child-process
write write-char, write-block
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Appendix A

ASCII character encoding

“ASCII” stands for “American Standard Code for Information Interchange”. The
ASCII standard is a seven-bit code published by the United States of America Stan-
dards Institute (USASI) in 1968. The ASCII encoding forms the first half of ISO-8859-1
(Latin1) which in turn forms the first page of ISO 10646 (Unicode).

The Scheme 48 procedures char->ascii and ascii->char (section 5.3) give
access to the ASCII encoding.

n10 n16 Unicode name n10 n16 Unicode name
0 0 NUL null 64 40 @ commercial at
1 1 SOH start of heading 65 41 A latin capital letter a
2 2 STX start of text 66 42 B latin capital letter b
3 3 ETX end of text 67 43 C latin capital letter c
4 4 EOT end of transmission 68 44 D latin capital letter d
5 5 ENQ enquiry 69 45 E latin capital letter e
6 6 ACK acknowledge 70 46 F latin capital letter f
7 7 BEL bell 71 47 G latin capital letter g
8 8 BS backspace 72 48 H latin capital letter h
9 9 HT horizontal tabulation 73 49 I latin capital letter i

10 A LF line feed 74 4A J latin capital letter j
11 B VT vertical tabulation 75 4B K latin capital letter k
12 C FF form feed 76 4C L latin capital letter l
13 D CR carriage return 77 4D M latin capital letter m
14 E SO shift out 78 4E N latin capital letter n
15 F SI shift in 79 4F O latin capital letter o
16 10 DLE data link escape 80 50 P latin capital letter p
17 11 DC1 device control one 81 51 Q latin capital letter q
18 12 DC2 device control two 82 52 R latin capital letter r
19 13 DC3 device control three 83 53 S latin capital letter s
20 14 DC4 device control four 84 54 T latin capital letter t
21 15 NAK negative acknowledge 85 55 U latin capital letter u
22 16 SYN synchronous idle 86 56 V latin capital letter v
23 17 ETB end of transmission block 87 57 W latin capital letter w
24 18 CAN cancel 88 58 X latin capital letter x
25 19 EM end of medium 89 59 Y latin capital letter y
26 1A SUB substitute 90 5A Z latin capital letter z
27 1B ESC escape 91 5B [ left square bracket
28 1C FS file separator 92 5C \ reverse solidus
29 1D GS group separator 93 5D ] right square bracket
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n10 n16 Unicode name n10 n16 Unicode name
30 1E RS record separator 94 5E ˆ circumflex accent
31 1F US unit separator 95 5F _ low line
32 20 SPACE space 96 60 ‘ grave accent
33 21 ! exclamation mark 97 61 a latin small letter a
34 22 " quotation mark 98 62 b latin small letter b
35 23 # number sign 99 63 c latin small letter c
36 24 $ dollar sign 100 64 d latin small letter d
37 25 % percent sign 101 65 e latin small letter e
38 26 & ampersand 102 66 f latin small letter f
39 27 ’ apostrophe 103 67 g latin small letter g
40 28 ( left parenthesis 104 68 h latin small letter h
41 29 ) right parenthesis 105 69 i latin small letter i
42 2A * asterisk 106 6A j latin small letter j
43 2B + plus sign 107 6B k latin small letter k
44 2C , comma 108 6C l latin small letter l
45 2D - hyphen-minus 109 6D m latin small letter m
46 2E . full stop 110 6E n latin small letter n
47 2F / solidus 111 6F o latin small letter o
48 30 0 digit zero 112 70 p latin small letter p
49 31 1 digit one 113 71 q latin small letter q
50 32 2 digit two 114 72 r latin small letter r
51 33 3 digit three 115 73 s latin small letter s
52 34 4 digit four 116 74 t latin small letter t
53 35 5 digit five 117 75 u latin small letter u
54 36 6 digit six 118 76 v latin small letter v
55 37 7 digit seven 119 77 w latin small letter w
56 38 8 digit eight 120 78 x latin small letter x
57 39 9 digit nine 121 79 y latin small letter y
58 3A : colon 122 7A z latin small letter z
59 3B ; semicolon 123 7B { left curly bracket
60 3C < less-than sign 124 7C | vertical line
61 3D = equals sign 125 7D } right curly bracket
62 3E > greater-than sign 126 7E ˜ tilde
63 3F ? question mark 127 7F DEL delete
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Index

The principal entry for each term, proce-
dure, or keyword is listed first, separated
from the other entries by a semicolon.

accessible? 95
add-signal-queue-signal! 91
any 29
any-match? 62
any? 29
arithmetic-shift 31
array 33
array->vector 33
array-dimensions 33
array-ref 33
array-set! 33
array? 33
ascii->char 31
ascii-limit 31
ascii-range 60
ascii-ranges 60
ascii-whitespaces 31
atom? 29
atomically! 69

bit-count 31
bitwise-and 31
bitwise-ior 31
bitwise-not 31
bitwise-xor 31
byte-vector 31
byte-vector-length 31
byte-vector-ref 31
byte-vector-set! 31
byte-vector? 31

call-atomically 69
call-atomically! 69
call-ensuring-atomicity 68
call-ensuring-atomicity! 68

call-external 78; 77
call-external-value 77
call-imported-binding 77
cell-ref 32
cell-set! 32
cell? 32
char->ascii 31
close-all-but 99
close-directory-stream 94
close-on-exec? 99
close-socket 43
compound-interface 21
concatenate-symbol 30
condvar-has-value? 70
condvar-value 70
condvar? 70
copy-array 33
current-column 41
current-proposal 70
current-row 41
current-thread 66
current-time 98

debug-message 67
default-hash-function 40
define-exported-binding 75
define-imported-binding 76
define-interface 20
define-record-discloser 36; 35
define-record-resumer 83; 36
define-structure 18
delete 30
delete-from-queue! 32
delq 30
delq! 30
dequeue! 32
dequeue-signal! 91
directory-stream? 93
dup 99
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dup-switching-mode 99
dup2 99
dynamic-load 78

enqueue! 32
ensure-atomicity! 68
enum-set->list 39
enum-set-intersection 39
enum-set-member? 39
enum-set-negation 39
enum-set-union 39
enum-set=? 39
environment-alist 92
every? 29
exact-match? 62
exec 88
exec-file 88
exec-file-with-environment 88
exec-with-alias 88
exec-with-environment 88
exit 88
external-name 78
external-value 78
external? 78

fd-port? 98
file-info-device 96
file-info-group 96
file-info-inode 96
file-info-last-access 96
file-info-last-info-change 96
file-info-last-modification 96
file-info-link-count 96
file-info-mode 96
file-info-name 96
file-info-owner 96
file-info-size 96
file-info-type 96
file-info? 96
file-mode+ 97
file-mode- 97
file-mode->integer 97
file-mode<=? 97
file-mode=? 97
file-mode>=? 97
file-mode? 97
file-options-on? 94
file-type-name 96

file-type? 96
filter 30
filter! 30
filter-map 30
first 29
fluid 41
fork 87
fork-and-forget 87
fresh-line 41

get-effective-group-id 92
get-effective-user-id 92
get-external 78
get-file-info 96
get-file/link-info 96
get-group-id 92
get-groups 92
get-host-name 43
get-login-name 92
get-parent-process-id 92
get-port-info 96
get-process-id 92
get-user-id 92
group-id->group-info 93
group-id->integer 92
group-id=? 92
group-id? 92
group-info-id 93
group-info-members 93
group-info-name 93
group-info? 93

have-system? 42

i/o-flags 99
identity 29
ignore-case 61
import-definition 76
import-lambda-definition 77
integer->file-mode 97
integer->group-id 92
integer->process-id 88
integer->signal 89
integer->user-id 92
intersection 60

kill-thread! 67

let-fluid 41
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let-fluids 41
limit-output 41
link 95
list->queue 32
list-delete-neighbor-dups 57; 53
list-delete-neighbor-dups! 57
list-directory 94
list-merge 56; 53
list-merge! 56; 53
list-merge-sort 56
list-merge-sort! 56
list-sort 53
list-sort! 53
list-sorted? 55; 53
list-stable-sort 53
list-stable-sort! 53
lock? 71
lookup-all-externals 78
lookup-environment-variable 92
lookup-exported-binding 76
lookup-external 78
lookup-imported-binding 75

machine-name 93
make-array 33
make-byte-vector 31
make-cell 32
make-condvar 70
make-directory 95
make-fifo 95
make-fluid 41
make-integer-table 40
make-lock 71
make-placeholder 72
make-proposal 70
make-queue 32
make-record 35
make-record-type 36
make-regexp 99
make-shared-array 33
make-signal-queue 91
make-sparse-vector 32
make-string-input-port 40
make-string-output-port 40
make-string-table 40
make-symbol-table 39
make-table 39

make-table-immutable! 40
make-table-maker 40
make-time 98
make-tracking-input-port 41
make-tracking-output-port 41
match 62
match-end 100; 62
match-start 100; 62
match-submatches 62
match? 100
maybe-commit 70
maybe-commit-and-block 72
maybe-commit-and-block-on-queue

72
maybe-commit-and-make-ready 72
maybe-commit-and-set-condvar!

70
maybe-commit-and-wait-for-condvar

70
maybe-dequeue-signal! 91
maybe-dequeue-thread! 72
maybe-obtain-lock 71
memq? 29
modify 18

n= 29
name->group-info 93
name->signal 89
name->user-info 93
negate 60
neq? 29
no-op 29
no-submatches 62
null-list? 29

obtain-lock 71
one-of 61
open-directory-stream 93
open-file 94
open-pipe 98
open-socket 43
os-name 93
os-node-name 93
os-release-name 93
os-version-name 93

p 30
partition-list 30
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partition-list! 30
placeholder-set! 72
placeholder-value 72
placeholder? 72
port->fd 98
port-is-a-terminal? 99
port-terminal-name 99
prefix 18
pretty-print 30
process-id->integer 88
process-id-exit-status 88
process-id-terminating-signal

88
process-id=? 88
process-id? 88
provisional-byte-vector-ref 68
provisional-byte-vector-set!

68
provisional-car 68
provisional-cdr 68
provisional-cell-ref 68
provisional-cell-set! 68
provisional-set-car! 68
provisional-set-cdr! 68
provisional-string-ref 68
provisional-string-set! 68
provisional-vector-ref 68
provisional-vector-set! 68

queue->list 32
queue-empty? 32
queue-length 32
queue? 32

range 60
ranges 60
read-directory-stream 93
record 35
record-accessor 36
record-constructor 36
record-length 35
record-modifier 36
record-predicate 36
record-ref 35
record-set! 35
record-type 35
record-type-field-names 36
record-type-name 36

record-type? 36
record? 35
regexp-match 100
regexp? 100
release-lock 71
relinquish-timeslice 66
remap-file-descriptors 98
remove-directory 95
remove-duplicates 30
remove-signal-queue-signal! 91
rename 95
repeat 61
reverse! 30

sequence 61
set 60
set-close-on-exec?! 99
set-condvar-has-value?! 70
set-condvar-value! 70
set-current-proposal! 70
set-file-creation-mask! 95
set-group-id! 92
set-i/o-flags! 99
set-user-id! 92
set-working-directory! 94
shared-binding-is-import? 76
shared-binding-name 76
shared-binding-ref 75
shared-binding-set! 76
shared-binding? 76
signal-name 89
signal-os-number 89
signal-process 91
signal-queue-monitored-signals

91
signal-queue? 91
signal=? 89
signal? 89
sleep 66
socket-accept 43
socket-client 43
socket-port-number 43
sparse-vector->list 32
sparse-vector-ref 32
sparse-vector-set! 32
spawn 66
string-end 61
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string-hash 40
string-output-port-output 40
string-start 61
submatch 62
subset 18
subtract 60
system 42

table-ref 40
table-set! 40
table-walk 40
table? 40
terminate-current-thread 66
terminate-thread! 67
text 61
thread-name 66
thread-queue-empty? 72
thread-uid 66
thread? 66
time->string 98
time-seconds 98
time<=? 98
time<? 98
time=? 98
time>=? 98
time>? 98
time? 98

undefine-exported-binding 76
undefine-imported-binding 76
union 60
unlink 95
use-case 61
user-id->integer 92
user-id->user-info 92
user-id=? 92
user-id? 92
user-info-group 93
user-info-home-directory 93
user-info-id 93
user-info-name 93
user-info-shell 93
user-info? 93

vector-binary-search 58
vector-binary-search3 58
vector-delete-neighbor-dups 57;

53

vector-delete-neighbor-dups!
57

vector-heap-sort 57
vector-heap-sort! 57
vector-insert-sort 57
vector-insert-sort! 57
vector-merge 56; 53
vector-merge! 56; 53
vector-merge-sort 56
vector-merge-sort! 56
vector-sort 53
vector-sort! 53
vector-sorted? 55; 53
vector-stable-sort 53
vector-stable-sort! 53

wait-for-child-process 88
working-directory 94
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