
Francesc Altet • Scott Prater • Ivan Vilata •
Tom Hedley

PyTables User’s Guide

Hierarchical datasets in Python
Release 1.0

Altet, Francesc:

PyTables User’s Guide

Hierarchical datasets in Python
Release 1.0

All rights reserved.
© 2002, 2003, 2004, 2005 Francesc Altet

Typeset by Francesc Altet, Scott Prater, Ivan Vilata and Tom Hedley
Day of print: 2005, May, 10th

Copyright Notice and Statement forPyTables Software Library and Utilities

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and
Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005 by the Board of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of this license at:
http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

I

Contents

1 Introduction 1
1.1 Main Features .2
1.2 The Object Tree . 3

2 Installation 7
2.1 Installation from source . 7

2.1.1 Prerequisites .7
2.1.2 PyTables package installation . 9

2.2 Binary installation (Windows) .10
2.2.1 Windows prerequisites .10
2.2.2 PyTables package installation .10

3 Tutorials 11
3.1 Getting started .11

3.1.1 Importingtables objects . 11
3.1.2 Declaring a Column Descriptor .12
3.1.3 Creating aPyTables file from scratch . 12
3.1.4 Creating a new group .12
3.1.5 Creating a new table .13
3.1.6 Reading (and selecting) data in a table .14
3.1.7 Creating new array objects .15
3.1.8 Closing the file and looking at its content .16

3.2 Browsing theobject treeand appending to tables .17
3.2.1 Traversing the object tree .17
3.2.2 Setting and getting user attributes .18
3.2.3 Getting object metadata .21
3.2.4 Reading data fromArray objects . 23
3.2.5 Appending data to an existing table .24
3.2.6 And finally... how to delete rows from a table .25

3.3 Multidimensional table cells and automatic sanity checks25
3.3.1 Shape checking .28
3.3.2 Field name checking .29
3.3.3 Data type checking .29

3.4 Exercising the Undo/Redo feature .29
3.4.1 A basic example .30
3.4.2 A more complete example .33

3.5 Other examples in PyTables distribution .35

4 Library Reference 37
4.1 tables variables and functions .37

4.1.1 Global variables .37
4.1.2 Global functions .37

4.2 TheFile class .39

II Contents

4.2.1 File instance variables .39
4.2.2 File methods .39
4.2.3 File special methods .45

4.3 TheNode class .46
4.3.1 Node instance variables .46
4.3.2 Node methods .47

4.4 TheGroup class .48
4.4.1 Group instance variables .48
4.4.2 Group methods .48
4.4.3 Group special methods .50

4.5 TheLeaf class .51
4.5.1 Leaf instance variables .51
4.5.2 Leaf methods .51

4.6 TheTable class .53
4.6.1 Table instance variables .53
4.6.2 Table methods .53
4.6.3 Table special methods .57
4.6.4 TheRowclass . 58
4.6.5 TheCols class . 58

4.7 TheColumn class .58
4.7.1 Column instance variables .58
4.7.2 Column methods .58
4.7.3 Column special methods .59

4.8 TheArray class .60
4.8.1 Array instance variables .60
4.8.2 Array methods .61
4.8.3 Array special methods .61

4.9 TheEArray class .62
4.9.1 EArray instance variables .62
4.9.2 EArray methods .62

4.10 TheVLArray class .63
4.10.1 VLArray instance variables .63
4.10.2 VLArray methods .63
4.10.3 VLArray special methods .64

4.11 TheUnImplemented class . 65
4.12 TheAttributeSet class . 66

4.12.1 AttributeSet instance variables .66
4.12.2 AttributeSet methods . 66

4.13 Declarative classes .67
4.13.1 TheIsDescription class . 67
4.13.2 TheCol class and its descendants .67
4.13.3 TheAtom class and its descendants. .69

4.14 Helper classes .71
4.14.1 TheFilters class . 71
4.14.2 TheIndexProps class . 72
4.14.3 TheIndex class . 72

5 FileNode 75
5.1 What isFileNode ? . 75
5.2 Current limitations .75
5.3 Finding aFileNode node . 76
5.4 UsingFileNode . 76

5.4.1 Creating a new file node .76
5.4.2 Using a file node .77

Contents III

5.4.3 Opening an existing file node .77
5.4.4 Adding metadata to a file node .78

5.5 Complementary notes .79
5.6 FileNode module reference .79

5.6.1 Global constants .79
5.6.2 Global functions .79
5.6.3 TheFileNode abstract class .79
5.6.4 TheROFileNode class . 80
5.6.5 TheRAFileNode class . 80

6 Optimization tips 81
6.1 InformingPyTables about expected number of rows in tables81
6.2 Accelerating your searches .81

6.2.1 In-kernel searches .81
6.2.2 Indexed searches .83

6.3 Compression issues .84
6.4 Shuffling (or how to make the compression process more effective)87
6.5 Taking advantage of Psyco .88
6.6 Selecting an User Entry Point (UEP) in your tree .89
6.7 Compacting yourPyTables files . 90

A Supported data types inPyTables 91

B Utilities 93
B.1 ptdump .93

B.1.1 Usage .93
B.1.2 A small tutorial onptdump . 93

B.2 ptrepack .95
B.2.1 Usage .95
B.2.2 A small tutorial onptrepack . 96

B.3 nctoh5 .98
B.3.1 Usage .99

C PyTables File Format 101
C.1 Mandatory attributes for aFile . 101
C.2 Mandatory attributes for aGroup . 101
C.3 Mandatory attributes, storage layout and supported data types forLeaves 102

C.3.1 Table format .102
C.3.2 Array format .103
C.3.3 EArray format .104
C.3.4 VLArray format .105

La sabiduría no vale la pena si no es
posible servirse de ella para inventar una
nueva manera de preparar los garbanzos.
(Wisdom isn’t worth anything if you can’t
use it to come up with a new way to cook

garbanzos).

—A wise Catalan
in "Cien años de soledad"
Gabriel García Márquez

1

Chapter 1

Introduction

The goal ofPyTables is to enable the end user to manipulate easily datatablesandarray objects in a
hierarchical structure. The foundation of the underlying hierarchical data organization is the excellentHDF5
library (see NCSA).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5
API, but only to provide a flexible,very pythonictool to deal with (arbitrarily) large amounts of data (typically
bigger than available memory) in tables and arrays organized in a hierarchical and persistent disk storage
structure.

A table is defined as a collection of records whose values are stored infixed-lengthfields. All records have
the same structure and all values in each field have the samedata type. The termsfixed-lengthand strictdata
typesmay seem to be a strange requirement for an interpreted language like Python, but they serve a useful
function if the goal is to save very large quantities of data (such as is generated by many data acquisition
systems, Internet services or scientific applications, for example) in an efficient manner that reduces demand
on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structsPyTables implements a specialmeta-
classobject so as to easily define all its fields and other properties.PyTables also provides a powerful
interface to mine data in tables. Records in tables are also known in theHDF5naming scheme ascompound
data types.

For example, you can define arbitrary tables in Python simply by declaring a class with name field and
types information, such as in the following example:

class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # integer
grid_j = IntCol() # integer (equivalent to Int32Col)
pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
energy = FloatCol(shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large)
collections of them to a file for persistent storage. After that, the data can be retrieved and post-processed
quite easily withPyTables or even with anotherHDF5application (in C, Fortran, Java or whatever language
that provides a library to interface with HDF5).

Other important entities inPyTables are thearray objects that are analogous to tables with the difference
that all of their components are homogeneous. They come in different flavors, likegeneric(they provide a
quick and fast way to deal with for numerical arrays),enlargeable(arrays can be extended in any single
dimension) andvariable length(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities ofPyTables .

2 Chapter 1. Introduction

1.1 Main Features

PyTables takes advantage of the object orientation and introspection capabilities offered byPython , the
HDF5powerful data management features andnumarray flexibility and high-performance manipulation of
large sets of objects organized in grid-like fashion to provide these features:

• Support for table entities:Allows the user to work with a large number of records (up to 2**63), i.e.
more than will fit into memory.

• Appendable tables:Supports adding records to already created tables. This can be done even between
different Python sessions without copying the dataset or redefining its structure.

• Multidimensional table cells:You can declare a column to consist of general array cells as well as
scalars, which is the only dimensionality allowed the majority of relational databases.

• User defined metadata:Besides supporting system metadata (number of rows of a table, shape, flavor,
etc.) the user may specify its own metadata (as for example, room temperature, or protocol for IP traffic
that was collected) that complement the meaning of his actual data.

• Support for numerical arrays:Numeric (see Ascheret al.) andnumarray (see Greenfieldet al.)
arrays can be used as a useful complement of tables to store homogeneous data.

• Enlargeable arrays:You can add new elements to existing arrays on disk in any dimension you want
(but only one). Besides, you can access to only a slice of your datasets by using the powerful extended
slicing mechanism, without need to load all your complete dataset in-memory.

• Variable length arrays:The number of elements in these arrays can be variable from row to row. This
provides a lot of flexibility when dealing with complex data.

• Supports a hierarchical data model:Allows the user to clearly structure all the data.PyTables builds
up anobject treein memory that replicates the underlying file data structure. Access to the file objects
is achieved by walking through and manipulating this object tree.

• Support of files bigger than 2 GB:PyTables automatically inherits this capability from the underlying
HDF5 library (assuming your platform supports the C long long integer, or, on Windows, __int64).

• Ability to read/modify generic HDF5 files:PyTables can access a wide range of objects in generic
HDF5 files, like compound type datasets (that can be mapped toTable objects), homogeneous
datasets (that can be mapped toArray objects) or variable length record datasets (that can be
mapped toVLArray objects). Besides, if a dataset is not supported, it will be mapped into a spe-
cial UnImplemented class (see 4.11), that will let the user see that the data is there, although it would
be unreachable (still, you will be able to access the attributes and some metadata in the dataset). With
that,PyTables probably can access andmodifymost of the HDF5 files out there.

• Data compression:Supports data compression (using theZlib , LZO, UCL andbzip2 compression
libraries) out of the box. This is important when you have repetitive data patterns and don’t want to
spend time searching for an optimized way to store them (saving you time spent analyzing your data
organization).

• High performance I/O:On modern systems storing large amounts of data, tables and array objects
can be read and written at a speed only limited by the performance of the underlying I/O subsystem.
Moreover, if your data is compressible, even that limit is surmountable!

• Architecture-independent:PyTables has been carefully coded (as has HDF5 itself) with little-
endian/big-endian byte orderings issues in mind. In principle you can write a file on a big-endian
machine (like a Sparc or MIPS) and read it on other little-endian machine (like an Intel or Alpha) with-
out problems. In addition, it has been tested successfully with 64 bit platforms (Intel-64, AMD-64,
PowerPC-G5, MIPS, UltraSparc).

1.2. The Object Tree 3

1.2 The Object Tree

The hierarchical model of the underlying HDF5 library allowsPyTables to manage tables and arrays in a
tree-like structure. In order to achieve this, anobject treeentity isdynamicallycreated imitating the HDF5
structure on disk. The HDF5 objects are read by walking through this object tree. You can get a good picture
of what kind of data is kept in the object by examining themetadatanodes.

The different nodes in the object tree are instances ofPyTables classes. There are several types of
classes, but the most important ones are theNode, Group andLeaf classes. All nodes in aPyTables tree
are instances of theNode class.Group andLeaf classes are descendants ofNode. Group instances (referred
to asgroupsfrom now on) are a grouping structure containing instances of zero or more groups or leaves,
together with supplementary metadata.Leaf instances (referred to asleaves) are containers for actual data
and can not contain further groups or leaves. TheTable , Array , EArray , VLArray andUnImplemented
classes are descendants ofLeaf , and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix
filesystem, i.e. a node (file or directory) is always achild of one and only one group (directory), itsparent
group1. Inside of that group, the node is accessed by itsname. As is the case with Unix directories and
files, objects in the object tree are often referenced by giving their full (absolute) path names. InPyTables
this full path can be specified either as string (such as’/subgroup2/table3’ , using/ as a parent/child
separator) or as a complete object path written in a format known as thenatural nameschema (such as
file.root.subgroup2.table3).

Support fornatural namingis a key aspect ofPyTables . It means that the names of instance variables
of the node objects are the same as the names of the element’s children2. This is veryPythonicand intuitive
in many cases. Check the tutorial section 3.1.6 for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. Only the
metadata(i.e. special data that describes the structure of the actual data) is loaded. The actual data is not
read until you request it (by calling a method on a particular node). Using the object tree (the metadata) you
can retrieve information about the objects on disk such as table names, titles, name columns, data types in
columns, numbers of rows, or, in the case of arrays, the shapes, typecodes, etc. of the array. You can also
search through the tree for specific kinds of data then read it and process it. In a certain sense, you can think
of PyTables as a tool that applies the same introspection capabilities of Python objects to large amounts of
data in persistent storage.

To better understand the dynamic nature of this object tree entity, let’s start with a samplePyTables
script (you can find it inexamples/objecttree.py) to create a HDF5 file:

from tables import *

class Particle(IsDescription):
identity = StringCol(length=22, dflt=" ", pos = 0) # character String
idnumber = Int16Col(1, pos = 1) # short integer
speed = Float32Col(1, pos = 2) # single-precision

Open a file in "w"rite mode
fileh = openFile("objecttree.h5", mode = "w")
Get the HDF5 root group
root = fileh.root

Create the groups:
group1 = fileh.createGroup(root, "group1")
group2 = fileh.createGroup(root, "group2")

Now, create an array in the root group
array1 = fileh.createArray(root, "array1",

["this is", "a string array"], "String array")

1 PyTables does not support hard links – for the moment.
2 I got this simple but powerful idea from the excellentObjectify module by David Mertz (see Mertz)

4 Chapter 1. Introduction

Create 2 new tables in group1 and group2
table1 = fileh.createTable(group1, "table1", Particle)
table2 = fileh.createTable("/group2", "table2", Particle)
Create one more Array in group1
array2 = fileh.createArray("/group1", "array2", [1,2,3,4])

Now, fill the tables:
for table in (table1, table2):

Get the record object associated with the table:
row = table.row
Fill the table with 10 records
for i in xrange(10):

First, assign the values to the Particle record
row[’identity’] = ’This is particle: %2d’ % (i)
row[’idnumber’] = i
row[’speed’] = i * 2.
This injects the Record values
row.append()

Flush the table buffers
table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file calledobjecttree.h5 with the structure that appears in
figure 1.1. When the file is created, the metadata in the object tree is updated in memory while the actual data
is saved to disk. When you close the file the object tree is no longer available. However, when you reopen
this file the object tree will be reconstructed in memory from the metadata on disk, allowing you to work with
it in exactly the same way as when you originally created it.

In figure 1.2 you can see an example of the object tree created when the aboveobjecttree.h5 file is
read (in fact, such an object is always created when reading any supported generic HDF5 file). It’s worthwhile
to take your time to understand it3. It will help you to avoid programming mistakes.

3 Bear in mind, however, that this diagram isnot a standard UML class diagram; it is rather meant to show the connections between
thePyTables objects and some of its most important attributes and methods.

1.2. The Object Tree 5

Figure 1.1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

6 Chapter 1. Introduction

Figure 1.2: A PyTables object tree example.

7

Chapter 2

Installation

The PythonDistutils are used to build and installPyTables , so it is fairly simple to get the application
up and running. If you want to install the package from sources go to the next section. But if you are running
Windows and want to install precompiled binaries jump to section 2.2). In addition, packages are available
for many different Linux distributions, for instance T2 Project,RockLinux , Debian , Fedora or Gentoo .
There also packages for other Unices likeFreeBSD or MacOSX

2.1 Installation from source

These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed
that you have a recent version ofMS Visual C++ (>= 6.0) compiler installed. AGCCcompiler is assumed
for Unix, but other compilers should work as well.

Extensions inPyTables have been developed in Pyrex (see Ewing) and C language. You can rebuild
everything from scratch if you have Pyrex installed, but this is not necessary, as the Pyrex compiled source is
included in the distribution.

To compilePyTables you will need a recent version ofPython , theHDF5 (C flavor) library and the
numarray (see Greenfieldet al.) package. Although you won’t needNumerical Python (see Ascher
et al.) in order to compile PyTables, it is supported; you only need a reasonably recent version of it (>= 21.x)
if you plan on using its methods in your applications. PyTables has been successfully tested with Numeric
21.3, 22.0, 23.8 and 24.0. If you already haveNumeric installed, the test driver module will detect it and
will run the tests forNumeric automatically.

2.1.1 Prerequisites

First, make sure that you have at least Python 2.3 or 2.4 (Python 2.2 is unsupported as of now), HDF5 1.6.4
and numarray 1.3 or higher installed (I’m using HDF5 1.6.4 and numarray 1.3.1 currently). If you don’t, fetch
and install them before proceeding.

Compile and install these packages (but see section 2.2.1 for instructions on how to install precompiled
binaries if you are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install theZlib (see Gailly and
Adler), which is also required byHDF5as well. You may also optionally install the excellentLZO andUCL
compression libraries (see Oberhumer and section 6.3). The high-performance bzip2 compression library
can also be used with PyTables (see Seward).

Unix setup.py will detect HDF5, LZO, UCL or bzip2 libraries and include files under/usr or
/usr/local ; this will cover most manual installations as well as installations from packages. If
setup.py can not findlibhdf5 or libz (or liblzo , libucl or libbz2 that you may wish to
use) or if you have several versions of a library installed and want to use a particular one, then you
can set the path to the resource in the environment, setting the values of theHDF5_DIR, LZO_DIR,
UCL_DIR or BZIP2_DIR environment variables to the path to the particular resource. You may also
specify the locations of the resource root directories on thesetup.py command line. For example:

http://www.t2-project.org
http://www.rocklinux.org/
http://www.debian.org/
http://monkeyrpms.net/fedora/linux/monkeyrpms/1/i386/html/pytables.html
http://www.gentoo.org/
http://www.freshports.org/
http://www.opendarwin.org/

8 Chapter 2. Installation

--hdf5=/stuff/hdf5-1.6.4
--lzo=/stuff/lzo-1.08
--ucl=/stuff/ucl-1.03
--bzip2=/stuff/bzip2-1.0.3

If your HDF5library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:

--lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.6.4/lib"

or perhaps just

--rpath="/stuff/hdf5-1.6.4/lib"

Check your compiler and linker documentation as well as the PythonDistutils documentation for
the correct syntax.

It is also possible to link with specific libraries by setting theLIBS environment variable:

LIBS="hdf5-1.6.5"
LIBS="hdf5-1.6.5 nsl"

Windows Once you have installed the prerequisites,setup.py needs to know where the necessary library
stub(.lib) andheader(.h) files are installed. Set the following environment variables:

HDF5_DIR Points to the root HDF5 directory (where the include/ and dll/ directories can be found).
Mandatory.

LZO_DIR Points to the root LZO directory (where the include/ and lib/ directories can be found).
Optional.

UCL_DIR Points to the root UCL directory (where the include/ and lib/ directories can be found).
Optional.

BZIP2_DIR Points to the root bzip2 directory (where the include/ and lib/ directories can be found).
Optional.

For example:

set HDF5_DIR=c:\stuff\5-164-win
set UCL_DIR=c:\stuff\ucl-1-02
set LZO_DIR=c:\stuff\lzo-1-08
set BZIP2_DIR=c:\stuff\bzip2-1-0-3

Or, you can pass this information tosetup.py by setting the appropriate arguments on the command
line. For example:

--hdf5=c:\stuff\5-164-win
--lzo=c:\stuff\lzo-1-08
--ucl=c:\stuff\ucl-1-02
--bzip2=c:\stuff\bzip2-1-0-3

2.1. Installation from source 9

2.1.2 PyTables package installation

Once you have installed the HDF5 library and numarray packages, you can proceed with thePyTables
package itself:

1. Run this command from the mainPyTables distribution directory, including any extra command line
arguments as discussed above:

python setup.py build_ext --inplace

Depending on the compiler flags used when compiling your Python executable, there may appear many
warnings. Don’t worry, almost all of them are caused by variables declared but never used. That’s
normal in Pyrex extensions.

2. To run the test suite, change into the test directory and execute this command:

Unix In the shellsh and its variants:

PYTHONPATH=.. python test_all.py

Windows Open a DOS terminal and type:

set PYTHONPATH=..
python test_all.py

If you would like to see verbose output from the tests simply add the flag-v and/or the wordverbose
to the command line. You can also run only the tests in a particular test module. For example, to execute
just thetypes test:

python test_types.py -v

If a test fails, please enable verbose output (the-v flag and verbose option), run the failing test
module again, and, very important, get yourPyTables version information by running the command:

python test_all.py --show-versions

and send back the output to developers so that we may continue improvingPyTables .

If you run into problems because Python can not load the HDF5 library or other shared libraries:

Unix Try setting the LD_LIBRARY_PATH environment variable to point to the directory where the
missing libraries can be found.

Windows Put the DLL libraries (hdf5dll.dll and, optionally, lzo.dll , ucl.dll and
bzip2.dll) in a directory listed in yourPATHenvironment variable. Thesetup.py instal-
lation program will print out a warning to that effect if the libraries can not be found.

3. To install the entirePyTables Python package, change back to the root distribution directory and run
the following command (make sure you have sufficient permissions to write to the directories where
thePyTables files will be installed):

python setup.py install

Of course, you will need super-user privileges if you want to installPyTables on a system-protected
area. You can select, though, a different place to install the package using the--prefix flag:

python setup.py install --prefix="/home/myuser/mystuff"

10 Chapter 2. Installation

Have in mind, however, that if you use the--prefix flag to install in a non-standard place, you should
properly setup yourPYTHONPATHenvironment variable, so that the Python interpreter would be able
to find your newPyTables installation.

You have more installation options available in the Distutils package. Issue a:

python setup.py install --help

for more information on that subject.

That’s it! Now you can skip to the next chapter to learn how to usePyTables .

2.2 Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it
useful for instructions on how to installbinary prerequisiteseven if you want to compilePyTables itself on
Windows.

2.2.1 Windows prerequisites

First, make sure that you have Python 2.3, 2.4 or higher (Python 2.2 is unsupported as of now), HDF5 1.6.4
or higher and numarray 1.3 or higher installed (I have built thePyTables binaries using HDF5 1.6.4 and
numarray 1.3.1).

For the HDF5 it should be enough to manually copy thehdf5dll.dll , zlib1.dll
and szipdll.dll files to a directory in your PATH environment variable (for example
C:\WINDOWS\SYSTEM32).

Caveat: When downloading the binary distribution for HDF5 libraries, select one compiled with MSVC
6.0 if you are using Python 2.3.x, such as the package5-164-win.zip . The file5-164-win-net.zip
was compiled with the MSVC 7.1 (aka ".NET 2003 ") and youmust choose if you want to run PyTables
with Python 2.4.x series. You have been warned!

To enable compression with optional LZO, and bzip2 libraries (see the section 6.3 for hints about how
they may be used to improve performance), fetch and install theLZOandbzip2 binaries from:
http://gnuwin32.sourceforge.net/ . Normally, you will only need to fetch and install the

<package>-<version>-bin.zip file and copy thelzo.dll andbzip2.dll files in a directory in the
PATHenvironment variable, so that they can be found by thePyTables extensions.

Note: If you are reading this because you have been redirected from the section 2.1 (Installation from
source), some of the headers you will need are in the<package>-<version>-lib.zip file.

2.2.2 PyTables package installation

Download thetables-<version>.win32-py<version>.exe
(tables-<version>-LB.win32-py<version>.exe if you want support for LZO and bzip2 libraries)
file and execute it.

You can (you should) test your installation by unpacking the source tar-ball, changing to thetest/
subdirectory and executing thetest_all.py script. If all the tests pass (possibly with a few warnings,
related to the potential unavailability of LZO and bzip2 libs) you already have a working, well-tested copy of
PyTables installed! If any test fails, please try to locate which test module is failing and execute:

python test_<module>.py -v verbose

and also:

python test_all.py --show-versions

and mail the output to the developers so that the problem can be fixed in future releases.

http://gnuwin32.sourceforge.net/

Serás la clau que obre tots els panys,
seràs la llum, la llum il.limitada,
seràs confí on l’aurora comença,

seràs forment, escala il.luminada!

—M’aclame a tu
Lyrics: Vicent Andrés i Estellés

Music: Ovidi Montllor

11

Chapter 3

Tutorials

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand
PyTables ’ main features. If you would like more information about some particular instance variable, global
function, or method, look at the doc strings or go to the library reference in chapter 4. If you are reading this
in PDF or HTML formats, follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the termscolumnandfield will be used interchangeably, as will
the termsrow andrecord.

3.1 Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. atable)
into a file. Then we will select some of the data in the table using Python cuts and createnumarray arrays
to store this selection as separate objects in a tree.

In examples/tutorial1-1.pyyou will find the working version of all the code in this section. Nonetheless,
this tutorial series has been written to allow you reproduce it in a Python interactive console. I encourage you
to do parallel testing and inspect the created objects (variables, docs, children objects, etc.) during the course
of the tutorial!

3.1.1 Importing tables objects

Before starting you need to import the public objects in thetables package. You normally do that by
executing:

>>> import tables

This is the recommended way to importtables if you don’t want to pollute your namespace. However,
PyTables has a very reduced set of first-level primitives, so you may consider using the alternative:

>>> from tables import *

which will export in your caller application namespace the following functions:openFile() ,
copyFile() , isHDF5File() , isPyTablesFile() and whichLibVersion() . This is a rather re-
duced set of functions, and for convenience, we will use this technique to access them.

If you are going to work withnumarray or Numeric arrays (and normally, you will) you will also need
to import objects from them. So mostPyTables programs begin with:

>>> import tables # but in this tutorial we use "from tables import *"
>>> from numarray import * # or "from Numeric import *"

12 Chapter 3. Tutorials

3.1.2 Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data
retrieved from it. You need first to define the table, the number of columns it has, what kind of object is
contained in each column, and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and
an ADC (Analogical to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields
in our record object calledTDCcount andADCcount . We also want to save the grid position in which the
particle has been detected, so we will add two new fields calledgrid_i andgrid_j . Our instrumentation
also can obtain the pressure and energy of the particle. The resolution of the pressure-gauge allows us to use
a simple-precision float to storepressure readings, while theenergy value will need a double-precision
float. Finally, to track the particle we want to assign it a name to identify the kind of the particle it is and a
unique numeric identifier. So we will add two more fields:name will be a string of up to 16 characters, and
idnumber will be an integer of 64 bits (to allow us to store records for extremely large numbers of particles).

Having determined our columns and their types, we can now declare a newParticle class that will
contain all this information:

>>> class Particle(IsDescription):
... name = StringCol(16) # 16-character String
... idnumber = Int64Col() # Signed 64-bit integer
... ADCcount = UInt16Col() # Unsigned short integer
... TDCcount = UInt8Col() # unsigned byte
... grid_i = Int32Col() # integer
... grid_j = IntCol() # integer (equivalent to Int32Col)
... pressure = Float32Col() # float (single-precision)
... energy = FloatCol() # double (double-precision)
...
>>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As
its value you assign an instance of the appropriateCol subclass, according to the kind of column defined (the
data type, the length, the shape, etc). See the section 4.13.2 for a complete description of these subclasses.
See also appendix A for a list of data types supported by theCol constructor.

From now on, we can useParticle instances as a descriptor for our detector data table. We will see
later on how to pass this object to construct the table. But first, we must create a file where all the actual data
pushed into our table will be saved.

3.1.3 Creating a PyTables file from scratch

Use the first-levelopenFile (see 4.1.2) function to create aPyTables file:

>>> h5file = openFile("tutorial1.h5", mode = "w", title = "Test file")

openFile (see 4.1.2) is one of the objects imported by the "from tables import * " state-
ment. Here, we are saying that we want to create a new file in the current working directory called
"tutorial1.h5 " in "w"rite mode and with an descriptive title string ("Test file "). This function at-
tempts to open the file, and if successful, returns theFile (see 4.2) object instanceh5file . The root of the
object tree is specified in the instance’sroot attribute.

3.1.4 Creating a new group

Now, to better organize our data, we will create a group calleddetectorthat branches from the root node. We
will save our particle data table in this group.

3.1. Getting started 13

>>> group = h5file.createGroup("/", ’detector’, ’Detector information’)

Here, we have taken theFile instanceh5file and invoked itscreateGroup method (see 4.2.2) to
create a new group calleddetectorbranching from "/ " (another way to refer to theh5file.root object we
mentioned above). This will create a newGroup (see 4.4) object instance that will be assigned to the variable
group .

3.1.5 Creating a new table

Let’s now create aTable (see 4.6) object as a branch off the newly-created group. We do that by calling the
createTable (see 4.2.2) method of theh5file object:

>>> table = h5file.createTable(group, ’readout’, Particle, "Readout example")

We create theTable instance undergroup . We assign this table the node name "readout". The
Particle class declared before is thedescriptionparameter (to define the columns of the table) and finally
we set "Readout example" as theTable title. With all this information, a newTable instance is created and
assigned to the variabletable.

If you are curious about how the object tree looks right now, simplyprint theFile instance variable
h5file, and examine the output:

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:00:13 2003’
/ (Group) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

As you can see, a dump of the object tree is displayed. It’s easy to see theGroup andTable objects we
have just created. If you want more information, just type the variable containing theFile instance:

>>> h5file
File(filename=’tutorial1.h5’, title=’Test file’, mode=’w’, trMap={}, rootUEP=’/’)
/ (Group) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

description := {
"ADCcount": Col(’UInt16’, shape=1, itemsize=2, dflt=0),
"TDCcount": Col(’UInt8’, shape=1, itemsize= 1, dflt=0),
"energy": Col(’Float64’, shape=1, itemsize=8, dflt=0.0),
"grid_i": Col(’Int32’, shape=1, itemsize=4, dflt=0),
"grid_j": Col(’Int32’, shape=1, itemsize=4, dflt=0),
"idnumber": Col(’Int64’, shape=1, itemsize=8, dflt=0),
"name": Col(’CharType’, shape=1, itemsize=16, dflt=None),
"pressure": Col(’Float32’, shape=1, itemsize=4, dflt=0.0) }

byteorder := little

More detailed information is displayed about each object in the tree. Note howParticle , our table de-
scriptor class, is printed as part of thereadouttable description information. In general, you can obtain much
more information about the objects and their children by just printing them. That introspection capability is
very useful, and I recommend that you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to theRow (see 4.6.4)
instance of thistable instance:

14 Chapter 3. Tutorials

>>> particle = table.row

Therow attribute oftable points to theRowinstance that will be used to write data rows into the table.
We write data simply by assigning theRowinstance the values for each row as if it were a dictionary (although
it is actually anextension class), using the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange(10):
... particle[’name’] = ’Particle: %6d’ % (i)
... particle[’TDCcount’] = i % 256
... particle[’ADCcount’] = (i * 256) % (1 << 16)
... particle[’grid_i’] = i
... particle[’grid_j’] = 10 - i
... particle[’pressure’] = float(i*i)
... particle[’energy’] = float(particle[’pressure’] ** 4)
... particle[’idnumber’] = i * (2 ** 34)
... particle.append()
...
>>>

This code should be easy to understand. The lines inside the loop just assign values to the different
columns in the Row instanceparticle (see 4.6.4). A call to itsappend() method writes this information
to thetable I/O buffer.

After we have processed all our data, we should flush the table’s I/O buffer if we want to write all this
data to disk. We achieve that by calling thetable.flush() method.

>>> table.flush()

3.1.6 Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we
are interested in. See the example below:

>>> table = h5file.root.detector.readout
>>> pressure = [x[’pressure’] for x in table.iterrows()
... if x[’TDCcount’]>3 and 20<=x[’pressure’]<50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a "shortcut" to thereadouttable deeper on the object tree. As you can see, we use
thenatural naming schema to access it. We also could have used theh5file.getNode() method, as we
will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows intable as
they are provided by thetable.iterrows() iterator (see 4.6.2). The iterator returns values until all the
data in table is exhausted. These rows are filtered using the expression:

x[’TDCcount’] > 3 and x[’pressure’] <50

We select the value of thepressure column from filtered records to create the final list and assign it to
pressure variable.

We could have used a normalfor loop to accomplish the same purpose, but I find comprehension syntax
to be more compact and elegant.

Let’s select thename column for the same set of cuts:

3.1. Getting started 15

>>> names=[x[’name’] for x in table if x[’TDCcount’]>3 and 20<=x[’pressure’]<50]
>>> names
[’Particle: 5’, ’Particle: 6’, ’Particle: 7’]

Note how we have omitted theiterrows() call in the list comprehension. TheTable class has an
implementation of the special method__iter__() that iterates over all the rows in the table. In fact,
iterrows() internally calls this special__iter__() method. Accessing all the rows in a table using this
method is very convenient, especially when working with the data interactively.

That’s enough about selections. The next section will show you how to save these select results to a file.

3.1.7 Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new groupcolumns
branching off the root group. Afterwards, under this group, we will create two arrays that will contain the
selected data. First, we create the group:

>>> gcolumns = h5file.createGroup(h5file.root, "columns", "Pressure and Name")

Note that this time we have specified the first parameter usingnatural naming(h5file.root) instead
of with an absolute path string ("/").

Now, create the first of the twoArray objects we’ve just mentioned:

>>> h5file.createArray(gcolumns, ’pressure’, array(pressure),
... "Pressure column selection")
/columns/pressure (Array(3,)) ’Pressure column selection’

type = Float64
itemsize = 8
flavor = ’NumArray’
byteorder = ’little’

We already know the first two parameters of thecreateArray (see 4.2.2) methods (these are the same
as the first two increateTable): they are the parent groupwhereArray will be created and theArray
instancename. The third parameter is theobjectwe want to save to disk. In this case, it is aNumeric array
that is built from the selection list we created before. The fourth parameter is thetitle.

Now, we will save the second array. It contains the list of strings we selected before: we save this object
as-is, with no further conversion.

>>> h5file.createArray(gcolumns, ’name’, names, "Name column selection")
/columns/name Array(4,) ’Name column selection’

type = ’CharType’
itemsize = 16
flavor = ’List’
byteorder = ’little’

As you can see,createArray() acceptsnames(which is a regular Python list) as anobjectparameter.
Actually, it accepts a variety of different regular objects (see 4.2.2) as parameters. Theflavor attribute (see
the output above) saves the original kind of object that was saved. Based on thisflavor, PyTables will be
able to retrieve exactly the same object from disk later on.

Note that in these examples, thecreateArray method returns anArray instance that is not assigned
to any variable. Don’t worry, this is intentional to show the kind of object we have created by displaying its
representation. TheArray objects have been attached to the object tree and saved to disk, as you can see if
you print the complete object tree:

16 Chapter 3. Tutorials

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:00:13 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

3.1.8 Closing the file and looking at its content

To finish this first tutorial, we use theclose method of the h5fileFile object to close the file before exiting
Python:

>>> h5file.close()
>>> ^D

You have now created your firstPyTables file with a table and two arrays. You can examine it with any
generic HDF5 tool, such ash5dump or h5ls . Here is what thetutorial1.h5 looks like when read with
theh5ls program:

$ h5ls -rd tutorial1.h5
/columns Group
/columns/name Dataset {3}

Data:
(0) "Particle: 5", "Particle: 6", "Particle: 7"

/columns/pressure Dataset {3}
Data:

(0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}

Data:
(0) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},
(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the outputs as displayed by the "ptdump"PyTables utility (located inutils/ directory):

$ ptdump tutorial1.h5
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:40:51 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’

3.2. Browsing theobject treeand appending to tables 17

/detector/readout (Table(10,)) ’Readout example’

You can pass the-v or -d options toptdump if you want more verbosity. Try them out!

3.2 Browsing the object tree and appending to tables

In this section, we will learn how to browse the tree and retrieve meta-information about the actual data, then
append some rows to an existing table to show how table objects can be enlarged.

In examples/tutorial1-2.pyyou will find the working version of all the code in this section. As before, you
are encouraged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1 Traversing the object tree

Let’s start by opening the file we created in last tutorial section.

>>> h5file = openFile("tutorial1.h5", "a")

This time, we have opened the file in "a"ppend mode. We use this mode to add more information to the
file.

PyTables , following the Python tradition, offers powerful introspection capabilities, i.e. you can easily
ask information about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existingFile
instance:

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:40:51 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

It looks like all of our objects are there. Now let’s make use of theFile iterator to see to list all the nodes
in the object tree:

>>> for node in h5file:
... print node
...
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector/readout (Table(10,)) ’Readout example’

We can use thewalkGroups method (see 4.2.2) of theFile class to list only thegroupson tree:

>>> for group in h5file.walkGroups("/"):
... print group
...

18 Chapter 3. Tutorials

/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’

Note thatwalkGroups() actually returns aniterator, not a list of objects. Using this iterator with the
listNodes() method is a powerful combination. Let’s see an example listing of all the arrays in the tree:

>>> for group in h5file.walkGroups("/"):
... for array in h5file.listNodes(group, classname = ’Array’):
... print array
...
/columns/name Array(3,) ’Name column selection’
/columns/pressure Array(3,) ’Pressure column selection’

listNodes() (see 4.2.2) returns a list containing all the nodes hanging off a specificGroup . If the
classnamekeyword is specified, the method will filter out all instances which are not descendants of the class.
We have asked for onlyArray instances.

We can combine both calls by using thewalkNodes(where, classname) special method of the
File object (see 4.2.2). For example:

>>> for array in h5file.walkNodes("/", "Array"):
... print array
...
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

This is a nice shortcut when working interactively.
Finally, we will list all theLeaf , i.e. Table andArray instances (see 4.5 for detailed information on

Leaf class), in the/detector group. Note that only one instance of theTable class (i.e.readout) will
be selected in this group (as should be the case):

>>> for leaf in h5file.root.detector._f_walkNodes(’Leaf’):
... print leaf
...
/detector/readout (Table(10,)) ’Readout example’

We have used a call to theGroup._f_walkNodes(classname, recursive) method (4.4.2), using
thenatural namingpath specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let’s
take a look at some importantPyTables object instance variables.

3.2.2 Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by
using theAttributeSet class (see section 4.12). You can access this object through the standard attribute
attrs in Leaf nodes and_v_attrs in Group nodes.

For example, let’s imagine that we want to save the date indicating when the data in
/detector/readout table has been acquired, as well as the temperature during the gathering process:

>>> table = h5file.root.detector.readout
>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"

3.2. Browsing theobject treeand appending to tables 19

Now, let’s set a somewhat more complex attribute in the/detector group:

>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the_v_attrs attribute because detector is aGroup
node. In general, you can save any standard Python data structure as an attribute node. See section 4.12 for a
more detailed explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date
’Wed, 06/12/2003 18:33’
>>> table.attrs.temperature
18.399999999999999
>>> table.attrs.temp_scale
’Celsius’
>>> detector._v_attrs.stuff
[5, (2.2999999999999998, 4.5), ’Integer and tuple’]

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current complete attribute set of/detector/table , you can print its repre-
sentation (try hitting theTABkey twice if you are on a Unix Python console with therlcompleter module
active):

>>> table.attrs
/detector/readout (AttributeSet), 14 attributes:

[CLASS := ’TABLE’,
FIELD_0_NAME := ’ADCcount’,
FIELD_1_NAME := ’TDCcount’,
FIELD_2_NAME := ’energy’,
FIELD_3_NAME := ’grid_i’,
FIELD_4_NAME := ’grid_j’,
FIELD_5_NAME := ’idnumber’,
FIELD_6_NAME := ’name’,
FIELD_7_NAME := ’pressure’,
NROWS := 10,
TITLE := ’Readout example’,
VERSION := ’2.0’,
tempScale := ’Celsius’,
temperature := 18.399999999999999]

You can get a list of only the user or system attributes with the_f_list() method.

>>> print table.attrs._f_list("user")
[’temp_scale’, ’temperature’]
>>> print table.attrs._f_list("sys")
[’CLASS’, ’FIELD_0_NAME’, ’FIELD_1_NAME’, ’FIELD_2_NAME’, ’FIELD_3_NAME’,

’FIELD_4_NAME’, ’FIELD_5_NAME’, ’FIELD_6_NAME’, ’FIELD_7_NAME’, ’NROWS’,
’TITLE’, ’VERSION’]

You can also rename attributes:

20 Chapter 3. Tutorials

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print table.attrs._f_list()
[’tempScale’, ’temperature’]

However, you can not set, delete or rename read-only attributes:

>>> table.attrs._f_rename("VERSION", "version")
Traceback (most recent call last):

File ">stdin>", line 1, in ?
File "/home/falted/PyTables/pytables-0.7/tables/AttributeSet.py",
line 249, in _f_rename

raise AttributeError, \
AttributeError: Read-only attribute (’VERSION’) cannot be renamed

If you would terminate your session now, you would be able to use theh5ls command to read the
/detector/readout attributes from the file written to disk:

$ h5ls -vr tutorial1.h5/detector/readout
Opened "tutorial1.h5" with sec2 driver.
/detector/readout Dataset {10/Inf}

Attribute: CLASS scalar
Type: 6-byte null-terminated ASCII string
Data: "TABLE"

Attribute: VERSION scalar
Type: 4-byte null-terminated ASCII string
Data: "2.0"

Attribute: TITLE scalar
Type: 16-byte null-terminated ASCII string
Data: "Readout example"

Attribute: FIELD_0_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "ADCcount"

Attribute: FIELD_1_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "TDCcount"

Attribute: FIELD_2_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "energy"

Attribute: FIELD_3_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_i"

Attribute: FIELD_4_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_j"

Attribute: FIELD_5_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "idnumber"

Attribute: FIELD_6_NAME scalar
Type: 5-byte null-terminated ASCII string
Data: "name"

Attribute: FIELD_7_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "pressure"

Attribute: tempScale scalar

3.2. Browsing theobject treeand appending to tables 21

Type: 8-byte null-terminated ASCII string
Data: "Celsius"

Attribute: temperature {1}
Type: native double
Data: 18.4

Attribute: NROWS {1}
Type: native int
Data: 10

Location: 0:1:0:1952
Links: 1
Modified: 2003-07-24 13:59:19 CEST
Chunks: {2048} 96256 bytes
Storage: 470 logical bytes, 96256 allocated bytes, 0.49% utilization
Type: struct {

"ADCcount" +0 native unsigned short
"TDCcount" +2 native unsigned char
"energy" +3 native double
"grid_i" +11 native int
"grid_j" +15 native int
"idnumber" +19 native long long
"name" +27 16-byte null-terminated ASCII string
"pressure" +43 native float

} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3 Getting object metadata

Each object inPyTables hasmetadatainformation about the data in the file. Normally thismeta-information
is accessible through the node instance variables. Let’s take a look at some examples:

>>> print "Object:", table
Object: /detector/readout Table(10,) ’Readout example’
>>> print "Table name:", table.name
Table name: readout
>>> print "Table title:", table.title
Table title: Readout example
>>> print "Number of rows in table:", table.nrows
Number of rows in table: 10
>>> print "Table variable names with their type and shape:"
Table variable names with their type and shape:
>>> for name in table.colnames:
... print name, ’:= %s, %s’ % (table.coltypes[name], table.colshapes[name])
...
ADCcount := UInt16, 1
TDCcount := UInt8, 1
energy := Float64, 1
grid_i := Int32, 1
grid_j := Int32, 1
idnumber := Int64, 1
name := CharType, 1
pressure := Float32, 1

22 Chapter 3. Tutorials

Here, thename, title , nrows , colnames , coltypes andcolshapes attributes (see 4.6.1 for a
complete attribute list) of theTable object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by printing their
internal doc strings:

>>> print table.__doc__
Represent a table in the object tree.

It provides methods to create new tables or open existing ones, as
well as to write/read data to/from table objects over the
file. A method is also provided to iterate over the rows without
loading the entire table or column in memory.

Data can be written or read both as Row instances or as numarray
(NumArray or RecArray) objects.

Methods:

__getitem__(key)
__iter__()
__setitem__(key, value)
append(rows)
flushRowsToIndex()
iterrows(start, stop, step)
itersequence(sequence)
modifyRows(start, rows)
modifyColumns(start, columns, names)
read([start] [, stop] [, step] [, field [, flavor]])
reIndex()
reIndexDirty()
removeRows(start [, stop])
removeIndex(column)
where(condition [, start] [, stop] [, step])
whereAppend(dstTable, condition [, start] [, stop] [, step])
getWhereList(condition [, flavor])

Instance variables:

description -- the metaobject describing this table
row -- a reference to the Row object associated with this table
nrows -- the number of rows in this table
rowsize -- the size, in bytes, of each row
cols -- accessor to the columns using a natural name schema
colnames -- the field names for the table (list)
coltypes -- the type class for the table fields (dictionary)
colshapes -- the shapes for the table fields (dictionary)
colindexed -- whether the table fields are indexed (dictionary)
indexed -- whether or not some field in Table is indexed
indexprops -- properties of an indexed Table. Exists only

if the Table is indexed

Thehelp function is also a handy way to seePyTables reference documentation online. Try it yourself
with other object docs:

>>> help(table.__class__)

3.2. Browsing theobject treeand appending to tables 23

>>> help(table.removeRows)

To examine metadata in the/columns/pressureArray object:

>>> pressureObject = h5file.getNode("/columns", "pressure")
>>> print "Info on the object:", repr(pressureObject)
Info on the object: /columns/pressure (Array(3,)) ’Pressure column selection’

type = Float64
itemsize = 8
flavor = ’NumArray’
byteorder = ’little’

>>> print " shape: ==>", pressureObject.shape
shape: ==> (3,)

>>> print " title: ==>", pressureObject.title
title: ==> Pressure column selection

>>> print " type: ==>", pressureObject.type
type: ==> Float64

Observe that we have used thegetNode() method of theFile class to access a node in the tree, instead
of the natural naming method. Both are useful, and depending on the context you will prefer one or the other.
getNode() has the advantages that it can get a node from the pathname string (as in this example) and can
also act as a filter to show only nodes in a particular location that are instances of classclassname. In general,
however, I consider natural naming to be more elegant and easier to use, especially if you are using the name
completion capability present in interactive console. Try this powerful combination of natural naming and
completion capabilities present in most Python consoles, and see how pleasant it is to browse the object tree
(at least, as pleasant as such an activity can be).

If you look at thetype attribute of thepressureObject object, you can verify that it is a "Float64"
array. By looking at itsshape attribute, you can deduce that the array on disk is unidimensional and has 3
elements. See 4.8.1 or the internal string docs for the completeArray attribute list.

3.2.4 Reading data from Array objects

Once you have found the desiredArray , use theread() method of theArray object to retrieve its data:

>>> pressureArray = pressureObject.read()
>>> pressureArray
array([25., 36., 49.])
>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <class ’numarray.numarraycore.NumArray’>
>>> nameArray = h5file.root.columns.name.read()
>>> nameArray
[’Particle: 5’, ’Particle: 6’, ’Particle: 7’]
>>> print "nameArray is an object of type:", type(nameArray)
nameArray is an object of type: <type ’list’>
>>>
>>> print "Data on arrays nameArray and pressureArray:"
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
... print nameArray[i], "-->", pressureArray[i]
...
Particle: 5 --> 25.0
Particle: 6 --> 36.0
Particle: 7 --> 49.0
>>> pressureObject.name

24 Chapter 3. Tutorials

’pressure’

You can see that theread() method (see section 4.8.2) returns an authenticnumarray object for the
pressureObject instance by looking at the output of thetype() call. A read() of thenameObject
object instance returns a native Python list (of strings). The type of the object saved is stored as an HDF5
attribute (namedFLAVOR) for objects on disk. This attribute is then read asArray meta-information (ac-
cessible through in theArray.attrs.FLAVOR variable), enabling the read array to be converted into the
original object. This provides a means to save a large variety of objects as arrays with the guarantee that you
will be able to later recover them in their original form. See section 4.2.2 for a complete list of supported
objects for theArray object class.

3.2.5 Appending data to an existing table

Now, let’s have a look at how we can add records to an existing table on disk. Let’s use our well-known
readoutTable object and append some new values to it:

>>> table = h5file.root.detector.readout
>>> particle = table.row
>>> for i in xrange(10, 15):
... particle[’name’] = ’Particle: %6d’ % (i)
... particle[’TDCcount’] = i % 256
... particle[’ADCcount’] = (i * 256) % (1 << 16)
... particle[’grid_i’] = i
... particle[’grid_j’] = 10 - i
... particle[’pressure’] = float(i*i)
... particle[’energy’] = float(particle[’pressure’] ** 4)
... particle[’idnumber’] = i * (2 ** 34)
... particle.append()
...
>>> table.flush()

It’s the same method we used to fill a new table.PyTables knows that this table is on disk, and when
you add new records, they are appended to the end of the table1.

If you look carefully at the code you will see that we have used thetable.row attribute to create a table
row and fill it with the new values. Each time that itsappend() method is called, the actual row is committed
to the output buffer and the row pointer is incremented to point to the next table record. When the buffer is
full, the data is saved on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the.flush() method after a write operation, or else your
tables will not be updated!

Let’s have a look at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows():
... print "%-16s | %11.1f | %11.4g | %6d | %6d | %8d |" % \
... (r[’name’], r[’pressure’], r[’energy’], r[’grid_i’], r[’grid_j’],
... r[’TDCcount’])
...
...
Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
Particle: 3 | 9.0 | 6561 | 3 | 7 | 3 |
Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |

1 Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

3.3. Multidimensional table cells and automatic sanity checks 25

Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5 |
Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
Particle: 7 | 49.0 | 5.765e+06 | 7 | 3 | 7 |
Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 | 9 |
Particle: 10 | 100.0 | 1e+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11 |
Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.2.6 And finally... how to delete rows from a table

We’ll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the
the 5th to 9th rows (inclusive):

>>> table.removeRows(5,10)
5

removeRows(start, stop) (see 4.6.2) deletes the rows in the range (start, stop). It returns the num-
ber of rows effectively removed.

We have reached the end of this first tutorial. Don’t forget to close the file when you finish:

>>> h5file.close()
>>> ^D
$

In figure 3.1 you can see a graphical view of thePyTables file with the datasets we have just created. In
figure 3.2 are displayed the general properties of the table/detector/readout .

3.3 Multidimensional table cells and automatic sanity checks

Now it’s time for a more real-life example (i.e. with errors in the code). We will create two groups that
branch directly from theroot node,Particles andEvents . Then, we will put three tables in each group.
In Particles we will put tables based on theParticle descriptor and inEvents , the tables based the
Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created
table/Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it inexamples/tutorial2.py). It appears to do all of the above,
but it contains some small bugs. Note that thisParticle class is not directly related to the one defined
in last tutorial; this class is simpler (note, however, themultidimensionalcolumns calledpressure and
temperature).

We also introduce a new manner to describe aTable as a dictionary, as you can see in theEvent
description. See section 4.2.2 about the different kinds of descriptor objects that can be passed to the
createTable() method.

from numarray import *
from tables import *

Describe a particle record
class Particle(IsDescription):

name = StringCol(length=16) # 16-character String
lati = IntCol() # integer

26 Chapter 3. Tutorials

Figure 3.1: The final version of the data file for tutorial 1, with a view of the data objects.

Figure 3.2: General properties of the/detector/readout table.

3.3. Multidimensional table cells and automatic sanity checks 27

longi = IntCol() # integer
pressure = Float32Col(shape=(2,3)) # array of floats (single-precision)
temperature = FloatCol(shape=(2,3)) # array of doubles (double-precision)

Another way to describe the columns of a table
Event = {

"name" : Col(’CharType’, 16), # 16-character String
"TDCcount": Col("UInt8", 1), # unsigned byte
"ADCcount": Col("UInt16", 1), # Unsigned short integer
"xcoord" : Col("Float32", 1), # integer
"ycoord" : Col("Float32", 1), # integer
}

Open a file in "w"rite mode
fileh = openFile("tutorial2.h5", mode = "w")
Get the HDF5 root group
root = fileh.root
Create the groups:
for groupname in ("Particles", "Events"):

group = fileh.createGroup(root, groupname)
Now, create and fill the tables in the Particles group
gparticles = root.Particles
Create 3 new tables
for tablename in ("TParticle1", "TParticle2", "TParticle3"):

Create a table
table = fileh.createTable("/Particles", tablename, Particle,

"Particles: "+tablename)
Get the record object associated with the table:
particle = table.row
Fill the table with data for 257 particles
for i in xrange(257):

First, assign the values to the Particle record
particle[’name’] = ’Particle: %6d’ % (i)
particle[’lati’] = i
particle[’longi’] = 10 - i
########### Detectable errors start here. Play with them!
particle[’pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect
#particle[’pressure’] = array(i*arange(2*3), shape=(2,3)) # Correct
########### End of errors
particle[’temperature’] = (i**2) # Broadcasting
This injects the Record values
particle.append()

Flush the table buffers
table.flush()

Now Events:
for tablename in ("TEvent1", "TEvent2", "TEvent3"):

Create a table in the Events group
table = fileh.createTable(root.Events, tablename, Event,

"Events: "+tablename)
Get the record object associated with the table:
event = table.row
Fill the table with data on 257 events
for i in xrange(257):

28 Chapter 3. Tutorials

First, assign the values to the Event record
event[’name’] = ’Event: %6d’ % (i)
event[’TDCcount’] = i % (1<<8) # Correct range
########### Detectable errors start here. Play with them!
#event[’xcoord’] = float(i**2) # Correct spelling
event[’xcoor’] = float(i**2) # Wrong spelling
event[’ADCcount’] = i * 2 # Correct type
#event[’ADCcount’] = "sss" # Wrong type
########### End of errors
event[’ycoord’] = float(i)**4
This injects the Record values
event.append()

Flush the buffers
table.flush()

Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [p[’TDCcount’] for p in table

if p[’ADCcount’] < 20 and 4 <= p[’TDCcount’] < 15]
print "Last record ==>", p
print "Selected values ==>", e
print "Total selected records ==> ", len(e)
Finally, close the file (this also will flush all the remaining buffers)
fileh.close()

3.3.1 Shape checking

If you look at the code carefully, you’ll see that it won’t work. You will get the following error:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 53, in ?
particle[’pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect

File "/usr/local/lib/python2.2/site-packages/numarray/numarraycore.py",
line 281, in array

a.setshape(shape)
File "/usr/local/lib/python2.2/site-packages/numarray/generic.py",

line 530, in setshape
raise ValueError("New shape is not consistent with the old shape")

ValueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell.
Looking at the source, we see that we were trying to assign an array of shape(2,4) to apressure element,
which was defined with the shape(2,3) .

In general, these kinds of operations are forbidden, with one valid exception: when you assign ascalar
value to a multidimensional column cell, all the cell elements are populated with the value of the scalar. For
example:

particle[’temperature’] = (i**2) # Broadcasting

The valuei**2 is assigned to all the elements of thetemperature table cell. This capability is provided
by thenumarray package and is known asbroadcasting.

3.4. Exercising the Undo/Redo feature 29

3.3.2 Field name checking

After fixing the previous error and rerunning the program, we encounter another error:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 74, in ?
event[’xcoor’] = float(i**2) # Wrong spelling

File "src/hdf5Extension.pyx",
line 1812, in hdf5Extension.Row.__setitem__

raise KeyError, "Error setting \"%s\" field.\n %s" % \
KeyError: Error setting "xcoor" field.

Error was: "exceptions.KeyError: xcoor"

This error indicates that we are attempting to assign a value to a non-existent field in theeventtable object.
By looking carefully at theEvent class attributes, we see that we misspelled thexcoord field (we wrote
xcoor instead). This is unusual behavior for Python, as normally when you assign a value to a non-existent
instance variable, Python creates a new variable with that name. Such a feature can be dangerous when
dealing with an object that contains a fixed list of field names. PyTables checks that the field exists and raises
a KeyError if the check fails.

3.3.3 Data type checking

Finally, in order to test type checking, we will change the next line:

event.ADCcount = i * 2 # Correct type

to read:

event.ADCcount = "sss" # Wrong type

This modification will cause the followingTypeError exception to be raised when the script is executed:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 76, in ?
event[’ADCcount’] = "sss" # Wrong type

File "src/hdf5Extension.pyx",
line 1812, in hdf5Extension.Row.__setitem__

raise KeyError, "Error setting \"%s\" field.\n %s" % \
KeyError: Error setting "ADCcount" field.

Error was: "exceptions.TypeError: NA_setFromPythonScalar: bad value type."

You can see the structure created with this (corrected) script in figure 3.3. In particular, note the multidi-
mensional column cells in table/Particles/TParticle2 .

3.4 Exercising the Undo/Redo feature

PyTables has integrated support for undoing and/or redoing actions. This functionality lets you put marks
in specific places of your hierarchy manipulation operations, so that you can make your HDF5 file pop back
(undo) to a specific mark (for example for inspecting how your hierarchy looked at that point). You can also
go forward to a more recent marker (redo). You can even do jumps to the marker you want using just one
instruction as we will see shortly.

30 Chapter 3. Tutorials

Figure 3.3: Table hierarchy for tutorial 2.

You can undo/redo all the operations that are related to object tree management, like creating, delet-
ing, moving or renaming nodes (or complete sub-hierarchies) inside a given object tree. You can also
undo/redo operations (i.e. creation, deletion or modification) of persistent node attributes. However, when
actions includeinternal modifications of datasets (that includesTable.append , Table.modifyRows or
Table.removeRows among others), they cannot be undone/redone as of now.

This capability can be useful in many situations, like for example when doing simulations with multiple
branches. When you have to choose a path to follow in such a situation, you can put a mark there and, if the
simulation is not going well, you can go back to that mark and start another path. Other possible application
is defining coarse-grained operations which operate in a transactional-like way, i.e. which return the database
to its previous state if the operation finds some kind of problem while running. You can probably devise many
other scenarios where the Undo/Redo feature can be useful to you2.

3.4.1 A basic example

In this section, we are going to show the basic behaviour of the Undo/Redo feature. You can find the code used
in this example inexamples/tutorial3-1.py . A somewhat more complex example will be explained in
the next section.

First, let’s create a file:

>>> import tables
>>> fileh = tables.openFile("tutorial3-1.h5", "w", title="Undo/Redo demo 1")

And now, activate the Undo/Redo feature with the methodenableUndo (see page 44) ofFile :

>>> fileh.enableUndo()

2 You can evenhidenodes temporarily. Will you be able to find out how?

3.4. Exercising the Undo/Redo feature 31

From now on, all our actions will be logged internally byPyTables . Now, we are going to create a node
(in this case anArray object):

>>> one = fileh.createArray(’/’, ’anarray’, [3,4], "An array")

Now, mark this point:

>>> fileh.mark()
1
>>>

We have marked the current point in the sequence of actions. In addition, themark() method has returned
the identifier assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning
of the action log). In the next section we will see that you can also assign anameto a mark (see page 44 for
more info onmark()). Now, we are going to create another array:

>>> another = fileh.createArray(’/’, ’anotherarray’, [4,5], "Another array")

Right. Now, we can start doing funny things. Let’s say that we want to pop back to the previous mark
(that whose value was 1, do you remember?). Let’s introduce theundo() method (see page 45):

>>> fileh.undo()
>>>

Fine, what do you think it happened? Well, let’s have a look at the object tree:

>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’

>>>

What happened with the/anotherarray node we’ve just created? You guess it, it has disappeared
because it was createdafter the mark 1. If you are curious enough you may well ask where it has gone.
Well, it has not been deleted completely; it has been just moved into a special, hidden, group of PyTables that
renders it invisible and waiting for a chance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fileh.undo()
>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’

>>>

Oops,/anarray has disappeared as well!. Don’t worry, it will revisit us very shortly. So, you might be
somewhat lost right now; in which mark are we?. Let’s ask thegetCurrentMark() method (see page 45)
in the file handler:

32 Chapter 3. Tutorials

>>> print fileh.getCurrentMark()
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of
actions when callingFile.enableUndo() . Fine, right now, but you are missing your too-young-to-die
arrays. What can we do about that?File.redo() (see page 45) to the rescue:

>>> fileh.redo()
>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’

>>>

Great! The/anarray array has come into life again. Just check that it is alive and well:

>>> fileh.root.anarray.read()
[3, 4]
>>> fileh.root.anarray.title
’An array’
>>>

Well, it looks pretty similar than in its previous life; what’s more, it is exactly the same object!:

>>> fileh.root.anarray is one
True

It just was moved to the the hidden group and back again, but that’s all! That’s kind of fun, so we are
going to do the same with/anotherarray :

>>> fileh.redo()
>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’
/anotherarray (Array(2,)) ’Another array’

>>>

Welcome back,/anotherarray ! Just a couple of sanity checks:

>>> assert fileh.root.anotherarray.read() == [4,5]
>>> assert fileh.root.anotherarray.title == "Another array"
>>> fileh.root.anotherarray is another
True

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your
action log when you don’t need this feature anymore:

3.4. Exercising the Undo/Redo feature 33

>>> fileh.disableUndo()

That will allow you to continue working with your data without actually requiringPyTables to keep
track of all your actions, and more importantly, allowing your objects to die completely if they have to, not
requiring to keep them anywhere, and hence saving process time and space in your database file.

3.4.2 A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks
will be set in different parts of the code flow and we will see how to jump between these marks with just one
method call. You can find the code used in this example inexamples/tutorial3-2.py

Let’s introduce the first part of the code:

import tables

Create an HDF5 file
fileh = tables.openFile(’tutorial3-2.h5’, ’w’, title=’Undo/Redo demo 2’)

#’-**-**-**-**-**-**- enable undo/redo log -**-**-**-**-**-**-**-’
fileh.enableUndo()

Start undoable operations
fileh.createArray(’/’, ’otherarray1’, [3,4], ’Another array 1’)
fileh.createGroup(’/’, ’agroup’, ’Group 1’)
Create a ’first’ mark
fileh.mark(’first’)
fileh.createArray(’/agroup’, ’otherarray2’, [4,5], ’Another array 2’)
fileh.createGroup(’/agroup’, ’agroup2’, ’Group 2’)
Create a ’second’ mark
fileh.mark(’second’)
fileh.createArray(’/agroup/agroup2’, ’otherarray3’, [5,6], ’Another array 3’)
Create a ’third’ mark
fileh.mark(’third’)
fileh.createArray(’/’, ’otherarray4’, [6,7], ’Another array 4’)
fileh.createArray(’/agroup’, ’otherarray5’, [7,8], ’Another array 5’)

You can see how we have set several marks interspersed in the code flow, representing different states
of the database. Also, note that we have assignednamesto these marks, namely’first’ , ’second’ and
’third’ .

Now, start doing some jumps back and forth in the states of the database:

Now go to mark ’first’
fileh.goto(’first’)
assert ’/otherarray1’ in fileh.objects
assert ’/agroup’ in fileh.objects
assert ’/agroup/agroup2’ not in fileh.objects
assert ’/agroup/otherarray2’ not in fileh.objects
assert ’/agroup/agroup2/otherarray3’ not in fileh.objects
assert ’/otherarray4’ not in fileh.objects
assert ’/agroup/otherarray5’ not in fileh.objects
Go to mark ’third’
fileh.goto(’third’)
assert ’/otherarray1’ in fileh.objects
assert ’/agroup’ in fileh.objects

34 Chapter 3. Tutorials

assert ’/agroup/agroup2’ in fileh.objects
assert ’/agroup/otherarray2’ in fileh.objects
assert ’/agroup/agroup2/otherarray3’ in fileh.objects
assert ’/otherarray4’ not in fileh.objects
assert ’/agroup/otherarray5’ not in fileh.objects
Now go to mark ’second’
fileh.goto(’second’)
assert ’/otherarray1’ in fileh.objects
assert ’/agroup’ in fileh.objects
assert ’/agroup/agroup2’ in fileh.objects
assert ’/agroup/otherarray2’ in fileh.objects
assert ’/agroup/agroup2/otherarray3’ not in fileh.objects
assert ’/otherarray4’ not in fileh.objects
assert ’/agroup/otherarray5’ not in fileh.objects

Well, the code above shows how easy is to jump to a certain mark in the database by using thegoto()
method (see page 45).

There are also a couple of implicit marks for going to the beginning or the end of the saved states:
0 and -1. Going to mark #0 means go to the beginning of the saved actions, that is, when method
fileh.enableUndo() was called. Going to mark #-1 means go to the last recorded action, that is the
last action in the code flow.

Let’s see what happens when going to the end of the action log:

Go to the end
fileh.goto(-1)
assert ’/otherarray1’ in fileh.objects
assert ’/agroup’ in fileh.objects
assert ’/agroup/agroup2’ in fileh.objects
assert ’/agroup/otherarray2’ in fileh.objects
assert ’/agroup/agroup2/otherarray3’ in fileh.objects
assert ’/otherarray4’ in fileh.objects
assert ’/agroup/otherarray5’ in fileh.objects
Check that objects have come back to life in a sane state
assert fileh.root.otherarray1.read() == [3,4]
assert fileh.root.agroup.otherarray2.read() == [4,5]
assert fileh.root.agroup.agroup2.otherarray3.read() == [5,6]
assert fileh.root.otherarray4.read() == [6,7]
assert fileh.root.agroup.otherarray5.read() == [7,8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of
the object tree.

We have nearly finished this demonstration. As always, do not forget to close the action log as well as the
database:

#’-**-**-**-**-**-**- disable undo/redo log -**-**-**-**-**-**-**-’
fileh.disableUndo()

Close the file
fileh.close()

You might want to check other examples on Undo/Redo feature that appear in
examples/undo-redo.py .

3.5. Other examples in PyTables distribution 35

3.5 Other examples in PyTables distribution

Feel free to examine the rest of examples in directoryexamples , and try to understand them. We have
written several practical sample scripts to give you an idea of thePyTables capabilities, its way of dealing
with HDF5 objects, and how it can be used in the real world.

37

Chapter 4

Library Reference

PyTables implements several classes to represent the different nodes in the object tree. They are named
File , Group , Leaf , Table , Array , EArray , VLArray andUnImplemented . Another one allows the
user to complement the information on these different objects; its name isAttributeSet . Finally, another
important class calledIsDescription allows to build aTable record description by declaring a subclass
of it. Many other classes are defined inPyTables , but they can be regarded as helpers whose goal is mainly
to declare thedata type propertiesof the different first class objects and will be described at the end of this
chapter as well.

An important function, calledopenFile is responsible to create, open or append to files. In addition,
a few utility functions are defined to guess if the user supplied file is aPyTablesor HDF5 file. These
are calledisPyTablesFile() and isHDF5File() , respectively. Finally, there exists a function called
whichLibVersion that informs about the versions of the underlying C libraries (for example, theHDF5or
theZlib).

Let’s start discussing the first-level variables and functions available to the user, then the different classes
defined inPyTables .

4.1 tables variables and functions

4.1.1 Global variables

__version__ ThePyTables version number.

extVersion The version of the Pyrex extension module. This might be useful when reporting bugs.

hdf5Version The underlying HDF5 library version number.

4.1.2 Global functions

copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)

An easy way of copying one PyTables file to another.
This function allows you to copy an existing PyTables file namedsrcfilename to another file called

dstfilename . The source file must exist and be readable. The destination file can be overwritten in place
if existing by asserting theoverwrite argument.

This function is a shorthand for theFile.copyFile() method, which acts on an already opened
file. kwargs takes keyword arguments used to customize the copying process. See the documentation of
File.copyFile() (see 4.2.2) for a description of those arguments.

isHDF5File(filename)

Determine whether a file is in the HDF5 format.

38 Chapter 4. Library Reference

When successful, it returns a true value if the file is an HDF5 file, false otherwise. If there were problems
identifying the file, anHDF5ExtError is raised.

For this function to work, it needs the name of an existing, readable and closed file.

isPyTablesFile(filename)

Determine whether a file is in the PyTables format.
When successful, it returns a true value if the file is a PyTables file, false otherwise. The true value is the

format version string of the file. If there were problems identifying the file, anHDF5ExtError is raised.
For this function to work, it needs the name of an existing, readable and closed file.

openFile(filename, mode=’r’, title=’’, trMap={}, rootUEP="/", filters=None)

Open aPyTables (or genericHDF5) file and returns aFile object.

filename The name of the file (supports environment variable expansion). It is suggested that it should have
any of".h5" , ".hdf" or ".hdf5" extensions, although this is not mandatory.

mode The mode to open the file. It can be one of the following:

’r’ read-only; no data can be modified.

’w’ write; a new file is created (an existing file with the same name would be deleted).

’a’ append; an existing file is opened for reading and writing, and if the file does not exist it is created.

’r+’ is similar to ’a’, but the file must already exist.

title If filename is new, this will set a title for the root group in this file. If filename is not new, the title will
be read from disk, and this will not have any effect.

trMap A dictionary to map names in the object tree Python namespace into different HDF5 names in file
namespace. The keys are the Python names, while the values are the HDF5 names. This is useful when
you need to use HDF5 node names with invalid or reserved words in Python.

rootUEP The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting
point to create the object tree. The group has to be named after its HDF5 name and can be a path. If it
does not exist, anHDF5ExtError exception is issued. Use this if you do not want to build theentire
object tree, but rather only asubtreeof it.

filters An instance of theFilters class (see section 4.14.1) that provides information about the desired I/O
filters applicable to the leaves that hang directly fromroot (unless other filters properties are specified
for these leaves). Besides, if you do not specify filter properties for its child groups, they will inherit
these ones. So, if you open a new file with this parameter set, all the leaves that would be created in the
file will recursively inherit this filtering properties (again, if you don’t prevent that from happening by
specifying other filters on the child groups or leaves).

whichLibVersion(name)

Get version information about a C library.
If the library indicated byname is available, this function returns a 3-tuple containing the major library

version as an integer, its full version as a string, and the version date as a string. If the library is not available,
None is returned.

The currently supported library names arehdf5 , zlib , lzo , ucl andbzip2 . If another name is given,
a ValueError is raised.

4.2. TheFile class 39

4.2 The File class

An instance of this class is returned when a PyTables file is opened with theopenFile() function. It offers
methods to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods to
traverse the object tree. Theuser entry pointto the object tree attached to the HDF5 file is represented in the
rootUEP attribute. Other attributes are available.

File objects support anUndo/Redo mechanismwhich can be enabled with theenableUndo() method.
Once the Undo/Redo mechanism is enabled, explicitmarks(with an optional unique name) can be set on the
state of the database using themark() method. There are two implicit marks which are always available: the
initial mark (0) and the final mark (-1). Both the identifier of a mark and its name can be used inundoand
redooperations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling oper-
ations (setting and deleting) made after a mark can be undone by using theundo() method, which returns
the database to the state of a past mark. Ifundo() is not followed by operations that modify the hierarchy or
attributes, theredo() method can be used to return the database to the state of a future mark. Else, future
states of the database are forgotten.

Please note that data handling operations can not be undone nor redone by now. Also, hierarchy manipula-
tion operations on nodes that do not support the Undo/Redo mechanism issue anUndoRedoWarning before
changing the database.

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling the
disableUndo() method.

4.2.1 File instance variables

filename The name of the opened file.

format_version The PyTables version number of this file.

isopen True if the underlying file is open, false otherwise.

mode The mode in which the file was opened.

title The title of the root group in the file.

trMap A dictionary that maps node names between PyTables and HDF5 domain names. Its initial values
are set from thetrMap parameter passed to theopenFile function. You can change its contentsafter
a file is opened and the new map will take effect over any new object added to the tree.

rootUEP The UEP (user entry point) group in the file (see 4.1.2).

filters Default filter properties for the root group (see section 4.14.1).

root Theroot of the object tree hierarchy (aGroup instance).

objects A dictionary which maps path names to objects, for every node in the tree.

groups A dictionary which maps path names to objects, for every group in the tree.

leaves A dictionary which maps path names to objects, for every leaf in the tree.

4.2.2 File methods

createGroup(where, name, title=’’, filters=None)

Create a new Group instance with namenamein wherelocation.

where The parent group where the new group will hang from.whereparameter can be a path string (for
example"/level1/group5"), or another Group instance.

name The name of the new group.

40 Chapter 4. Library Reference

title A description for this group.

filters An instance of theFilters class (see section 4.14.1) that provides information about the desired I/O
filters applicable to the leaves that hangs directly from this new group (unless other filters properties
are specified for these leaves). Besides, if you do not specify filter properties for its child groups, they
will inherit these ones.

createTable(where, name, description, title=’’, filters=None, expectedrows=10000)

Create a newTable instance with namenamein wherelocation.

where The parent group where the new table will hang from.whereparameter can be a path string (for
example"/level1/leaf5"), or Group instance.

name The name of the new table.

description A user-defined class, derived from theIsDescription class, where table fields are specified.
However, in certain situations, it is more handy to allow this description to be supplied as a dictionary
(for example, when you do not know beforehand which structure will have your table). In such a cases,
you can pass the description as a dictionary as well. See section 3.3 for an example of use. Finally, a
RecArray object from thenumarray package is also accepted, and all the information about columns
and other metadata is used as a basis to create theTable object. Moreover, if theRecArray has actual
data this is also injected on the newly createdTable object.

title A description for this object.

filters An instance of theFilters class (see section 4.14.1) that provides information about the desired I/O
filters to be applied during the life of this object.

expectedrowsAn user estimate of the number of records that will be on table. If not provided, the default
value is appropriate for tables until 10 MB in size (more or less). If you plan to save bigger tables you
should provide a guess; this will optimize the HDF5 B-Tree creation and management process time and
memory used. See section 6.1 for a discussion on that issue.

createArray(where, name, object, title=’’)

Create a newArray instance with namenamein wherelocation.

object The regular array to be saved. Currently accepted values are: lists, tuples, scalars (int and float),
strings and (multidimensional)Numeric and NumArray arrays (includingCharArrays string ar-
rays). However, these objects must be regular (i.e. they can not be like, for example,[[1,2],2]).
Also, objects that have some of their dimensions equal to zero are not supported (use anEArray object
if you want to create an array with one of its dimensions equal to 0).

SeecreateTable description 4.2.2 for more information on thewhere, nameandtitle, parameters.

createEArray(where, name, atom, title=’’, filters=None, expectedrows=1000)

Create a newEArray instance with namenamein wherelocation.

atom An Atom instance representing theshape, typeandflavor of the atomic objects to be saved. One (and
only one) of the shape dimensionsmust be 0. The dimension being 0 means that the resultingEArray
object can be extended along it. Multiple enlargeable dimensions are not supported right now. See
section 4.13.3 for the supported set ofAtom class descendants.

expectedrows In the case of enlargeable arrays this represents an user estimate about the number of row
elements that will be added to the growable dimension in the EArray object. If not provided, the default
value is 1000 rows. If you plan to create both much smaller or much bigger EArrays try providing a
guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

4.2. TheFile class 41

SeecreateTable description 4.2.2 for more information on thewhere, name, title, andfilters parame-
ters.

createVLArray(where, name, atom=None, title=’’, filters=None, expectedsizeinMB=1.0)

Create a newVLArray instance with namenamein wherelocation. See the section 4.10 for a description of
theVLArray class.

atom An Atom instance representing the shape, type and flavor of the atomic object to be saved. See sec-
tion 4.13.3 for the supported set ofAtom class descendants.

expectedsizeinMBAn user estimate about the size (in MB) in the finalVLArray object. If not provided,
the default value is 1 MB. If you plan to create both much smaller or much bigger VLA’s try providing
a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

SeecreateTable description 4.2.2 for more information on thewhere, name, title, andfilters parame-
ters.

getNode(where, name=None, classname=None)

Get the node underwherewith the givenname.
wherecan be aNode instance or a path string leading to a node. If nonameis specified, that node is

returned.
If a nameis specified, this must be a string with the name of a node underwhere. In this case thewhere

argument can only lead to aGroup instance (else aTypeError is raised). The node callednameunder the
groupwhereis returned.

In both cases, if the node to be returned does not exist, aNoSuchNodeError is raised. Please note that
hidden nodes are also considered.

If the classnameargument is specified, it must be the name of a class derived fromNode. If the node is
found but it is not an instance of that class, aNoSuchNodeError is also raised.

getNodeAttr(where, attrname, name=None)

Returns the attributeattrnameunderwhere.namelocation.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

attrname The name of the attribute to get.

setNodeAttr(where, attrname, attrvalue, name=None)

Sets the attributeattrnamewith valueattrvalueunderwhere.namelocation. If the node already has a large
number of attributes, aPerformanceWarning will be issued.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

attrname The name of the attribute to set on disk.

attrvalue The value of the attribute to set. Any scalar (string, ints or floats) attribute is supported natively.
However,(c)Pickle is automatically used so as to serialize other kind of objects (like lists, tuples,
dicts, small Numeric/numarray objects...) that you might want to save.

delNodeAttr(where, attrname, name=None)

Delete the attributeattrnamein where.namelocation.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

attrname The name of the attribute to delete on disk.

42 Chapter 4. Library Reference

copyNodeAttrs(where, dstnode, name=None)

Copy the attributes from nodewhere.nameto dstnode.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

dstnode This is the destination node where the attributes will be copied. It can be either a path string or a
Node object.

listNodes(where, classname=None)

Returns a list with children nodes hanging fromwhere. The list is alpha-numerically sorted by node name.

where This argument works as ingetNode() (see page 41), referencing the node to be acted upon.

classnameIf the name of a class derived fromNode is supplied in theclassnameparameter, only instances
of that class (or subclasses of it) will be returned.

removeNode(where, name=None, recursive=False)

Removes the object nodenameunderwherelocation.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

recursive If not supplied, the object will be removed only if it has no children; if it does, aNodeError will
be raised. If supplied with a true value, the object and all its descendants will be completely removed.

copyNode(where, newparent=None, newname=None, name=None, overwrite=False,
recursive=False, **kwargs)

Copy the node specified bywhereandnameto newparent/newname.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

newparent The destination group that the node will be copied to (a path name or aGroup instance). If
newparentis None, the parent of the source node is selected as the new parent.

newname The name to be assigned to the new copy in its destination (a string). Ifnewnameis None or not
specified, the name of the source node is used.

overwrite Whether the possibly existing nodenewparent/newnameshould be overwritten or not. Please note
that trying to copy over an existing node without overwriting it will issue aNodeError .

recursive Specifies whether the copy should recurse into children of the copied node. This argument is
ignored for leaf nodes. The default is not recurse.

kwargs Additional keyword arguments may be passed to customize the copying process. The supported
arguments depend on the kind of node being copied. The following are some of them:

title The new title for the destination. IfNone, the original title is used. This only applies to the topmost
node for recursive copies.

filters Specifying this parameter overrides the original filter properties in the source node. If specified, it
must be an instance of theFilters class (see section 4.14.1). The default is to copy the filter attribute
from the source node.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter toFalse . The
default is to copy them.

start, stop, step Specify the range of rows in child leaves to be copied; the default is to copy all the rows.

stats This argument may be used to collect statistics on the copy process. When used, it should be a dictionary
with keysgroups , leaves andbytes having a numeric value. Their values will be incremented to
reflect the number of groups, leaves and bytes, respectively, that have been copied in the operation.

4.2. TheFile class 43

renameNode(where, newname, name=None)

Change the name of the node specified bywhereandnameto newname.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

newname The new name to be assigned to the node (a string).

moveNode(where, newparent=None, newname=None, name=None, overwrite=False)

Move the node specified bywhereandnameto newparent/newname.

where, name These arguments work as ingetNode() (see page 41), referencing the node to be acted upon.

newparent The destination group the node will be moved to (a path name or aGroup instance). Ifnewparent
is None, the original node parent is selected as the new parent.

newname The new name to be assigned to the node in its destination (a string). Ifnewnameis None or not
specified, the original node name is used.

walkGroups(where=’/’)

Iterator that returns the list of Groups (not Leaves) hanging from (and including)where. ThewhereGroup
is listed first (pre-order), then each of its child Groups (following an alphanumerical order) is also traversed,
following the same procedure. Ifwhereis not supplied, the root object is used.

where The origin group. Can be a path string orGroup instance.

walkNodes(where="/", classname="")

Recursively iterate over the nodes in theFile instance. It takes two parameters:

where If supplied, the iteration starts from (and includes) this group.

classname(String)If supplied, only instances of this class are returned.

Example of use:

Recursively print all the nodes hanging from ’/detector’
print "Nodes hanging from group ’/detector’:"
for node in h5file.walkNodes("/detector"):

print node

copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False, **kwargs)

Copy the children of a group into another group.
This method copies the nodes hanging from the source groupsrcgroup into the destination group

dstgroup . Existing destination nodes can be replaced by asserting theoverwrite argument. If the
recursive argument is true, all descendant nodes ofsrcnode are recursively copied.

kwargs takes keyword arguments used to customize the copying process. See the documentation of
Group._f_copyChildren() (see 4.4.2) for a description of those arguments.

44 Chapter 4. Library Reference

copyFile(dstfilename, overwrite=False, **kwargs)

Copy the contents of this file todstfilename .
dstfilename must be a path string indicating the name of the destination file. If it already exists, the

copy will fail with an IOError , unless theoverwrite argument is true, in which case the destination file
will be overwritten in place.

Additional keyword arguments may be passed to customize the copying process. For instance, title and
filters may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may
be collected, etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying
operations of nodes to see which options they support.

Copying a file usually has the beneficial side effect of creating a more compact and cleaner version of the
original file.

flush()

Flush all the leaves in the object tree.

close()

Flush all the leaves in object tree and close the file.

Undo/Redo support

isUndoEnabled() Is the Undo/Redo mechanism enabled?

ReturnsTrue if the Undo/Redo mechanism has been enabled for this file,False otherwise. Please
note that this mechanism is persistent, so a newly opened PyTables file may already have Undo/Redo
support.

enableUndo(filters=Filters(complevel=1)) Enable the Undo/Redo mechanism.

This operation prepares the database for undoing and redoing modifications in the node hierarchy. This
allowsmark() , undo() , redo() and other methods to be called.

The filters argument, when specified, must be an instance of classFilters (see section 4.14.1)
and is meant for setting the compression values for the action log. The default is having compression
enabled, as the gains in terms of space can be considerable. You may want to disable compression if
you want maximum speed for Undo/Redo operations.

Calling enableUndo() when the Undo/Redo mechanism is already enabled raises an
UndoRedoError .

disableUndo() Disable the Undo/Redo mechanism.

Disabling the Undo/Redo mechanism leaves the database in the current state and forgets past and
future database states. This makesmark() , undo() , redo() and other methods fail with an
UndoRedoError .

Calling disableUndo() when the Undo/Redo mechanism is already disabled raises an
UndoRedoError .

mark(name=None) Mark the state of the database.

Creates a mark for the current state of the database. A unique (and immutable) identifier for the mark
is returned. An optionalname (a string) can be assigned to the mark. Both the identifier of a mark and
its name can be used inundo() andredo() operations. When thename has already been used for
another mark, anUndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

4.2. TheFile class 45

getCurrentMark() Get the identifier of the current mark.

Returns the identifier of the current mark. This can be used to know the state of a database after an
application crash, or to get the identifier of the initial implicit mark after a call toenableUndo() .

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

undo(mark=None) Go to a past state of the database.

Returns the database to the state associated with the specifiedmark . Both the identifier of a mark and
its name can be used. If themark is omitted, the last created mark is used. If there are no past marks,
or the specifiedmark is not older than the current one, anUndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

redo(mark=None) Go to a future state of the database.

Returns the database to the state associated with the specifiedmark . Both the identifier of a mark and
its name can be used. If themark is omitted, the next created mark is used. If there are no future marks,
or the specifiedmark is not newer than the current one, anUndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

goto(mark) Go to a specific mark of the database.

Returns the database to the state associated with the specifiedmark . Both the identifier of a mark and
its name can be used.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

4.2.3 File special methods

Following are described the methods that automatically trigger actions when aFile instance is accessed in a
special way.

__contains__(path)

Is there a node with thatpath?
ReturnsTrue if the file has a node with the givenpath(a string),False otherwise.

__iter__()

Iterate over the children on theFile instance. However, this does not accept parameters. This iteratoris
recursive.

Example of use:

Recursively list all the nodes in the object tree
h5file = tables.openFile("vlarray1.h5")
print "All nodes in the object tree:"
for node in h5file:

print node

46 Chapter 4. Library Reference

__str__()

Prints a short description of theFile object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f
data/test.h5 (File) ’Table Benchmark’
Last modif.: ’Mon Sep 20 12:40:47 2004’
Object Tree:
/ (Group) ’Table Benchmark’
/tuple0 (Table(100L,)) ’This is the table title’
/group0 (Group) ’’
/group0/tuple1 (Table(100L,)) ’This is the table title’
/group0/group1 (Group) ’’
/group0/group1/tuple2 (Table(100L,)) ’This is the table title’
/group0/group1/group2 (Group) ’’

__repr__()

Prints a detailed description of theFile object.

4.3 The Node class

This is the base class forall nodes in a PyTables hierarchy. It is an abstract class, i.e. it may not be directly
instantiated; however, every node in the hierarchy is an instance of this class.

A PyTables node is always hosted in a PyTablesfile, under aparent group, at a certaindepthin the node
hierarchy. A node knows its ownnamein the parent group and its ownpath namein the file. When using a
translation map (see 4.2), itsHDF5 namemight differ from its PyTables name.

All the previous information is location-dependent, i.e. it may change when moving or renaming a node
in the hierarchy. A node also has location-independent information, such as itsHDF5 object identifierand its
attribute set.

This class gathers the operations and attributes (both location-dependent and independent) which are
common to all PyTables nodes, whatever their type is. Nonetheless, due to natural naming restrictions, the
names of all of these members start with a reserved prefix (see 4.4).

Sub-classes with no children (i.e. leaf nodes) may define new methods, attributes and properties to
avoid natural naming restrictions. For instance,_v_attrs may be shortened toattrs and_f_rename
to rename . However, the original methods and attributes should still be available.

4.3.1 Node instance variables

Location dependent

_v_file The hostingFile instance (see 4.2).

_v_parent The parentGroup instance (see 4.4).

_v_depth The depth of this node in the tree (an non-negative integer value).

_v_name The name of this node in its parent group (a string).

_v_hdf5name The name of this node in the hosting HDF5 file (a string).

_v_pathname The path name of this node in the tree (a string).

_v_rootgroup The root group instance. This is deprecated; please usenode._v_file.root .

4.3. TheNode class 47

Location independent

_v_objectID The identifier of this node in the hosting HDF5 file.

_v_attrs The associatedAttributeSet instance (see 4.12).

Attribute shorthands

_v_title A description of this node. A shorthand forTITLE attribute.

4.3.2 Node methods

Hierarchy manipulation

_f_close() Close this node in the tree.

This makes the node inaccessible from the object tree. The closing operation isnot recursive, i.e.
closing a group does not close its children. On nodes with data, it may flush it to disk.

_f_remove(recursive=False) Remove this node from the hierarchy.

If the node has children, recursive removal must be stated by givingrecursive a true value; other-
wise, aNodeError will be raised.

_f_rename(newname) Rename this node in place.

Changes the name of a node tonewname(a string).

_f_move(newparent=None, newname=None, overwrite=False)Move or rename this node.

Moves a node into a new parent group, or changes the name of the node.newparent can be aGroup
object or a pathname in string form. If it is not specified orNone, the current parent group is chosen as
the new parent.newnamemust be a string with a new name. If it is not specified orNone, the current
name is chosen as the new name.

Moving a node across databases is not allowed, nor it is moving a nodeinto itself. These result in a
NodeError . However, moving a nodeover itself is allowed and simply does nothing. Moving over
another existing node is similarly not allowed, unless the optionaloverwrite argument is true, in
which case that node is recursively removed before moving.

Usually, only the first argument will be used, effectively moving the node to a new location without
changing its name. Using only the second argument is equivalent to renaming the node in place.

_f_copy(newparent=None, newname=None, overwrite=False, recursive=False, **kwargs)Copy this
node and return the new node.

Creates and returns a copy of the node, maybe in a different place in the hierarchy.newparent can be
a Group object or a pathname in string form. If it is not specified orNone, the current parent group is
chosen as the new parent.newname must be a string with a new name. If it is not specified orNone,
the current name is chosen as the new name. Ifrecursive copy is stated, all descendants are copied
as well.

Copying a node across databases is supported but can not be undone. Copying a node over itself is
not allowed, nor it is recursively copying a node into itself. These result in aNodeError . Copying
over another existing node is similarly not allowed, unless the optionaloverwrite argument is true,
in which case that node is recursively removed before copying.

Additional keyword arguments may be passed to customize the copying process. For instance, title and
filters may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats
may be collected, etc. See the documentation for the particular node type.

Using only the first argument is equivalent to copying the node to a new location without changing its
name. Using only the second argument is equivalent to making a copy of the node in the same group.

48 Chapter 4. Library Reference

Attribute handling

_f_getAttr(name) Get a PyTables attribute from this node.

If the named attribute does not exist, anAttributeError is raised.

_f_setAttr(name, value) Set a PyTables attribute for this node.

If the node already has a large number of attributes, aPerformanceWarning is issued.

_f_delAttr(name) Delete a PyTables attribute from this node.

If the named attribute does not exist, anAttributeError is raised.

4.4 The Group class

Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together
with supporting metadata.

Working with groups and leaves is similar in many ways to working with directories and files, respec-
tively, in a Unix filesystem. As with Unix directories and files, objects in the object tree are often de-
scribed by giving their full (or absolute) path names. This full path can be specified either as a string (like in
’/group1/group2’) or as a complete object path written innatural nameschema (like in
file.root.group1.group2) as discussed in the section 1.2.

A collateral effect of thenatural namingschema is that names ofGroup members must be carefully
chosen to avoid colliding with existing children node names. For this reason and not to pollute the children
namespace, it is explicitly forbidden to assignnormalattributes to Group instances, and all existing members
start with some reserved prefixes, like_f_ (for methods) or_v_ (for instance variables). Any attempt to set
a new child node whose name starts with one of these prefixes will raise aValueError exception.

Another effect of natural naming is that nodes having reserved Python names and other non-allowed
Python names (like for example$a or 44) can not be accessed using thenode.child syntax. You will be
forced to usegetattr(node, child) anddelattr(node, child) to access them.

You can also make use of thetrMap (translation map dictionary) parameter in theopenFile function
(see section 4.1.2) in order to translate HDF5 names not suited for natural naming into more convenient ones.

4.4.1 Group instance variables

These instance variables are provided in addition to those inNode (see 4.3).

_v_nchildren The number of children hanging from this group.

_v_children Dictionary with all nodes hanging from this group.

_v_groups Dictionary with all groups hanging from this group.

_v_leaves Dictionary with all leaves hanging from this group.

_v_filters Default filter properties for child nodes —see 4.14.1. A shorthand forFILTERS attribute.

4.4.2 Group methods

This class defines the__getattr__ and __delattr__ methods, and they work as normally intended.
Please note that__setattr__ should not be used to assign children into a group. Use the node creation
methods fromFile (see 4.2.2) or the node movement methods (move and_f_move) to do that. So, you
can access to and delete children from a group by just using the next constructs:

Add a Table child instance under group with name "tablename"
file.createTable(group, ’tablename’, recordDict, "Record instance")
table = group.tablename # Get the table child instance
del group.tablename # Delete the table child instance

4.4. TheGroup class 49

Caveat: The following methods are documented for completeness, and they can be used without any
problem. However, you should use the high-level counterpart methods in theFile class, because these are
most used in documentation and examples, and are a bit more powerful than those exposed here.

These methods are provided in addition to those inNode (see 4.3).

_f_join(name)

Helper method to correctly concatenate a name child object with the pathname of this group.

_f_copy(newparent, newname, overwrite=False, recursive=False, **kwargs)

Copy this node and return the new one.
This method has the behavior described inNode._f_copy() (see page 47). In addition, it recognizes

the following keyword arguments:

title The new title for the destination. If omitted orNone, the original title is used. This only applies to the
topmost node in recursive copies.

filters Specifying this parameter overrides the original filter properties in the source node. If specified, it must
be an instance of theFilters class (see section 4.14.1). The default is to copy the filter properties
from the source node.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter toFalse . The
default is to copy them.

stats This argument may be used to collect statistics on the copy process. When used, it should be a dic-
tionary with keys’groups’ , ’leaves’ and ’bytes’ having a numeric value. Their values will
be incremented to reflect the number of groups, leaves and bytes, respectively, that have been copied
during the operation.

_f_listNodes(classname=None)

Returns alist with all the object nodes hanging from this instance. The list is alpha-numerically sorted by
node name. If aclassnameparameter is supplied, it will only return instances of this class (or subclasses of
it).

_f_walkGroups()

Iterate over the list of Groups (not Leaves) hanging from (and including)self. This Group is listed first (pre-
order), then each of its child Groups (following an alphanumerical order) is also traversed, following the same
procedure.

_f_walkNodes(classname=None, recursive=True)

Iterate over the nodes in theGroup instance. It takes two parameters:

classname(String)If supplied, only instances of this class are returned.

recursive (Integer)If false, only children hanging immediately after the group are returned. If true, a recur-
sion over all the groups hanging from it is performed.

Example of use:

Recursively print all the arrays hanging from ’/’
print "Arrays the object tree ’/’:"
for array in h5file.root._f_walkNodes("Array", recursive=1):

print array

50 Chapter 4. Library Reference

_f_close()

Close this node in the tree.
This method has the behavior described inNode._f_close() (see page 47). It should be noted that

this operation disables access to nodes descending from this group. Therefore, if you want to explicitly close
them, you will need to walk the nodes hanging from this groupbeforeclosing it.

_f_copyChildren(dstgroup, overwrite=False, recursive=False, **kwargs)

Copy the children of this group into another group.
Children hanging directly from this group are copied intodstgroup , which can be aGroup (see 4.4)

object or its pathname in string form.
The operation will fail with aNodeError if there is a child node in the destination group with the same

name as one of the copied children from this one, unlessoverwrite is true; in this case, the former child
node is recursively removed before copying the later.

By default, nodes descending from children groups of this node are not copied. If therecursive argu-
ment is true, all descendant nodes of this node are recursively copied.

Additional keyword arguments may be passed to customize the copying process. For instance, title and
filters may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may
be collected, etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying
operations of nodes to see which options they support.

4.4.3 Group special methods

Following are described the methods that automatically trigger actions when aGroup instance is accessed in
a special way.

__contains__(name)

Is there a child with thatname?
ReturnsTrue if the group has a child node (visible or hidden) with the givenname(a string),False

otherwise.

__iter__()

Iterate over the children on the group instance. However, this does not accept parameters. This iterator isnot
recursive.

Example of use:

Non-recursively list all the nodes hanging from ’/detector’
print "Nodes in ’/detector’ group:"
for node in h5file.root.detector:

print node

__str__()

Prints a short description of theGroup object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f.root.group0
/group0 (Group) ’First Group’
>>>

4.5. TheLeaf class 51

__repr__()

Prints a detailed description of theGroup object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> f.root.group0
/group0 (Group) ’First Group’

children := [’tuple1’ (Table), ’group1’ (Group)]
>>>

4.5 The Leaf class

The goal of this class is to provide a place to put common functionality of all its descendants as well as
provide a way to help classifying objects on the tree. ALeaf object is an end-node, that is, a node that can
hang directly from a group object, but that is not a group itself and, thus, it can not have descendants. Right
now, the set of end-nodes is composed byTable , Array , EArray , VLArray andUnImplemented class
instances. In fact, all the previous classes inherit from theLeaf class.

4.5.1 Leaf instance variables

These instance variables are provided in addition to those inNode (see 4.3).

shape The shape of data in the leaf.

byteorder The byte ordering of data in the leaf.

filters Filter properties for this leaf —see 4.14.1.

name The name of this node in its parent group (a string). An alias forNode._v_name .

hdf5name The name of this node in the hosting HDF5 file (a string). An alias forNode._v_hdf5name .

objectID The identifier of this node in the hosting HDF5 file. An alias forNode._v_objectID .

attrs The associatedAttributeSet instance (see 4.12). An alias forNode._v_attrs .

title A description for this node. An alias forNode._v_title .

4.5.2 Leaf methods

flush()

Flush pending data to disk.
Saves whatever remaining buffered data to disk.

_f_close(flush=True)

Close this node in the tree.
This method has the behavior described inNode._f_close() (see page 47). Besides that, the optional

argumentflush tells whether to flush pending data to disk or not before closing.

close(flush=True)

Close this node in the tree.
This method is completely equivalent to_f_close() .

52 Chapter 4. Library Reference

remove()

Remove this node from the hierarchy.
This method has the behavior described inNode._f_remove() (see page 47). Please note that there is

no recursive flag since leaves do not have child nodes.

copy(newparent, newname, overwrite=False, **kwargs)

Copy this node and return the new one.
This method has the behavior described inNode._f_copy() (see page 47). Please note that there is

no recursive flag since leaves do not have child nodes. In addition, this method recognizes the following
keyword arguments:

title The new title for the destination. If omitted orNone, the original title is used.

filters Specifying this parameter overrides the original filter properties in the source node. If specified, it must
be an instance of theFilters class (see section 4.14.1). The default is to copy the filter properties
from the source node.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter toFalse . The
default is to copy them.

start, stop, step Specify the range of rows in child leaves to be copied; the default is to copy all the rows.

stats This argument may be used to collect statistics on the copy process. When used, it should be a dic-
tionary with keys’groups’ , ’leaves’ and ’bytes’ having a numeric value. Their values will
be incremented to reflect the number of groups, leaves and bytes, respectively, that have been copied
during the operation.

rename(newname)

Rename this node in place.
This method has the behavior described inNode._f_rename() (see page 47).

move(newparent=None, newname=None, overwrite=False)

Move or rename this node.
This method has the behavior described inNode._f_move() (see page 47).

getAttr(name)

Get a PyTables attribute from this node.
This method has the behavior described inNode._f_getAttr() (see page 48).

setAttr(name, value)

Set a PyTables attribute for this node.
This method has the behavior described inNode._f_setAttr() (see page 48).

delAttr(name)

Delete a PyTables attribute from this node.
This method has the behavior described inNode._f_delAttr() (see page 48).

4.6. TheTable class 53

4.6 The Table class

Instances of this class represents table objects in the object tree. It provides methods to read/write data and
from/to table objects in the file.

Data can be read from or written to tables by accessing to an special object that hangs fromTable . This
object is an instance of theRowclass (see 4.6.4). See the tutorial sections chapter 3 on how to use theRow
interface. The columns of the tables can also be easily accessed (and more specifically, they can be read but
not written) by making use of theColumn class, through the use of anextensionof the natural naming schema
applied inside the tables. See the section 4.7 for some examples of use of this capability.

Note that this object inherits all the public attributes and methods thatLeaf already has.

4.6.1 Table instance variables

description The metaobject describing this table.

row TheRowinstance for this table (see 4.6.4).

nrows The number of rows in this table.

rowsize The size, in bytes, of each row.

cols A Cols (see section 4.6.5) instance that serves as accessors toColumn (see section 4.7) objects.

colnames The field names for the table (list).

coltypes The data types for the table fields (dictionary).

colstypes The data string-types for the table fields (dictionary).

colshapesThe shapes for the table fields (dictionary).

colindexed Whether the table fields are indexed (dictionary).

indexed Whether or not some field in the table is indexed.

indexprops Properties of an indexed Table (see 4.14.2). This attribute (dictionary) exists only if the Table is
indexed.

4.6.2 Table methods

append(rows)

Append a series of rows to thisTable instance.rows is an object that can keep the rows to be append in
several formats, like aRecArray , a list of tuples, list ofNumeric /NumArray /CharArray objects, string,
Python buffer or None (no append will result). Of course, thisrows object has to be compliant with the
underlying format of theTable instance or aValueError will be issued.

Example of use:

from tables import *
class Particle(IsDescription):

name = StringCol(16, pos=1) # 16-character String
lati = IntCol(pos=2) # integer
longi = IntCol(pos=3) # integer
pressure = Float32Col(pos=4) # float (single-precision)
temperature = FloatCol(pos=5) # double (double-precision)

fileh = openFile("test4.h5", mode = "w")
table = fileh.createTable(fileh.root, ’table’, Particle, "A table")
Append several rows in only one call

54 Chapter 4. Library Reference

table.append([("Particle: 10", 10, 0, 10*10, 10**2),
("Particle: 11", 11, -1, 11*11, 11**2),
("Particle: 12", 12, -2, 12*12, 12**2)])

fileh.close()

col(name)

Get a column from the table.
If a column calledname exists in the table, it is read and returned as anumarray.NumArray object,

or as anumarray.strings.CharArray object (whatever is more appropriate). If it does not exist, a
ValueError is raised.

Example of use:

narray = table.col(’var2’)

That statement is equivalent to:

narray = table.read(field=’var2’)

Here you can see how this method can be used as a shorthand forthe read() (see 4.6.2) method.

iterrows(start=None, stop=None, step=1)

Returns an iterator yieldingRow(see section 4.6.4) instances built from rows in table. If a range is supplied
(i.e. some of thestart, stopor stepparameters are passed), only the appropriate rows are returned. Else, all
the rows are returned. See also the__iter__() special method in section 4.6.3 for a shorter way to call this
iterator.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, thenall the rows in the object are selected.

Example of use:

result = [row[’var2’] for row in table.iterrows(step=5)
if row[’var1’] <= 20]

itersequence(sequence, sort=True)

Iterate over asequenceof row coordinates.

sequenceCan be any object that supports the__getitem__ special method, like lists, tuples, Nu-
meric/numarray objects, etc.

sort If true, means thatsequencewill be sorted out so that the I/O process would get better performance. If
your sequence is already sorted or you don’t want to sort it, put this parameter to 0. The default is to
sort thesequence.

read(start=None, stop=None, step=1, field=None, flavor="numarray")

Returns the actual data inTable . If field is not supplied, it returns the data as aRecArray object table.
The meaning of thestart, stopandstepparameters is the same as in therange() python function, except

that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

The rest of the parameters are described next:

field If specified, only the columnfield is returned as aNumArray object. If this is not supplied, all the fields
are selected and aRecArray is returned.

4.6. TheTable class 55

flavor When a field in table is selected, passing aflavor parameter make an additional conversion to happen
in the default"numarray" returned object.flavor must have any of the next values:"numarray"
(i.e. no conversion is made),"Numeric" , "Tuple" or "List" .

readCoordinates(coords, field=None, flavor=’numarray’)

Read a set of rows given their indexes into an in-memory object.
This method works much like theread() method (see 4.6.2), but it uses a sequence (coords) of row

indexes to select the wanted columns, instead of a column range.
It returns the selected rows in aRecArray object. If bothfield andflavor are provided, an additional

conversion to an object of this flavor is made, just as inread() .

modifyRows(start=None, stop=None, step=1, rows=None)

Modify a series of rows in the[start:stop:step] extended slicerange. If you passNone to stop, all the
rows existing inrowswill be used.

rows can be either aRecArray object or a structure that is able to be converted to aRecArray and
compliant with the table format.

Returns the number of modified rows.
It raises anValueError in case the rows parameter could not be converted to an object compliant with

table description.
It raises anIndexError in case the modification will exceed the length of the table.

modifyColumns(start=None, stop=None, step=1, columns=None, names=None)

Modify a series of rows in the[start:stop:step] extended slicerow range. If you passNone to stop,
all the rows existing incolumnswill be used.

columnscan be either a RecArray or a list of arrays (the columns) that is able to be converted to a
RecArray compliant with the specified columnnamessubset of the table format.

namesspecifies the column names of the table to be modified.
Returns the number of modified rows.
It raises anValueError in case thecolumnsparameter could not be converted to an object compliant

with table description.
It raises anIndexError in case the modification will exceed the length of the table.

removeRows(start, stop=None)

Removes a range of rows in the table. If onlystart is supplied, this row is to be deleted. If a range is supplied,
i.e. both thestart andstopparameters are passed, all the rows in the range are removed. Astepparameter is
not supported, and it is not foreseen to implement it anytime soon.

start Sets the starting row to be removed. It accepts negative values meaning that the count starts from the
end. A value of 0 means the first row.

stop Sets the last row to be removed tostop- 1, i.e. the end point is omitted (in the Pythonrange tradition).
It accepts, likewisestart, negative values. A special value ofNone (the default) means removing just
the row supplied in start.

removeIndex(index)

Remove the index associated with the specified column. OnlyIndex instances (see 4.14.3) are accepted
as parameter. This index can be recreated again by calling thecreateIndex (see 4.7.2) method of the
appropriateColumn object.

56 Chapter 4. Library Reference

flushRowsToIndex()

Add remaining rows in buffers to non-dirty indexes. This can be useful when you have chosen non-automatic
indexing for the table (see section 4.14.2) and want to update the indexes on it.

reIndex()

Recompute all the existing indexes in table. This can be useful when you suspect that, for any reason, the
index information for columns is no longer valid and want to rebuild the indexes on it.

reIndexDirty()

Recompute the existing indexes in table, butonly if they are dirty. This can be useful when you have set
the reindex parameter to 0 inIndexProps constructor (see 4.14.2) for the table and want to update the
indexes after a invalidating index operation (Table.removeRows , for example).

where(condition, start=None, stop=None, step=None)

Iterate over values fulfilling acondition .
This method returns an iterator yieldingRow(see 4.6.4) instances built from rows in the table that satisfy

the givencondition over a column. If that column is indexed, its index will be used in order to accelerate
the search. Else, thein-kerneliterator (with has still better performance than standard Python selections) will
be chosen instead.

Moreover, if a range is supplied (i.e. some of thestart , stop or step parameters are passed), only
the rows in that rangeand fullfilling the condition are returned. The meaning of thestart , stop and
step parameters is the same as in therange() Python function, except that negative values ofstep arenot
allowed. Moreover, if onlystart is specified, thenstop will be set tostart+1 .

You can mix this method with standard Python selections in order to have complex queries. It is strongly
recommended that you pass the most restrictive condition as the parameter to this method if you want to
achieve maximum performance.

Example of use:

passvalues=[]
for row in table.where(0 < table.cols.col1 < 0.3, step=5):

if row[’col2’] <= 20:
passvalues.append(row[’col3’])

print "Values that pass the cuts:", passvalues

whereAppend(dstTable, condition, start=None, stop=None, step=None)

Append rows fullfilling theconditionto thedstTabletable.
dstTablemust be capable of taking the rows resulting from the query, i.e. it must have columns with the

expected names and compatible types. The meaning of the other arguments is the same as in thewhere()
method (see 4.6.2).

The number of rows appended to ‘dstTable‘ is returned as a result.

getWhereList(condition, flavor="List")

Get the row coordinates that fulfill thecondition param. This method will take advantage of an indexed
column to speed-up the search.

flavor is the desired type of the returned list. It can take the’List’ (the default), ’Tuple’ or
’NumArray’ values.

4.6. TheTable class 57

4.6.3 Table special methods

Following are described the methods that automatically trigger actions when aTable instance is accessed in
a special way (e.g.,table["var2"] will be equivalent to a call totable.__getitem__("var2")).

__iter__()

It returns the same iterator thanTable.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row[’var2’] for row in table
if row[’var1’] <= 20]

Which is equivalent to:

result = [row[’var2’] for row in table.iterrows()
if row[’var1’] <= 20]

__getitem__(key)

Get a row or a range of rows from the table.
If the key argument is an integer, the corresponding table row is returned as a

numarray.records.Record object. Ifkey is a slice, the range of rows determined by it is returned as a
numarray.reords.RecArray object.

Using a string askey to get a column is supported but deprecated. Please use thecol() (see 4.6.2)
method.

Example of use:

record = table[4]
recarray = table[4:1000:2]

Those statements are equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)

Here you can see how indexing and slicing can be used as shorthands for theread() (see 4.6.2) method.

__setitem__(key, value)

It takes different actions depending on the type of thekey parameter:

key is an Integer The corresponding table row is set tovalue. valuemust be aList or Tuple capable of
being converted to the table field format.

key is a Slice The row slice determined by key is set tovalue. valuemust be aRecArray object or a list
of rows capable of being converted to the table field format.

Example of use:

Modify just one existing row
table[2] = [456,’db2’,1.2]
Modify two existing rows
rows = numarray.records.array([[457,’db1’,1.2],[6,’de2’,1.3]],

formats="i4,a3,f8")
table[1:3:2] = rows

58 Chapter 4. Library Reference

Which is equivalent to:

table.modifyRows(start=2, [456,’db2’,1.2])
rows = numarray.records.array([[457,’db1’,1.2],[6,’de2’,1.3]],

formats="i4,a3,f8")
table.modifyRows(start=1, step=2, rows)

4.6.4 The Rowclass

This class is used to fetch and set values on the table fields. It works very much like a dictionary, where the
keys are the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won’t be able to access its documentation
interactively. Neither you won’t be able to access its internal attributes (they are not directly accessible
from Python), althoughaccessors(i.e. methods that return an internal attribute) have been defined for some
important variables.

Rowmethods

append() Once you have filled the proper fields for the current row, calling this method actually commits
these data to the disk (actually data are written to the output buffer).

nrow() Accessor that returns the current row number in the table. It is useful to know which row is being
dealt with in the middle of a loop.

getTable() Accessor that returns the associatedTable object.

4.6.5 The Cols class

This class is used as anaccessorto the table columns following the natural name convention, so that you
can access the different columns because there exists one attribute with the name of the columns for each
associatedColumn instances. Besides, and like theRow class, it works similar to a dictionary, where the
keys are the column names of the associated table and the values areColumn instances. See section 4.7 for
examples of use.

4.7 The Column class

Each instance of this class is associated with one column of every table. These instances are mainly used to
fetch and set actual data from the table columns, but there are a few other associated methods to deal with
indexes.

4.7.1 Column instance variables

table The parentTable instance.

name The name of the associated column.

type The data type of the column.

index The associatedIndex object (see 4.14.3) to this column (None if does not exist).

dirty Whether the index is dirty or not (property).

4.7.2 Column methods

createIndex()

Create anIndex (see 4.14.3) object for this column.

4.7. TheColumn class 59

reIndex()

Recompute the index associated with this column. This can be useful when you suspect that, for any reason,
the index information is no longer valid and want to rebuild it.

reIndexDirty()

Recompute the existing index only if it is dirty. This can be useful when you have set thereindex parameter
to 0 in IndexProps constructor (see 4.14.2) for the table and want to update the column’s index after a
invalidating index operation (Table.removeRows , for example).

removeIndex()

Delete the associated column’s index. After doing that, you will loose the indexation information on disk.
However, you can always re-create it using thecreateIndex() method (see 4.7.2).

closeIndex()

Close the index of this column. After that, the column will look as if it has no index, although it will re-appear
when the file would be re-opened later on.

4.7.3 Column special methods

__getitem__(key)

Returns a column element or slice. It takes different actions depending on the type of thekeyparameter:

key is an Integer The corresponding element in the column is returned as a scalar object or as a
NumArray /CharArray object, depending on its shape.

key is a Slice The row range determined by this slice is returned as aNumArray or CharArray object
(whichever is appropriate).

Example of use:

print "Column handlers:"
for name in table.colnames:

print table.cols[name]
print
print "Some selections:"
print "Select table.cols.name[1]-->", table.cols.name[1]
print "Select table.cols.name[1:2]-->", table.cols.name[1:2]
print "Select table.cols.lati[1:3]-->", table.cols.lati[1:3]
print "Select table.cols.pressure[:]-->", table.cols.pressure[:]
print "Select table.cols[’temperature’][:]-->", table.cols[’temperature’][:]

and the output of this for a certain arbitrary table is:

Column handlers:
/table.cols.name (Column(1,), CharType)
/table.cols.lati (Column(2,), Int32)
/table.cols.longi (Column(1,), Int32)
/table.cols.pressure (Column(1,), Float32)
/table.cols.temperature (Column(1,), Float64)

Some selections:
Select table.cols.name[1]--> Particle: 11

60 Chapter 4. Library Reference

Select table.cols.name[1:2]--> [’Particle: 11’]
Select table.cols.lati[1:3]--> [[11 12]

[12 13]]
Select table.cols.pressure[:]--> [90. 110. 132.]
Select table.cols[’temperature’][:]--> [100. 121. 144.]

See theexamples/table2.py for a more complete example.

__setitem__(key, value)

It takes different actions depending on the type of thekey parameter:

key is an Integer The corresponding element in the column is set tovalue. value must be a scalar or
NumArray /CharArray , depending on column’s shape.

key is a Slice The row slice determined bykey is set tovalue. value must be a list of elements or a
NumArray /CharArray .

Example of use:

Modify row 1
table.cols.col1[1] = -1
Modify rows 1 and 3
table.cols.col1[1::2] = [2,3]

Which is equivalent to:

Modify row 1
table.modifyColumns(start=1, columns=[[-1]], names=["col1"])
Modify rows 1 and 3
columns = numarray.records.fromarrays([[2,3]], formats="i4")
table.modifyColumns(start=1, step=2, columns=columns, names=["col1"])

4.8 The Array class

Represents an array on file. It provides methods to write/read data to/from array objects in the file. This class
does not allow you to enlarge the datasets on disk; see theEArray descendant in section 4.9 if you want
enlargeable dataset support and/or compression features.

The array data types supported are the same as the set provided byNumeric andnumarray . For details
of these data types see appendix A, or thenumarray reference manual (Greenfieldet al.).

Note that this object inherits all the public attributes and methods thatLeaf already provides.

4.8.1 Array instance variables

flavor The object representation for this array. It can be any of"NumArray", "CharArray" "Numeric", "List",
"Tuple", "String", "Int" or "Float" values.

nrows The length of the first dimension of Array.

nrow On iterators, this is the index of the current row.

type The type class of the represented array.

itemsize The size of the base items. Specially useful forCharArray objects.

4.8. TheArray class 61

4.8.2 Array methods

Note that, as this object has no internal I/O buffers, it is not necessary to use the flush() method inherited from
Leaf in order to save its internal state to disk. When a writing method call returns, all the data is already on
disk.

iterrows(start=None, stop=None, step=1)

Returns an iterator yieldingnumarray instances built from rows in array. The return rows are taken from the
first dimension in case of anArray instance and the enlargeable dimension in case of anEArray instance.
If a range is supplied (i.e. some of thestart, stopor stepparameters are passed), only the appropriate rows are
returned. Else, all the rows are returned. See also the and__iter__() special methods in section 4.8.3 for
a shorter way to call this iterator.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

Example of use:

result = [row for row in arrayInstance.iterrows(step=4)]

read(start=None, stop=None, step=1)

Read the array from disk and return it as anumarray (default) object, or an object with the same original
flavor that it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the
case of anArray instance and theenlargeabledimension in case of anEArray) for reading.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

4.8.3 Array special methods

Following are described the methods that automatically trigger actions when anArray instance is accessed
in a special way (e.g.,array[2:3,...,::2] will be equivalent to a call to
array.__getitem__(slice(2,3, None), Ellipsis, slice(None, None, 2))).

__iter__()

It returns the same iterator thanArray.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row[2] for row in array]

Which is equivalent to:

result = [row[2] for row in array.iterrows(0, 0, 1)]

__getitem__(key)

It returns anumarray (default) object (or an object with the same originalflavor that it was saved) containing
the slice of rows stated in thekey parameter. The set of allowed tokens inkey is the same as extended slicing
in python (theEllipsis token included).

Example of use:

62 Chapter 4. Library Reference

array1 = array[4] # array1.shape == array.shape[1:]
array2 = array[4:1000:2] # len(array2.shape) == len(array.shape)
array3 = array[::2, 1:4, :]
array4 = array[1, ..., ::2, 1:4, 4:] # General slice selection

__setitem__(key, value)

Sets an Array element, row or extended slice. It takes different actions depending on the type of thekey
parameter:

key is an integer: The corresponding row is assigned to value. If needed, thisvalue is broadcasted to fit
the specified row.

key is a slice: The row slice determined by it is assigned tovalue . If needed, thisvalue is broadcasted
to fit in the desired range. If the slice to be updated exceeds the actual shape of the array, only the
values in the existing range are updated, i.e. the index error will be silently ignored. Ifvalue is a
multidimensional object, then its shape must be compatible with the slice specified inkey , otherwise,
a ValueError will be issued.

Example of use:

a1[0] = 333 # Assign an integer to a Integer Array row
a2[0] = "b" # Assign a string to a string Array row
a3[1:4] = 5 # Broadcast 5 to slice 1:4
a4[1:4:2] = "xXx" # Broadcast "xXx" to slice 1:4:2
General slice update (a5.shape = (4,3,2,8,5,10)
a5[1, ..., ::2, 1:4, 4:] = arange(1728, shape=(4,3,2,4,3,6))

4.9 The EArray class

This is a child of theArray class (see 4.8) and as such,EArray represents an array on the file. The differ-
ence is thatEArray allows to enlarge datasets along any single dimension1 you select. Another important
difference is that it also supports compression.

So, in addition to the attributes and methods thatEArray inherits fromArray , it supports a few more
that provide a way to enlarge the arrays on disk. Following are described the new variables and methods as
well as some that already exist inArray but that differ somewhat on the meaning and/or functionality in the
EArray context.

4.9.1 EArray instance variables

atom The class instance chosen for the atom object (see section 4.13.3).

extdim The enlargeable dimension.

nrows The length of the enlargeable dimension.

4.9.2 EArray methods

append(sequence)

Appends asequence to the underlying dataset. Obviously, this sequence must have the same type as the
EArray instance; otherwise aTypeError is issued. In the same way, the dimensions of thesequence

1 In the future, multiple enlargeable dimensions might be implemented as well.

4.10. TheVLArray class 63

have to conform to those ofEArray , that is, all the dimensions have to be the same except, of course, that of
the enlargeable dimension which can be of any length (even 0!).

Example of use (code available inexamples/earray1.py):

import tables
from numarray import strings

fileh = tables.openFile("earray1.h5", mode = "w")
a = tables.StringAtom(shape=(0,), length=8)
Use ’a’ as the object type for the enlargeable array
array_c = fileh.createEArray(fileh.root, ’array_c’, a, "Chars")
array_c.append(strings.array([’a’*2, ’b’*4], itemsize=8))
array_c.append(strings.array([’a’*6, ’b’*8, ’c’*10], itemsize=8))

Read the string EArray we have created on disk
for s in array_c:

print "array_c[%s] => ’%s’" % (array_c.nrow, s)
Close the file
fileh.close()

and the output is:

array_c[0] => ’aa’
array_c[1] => ’bbbb’
array_c[2] => ’aaaaaa’
array_c[3] => ’bbbbbbbb’
array_c[4] => ’cccccccc’

4.10 The VLArray class

Instances of this class represents array objects in the object tree with the property that their rows can have a
variable number of (homogeneous) elements (calledatomicobjects, or justatoms). Variable length arrays
(or VLA’s for short), similarly toTable instances, can have only one dimension, and likewiseTable , the
compound elements (theatoms) of the rows ofVLArrays can be fully multidimensional objects.

VLArray provides methods to read/write data from/to variable length array objects residents on disk.
Also, note that this object inherits all the public attributes and methods thatLeaf already has.

4.10.1 VLArray instance variables

atom The class instance chosen for the atom object (see section 4.13.3).

nrow On iterators, this is the index of the current row.

nrows The total number of rows.

4.10.2 VLArray methods

append(sequence, *objects)

Append objects in thesequence to the array.
This method appends the objects in thesequence to asingle rowin this array. The type of individual

objects must be compliant with the type of atoms in the array. In the case of variable length strings, the very
string to append is thesequence .

Example of use (code available inexamples/vlarray1.py):

64 Chapter 4. Library Reference

import tables
from Numeric import * # or, from numarray import *

Create a VLArray:
fileh = tables.openFile("vlarray1.h5", mode = "w")
vlarray = fileh.createVLArray(fileh.root, ’vlarray1’,
tables.Int32Atom(flavor="Numeric"),

"ragged array of ints", Filters(complevel=1))
Append some (variable length) rows:
vlarray.append(array([5, 6]))
vlarray.append(array([5, 6, 7]))
vlarray.append([5, 6, 9, 8])

Now, read it through an iterator:
for x in vlarray:

print vlarray.name+"["+str(vlarray.nrow)+"]-->", x

Close the file
fileh.close()

The output of the previous program looks like this:

vlarray1[0]--> [5 6]
vlarray1[1]--> [5 6 7]
vlarray1[2]--> [5 6 9 8]

Theobjects argument is only retained for backwards compatibility; please donot use it.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If a range is supplied (i.e. some of thestart, stopor step
parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the
__iter__() special methods in section 4.10.3 for a shorter way to call this iterator.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

Example of use:

for row in vlarray.iterrows(step=4):
print vlarray.name+"["+str(vlarray.nrow)+"]-->", row

read(start=None, stop=None, step=1)

Returns the actual data inVLArray . As the lengths of the different rows are variable, the returned value is a
python list, with as many entries as specified rows in the range parameters.

The meaning of thestart, stopandstepparameters is the same as in therange() python function, except
that negative values ofstep are not allowed. Moreover, if onlystart is specified, thenstop will be set to
start+1 . If you do not specify neitherstart norstop, then all the rows in the object are selected.

4.10.3 VLArray special methods

Following are described the methods that automatically trigger actions when aVLArray in-
stance is accessed in a special way (e.g.,vlarray[2:5] will be equivalent to a call to
vlarray.__getitem__(slice(2,5,None)).

4.11. TheUnImplemented class 65

__iter__()

It returns the same iterator thanVLArray.iterrows(0,0,1) . However, this does not accept parameters.
Example of use:

result = [row for row in vlarray]

Which is equivalent to:

result = [row for row in vlarray.iterrows()]

__getitem__(key)

It returns the slice of rows determined bykey , which can be an integer index or an extended slice. The
returned value is a list of objects of typearray.atom.type .

Example of use:

list1 = vlarray[4]
list2 = vlarray[4:1000:2]

__setitem__(keys, value)

Updates a vlarray row described bykeys by setting it tovalue . Depending on the value ofkeys , the action
taken is different:

keys is an integer: It refers to the number of row to be modified. Thevalue object must be type and shape
compatible with the object that exists in the vlarray row.

keys is a tuple: The first element refers to the row to be modified, and the second element to the range (so,
it can be an integer or an slice) of the row that will be updated. As above, thevalue object must be
type and shape compatible with the object specified in the vlarray rowand range.

Note: When updatingVLStrings (codification UTF-8) orObjects atoms, there is a problem: one
can only update values withexactlythe same bytes than in the original row. With UTF-8 encoding this is
problematic because, for instance, ’c ’ takes 1 byte, but ’ç ’ takes two. The same applies when usingObjects
atoms, because when cPickle applies to a class instance (for example), it does not guarantee to return the same
number of bytes than over other instance, even of the same class than the former. These facts effectively limit
the number of objects than can be updated inVLArray s.

Example of use:

vlarray[0] = vlarray[0]*2+3
vlarray[99,3:] = arange(96)*2+3
Negative values for start and stop (but not step) are supported
vlarray[99,-99:-89:2] = vlarray[5]*2+3

4.11 The UnImplemented class

Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such a file
(i.e. one that has not been created withPyTables , but with some other HDF5 library based tool), chances
are that the specific combination ofdatatypesand/ordataspacesin some dataset might not be supported by
PyTables yet. In such a case, this dataset will be mapped into theUnImplemented class and hence, the
user will still be able to build the complete object tree of this generic HDF5 file, as well as enabling the access
(both read andwrite) of the attributes of this dataset and some metadata. Of course, the user won’t be able to
read the actual data on it.

66 Chapter 4. Library Reference

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its
datasets would not be supported byPyTables . However, if you are really interested in having access to an
unimplemented dataset, please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited from theLeaf class
(see 4.5).

4.12 The AttributeSet class

Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open,
rename or delete existing ones.

Like in Group instances,AttributeSet instances make use of thenatural namingconvention, i.e. you
can access the attributes on disk like if they werenormalAttributeSet attributes. This offers the user a
very convenient way to access (but also to set and delete) node attributes by simply specifying them like a
normalattribute class.

Caveat: All Python data types are supported. The scalar ones (i.e. String, Int and Float) are mapped
directly to the HDF5 counterparts, so you can correctly visualize them with any HDF5 tool. However, the
rest of the data types and more general objects are serialized usingcPickle , so you will be able to correctly
retrieve them only from a Python-aware HDF5 library. Hopefully, the list of supported native attributes will
be extended to fully multidimensional arrays sometime in the future.

4.12.1 AttributeSet instance variables

_v_node The parent node instance.

_v_attrnames List with all attribute names.

_v_attrnamessysList with system attribute names.

_v_attrnamesuser List with user attribute names.

4.12.2 AttributeSet methods

Note that this class defines the__setattr__ , __getattr__ and__delattr__ and they work as nor-
mally intended. Any scalar (string, ints or floats) attribute is supported natively as an attribute. However,
(c)Pickle is automatically used so as to serialize other kind of objects (like lists, tuples, dicts, small Nu-
meric/numarray objects, ...) that you might want to save. If an attribute is set on a target node that already has
a large number of attributes, aPerformanceWarning will be issued.

With these special methods, you can access, assign or delete attributes on disk by just using the next
constructs:

leaf.attrs.myattr = "str attr" # Set a string (native support)
leaf.attrs.myattr2 = 3 # Set an integer (native support)
leaf.attrs.myattr3 = [3,(1,2)] # A generic object (Pickled)
attrib = leaf.attrs.myattr # Get the attribute myattr
del leaf.attrs.myattr # Delete the attribute myattr

_f_copy(where) Copy the user attributes (as well ascertainsystem attributes) towhereobject.wherehas to
be aGroup or Leaf instance.

_f_list(attrset = "user") Return a list of attribute names of the parent node.attrsetselects the attribute set
to be used. Auser value returns only the user attributes and this is the default.sys returns only the
system attributes.all returns both the system and user attributes.

_f_rename(oldattrname, newattrname)Rename an attribute.

4.13. Declarative classes 67

4.13 Declarative classes

In this section a series of classes that are meant todeclaredatatypes that are required for primaryPyTables
(like Table or VLArray) objects are described.

4.13.1 The IsDescription class

This class is in fact a so-calledmetaclassobject. There is nothing special on this fact, except that its sub-
classes’ attributes are transformed during its instantiation phase, and new methods for instances are defined
based on the values of the class attributes.

It is designed to be used as an easy, yet meaningful way to describe the properties ofTable objects
through the use of classes that inherit properties from it. In order to define such a special class, you have to
declare it as descendant ofIsDescription, with as many attributes as columns you want in your table. The
name of these attributes will become the name of the columns, while their values will be the properties of the
columns that are obtained through the use of theCol (see section 4.13.2) class constructor.

Then, you can pass this object to theTable constructor, where all the information it contains will be used
to define the table structure. See the section 3.3 for an example on how that works.

Moreover, you can use theIsDescription object to change the properties of the index creation process
for a table. Just create an instance of theIndexProps class (see section 4.14.2) and assign it to the special
attribute_v_indexprops of the IsDescription object.

4.13.2 The Col class and its descendants

TheCol class is used as a mean to declare the different properties of a table column. In addition, a series of
descendant classes are offered in order to make these column descriptions easier to the user. In general, it is
recommended to use these descendant classes, as they are more meaningful when found in the middle of the
code.

Note that the only public method accessible in these classes is the constructor itself.

Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0)Declare the properties of aTable
column.

dtype The data type for the column. All types listed in appendix A are valid data types for columns.
The type description is accepted both in string-type format and as a numarray data type.

shape An integer or a tuple, that specifies the number ofdtypeitems for each element (or shape, for
multidimensional elements) of this column. ForCharType columns, the last dimension is used
as the length of the character strings. However, for this kind of objects, the use ofStringCol
subclass is strongly recommended.

dflt The default value for elements of this column. If the user does not supply a value for an element
while filling a table, this default value will be written to disk. If the user supplies an scalar value
for a multidimensional column, this value is automaticallybroadcastedto all the elements in the
column cell. Ifdflt is not supplied, an appropriate zero value (ornull string) will be chosen by
default.

pos By default, columns are arranged in memory following an alpha-numerical order of the column
names. In some situations, however, it is convenient to impose a user defined ordering.pos
parameter allows the user to force the desired ordering.

indexed Whether this column should be indexed for better performance in table selections.

StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0)Declare a column to be of type
CharType . The lengthparameter sets the length of the strings. The meaning of the other parame-
ters are like in theCol class.

BoolCol(dflt=0, shape=1, pos=None, indexed=0)Define a column to be of typeBool . The meaning of the
parameters are the same of those in theCol class.

68 Chapter 4. Library Reference

IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=0)Declare a column to be of type
IntXX , depending on the value ofitemsizeparameter, that sets the number of bytes of the integers
in the column. sign determines whether the integers are signed or not. The meaning of the other
parameters are the same of those in theCol class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeInt8 .

UInt8Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeUInt8 .

Int16Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeInt16 .

UInt16Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeUInt16 .

Int32Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeInt32 .

UInt32Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeUInt32 .

Int64Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeInt64 .

UInt64Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeUInt64 .

FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=0)Define a column to be of typeFloatXX ,
depending on the value ofitemsize . Theitemsize parameter sets the number of bytes of the floats
in the column and the default is 8 bytes (double precision). The meaning of the other parameters are
the same as those in theCol class.

This class has two descendants:

Float32Col(dflt=0.0, shape=1, pos=None, indexed=0)Define a column of typeFloat32 .

Float64Col(dflt=0.0, shape=1, pos=None, indexed=0)Define a column of typeFloat64 .

ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=None)Define a column to be of typeComplexXX ,
depending on the value ofitemsize . The itemsize parameter sets the number of bytes of the
complex types in the column and the default is 16 bytes (double precision complex). The meaning of
the other parameters are the same as those in theCol class.

This class has two descendants:

Complex32Col(dflt=0.+0.j, shape=1, pos=None)Define a column of typeComplex32 .

Float64Col(dflt=0+0.j, shape=1, pos=None)Define a column of typeComplex64 .

ComplexCol columns and its descendants do not support indexation.

TimeCol(dflt=0, shape=1, itemsize=8, pos=None, indexed=0)Define a column to be of typeTime. Two
kinds of time columns are supported depending on the value ofitemsize : 4-byte signed integer and
8-byte double precision floating point columns (the default ones). The meaning of the other parameters
are the same as those in theCol class.

Time columns have a special encoding in the HFD5 file. See appendix A for more information on
those types.

This class has two descendants:

Time32Col(dflt=0, shape=1, pos=None, indexed=0)Define a column of typeTime32 .

Time64Col(dflt=0.0, shape=1, pos=None, indexed=0)Define a column of typeTime64 .

4.13. Declarative classes 69

4.13.3 The Atom class and its descendants.

The Atom class is meant to declare the different properties of thebase element(also known asatom) of
EArray andVLArray objects. TheAtom instances have the property that their length is always the same.
However, you can grow objects along the extensible dimension in the case ofEArray or put a variable number
of them on aVLArray row. Moreover, the atoms are not restricted to scalar values, and they can be fully
multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier.
In general, it is recommended to use these descendant classes, as they are more meaningful when found in
the middle of the code. Note that the only public methods accessible in these classes are theatomsize()
method and the constructor itself. Theatomsize() method returns the total length, in bytes, of the element
base atom.

A description of the different constructors with their parameters follows:

Atom(dtype="Float64", shape=1, flavor="NumArray") Define properties for the base elements of
EArray andVLArray objects.

dtype The data type for the base element. See the appendix A for a relation of data types supported.
The type description is accepted both in string-type format and as a numarray data type.

shape In a EArray context, it is atuple specifying the shape of the object, and one (and only one) of
its dimensionsmust be 0, meaning that theEArray object will be enlarged along this axis. In the
case of aVLArray , it can be an integer with a value of 1 (one) or a tuple, that specifies whether
the atom is an scalar (in the case of a 1) or has multiple dimensions (in the case of a tuple). For
CharType elements, the last dimension is used as the length of the character strings. However,
for this kind of objects, the use ofStringAtom subclass is strongly recommended.

flavor The object representation for this atom. It can be any of"CharArray" or "String" for the
CharType type and"NumArray", "Numeric", "List" or "Tuple" for the rest of the types. If the
specified values differs fromCharArrayor NumArrayvalues, the read atoms will be converted to
that specific flavor. If not specified, the atoms will remain in their native format (i.e.CharArray
or NumArray).

StringAtom(shape=1, length=None, flavor="CharArray") Define an atom to be ofCharType type. The
meaning of theshapeparameter is the same as in theAtom class.lengthsets the length of the strings
atoms.flavor can be whether"CharArray" or "String" . Unicode strings are not supported by this
type; see theVLStringAtom class if you want Unicode support (only available forVLAtom objects).

BoolAtom(shape=1, flavor="NumArray") Define an atom to be of typeBool . The meaning of the pa-
rameters are the same of those in theAtom class.

IntAtom(shape=1, itemsize=4, sign=1, flavor="NumArray") Define an atom to be of typeIntXX , de-
pending on the value ofitemsizeparameter, that sets the number of bytes of the integers that conform
the atom.signdetermines whether the integers are signed or not. The meaning of the other parameters
are the same of those in theAtom class.

This class has several descendants:

Int8Atom(shape=1, flavor="NumArray") Define an atom of typeInt8 .

UInt8Atom(shape=1, flavor="NumArray") Define an atom of typeUInt8 .

Int16Atom(shape=1, flavor="NumArray") Define an atom of typeInt16 .

UInt16Atom(shape=1, flavor="NumArray") Define an atom of typeUInt16 .

Int32Atom(shape=1, flavor="NumArray") Define an atom of typeInt32 .

UInt32Atom(shape=1, flavor="NumArray") Define an atom of typeUInt32 .

Int64Atom(shape=1, flavor="NumArray") Define an atom of typeInt64 .

UInt64Atom(shape=1, flavor="NumArray") Define an atom of typeUInt64 .

70 Chapter 4. Library Reference

FloatAtom(shape=1, itemsize=8, flavor="NumArray") Define an atom to be ofFloatXX type, depend-
ing on the value ofitemsize . Theitemsize parameter sets the number of bytes of the floats in the
atom and the default is 8 bytes (double precision). The meaning of the other parameters are the same
as those in theAtom class.

This class has two descendants:

Float32Atom(shape=1, flavor="NumArray") Define an atom of typeFloat32 .

Float64Atom(shape=1, flavor="NumArray") Define an atom of typeFloat64 .

ComplexAtom(shape=1, itemsize=16, flavor="NumArray") Define an atom to be ofComplexXX type,
depending on the value ofitemsize . Theitemsize parameter sets the number of bytes of the floats
in the atom and the default is 16 bytes (double precision complex). The meaning of the other parameters
are the same as those in theAtom class.

This class has two descendants:

Complex32Atom(shape=1, flavor="NumArray") Define an atom of typeComplex32 .

Complex64Atom(shape=1, flavor="NumArray") Define an atom of typeComplex64 .

TimeAtom(shape=1, itemsize=8, flavor="NumArray") Define an atom to be of typeTime. Two kinds
of time atoms are supported depending on the value ofitemsize : 4-byte signed integer and 8-byte
double precision floating point atoms (the default ones). The meaning of the other parameters are the
same as those in theAtom class.

Time atoms have a special encoding in the HFD5 file. See appendix A for more information on those
types.

This class has two descendants:

Time32Atom(shape=1, flavor="NumArray") Define an atom of typeTime32 .

Time64Atom(shape=1, flavor="NumArray") Define an atom of typeTime64 .

Now, there come two special classes,ObjectAtom andVLString , that actually do not descend from
Atom, but which goal is so similar that they should be described here. The difference between them and
the Atom and descendants classes is that these special classes does not allow multidimensional atoms, nor
multiple values per row. Aflavor can not be specified neither as it is immutable (see below).

Caveat emptor: You are only allowed to use these classes to createVLArray objects, notEArray
objects.

ObjectAtom() This class is meant to fitany kind of object in a row of anVLArray instance by using
cPickle behind the scenes. Due to the fact that you can not foresee how long will be the output of the
cPickle serialization (i.e. the atom already has avariable length), you can only fit a representant of
it per row. However, you can still pass several parameters to theVLArray.append() method as they
will be regarded as atupleof compound objects (the parameters), so that we still have only one object to
be saved in a single row. It does not accept parameters and its flavor is automatically set to"Object" ,
so the reads of rows always returns an arbitrary python object. You can regardObjectAtom types as
an easy way to save an arbitrary number of generic python objects in aVLArray object.

VLStringAtom() This class describes arow of the VLArray class, rather than anatom. It differs from
the StringAtom class in that you can only add one instance of it to one specific row, i.e. the
VLArray.append() method only accepts one object when the base atom is of this type. Besides,
it supports Unicode strings (contrarily toStringAtom) because it uses the UTF-8 codification (this
is why its atomsize() method returns always 1) when serializing to disk. It does not accept any
parameter and because itsflavor is automatically set to"VLString" , the reads of rows always returns
a python string. See the appendix C.3.4 if you are curious on how this is implemented at the low-level.
You can regardVLStringAtom types as an easy way to save generic variable length strings.

Seeexamples/vlarray1.py and examples/vlarray2.py for further examples onVLArray s,
including object serialization and Unicode string management.

4.14. Helper classes 71

4.14 Helper classes

In this section are listed classes that does not fit in any other section and that mainly serves for ancillary
purposes.

4.14.1 The Filters class

This class is meant to serve as a container that keeps information about the filter properties associated with
the enlargeable leaves, that isTable , EArray andVLArray .

The public variables ofFilters are listed below:

complevel The compression level (0 means no compression).

complib The compression filter used (in case of compressed dataset).

shuffle Whether the shuffle filter is active or not.

fletcher32 Whether the fletcher32 filter is active or not.

There are noFilters public methods with the exception of the constructor itself that is described next.

Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

The parameters that can be passed to theFilters class constructor are:

complevel Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compres-
sion. The default is that compression is disabled, that balances between compression effort and CPU
consumption.

complib Specifies the compression library to be used. Right now,"zlib" (default),"lzo" , "ucl" and
bzip2 values are supported. See section 6.3 for some advice on which library is better suited to your
needs.

shuffle Whether or not to use theshufflefilter present in theHDF5library. This is normally used to improve
the compression ratio (at the cost of consuming a little bit more CPU time). A value of 0 disables
shuffling and 1 makes it active. The default value depends on whether compression is enabled or not;
if compression is enabled, shuffling defaults to be active, else shuffling is disabled.

fletcher32 Whether or not to use thefletcher32filter in the HDF5 library. This is used to add a checksum on
each data chunk. A value of 0 disables the checksum and it is the default.

Of course, you can also create an instance and then assign the ones you want to change. For example:

import numarray as na
from tables import *

fileh = openFile("test5.h5", mode = "w")
atom = Float32Atom(shape=(0,2))
filters = Filters(complevel=1, complib = "lzo")
filters.fletcher32 = 1
arr = fileh.createEArray(fileh.root, ’earray’, atom, "A growable array",

filters = filters)
Append several rows in only one call
arr.append(na.array([[1., 2.],

[2., 3.],
[3., 4.]], type=na.Float32))

Print information on that enlargeable array

72 Chapter 4. Library Reference

print "Result Array:"
print repr(arr)

fileh.close()

This enforces the use of theLZO library, a compression level of 1 and a fletcher32 checksum filter as well.
See the output of this example:

Result Array:
/earray (EArray(3L, 2), fletcher32, shuffle, lzo(1)) ’A growable array’

type = Float32
shape = (3L, 2)
itemsize = 4
nrows = 3
extdim = 0
flavor = ’NumArray’
byteorder = ’little’

4.14.2 The IndexProps class

You can use this class to set/unset the properties in the indexing process of aTable column. To use it, create
an instance, and assign it to the special attribute_v_indexprops in a table description class (see 4.13.1) or
dictionary.

The public variables ofIndexProps are listed below:

auto Whether an existing index should be updated or not after a table append operation.

reindex Whether the table columns are to be re-indexed after an invalidating index operation.

filters The filter settings for the differentTable indexes.

There are noIndexProps public methods with the exception of the constructor itself that is described
next.

IndexProps(auto=1, reindex=1, filters=None)

The parameters that can be passed to theIndexProps class constructor are:

auto Specifies whether an existing index should be updated or not after a table append operation. The default
is enable automatic index updates.

reindex Specifies whether the table columns are to be re-indexed after an invalidating index operation (like
for example, after aTable.removeRows call). The default is to reindex after operations that invali-
date indexes.

filters Sets the filter properties forColumn indexes. It has to be an instance of theFilters (see sec-
tion 4.14.1) class. ANone value means that the default settings for theFilters object are selected.

4.14.3 The Index class

This class is used to keep the indexing information for table columns. It is actually a descendant of theGroup
class, with some added functionality.

It has no methods intended for programmer’s use, but it has some attributes that maybe interesting for
him.

4.14. Helper classes 73

Index instance variables

column The column object this index belongs to.

type The type class for the index.

itemsize The size of the atomic items. Specially useful for columns ofCharType type.

nelements The total number of elements in index.

dirty Whether the index is dirty or not.

filters TheFilters (see section 4.14.1) instance for this index.

75

Chapter 5

FileNode

5.1 What is FileNode ?

FileNode is a module which enables you to create aPyTables database of nodes which can be used like
regular opened files in Python. In other words, you can store a file in aPyTables database, and read and
write it as you would do with any other file in Python. Used in conjunction withPyTables hierarchical
database organisation, you can have your database turned into an open, extensible, efficient, high capacity,
portable and metadata-rich filesystem for data exchange with other systems (including backup purposes).

Between the main features ofFileNode , one can list:

• Open:Since it relies onPyTables , which in turn, sits over HDF5 (see NCSA), a standard hierarchical
data format from NCSA.

• Extensible:You can define new types of nodes, and their instances will be safely preserved (as are
normal groups, leafs and attributes) byPyTables applications having no knowledge of their types.
Moreover, the set of possible attributes for a node is not fixed, so you can define your own node at-
tributes.

• Efficient: Thanks to PyTables’ proven extreme efficiency on handling huge amounts of data. FileNode
can make use of PyTables’ on-the-fly compression and decompression of data.

• High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit ad-
dressing even where the platform does not support it natively).

• Portable:Since the HDF5 format has an architecture-neutral design, and the HDF5 libraries and PyTa-
bles are known to run under a variety of platforms. Besides that, a PyTables database fits into a single
file, which poses no trouble for transportation.

• Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every
database node. Metadata may include authorship, keywords, MIME types and encodings, ownership
information, access control lists (ACL), decoding functions and anything you can imagine!

5.2 Current limitations

FileNode is still a young piece of software, so it lacks some functionality. This is a list of known current
limitations:

1. Node file names are constrained toPyTables node names (i.e. most valid Python identifiers). For the
moment, if you want arbitrary names you will have to use a translation map (see 4.1.2) or the node
title. The same restriction applies to attribute names.

2. Node files can only be opened for read-only or read and append mode. This will be enhanced in the
future.

76 Chapter 5. FileNode

3. There is no universal newline support yet. This is likely to be implemented in a near future.

4. Sparse files (files with lots of zeros) are not treated specially; if you want them to take less space, you
should be better off using compression.

These limitations still makeFileNode entirely adequate to work with most binary and text files. Of
course, suggestions and patches are welcome.

5.3 Finding a FileNode node

FileNode nodes can be recognised because they have aNODE_TYPEsystem attribute with a’file’ value.
It is recommended that you use thegetNodeAttr() method (see 4.2.2) oftables.File class to get the
NODE_TYPEattribute independently of the nature (group or leaf) of the node, so you do not need to care
about.

5.4 Using FileNode

TheFileNode module is part of thenodes sub-package ofPyTables . The recommended way to import
the module is:

>>> from tables.nodes import FileNode

However,FileNode exports very few symbols, so you can import* for interactive usage. In fact, you
will most probably only use theNodeType constant and thenewNode() andopenNode() calls.

The NodeType constant contains the value that theNODE_TYPEsystem attribute of a node file is ex-
pected to contain (’file’ , as we have seen). Although this is not expected to change, you should use
FileNode.NodeType instead of the literal’file’ when possible.

newNode() andopenNode() are the equivalent to the Pythonfile() call (aliasopen()) for ordinary
files. Their arguments differ from that offile() , but this is the only point where you will note the difference
between working with a node file and working with an ordinary file.

For this little tutorial, we will assume that we have aPyTables database opened for writing. Also,
if you are somewhat lazy at typing sentences, the code that we are going to explain is included in the
examples/filenodes1.py file.

You can create a brand new file with these sentences:

>>> import tables
>>> h5file = tables.openFile(’fnode.h5’, ’w’)

5.4.1 Creating a new file node

Creation of a new file node is achieved with thenewNode() call. You must tell it in whichPyTables
file you want to create it, where in thePyTables hierarchy you want to create the node and which
will be its name. ThePyTables file is the first argument tonewNode() ; it will be also called the
’host PyTables file’ . The other two arguments must be given as keyword argumentswhere and
name, respectively. As a result of the call, a brand new appendable and readable file node object is returned.

So let us create a new node file in the previously openedh5file PyTables file, named’fnode_test’
and placed right under the root of the database hierarchy. This is that command:

>>> fnode = FileNode.newNode(h5file, where=’/’, name=’fnode_test’)

That is basically all you need to create a file node. Simple, isn’t it? From that point on, you can use
fnode as any opened Python file (i.e. you can write data, read data, lines of text and so on).

newNode() accepts some more keyword arguments. You can give a title to your file with thetitle
argument. You can usePyTables ’ compression features with thefilters argument. If you know before-
hand the size that your file will have, you can give its final file size in bytes to theexpectedsize argument
so that thePyTables library would be able to optimise the data access.

5.4. UsingFileNode 77

newNode() creates aPyTables node where it is told to. To prove it, we will try to get theNODE_TYPE
attribute from the newly created node.

>>> print h5file.getNodeAttr(’/fnode_test’, ’NODE_TYPE’)
file

5.4.2 Using a file node

As stated above, you can use the new node file as any other opened file. Let us try to write some text in and
read it.

>>> print >> fnode, "This is a test text line."
>>> print >> fnode, "And this is another one."
>>> print >> fnode
>>> fnode.write("Of course, file methods can also be used.")
>>>
>>> fnode.seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
... print repr(line)
’This is a test text line.\n’
’And this is another one.\n’
’\n’
’Of course, file methods can also be used.’

This was run on a Unix system, so newlines are expressed as’\n’ . In fact, you can override the line
separator for a file by setting itslineSeparator property to any string you want.

While using a file node, you should take care of closing itbefore you close thePyTables host file.
Because of the wayPyTables works, your data it will not be at a risk, but every operation you execute after
closing the host file will fail with aValueError . To close a file node, simply delete it or call itsclose()
method.

>>> fnode.close()
>>> print fnode.closed
True

5.4.3 Opening an existing file node

If you have a file node that you created usingnewNode() , you can open it later by callingopenNode() .
Its arguments are similar to that offile() or open() : the first argument is thePyTables node that you
want to open (i.e. a node with aNODE_TYPEattribute having a’file’ value), and the second argument is a
mode string indicating how to open the file. Contrary tofile() , openNode() can not be used to create a
new file node.

File nodes can be opened in read-only mode (’r’) or in read-and-append mode (’a+’). Reading from
a file node is allowed in both modes, but appending is only allowed in the second one. Just like Python files
do, writing data to an appendable file places it after the file pointer if it is on or beyond the end of the file, or
otherwise after the existing data. Let us see an example:

>>> node = h5file.root.fnode_test
>>> fnode = FileNode.openNode(node, ’a+’)
>>> print repr(fnode.readline())
’This is a test text line.\n’
>>> print fnode.tell()

78 Chapter 5. FileNode

26
>>> print >> fnode, "This is a new line."
>>> print repr(fnode.readline())
’’

Of course, the data append process places the pointer at the end of the file, so the lastreadline() call
hit EOF. Let us seek to the beginning of the file to see the whole contents of our file.

>>> fnode.seek(0)
>>> for line in fnode:
... print repr(line)
’This is a test text line.\n’
’And this is another one.\n’
’\n’
’Of course, file methods can also be used.This is a new line.\n’

As you can check, the last string we wrote was correctly appended at the end of the file, instead of
overwriting the second line, where the file pointer was positioned by the time of the appending.

5.4.4 Adding metadata to a file node

You can associate arbitrary metadata to any open node file, regardless of its mode, as long as the host
PyTables file is writable. Of course, you could use thesetNodeAttr() method oftables.File to
do it directly on the proper node, butFileNode offers a much more comfortable way to do it.FileNode
objects have anattrs property which gives you direct access to their correspondingAttributeSet object.

For instance, let us see how to associate MIME type metadata to our file node:

>>> fnode.attrs.content_type = ’text/plain; charset=us-ascii’

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship,
keywords, permissions and more. Moreover, there is not a fixed list of attributes. However, you should avoid
names in all caps or starting with’_’ , sincePyTables andFileNode may use them internally. Some valid
examples:

>>> fnode.attrs.author = "Ivan Vilata i Balaguer"
>>> fnode.attrs.creation_date = ’2004-10-20T13:25:25+0200’
>>> fnode.attrs.keywords_en = ["FileNode", "test", "metadata"]
>>> fnode.attrs.keywords_ca = ["FileNode", "prova", "metadades"]
>>> fnode.attrs.owner = ’ivan’
>>> fnode.attrs.acl = {’ivan’: ’rw’, ’@users’: ’r’}

You can check that these attributes get stored by running theptdump command on the hostPyTables
file:

$ ptdump -a fnode.h5:/fnode_test
/fnode_test (EArray(113,)) ’’

/fnode_test.attrs (AttributeSet), 14 attributes:
[CLASS := ’EARRAY’,

EXTDIM := 0,
FLAVOR := ’NumArray’,
NODE_TYPE := ’file’,
NODE_TYPE_VERSION := 2,
TITLE := ’’,

5.5. Complementary notes 79

VERSION := ’1.2’,
acl := {’ivan’: ’rw’, ’@users’: ’r’},
author := ’Ivan Vilata i Balaguer’,
content_type := ’text/plain; charset=us-ascii’,
creation_date := ’2004-10-20T13:25:25+0200’,
keywords_ca := [’FileNode’, ’prova’, ’metadades’],
keywords_en := [’FileNode’, ’test’, ’metadata’],
owner := ’ivan’]

Please note thatFileNode makes no assumptions about the meaning of your metadata, so its handling is
entirely left to your needs and imagination.

5.5 Complementary notes

You can useFileNode s andPyTables groups to mimic a filesystem with files and directories. Since you
can store nearly anything you want as file metadata, this enables you to use aPyTables file as a portable
compressed backup, even between radically different platforms. Take this with a grain of salt, since node files
are restricted in their naming (only valid Python identifiers are valid); however, remember that you can use
node titles and metadata to overcome this limitation. Also, you may need to devise some strategy to represent
special files such as devices, sockets and such (not necessarily usingFileNode).

We are eager to hear your opinion aboutFileNode and its potential uses. Suggestions to improve
FileNode and create other node types are also welcome. Do not hesitate to contact us!

5.6 FileNode module reference

5.6.1 Global constants

NodeType Value forNODE_TYPEnode system attribute.

NodeTypeVersionsSupported values forNODE_TYPE_VERSIONnode system attribute.

5.6.2 Global functions

newNode(h5file, where, name, title="", filters=None, expectedsize=1000)

Creates a new file node object in the specifiedPyTables file object. Additional named argumentswhere and
name must be passed to specify where the file node is to be created. Other named arguments such astitle
andfilters may also be passed. The special named argumentexpectedsize , indicating an estimate of
the file size in bytes, may also be passed. It returns the file node object.

openNode(node, mode = ’r’)

Opens an existing file node. Returns a file node object from the existing specified PyTables node. If mode is
not specified or it is’r’ , the file can only be read, and the pointer is positioned at the beginning of the file. If
mode is’a+’ , the file can be read and appended, and the pointer is positioned at the end of the file.

5.6.3 The FileNode abstract class

This is the ancestor ofROFileNode andRAFileNode (see below). Instances of these classes are returned
whennewNode() or openNode() are called. It represents a new file node associated with aPyTables
node, providing a standard Python file interface to it.

This abstract class provides only an implementation of the reading methods needed to implement a file-
like object over aPyTables node. The attribute set of the node becomes available via theattrs property.

80 Chapter 5. FileNode

You can add attributes there, but try to avoid attribute names in all caps or starting with’_’ , since they may
clash with internal attributes.

The node used as storage is also made available via the read-only attributenode . Please do not tamper
with this object unless unavoidably, since you may break the operation of the file node object.

ThelineSeparator property contains the string used as a line separator, and defaults toos.linesep .
It can be set to any reasonably-sized string you want.

The constructor sets theclosed , softspace and_lineSeparator attributes to their initial values,
as well as thenode attribute toNone. Sub-classes should set thenode , mode andoffset attributes.

Version 1 implements the file storage as aUInt8 uni-dimensionalEArray .

FileNode methods

getLineSeparator() Returns the line separator string.

setLineSeparator() Sets the line separator string.

getAttrs() Returns the attribute set of the file node.

close() Flushes the file and closes it. Thenode attribute becomesNone and theattrs property becomes no
longer available.

next() Returns the next line of text. RaisesStopIteration when lines are exhausted. See
file.next.__doc__ for more information.

read(size=None)Reads at mostsize bytes. Seefile.read.__doc__ for more information

readline(size=-1) Reads the next text line. Seefile.readline.__doc__ for more information

readlines(sizehint=-1) Reads the text lines. Seefile.readlines.__doc__ for more information.

seek(offset, whence=0)Moves to a new file position. Seefile.seek.__doc__ for more information.

tell() Gets the current file position. Seefile.tell.__doc__ for more information.

xreadlines() For backward compatibility. Seefile.xreadlines.__doc__ for more information.

5.6.4 The ROFileNode class

Instances of this class are returned whenopenNode() is called in read-only mode (’r’). This is a descen-
dant ofFileNode class, so it inherits all its methods. Moreover, it does not define any other useful method,
just some protections against users intents to write on file.

5.6.5 The RAFileNode class

Instances of this class are returned when eithernewNode() is called or whenopenNode() is called in
append mode (’a+’). This is a descendant ofFileNode class, so it inherits all its methods. It provides
additional methods that allow to write on file nodes.

flush() Flushes the file node. Seefile.flush.__doc__ for more information.

truncate(size=None)Truncates the file node to at mostsize bytes. Currently, this method only makes sense
to grow the file node, since data can not be rewritten nor deleted. Seefile.truncate.__doc__ for
more information.

write(string) Writes the string to the file. Writing an empty string does nothing, but requires the file to be
open. Seefile.write.__doc__ for more information.

writelines(sequence)Writes the sequence of strings to the file. Seefile.writelines.__doc__ for
more information.

... durch planmässiges Tattonieren.
[... through systematic, palpable

experimentation.]

—Johann Karl Friedrich Gauss
[asked how he came upon his theorems]

81

Chapter 6

Optimization tips

On this chapter, you will get deeper knowledge ofPyTables internals. PyTables has several places
where the user can improve the performance of his application. If you are planning to deal with really large
data, you should read carefully this section in order to learn how to get an important boost for your code. But
if your dataset is small or medium size (say, up to 10 MB), you should not worry about that as the default
parameters inPyTables are already tuned to handle that perfectly.

6.1 Informing PyTables about expected number of rows in tables

The underlying HDF5 library that is used byPyTables takes the data in bunches of a certain length, so-
calledchunks, to write them on disk as a whole, i.e. the HDF5 library treats chunks as atomic objects and
disk I/O is always made in terms of complete chunks. This allows data filters to be defined by the application
to perform tasks such as compression, encryption, checksumming, etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a
dataset the larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk
I/O and higher contention for the metadata cache. Consequently, it’s important to balance between memory
and I/O overhead (small B-trees) and time to access data (big B-trees).

PyTables can determine an optimum chunk size to make B-trees adequate to your dataset size if you
help it by providing an estimation of the number of rows for a table. This must be made in table creation time
by passing this value in theexpectedrows keyword ofcreateTable method (see 4.2.2).

When your table size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing
this guess of the number of rows you will be optimizing the access to your data. When the table size is
larger than, say 100MB, you arestrongly suggested to provide such a guess; failing to do that may cause
your application doing very slow I/O operations and demandinghuge amounts of memory. You have been
warned!.

6.2 Accelerating your searches

If you are going to use a lot of searches like the next one:

row = table.row
result = [row[’var2’] for row in table if row[’var1’] <= 20]

(for future reference, we will call this thestandardselection mode) and want to improve the time taken by it,
keep reading.

6.2.1 In-kernel searches

PyTables provides a way to accelerate data selections when they are simple, i.e. only a column is implied
in the selection process, through the use of thewhere iterator (see 4.6.2). We will call this mode of selecting

82 Chapter 6. Optimization tips

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables
 (condition applied over Int32 values)

Standard
In-kernel
Indexed

Figure 6.1: Times for different selection modes overInt32 values. Benchmark made on a machine with Itanium (IA64)
@ 900 MHz processors with SCSI disk @ 10K RPM.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables
 (condition applied over Float64 values)

Standard
In-kernel
Indexed

Figure 6.2: Times for different selection modes overFloat64 values. Benchmark made on a machine with Itanium
(IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

data asin-kernel. Let’s see an example ofin-kernelselection based on thestandardselection mentioned
above:

row = table
result = [row[’var2’] for row in table.where(table.cols.var1 <= 20)]

This simple change of mode selection can account for an improvement in search times up to a factor of 10
(see the figure 6.1).

So, where is the trick?. It’s easy. In thestandardselection mode the data for columnvar1 has to be
carried up to Python space so as to evaluate the condition and decide if thevar2 value should be added to the
result list. On the contrary, in thein-kernelmode, theconditionis passed to thePyTables kernel, written
in C (hence the name), and evaluated there at C speed (with some help of thenumarray package), so that the
only values that were brought to the Python space where the references forrows that fulfilled the condition.

6.2. Accelerating your searches 83

You should note, however, that currently thewhere method only accepts conditions along a single col-
umn1. Fortunately, you can mix thein-kernelandstandardselection modes for evaluating arbitrarily complex
conditions along several columns at once. Look at this example:

row = table
result = [row[’var2’] for row in table.where(table.cols.var3 == "foo")]

if row[’var1’] <= 20]

here, we have used ain-kernelselection to filter the rows whosevar3 field is equal to string"foo" . Then,
we apply astandardselection to complete the query.

Of course, when you mix thein-kernelandstandardselection modes you should pass the most restrictive
condition to thein-kernelpart, i.e. to thewhere iterator. In situations where it is not clear which is the most
restrictive condition, you might want to experiment a bit in order to find the best combination.

6.2.2 Indexed searches

When you need more speed thanin-kernelselections can offer you,PyTables offer a third selection method,
so-calledindexedmode. On this mode, you have to decide which column(s) are you going to do your selec-
tions and index them. Indexing is just a kind of sort operation, so that next searches along a column will look
at the sorted information using abinary searchwhich is much faster than asequential search.

You can index your selected columns in several ways:

Declaratively In this mode, you can declare a column as being indexed by passing theindexedparameter to
the column descriptor. That is:

class Example(IsDescription):
var1 = StringCol(length=4, dflt="", pos=1, indexed=1)
var2 = BoolCol(0, indexed=1, pos = 2)
var3 = IntCol(0, indexed=1, pos = 3)
var4 = FloatCol(0, indexed=0, pos = 4)

In this case, we are telling thatvar1 , var2 andvar3 columns will be indexed automatically when
you add rows to the table with this description.

Calling Column.createIndex() In this mode, you can create an index even on an already created table. For
example:

indexrows = table.cols.var1.createIndex()
indexrows = table.cols.var2.createIndex()
indexrows = table.cols.var3.createIndex()

will create indexes for allvar1 , var2 andvar3 columns, and after doing that, they will behave as
regular indexes.

After you have indexed a column, you can proceed to use it through the use ofTable.where method:

row = table
result = [row[’var2’] for row in table.where(table.cols.var1 == "foo")]

or, if you want to add more conditions, you can mix the indexed selection with a standard one:

1 Although this may change in the future

84 Chapter 6. Optimization tips

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
(s

ec
on

ds
)

Number of rows

Index creation time

Figure 6.3: Times for indexing a couple of columns of data typeInt32 andFloat64 . Benchmark made on a machine
with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

row = table
result = [row[’var2’] for row in table.where(table.cols.var3 <= 20)]

if row[’var1’] == "foo"]

remember to pass the most restrictive condition to thewhere iterator.
You can see in figures 6.1 and 6.2 that indexing can accelerate quite a lots your data selections in tables.

For moderately large tables (> one million rows), you can see that you can achieve speed-ups in the order of
100x respect toin-kernelselections and in the order of 1000x respecte tostandardselections.

One important aspect of indexation inPyTables is that it has been implemented with the goal of being
capable to manage effectively very large tables. In figure 6.3, you can see that the times to index columns in
tables always growslinearly. In particular, the time to index a couple of columns with 1 billion of rows each
is 40 min. (roughly 20 min. each), which is a quite reasonable figure. This is becausePyTables has chosen
an algorithm that do apartial sorting of the columns in order to ensure that the indexing time growslinearly.
On the contrary, most of relational databases try to do acompletesorting of columns, and this makes the time
to index to growquadraticallywith the number of rows.

The fact that relational databases uses a complete sorting algorithm for indexes means that their index
would be more effective (but not by a large extent) for searching purposes that thePyTables approach.
However, for relatively large tables (> 10 millions of rows) the time required for completing such a sort can
be so large, that indexing is not normally worth the effort. In other words,PyTables indexing scales much
better than relational databases. So, don’t worry if you have extremely large columns to index:PyTables is
designed to handle with that perfectly.

6.3 Compression issues

One of the beauties ofPyTables is that it supports compression on tables and arrays2, although it is disabled
by default. Compression of big amounts of data might be a bit controversial feature, because compression
has a legend of being a very big CPU time resources consumer. However, if you are willing to check if
compression can help not only reducing your dataset file size butalso improving your I/O efficiency, keep
reading.

There is an usual scenario where users need to save duplicated data in some record fields, while the others
have varying values. In a relational database approach such redundant data can normally be moved to other

2 More precisely, it is supported inEArray andVLArray objects, not inArray objects itself.

6.3. Compression issues 85

Table 6.1: Comparison between different compression libraries. The tests have been conducted on a Pentium 4 at 2 GHz
and a hard disk at 4200 RPM.

Compr. Lib File size (MB) Time writing (s) Time reading (s) Speed writing (Krow/s) Speed reading (Krow/s)

NO COMPR 244.0 24.4 16.0 18.0 27.8
Zlib (lvl 1) 8.5 17.0 3.11 26.5 144.4
Zlib (lvl 6) 7.1 20.1 3.10 22.4 144.9
Zlib (lvl 9) 7.2 42.5 3.10 10.6 145.1
LZO (lvl 1) 9.7 14.6 1.95 30.6 230.5
UCL (lvl 1) 6.9 38.3 2.58 11.7 185.4

tables and a relationship between the rows on the separate tables can be created. But that takes analysis and
implementation time, and makes the underlying libraries more complex and slower.

PyTables transparent compression allows the users to not worry about finding which is their optimum
data tables strategy, but rather use less, not directly related, tables with a larger number of columns while still
not cluttering the database too much with duplicated data (compression is responsible to avoid that). As a
side effect, data selections can be made more easily because you have more fields available in a single table,
and they can be referred in the same loop. This process may normally end in a simpler, yet powerful manner
to process your data (although you should still be careful about in which kind of scenarios compression use
is convenient or not).

The compression library used by default is theZlib (see Gailly and Adler), and as HDF5requiresit, you
can safely use it and expect that your HDF5 files will be readable on any other platform that has HDF5 libraries
installed. Zlib provides good compression ratio, although somewhat slow, and reasonably fast decompression.
Because of that, it is a good candidate to be used for compressing you data.

However, in many situations (i.e. writeonce, readmultiple), it is critical to havevery gooddecompression
speed (at expense of whether less compression or more CPU wasted on compression, as we will see soon).
This is why support for two additional compressors has been added to PyTables: LZO and UCL (see Ober-
humer). Following his author (and checked by the author of this manual), LZO offers pretty fast compression
(although small compression ratio) and extremely fast decompression while UCL achieves an excellent com-
pression ratio (at the price of spending much more CPU time) while allowing very fast decompression (and
very closeto the LZO one). In fact, LZO and UCL are so fast when decompressing that, in general (that
depends on your data, of course), writing and reading a compressed table is actually faster (and sometimes
much faster) than if it is uncompressed. This fact is very important, specially if you have to deal with very
large amounts of data.

Be aware that the LZO, UCL and bzip2 support in PyTables is not standard on HDF5, so if you are going
to use your PyTables files in other contexts different from PyTables you will not be able to read them. Still,
see the appendix B.2 where theptrepack utility is described to find a way to free your files from LZO, UCL
or bzip2 dependencies, so that you can use these compressors locally with the warranty that you can replace
them with ZLIB (or even remove compression completely) if you want to export the files to other HDF5 tools
afterwards.

In order to give you a raw idea of what ratios would be achieved, and what resources would be consumed,
look at the table 6.1. This table has been obtained from synthetic data and with a somewhat outdated PyTables
version (0.5), so take this just as a guide because your mileage will probably vary. Have also a look at the
graphs 6.4 and 6.5 (these graphs have been obtained with tables with different row sizes and PyTables
version than the previous example, so do not try to directly compare the figures). They show how the speed of
writing/reading rows evolves as the size (the row number) of tables grows. Even though in these graphs the
size of one single row is 56 bytes, you can most probably extrapolate this figures to other row sizes. If you
are curious about how well compression can perform together with Psyco, look at the graphs 6.6 and 6.7. As
you can see, the results are pretty interesting.

By looking at graphs, you can expect that, generally speaking, LZO would be the fastest both compressing
and uncompressing, but the one that achieves the worse compression ratio (although that may be just OK for
many situations). UCL is the slowest when compressing, but is faster than Zlib when decompressing, and,
besides, it achieves very good compression ratios (generally better than Zlib). Zlib represents a balance

86 Chapter 6. Optimization tips

 0

 50

 100

 150

 200

 250

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

No Psyco & No compression
ZLIB
LZO
UCL

Figure 6.4: Writing tables with several compressors.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

No compression
ZLIB
LZO
UCL

Figure 6.5: Reading tables with several compressors.

 0

 50

 100

 150

 200

 250

 300

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

Psyco & No compression
Psyco & ZLIB
Psyco & LZO
Psyco & UCL

Figure 6.6: Writing tables with several compressors and Psyco.

6.4. Shuffling (or how to make the compression process more effective) 87

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

Psyco & No compression
Psyco & ZLIB
Psyco & LZO
Psyco & UCL

Figure 6.7: Reading tables with several compressors and Psyco.

between them: it’s somewhat slow compressing, the slowest during decompression, but it normally achieves
fairly good compression ratios.

So, if your ultimate goal is reading as fast as possible, choose LZO. If you want to reduce as much as
possible your data, while retaining good read speed, choose UCL. If you don’t mind too much about the
above parameters and/or portability is important for you, Zlib is your best bet.

The compression level that I recommend to use for all compression libraries is 1. This is the lowest level
of compression, but if you take the approach suggested above, normally the redundant data is to be found in
the same row, so the redundant data locality is very high and such a small level of compression should be
enough to achieve a good compression ratio on your data tables, saving CPU cycles for doing other things.
Nonetheless, in some situations you may want to check how compression level affects your application.

You can select the compression library and level by setting thecomplib andcompress keywords in the
Filters class (see 4.14.1). A compression level of 0 will completely disable compression (the default), 1
is the less CPU time demanding level, while 9 is the maximum level and most CPU intensive. Finally, have in
mind that LZO is not accepting a compression level right now, so, when using LZO, 0 means that compression
is not active, and any other value means that LZO is active.

6.4 Shuffling (or how to make the compression process more
effective)

TheHDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its
name isshuffle, and because it can greatly benefit compression and it does not take many CPU resources, it is
active bydefaultin PyTables whenever compression is activated (independently of the chosen compressor).
It is of course deactivated when compression is off (which is the default, as you already should know).

From the HDF5 reference manual:“Theshufflefilter de-interlaces a block of data by reordering the bytes.
All the bytes from one consistent byte position of each data element are placed together in one block; all
bytes from a second consistent byte position of each data element are placed together a second block; etc. For
example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will re-order data
as 000111222333. This can be a valuable step in an effective compression algorithm because the bytes in each
byte position are often closely related to each other and putting them together can increase the compression
ratio. ”

In table 6.2 you can see a benchmark that shows how theshufflefilter can help to the different li-
braries to compress data in three table datasets. Generally speaking,shufflemakes the writing process (shuf-
fling+compressing) faster (between 7% and 22%), which is an interesting result in itself. However, the reading
process (unshuffling+decompressing) is slower, but by a lesser extent (between 3% and 18%).

88 Chapter 6. Optimization tips

Table 6.2: Comparison between different compression libraries, with and without shuffling. The tests have been conducted
on a Pentium 4 at 2 GHz and a hard disk at 4200 RPM.

Compr. Lib File size (MB) Time writing (s) Time reading (s) Speed writing (MB/s) Speed reading (MB/s)

NO COMPR 165.4 24.5 17.13 6.6 9.6
Zlib (lvl 1) 26.4 22.2 5.77 7.3 28.4
Zlib+shuffle 4.0 19.0 5.94 8.6 27.6
LZO (lvl 1) 44.9 17.8 4.13 9.2 39.7
LZO+shuffle 4.3 16.4 5.03 9.9 32.6
UCL (lvl 1) 27.4 48.8 5.02 3.3 32.7
UCL+shuffle 3.5 38.1 5.31 4.3 30.9

But the most remarkable fact is the level of compression that compressor filters can achieve aftershuffle
has passed over the data: the total file size can be up to 40 times smaller than the uncompressed file, and up
to 5 times smaller than the already compressed files (!). Of course, the data for doing this test is synthetic,
andshuffleseems to do a great work with it, so in general, the results will vary in your case. However, due
to the small drawbacks (reads are slowed down by a small extent) and its potential gains (faster writing, but
specially much better compression level), I do believe that it is a good thing to have such a filter enabled by
default in the battle for discovering redundancy in your data.

6.5 Taking advantage of Psyco

Psyco (see Rigo) is a kind of specialized compiler for Python that typically accelerates Python applications
with no change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit
like Java’s, that emits machine code on the fly instead of interpreting your Python program step by step. The
result is that your unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to give it a try. However, it only runs
on Intel 386 architectures, so if you are using other architectures, you are out of luck (at least until Psyco will
support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets,
like this:

def readFile(filename):
"Select data from all the tables in filename"

fileh = openFile(filename, mode = "r")
result = []
for table in fileh("/", ’Table’):

result = [p[’var3’] for p in table if p[’var2’] <= 20]

fileh.close()
return e

if __name__=="__main__":
print readFile("myfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:

if __name__=="__main__":
import pysco
psyco.bind(readFile)
print readFile("myfile.h5")

That’s all!. From now on, each time that you execute your Python script, Psyco will deploy its sophisti-
cated algorithms so as to accelerate your calculations.

6.6. Selecting an User Entry Point (UEP) in your tree 89

 0

 50

 100

 150

 200

 250

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

No Psyco
Psyco

Figure 6.8: Writing tables with/without Psyco.

 0

 200

 400

 600

 800

 1000

 1200

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

No Psyco
Psyco

Figure 6.9: Reading tables with/without Psyco.

You can see in the graphs 6.8 and 6.9 how much I/O speed improvement you can get by using Psyco. By
looking at this figures you can get an idea if these improvements are of your interest or not. In general, if you
are not going to use compression you will take advantage of Psyco if your tables are medium sized (from a
thousand to a million rows), and this advantage will disappear progressively when the number of rows grows
well over one million. However if you use compression, you will probably see improvements even beyond
this limit (see section 6.3). As always, there is no substitute for experimentation with your own dataset.

6.6 Selecting an User Entry Point (UEP) in your tree

If you have ahugetree in your data file with many nodes on it, creating the object tree would take long time.
Many times, however, you are interested only in access to a part of the complete tree, so you won’t strictly
need PyTables to build the entire object tree in-memory, but only theinterestingpart.

This is where therootUEP parameter ofopenFile function (see 4.1.2) can be helpful. Imagine that you
have a file called"test.h5" with the associated tree that you can see in figure 6.10, and you are interested

90 Chapter 6. Optimization tips

Table2

Group1 Group2

Table1

Root

Group3

Table4 Table5 Array2

Array1

Figure 6.10: Complete tree in filetest.h5 , and subtree of interest for the user.

Table4 Table5 Array2

Root

Figure 6.11: Resulting object tree derived from the use of therootUEP parameter.

only in the section marked in red. You can avoid the build of all the object tree by saying toopenFile that
your root will be the/Group2/Group3 group. That is:

fileh = openFile("test.h5", rootUEP="/Group2/Group3")

As a result, the actual object tree built will be like the one that can be seen in figure 6.11.
Of course this has been a simple example and the use of therootUEP parameter was not very necessary.

But when you havethousandsof nodes on a tree, you will certainly appreciate therootUEP parameter.

6.7 Compacting your PyTables files

Let’s suppose that you have a file on which you have made a lot of row deletions on one or more tables,
or deleted many leaves or even entire subtrees. These operations might leaveholes(i.e. space that is not
used anymore) in your files, that may potentially affect not only the size of the files but, more importantly, the
performance of I/O. This is because when you delete a lot of rows on a table, the space is not automatically re-
covered on-the-flight. In addition, if you add many more rows to a table than specified in theexpectedrows
keyword in creation time this may affect performance as well, as explained in section 6.1.

In order to cope with these issues, you should be aware that a handyPyTables utility calledptrepack
can be very useful, not only to compact your already existingleakyfiles, but also to adjust some internal
parameters (both in memory and in file) in order to create adequate buffer sizes and chunk sizes for optimum
I/O speed. Please, check the appendix B.2 for a brief tutorial on its use.

Another thing that you might want to useptrepack for is changing the compression filters or compres-
sion levels on your existing data for different goals, like checking how this can affect both final size and I/O
performance, or getting rid of the optional compressors likeLZO or UCL in your existing files in case you
want to use them with generic HDF5 tools that do not have support for these filters.

91

Appendix A

Supported data types in PyTables

The Table, Array, VLArray and EArray classes can all handle the complete set of data types supported by
thenumarray package (see Greenfieldet al.) andNumeric (see Ascheret al.) in Python. The data types
for table fields can be set via the constructor for theCol class and its descendants (see 4.13.2) while array
elements can be set through the use of theAtom class and its descendants (see 4.13.3).

In addition to those data types, PyTables’ Table, VLArray and EArray classes do support somealiasing
data types for their columns and atoms. Each one of these aliasing types corresponds to onenumarray type,
but they also have special meanings for PyTables. They can be seen as the ordinary types they are associated
with, plus some additional meaning. Since they do not exist asnumarray types, they can only be specified
to PyTables using strings.

Currently, the only supported aliasing data type isTime. Two kinds of time values can be handled: 4-byte
signed integer and 8-byte double precision floating point. Both of them reflect the number of seconds since
the Unix Epoch, i.e. Jan 1 00:00:00 UTC 1970. Their types correspond tonumarray ’s Int32 and Float64,
respectively. Time values are stored in the HDF5 file using theH5T_TIME class. Integer times are stored as
is, while floating point times are split into two signed integer values representing seconds and microseconds
(beware: smaller decimals will be lost!).

A quick reference to the complete set of data types supported by PyTables is given in table A.

Table A.1: Data types supported for array elements and tables columns in PyTables.

Type Code Description C Type Size (in bytes) Python Counterpart

Bool boolean unsigned char 1 Boolean
Int8 8-bit integer signed char 1 Integer
UInt8 8-bit unsigned integer unsigned char 1 Integer
Int16 16-bit integer short 2 Integer
UInt16 16-bit unsigned integer unsigned short 2 Integer
Int32 integer int 4 Integer
UInt32 unsigned integer unsigned int 4 Long
Int64 64-bit integer long long 8 Long
UInt64 unsigned 64-bit integer unsigned long long 8 Long
Float32 single-precision float float 4 Float
Float64 double-precision float double 8 Float
Complex32 single-precision complex struct {float r, i;} 8 Complex
Complex64 double-precision complex struct {double r, i;} 16 Complex
CharType arbitrary length string char[] * String
’Time32’ integer time POSIX’s time_t 4 Integer
’Time64’ floating point time POSIX’s struct timeval 8 Float

93

Appendix B

Utilities

PyTables comes with a couple of utilities that make the life easier to the user. One is calledptdump and
lets you see the contents of aPyTables file (or genericHDF5file, if supported). The other one is named
ptrepack that allows to (recursively) copy sub-hierarchies of objects present in a file into another one,
changing, if desired, some of the filters applied to the leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the process of installation of
thePyTables package, so that you can invoke them from any place in your file system after the installation
has successfully finished.

B.1 ptdump

As has been said before,ptdump utility allows you look into the contents of yourPyTables files. It lets
you see not only the data but also the metadata (that is, thestructureand additional information in the form
of attributes).

B.1.1 Usage

For instructions on how to use it, just pass the-h flag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-R start,stop,step] [-a] [-h] [-d] [-v] file[:nodepath]
-R RANGE -- Select a RANGE of rows in the form "start,stop,step"
-a -- Show attributes in nodes (only useful when -v or -d are active)
-c -- Show info of columns in tables (only useful when -v or -d are active)
-i -- Show info of indexed columns (only useful when -v or -d are active)
-d -- Dump data information on leaves
-h -- Print help on usage
-v -- Dump more meta-information on nodes

B.1.2 A small tutorial on ptdump

Let’s suppose that we want to know only thestructureof a file. In order to do that, just don’t pass any flag,
just the file as parameter:

$ ptdump vlarray1.h5
Filename: ’vlarray1.h5’ Title: ’’ , Last modif.: ’Fri Feb 6 19:33:28 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2

94 Appendix B. Utilities

/ (Group) ’’
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

we can see that the file contains a just a leaf object calledvlarray1 , that is an instance ofVLArray , has 4
rows, and two filters has been used in order to create it:shuffle andzlib (with a compression level of 1).

Let’s say we want more meta-information. Just add the-v (verbose) flag:

$ ptdump -v vlarray1.h5
/ (Group) ’’

children := [’vlarray1’ (VLArray)]
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’

so we can see more info about the atoms that are the components of thevlarray1 dataset, i.e. they are
scalars of typeInt32 and withNumeric flavor.

If we want information about the attributes on the nodes, we must add the-a flag:

$ ptdump -va vlarray1.h5
/ (Group) ’’

children := [’vlarray1’ (VLArray)]
/._v_attrs (AttributeSet), 5 attributes:

[CLASS := ’GROUP’,
FILTERS := None,
PYTABLES_FORMAT_VERSION := ’1.2’,
TITLE := ’’,
VERSION := ’1.0’]

/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’
atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’
/vlarray1.attrs (AttributeSet), 4 attributes:

[CLASS := ’VLARRAY’,
FLAVOR := ’Numeric’,
TITLE := ’ragged array of ints’,
VERSION := ’1.0’]

Let’s have a look at the real data:

$ ptdump -d vlarray1.h5
/ (Group) ’’
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

Data dump:
[array([5, 6]), array([5, 6, 7]), array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

we see here a data dump of the 4 rows invlarray1 object, in the form of a list. Because the object is a VLA,
we see a different number of integers on each row.

Say that we are interested only on a specificrow rangeof the /vlarray1 object:

B.2. ptrepack 95

ptdump -R2,4 -d vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See
how we have selected only the/vlarray1 object for doing the dump (vlarray1.h5:/vlarray1).

Finally, you can mix several information at once:

$ ptdump -R2,4 -vad vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’
/vlarray1.attrs (AttributeSet), 4 attributes:

[CLASS := ’VLARRAY’,
FLAVOR := ’Numeric’,
TITLE := ’ragged array of ints’,
VERSION := ’1.0’]

Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

B.2 ptrepack

This utility is a very powerful one and lets you copy any leaf, group or complete subtree into another file.
During the copy process you are allowed to change the filter properties if you want so. Also, in the case
of duplicated pathnames, you can decide if you want to overwrite already existing nodes on the destination
file. Generally speaking,ptrepack can be useful in may situations, like replicating a subtree in another
file, change the filters in objects and see how affect this to the compression degree or I/O performance,
consolidating specific data in repositories or evenimporting genericHDF5files and create truePyTables
counterparts.

B.2.1 Usage

For instructions on how to use it, just pass the-h flag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-o] [-R start,stop,step] [--non-recursive]
[--dest-title=title] [--dont-copyuser-attrs] [--overwrite-nodes]
[--complevel=(0-9)] [--complib=lib] [--shuffle=(0|1)]
[--fletcher32=(0|1)] [--keep-source-filters]
sourcefile:sourcegroup destfile:destgroup

-h -- Print usage message.
-v -- Show more information.
-o -- Overwite destination file.
-R RANGE -- Select a RANGE of rows (in the form "start,stop,step")

during the copy of *all* the leaves.
--non-recursive -- Do not do a recursive copy. Default is to do it.
--dest-title=title -- Title for the new file (if not specified,

96 Appendix B. Utilities

the source is copied).
--dont-copy-userattrs -- Do not copy the user attrs (default is to do it)
--overwrite-nodes -- Overwrite destination nodes if they exist. Default is

to not overwrite them.
--complevel=(0-9) -- Set a compression level (0 for no compression, which

is the default).
--complib=lib -- Set the compression library to be used during the copy.

lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".
--shuffle=(0|1) -- Activate or not the shuffling filter (default is active

if complevel>0).
--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not

active by default).
--keep-source-filters -- Use the original filters in source files. The

default is not doing that if any of --complevel, --complib, --shuffle
or --fletcher32 option is specified.

B.2.2 A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the output ofexamples/tutorial1-1.py), and we want
to copy our reduced data (i.e. those datasets that hangs from the/column group) to another file. First, let’s
remember the content of theexamples/tutorial1.h5 :

$ ptdump tutorial1.h5
Filename: ’tutorial1.h5’ Title: ’Test file’ , Last modif.: ’Fri Feb 6

19:33:28 2004’ , rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10L,)) ’Readout example’

Now, copy the/columns to other non-existing file. That’s easy:

$ ptrepack tutorial1.h5:/columns reduced.h5

That’s all. Let’s see the contents of the newly createdreduced.h5 file:

$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:26:47 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/name (Array(3,)) ’Name column selection’
/pressure (Array(3,)) ’Pressure column selection’

so, you have copied the children of/columns group into theroot of thereduced.h5 file.
Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group

/columns itself included. You can do that by just specifying the destination group:

$ ptrepack tutorial1.h5:/columns reduced.h5:/columns
ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:39:15 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2

B.2. ptrepack 97

/ (Group) ’’
/name (Array(3,)) ’Name column selection’
/pressure (Array(3,)) ’Pressure column selection’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

OK. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding
the -o flag:

$ ptrepack -o tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:41:57 2004’ ,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

where you can see how the old contents of thereduced.h5 file has been overwritten.
You can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutorial1.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:52:22 2004’,

rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

where the/detector/readout has been copied to/rawdata in destination.
We can change the filter properties as well:

$ ptrepack --complevel=1 tutorial1.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from ’tutorial1.h5:/detector/readout’ to
’reduced.h5:/rawdata’
The error was --> exceptions.ValueError: The destination

(/rawdata (Table(10L,)) ’Readout example’) already exists.
Assert the overwrite parameter if you really want to overwrite it.

The destination file looks like:
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 15:52:22 2004’;

rootUEP=’/’; filters=Filters(), Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

Traceback (most recent call last):
File "../utils/ptrepack", line 358, in ?

start=start, stop=stop, step=step)
File "../utils/ptrepack", line 111, in copyLeaf

98 Appendix B. Utilities

raise RuntimeError, "Please, check that the node names are not
duplicated in destination, and if so, add the --overwrite-nodes flag
if desired."

RuntimeError: Please, check that the node names are not duplicated in
destination, and if so, add the --overwrite-nodes flag if desired.

ooops!. We ran into problems: we forgot that/rawdata pathname already existed in destination file. Let’s
add the--overwrite-nodes , as the verbose error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutorial1.h5:/detector/readout
reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 16:02:20 2004’;

rootUEP=’/’; filters=Filters(), Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,), shuffle, zlib(1)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

you can check how the filter properties has been changed for the/rawdata table. Check as the other nodes
still exists.

Finally, let’s copy aslice of the readout table in origin to destination, under a new group called
/slices and with the name, for example,aslice :

$ ptrepack -R1,8,3 tutorial1.h5:/detector/readout reduced.h5:/slices/aslice
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 16:17:13 2004’;

rootUEP=’/’; filters=Filters(); Format version: 1.2
/ (Group) ’’
/rawdata (Table(10L,), shuffle, zlib(1)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/slices (Group) ’’
/slices/aslice (Table(3L,)) ’Readout example’

note how only 3 rows of the originalreadout table has been copied to the newaslice destination. Note
as well how the previously inexistentslices group has been created in the same operation.

B.3 nctoh5

This tool is able to convert a file inNetCDF format to aPyTables file (and hence, to a HDF5 file).
However, for this to work, you will need the NetCDF interface for Python that comes with the excellent
Scientific Python (see Hinsen) package. This script was initially contributed by Jeff Whitaker. It has
been updated to support selectable filters from the command line and some other small improvements.

If you want other file formats to be converted toPyTables , have a look at theSciPy (see Joneset al.)
project (subpackageio), and look for different methods to import them intoNumeric/numarray objects.
Following theSciPy documentation, you can read, among other formats, ASCII files (read_array), binary
files in C or Fortran (fopen) andMATLAB(version 4 or 5) files (loadmat). Once you have the content of
your files asNumeric/numarray objects, you can save them as regular(E)Arrays in PyTables files.
Remember, if you end with a nice conversor, do not forget to contribute it back to the community. Thanks!.

http://www.unidata.ucar.edu/packages/netcdf/

B.3. nctoh5 99

B.3.1 Usage

For instructions on how to use it, just pass the-h flag to the command:

$ nctoh5 -h

to see the message usage:

usage: nctoh5 [-h] [-v] [-o] [--complevel=(0-9)] [--complib=lib]
[--shuffle=(0|1)] [--fletcher32=(0|1)] [--unpackshort=(0|1)]
[--quantize=(0|1)] netcdffilename hdf5filename
-h -- Print usage message.
-v -- Show more information.
-o -- Overwite destination file.
--complevel=(0-9) -- Set a compression level (0 for no compression, which

is the default).
--complib=lib -- Set the compression library to be used during the copy.

lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".
--shuffle=(0|1) -- Activate or not the shuffling filter (default is active

if complevel>0).
--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not

active by default).
--unpackshort=(0|1) -- unpack short integer variables to float variables

using scale_factor and add_offset netCDF variable attributes
(not active by default).

--quantize=(0|1) -- quantize data to improve compression using
least_significant_digit netCDF variable attribute (not active by default).
See http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
for further explanation of what this attribute means.

If you have followed the small tutorial on theptrepack utility (see B.2), you should easily realize what
most of the different flags would mean.

101

Appendix C

PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However,
there are situations were you may want to create truly nativePyTables files with those tools while retaining
fully compatibility with PyTables format. That is perfectly possible, and in this appendix is presented the
format that you should endow to your own-generated files in order to get a fullyPyTables compatible file.

We are going to describe the1.3 version ofPyTables file format (introduced inPyTables version
0.9). At this stage, this file format is considered stable enough to do not introduce significant changes during
a reasonable amount of time. As time goes by, some changes will be introduced (and documented here) in
order to cope with new necessities. However, the changes will be carefully analyzed so as to ensure backward
compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups (Groups in PyTables
naming scheme) and datasets (Leaves in PyTables naming scheme). For groups, the only requirements
are that they must have somesystem attributesavailable. By convention, system attributes inPyTables are
written in upper case, and user attributes in lower case but this is not enforced by the software. In the case of
datasets, besides the mandatory system attributes, some conditions are further needed in their storage layout,
as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to create aPyTables file, provided that the filter is a
standard one in HDF5, likezlib, shuffleor szip(although the last one can not be used from withinPyTables
to create a new file, datasets compressed with szip can be read, because it is the HDF5 library which do the
decompression transparently).

C.1 Mandatory attributes for a File

The File object is, in fact, an special HDF5group structure that isroot for the rest of the objects on the
object tree. The next attributes are mandatory for the HDF5root groupstructure inPyTables files:

CLASS This attribute should always be set to’GROUP’ for group structures.

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to
the ’1.3’ string.

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string’1.0’ .

C.2 Mandatory attributes for a Group

The next attributes are mandatory forgroupstructures:

CLASS This attribute should always be set to’GROUP’ for group structures.

102 Appendix C.PyTables File Format

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string’1.0’ .

There exists a specialGroup , called theroot, that, in addition to the attributes listed above, it requires the
next one:

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to
the ’1.3’ string.

C.3 Mandatory attributes, storage layout and supported data types
for Leaves

This depends on the kind ofLeaf . The format for each type follows.

C.3.1 Table format

Mandatory attributes

The next attributes are mandatory fortablestructures:

CLASS Must be set to’TABLE’ .

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’2.3’ .

FIELD_X_NAME It contains the names of the different fields. TheX means the number of the field (beware,
order do matter). You should add as many attributes of this kind as fields you have in your records.

NROWS This should contain the number ofcompounddata type entries in the dataset. It must be anint data
type.

Storage Layout

A Table has adataspacewith a1-dimensional chunkedlayout.

Datatypes supported

The datatype of the elements (rows) ofTable must be the H5T_COMPOUNDcompounddata type, and each
of these compound components must be built with only the next HDF5 data typesclasses:

H5T_BITFIELD This class is used to represent theBool type. Such a type must be build using a
H5T_NATIVE_B8 datatype, followed by a HDF5H5Tset_precision call to set its precision to
be just 1 bit.

H5T_INTEGER This includes the next data types:

H5T_NATIVE_SCHAR This represents asigned charC type, but it is effectively used to represent
an Int8 type.

H5T_NATIVE_UCHAR This represents anunsigned charC type, but it is effectively used to repre-
sent anUInt8 type.

H5T_NATIVE_SHORT This represents ashort C type, and it is effectively used to represent an
Int16 type.

H5T_NATIVE_USHORT This represents anunsigned shortC type, and it is effectively used to rep-
resent anUInt16 type.

C.3. Mandatory attributes, storage layout and supported data types forLeaves 103

H5T_NATIVE_INT This represents anint C type, and it is effectively used to represent anInt32
type.

H5T_NATIVE_UINT This represents anunsigned intC type, and it is effectively used to represent
anUInt32 type.

H5T_NATIVE_LONG This represents alongC type, and it is effectively used to represent anInt32
or anInt64 , depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_ULONG This represents anunsigned longC type, and it is effectively used to repre-
sent anUInt32 or anUInt64 , depending on whether you are running a 32-bit or 64-bit archi-
tecture.

H5T_NATIVE_LLONG This represents along longC type (__int64 , if you are using a Windows
system) and it is effectively used to represent anInt64 type.

H5T_NATIVE_ULLONG This represents anunsigned long longC type (beware: this type does not
have a correspondence on Windows systems) and it is effectively used to represent anUInt64
type.

H5T_FLOAT This includes the next datatypes:

H5T_NATIVE_FLOAT This represents afloat C type and it is effectively used to represent an
Float32 type.

H5T_NATIVE_DOUBLE This represents adoubleC type and it is effectively used to represent an
Float64 type.

H5T_TIME This includes the next datatypes:

H5T_UNIX_D32BE This represents a POSIXtime_tC type and it is effectively used to represent a
’Time32’ aliasing type, which corresponds to anInt32 type.

H5T_UNIX_D64BE This represents a POSIXstruct timevalC type and it is effectively used to repre-
sent a’Time64’ aliasing type, which corresponds to aFloat64 type.

H5T_STRING The datatype used to describe strings in PyTables is H5T_C_S1 (i.e. astringC type) followed
with a call to the HDF5H5Tset_size() function to set their length.

H5T_ARRAY This allows the construction of homogeneous, multi-dimensional arrays, so that you can in-
clude such objects in compound records. The types supported as elements of H5T_ARRAY data types
are the ones described above. Currently,PyTables does not support nested H5T_ARRAY types.

H5T_COMPOUND This allows the support of complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the H5T_FLOAT
atomic datatype class. The name of the first member should be "r" and represents the real part. The
name of the second member should be "i" and represents the imaginary part. Theprecisionproperty of
both of the H5T_FLOAT members must be either 32 significant bits (e.g. H5T_NATIVE_FLOAT) or
64 significant bits (e.g. H5T_NATIVE_DOUBLE). They represent Complex32 and Complex64 types
respectively.

Currently,PyTables does not support nested H5T_COMPOUND types, the only exception being sup-
porting complex numbers inTable objects as described above.

C.3.2 Array format

Mandatory attributes

The next attributes are mandatory forarray structures:

CLASS Must be set to’ARRAY’ .

104 Appendix C.PyTables File Format

FLAVOR This is meant to provide the information about the kind of object kept in theArray , i.e. when the
dataset is read, it will be converted to the indicated flavor. It can take one the next string values:

"NumArray" The dataset will be returned as aNumArray object (from thenumarray package).

"CharArray" The dataset will be returned as aCharArray object (from thenumarray package).

"Numeric" The dataset will be returned as anarray object (from theNumeric package).

"List" The dataset will be returned as a PythonList object.

"Tuple" The dataset will be returned as a PythonTuple object.

"Int" The dataset will be returned as a PythonInt object. This is meant mainly for scalar (i.e. without
dimensions) integer values.

"Float" The dataset will be returned as a PythonFloat object. This is meant mainly for scalar (i.e.
without dimensions) floating point values.

"String" The dataset will be returned as a PythonString object. This is meant mainly for scalar (i.e.
without dimensions) string values.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’2.2’ .

Storage Layout

An Array has adataspacewith a N-dimensional contiguouslayout (if you prefer achunkedlayout see
EArray below).

Datatypes supported

The elements ofArray must have either HDF5atomic data types or acompounddata type represent-
ing a complex number. The atomic data types can currently be one of the next HDF5 data typeclasses:
H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported
for reading existingArray objects, but not for creating them. See theTable format description in sec-
tion C.3.1 for more info about these types.

In addition to the HDF5 atomic data types, the Array format supports complex numbers with the
H5T_COMPOUND data type class. See theTable format description in section C.3.1 for more info about
this special type.

You should note that H5T_ARRAY class datatypes are not allowed inArray objects.

C.3.3 EArray format

Mandatory attributes

The next attributes are mandatory forearraystructures:

CLASS Must be set to’EARRAY’ .

EXTDIM (Integer) Must be set to the extensible dimension. Only one extensible dimension is supported
right now.

FLAVOR This is meant to provide the information about the kind of objects kept in theEArray , i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take the same values as theArray
object (see C.3.2), except"Int" and"Float" .

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’1.2’ .

C.3. Mandatory attributes, storage layout and supported data types forLeaves 105

Storage Layout

An EArray has adataspacewith aN-dimensional chunkedlayout.

Datatypes supported

The elements ofEArray are allowed to have the same data types as for the elements in the Array format.
They can be one of the HDF5atomicdata typeclasses: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT,
H5T_TIME or H5T_STRING, see theTable format description in section C.3.1 for more info about these
types. They can also be a H5T_COMPOUND datatype representing a complex number, see theTable format
description in section C.3.1.

You should note that H5T_ARRAY class data types are not allowed inEArray objects.

C.3.4 VLArray format

Mandatory attributes

The next attributes are mandatory forvlarray structures:

CLASS Must be set to’VLARRAY’ .

FLAVOR This is meant to provide the information about the kind of objects kept in theVLArray , i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take one of the next values:

"NumArray" The elements in dataset will be returned asNumArray objects (from thenumarray
package).

"CharArray" The elements in dataset will be returned asCharArray objects (from thenumarray
package).

"String" The elements in the dataset will be returned as PythonString objects offixed length (and
not asCharArrays).

"Numeric" The elements in the dataset will be returned asarray objects (from theNumeric pack-
age).

"List" The elements in the dataset will be returned as PythonList objects.

"Tuple" The elements in the dataset will be returned as PythonTuple objects.

"Object" The elements in the dataset will be interpreted as pickled (i.e. serialized objects through the
use of thePickle Python module) objects and returned as Pythongenericobjects. Only one of
such objects will be supported per entry. As thePickle module is not normally available in other
languages, this flavor won’t be useful in general.

"VLString" The elements in the dataset will be returned as PythonString objects ofanylength, with
the twist thatUnicode strings are supported as well (provided you use theUTF-8 codification,
see below). However, only one of such objects will be supported per entry.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string’1.1’ .

Storage Layout

An VLArray has adataspacewith a1-dimensional chunkedlayout.

106 Appendix C.PyTables File Format

Data types supported

The data type of the elements (rows) ofVLArray objects must be the H5T_VLENvariable-length(or VL
for short) datatype, and the base datatype specified for the VL datatype can be of anyatomicHDF5 datatype
that is listed in theTable format description section C.3.1. That includes the classes:

• H5T_BITFIELD

• H5T_INTEGER

• H5T_FLOAT

• H5T_TIME

• H5T_STRING

• H5T_ARRAY

They can also be a H5T_COMPOUND data type representing a complex number, see theTable format
description in section C.3.1 for a detailed description.

You should note that this does not include another VL datatype, or a compound datatype that does not
fit the description of a complex number. Note as well that, forObject andVLString special flavors, the
base for the VL datatype is always a H5T_NATIVE_UCHAR. That means that the complete row entry in the
dataset has to be used in order to fully serialize the object or the variable length string.

In addition, if you plan to use aVLString flavor for your text data and you are using ascii-7 (7 bits
ASCII) codification for your strings, but you don’t know (or just don’t want) to convert it to the required
UTF-8 codification, you should not worry too much about that because the ASCII characters with values in
the range [0x00, 0x7f] are directly mapped to Unicode characters in the range [U+0000, U+007F] and the
UTF-8 encoding has the useful property that an UTF-8 encoded ascii-7 string is indistinguishable from a
traditional ascii-7 string. So, you will not need any further conversion in order to save your ascii-7 strings and
have anVLString flavor.

107

Bibliography

ASCHER, David, Paul F. DUBOIS, Konrad HINSEN, Jim HUGUNIN, and Travis OLIPHANT, : Numerical
Python. Package to speed-up arithmetic operations on arrays of numbers.
URL http://www.pfdubois.com/numpy/ 2, 7, 91

EWING, Greg, :Pyrex. A Language for Writing Python Extension Modules.
URL http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex 7

GAILLY , JeanLoup and Mark ADLER, : zlib. A Massively Spiffy Yet Delicately Unobtrusive Compression
Library. A standard library for compression purposes.
URL http://www.gzip.org/zlib/ 7, 85

GREENFIELD, Perry, Todd MILLER, Richard L. WHITE, et al., : Numarray. Reimplementation of Numeric
which adds the ability to efficiently manipulate large numeric arrays in ways similar to Matlab and IDL.
Among others, Numarray provides the record array extension.
URL http://stsdas.stsci.edu/numarray/ 2, 7, 60, 91

HINSEN, Konrad, :Scientific Python. Collection of Python modules useful for scientific computing.
URL http://starship.python.net/~hinsen/ScientificPython/ 98

JONES, Eric, Travis OLIPHANT, Pearu PETERSON, et al., : SciPy. Scientific tools for Python. SciPy sup-
plements the popular Numeric module, gathering a variety of high level science and engineering modules
together as a single package.
URL http://www.scipy.org 98

MERTZ, David, : Objectify. On the ’Pythonic’ treatment of XML documents as objects(II). Article describing
XML Objectify, a Python module that allows working with XML documents as Python objects. Some of
the ideas presented here are used in PyTables.
URL http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.
html 3

NCSA, : What is HDF5? Concise description about HDF5 capabilities and its differences from earlier
versions (HDF4).
URL http://hdf.ncsa.uiuc.edu/whatishdf5.html 1, 75

OBERHUMER, Markus F.X.J., :LZO and UCL. A couple of portable lossless data compression libraries.
They offer pretty fast compression and extremly fast decompression.
URL http://www.oberhumer.com/opensource/ 7, 85

RIGO, Armin, : Psyco. A Python specializing compiler.Run existing Python software faster, with no change
in your source.
URL http://psyco.sourceforge.net 88

SEWARD, Julian, : bzip2. A high performance lossless compressor. It offers very high compression ratios
within reasonable times.
URL http://sources.redhat.com/bzip2/ 7

http://www.pfdubois.com/numpy/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.gzip.org/zlib/
http://stsdas.stsci.edu/numarray/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://hdf.ncsa.uiuc.edu/whatishdf5.html
http://www.oberhumer.com/opensource/
http://psyco.sourceforge.net
http://sources.redhat.com/bzip2/

	Introduction
	Main Features
	The Object Tree

	Installation
	Installation from source
	Prerequisites
	PyTables package installation

	Binary installation (Windows)
	Windows prerequisites
	PyTables package installation

	Tutorials
	Getting started
	Importing tables objects
	Declaring a Column Descriptor
	Creating a PyTables file from scratch
	Creating a new group
	Creating a new table
	Reading (and selecting) data in a table
	Creating new array objects
	Closing the file and looking at its content

	Browsing the object tree and appending to tables
	Traversing the object tree
	Setting and getting user attributes
	Getting object metadata
	Reading data from Array objects
	Appending data to an existing table
	And finally... how to delete rows from a table

	Multidimensional table cells and automatic sanity checks
	Shape checking
	Field name checking
	Data type checking

	Exercising the Undo/Redo feature
	A basic example
	A more complete example

	Other examples in PyTables distribution

	Library Reference
	tables variables and functions
	Global variables
	Global functions

	The File class
	File instance variables
	File methods
	File special methods

	The Node class
	Node instance variables
	Node methods

	The Group class
	Group instance variables
	Group methods
	Group special methods

	The Leaf class
	Leaf instance variables
	Leaf methods

	The Table class
	Table instance variables
	Table methods
	Table special methods
	The Row class
	The Cols class

	The Column class
	Column instance variables
	Column methods
	Column special methods

	The Array class
	Array instance variables
	Array methods
	Array special methods

	The EArray class
	EArray instance variables
	EArray methods

	The VLArray class
	VLArray instance variables
	VLArray methods
	VLArray special methods

	The UnImplemented class
	The AttributeSet class
	AttributeSet instance variables
	AttributeSet methods

	Declarative classes
	The IsDescription class
	The Col class and its descendants
	The Atom class and its descendants.

	Helper classes
	The Filters class
	The IndexProps class
	The Index class

	FileNode
	What is FileNode?
	Current limitations
	Finding a FileNode node
	Using FileNode
	Creating a new file node
	Using a file node
	Opening an existing file node
	Adding metadata to a file node

	Complementary notes
	FileNode module reference
	Global constants
	Global functions
	The FileNode abstract class
	The ROFileNode class
	The RAFileNode class

	Optimization tips
	Informing PyTables about expected number of rows in tables
	Accelerating your searches
	In-kernel searches
	Indexed searches

	Compression issues
	Shuffling (or how to make the compression process more effective)
	Taking advantage of Psyco
	Selecting an User Entry Point (UEP) in your tree
	Compacting your PyTables files

	Supported data types in PyTables
	Utilities
	ptdump
	Usage
	A small tutorial on ptdump

	ptrepack
	Usage
	A small tutorial on ptrepack

	nctoh5
	Usage

	PyTables File Format
	Mandatory attributes for a File
	Mandatory attributes for a Group
	Mandatory attributes, storage layout and supported data types for Leaves
	Table format
	Array format
	EArray format
	VLArray format

