
SWI-Prolog HTTP support

Jan Wielemaker
HCS,

University of Amsterdam
The Netherlands

E-mail: wielemak@science.uva.nl

June 30, 2006

Abstract

This article documents the package HTTP, a series of libraries for accessing data on HTTP
servers as well as providing HTTP server capabilities from SWI-Prolog. Both server and client
are modular libraries. The server can be operated from the Unix inetd super-daemon as well as
as a stand-alone server that runs on all platforms supported by SWI-Prolog.

1

Contents

1 Introduction 3

2 The HTTP client libraries 3
2.1 The http/http open library . 3
2.2 The http/http client library . 4

2.2.1 The MIME client plug-in . 7
2.2.2 The SGML client plug-in . 7

3 The HTTP server libraries 7
3.1 The ‘Body’ . 8

3.1.1 Returning special status codes . 9
3.2 Session management . 9
3.3 Get parameters from HTML forms . 10
3.4 Request format . 11

3.4.1 Handling POST requests . 13
3.5 Running the server . 13

3.5.1 Common server interface options . 14
3.5.2 From an interactive Prolog session using XPCE 15
3.5.3 Multi-threaded Prolog . 15
3.5.4 From (Unix) inetd . 17
3.5.5 MS-Windows . 18
3.5.6 As CGI script . 18

3.6 The wrapper library . 18
3.7 Debugging Servers . 19
3.8 Handling HTTP headers . 19
3.9 The http/html write library . 20

3.9.1 Emitting HTML documents . 22
3.9.2 Adding rules for html/1 . 22
3.9.3 Generating layout . 23
3.9.4 Examples . 23
3.9.5 Remarks on the http/html write library 24

4 Security 25

5 Status 26

2

1 Introduction

The HTTP (HyperText Transfer Protocol) is the W3C standard protocol for transferring information
between a web-client (browser) and a web-server. The protocol is a simple envelope protocol where
standard name/value pairs in the header are used to split the stream into messages and communicate
about the connection-status. Many languages have client and or server libraries to deal with the HTTP
protocol, making it a suitable candidate for general purpose client-server applications. It is the basis
of popular agent protocols such as SOAP and FIPA.

In this document we describe a modular infra-structure to access web-servers from SWI-Prolog
and turn Prolog into a web-server. The server code is designed to allow the same ‘body’ to be used
from an interactive server for debugging or providing services from otherwise interactive applications,
run the body from an inetd super-server or as a CGI script behind a generic web-server.

The design of this module is different from the competing XPCE-based HTTP server located in
http/httpd.pl, which intensively uses XPCE functionality to reach its goals. Using XPCE is
not very suitable for CGI or inetd-driven servers due to required X11 connection and much larger
footprint.

Acknowledgements

This work has been carried out under the following projects: GARP, MIA, IBROW and KITS. The
following people have pioneered parts of this library and contributed with bug-report and suggestions
for improvements: Anjo Anjewierden, Bert Bredeweg, Wouter Jansweijer and Bob Wielinga.

2 The HTTP client libraries

This package provides two packages for building HTTP clients. The first, http/http open is a
very lightweight library for opening a HTTP URL address as a Prolog stream. It can only deal with
the HTTP GET protocol. The second, http/http client is a more advanced library dealing with
keep-alive, chunked transfer and a plug-in mechanism providing conversions based on the MIME
content-type.

2.1 The http/http open library

The library http/http open provides a very simple mechanism to read data from an HTTP server
using the HTTP 1.0 protocol and HTTP GET access method. It defines one predicate:

http open(+URL, -Stream, +Options)
Open the data at the HTTP server as a Prolog stream. After this predicate succeeds the data
can be read from Stream. After completion this stream must be closed using the built-in Prolog
predicate close/1. Options provides additional options:

timeout(+Timeout)
If provided, set a timeout on the stream using set stream/2. With this option if no
new data arrives within Timeout seconds the stream raises an exception. Default is to wait
forever (infinite).

header(+Name, -AtomValue)
If provided, AtomValue is unified with the value of the indicated field in the reply header.

3

Name is matched case-insensitive and the underscore () matches the hyphen (-). Multiple
of these options may be provided to extract multiple header fields. If the header is not
available AtomValue is unified to the empty atom (”).

size(-Size)
If provided Size is unified with the value of the Content-Length fields of the reply-
header.

proxy(+Host, +Port)
Use an HTTP proxy to connect to the outside world.

user agent(+Agent)
Defines the value of the User-Agent field of the HTTP header. Default is
SWI-Prolog (http://www.swi-prolog.org).

request header(+Name = +Value)
Additional name-value parts are added in the order of appearance to the HTTP request
header. No interpretation is done.

Here is a simple example:

?- http_open(’http://www.swi-prolog.org/news.html’, In, []),
copy_stream_data(In, user_output),
close(In).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>
<HEAD>
<TITLE>News</TITLE>
</HEAD>
...

2.2 The http/http client library

The http/http client library provides more powerful access to reading HTTP resources, pro-
viding keep-alive connections, chunked transfer and conversion of the content, such as breaking down
multipart data, parsing HTML, etc. The library announces itself as providing HTTP/1.1.

http get(+URL, -Reply, +Options)
Performs a HTTP GET request on the given URL and then reads the reply using
http read data/3. Defined options are:

connection(ConnectionType)
If close (default) a new connection is created for this request and closed after the request
has completed. If ’Keep-Alive’ the library checks for an open connection on the
requested host and port and re-uses this connection. The connection is left open if the
other party confirms the keep-alive and closed otherwise.

http version(Major-Minor)
Indicate the HTTP protocol version used for the connection. Default is 1.1.

4

proxy(+Host, +Port)
Use an HTTP proxy to connect to the outside world.

user agent(+Agent)
Defines the value of the User-Agent field of the HTTP header. Default is
SWI-Prolog (http://www.swi-prolog.org).

request header(Name = Value)
Add a line ”Name: Value” to the HTTP request header. Both name and value are added
uninspected and literally to the request header. This may be used to specify accept en-
codings, languages, etc. Please check the RFC2616 (HTTP) document for available fields
and their meaning.

reply header(Header)
Unify Header with a list of Name=Value pairs expressing all header fields of the reply.
See http read request/2 for the result format.

Remaining options are passed to http read data/3.

http post(+URL, +In, -Reply, +Options)
Performs a HTTP POST request on the given URL. It is equivalent to http get/3, except for
providing an input document, which is posted using http post data/3.

http read data(+Header, -Data, +Options)
Read data from an HTTP stream. Normally called from http get/3 or http post/4.
When dealing with HTTP POST in a server this predicate can be used to retrieve the posted
data. Header is the parsed header. Options is a list of Name(Value) pairs to guide the translation
of the data. The following options are supported:

to(Target)
Do not try to interpret the data according to the MIME-type, but return it literally accord-
ing to Target, which is one of:

stream(Output)
Append the data to the given stream, which must be a Prolog stream open for writing.
This can be used to save the data in a (memory-)file, XPCE object, forward it to
process using a pipe, etc.

atom
Return the result as an atom. Though SWI-Prolog has no limit on the size of atoms
and provides atom-garbage collection, this options should be used with care.1

codes
Return the page as a list of character-codes. This is especially useful for parsing it
using grammar rules.

content type(Type)
Overrule the Content-Type as provided by the HTTP reply header. Intented as a work-
around for badly configured servers.

If no to(Target) option is provided the library tries the registered plug-in conversion filters.
If none of these succeed it tries the built-in content-type handlers or returns the content as an

1Currently atom-garbage collection is activated after the creation of 10,000 atoms.

5

atom. The builtin content filters are described below. The provided plug-ins are described in
the following sections.

application/x-www-form-urlencoded
This is the default encoding mechanism for POST requests issued by a web-browser. It is
broken down to a list of Name = Value terms.

Finally, if all else fails the content is returned as an atom.

http post data(+Data, +Stream, +ExtraHeader)
Write an HTTP POST request to Stream using data from Data and passing the additional extra
headers from ExtraHeader. Data is one of:

html(+HTMLTokens)
Send an HTML token string as produced by the library html write described in section
section 3.9.

file(+File)
Send the contents of File. The MIME type is derived from the filename extension using
file mime type/2.

file(+Type, +File)
Send the contents of File using the provided MIME type, i.e. claiming the
Content-type equals Type.

cgi stream(+Stream, +Len)
Read the input from Stream which, like CGI data starts with a partial HTTP header. The
fields of this header are merged with the provided ExtraHeader fields. The first Len char-
acters of Stream are used.

form(+ListOfParameter)
Send data of the MIME type application/x-www-form-urlencoded as pro-
duced by browsers issuing a POST request from an HTML form. ListOfParameter is
a list of Name=Value or Name(Value).

form data(+ListOfData)
Send data of the MIME type multipart/form-data as produced by browsers issuing
a POST request from an HTML form using enctype multipart/form-data. This
is a somewhat simplified MIME multipart/mixed encoding used by browser forms
including file input fields. ListOfData is the same as for the List alternative described
below. Below is an example from the SWI-Prolog Sesame interface. Repository, etc. are
atoms providing the value, while the last argument provides a value from a file.

...,
http_post([protocol(http),

host(Host),
port(Port),
path(ActionPath)

],
form_data([repository = Repository,

dataFormat = DataFormat,

6

baseURI = BaseURI,
verifyData = Verify,
data = file(File)

]),
_Reply,
[]),

...,

List
If the argument is a plain list, it is sent using the MIME type multipart/mixed and
packed using mime pack/3. See mime pack/3 for details on the argument format.

2.2.1 The MIME client plug-in

This plug-in library http/http mime plugin breaks multipart documents that are recognised
by the Content-Type: multipart/form-data or Mime-Version: 1.0 in the header
into a list of Name = Value pairs. This library deals with data from web-forms using the
multipart/form-data encoding as well as the FIPA agent-protocol messages.

2.2.2 The SGML client plug-in

This plug-in library http/http sgml plugin provides a bridge between the
SGML/XML/HTML parser provided by sgml and the http client library. After loading this
hook the following mime-types are automatically handled by the SGML parser.

text/html
Handed to sgml using W3C HTML 4.0 DTD, suppressing and ignoring all HTML syntax
errors. Options is passed to load structure/3.

text/xml
Handed to sgml using dialect xmlns (XML + namespaces). Options is passed to
load structure/3. In particular, dialect(xml) may be used to suppress namespace han-
dling.

text/x-sgml
Handled to sgml using dialect sgml. Options is passed to load structure/3.

3 The HTTP server libraries

The HTTP server library consists of two parts. The first deals with connection management and has
three different implementation depending on the desired type of server. The second implements a
generic wrapper for decoding the HTTP request, calling user code to handle the request and encode
the answer. This design is summarised in figure 1.

The functional body of the user’s code is independent from the selected server-type, making it
easy to switch between the supported server types. Especially the XPCE-based event-driven server is
comfortable for debugging but less suitable for production servers. We start the description with how
the user must formulate the functionality of the server.

7

thread_httpd.pl

xpce_httpd.pl

inetd_httpd.pl

http_wrapper.pl Body.pl

Unix inetd based servers

XPCE event-driven servers

Multi-threaded severs

User’s application codeHTTP protocolSelect server-type

Figure 1: Design of the HTTP server

3.1 The ‘Body’

The server-body is the code that handles the request and formulates a reply. To facilitate all mentioned
setups, the body is driven by http wrapper/5. The goal is called with the parsed request (see
section 3.4) as argument and current output set to a temporary buffer. Its task is closely related
to the task of a CGI script; it must write a header declaring holding at least the Content-type field
and a body. Here is a simple body writing the request as an HTML table.

reply(Request) :-
format(’Content-type: text/html˜n˜n’, []),
format(’<html>˜n’, []),
format(’<table border=1>˜n’),
print_request(Request),
format(’˜n</table>˜n’),
format(’</html>˜n’, []).

print_request([]).
print_request([H|T]) :-

H =.. [Name, Value],
format(’<tr><td>˜w<td>˜w˜n’, [Name, Value]),
print_request(T).

8

3.1.1 Returning special status codes

Besides returning a page by writing it to the current output stream, the server goal can raise an ex-
ception using throw/1 to generate special pages such as not found, moved, etc. The defined
exceptions are:

http reply(+Reply, +HdrExtra)
Return a result page using http reply/3. See http reply/3 for details.

http reply(+Reply)
Equivalent to http reply(Reply, []).

http(not modified)
Equivalent to http reply(not modified, []). This exception is for backward compatibility
and can be used by the server to indicate the referenced resource has not been modified since it
was requested last time.

3.2 Session management

The library http/http session.pl provides cookie-based session management. The library
installes a session-id cookie using the hook http:request expansion/2. It allows querying the session
and provides a simple assert/retract based store to store information related to a session. Note that
session management only works with the threaded and XPCE based server frameworks as the inetd
based server starts a server for each request.

The examples contain the file calc.pl, which realises a simple calculator with internal state.

http set session options(+Options)
Set options for the session manager. Defined options are:

timeout(+Seconds)
Max idle time of a session. Session cookies are deleted if no request is received within the
specified time. The value ‘0’ disables timeout handling.

cookie(+Atom)
Name of the cookie to use for session management. The default is swipl session.

path(+Atom)
Path with which to associate the session management. Default is /, associating it with the
entire server.

http session id(-Id)
Returns an identifier for the current session. The identifier is an atom.

http current session(?Id, ?Data)
Enumerate sessions and associated data. All sessions have the Data item idle(Seconds), de-
scribing the current idle-time of the session. Other data elements are added by the user using
http session assert/1 and friends.

http session asserta(+Term)
Associate Term with the current session, before any other associated term.

9

http session assert(+Term)
Associate Term with the current session, after any other associated term.

http session retract(?Term)
Non-deterministically retract terms associated with the current session.

http session retractall(+Term)
Retract all matching terms from associated with the current session.

http session data(?Term)
Enumerate all associated terms that unify with Term.

3.3 Get parameters from HTML forms

The library http/http parameters provides two predicates to fetch HTTP request parameters
as a type-checked list easily. The library transparently handles both GET and POST requests. It builds
on top of the low-level request representation described in section 3.4.

http parameters(+Request, ?Parameters)
The predicate is passes the Request as provided to the handler goal by http wrapper/5 as
well as a partially instantiated lists describing the requested parameters and their types. Each
parameter specification in Parameters is a term of the format Name(-Value, +Options). Options
is a list of option terms describing the type, default, etc. If no options are specified the parameter
must be present and its value is returned in Value as an atom. If a parameter is missing the
exception error(existence error(form data, Name),) is thrown. Defined options are:

default(Default)
If the named parameter is missing, Value is unified to Default.

optional(true)
If the named parameter is missing, Value is left unbound and no error is generated.

zero or more
The same parameter may not appear or appear multiple times. If this option is present,
default and optional are ignored and the value is returned as a list. Type checking
options are processed on each value.

oneof(List)
Succeeds if the value is member of the given list.

length > N
Succeeds if value is an atom of more than N characters.

length >= N
Succeeds if value is an atom of more or than equal to N characters.

length < N
Succeeds if value is an atom of less than N characters.

length =< N
Succeeds if value is an atom of length than or equal to N characters.

number
Convert value to a number. Throws a type-error otherwise.

10

integer
Convert value to an integer. Throws a type-error otherwise.

float
Convert value to a float. Integers are tranformed into fload. Throws a type-error otherwise.

Below is an example

reply(Request) :-
http_parameters(Request,

[title(Title, [optional(true)]),
name(Name, [length >= 2]),
age(Age, [integer])

]),
...

Same as http parameters(Request, Parameters, [])

http parameters(+Request, ?Parameters, +Options)
In addition to http parameters/2, the following options are defined.

form data(-Data)
Return the entire set of provided Name=Value pairs from the GET or POST request. All
values are returned as atoms.

attribute declarations(:Goal)
If a parameter specification lacks the parameter options, call call(Goal, +Param-
Name, -Options) to find the options. Intended to share declarations over many calls to
http parameters/3. Using this construct the above can be written as below.

reply(Request) :-
http_parameters(Request,

[title(Title),
name(Name),
age(Age)

],
[attribute_declarations(param)
]),

...

param(title, [optional(true)]).
param(name, [length >= 2]).
param(age, [integer]).

3.4 Request format

The body-code (see section 3.1) is driven by a Request. This request is generated from
http read request/2 defined in http/http header.

11

http read request(+Stream, -Request)
Reads an HTTP request from Stream and unify Request with the parsed request. Request is a list
of Name(Value) elements. It provides a number of predefined elements for the result of parsing
the first line of the request, followed by the additional request parameters. The predefined fields
are:

host(Host)
If the request contains Host: Host, Host is unified with the host-name. If Host is of the
format 〈host〉:〈port〉 Host only describes 〈host〉 and a field port(Port) where Port is an
integer is added.

input(Stream)
The Stream is passed along, allowing to read more data or requests from the same stream.
This field is always present.

method(Method)
Method is one of get, put or post. This field is present if the header has been parsed
successfully.

path(Path)
Path associated to the request. This field is always present.

peer(Peer)
Peer is a term ip(A,B,C,D) containing the IP address of the contacting host.

port(Port)
Port requested. See host for details.

search(ListOfNameValue)
Search-specification of URI. This is the part after the ?, normally used to transfer data
from HTML forms that use the ‘GET’ protocol. In the URL it consists of a www-form-
encoded list of Name=Value pairs. This is mapped to a list of Prolog Name=Value terms
with decoded names and values. This field is only present if the location contains a search-
specification.

http version(Major-Minor)
If the first line contains the HTTP/Major.Minor version indicator this element indicate
the HTTP version of the peer. Otherwise this field is not present.

cookie(ListOfNameValue)
If the header contains a Cookie line, the value of the cookie is broken down in
Name=Value pairs, where the Name is the lowercase version of the cookie name as used
for the HTTP fields.

set cookie(set cookie(Name, Value, Options))
If the header contains a SetCookie line, the cookie field is broken down into the Name
of the cookie, the Value and a list of Name=Value pairs for additional options such as
expire, path, domain or secure.

If the first line of the request is tagged with HTTP/Major.Minor, http read request/2
reads all input upto the first blank line. This header consists of Name:Value fields. Each such
field appears as a term Name(Value) in the Request, where Name is canonised for use with
Prolog. Canonisation implies that the Name is converted to lower case and all occurrences
of the - are replaced by . The value for the Content-length fields is translated into an
integer.

12

Here is an example:

?- http_read_request(user, X).
|: GET /mydb?class=person HTTP/1.0
|: Host: gollem
|:
X = [input(user),

method(get),
search([class = person

]),
path(’/mydb’),
http_version(1-0),
host(gollem)

].

3.4.1 Handling POST requests

Where the HTTP GET operation is intended to get a document, using a path and possibly some
additional search information, the POST operation is intended to hand potentially large amounts of
data to the server for processing.

The Request parameter above contains the term method(post). The data posted is left on the
input stream that is available through the term input(Stream) from the Request header. This data
can be read using http read data/3 from the HTTP client library. Here is a demo implementation
simply returning the parsed pasted data as plain http://db.cwi.nl/projecten/project.php4?prjnr=129text
(assuming pp/1 pretty-prints the data).

reply(Request) :-
member(method(post), Request), !,
http_read_data(Request, Data, []),
format(’Content-type: text/plain˜n˜n’, []),
pp(Data).

If the POST is initiated from a browser, content-type is generally either
application/x-www-form-urlencoded or multipart/form-data. The latter is
broken down automatically if the plug-in http/http mime plugin is loaded.

3.5 Running the server

The functionality of the server should be defined in one Prolog file (of course this file is allowed to
load other files). Depending on the wanted server setup this ‘body’ is wrapped into a small Prolog file
combining the body with the appropriate server interface. There are three supported server-setups:

• Using xpce httpd for an event-driven server
This approach provides a single-threaded event-driven application. The clients talk to XPCE
sockets that collect an HTTP request. The server infra-structure can talk to multiple clients
simultaneously, but once a request is complete the wrappers call the user’s goal and blocks

13

all further activity until the request is handled. Requests from multiple clients are thus fully
serialised in one Prolog process.

This server setup is very suitable for debugging as well as embedded server in simple applica-
tions in a fairly controlled environment.

• Using thread httpd for a multi-threaded server
This server exploits the multi-threaded version of SWI-Prolog, running the users body code
parallel from a pool of worker threads. As it avoids the state engine and copying required in the
event-driven server it is generally faster and capable to handle multiple requests concurrently.

This server is harder to debug due to the involved threading. It can provide fast communica-
tion to multiple clients and can be used for more demanding embedded servers, such as agent
platforms.

• Using inetd httpd for server-per-client
In this setup the Unix inetd user-daemon is used to initialise a server for each connection.
This approach is especially suitable for servers that have a limited startup-time. In this setup a
crashing client does not influence other requests.

This server is very hard to debug as the server is not connected to the user environment. It
provides a robust implementation for servers that can be started quickly.

3.5.1 Common server interface options

All the server interfaces provide http server(:Goal, +Options) to create the server. The list of
options differ, but the servers share common options:

port(?Port)
Specify the port to listen to for stand-alone servers. Port is either an integer or unbound. If
unbound, it is unified to the selected free port.

after(:Goal)
Specify a goal to be run on the query just like the first argument of http server/2. This
goal however is started after the request has been answered. It is called using call(Goal,
Request). This extension was added to support the FIPA-HTTP protocol, which issues HTTP
POST requests on the server. The server answers these requests with an empty document before
starting processing. The after-option is used for the processing:

:- http_server(reply, [after(action), ...]).

reply(Request) :-
format(’Content-type: text/plain\r\n\r\n’).

action(Request) :-
<start agent work on request>

14

3.5.2 From an interactive Prolog session using XPCE

The http/xpce httpd.pl provides the infrastructure to manage multiple clients with an event-
driven control-structure. This version can be started from an interactive Prolog session, providing a
comfortable infra-structure to debug the body of your server. It also allows the combination of an
(XPCE-based) GUI with web-technology in one application.

http server(:Goal, +Options)
Create an instance of interactive httpd. Options must provide the port(?Port) option to specify
the port the server should listen to. If Port is unbound an arbitrary free port is selected and Port
is unified to this port-number. The only other option provided is the after(:Goal) option.

The file demo_xpce gives a typical example of this wrapper, assuming demo_body defines the
predicate reply/1.

:- use_module(xpce_httpd).
:- use_module(demo_body).

server(Port) :-
http_server(reply, Port, []).

The created server opens a server socket at the selected address and waits for incoming connections.
On each accepted connection it collects input until an HTTP request is complete. Then it opens an
input stream on the collected data and using the output stream directed to the XPCE socket it calls
http wrapper/5. This approach is fundamentally different compared to the other approaches:

• Server can handle multiple connections
When inetd will start a server for each client, and CGI starts a server for each request, this
approach starts a single server handling multiple clients.

• Requests are serialised
All calls to Goal are fully serialised, processing on behalf of a new client can only start after all
previous requests are answered. This easier and quite acceptable if the server is mostly inactive
and requests take not very long to process.

• Lifetime of the server
The server lives as long as Prolog runs.

3.5.3 Multi-threaded Prolog

The http/thread httpd.pl provides the infrastructure to manage multiple clients using a pool
of worker-threads. This realises a popular server design, also seen in SUN JavaBeans and Microsoft
.NET. As a single persistent server process maintains communication to all clients startup time is not
an important issue and the server can easily maintain state-information for all clients.

In addition to the functionality provided by the other (XPCE and inetd) servers, the threaded server
can also be used to realise an HTTPS server exploiting the ssl library. See option ssl(+SSLOptions)
below.

15

http server(:Goal, +Options)
Create the server. Options must provide the port(?Port) option to specify the port the server
should listen to. If Port is unbound an arbitrary free port is selected and Port is unified to this
port-number. The server consists of a small Prolog thread accepting new connection on Port
and dispatching these to a pool of workers. Defined Options are:

port(?Port)
Port the server should listen to. If unbound Port is unified with the selected free port.

workers(+N)
Defines the number of worker threads in the pool. Default is to use two workers. Choosing
the optimal value for best performance is a difficult task depending on the number of CPUs
in your system and how much resources are required for processing a request. Too high
numbers makes your system switch too often between threads or even swap if there is not
enough memory to keep all threads in memory, while a too low number causes clients to
wait unnecessary for other clients to complete. See also http workers/2.

timeout(+SecondsOrInfinite)
Determines the maximum period of inactivity handling a request. If no data arrives within
the specified time since the last data arrived the connection raises an exception, the worker
discards the client and returns to the pool-queue for a new client. Default is infinite,
making each worker wait forever for a request to complete. Without a timeout, a worker
may wait forever on an a client that doesn’t complete its request.

keep alive timeout(+SecondsOrInfinite)
Maximum time to wait for new actity on Keep-Alive connections. Choosing the correct
value for this parameter is hard. Disabling Keep-Alive is bad for performance if the clients
request multiple documents for a single page. This may —for example– be caused by
HTML frames, HTML pages with images, associated CSS files, etc. Keeping a connection
open in the threaded model however prevents the thread servicing the client servicing other
clients. The default is 5 seconds.

local(+KBytes)
Size of the local-stack for the workers. Default is taken from the commandline option.

global(+KBytes)
Size of the global-stack for the workers. Default is taken from the commandline option.

trail(+KBytes)
Size of the trail-stack for the workers. Default is taken from the commandline option.

after(:Goal)
After replying a request, execute Goal providing the request as argument.

ssl(+SSLOptions)
Use SSL (Secure Socket Layer) rather than plan TCP/IP. A server created this way is
accessed using the https:// protocol. SSL allows for encrypted communication to
avoid others from tapping the wire as well as improved authentication of client and server.
The SSLOptions option list is passed to ssl init/3. The port option of the main option
list is forwarded to the SSL layer. See the ssl library for details.

http current server(?:Goal, ?Port)
Query the running servers. Note that http server/3 can be called multiple times to create
multiple servers on different ports.

16

http workers(:Port, ?Workers)
Query or manipulate the number of workers of the server identified by Port. If Workers is
unbound it is unified with the number of running servers. If it is an integer greater than the
current size of the worker pool new workers are created with the same specification as the
running workers. If the number is less than the current size of the worker pool, this predicate
inserts a number of ‘quit’ requests in the queue, discarding the excess workers as they finish
their jobs (i.e. no worker is abandoned while serving a client).

This can be used to tune the number of workers for performance. Another possible application
is to reduce the pool to one worker to facilitate easier debugging.

http current worker(?Port, ?ThreadID)
True if ThreadID is the identifier of a Prolog thread serving Port. This predicate is motivated to
allow for the use of arbitrary interaction with the worker thread for development and statistics.

3.5.4 From (Unix) inetd

All modern Unix systems handle a large number of the services they run through the super-server
inetd. This program reads /etc/inetd.conf and opens server-sockets on all ports defined in this
file. As a request comes in it accepts it and starts the associated server such that standard I/O refers to
the socket. This approach has several advantages:

• Simplification of servers
Servers don’t have to know about sockets and -operations.

• Centralised authorisation
Using tcpwrappers simple and effective firewalling of all services is realised.

• Automatic start and monitor
The inetd automatically starts the server ‘just-in-time’ and starts additional servers or restarts a
crashed server according to the specifications.

The very small generic script for handling inetd based connections is in inetd_httpd, defining
http server/1:

http server(:Goal, +Options)
Initialises and runs http wrapper/5 in a loop until failure or end-of-file. This server does
not support the Port option as the port is specified with the inetd configuration. The only
supported option is After.

Here is the example from demo_inetd

#!/usr/bin/pl -t main -q -f
:- use_module(demo_body).
:- use_module(inetd_httpd).

main :-
http_server(reply).

17

With the above file installed in /home/jan/plhttp/demo_inetd, the following line in /etc/
inetd enables the server at port 4001 guarded by tcpwrappers. After modifying inetd, send the
daemon the HUP signal to make it reload its configuration. For more information, please check
inetd.conf(5).

4001 stream tcp nowait nobody /usr/sbin/tcpd /home/jan/plhttp/demo_inetd

3.5.5 MS-Windows

There are rumours that inetd has been ported to Windows.

3.5.6 As CGI script

To be done.

3.6 The wrapper library

The body is called by the module http/http wrapper.pl. This module realises the commu-
nication between the I/O streams and the body described in section 3.1. The interface is realised by
http wrapper/5:

http wrapper(:Goal, +In, +Out, -Connection, +Options)
Handle an HTTP request where In is an input stream from the client, Out is an output
stream to the client and Goal defines the goal realising the body. Connection is unified to
’Keep-alive’ if both ends of the connection want to continue the connection or close if
either side wishes to close the connection.

This predicate reads an HTTP request-header from In, redirects current output to a memory file
and then runs call(Goal, Request), watching for exceptions and failure. If Goal exe-
cutes successfully it generates a complete reply from the created output. Otherwise it generates
an HTTP server error with additional context information derived from the exception.

http wrapper/5 supports the following options:

request(-Request)
Return the executed request to the caller.

peer(+Peer)
Add peer(Peer) to the request header handed to Goal. The format of Peer is defined by
tcp accept/3 from the clib package.

http:request expansion(+RequestIn, -RequestOut)
This multifile hook predicate is called just before the goal that produces the body, while the
output is already redirected to collect the reply. If it succeeds it must return a valid modified
request. It is allowed to throw exceptions as defined in section 3.1.1. It is intended for operations
such as mapping paths, deny access for certain requests or manage cookies. If it writes output,
these must be HTTP header fields that are added before header fields written by the body. The
example below is from the session management library (see section 3.2) sets a cookie.

18

...,
format(’Set-Cookie: ˜w=˜w; path=˜w˜n’, [Cookie, SessionID, Path]),
...,

http current request(-Request)
Get access to the currently executing request. Request is the same as handed to Goal of
http wrapper/5 after applying rewrite rules as defined by http:request expansion/2. Raises
an existence error if there is no request in progress.

3.7 Debugging Servers

The library http/http error.pl defines a hook that decorates uncaught exceptions with a stack-
trace. This will generate a 500 internal server error document with a stack-trace. To enable this
feature, simply load this library. Please do note that providing error information to the user simplifies
the job of a hacker trying to compromise your server. It is therefore not recommended to load this file
by default.

The example program calc.pl has the error handler loaded which can be triggered by forcing
a divide-by-zero in the calculator.

3.8 Handling HTTP headers

The library http/http header provides primitives for parsing and composing HTTP headers. Its
functionality is normally hidden by the other parts of the HTTP server and client libraries. We provide
a brief overview of http reply/3 which can be accessed from the reply body using an exception
as explain in section 3.1.1.

http reply(+Type, +Stream, +HdrExtra)
Compose a complete HTTP reply from the term Type using additional headers from HdrExtra
to the output stream Stream. ExtraHeader is a list of Field(Value). Type is one of:

html(+HTML)
Produce a HTML page using print html/1, normally generated using the
http/html write described in section 3.9.

file(+MimeType, +Path)
Reply the content of the given file, indicating the given MIME type.

tmp file(+MimeType, +Path)
Similar to File(+MimeType, +Path), but do not include a modification time header.

stream(+Stream, +Len)
Reply using the next Len characters from Stream. The user must provides the MIME type
and other attributes through the ExtraHeader argument.

cgi stream(+Stream, +Len)
Similar to stream(+Stream, +Len), but the data on Stream must contain an HTTP
header.

moved(+URL)
Generate a “301 Moved Permanently” page with the given target URL.

19

not found(+URL)
Generate a “404 Not Found” page.

forbidden(+URL)
Generate a “403 Forbidden” page, denying access without challenging the client.

authorise(+Method, +Realm)
Generate a “401 Authorization Required”, requesting the client to retry using proper cre-
dentials (i.e. user and password).

not modified
Generate a “304 Not Modified” page, indicating the requested resource has not changed
since the indicated time.

server error(+Error)
Generate a “500 Internal server error” page with a message generated from a Prolog ex-
ception term (see print message/2).

3.9 The http/html write library

Producing output for the web in the form of an HTML document is a requirement for many Prolog
programs. Just using format/2 is satisfactory as it leads to poorly readable programs generating
poor HTML. This library is based on using DCG rules.

The http/html write structures the generation of HTML from a program. It is an extensible
library, providing a DCG framework for generating legal HTML under (Prolog) program control. It
is especially useful for the generation of structured pages (e.g. tables) from Prolog data structures.

The normal way to use this library is through the DCG html/1. This grammar-rule provides the
central translation from a structured term with embedded calls to additional translation rules to a list
of atoms that can then be printed using print html/[1,2].

html(:Spec) -->
http://db.cwi.nl/projecten/project.php4?prjnr=129The DCG rule html/1 is the main predicate
of this library. It translates the specification for an HTML page into a list of atoms that can be
written to a stream using print html/[1,2]. The expansion rules of this predicate may be
extended by defining the multifile DCG html write:expand/1. Spec is either a single specifica-
tion or a list of single specifications. Using nested lists is not allowed to avoid ambiguity caused
by the atom []

• Atomic data
Atomic data is quoted using the html quoted/1 DCG.

• Fmt - Args
Fmt and Args are used as format-specification and argument list to sformat/3. The
result is quoted and added to the output list.

• \List
Escape sequence to add atoms directly to the output list. This can be used to embed
external HTML code.

• \Term
Invoke the grammar rule Term in the calling module. This is the common mechanism to
realise abstraction and modularisation in generating HTML.

20

• Module:Term
Invoke the grammar rule 〈Module〉:〈Term〉. This is similar to \Term but allows for invok-
ing grammar rules in external packages.

• &(Entity)
Emit &〈Entity〉;.

• Tag(Content)
Emit HTML element Tag using Content and no attributes. Content is handed to html/1.
See section 3.9.3 for details on the automatically generated layout.

• Tag(Attributes, Content)
Emit HTML element Tag using Attributes and Content. Attributes is either a single at-
tribute of a list of attributes. Each attributes is of the format Name(Value) or Name=Value.

page(:HeadContent, :BodyContent) -->
The DCG rule page/2 generated a complete page, including the SGML DOCTYPE declaration.
HeadContent are elements to be placed in the head element and BodyContent are elements to
be placed in the body element.

http://db.cwi.nl/projecten/project.php4?prjnr=129To achieve common style (background, page
header and footer), it is possible to define DCG rules head/1 and/or body/1. The page/1
rule checks for the definition of these DCG rules in the module it is called from as well as
in the user module. If no definition is found, it creates a head with only the HeadContent
(note that the title is obligatory) and a body with bgcolor set to white and the provided
BodyContent.

Note that further customisation is easily achieved using html/1 directly as page/2 is (besides
handling the hooks) defined as:

page(Head, Body) -->
html([\[’<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 4.0//EN">\n’],

html([head(Head),
body(bgcolor(white), Body)

])
]).

page(:Contents) -->
This version of the page/[1,2] only gives you the SGML DOCTYPE and the HTML element.
Contents is used to generate both the head and body of the page.

html begin(+Begin) -->
Just open the given element. Begin is either an atom or a compound term, In the latter case the
arguments are used as arguments to the begin-tag. Some examples:

html_begin(table)
html_begin(table(border(2), align(center)))

This predicate provides an alternative to using the \Command syntax in the html/1 speci-
fication. The following two fragments are the same. The preferred solution depends on your
preferences as well as whether the specification is generated or entered by the programmer.

21

table(Rows) -->
html(table([border(1), align(center), width(’80%’)],

[\table_header,
\table_rows(Rows)

])).

% or

table(Rows) -->
html_begin(table(border(1), align(center), width(’80%’))),
table_header,
table_rows,
html_end(table).

html end(+End) -->
End an element. See html begin/1 for details.

3.9.1 Emitting HTML documents

The html/1 grammar rules translates a specification into a list of atoms and layout instructions. Cur-
rently the layout instructions are terms of the format nl(N), requesting at least N newlines. Multiple
consecutive nl(1) terms are combined to an atom containing the maximum of the requested number
of newline characters.

To simplify handing the data to a client or storing it into a file, the following predicates are avail-
able from this library:

print html(+List)
Print the token list to the Prolog current output stream.

print html(+Stream, +List)
Print the token list to the specified output stream

html print length(+List, -Length)
When calling html print/[1,2] on List, Length characters will be produced. Knowing the
length is needed to provide the Content-length field of an HTTP reply-header.

3.9.2 Adding rules for html/1

In some cases it is practical to extend the translations imposed by html/1. When using XPCE for
example, it is comfortable to be able defining default translation to HTML for objects. We also used
this technique to define translation rules for the output of the SWI-Prolog sgml package.

The html/1 rule first calls the multifile ruleset html write:expand/1.

html write:expand(+Spec) -->
Hook to add additional translationrules for html/1.

html quoted(+Atom) -->
Emit the text in Atom, inserting entity-references for the SGML special characters <&>.

22

html quoted attribute(+Atom) -->
Emit the text in Atom suitable for use as an SGML attribute, inserting entity-references for the
SGML special characters <&>’".

3.9.3 Generating layout

Though not strictly necessary, the library attempts to generate reasonable layout in SGML output. It
does this only by inserting newlines before and after tags. It does this on the basis of the multifile
predicate html write:layout/3

html write:layout(+Tag, -Open, -Close)
Specify the layout conventions for the element Tag, which is a lowercase atom. Open is a term
Pre-Post. It defines that the element should have at least Pre newline characters before and
Post after the tag. The Close specification is similar, but in addition allows for the atom -,
requesting the output generator to omit the close-tag altogether or empty, telling the library
that the element has declared empty content. In this case the close-tag is not emitted either, but
in addition html/1 interprets Arg in Tag(Arg) as a list of attributes rather than the content.

A tag that does not appear in this table is emitted without additional layout. See also
print html/[1,2]. Please consult the library source for examples.

3.9.4 Examples

In the following example we will generate a table of Prolog predicates we find from the SWI-Prolog
help system based on a keyword. The primary database is defined by the predicate predicate/5
We will make hyperlinks for the predicates pointing to their documentation.

html_apropos(Kwd) :-
findall(Pred, apropos_predicate(Kwd, Pred), Matches),
phrase(apropos_page(Kwd, Matches), Tokens),
print_html(Tokens).

% emit page with title, header and table of matches

apropos_page(Kwd, Matches) -->
page([title([’Predicates for ’, Kwd])

],
[h2(align(center),

[’Predicates for ’, Kwd]),
table([align(center),

border(1),
width(’80%’)

],
[tr([th(’Predicate’),

th(’Summary’)
])

| \apropos_rows(Matches)
])

23

]).

% emit the rows for the body of the table.

apropos_rows([]) -->
[].

apropos_rows([pred(Name, Arity, Summary)|T]) -->
html([tr([td(\predref(Name/Arity)),

td(em(Summary))
])

]),
apropos_rows(T).

% predref(Name/Arity)
%
% Emit Name/Arity as a hyperlink to
%
% /cgi-bin/plman?name=Name&arity=Arity
%
% we must do form-encoding for the name as it may contain illegal
% characters. www_form_encode/2 is defined in library(url).

predref(Name/Arity) -->
{ www_form_encode(Name, Encoded),
sformat(Href, ’/cgi-bin/plman?name=˜w&arity=˜w’,

[Encoded, Arity])
},
html(a(href(Href), [Name, /, Arity])).

% Find predicates from a keyword. ’$apropos_match’ is an internal
% undocumented predicate.

apropos_predicate(Pattern, pred(Name, Arity, Summary)) :-
predicate(Name, Arity, Summary, _, _),
(’$apropos_match’(Pattern, Name)
-> true
; ’$apropos_match’(Pattern, Summary)
).

3.9.5 Remarks on the http/html write library

This library is the result of various attempts to reach at a more satisfactory and Prolog-minded way to
produce HTML text from a program. We have been using Prolog for the generation of web pages in
a number of projects. Just using format/2 never was a real option, generating error-prone HTML
from clumsy syntax. We started with a layour on top of format/2, keeping track of the current
nesting and thus always capable of properly closing the environment.

24

DCG based translation however naturally exploits Prolog’s term-rewriting primitives. If genera-
tion fails for whatever reason it is easy to produce an alternative document (for example holding an
error message).

The approach presented in this library has been used in combination with http/httpd in three
projects: viewing RDF in a browser, selecting fragments from an analysed document and presenting
parts of the XPCE documentation using a browser. It has proven to be able to deal with generating
pages quickly and comfortably.

In a future version we will probably define a goal expansion/2 to do compile-time optimi-
sation of the library. Quotation of known text and invocation of sub-rules using the \RuleSet and
〈Module〉:〈RuleSet〉 operators are costly operations in the analysis that can be done at compile-time.

4 Security

Writing servers is an inherently dangerous job that should be carried out with some considerations.
You have basically started a program on a public terminal and invited strangers to use it. When using
the interactive server or inetd based server the server runs under your privileges. Using CGI scripted it
runs with the privileges of your web-server. Though it should not be possible to fatally compromise a
Unix machine using user privileges, getting unconstrained access to the system is highly undesirable.

Symbolic languages have an additional handicap in their inherent possibilities to modify the run-
ning program and dynamically create goals (this also applies to the popular perl and java scripting
languages). Here are some guidelines.

• Check your input
Hardly anything can go wrong if you check the validity of query-arguments before formulating
an answer.

• Check filenames
If part of the query consists of filenames or directories, check them. This also applies to files you
only read. Passing names as /etc/passwd, but also ../../../../../etc/passwd
are tried by experienced hackers to learn about the system they want to attack. So, expand
provided names using absolute file name/[2,3] and verify they are inside a folder
reserved for the server. Avoid symbolic links from this subtree to the outside world. The
example below checks validity of filenames. The first call ensures proper canonisation of the
paths to avoid an mismatch due to symbolic links or other filesystem ambiguities.

check_file(File) :-
absolute_file_name(’/path/to/reserved/area’, Reserved),
absolute_file_name(File, Tried),
atom_concat(Reserved, _, Tried).

• Check scripts
Should input in any way activate external scripts using shell/1 or
open(pipe(Command), ...), verify the argument once more.

• Check meta-calling
The attractive situation for you and your attacker is below:

25

reply(Query) :-
member(search(Args), Query),
member(action=Action, Query),
member(arg=Arg, Query),
call(Action, Arg). % NEVER DO THIS

All your attacker has to do is specify Action as shell and Arg as /bin/sh and he has an
uncontrolled shell!

5 Status

The current library has been developed and tested in a number of internal and funded projects at the
SWI department of the University of Amsterdam. With this release we hope to streamline deployment
within these projects as well as let other profit from the possibilities to use Prolog directly as a web-
server.

This library is by no means complete and you are free to extend it. Partially or completely lacking
are notably session management and authorisation.

26

Index
absolute file name/[2

3], 25

body/1, 21

close/1, 3

file mime type/2, 6
format/2, 20, 24

goal expansion/2, 25

head/1, 21
html/1, 20–23
html begin/1, 21, 22
html end/1, 22
html print/[1

2], 22
html print length/2, 22
html quoted/1, 20, 22
html quoted attribute/1, 23
html write library, 6
html write:expand/1, 22
html write:layout/3, 23
http/html write library, 19, 20, 24
http/http client library, 3, 4
http/http error.pl library, 19
http/http header library, 11, 19
http/http mime plugin library, 7, 13
http/http open library, 3
http/http parameters library, 10
http/http session.pl library, 9
http/http sgml plugin library, 7
http/http wrapper.pl library, 18
http/httpd library, 25
http/httpd.pl library, 3
http/thread httpd.pl library, 15
http/xpce httpd.pl library, 15
http:request expansion/2, 18
http current request/1, 19
http current server/2, 16
http current session/2, 9
http current worker/2, 17
http get/3, 4, 5
http open/3, 3

http parameters/2, 10, 11
http parameters/3, 11
http post/4, 5
http post data/3, 5, 6
http read data/3, 4, 5, 13
http read request/2, 5, 11, 12
http reply/3, 9, 19
http server/1, 17
http server/2, 14, 15, 17
http server/3, 16
http session assert/1, 9, 10
http session asserta/1, 9
http session data/1, 10
http session id/1, 9
http session retract/1, 10
http session retractall/1, 10
http set session options/1, 9
http workers/2, 16, 17
http wrapper/5, 8, 10, 15, 17–19

inetd httpd library, 14
interactive httpd class, 15

load structure/3, 7

mime pack/3, 7

page/1, 21
page/2, 21
page/[1

2], 21
pp/1, 13
predicate/5, 23
print html/1, 19, 22
print html/2, 22
print html/[1

2], 20, 23
print message/2, 20

reply/1, 15

set stream/2, 3
sformat/3, 20
sgml library, 7, 22
shell/1, 25
socket class, 15

27

ssl library, 15, 16
ssl init/3, 16

tcp accept/3, 18
thread httpd library, 14
throw/1, 9

xpce httpd library, 13

28

	Introduction
	The HTTP client libraries
	The http/http_open library
	The http/http_client library
	The MIME client plug-in
	The SGML client plug-in

	The HTTP server libraries
	The `Body'
	Returning special status codes

	Session management
	Get parameters from HTML forms
	Request format
	Handling POST requests

	Running the server
	Common server interface options
	From an interactive Prolog session using XPCE
	Multi-threaded Prolog
	From (Unix) inetd
	MS-Windows
	As CGI script

	The wrapper library
	Debugging Servers
	Handling HTTP headers
	The http/html_write library
	Emitting HTML documents
	Adding rules for html/1
	Generating layout
	Examples
	Remarks on the http/html_write library

	Security
	Status

