
Pantry User Guide

Omari Norman

Pantry User Guide
by Omari Norman

Pantry, command-line nutrient analysis.

Version 21, released Monday, September 17, 2007.

Copyright 2007 Omari Norman.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Pantry’s "built-in" XML validator is a modified version of xmlproc. xmlproc is Copyright 1998-2000 by Lars Marius Garshol, Oslo, Norway.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided

that the above copyright notice appear in all copies and that modified copies are clearly marked as such.

LARS MARIUS GARSHOL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL LARS MARIUS GARSHOL BE LIABLE FOR ANY

SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,

DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Table of Contents
About Pantry... vii

1. What Pantry is ... vii
2. Pantry’s advantages ... vii
3. Pantry disadvantages ... vii
4. Alternatives .. viii
5. Getting support and reporting bugs...ix

1. Installing Pantry ..1
1.1. Installation instructions ...1
1.2. Tailoring your installation ...1
1.3. About the documentation ..2

2. Basic Pantry commands ..3
2.1. The Pantry Paradigm...3
2.2. Basic food searches ...5
2.3. Using the --print option..5

2.3.1. Combining reports ..8
2.4. Details on searching ..10

2.4.1. More traits you may use to search..10
2.4.2. Searches are regular expressions ..11
2.4.3. My search is returning foods I don’t want! ..12
2.4.4. Searches are case sensitive ...13

2.5. Changing food traits..13
2.6. Using nutrient lists to compare foods to particular nutrient goals ..17

2.6.1. What are nutrient lists?...17
2.6.2. How nutrient lists are displayed in nuts reports ...18
2.6.3. Using a different nutrient list..19

2.7. Using summary reports to see information about an entire buffer..19
2.7.1. Using the sum report...20
2.7.2. Using the groups report ..21

2.8. Saving new foods with --add and --edit; deleting with the --delete option22

3. Using Pantry: practical examples...25
3.1. Finding nutrient amounts ..25
3.2. Keeping a food diary ...27
3.3. Organizing your foods into files..33

3.3.1. A quick file ...33
3.3.2. Organizing diary files ...33

4. More Pantry usage...35
4.1. Using the --sort option to sort foods within a report...35
4.2. More change options ...37

4.2.1. Using the --auto-order option...37
4.2.2. Changing food quantities by refuse amount...41

4.3. Configuring Pantry ..44
4.3.1. Specifying your own nutrient lists..44
4.3.2. Specifying custom sort orders ..46

4.4. Changing food quantities by nutrient amount...47

iii

4.5. Pantry usage shortcuts...50
4.5.1. Using short options...50
4.5.2. Learn your shell, and write scripts or functions to automate common tasks51
4.5.3. Learn other Unix utilities..51

4.6. Using Pantry with screen ..52
4.7. Multilingual Pantry ...53

5. Adding new foods and editing the nutrients or units of existing foods ...55
5.1. Creating a new food ..55

5.1.1. Create a new blank XML file ...55
5.1.2. Create a food element..55
5.1.3. Create nutrients elements ..56
5.1.4. Creating unit elements ...57

5.2. Using a Pantry XML file ...58
5.3. Using Pantry XML files to edit units or nutrients of foods...59
5.4. Validation of Pantry XML files ...59

6. Plain text Foods files, and choosing which type of Foods file to use..61
6.1. How Foods Text files work ...61
6.2. Foods Text files: an example ...61
6.3. Using Foods Text files...63
6.4. Which sort of file should I use? ..64

7. Adding recipes..66
7.1. When to use recipes ..66
7.2. Creating a recipe ...66

7.2.1. Creating a recipes file and a recipe element ..66
7.2.2. Setting the yield of a recipe ..67
7.2.3. Setting the ingredients of a recipe ..69
7.2.4. Setting the available units for a recipe..70
7.2.5. Directions for a recipe ..71

7.3. Using recipes...72

A. Reference pages...75
pantry ...75

B. Pantry’s birth ..83

iv

List of Examples
2-1. Introducing the --print option ...5
2-2. Using --print traits ...6
2-3. Using --print units ...6
2-4. Using --print nuts ...6
2-5. Two nuts reports ...7
2-6. Two units reports ...8
2-7. Combining reports..8
2-8. Using the blank report ..9
2-9. Using multiple search options ..11
2-10. Using regular expressions...11
2-11. A search that has more foods than I am interested in...12
2-12. Using anchors ...12
2-13. Using the --exact-match option ..13
2-14. Changing foods...13
2-15. Changing the unit trait ..14
2-16. Errors when changing the unit trait ..15
2-17. qty may be a fraction or mixed number ..16
2-18. The facts nutrient list with 100 grams of bananas...18
2-19. Specifying a nutrient list...19
2-20. Using the sum report ..20
2-21. Using the --nutrient-list option with the sum report..21
2-22. How many groups are in the master file?...21
2-23. Using the --add option..22
2-24. Using the --edit option..23
2-25. Using the --delete option ..23
3-1. Searching for apples ...25
3-2. Searching for apples, with the --group option...25
3-3. Searching for apples using a regular expression ..26
3-4. Available units for an apple ..26
3-5. How many calories are in an apple?...27
3-6. Adding entries to a diary ..27
3-7. Printing nutrient reports about a diary..29
3-8. Getting totals about a diary ..32
4-1. Pantry does not sort foods ..35
4-2. Using the --sort option ...36
4-3. Using --auto-order ..38
4-4. Using --sort with foods that have been automatically ordered...39
4-5. Using --auto-order with only the date trait changed ..40
4-6. Traits and available units for an apple..42
4-7. Using the measures report..42
4-8. Using the --refuse option ...43
4-9. Beginning a .pantryrc.xml file ...44
4-10. Showing all available nutrients...45
4-11. .pantryrc.xml with new nutrient list ...45
4-12. Using a new nutrient list...45
4-13. .pantryrc.xml with sort-order element..46

v

4-14. Using the --by-nut option ...47
4-15. Using --by-nut with Total Fat...47
4-16. Using --by-nut with --c-unit..48
4-17. The closest thing to Stonyfield ...48
4-18. Approximating one food by using another food and the --by-nut option49
4-19. Using the -K option ..50
4-20. Searching for apple returns 163 results ..52
4-21. Using the paste report ..53
5-1. pantry.xml file with blank pantry element...55
5-2. pantry.xml with food element ...56
5-3. Food with nutrients element..57
5-4. Complete pantry.xml file..57
5-5. Use a Pantry XML file as you would use a Pantry native file ..58
6-1. A sample Foods Text file ..61
6-2. Using a Foods Text file...63
6-3. Changing a Foods Text file...64
7-1. Creating the recipe element...67
7-2. Setting the recipe yield ...68
7-3. A recipe with its ingredients...69
7-4. A recipe’s units...70
7-5. Recipe directions ..71
7-6. Using a Pantry XML file ..72
7-7. Adding a recipe to a Pantry native file ...72
7-8. The recipe report ...73
7-9. Using the recipe report with other cool stuff...73

vi

About Pantry

As you can see, this user manual is of some length. Right now you are probably wondering what Pantry
does, whether it is right for you, and how it compares to similar programs.

1. What Pantry is

Pantry is a command-line oriented nutrient analysis program. That’s right, command-line oriented.
What’s more, Pantry is a true command-line program: there are no menus, there are no prompts. Instead,
you simply type commands from your shell prompt, and Pantry does what you ask it to do, displaying
results if you have asked it to do that. Thus, Pantry is different from other programs which run in a
text-based terminal but which also present the user with menus; Wikipedia calls such programs text-user
interface (http://en.wikipedia.org/wiki/Text_user_interface) programs.

In addition to using Pantry from your shell prompt, you also interact with it through XML
(http://en.wikipedia.org/wiki/Xml) files. Using XML, you can edit Pantry’s configuration file. You can
also add nutrient information for custom foods (though Pantry includes nutrient information for over
7,000 foods to get you started) and recipes using XML.

2. Pantry’s advantages

Pantry’s true command-line interface gives it many advantages. Because Pantry works from your shell
prompt, you can easily combine it with other text-processing tools. You can also easily write scripts
incorporating Pantry, in ways that even I cannot anticipate. This is the strength of the Unix "toolbox"
way of using a computer.

In addition, nothing beats the speed of a command-line program for something you use frequently and
are familiar with. If you are using a nutrient-analysis program to track your daily food intake, you will
appreciate how quickly you can use Pantry for this purpose. Indeed, I developed Pantry due to my
frustration with current tools because it was very tedious to use them to quickly tally a day’s food intake.

Because Pantry runs from a text console, you can easily set it up on one computer that has an SSH server
running. You may then access your nutrient data from any computer that has an SSH client. Though
Web-based nutrition-tracking services also offer the ability to access your data from any
Internet-connected computer, Pantry is more private than Web-based services.

vii

About Pantry

3. Pantry disadvantages

The biggest disadvantage of using Pantry is the same as its biggest advantage: its command-line
interface. Graphical user interface programs attempt to be self-documenting: just sit down, click on some
buttons, and hopefully you can figure things out. With Pantry, on the other hand, you will absolutely have
to read this manual to figure out how it works, and you will need some practice before you are
comfortable with Pantry. In this way, Pantry resembles other command-line oriented Unix programs. As
with other Unix programs, once you learn Pantry, you will love its speed and efficiency--but you will
have to spend some time learning.

Similarly, because of its command-line interface, you will find that you are most efficient with Pantry if
you know your way around a Unix shell prompt. For example, you will find that you can use Pantry more
quickly if you know how to use your shell’s features to manipulate your command history. Such
knowledge is useful for any Unix command-line program, not just Pantry; however, building up this
knowledge takes some time.

Pantry has no tools to graphically visualize your food intake. I might eventually add such features using
Gnuplot (http://www.gnuplot.info/) or something similar.

A final disadvantage of using Pantry is that it is still new. I am still tweaking it, making changes, adding
features, and improving the documentation. But perhaps this is not such a disadvantage: software that
improves is nice. If you have any features that you would like, ask!

4. Alternatives

I know I like to check out many possible programs before settling on one to learn to use--and I always
like trying new programs too. Here are some possible alternatives to Pantry that you might take a look at:

NUT

This is probably the leading nutrient analysis program for Unix. It has a text user interface and is
very mature. NUT website (http://www.lafn.org/~av832/).

Crosstrainer

The best GUI program for nutrient analysis that I have ever seen. It does more than nutrient
analysis, too--for example it can track your exercise too. (Pantry will never do anything other than
nutrients.) Crosstrainer only runs on Windows though, and I have not used Windows in quite
awhile. Crosstrainer is also somewhat expensive. Crosstrainer website (http://www.crosstrainer.ca/).

nutritiondata.com

This website has great tools, and neat graphical features. Using it as a food diary is somewhat
cumbersome, however. nutritiondata.com website (http://www.nutritiondata.com).

viii

About Pantry

Fitday

This is the best food diary website that I have found. Fitday website (http://www.fitday.com).

5. Getting support and reporting bugs

For help using Pantry, join the Pantry users email list. Signup info is here
(https://lists.sourceforge.net/lists/listinfo/pantry-users). You can also report bugs by sending an email to
<pantry-users@lists.sourceforge.net>. You need not join the email list in order to send mail to
it.

ix

Chapter 1. Installing Pantry

This section will tell you how to install Pantry on a Unix-like operating system, such as Linux, Mac OS
X, or one of the BSDs. I’ll assume you’re comfortable using command-line tools--if you weren’t, you
probably wouldn’t be attempting to use a command-line nutrient analysis program.1

First, you’ll need Python 2.4 or later in order to use Pantry. Any recent Linux distribution, as well as the
latest versions of all the major BSDs, either have Python 2.4 already installed or make it available
through their package manager or ports system. However, Mac OS X 10.4 ("Tiger", the latest release of
Mac OS as of this writing) includes Python 2.3, which is too old to run Pantry. You’ll have to look into
installing a newer Python (either 2.4 or the newer 2.5 will work), either from the Python website
(http://www.python.org) or by using a tool such as Fink (http://finkproject.org/).

If you want to see what version of Python you have installed, run python -c ’import sys; print

sys.version’ at a command prompt.

1.1. Installation instructions

You may be used to compiling programs by hand using ./configure; make; make install. Since Pantry is
written in Python (http://www.python.org), an interpreted language, no compilation is required. Instead,
to follow Pantry, follow the directions below.

1. Unpack the Pantry distribution file using tar -xzf pantry-*.tar.gz. Change to the newly made
directory with cd pantry-21/.

2. Become root, and issue python setup.py install. That’s it!

3. Optional: install manual page. The Pantry installer only installs the Panty source code and a very
short script used to start Pantry. The installer does not install the man page. In the Pantry
distribution, you will find a file docs/pantry.1. Copy this to a location where your other locally
installed section 1 manpages are--on my system, that is usr/local/share/man/man1/.

You will also find the manpage in Appendix A.

The installer does not install documentation or many other handy files that are in the Pantry distribution
tarball. So you will want to keep handy the directory where you unpacked the Pantry tarball. We’ll use
some of those files later on.

Speaking of documentation, you will find this manual in many formats (including PDF, plain text, and
the XML source code) in the docs/ directory.

1

Chapter 1. Installing Pantry

1.2. Tailoring your installation

If you want to install Pantry as a non-root user, you’ll want to read the Python distutils manual
(http://docs.python.org/inst/inst.html), which explains various options for the setup.py script.

Also, I should warn you that Python’s distutils has no way to uninstall what it installs. If you want to
easily remove Pantry, users of most distributions should look into using CheckInstall
(http://asic-linux.com.mx/~izto/checkinstall/). Gentooists can easily write an ebuild for Pantry using the
distutils eclass.

1.3. About the documentation

The Pantry User Guide, the document that you are reading right now, is available in several formats in
the Pantry distribution in the directory named docs. There you will find one gigantic HTML file and a
plain-text version as well. You will also find an HTML version that has been "chunked" into smaller files
in the docs/html-chunk directory. Finally, you will also find a PDF version in US Letter-sized paper.
Unfortunately, right now I do not know how to make a good PDF in A4 paper, so US Letter is all you
will find.

There are many examples sprinkled throughout the text. In these examples, your shell prompt is
indicated with $. Many of the lines we will be entering in the examples are quite long. When you type
them into your computer, you can just enter them on one line. However, this would look bad in the
printed documentation, so we use the backslash to continue lines across line breaks. The beginning of
each continued line is indicated with a >. Don’t enter the > if you are entering the lines at your computer.

Some of the examples are too wide to fit on the PDF pages, so they got cut off. I don’t know how to fix
this, but you can always look at the HTML version to see examples that are not cut off.

Notes
1. Theoretically, Pantry also runs on Windows. I say "theoretically" for two reasons. First, though I

have a copy of Windows XP, I almost never use it and have made little effort to test Pantry on
Windows. I know basic Pantry commands work in Windows, but that is all I know. For me to be
confident there are no Pantry Windows bugs, more testing would be necessary.

Second, I doubt anyone would be interested in running Pantry in Windows. Windows software is hostile to the
command line (for instance, the Windows command-line shell is absolutely awful) and Windows users are
hostile to the command line, as they think it is primitive.

If you successfully use Pantry under Windows, I’d like to hear from you. If you have bugs to report, I’d like to
hear those too. I’d expect that if you love the command line but use Windows anyway, you’re probably using
Cygwin (http://www.cygwin.com). Pantry should work fine under Cygwin; again, please report any bugs you
may encounter.

2

Chapter 2. Basic Pantry commands

The core program of Pantry is named, appropriately enough, pantry. In this section you’ll learn how
pantry works. But first you’ll need to understand the way Pantry was designed--that is, the Pantry
Paradigm.

2.1. The Pantry Paradigm

The basic unit of Pantry is the food. Foods are grouped together and stored on your computer in files.
There are four different kinds of files that store foods, but the most important kind is simply called a
Pantry native file.1 Pantry works very quickly with Pantry native files, even if the file contains thousands
of foods.

Pantry comes with a Pantry native file named master that contains 7,294 foods. These foods come from
the U.S. Department of Agriculture’s National Nutrient Databse for Standard Reference, release 19
(http://www.nal.usda.gov/fnic/foodcomp/search/). A big thank-you goes to these folks for producing this
database--without it Pantry would never have been written.2

Every food has several traits. Later on you will learn how you can set a food’s traits; foods in the
master file already have their traits set. The traits are:

Food traits

name

The name of this food, such as Bananas, raw .

date

The date on which you ate this food. This is a string; no special date formatting rules apply to it.

meal

The meal in which you ate this food (Breakfast Lunch, midnight snack, etc--whatever you
wish)

group

Useful for grouping foods together. You can use familiar food groups (such as Dairy, Poultry,
etc.) or you might group foods together if you eat them together (for instance you might have a
group "Cereal and Milk" in which you place those two foods.) We’ll learn more about how you can
use groups later.

In the master file, each food’s group trait is already set to one of twenty-four food groups, such as
Fruits and fruit juices or Snacks.

3

Chapter 2. Basic Pantry commands

qty

How much of this food you ate. Pantry records this internally as a string; Pantry internally converts
it to a number as necessary to perform calculations. You therefore set the qty trait to a string that
will convert to an integer or to a floating-point number. This can be an integer, floating-point
number, or a fraction, such as 1/3. It can even be a mixed number, such as 1 1/3. You can set qty
equal to zero, but this does not delete the food--later we will discuss how to delete foods. You can
even use negative numbers, though I do not know why you would want to do such a thing.

unit

A description of the amount of this food you ate. The units that you can pick from vary for different
foods. We will use the term available units to refer to the units that you can pick from for a
particular food. Every food has at least three available units: oz, g, and lb. The other available units
vary by food. For example, the food in the master file named Bananas, raw has several other
units available, including Cup, mashed; large (8" to 8-7/8" long), and extra small

(less than 6" long).

When you keep track of which foods you eat, you’ll set the quantity and unit to whatever makes
sense: for instance, if you eat some Bananas, raw , you can set the quantity to 2 and the unit to
large (8" to 8-7/8" long). Remember, you can use any number for quantity you want,
including floating point numbers, but you can set the unit only to what is available for that particular
food.

pctRefuse

The percent of this food that is waste. For example, with an apple, the core is refuse; for a chicken
drumstick, the bone is refuse. Many foods have no refuse; in that case, this trait will be set equal to
an empty string or to zero. As with the qty trait, Pantry internally keeps this as a string, converting
it to a number as needed.

refDesc

A description of the refuse, such as Core or Bone.

comment

Whatever notes you may wish to add.

order

Any string. As we will see later, pantry can sort reports however you like; using the order trait,
you can sort foods into any arbitrary order.

All Pantry traits are strings. This includes the date trait. Thus, you can set the date trait for a food to
2007-05-06, 05-06, Tuesday, or even Who cares? if you wish. You may also set this trait, and all
traits except unit and qty, to whatever string you wish. Only the qty and unit traits must be set to a
non-zero-length value.

4

Chapter 2. Basic Pantry commands

Pantry works by copying foods from one file to another. This makes the pantry command mostly a
glorified copier. pantry starts by examining all the foods in each file that you specify. If you do not
specify any search options, then all foods in the each file you specify are copied to a temporary place
that we will call the buffer. Otherwise, if you specify any search options, then only the foods whose
traits match all of the search options will be copied to the buffer. Any food not matching the search
options you specify is ignored. pantry then modifies the traits of the foods in the buffer using any
change options you specified. pantry can then send the buffer to a report (which prints the foods to
standard output) and add the buffer to other files. All this is best understood with examples, as we will
see in the next section.

2.2. Basic food searches

Because Pantry works by copying and changing foods from food files, you’ll first need a food file with
interesting foods in it. The Pantry distribution contains a file named master. It contains over 7,000
foods, which should be enough to get you started. Copy this file to a convenient place (I’d suggest
~/pantry/master unless you have a better idea) because you’ll be using it often and you might even
want to change it. Change to the directory that contains your copy and we’ll get started!

Like many Unix commands, the pantry command takes zero or more arguments and zero or more
options, that is: pantry [OPTIONS] [FILE ...] . FILE specifies the file you wish to search for foods.
pantry will search using OPTIONS that you may specify. OPTIONS also perform many other useful
tasks, such as modifying the traits of the foods pantry finds, printing reports of the foods pantry finds,
and adding the resuls to files.

For a simple example, run pantry --name Bananas master in the same directory as the file
containing your master file. What happens? Well, as far as you can tell, nothing. But things actually
were happening behind the scenes. First, pantry examined every food in master. Because you specified
a search option, --name Bananas, Pantry copied all foods matching that criterion into a buffer.
However, you did not tell pantry to actually do anything with the buffer. So pantry terminated without
showing you anything at all, and returned you to your command prompt. The buffer that pantry made is
gone, never to be seen nor heard from again.

2.3. Using the --print option

To actually see the buffer, use the --print option. It takes a single argument, called a report. Here is an
example for starters:

Example 2-1. Introducing the --print option

$ pantry --name Bananas --print names master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Bananas, dehydrated, or banana powder

Bananas, raw

5

Chapter 2. Basic Pantry commands

As you can see, --print names simply prints the name of each food in the buffer. Here the name of the
report is names. Other handy reports are traits, units, and nuts, to print the traits, available units,
and nutrient breakdown of each food in the buffer.

The traits report always shows the qty and unit traits. Other traits are shown only if they are equal
to a non-zero-length string or, in the case of the pctRefuse trait, if it is not equal to zero.

Example 2-2. Using --print traits

$ pantry --name Bananas --print traits master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Group: Breakfast Cereals

100 g (100g)

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 g (100g)

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

The units report prints each food’s available units. It does not print g, oz, or lb as these are available
for every food.

Example 2-3. Using --print units

$ pantry --name "Bananas, raw" --print units master

cup, mashed

large (8" to 8-7/8" long)

medium (7" to 7-7/8" long)

extra small (less than 6" long)

small (6" to 6-7/8" long)

NLEA serving

cup, sliced

extra large (9" or longer)

The nuts report prints a food’s nutrient breakdown. Later we will talk about why pantry printed these
particular nutrients, as there are many more nutrients for Bananas, raw than were printed here. Also,
later we will learn what the two rightmost columns in the report mean (you probably can tell what the
first two columns are for.)

Example 2-4. Using --print nuts

$ pantry --name "Bananas, raw" --print nuts master

Nutrient Amount %G %TOT

Calories 89 kcal 4 100

Total Fat 0 g 1 100

Saturated Fat 0 g 1 100

Cholesterol 0 mg 0 0

6

Chapter 2. Basic Pantry commands

Sodium 1 mg 0 100

Total Carbohydrate 23 g 8 100

Dietary Fiber 3 g 10 100

Sugars 12 g NA 100

Protein 1 g 2 100

Vitamin A 64 IU 1 100

Vitamin C 9 mg 14 100

Calcium 5 mg 0 100

Iron 0 mg 1 100

The nuts and units reports print only a food’s nutrients and available units, respectively. They do not
print anything else about the food, not even its name trait. When there is more than one food in the
buffer, one report is printed for each food. It may be obvious that you are looking at the results for more
than one food when you are examining a set of nuts reports.

Example 2-5. Two nuts reports

$ pantry --name Papaya --print names master

Papayas, raw

Papaya nectar, canned

$ pantry --name Papaya --print nuts master

Nutrient Amount %G %TOT

Calories 39 kcal 2 41

Total Fat 0 g 0 48

Saturated Fat 0 g 0 48

Cholesterol 0 mg 0 0

Sodium 3 mg 0 38

Total Carbohydrate 10 g 3 40

Dietary Fiber 2 g 7 75

Sugars 6 g NA 30

Protein 1 g 1 78

Vitamin A 1094 IU 22 75

Vitamin C 62 mg 103 95

Calcium 24 mg 2 71

Iron 0 mg 1 23

Nutrient Amount %G %TOT

Calories 57 kcal 3 59

Total Fat 0 g 0 52

Saturated Fat 0 g 0 52

Cholesterol 0 mg 0 0

Sodium 5 mg 0 62

Total Carbohydrate 15 g 5 60

Dietary Fiber 1 g 2 25

Sugars 14 g NA 70

Protein 0 g 0 22

Vitamin A 361 IU 7 25

Vitamin C 3 mg 5 5

Calcium 10 mg 1 29

Iron 0 mg 2 77

7

Chapter 2. Basic Pantry commands

However, in the next example, you cannot even tell that you are looking at two units reports here, and
you certainly cannot tell the two foods apart. This next example shows units reports for both Papaya

nectar, canned and Papayas, raw :

Example 2-6. Two units reports

$ pantry --name Papaya --print units master

small (4-1/2" long x 2-3/4" dia)

medium (5-1/8" long x 3" dia)

cup, mashed

cup, cubes

large (5-3/4" long x 3-1/4" dia)

fl oz

cup

We will discover a solution to this problem in the next section.

2.3.1. Combining reports

As you saw above, using just the nuts or units reports can be confusing, especially when you have
more than one food in your buffer, because these reports do not indicate which food goes with which
nutrients or with which units.

An easy solution for this is to combine reports. By separating each report name with a dash, you may tell
pantry to print more than one report for each food.

Example 2-7. Combining reports

$ pantry --name Papaya --print names-units master

Papayas, raw

small (4-1/2" long x 2-3/4" dia)

medium (5-1/8" long x 3" dia)

cup, mashed

cup, cubes

large (5-3/4" long x 3-1/4" dia)

Papaya nectar, canned

fl oz

cup

$ pantry --name Papaya --print traits-nuts master

Papayas, raw

Group: Fruits and Fruit Juices

Refuse: 33 percent Seeds and skin

100 g (100g)

Nutrient Amount %G %TOT

Calories 39 kcal 2 41

Total Fat 0 g 0 48

Saturated Fat 0 g 0 48

Cholesterol 0 mg 0 0

8

Chapter 2. Basic Pantry commands

Sodium 3 mg 0 38

Total Carbohydrate 10 g 3 40

Dietary Fiber 2 g 7 75

Sugars 6 g NA 30

Protein 1 g 1 78

Vitamin A 1094 IU 22 75

Vitamin C 62 mg 103 95

Calcium 24 mg 2 71

Iron 0 mg 1 23

Papaya nectar, canned

Group: Fruits and Fruit Juices

100 g (100g)

Nutrient Amount %G %TOT

Calories 57 kcal 3 59

Total Fat 0 g 0 52

Saturated Fat 0 g 0 52

Cholesterol 0 mg 0 0

Sodium 5 mg 0 62

Total Carbohydrate 15 g 5 60

Dietary Fiber 1 g 2 25

Sugars 14 g NA 70

Protein 0 g 0 22

Vitamin A 361 IU 7 25

Vitamin C 3 mg 5 5

Calcium 10 mg 1 29

Iron 0 mg 2 77

As you can see, some whitespace would help make this more readable. To add whitespace, use the
blank report. It simply prints a blank line.

Example 2-8. Using the blank report

$ pantry --name Papaya --print traits-nuts-blank master

Papayas, raw

Group: Fruits and Fruit Juices

Refuse: 33 percent Seeds and skin

100 g (100g)

Nutrient Amount %G %TOT

Calories 39 kcal 2 41

Total Fat 0 g 0 48

Saturated Fat 0 g 0 48

Cholesterol 0 mg 0 0

Sodium 3 mg 0 38

Total Carbohydrate 10 g 3 40

Dietary Fiber 2 g 7 75

Sugars 6 g NA 30

Protein 1 g 1 78

Vitamin A 1094 IU 22 75

Vitamin C 62 mg 103 95

Calcium 24 mg 2 71

9

Chapter 2. Basic Pantry commands

Iron 0 mg 1 23

Papaya nectar, canned

Group: Fruits and Fruit Juices

100 g (100g)

Nutrient Amount %G %TOT

Calories 57 kcal 3 59

Total Fat 0 g 0 52

Saturated Fat 0 g 0 52

Cholesterol 0 mg 0 0

Sodium 5 mg 0 62

Total Carbohydrate 15 g 5 60

Dietary Fiber 1 g 2 25

Sugars 14 g NA 70

Protein 0 g 0 22

Vitamin A 361 IU 7 25

Vitamin C 3 mg 5 5

Calcium 10 mg 1 29

Iron 0 mg 2 77

2.4. Details on searching

Here are some important details about searching.

2.4.1. More traits you may use to search

As you’ve seen, name is one trait you can search by. When searching, you may limit your buffer by any
traits you wish. Here are the options you use in order to limit your search by particular traits. As with
many Unix commands, you can use either a long option (indicated by two dashes) or a short option (with
one dash).

• -n or --name

• -g or --group

• -d or --date

• -m or --meal

• -u or --unit

• -q or --qty

• -c or --comment

• -o or --order

10

Chapter 2. Basic Pantry commands

You may use as many of these options in a single pantry command as you wish. If you use more than
one search option, then Pantry will add foods to the buffer only if they match all the traits you specify:

Example 2-9. Using multiple search options

$ pantry --name Bananas --print traits master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Group: Breakfast Cereals

100 g (100g)

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 g (100g)

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

$ pantry --name Bananas --group Breakfast --print traits master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Group: Breakfast Cereals

100 g (100g)

2.4.2. Searches are regular expressions

A very important detail about searches is that all search patterns are regular expressions.3 This allows
you to be very flexible in how you specify your searches. You’ve already seen one consequence of this: a
search pattern only needs to match a portion of a trait in order for that food to be included in the
results--that is, --name Bananas matches foods that have "Bananas" anywhere in their name.

If you don’t want to learn regular expressions, that’s okay. Simple searches using just letters and numbers
will work just fine. However, you should know that the following characters have special meanings in
regular expressions:

[\^$.|?*+()

If you don’t know regular expressions, avoid including any of these characters in your search patterns.
Remember to quote your search patterns if they include spaces. For example:pantry --name

’Bananas, raw’ --print traits-units master.

If you want to learn more about the power of regular expressions, this website
(http://www.regular-expressions.info/) is a great place to start. For those already familiar with regular
expressions, following is an example of how they can come in handy. This also demonstrates the power
of Pantry’s command line interface, as it is easy to use Pantry with other Unix programs such as wc,
which counts words and lines.

11

Chapter 2. Basic Pantry commands

Example 2-10. Using regular expressions

$ pantry --name Milk --print names master | wc -l

54

$ pantry --name "Milk.*reduced" --print names master

Milk, chocolate, fluid, commercial, reduced fat

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Milk, chocolate, fluid, commercial, reduced fat, with added calcium

Milk, dry, nonfat, calcium reduced

Milk, buttermilk, fluid, cultured, reduced fat

Milk, reduced fat, fluid, 2% milkfat, with added nonfat milk solids, without added vitamin A

Milk, reduced fat, fluid, 2% milkfat, protein fortified, with added vitamin A

Milk, reduced fat, fluid, 2% milkfat, with added nonfat milk solids and vitamin A

As the previous example shows if your search pattern includes characters that are special to your shell,
remember to quote it--but you already knew that if you’re familiar with regular expressions.

2.4.3. My search is returning foods I don’t want!

Because search patterns are regular expressions, they will sometimes return more foods than you are
interested in. In the next example, I only want to know about Apples, raw, without skin.
However, the buffer also includes two other foods that contain that same string:

Example 2-11. A search that has more foods than I am interested in

$ pantry --name "Apples, raw, without skin" --print names \

> master

Apples, raw, without skin, cooked, microwave

Apples, raw, without skin

Apples, raw, without skin, cooked, boiled

There are two ways to fix this. The first way is to use a feature of regular expressions called anchors. The
$ anchor matches the end of the string. Here, it tells Pantry that there cannot be any characters between
Apples, raw, without skin and the end of the name trait. The anchor is only the dollar sign; the
backslash is there in order to keep the shell from giving the dollar sign a special meaning. See this
webpage (http://www.mpi-inf.mpg.de/~uwe/lehre/unixffb/quoting-guide.html) for more information on
why you need to quote characters in Unix shells.4

Example 2-12. Using anchors

$ pantry --name "Apples, raw, without skin\$" --print names \

> master

Apples, raw, without skin

12

Chapter 2. Basic Pantry commands

Another way to fix this problem is to use the --exact-match or -x option. This option changes all
search options so that they no longer use regular expressions. Instead, with this option, a food’s traits
must exactly match the search options in order to be included in the buffer.

Example 2-13. Using the --exact-match option

$ pantry --exact-match --name "Apples, raw, without skin" \

> --print names master

Apples, raw, without skin

2.4.4. Searches are case sensitive

By default, all searches in Pantry are case sensitive. This is true both for searches by trait as well as when
you are using the --c-unit option. To make these searches case insensitive, use the --ignore-case
or -i option. In addition, searches using the --exact-match option are also case sensitive. The
--ignore-case option has no effect when using the --exact-match option; that is, --exact-match
searches are always case sensitive.

2.5. Changing food traits

Pantry would not be very useful if you could only search the master for its contents and print results
from it. Fortunately, Pantry makes it very easy for you to change the traits of foods.

When you run pantry with the search options we discussed above, pantry first searches the files you
specified for foods with the traits you specified with your options. pantry then changes the resulting
foods to the traits you specify, as we will discuss next. For instance, in the next example we change the
date trait of a raw banana. However, as the example also shows, the change is only temporary. Only the
food in the buffer is changed, and the food in the buffer is a copy of the food in the master file. Later we
will learn how to save the new foods that you make.

Example 2-14. Changing foods

$ pantry --name "Bananas, raw" --print traits master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

$ pantry --name "Bananas, raw" --c-date "2007-05-06" \

> --print traits master

Bananas, raw

Group: Fruits and Fruit Juices

Date: 2007-05-06

Refuse: 36 percent Skin

100 g (100g)

13

Chapter 2. Basic Pantry commands

$ pantry --name "Bananas, raw" --print traits master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

There are eight options you use to change food traits. Each takes an argument to indicate what you would
like to change the trait to:

• --c-name or -N

• --c-group or -G

• --c-date or -D

• --c-meal or -M

• --c-comment or -C

• --c-unit or -U

• --c-qty or -Q

• --c-order or -O

Changing most traits is easy, as you may change them to any string that you wish, including a
zero-length string. This gives you a great deal of flexibility. The group trait need not be set to a "official"
food group. The date trait does not need to respect any particular date format--indeed, strictly speaking,
it need not be any date at all!

Only two traits are not this flexible. As with the other traits, Pantry stores the qty trait as a string, but it
is converted internally to a number as needed, so the value of this trait must be something that can be
converted to a number. It can be an integer, a floating-point number, or even a fraction or mixed number.
Thus, the following values are valid for the qty trait:

• 3

• 1/3

• 3 1/3

• 3.33

Entering zero for the qty trait does not delete foods; later we’ll discuss how to delete foods.

The other inflexible trait is the unit trait. This trait must be equal to one of the available units for each
particular food. The argument that the --c-unit takes is actually a regular expression. pantry searches
the food’s available units for a single unit matching that regular expression.

Example 2-15. Changing the unit trait

$ pantry --name "Bananas, raw" --c-date "May 7" \

> --c-qty 2 --c-unit medium --print traits-nuts master

14

Chapter 2. Basic Pantry commands

Bananas, raw

Group: Fruits and Fruit Juices

Date: May 7

Refuse: 36 percent Skin

2 medium (7" to 7-7/8" long) (236g)

Nutrient Amount %G %TOT

Calories 210 kcal 11 100

Total Fat 1 g 1 100

Saturated Fat 0 g 1 100

Cholesterol 0 mg 0 0

Sodium 2 mg 0 100

Total Carbohydrate 54 g 18 100

Dietary Fiber 6 g 25 100

Sugars 29 g NA 100

Protein 3 g 5 100

Vitamin A 151 IU 3 100

Vitamin C 21 mg 34 100

Calcium 12 mg 1 100

Iron 1 mg 3 100

If the regular expression you enter as an argument for --c-unit matches more than one of a food’s
available units, pantry will give you a warning message. pantry will not include the food (either
changed or unchanged) in the search results; therefore, the food will not be printed in any reports you
may have asked for using the --print option. However, Pantry will still include in the search results
other foods that it did change. In the next example, the food Bananas, raw cannot have its units
changed, because the search string cup matches more than one of the food’s available units. However,
the food Bananas, dehydrated, or banana powder is included in the search results because its
unit was successfully changed.

Example 2-16. Errors when changing the unit trait

$ pantry --name "Bananas," --print traits-units master

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 g (100g)

cup

tbsp

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

cup, mashed

large (8" to 8-7/8" long)

medium (7" to 7-7/8" long)

extra small (less than 6" long)

small (6" to 6-7/8" long)

NLEA serving

cup, sliced

extra large (9" or longer)

$ pantry --name "Bananas," --c-unit cup --print traits-units \

15

Chapter 2. Basic Pantry commands

> master

==========

pantry: warning: food Bananas, raw will not be copied into the buffer.

Failed to set units using pattern cup

Matches:

cup, mashed

cup, sliced

==========

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 cup (10000g)

cup

tbsp

As we discussed, you can use fractions and mixed numbers for the qty trait:

Example 2-17. qty may be a fraction or mixed number

$ pantry --name "Bananas, raw" --c-qty "1/2" \

> --c-unit medium --print traits-nuts master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

1/2 medium (7" to 7-7/8" long) (59g)

Nutrient Amount %G %TOT

Calories 53 kcal 3 100

Total Fat 0 g 0 100

Saturated Fat 0 g 0 100

Cholesterol 0 mg 0 0

Sodium 1 mg 0 100

Total Carbohydrate 13 g 4 100

Dietary Fiber 2 g 6 100

Sugars 7 g NA 100

Protein 1 g 1 100

Vitamin A 38 IU 1 100

Vitamin C 5 mg 9 100

Calcium 3 mg 0 100

Iron 0 mg 1 100

$ pantry --name "Bananas, raw" --c-qty "2 1/2" \

> --c-unit medium --print traits-nuts master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

2 1/2 medium (7" to 7-7/8" long) (295g)

Nutrient Amount %G %TOT

Calories 263 kcal 13 100

Total Fat 1 g 1 100

Saturated Fat 0 g 2 100

Cholesterol 0 mg 0 0

Sodium 3 mg 0 100

16

Chapter 2. Basic Pantry commands

Total Carbohydrate 67 g 22 100

Dietary Fiber 8 g 31 100

Sugars 36 g NA 100

Protein 3 g 6 100

Vitamin A 189 IU 4 100

Vitamin C 26 mg 43 100

Calcium 15 mg 1 100

Iron 1 mg 4 100

2.6. Using nutrient lists to compare foods to particular
nutrient goals

2.6.1. What are nutrient lists?

Nutrient lists have two purposes: first, they allow you to select which nutrients appear in nuts reports;
and second, they allow you to compare your nutrient intake to certain goals.

If you’re keeping track of your food intake, you’ll probably want to know how your nutrient intake
compares against certain goals you’ve set for yourself. For instance, you might decide you want to take
in 65 grams of fat every day, or 2800 calories a day. You can tell Pantry what your goals are and it will
help you compare certain foods, or all your food intake if you wish, against those goals.

In addition, the master file in Pantry has dozens of nutrients. Some of them, such as Calories or
Vitamin A, are quite familiar. Others, such as 18:0, probably don’t interest you unless you’re a
scientist. Using nutrient lists, you decide which nutrients appear in your nuts reports, and the order in
which they appear.

As the name suggests, a nutrient list includes multiple nutrients, in a specific order. Each nutrient is
specified using both its name and its units: for example, Protein and g, or Calories and kcal. When
Pantry prints a nuts report, it prints only the nutrients included in the nutrient list.

In addition, each nutrient in the nutrient list optionally has a goal associated with it. For exaample, if you
wish to consume 2800 calories a day, you can set the goal for calories to 2800. If you do not specify a
goal, but you include a nutrient in a nutrient list, pantry will still print the nutrient in nuts reports. If
you don’t want a nutrient shown in your nuts reports, then do not include the nutrient in your nutrient
list. We are getting ahead of ourselves a bit, though. Later we will discuss how you can define your own
nutrient lists. For now, though, you are stuck with the nutrient lists that are included with Pantry:

17

Chapter 2. Basic Pantry commands

Nutrient lists included with Pantry

facts

This nutrient list mimics the USA "Nutrition Facts" panel; that is, it shows nutrients in the same
order as they appear on those labels, and the nutrient goals are identical to the FDA Daily Values.
One of the nutrients that appears on the "Nutrition Facts" panel, Sugars, has no FDA Daily Value,
so there is no goal for this nutrient.

all

Shows every possible nutrient. It does not, however, include any nutrient goals.

short

Shows only Calories, Total Fat, Total Carbohydrate, and Protein. As with all, this
nutrient list does not include any nutrient goals.

dv

Includes, in alphabetical order by nutrient name, every nutrient for which there is an FDA Daily
Value; the goals are the respective Daily Values.

2.6.2. How nutrient lists are displayed in nuts reports

As you’ve seen, the nuts report has four columns. The first two columns show the nutrient name and the
amount of the nutrient, respectively. The third column shows the nutrient’s percentage of the any goal
that has been set for this nutrient in the nutrient list. The fourth column shows this nutrient’s percentage
of the total amount of this nutrient for the buffer.

By default, Pantry uses the facts nutrient list. Therefore, in the next example, we see that 100 grams of
bananas has 89 calories. The facts nutrient list has a goal of 2000 calories, the same amount used for
the "Nutrition Facts" labels. Therefore, the report shows four percent in the third column. Other nutrients
show similar results, except for Sugars. This shows NG, for No Goal. This is because although the
"Nutrition Facts" panel shows Sugars, there is no FDA Daily Value for this nutrient. Accordingly, the
facts nutrient list has no goal for this nutrient either.

Because there is only one food in the buffer, every value except one in the last column is 100 percent.
The value for Cholesterol is NA because the buffer has no cholesterol.

Example 2-18. The facts nutrient list with 100 grams of bananas

$ pantry --name "Bananas, raw" --print traits-nuts master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

Nutrient Amount %G %TOT

18

Chapter 2. Basic Pantry commands

Calories 89 kcal 4 100

Total Fat 0 g 1 100

Saturated Fat 0 g 1 100

Cholesterol 0 mg 0 0

Sodium 1 mg 0 100

Total Carbohydrate 23 g 8 100

Dietary Fiber 3 g 10 100

Sugars 12 g NA 100

Protein 1 g 2 100

Vitamin A 64 IU 1 100

Vitamin C 9 mg 14 100

Calcium 5 mg 0 100

Iron 0 mg 1 100

2.6.3. Using a different nutrient list

By default, Pantry uses the facts nutrient list when printing reports. You may specify a different
nutrient list with the --nutrient-list option. In the next example, the third column always shows NG
because the short nutrient list includes no goals.

Example 2-19. Specifying a nutrient list

$ pantry --name "Bananas, raw" --print traits-nuts --nutrient- \

> list short master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

Nutrient Amount %G %TOT

Calories 89 kcal NA 100

Total Fat 0 g NA 100

Total Carbohydrate 23 g NA 100

Protein 1 g NA 100

2.7. Using summary reports to see information about an
entire buffer

So far, all the reports you have seen print one report for each food. For instance, the names report prints
the name of each food in the buffer, and the nuts report prints one nuts report for each food in the
buffer.

19

Chapter 2. Basic Pantry commands

Sometimes you will want to know information about an entire buffer, rather than about each food in the
buffer. Two reports provide information about the entire buffer: sum and groups.

2.7.1. Using the sum report

The sum report prints information about the sum of all nutrients of every food in the buffer. Like nuts
reports, it uses nutrient lists to determine which nutrients appear in the report and which goals to use. It
looks almost identical to the nuts report, with one difference: it has only three columns, rather than four.
The first column shows the nutrient name; the second shows the nutrient amount; and the third shows the
amount’s percentage of a goal defined in the nutrient list.

As with the reports we discussed earlier, you may combine summary reports with other reports, as the
next example demonstrates by combining a traits report and a sum report. When you combine
summary reports and food reports, the summary reports are always shown last.

Example 2-20. Using the sum report

$ pantry --name Bananas --print traits-blank-sum master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Group: Breakfast Cereals

100 g (100g)

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 g (100g)

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

SUM:

Nutrient Amount %G

Calories 852 kcal 43

Total Fat 11 g 17

Saturated Fat 8 g 42

Cholesterol 0 mg 0

Sodium 456 mg 19

Total Carbohydrate 195 g 65

Dietary Fiber 15 g 60

Sugars 85 g NA

Protein 8 g 16

Vitamin A 1983 IU 40

Vitamin C 43 mg 71

Calcium 56 mg 6

Iron 7 mg 41

20

Chapter 2. Basic Pantry commands

As with nuts reports, you use nutrient lists to determine which nutrients are shown in the sum report,
and what the goals are.

Example 2-21. Using the --nutrient-list option with the sum report

$ pantry --name Bananas --print traits-blank-sum --nutrient-list short \

> master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Group: Breakfast Cereals

100 g (100g)

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 g (100g)

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

SUM:

Nutrient Amount %G

Calories 852 kcal NA

Total Fat 11 g NA

Total Carbohydrate 195 g NA

Protein 8 g NA

2.7.2. Using the groups report

The other summary report is the groups report. It prints a list of all the groups in the buffer, the number
of foods in each, and the total number of foods and groups. For instance, you can run the following
example to see how many groupsa and foods are in the master file. Remember that if you do not specify
any search options, pantry copies all foods from the files you specify into the buffer, which is why this
example shows you all the groups in the master file.

Example 2-22. How many groups are in the master file?

$ pantry --print groups master

Group No. of Foods

--

Baby Foods 289

Baked Products 488

Beef Products 783

Beverages 266

Breakfast Cereals 427

Cereal Grains and Pasta 169

Dairy and Egg Products 216

Ethnic Foods 132

Fast Foods 310

21

Chapter 2. Basic Pantry commands

Fats and Oils 239

Finfish and Shellfish Products 255

Fruits and Fruit Juices 314

Lamb, Veal, and Game Products 343

Legumes and Legume Products 234

Meals, Entrees, and Sidedishes 99

Nut and Seed Products 128

Pork Products 294

Poultry Products 346

Sausages and Luncheon Meats 232

Snacks 131

Soups, Sauces, and Gravies 399

Spices and Herbs 60

Sweets 351

Vegetables and Vegetable Products 789

--

7294 foods total

24 groups total

2.8. Saving new foods with --add and --edit; deleting
with the --delete option

You’ll probably want to store the new foods you make. You’ll usually do this using the --add or -a
option. This option takes a single FILENAME argument. FILENAME can be almost any name you want.
For now, though, it should not end in .xml, .zip, or .txt--we’ll learn about what these extensions do
later. If FILENAME does not already exist, pantry will create it for you; if the file already exists, the
foods in the buffer will be added to the file.

Two identical foods cannot exist in a single file. Two foods are identical if all their traits are identical.
When you add a food to a file and there is already an identical food in the file, Pantry will alter the
comment trait of the food you are adding by appending (Copy 1), (Copy 2), etc.

Example 2-23. Using the --add option

$ pantry --name "Bananas, raw" --add newfile --print traits \

> master

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

$ pantry --print traits newfile

Bananas, raw

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

22

Chapter 2. Basic Pantry commands

Another way to store the changes you make is by using the --edit option. --edit searches for foods
and makes changes that you specify. Unlike --add, --edit does not add the changed foods to a new
file; instead, it changes already existing foods, in the same file.

Example 2-24. Using the --edit option

$ pantry --name "Bananas, raw" --c-name "Bananas, big \

> yellow" --edit --print traits master

Bananas, big yellow

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

$ pantry --name Bananas --print traits-blank master

Cereals ready-to-eat, KELLOGG’S, CORN FLAKES With Real Bananas

Group: Breakfast Cereals

100 g (100g)

Bananas, dehydrated, or banana powder

Group: Fruits and Fruit Juices

100 g (100g)

Bananas, big yellow

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

Finally, you may delete foods from the original files with the --delete option.

Example 2-25. Using the --delete option

$ pantry --name "Bananas, big yellow" --print traits --delete \

> master

Bananas, big yellow

Group: Fruits and Fruit Juices

Refuse: 36 percent Skin

100 g (100g)

$ pantry --name "Bananas, big yellow" --print traits master

Notes
1. You’ll notice if you run the Unix program file on a Pantry native file, it is most likely a Berkeley DB

file. Unix geeks will cringe at the fact that this file is not plain text.

2. Most food databases that you will find anywhere, such as the one at NutritionData.com
(http://www.nutritiondata.com), are derived from the same USDA database.

3. Regular expression gurus will appreciate knowing that Pantry uses Perl-compatible regular
expressions. Links from this page (http://www.regular-expressions.info/tools.html) will help give
you an idea of what this means. If you are familiar with the Unix command-line utilities grep and
egrep, the regular expressions used in Pantry are most similar to those used in egrep. The Python

23

Chapter 2. Basic Pantry commands

documentation (http://docs.python.org/lib/re-syntax.html) gives the definitive guide to Pantry’s
regular expression syntax.

4. An easy solution in this example would have been to use single quotes, but due to idiosyncracies in
the scripts that automatically build the examples for the documentation, all the examples in the user
guide use double quotes instead.

24

Chapter 3. Using Pantry: practical examples

Now that you know all the basic Pantry options, you’re ready to combine them and put them to use! This
chapter will show you how.

3.1. Finding nutrient amounts

Often you will wish to know the nutrient makeup of a particular food. Suppose for example that you
want to know how many calories are in a fresh apple. You figure that master already has such a food,
but you don’t know exactly what it would be. So first you search for apple to see what comes up.

Example 3-1. Searching for apples

$ pantry --ignore-case --name apple --print names master

Babyfood, cereal, oatmeal, with applesauce and bananas, junior

HEALTHY CHOICE Traditional Meat Loaf w/Brown Sauce, Mashed Potatoes, Green Beans and Apple Praline Crisp, frozen meal

Pie, apple, commercially prepared, enriched flour

Apples, dried, sulfured, stewed, without added sugar

Babyfood, dessert, fruit pudding, pineapple, strained

Cereals ready-to-eat, GENERAL MILLS, OATMEAL CRISP, APPLE CINNAMON

Cereals ready-to-eat, QUAKER, QUAKER APPLE ZAPS

VERYFINE APPLE QUENCHERS Apple Raspberry Cherry Juice Cocktail, ready-to-drink

Cereals, QUAKER, Instant Oatmeal, NUTRITION FOR WOMEN, Apple Spice, dry

English muffins, raisin-cinnamon (includes apple-cinnamon)

Babyfood, cereal, rice, with applesauce and bananas, strained

Babyfood, cereal, oatmeal, with applesauce and bananas, strained

Pineapple, raw, extra sweet variety

Cereals ready-to-eat, KELLOGG, KELLOGG’S APPLE CINNAMON SQUARES MINI-WHEATS

Custard-apple, (bullock’s-heart), raw

[trimmed to save space]

It turns out that this search returns 163 results. There must be a way to narrow this down. Well, many
foods will have the word "Apple" in their name, including many foods that are not even fruits (desserts,
for example). A good way to narrow your results is to use the --group option:

Example 3-2. Searching for apples, with the --group option

$ pantry --ignore-case --name apple --group fruits --print names master

Custard-apple, (bullock’s-heart), raw

Pineapple juice, frozen concentrate, unsweetened, undiluted

Apples, dried, sulfured, stewed, without added sugar

Apple juice, frozen concentrate, unsweetened, undiluted, with added ascorbic acid

Fruit salad, (peach and pear and apricot and pineapple and cherry), canned, light syrup, solids and liquids

Pineapple juice, canned, unsweetened, without added ascorbic acid

Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water without added ascorbic acid

Fruit salad, (peach and pear and apricot and pineapple and cherry), canned, extra heavy syrup, solids and liquids

Pineapple, canned, water pack, solids and liquids

25

Chapter 3. Using Pantry: practical examples

Pineapple, raw, traditional varieties

Apple juice, frozen concentrate, unsweetened, undiluted, without added ascorbic acid

Pineapple, canned, light syrup pack, solids and liquids

Pineapple juice, canned, unsweetened, with added ascorbic acid

Apples, dehydrated (low moisture), sulfured, uncooked

Pineapple, raw, extra sweet variety

[trimmed to save space]

That is still a lot more than we are looking for, including a bunch of things that merely have "Apple" in
their name. What if we use a regular expression to limit the results only to foods whose name trait begins
with apple?

Example 3-3. Searching for apples using a regular expression

$ pantry --ignore-case --name ^apple --group fruits --print names master

Apples, frozen, unsweetened, heated

Apple juice, frozen concentrate, unsweetened, undiluted, with added ascorbic acid

Apple juice, canned or bottled, unsweetened, with added ascorbic acid

Apple juice, frozen concentrate, unsweetened, undiluted, without added ascorbic acid

Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water without added ascorbic acid

Apples, dehydrated (low moisture), sulfured, uncooked

Apples, raw, without skin, cooked, boiled

Applesauce, canned, sweetened, with salt

Apples, canned, sweetened, sliced, drained, unheated

Apples, dried, sulfured, stewed, with added sugar

Apples, raw, without skin, cooked, microwave

Applesauce, canned, sweetened, without salt

Applesauce, canned, unsweetened, with added ascorbic acid

Apples, frozen, unsweetened, unheated

Apples, dried, sulfured, uncooked

Apple juice, canned or bottled, unsweetened, without added ascorbic acid

Apples, raw, with skin

Apples, raw, without skin

Apples, dried, sulfured, stewed, without added sugar

Apples, canned, sweetened, sliced, drained, heated

Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water, with added ascorbic acid

Applesauce, canned, unsweetened, without added ascorbic acid

Apples, dehydrated (low moisture), sulfured, stewed

That buffer is manageable enough to scan to see what we are looking for. Looks like Apples, raw,

with skin is what we are looking for. We want to know how many calories are in an apple. To do that,
first we need to see what units are available for Apples, raw, with skin:

Example 3-4. Available units for an apple

$ pantry --name "Apples, raw, with skin" --print names-units \

> master

Apples, raw, with skin

cup, quartered or chopped

large (3-1/4" dia) (approx 2 per lb)

NLEA serving

26

Chapter 3. Using Pantry: practical examples

medium (2-3/4" dia) (approx 3 per lb)

cup slices

small (2-1/2" dia) (approx 4 per lb)

Notice how we combined the names and units reports rather than using just a units report. This is a
good idea because otherwise, your report might actually contain results for more than one food, but you
would not know this if you used only a units report.

Finally, we use the change options to take the apple from the master file, change it to the characteristics
we’re interested in, and print a report:

Example 3-5. How many calories are in an apple?

$ pantry --name "Apples, raw, with skin" --c-unit large \

> --c-qty 1 --print traits-nuts master

Apples, raw, with skin

Group: Fruits and Fruit Juices

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

Nutrient Amount %G %TOT

Calories 110 kcal 6 100

Total Fat 0 g 1 100

Saturated Fat 0 g 0 100

Cholesterol 0 mg 0 0

Sodium 2 mg 0 100

Total Carbohydrate 29 g 10 100

Dietary Fiber 5 g 20 100

Sugars 22 g NA 100

Protein 1 g 1 100

Vitamin A 114 IU 2 100

Vitamin C 10 mg 16 100

Calcium 13 mg 1 100

Iron 0 mg 1 100

3.2. Keeping a food diary

Suppose that on May 8 you want to keep track of everything you eat. Following our previous example,
you locate the foods you need in master, and then you add them to a file as you’ll see in the following
example. You print the traits of the foods as you add them to make sure that you’re adding the right foods.

Example 3-6. Adding entries to a diary

$ pantry --ignore-case --name "apples, raw, with skin" --c-qty \

> 1 --c-unit large --c-date "May 8" --c-meal Breakfast --print \

> traits --add diary master

Apples, raw, with skin

27

Chapter 3. Using Pantry: practical examples

Group: Fruits and Fruit Juices

Date: May 8 Meal: Breakfast

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

$ pantry --ignore-case --name "kellogg’s corn flakes" \

> --c-qty 1 --c-unit cup --c-date "May 8" --c-meal Breakfast \

> --print traits --add diary master

Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes

Group: Breakfast Cereals

Date: May 8 Meal: Breakfast

1 cup (1 NLEA serving) (28g)

$ pantry --ignore-case --name "milk, reduced fat, fluid, 2% \

> milkfat, with added vitamin A" --c-qty 1 --c-unit cup --c-date \

> "May 8" --c-meal Breakfast --print traits --add diary master

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Dairy and Egg Products

Date: May 8 Meal: Breakfast

1 cup (244g)

$ pantry --ignore-case --name "carrots, raw" --c-qty 1 \

> --c-unit ^large --c-date "May 8" --c-meal Lunch --print \

> traits --add diary master

Carrots, raw

Group: Vegetables and Vegetable Products

Date: May 8 Meal: Lunch

Refuse: 11 percent Crown, tops and scrapings

1 large (7-1/4" to 8-/1/2" long) (72g)

$ pantry --ignore-case --name "chicken.*wing, meat and skin, \

> cooked, roasted" --c-date "May 8" --c-unit wing --c-qty \

> 3 --c-meal Lunch --print traits --add diary master

Chicken, broilers or fryers, wing, meat and skin, cooked, roasted

Group: Poultry Products

Date: May 8 Meal: Lunch

Refuse: 48 percent Bone

3 wing, bone removed (102g)

$ pantry --ignore-case --name "ice creams, chocolate, rich" \

> --c-qty 1 --c-unit cup --c-date "May 8" --c-meal \

> "Lunch" --print traits --add diary master

Ice creams, chocolate, rich

Group: Sweets

Date: May 8 Meal: Lunch

1 cup (148g)

$ pantry --ignore-case --name "mcdonald’s, cheeseburger" \

> --c-unit item --c-qty 1 --c-date "May 8" --c-meal \

> "Dinner" --print traits --add diary master

McDONALD’S, Cheeseburger

Group: Fast Foods

Date: May 8 Meal: Dinner

1 item (119g)

$ pantry --ignore-case --name "mcdonald’s, french fries" \

> --c-qty 1 --c-unit large --c-date "May 8" --c-meal Dinner \

> --print traits --add diary master

McDONALD’S, French Fries

Group: Fast Foods

28

Chapter 3. Using Pantry: practical examples

Date: May 8 Meal: Dinner

1 large serving (170g)

$ pantry --ignore-case --name "popcorn, oil-popped, unsalted" \

> --c-qty 2 --c-unit oz --c-date "May 8" --c-meal Dinner \

> --print traits --add diary master

Snacks, popcorn, oil-popped, unsalted

Group: Snacks

Date: May 8 Meal: Dinner

2 oz (57g)

Now you want to know a little about what you ate:

Example 3-7. Printing nutrient reports about a diary

$ pantry --print traits-nuts-blank diary

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Dairy and Egg Products

Date: May 8 Meal: Breakfast

1 cup (244g)

Nutrient Amount %G %TOT

Calories 122 kcal 6 6

Total Fat 5 g 7 4

Saturated Fat 3 g 15 8

Cholesterol 20 mg 7 8

Sodium 100 mg 4 6

Total Carbohydrate 11 g 4 5

Dietary Fiber 0 g 0 0

Sugars 12 g NA 17

Protein 8 g 16 11

Vitamin A 461 IU 9 3

Vitamin C 0 mg 1 2

Calcium 285 mg 29 37

Iron 0 mg 0 0

McDONALD’S, French Fries

Group: Fast Foods

Date: May 8 Meal: Dinner

1 large serving (170g)

Nutrient Amount %G %TOT

Calories 573 kcal 29 26

Total Fat 30 g 47 27

Saturated Fat 6 g 30 16

Cholesterol 0 mg 0 0

Sodium 330 mg 14 21

Total Carbohydrate 70 g 23 29

Dietary Fiber 7 g 28 30

Sugars 0 g NA 0

Protein 6 g 11 8

Vitamin A 0 IU 0 0

Vitamin C 8 mg 14 27

29

Chapter 3. Using Pantry: practical examples

Calcium 27 mg 3 3

Iron 2 mg 10 10

Apples, raw, with skin

Group: Fruits and Fruit Juices

Date: May 8 Meal: Breakfast

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

Nutrient Amount %G %TOT

Calories 110 kcal 6 5

Total Fat 0 g 1 0

Saturated Fat 0 g 0 0

Cholesterol 0 mg 0 0

Sodium 2 mg 0 0

Total Carbohydrate 29 g 10 12

Dietary Fiber 5 g 20 22

Sugars 22 g NA 30

Protein 1 g 1 1

Vitamin A 114 IU 2 1

Vitamin C 10 mg 16 32

Calcium 13 mg 1 2

Iron 0 mg 1 1

Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes

Group: Breakfast Cereals

Date: May 8 Meal: Breakfast

1 cup (1 NLEA serving) (28g)

Nutrient Amount %G %TOT

Calories 101 kcal 5 5

Total Fat 0 g 0 0

Saturated Fat 0 g 0 0

Cholesterol 0 mg 0 0

Sodium 202 mg 8 13

Total Carbohydrate 24 g 8 10

Dietary Fiber 1 g 3 3

Sugars 3 g NA 4

Protein 2 g 4 3

Vitamin A 501 IU 10 3

Vitamin C 6 mg 10 20

Calcium 1 mg 0 0

Iron 8 mg 45 46

Snacks, popcorn, oil-popped, unsalted

Group: Snacks

Date: May 8 Meal: Dinner

2 oz (57g)

Nutrient Amount %G %TOT

Calories 295 kcal 15 13

Total Fat 16 g 25 14

Saturated Fat 3 g 14 7

30

Chapter 3. Using Pantry: practical examples

Cholesterol 0 mg 0 0

Sodium 2 mg 0 0

Total Carbohydrate 33 g 11 14

Dietary Fiber 6 g 23 25

Sugars 0 g NA 0

Protein 5 g 10 7

Vitamin A 87 IU 2 1

Vitamin C 0 mg 0 1

Calcium 6 mg 1 1

Iron 2 mg 9 9

Chicken, broilers or fryers, wing, meat and skin, cooked, roasted

Group: Poultry Products

Date: May 8 Meal: Lunch

Refuse: 48 percent Bone

3 wing, bone removed (102g)

Nutrient Amount %G %TOT

Calories 296 kcal 15 13

Total Fat 20 g 31 18

Saturated Fat 6 g 28 15

Cholesterol 86 mg 29 36

Sodium 84 mg 3 5

Total Carbohydrate 0 g 0 0

Dietary Fiber 0 g 0 0

Sugars 0 g 0 0

Protein 27 g 55 38

Vitamin A 161 IU 3 1

Vitamin C 0 mg 0 0

Calcium 15 mg 2 2

Iron 1 mg 7 7

Ice creams, chocolate, rich

Group: Sweets

Date: May 8 Meal: Lunch

1 cup (148g)

Nutrient Amount %G %TOT

Calories 377 kcal 19 17

Total Fat 25 g 39 23

Saturated Fat 15 g 77 40

Cholesterol 89 mg 30 38

Sodium 84 mg 4 5

Total Carbohydrate 31 g 10 13

Dietary Fiber 1 g 5 6

Sugars 26 g NA 35

Protein 7 g 14 10

Vitamin A 1055 IU 21 7

Vitamin C 1 mg 1 2

Calcium 210 mg 21 27

Iron 2 mg 8 9

McDONALD’S, Cheeseburger

31

Chapter 3. Using Pantry: practical examples

Group: Fast Foods

Date: May 8 Meal: Dinner

1 item (119g)

Nutrient Amount %G %TOT

Calories 313 kcal 16 14

Total Fat 14 g 22 13

Saturated Fat 5 g 26 14

Cholesterol 42 mg 14 18

Sodium 745 mg 31 47

Total Carbohydrate 33 g 11 14

Dietary Fiber 1 g 5 6

Sugars 7 g NA 10

Protein 15 g 31 21

Vitamin A 289 IU 6 2

Vitamin C 1 mg 1 2

Calcium 199 mg 20 25

Iron 3 mg 16 16

Carrots, raw

Group: Vegetables and Vegetable Products

Date: May 8 Meal: Lunch

Refuse: 11 percent Crown, tops and scrapings

1 large (7-1/4" to 8-/1/2" long) (72g)

Nutrient Amount %G %TOT

Calories 30 kcal 1 1

Total Fat 0 g 0 0

Saturated Fat 0 g 0 0

Cholesterol 0 mg 0 0

Sodium 50 mg 2 3

Total Carbohydrate 7 g 2 3

Dietary Fiber 2 g 8 9

Sugars 3 g NA 5

Protein 1 g 1 1

Vitamin A 12104 IU 242 82

Vitamin C 4 mg 7 14

Calcium 24 mg 2 3

Iron 0 mg 1 1

You also want to know what all this adds up to:

Example 3-8. Getting totals about a diary

$ pantry --print sum diary

SUM:

Nutrient Amount %G

Calories 2217 kcal 111

Total Fat 111 g 170

Saturated Fat 38 g 191

32

Chapter 3. Using Pantry: practical examples

Cholesterol 236 mg 79

Sodium 1599 mg 67

Total Carbohydrate 239 g 80

Dietary Fiber 23 g 92

Sugars 74 g NA

Protein 72 g 144

Vitamin A 14774 IU 295

Vitamin C 31 mg 51

Calcium 780 mg 78

Iron 18 mg 98

If your diary file contained foods for several days, you would have used --date to limit the search
results to just today.

If this seemed to require a lot of typing, that’s because it did require a lot of typing. Later we’ll learn
some ways you can speed this process up.

3.3. Organizing your foods into files

3.3.1. A quick file

As you’ve seen from our numerous examples, sometimes the names of foods can get fairly long.
Furthermore, because the good people at USDA are so industrious, a search for something seemingly
simple in the master file can turn up numerous results. For instance, pantry --ignore-case

--name milk --group dairy --print names master returns 64 foods. You probably don’t want
to type Milk, reduced fat, fluid, 2% milkfat, with added vitamin A every time you
have some milk.

One excellent solution for this problem is to keep copies of foods you eat frequently in a separate,
smaller file--perhaps quick. If you know that there is only one food in your quick file that contains
milk, you can just search for pantry --ignore-case --name milk quick instead. You can even
change the names of foods using --c-name, so Milk, reduced fat, 2% milkfat, with added

vitamin A can become simply Milk 2% if that’s what you want.

To make this really easy, change the foods in your quick so that the quantity and unit traits are already
set to those you use most frequently.

You could also make changes to the master file itself, but I prefer to leave this file untouched and store
my frequently-eaten foods in a different file.

33

Chapter 3. Using Pantry: practical examples

3.3.2. Organizing diary files

If you want to keep track of what you eat, Pantry is flexible in where you store the foods you eat. You can
choose to keep all the foods you ever eat in a single file. However, to make any sense of such a file, you
may find that you have to enter date and meal traits for every food you enter. As we’ve seen, that can
require a lot of typing.

But remember, Pantry is flexible. You can instead decide to keep a separate file for each day, or a
separate file for each meal. You can of course sort these into directories however you see fit. Remember
that pantry is flexible and can search and print results from more than one file at a time.

Pantry’s commands can get verbose, as you have seen. Therefore it can be quite helpful to devise scripts
or shell functions of your own that will help you cut the amount of typing you must do. We’ll see how to
do that later.

34

Chapter 4. More Pantry usage

Now that you have seen some practical examples of how to use Pantry, there will be even more
information that you will find useful in this chapter.

4.1. Using the --sort option to sort foods within a report

As you have seen before, Pantry does not sort foods when it stores them. This allows Pantry to store and
retrieve foods very quickly, but it also means that your foods come out in a big jumble:

Example 4-1. Pantry does not sort foods

$ pantry --date "May 8" --print traits-blank diary

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Dairy and Egg Products

Date: May 8 Meal: Breakfast

1 cup (244g)

McDONALD’S, French Fries

Group: Fast Foods

Date: May 8 Meal: Dinner

1 large serving (170g)

Apples, raw, with skin

Group: Fruits and Fruit Juices

Date: May 8 Meal: Breakfast

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes

Group: Breakfast Cereals

Date: May 8 Meal: Breakfast

1 cup (1 NLEA serving) (28g)

Snacks, popcorn, oil-popped, unsalted

Group: Snacks

Date: May 8 Meal: Dinner

2 oz (57g)

Chicken, broilers or fryers, wing, meat and skin, cooked, roasted

Group: Poultry Products

Date: May 8 Meal: Lunch

Refuse: 48 percent Bone

3 wing, bone removed (102g)

Ice creams, chocolate, rich

Group: Sweets

Date: May 8 Meal: Lunch

35

Chapter 4. More Pantry usage

1 cup (148g)

McDONALD’S, Cheeseburger

Group: Fast Foods

Date: May 8 Meal: Dinner

1 item (119g)

Carrots, raw

Group: Vegetables and Vegetable Products

Date: May 8 Meal: Lunch

Refuse: 11 percent Crown, tops and scrapings

1 large (7-1/4" to 8-/1/2" long) (72g)

This is of course a bit hard to comprehend. Of course, I wouldn’t be bringing this up if there weren’t a
solution at hand: the --sort option. Use it and Pantry will sort the buffer before it is printed. The
--sort option takes a single argument to indicate how you want your foods sorted. This argument
consists of a series of letters, with each letter being the first letter of the trait you wish to use as a sorting
key. For example, to sort by meal and then by name, use --sort mn. Lower-case letters sort in
ascending order, while upper-case letters sort in descending order. So, to sort the meal names in
ascending order and then the food names in descending order, use --sort mN:

Example 4-2. Using the --sort option

$ pantry --date "May 8" --sort mN --print traits-blank diary

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Dairy and Egg Products

Date: May 8 Meal: Breakfast

1 cup (244g)

Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes

Group: Breakfast Cereals

Date: May 8 Meal: Breakfast

1 cup (1 NLEA serving) (28g)

Apples, raw, with skin

Group: Fruits and Fruit Juices

Date: May 8 Meal: Breakfast

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

Snacks, popcorn, oil-popped, unsalted

Group: Snacks

Date: May 8 Meal: Dinner

2 oz (57g)

McDONALD’S, French Fries

Group: Fast Foods

Date: May 8 Meal: Dinner

1 large serving (170g)

McDONALD’S, Cheeseburger

36

Chapter 4. More Pantry usage

Group: Fast Foods

Date: May 8 Meal: Dinner

1 item (119g)

Ice creams, chocolate, rich

Group: Sweets

Date: May 8 Meal: Lunch

1 cup (148g)

Chicken, broilers or fryers, wing, meat and skin, cooked, roasted

Group: Poultry Products

Date: May 8 Meal: Lunch

Refuse: 48 percent Bone

3 wing, bone removed (102g)

Carrots, raw

Group: Vegetables and Vegetable Products

Date: May 8 Meal: Lunch

Refuse: 11 percent Crown, tops and scrapings

1 large (7-1/4" to 8-/1/2" long) (72g)

Remember that all traits in Pantry are strings, including the date pctRefuse, and qty traits. These
traits are sorted as strings rather than as numbers or as dates. This can lead to unexpected results. For
example, sorting the strings 1, 2, and 10 will yield 1, 10, 2.

Similarly, when sorting dates, 7-1, 7-10, and 7-2 will not yield the results you may expect. An easy fix
for this is to use leading zeroes; sorting 07-01, 07-02, and 07-10 will do what you expect.

As you can see above, the meal traits are sorted in alphabetical order, yielding Breakfast, Dinner, and
Lunch. You can, however, sort these into whatever order you wish, such as the more logical Breakfast,
Lunch, and Dinner. We’ll find out how to do this when we talk about configuring Pantry, later.

Finally, perhaps you want to be able to sort your foods into any arbitrary order. The order trait is useful
for this purpose. To sort foods into any order, just assign appropriate order values for each food
(perhaps a, b, c or 010, 020, and 030) and then use --sort o. Pantry can even help you by assigning
values to the order trait automatically, as we will see in the next section.

4.2. More change options

4.2.1. Using the --auto-order option

Often you will find that you enter foods into Pantry in the same order in which you eat them. You might
find it handy to have Pantry show those foods to you in the same order in which you entered them. The

37

Chapter 4. More Pantry usage

--auto-order option is handy for this.

When you add foods to a file and you have chosen the --auto-order, Pantry will automatically change
the order trait of the added foods. To find what the new order trait should be, Pantry first searches the
file that the food is being added to for other foods with values for the date and meal traits that are
identical to the ones in the food that is being added. Pantry then sorts these foods in ascending order by
their order trait.

Pantry then checks to see if the highest food’s order trait matches the regular expression ^[0-9]{4}$.
Examples of values for which this would be true include 0010, 2338, and 0100. Pantry then takes that
value, removes any leading zeroes, removes the last digit, and increments the result by one. A trailing
zero is added to the result, and the result is left-padded with zeroes if necessary in order to make it four
digits. Thus, if the previously highest order trait was 0010, the resulting order is 0020. 2338 yields a
new order of 2340, and 0100 leads to 0110.

If the highest food’s order trait does not match the regular expression ^[0-9]{4}$, then the new
food’s order trait is set to 0010.

As always, an example helps. We’ll use the same foods as we did in a previous example, but let’s say you
ate the exact same thing one day later:

Example 4-3. Using --auto-order

$ pantry --ignore-case --name "apples, raw, with skin" --c-qty \

> 1 --c-unit large --c-date "May 9" --c-meal Breakfast --auto- \

> order --add diary master

$ pantry --ignore-case --name "kellogg’s corn flakes" \

> --c-qty 1 --c-unit cup --c-date "May 9" --c-meal Breakfast \

> --auto-order --add diary master

$ pantry --ignore-case --name "milk, reduced fat, fluid, 2% \

> milkfat, with added vitamin A" --c-qty 1 --c-unit cup --c-date \

> "May 9" --c-meal Breakfast --auto-order --add diary master

$ pantry --ignore-case --name "carrots, raw" --c-qty 1 \

> --c-unit ^large --c-date "May 9" --c-meal Lunch --auto-order \

> --add diary master

$ pantry --ignore-case --name "Chicken, broilers or fryers, wing, \

> meat and skin, cooked, roasted" --c-date "May 9" \

> --c-unit wing --c-qty 3 --c-meal Lunch --auto-order --add diary master

$ pantry --ignore-case --name "ice creams, chocolate, rich" \

> --c-qty .5 --c-unit cup --c-date "May 9" --c-meal \

> "Lunch" --auto-order --add diary master

$ pantry --ignore-case --name "mcdonald’s, cheeseburger" \

> --c-unit item --c-qty 1 --c-date "May 9" --c-meal \

> "Dinner" --auto-order --add diary master

$ pantry --ignore-case --name "mcdonald’s, french fries" \

> --c-qty 1 --c-unit large --c-date "May 9" --c-meal Dinner \

> --auto-order --add diary master

$ pantry --ignore-case --name "popcorn, oil-popped, unsalted" \

> --c-qty "2 1/2" --c-unit oz --c-date "May 9" \

38

Chapter 4. More Pantry usage

> --c-meal Dinner --auto-order --add diary master

Now you can sort the foods by their order traits:

Example 4-4. Using --sort with foods that have been automatically ordered

$ pantry --date "May 9" --print traits-blank --sort dmo diary

Apples, raw, with skin

Group: Fruits and Fruit Juices

Date: May 9 Meal: Breakfast Order: 0010

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes

Group: Breakfast Cereals

Date: May 9 Meal: Breakfast Order: 0020

1 cup (1 NLEA serving) (28g)

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Dairy and Egg Products

Date: May 9 Meal: Breakfast Order: 0030

1 cup (244g)

McDONALD’S, Cheeseburger

Group: Fast Foods

Date: May 9 Meal: Dinner Order: 0010

1 item (119g)

McDONALD’S, French Fries

Group: Fast Foods

Date: May 9 Meal: Dinner Order: 0020

1 large serving (170g)

Snacks, popcorn, oil-popped, unsalted

Group: Snacks

Date: May 9 Meal: Dinner Order: 0030

2 1/2 oz (71g)

Carrots, raw

Group: Vegetables and Vegetable Products

Date: May 9 Meal: Lunch Order: 0010

Refuse: 11 percent Crown, tops and scrapings

1 large (7-1/4" to 8-/1/2" long) (72g)

Chicken, broilers or fryers, wing, meat and skin, cooked, roasted

Group: Poultry Products

Date: May 9 Meal: Lunch Order: 0020

Refuse: 48 percent Bone

3 wing, bone removed (102g)

Ice creams, chocolate, rich

Group: Sweets

39

Chapter 4. More Pantry usage

Date: May 9 Meal: Lunch Order: 0030

.5 cup (74g)

The results are a bit different if we set only the date trait when we use --auto-order:

Example 4-5. Using --auto-order with only the date trait changed

$ pantry --ignore-case --name "apples, raw, with skin" --c-qty \

> 1 --c-unit large --c-date "May 10" --auto-order --add diary \

> master

$ pantry --ignore-case --name "kellogg’s corn flakes" \

> --c-qty 1 --c-unit cup --c-date "May 10" --auto-order --add \

> diary master

$ pantry --ignore-case --name "milk, reduced fat, fluid, 2% \

> milkfat, with added vitamin A" --c-qty 1 --c-unit cup --c-date \

> "May 10" --auto-order --add diary master

$ pantry --ignore-case --name "carrots, raw" --c-qty 1 \

> --c-unit ^large --c-date "May 10" --auto-order --add diary \

> master

$ pantry --ignore-case --name "Chicken, broilers or fryers, wing, \

> meat and skin, cooked, roasted" --c-date "May 10" \

> --c-unit wing --c-qty 3 --auto-order --add diary master

$ pantry --ignore-case --name "ice creams, chocolate, rich" \

> --c-qty 1 --c-unit cup --c-date "May 10" --auto-order --add \

> diary master

$ pantry --ignore-case --name "mcdonald’s, cheeseburger" \

> --c-unit item --c-qty 1 --c-date "May 10" --auto-order --add \

> diary master

$ pantry --ignore-case --name "mcdonald’s, french fries" \

> --c-qty 1 --c-unit large --c-date "May 10" --auto-order \

> --add diary master

$ pantry --ignore-case --name "popcorn, oil-popped, unsalted" \

> --c-qty 2 --c-unit oz --c-date "May 10" --auto-order --add \

> diary master

$ pantry --date "May 10" --print traits-blank --sort o diary

Apples, raw, with skin

Group: Fruits and Fruit Juices

Date: May 10 Order: 0010

Refuse: 8 percent Core and stem

1 large (3-1/4" dia) (approx 2 per lb) (212g)

Cereals ready-to-eat, KELLOGG, KELLOGG’S Corn Flakes

Group: Breakfast Cereals

Date: May 10 Order: 0020

1 cup (1 NLEA serving) (28g)

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Dairy and Egg Products

Date: May 10 Order: 0030

1 cup (244g)

40

Chapter 4. More Pantry usage

Carrots, raw

Group: Vegetables and Vegetable Products

Date: May 10 Order: 0040

Refuse: 11 percent Crown, tops and scrapings

1 large (7-1/4" to 8-/1/2" long) (72g)

Chicken, broilers or fryers, wing, meat and skin, cooked, roasted

Group: Poultry Products

Date: May 10 Order: 0050

Refuse: 48 percent Bone

3 wing, bone removed (102g)

Ice creams, chocolate, rich

Group: Sweets

Date: May 10 Order: 0060

1 cup (148g)

McDONALD’S, Cheeseburger

Group: Fast Foods

Date: May 10 Order: 0070

1 item (119g)

McDONALD’S, French Fries

Group: Fast Foods

Date: May 10 Order: 0080

1 large serving (170g)

Snacks, popcorn, oil-popped, unsalted

Group: Snacks

Date: May 10 Order: 0090

2 oz (57g)

You might complain that the previous examples took a lot of typing. We’ll learn how you can cut down
the amount of typing in a later section.

4.2.2. Changing food quantities by refuse amount

Internally, Pantry’s nutrient amounts are recorded as amount of nutrient for a given amount of edible
food. More specifically, Pantry tracks each of its foods by recording the amount of each nutrient per 100
grams of edible food. How Pantry converts from nutrient per 100 grams of edible food to the total
amount of nutrient in your foods varies depending upon the unit of your food.

The units g, oz, and lb are available for every food. For foods using one of these available units, it is
simple for Pantry to convert from nutrients per 100 grams to nutrients per ounce or nutrients per pound.

41

Chapter 4. More Pantry usage

Any of a food’s other avaialble units are recorded in Pantry with their total grams of edible portion.
Pantry then uses this gram weight and the amount of nutrient per 100 grams of edible portion to compute
the total nutrients in your food.

An example will prove helpful. Let’ take some apples:

Example 4-6. Traits and available units for an apple

$ pantry --name "Apples, raw, with skin" --print names-units \

> master

Apples, raw, with skin

cup, quartered or chopped

large (3-1/4" dia) (approx 2 per lb)

NLEA serving

medium (2-3/4" dia) (approx 3 per lb)

cup slices

small (2-1/2" dia) (approx 4 per lb)

By now this looks familiar to you. This way, if you eat a large apple, you change the unit of the food to
large (3-1/4" dia) (approx 2 per lb). Pantry knows how many grams a large apple weighs.
To find out how many grams correspond to each unit, use the measures report, which shows the weight
in grams of each measure:

Example 4-7. Using the measures report

$ pantry --name "Apples, raw, with skin" --print names- \

> measures master

Apples, raw, with skin

cup, quartered or chopped (125g)

lb (454g)

g (1g)

large (3-1/4" dia) (approx 2 per lb) (212g)

oz (28g)

NLEA serving (154g)

medium (2-3/4" dia) (approx 3 per lb) (138g)

cup slices (110g)

small (2-1/2" dia) (approx 4 per lb) (106g)

The weights in grams correspond to the edible portion of the food. Thus, in this example, a typical large
apple weighs 212 grams, without the inedible portions (such as the core).

But perhaps you eat an apple and you want to use the g, oz, or lb unit. This is especially likely if, for
example, you have a kitchen scale and you wish to precisely measure the amount of all the food you eat.
If you wish to weigh your own apples rather than using the approximations given in the available units,
you have a few options.

42

Chapter 4. More Pantry usage

One option is to simply cut up the apple, cut out the core, and then weigh the resulting chunks. That is
fine if you usually cut up your apples (as I do) but not so good if you do not want to chop up your apples
all the time.

Another option is to weigh the entire apple, whole, and record that you ate (for example) a seven-ounce
apple. The only problem with this is that the nutrient amounts in Pantry are for the edible portion of the
food. Thus, if you do not account for the fact that a fraction of the apple is a core and a stem, you will
overestimate how much apple you ate.1 To compensate for this, you could weigh the entire apple, eat it,
and then weigh the leftover core and stem. You would subtract the weight of the core and stem from the
weight of the entire apple, and then figure that you ate the difference. That would get tedious.

A third option is to use the --refuse option. It uses the refuse trait to reduce your food’s quantity by
the percentage of refuse. As you saw in the example above, an apple is 8 percent refuse. So, assuming
you have an eight-ounce apple:2

Example 4-8. Using the --refuse option

$ pantry --name "Apples, raw, with skin" --c-qty 8 --c-unit oz \

> --print traits-nuts --refuse master

Apples, raw, with skin

Group: Fruits and Fruit Juices

Refuse: 8 percent Core and stem

7.36 oz (209g)

Nutrient Amount %G %TOT

Calories 109 kcal 5 100

Total Fat 0 g 1 100

Saturated Fat 0 g 0 100

Cholesterol 0 mg 0 0

Sodium 2 mg 0 100

Total Carbohydrate 29 g 10 100

Dietary Fiber 5 g 20 100

Sugars 22 g NA 100

Protein 1 g 1 100

Vitamin A 113 IU 2 100

Vitamin C 10 mg 16 100

Calcium 13 mg 1 100

Iron 0 mg 1 100

As you can see, the --refuse option reduces the quantity of the apple by eight percent. This way, you
can weigh the entire apple (including the core) and still get a good estimate of which portion of the apple
was actually edible.

It only makes sense to use the --refuse option when you are using the g, oz, or lb units. Every other
unit in the master file already accounts for refuse--for example, with the apple, the large (3-1/4"

dia) (approx 2 per lb) already accounts for the eight percent refuse.

43

Chapter 4. More Pantry usage

When using the --refuse option, every food in the buffer will have its quantity reduced by its
corresponding refuse percentage. This of course does not affect foods with zero percent refuse or foods
whose pctRefuse trait is empty.

4.3. Configuring Pantry

The Pantry configuration file is XML. If you know nothing about XML, the Wikipedia article
(http://en.wikipedia.org/wiki/XML) is a good place to start.

In this section we’ll walk through how to create your own Pantry configuration file. The default name for
this file is ~/.pantryrc.xml. If you want to use a different filename for your configuration file, you
may specify it by setting an environment variable named PANTRYRC.

So, to get started open a text file named ~/.pantryrc.xml in your favorite text editor. Every
.pantryrc.xml file contains the root element pantryrc, so start by including that in your
.pantryrc.xml:

Example 4-9. Beginning a .pantryrc.xml file

<pantryrc>
</pantryrc>

4.3.1. Specifying your own nutrient lists

You may specify nutrient lists of your own in your .pantryrc.xml file. Each nutrient list you create
will reside inside a nutrient-list element. To define multiple nutrient lists, you may define multiple
nutrient-list elements; each nutrient-list element must be the direct descendant of the
nutrient-lists element.

Each nutrient-list element has a single attribute, name, which defines the name of the nutrient list.
name must begin with a letter, with subsequent characters being either letters or numbers. The
nutrient-list element is parent to one or more empty nutrient elements.

Each nutrient element has three attributes. The first is name, such as Calories or Protein. The
second is units, or the units corresponding to the name. For Calories this would be kcal; for
Protein, this would be g. The third attribute, goal, is optional. If you wish to set a goal for your intake
of this nutrient, set attribute equal to your numeric goal. If on the other hand you are including this
nutrient in your nutrient list only because you want to see this nutrient printed in reports, you may set the
goal attribute to the empty string ("") or you may simply omit this attribute.

44

Chapter 4. More Pantry usage

The name and units values you use in your nutrient elements must correspond to one of the possible
nutrients in Pantry. To see a list of all the possible nutrients in Pantry, use --nutrient-list all

--print list:

Example 4-10. Showing all available nutrients

$ pantry --nutrient-list all --print list

==========

pantry: warning: you did not specify any files to search.

==========

Nutrient Name Units Goal

--

10:0 g None

12:0 g None

13:0 g None

14:0 g None

14:1 g None

15:0 g None

15:1 g None

16:0 g None

16:1 c g None

16:1 t g None

[trimmed to save space]

4.3.1.1. Specifying your own nutrient lists: an example

To get started, let’s suppoose I made a New Year’s resolution to eat less. I want to eat 1800 calories a day.
I also want to make sure I eat 40 grams of fat per day, 90 grams of protein a day, and 270 grams of carbs
a day. I’m also curious about how much calcium I am taking in, but I don’t want to bother setting a goal
for that. I decide to create a new nutrient list called eatless to help me meet my goals. Here is what my
.pantryrc.xml would look like:

Example 4-11. .pantryrc.xml with new nutrient list

<pantryrc>
<nutrient-list name=’eatless’>
<nutrient name=’Calories’ units=’kcal’ goal=’1800’ />
<nutrient name=’Total Fat’ units=’g’ goal=’40’ />
<nutrient name=’Protein’ units=’g’ goal=’90’ />
<nutrient name=’Total Carbohydrate’ units=’g’ goal=’270’ />
<nutrient name=’Calcium’ units=’mg’ />
</nutrient-list>
</pantryrc>

To use my new nutrient list, I can just specify --nutrient-list eatless when I use pantry:

45

Chapter 4. More Pantry usage

Example 4-12. Using a new nutrient list

$ pantry --name "Apples, raw, with skin" --print traits-nuts \

> --nutrient-list eatless master

Apples, raw, with skin

Group: Fruits and Fruit Juices

Refuse: 8 percent Core and stem

100 g (100g)

Nutrient Amount %G %TOT

Calories 52 kcal 3 100

Total Fat 0 g 0 100

Protein 0 g 0 100

Total Carbohydrate 14 g 5 100

Calcium 6 mg NA 100

4.3.2. Specifying custom sort orders

As we learned previously, you can use the --sort to sort the reports that Pantry prints by the traits of
the foods. This sorts traits in their lexical order. What if you want to sort something into an arbitrary
order? For instance, you might want to sort your meals into the order Breakfast, Lunch, and Dinner,
which certainly is not lexical order.

To do this you can specify a sort order in your .pantryrc.xml file. You may do this for any trait that is
not a numeric trait--that is, for any trait except the qty and pctRefuse traits. To do this, include an
element named sort-order in your .pantryrc.xml file. This element must have a single attribute,
trait. For example, here we wish to specify a custom sort order for the meal trait, so we set the trait
attribute to meal.

Inside the sort-order element, include a single item element for each value you wish to include in
your sort order. Each item element must have a single attribute, value. Here, for example, is how to sort
meals into the order Breakfast, Lunch, and Dinner. If the value of a food’s trait is not in the sort order
list (for example, supper), it is sorted alphabetically with other foods whose trait value is not in the list.

Example 4-13. .pantryrc.xml with sort-order element

<pantryrc>
<nutrient-list name=’eatless’>
<nutrient name=’Calories’ units=’kcal’ goal=’1800’ />
<nutrient name=’Total Fat’ units=’g’ goal=’40’ />
<nutrient name=’Protein’ units=’g’ goal=’90’ />
<nutrient name=’Total Carbohydrate’ units=’g’ goal=’270’ />
<nutrient name=’Calcium’ units=’mg’ />
</nutrient-list>

<sort-order trait=’meal’>
<item value=’Breakfast’ />

46

Chapter 4. More Pantry usage

<item value=’Lunch’ />
<item value=’Dinner’ />
</sort-order>
</pantryrc>

4.4. Changing food quantities by nutrient amount

pantry features a --by-nut change option that will automatically change the quantity of a food so that
it has a particular amount of a certain nutrient that you specify.3 The --by-nut option takes two
arguments. The first argument is a regular expression to match the nutrient you wish to use. The second
argument is the amount of that nutrient that you wish the food to be set to. Let us look at an example:

Example 4-14. Using the --by-nut option

$ pantry --by-nut Calories 200 --name "Apples, raw, with skin" \

> --print traits-nuts master

Apples, raw, with skin

Group: Fruits and Fruit Juices

Refuse: 8 percent Core and stem

384.62 g (385g)

Nutrient Amount %G %TOT

Calories 200 kcal 10 100

Total Fat 1 g 1 100

Saturated Fat 0 g 1 100

Cholesterol 0 mg 0 0

Sodium 4 mg 0 100

Total Carbohydrate 53 g 18 100

Dietary Fiber 9 g 37 100

Sugars 40 g NA 100

Protein 1 g 2 100

Vitamin A 208 IU 4 100

Vitamin C 18 mg 29 100

Calcium 23 mg 2 100

Iron 0 mg 3 100

As you can see, Pantry automatically changed the quantity of apples so that you would have 200 calories
of apple. This works with any nutrient:

Example 4-15. Using --by-nut with Total Fat

$ pantry --by-nut "Total Fat" 5 --name "Avocados, raw, \

> California" --print traits-nuts master

Avocados, raw, California

Group: Fruits and Fruit Juices

Refuse: 33 percent Seed and skin

32.45 g (32g)

47

Chapter 4. More Pantry usage

Nutrient Amount %G %TOT

Calories 54 kcal 3 100

Total Fat 5 g 8 100

Saturated Fat 1 g 3 100

Cholesterol 0 mg 0 0

Sodium 3 mg 0 100

Total Carbohydrate 3 g 1 100

Dietary Fiber 2 g 9 100

Sugars 0 g NA 100

Protein 1 g 1 100

Vitamin A 48 IU 1 100

Vitamin C 3 mg 5 100

Calcium 4 mg 0 100

Iron 0 mg 1 100

That gave us the right number of grams of avocado that contain 5 grams of fat. The --by-nut also
works with the --c-unit option. For example, here is how you can find out what fraction of an avocado
you would need to eat in order to consume 5 grams of fat:

Example 4-16. Using --by-nut with --c-unit

$ pantry --by-nut "Total Fat" 5 --name "Avocados, raw, \

> California" --c-unit fruit --print traits-nuts master

Avocados, raw, California

Group: Fruits and Fruit Juices

Refuse: 33 percent Seed and skin

0.24 fruit, without skin and seed (33g)

Nutrient Amount %G %TOT

Calories 55 kcal 3 100

Total Fat 5 g 8 100

Saturated Fat 1 g 3 100

Cholesterol 0 mg 0 0

Sodium 3 mg 0 100

Total Carbohydrate 3 g 1 100

Dietary Fiber 2 g 9 100

Sugars 0 g NA 100

Protein 1 g 1 100

Vitamin A 48 IU 1 100

Vitamin C 3 mg 5 100

Calcium 4 mg 0 100

Iron 0 mg 1 100

The --by-nut option is useful in at least two circumstances. First, as we have already seen, it is useful
if you are wondering how much of a food you need to consume in order to get a certain amount of a
given nutrient. Second, it is useful if you wish to approximate intake of a food that is not already in the
master file. For example, suppose I eat 1/2 of a cup of Stonyfield After Dark Chocolate ice cream.
(http://www.stonyfield.com/OurProducts/FrozenYogurtIceCream.cfm). Many brand-name foods are
already in the master file, but this one is not. I look through the ice creams and find that the closest
thing to Stonyfield in the master file is probably Ice creams, chocolate, rich:

48

Chapter 4. More Pantry usage

Example 4-17. The closest thing to Stonyfield

$ pantry --exact-match --name "Ice creams, chocolate, rich" \

> --c-unit "cup" --c-qty .5 --print traits-nuts master

Ice creams, chocolate, rich

Group: Sweets

.5 cup (74g)

Nutrient Amount %G %TOT

Calories 189 kcal 9 100

Total Fat 13 g 19 100

Saturated Fat 8 g 38 100

Cholesterol 44 mg 15 100

Sodium 42 mg 2 100

Total Carbohydrate 15 g 5 100

Dietary Fiber 1 g 3 100

Sugars 13 g NA 100

Protein 3 g 7 100

Vitamin A 528 IU 11 100

Vitamin C 0 mg 1 100

Calcium 105 mg 11 100

Iron 1 mg 4 100

But Stonyfield apparently is even richer than this. 1/2 cup of Ice creams, chocolate, rich has
189 calories, but looking at the Stonyfield label tells me that 1/2 cup of Stonyfield has 250 calories. What
should I do? Well, as we will learn in a later chapter, I can create a custom food for Stonyfield After Dark
Chocolate ice cream. Or I might figure that Ice creams, chocolate, rich is close enough for our
purposes. I can use it instead. My results will not be as accurate, but perhaps I am not feeling the need to
be super accurate today. Because I know I ate 250 calories of Stonyfield, I just do this:

Example 4-18. Approximating one food by using another food and the --by-nut option

$ pantry --exact-match --name "Ice creams, chocolate, rich" \

> --by-nut Calories 250 --print traits-nuts master

Ice creams, chocolate, rich

Group: Sweets

98.04 g (98g)

Nutrient Amount %G %TOT

Calories 250 kcal 13 100

Total Fat 17 g 26 100

Saturated Fat 10 g 51 100

Cholesterol 59 mg 20 100

Sodium 56 mg 2 100

Total Carbohydrate 20 g 7 100

Dietary Fiber 1 g 4 100

Sugars 17 g NA 100

Protein 5 g 9 100

Vitamin A 699 IU 14 100

Vitamin C 0 mg 1 100

Calcium 139 mg 14 100

Iron 1 mg 6 100

49

Chapter 4. More Pantry usage

If you compare Pantry’s output to the Stonyfield label (available at the website) you will see that Pantry
comes out fairly close to what is on the label.

The first argument--the nutrient name--is a regular expression. That means that it is case-sensitive, like
all other regular expressions in Pantry, unless you use the --ignore-case option. Thus, --by-nut
calories 250 will get you an error message unless you use --ignore-case but --by-nut
Calories 250 will always work. This also allows you to shorten things a bit--for example, you can use
--by-nut Saturated 250 to match Saturated Fat. In addition, the --by-nut also respects the
--exact-match option, so if you are using --exact-match, then the first argument to --by-nut are
not regular expressions and must exactly match the nutrient name.

Most commonly you would find yourself using --by-nut with Calories. Therefore, pantry has a -K
option. It is equivalent to typing --by-nut Calories:

Example 4-19. Using the -K option

$ pantry --exact-match --name "Ice creams, chocolate, rich" -K \

> 250 --print traits-nuts master

Ice creams, chocolate, rich

Group: Sweets

98.04 g (98g)

Nutrient Amount %G %TOT

Calories 250 kcal 13 100

Total Fat 17 g 26 100

Saturated Fat 10 g 51 100

Cholesterol 59 mg 20 100

Sodium 56 mg 2 100

Total Carbohydrate 20 g 7 100

Dietary Fiber 1 g 4 100

Sugars 17 g NA 100

Protein 5 g 9 100

Vitamin A 699 IU 14 100

Vitamin C 0 mg 1 100

Calcium 139 mg 14 100

Iron 1 mg 6 100

4.5. Pantry usage shortcuts

4.5.1. Using short options

For didactic purposes, all the examples in this manual use long-style options with two dashes. However,
almost every pantry option is also available in short form. The search options (which search for a
particular trait) and the change options (which change the traits of the foods in your result to a new

50

Chapter 4. More Pantry usage

value) have short options that conveniently differ only by their case. Thus, for example, -g searches by
group name, and -G changes the group name.

If you need to jog your memory on what option does what, use the --help option. This option will also
tell you which long options have corresponding short options.

In addition, when specifying reports, you may specify only the first few letters of the report
name--enough letters to unambiguously specify the report name. For example, instead of typing
--print names-nuts, you may instead type --print na-nu.

4.5.2. Learn your shell, and write scripts or functions to
automate common tasks

As you have seen, pantry commands can get lengthy. That’s one of the pitfalls of a command-line
program. However, one of the great strengths of a command-line program is that you can easily write
your own shell scripts or functions to automate commands you type frequently. In addition, shells have a
wealth of features, such as history searching and command-line editing, that will speed up your shell
usage. This will help you not only in Pantry but in other command-line tools as well.4

If you will use Pantry frequently, one of the things you will find most helpful is to write a script or
function that will add new foods to a diary file. Such a script can, for example, automatically use the
--c-date option to change the food so that it has today’s date, or automatically use the --c-meal
option. You might also write scripts or functions to easily produce reports using the --print options
you use most frequently.

The most popular shell today is bash, which is very featureful. If you have never written a shell script or
function before, take a look at the Bash Guide for Beginners
(http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html).

You may also wish to consider using a shell other than Bash. For a very well-documented shell that is
easier to learn than bash, consider fish, the Friendly Interactive Shell (http://fishshell.org). For a very
powerful shell with excellent documentation, try zsh (http://www.zsh.org/).

Finally, whether you use Bash or Zsh, I highly recommend getting a copy of From Bash to Z Shell:
Conquering the Command Line (http://www.apress.com/book/bookDisplay.html?bID=361) by Kiddle,
Peek, and Stephenson. It clearly explains many of the features of shells, such as command history and
completion, that make interactive use much easier and faster. Unlike most texts on shells, this one
focuses on interactive use. It is well worth the price.

51

Chapter 4. More Pantry usage

4.5.3. Learn other Unix utilities

Because you use Pantry from your standard command shell, you can easily combine Pantry with other
Unix utilities, in ways that even I cannot anticipate. Most obviously, you will often use Pantry with less
so that you may easily scroll through reports. You might also find yourself using sort, cut or even awk.
The possibilities are endless.

4.6. Using Pantry with screen

Though Pantry may be used in conjunction with many other Unix shell utitlities, you may find GNU
Screen to be particularly useful. screen is so useful with Pantry due to its advanced cutting-and-pasting
capabilities. Here is a good introduction (http://www.kuro5hin.org/story/2004/3/9/16838/14935) to
screen. Most Linux systems will already have screen installed; if not, you’ll be able to install it using
your distribution’s package manager.

Pantry includes the paste report, which makes screen particularly useful. Often in Pantry, you will be
searching your master file, not entirely sure what food you are looking for. On other occasions, you will
know what you are looking for, but your search terms return a lot of results to scroll through--and the
food that you want has a very long name that you do not want to have to retype. Using the paste report,
you can easily reuse your search results.

The paste report prints one line for each available unit for each food. The results include the -x, -n,
and -U options, and the results are also quoted so you may easily paste them into a subsequent pantry
command.5

To see how powerful this is, we can return to our earlier example of finding how many calories are in an
apple. You would likely start by searching the master file for the name trait apple. As we saw earlier,
this returns 163 results:

Example 4-20. Searching for apple returns 163 results

$ pantry --ignore-case --name apple --print names master

Babyfood, cereal, oatmeal, with applesauce and bananas, junior

HEALTHY CHOICE Traditional Meat Loaf w/Brown Sauce, Mashed Potatoes, Green Beans and Apple Praline Crisp, frozen meal

Pie, apple, commercially prepared, enriched flour

Apples, dried, sulfured, stewed, without added sugar

Babyfood, dessert, fruit pudding, pineapple, strained

Cereals ready-to-eat, GENERAL MILLS, OATMEAL CRISP, APPLE CINNAMON

Cereals ready-to-eat, QUAKER, QUAKER APPLE ZAPS

VERYFINE APPLE QUENCHERS Apple Raspberry Cherry Juice Cocktail, ready-to-drink

Cereals, QUAKER, Instant Oatmeal, NUTRITION FOR WOMEN, Apple Spice, dry

English muffins, raisin-cinnamon (includes apple-cinnamon)

Babyfood, cereal, rice, with applesauce and bananas, strained

Babyfood, cereal, oatmeal, with applesauce and bananas, strained

52

Chapter 4. More Pantry usage

Pineapple, raw, extra sweet variety

Cereals ready-to-eat, KELLOGG, KELLOGG’S APPLE CINNAMON SQUARES MINI-WHEATS

Custard-apple, (bullock’s-heart), raw

[trimmed to save space]

Earlier we limited our search results by typing subsequent pantry commands and tweaking the --name
argument. When we zeroed in on the food we wanted, we typed yet another pantry command, this time
to figure out the available units. Finally, we typed another pantry command to change the unit and
quantity to what we wanted and to print the nutrient information for a single large apple.

You can do this using many fewer commands with screen and the paste report. After firing up screen,
type a pantry for what you are looking for.

Example 4-21. Using the paste report

$ pantry --ignore-case --name apple --group fruit --print paste --sort n \

> master

-x -n ’Apple juice, canned or bottled, unsweetened, with added ascorbic acid’ -U ’lb’

-x -n ’Apple juice, canned or bottled, unsweetened, with added ascorbic acid’ -U ’fl oz’

-x -n ’Apple juice, canned or bottled, unsweetened, with added ascorbic acid’ -U ’oz’

-x -n ’Apple juice, canned or bottled, unsweetened, with added ascorbic acid’ -U ’g’

-x -n ’Apple juice, canned or bottled, unsweetened, with added ascorbic acid’ -U ’cup’

-x -n ’Apple juice, canned or bottled, unsweetened, without added ascorbic acid’ -U ’lb’

-x -n ’Apple juice, canned or bottled, unsweetened, without added ascorbic acid’ -U ’g’

-x -n ’Apple juice, canned or bottled, unsweetened, without added ascorbic acid’ -U ’cup’

-x -n ’Apple juice, canned or bottled, unsweetened, without added ascorbic acid’ -U ’oz’

-x -n ’Apple juice, canned or bottled, unsweetened, without added ascorbic acid’ -U ’drink box (8.45 fl oz)’

-x -n ’Apple juice, canned or bottled, unsweetened, without added ascorbic acid’ -U ’fl oz’

-x -n ’Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water without added ascorbic acid’ -U ’lb’

-x -n ’Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water without added ascorbic acid’ -U ’fl oz’

-x -n ’Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water without added ascorbic acid’ -U ’oz’

-x -n ’Apple juice, frozen concentrate, unsweetened, diluted with 3 volume water without added ascorbic acid’ -U ’g’

[trimmed to save space]

Now you can scroll through the results using Screen’s commands; copy the line you are interested in to
Screen’s paste buffer. For more details on how to do this, consult the Screen manual page under "copy".
Pay particular attention to the J command, which joins lines--this is useful if a particular line is so long
that it does not fit on one line in your terminal.6

After finding the result you are interested in, you can easily paste it in to a new command line and add
the options you need.

4.7. Multilingual Pantry

Pantry should work just fine with non-ASCII characters, such as those with accents, Cyrillic characters,
and so forth. Of course, figuring out how to get your terminal to produce these characters is up to you.

53

Chapter 4. More Pantry usage

Internally, Pantry works with Unicode characters and encodes them when appropriate using your
system’s default encoding; Pantry assumes that all input from your terminal is encoded using your
system’s default encoding. It is difficult to test all possibilities though, so if you encounter any bugs in
this area please let me know.

Notes
1. To which you might say: "big deal! It’s just an apple core." The problem is minor with an apple, but

consider the same issue with an ear of corn on the cob, or a pork sparerib...

2. Nowadays I frequently see single apples that weigh nearly a pound!

3. This feature shamelessly copied from a similar feature in NUT, as described under "Foods That Are
Not in the Database" on How I Use NUT (http://www.lafn.org/~av832/usenut.html).

4. Pantry used to include a script called pantry-addTo that helps cut typing. However, in release 18 I
removed it from Pantry. pantry-addTo was difficult to document because it is a personal hack that
does not nearly conform to any interface standards. Personal hacks are wonderful for personal use,
but they shouldn’t be distributed for others. Thus, feel free to write your own personal hacks that will
work perfectly for you.

5. Actually, the results are quoted so they may be pasted into shells that have Bourne-like syntax, such
as bash, zsh, and fish. I don’t know enough about csh-like shells to know if the paste report works
with them.

6. You don’t have to use screen; you can copy and paste using your terminal emulator if you wish.
Though I think screen is easier to use, you might diasgree...

54

Chapter 5. Adding new foods and editing the
nutrients or units of existing foods

The master file comes with over 7,000 foods. However, you might find that you also need to add
additional foods to Pantry. This chapter will tell you how to add additional foods by creating an XML
file.

If you have a prepackaged food that already has a nutrition label, you can easily add it to a file. If
however you have multiple foods that you wish to combine, then what you want is a recipe. We will
discuss recipes in the next chapter.

As you may recall from our earlier discussions, an essential element of Pantry is the food. Foods are
contained in food files. There are several different kinds of food files. Until now, all the food files we
have used have been Pantry native files. You have been able to copy foods from one Pantry native file,
such as the master file, and change the traits of those foods. To create entirely new foods, you will
create a different type of food file, which we will call a Pantry XML file. Unlike a Pantry native file, the
Pantry XML file is in human-readable, plain-text XML, which allows you to create new foods.

This chapter will lead you through how to create your own foods, step by step. If you’re the impatient
sort who would rather learn by seeing some examples, consult the examples directory in the Pantry
distribution.

5.1. Creating a new food

5.1.1. Create a new blank XML file

In your favorite text editor, create a new file whose name ends with .xml. As an example, we will create
a file named pantry.xml.

The root element of a Pantry XML file is a pantry element, so to get started create that element.

Example 5-1. pantry.xml file with blank pantry element

<pantry>
</pantry>

55

Chapter 5. Adding new foods and editing the nutrients or units of existing foods

5.1.2. Create a food element

Each food you create in the pantry.xml file is contained within a food element. The food element has
several attributes. Each corresponds to the various food traits that we’ve discussed earlier: name, group,
date, meal, unit, qty, and comment. Only the unit and qty attributes are required. The unit
attribute may contain g, oz, or lb, or it may contain one of the units given in the units element, which
we will discuss shortly. The qty attribute may contain a number, a fraction, or a mixed number.

For the other attributes, which are optional, pantry will create a zero-length attribute for those you leave
unset. Typically though, you will set the name and group attributes to something useful, while leaving
many of the others blank.

Typically you will be getting your nutrition information from food labels. Usually these will indicate a
serving size, as well as a serving in grams. You will set the unit and qty traits to match what is given
on the food label. As an example, we will use a Clif Bar. You may find it helpful to follow along with its
nutrition label, which you can find here (http://www.clifbar.com/eat/eat.cfm?location=bar&id=286).1 Its
label shows a serving size of 1 bar. So, we enter the following text into our pantry.xml to start:

Example 5-2. pantry.xml with food element

<pantry>
<food name="Clif Bar, Oatmeal Raisin Walnut" group="Snacks" refDesc="" pctRefuse="" unit="bar" date="" meal="" qty="1.0" comment="">
</food>

</pantry>

5.1.3. Create nutrients elements

Next, you will create nutrients for your food. You define each nutrient by creating a nutrient element.
Each nutrient element has two required attributes and one optional attribute.

The name attribute to the nutrient element, which is required, gives the name of the nutrient, such as
Calories or Iron. These names must correspond to one of the nutrients that is allowed in Pantry; to get
a list of the allowed nutrients, run pantry --nutrient-list all --print list. The names are
case sensitive, so although Saturated Fat is a valid nutrient, Saturated fat is not a valid nutrient.

The amount attribute to the nutrient element is also required, and it is a number indicating the amount
of the corresponding nutrient. This can be an integer, floating-point number, a fraction, or a mixed
number.

The third attribute to the nutrient element is units. Setting this attribute to % indicates that the
amount attribute is a percentage of an FDA Daily Value. Pantry will convert the amount attribute to an
appropriate amount. This is useful because vitamins and minerals are listed on food labels by percent of
daily value, rather than by amount. If the units is any value other than %, Pantry will check to ensure

56

Chapter 5. Adding new foods and editing the nutrients or units of existing foods

that the units are appropriate for the nutrient you gave. For example, if you enter Protein for the name
attribute but mg for the units attribute, Pantry will give you an error because you may only use g with
the Protein nutrient.

To continue with our Clif Bar example, here is the Clif Bar with its nutrient information. Because I am
lazy, I did not enter all the nutrition information; instead, I just entered all the macronutrients and four of
the vitamins and minerals.

Example 5-3. Food with nutrients element

<pantry>
<food name="Clif Bar, Oatmeal Raisin Walnut" group="Snacks" refDesc="" pctRefuse="" unit="bar" date="" meal="" qty="1.0" comment="">

<nutrient name="Calories" units="kcal" amount="240"/>
<nutrient name="Total Fat" units="g" amount="5"/>
<nutrient name="Saturated Fat" units="g" amount="1"/>
<nutrient name="Trans Fat" units="g" amount="0"/>
<nutrient name="Cholesterol" units="mg" amount="0"/>
<nutrient name="Sodium" units="mg" amount="130"/>
<nutrient name="Potassium" units="mg" amount="310" />
<nutrient name="Total Carbohydrate" units="g" amount="43"/>
<nutrient name="Dietary Fiber" units="g" amount="5"/>
<nutrient name="Sugars" units="g" amount="20"/>
<nutrient name="Protein" units="g" amount="10"/>
<nutrient name="Vitamin A" units="%" amount="30"/>
<nutrient name="Vitamin C" units="%" amount="100"/>
<nutrient name="Calcium" units="%" amount="25"/>
<nutrient name="Iron" units="%" amount="25"/>

</food>
</pantry>

5.1.4. Creating unit elements

Finally, it is time to enter units for the food, which you do using the unit element. These elements map
common units of measure to a food’s weight in grams, and they correspond to to the available units that
we discussed earlier. Thus, each unit element has two attributes. name corresponds to the name of the
unit, such as cup or stick or box--whatever is appropriate. The grams attribute corresponds to
whatever the weight of a single name is, in grams.

As always, Pantry will provide the units g, oz, and lb for you, so do not enter those in unit elements.
However, if you entered anything other than g, oz, or lb for the unit attribute of the food element, you
must define a corresponding unit element. Thus, because the unit attribute for our Clif Bar is bar, we
must define a corresponding unit element. With that, we have a complete food element.

57

Chapter 5. Adding new foods and editing the nutrients or units of existing foods

Example 5-4. Complete pantry.xml file.

<pantry>
<food name="Clif Bar, Oatmeal Raisin Walnut" group="Snacks" refDesc="" pctRefuse="" unit="bar" date="" meal="" qty="1.0" comment="">

<nutrient name="Calories" units="kcal" amount="240"/>
<nutrient name="Total Fat" units="g" amount="5"/>
<nutrient name="Saturated Fat" units="g" amount="1"/>
<nutrient name="Trans Fat" units="g" amount="0"/>
<nutrient name="Cholesterol" units="mg" amount="0"/>
<nutrient name="Sodium" units="mg" amount="130"/>
<nutrient name="Potassium" units="mg" amount="310" />
<nutrient name="Total Carbohydrate" units="g" amount="43"/>
<nutrient name="Dietary Fiber" units="g" amount="5"/>
<nutrient name="Sugars" units="g" amount="20"/>
<nutrient name="Protein" units="g" amount="10"/>
<nutrient name="Vitamin A" units="%" amount="30"/>
<nutrient name="Vitamin C" units="%" amount="100"/>
<nutrient name="Calcium" units="%" amount="25"/>
<nutrient name="Iron" units="%" amount="25"/>
<unit name="bar" grams="68"/>

</food>
</pantry>

5.2. Using a Pantry XML file

You can use Pantry XML files, such as the pantry.xml file we have created in this example, just as you
would use a Pantry native file (the format used by the master file.) For example:

Example 5-5. Use a Pantry XML file as you would use a Pantry native file

$ pantry --name Clif --print traits-nuts pantry.xml

Clif Bar, Oatmeal Raisin Walnut

Group: Snacks

1.0 bar (68g)

Nutrient Amount %G %TOT

Calories 240 kcal 12 100

Total Fat 5 g 8 100

Saturated Fat 1 g 5 100

Cholesterol 0 mg 0 0

Sodium 130 mg 5 100

Total Carbohydrate 43 g 14 100

Dietary Fiber 5 g 20 100

Sugars 20 g NA 100

Protein 10 g 20 100

Vitamin A 1500 IU 30 100

Vitamin C 60 mg 100 100

Calcium 250 mg 25 100

Iron 5 mg 25 100

58

Chapter 5. Adding new foods and editing the nutrients or units of existing foods

However, I recommend adding the foods to a Pantry native file, because you will find it most convenient
if the foods you create are mingled with the other foods you use, either in the master file or in a quick
file, as we discussed earlier.2 For example, to add the Clif Bar to my master file, I simply run pantry

--add master pantry.xml.

Pantry destroys data in Pantry XML files!

You may insert comments into your XML file, using XML-standard comments (that
is, <!-- like this -->). In addition, you will probably format your XML in a certain way
by using tabs and newlines. However, if you make changes to the XML file using
--add, --edit, or --delete, Pantry will destroy this formatting and lose the
comments. You will also find that, if you use --add, --edit, or --delete, Pantry
will rearrange the order of the foods in your XML file and will even rearrange the
order of the attributes.

For the time being,3 one solution to this is to use only the comment attribute if you
wish to comment on foods. Also, you can simply refrain from making changes to
the file using Pantry; Pantry will not destroy data in XML files if it only reading data
from them.

5.3. Using Pantry XML files to edit units or nutrients of
foods

As you already know, you can easily edit the traits of foods in Pantry. But what if you want to edit the
nutrients or available units of a food? As you can probably guess now, the solution is to use a Pantry
XML file. Pantry XML files behave just like Pantry native files. So if, for example, you wish to edit
foods in the master file, you can simply create a Pantry XML file with the foods you wish to edit.
Pantry automatically creates a Pantry XML file if you use the extension .xml. So, to create a Pantry
XML file with bananas, use pantry --add banana.xml --name ’Bananas, raw’ master. You
can then edit this food however you wish, and you can then add the results back to the master file using
the --add option.

Remember that Pantry will not allow you to have two identical foods in a single file. Two foods are
considered identical if their traits are identical, even if their nutrients or their available units differ. If
foods are identical, Pantry will simply add (Copy x) to the food’s Comment trait. Keep this in mind if,
for example, you edit the banana in the banana.xml file and then add it back to the master file.

5.4. Validation of Pantry XML files

Pantry automatically validates Pantry XML files for you.4 To see the DTD that Pantry uses for this
purpose, run pantry --dump pantryDTD. You might, for instance, want to use this DTD to validate

59

Chapter 5. Adding new foods and editing the nutrients or units of existing foods

the XML yourself.

If any of your files do not validate, Pantry will print an error message along with the output of the
validator. Study the output of the validator because it will usually help you fix the error.

The validator will often hang if the input file is very large. Therefore, Pantry will only validate files if
they are below 300 kilobytes in size. It is unlikely that you will ever create XML files that large by hand,
although you might have Pantry create an XML file that large (that’s what you will get if you run, for
example, pantry --add pantry.xml master). Pantry will give you an error message if you try to
use a file that large. One way to use large files is to use the --skip-valid, which will turn off
validation. This is of course a bad idea for files that you have edited by hand (because they might have
errors that then will go unchecked) but skipping validation is fine for large files that were generated
entirely by Pantry. Alternatively, you can use --force-valid to make Pantry validate all XML files,
regardless of how large they are. This might cause Pantry to wait for an extremely long time for the
validator to finish--the validator might even freeze if the file is extremely large.

Notes
1. Use of the Clif Bar in this example wholeheartedly implies my endorsement of Clif Bars. They are

handy, tasty snacks.

2. In addition, Pantry XML files are slower to process than Pantry native files. If a Pantry XML file
contains just a few foods, the difference is not noticeable. However, for more than several dozen
foods, the speed difference might begin to add up. That is one reason why Pantry does not use XML
as its native file format.

3. I considered fixing this problem, but the technical hurdles are significant, so it is not likely to be fixed
soon, if ever.

4. If your system has xmllint installed, that is what Pantry will use to validate files. If not, then Pantry
will use a validator written in Python, which is slower but gets the job done. For best performance,
ensure that your system has xmllint installed.

60

Chapter 6. Plain text Foods files, and choosing
which type of Foods file to use

So far, all the files that we have worked with have either been binary files1 or XML files. Pantry can also
store foods in a more traditionally Unix plain text format--that is, in a text file with each row representing
a single food and each column representing something about that food. In this chapter you’ll learn about
the advantages and disadvantages of this file format and how you can use it.

6.1. How Foods Text files work

As you know, a food in Pantry consists of traits, nutrients, and available units. That’s a lot of data. The
two file formats we have seen so far--the Pantry native file and the Pantry XML file--both contain all of
this data for each and every food. The Pantry native file is fast, but you can’t edit that with your text editor
at all. The Pantry XML file can be edited with your text editor, but the format is so verbose that you don’t
ordinarily want to touch it unless you have to--if, for example, you are creating an entirely new food.

The Foods Text file is a little different from the Pantry XML and Pantry native files because it does not
contain all the data for each and every food. Instead, it relies upon another Pantry XML or Pantry native
file to contain all the food data. In the Foods Text file, each line corresponds to a particular food. Each
line specifies a source file for the food. The source file will be a Pantry XML or Pantry native file that
will contain the nutrient and unit data for the food.

Pantry must look up the food in the source file. To do this, Pantry uses the food’s name. There must be
exactly one match for the food name that you specify; therefore, you will find Foods Text files to be
easiest to use if you have source files in which every food name is unique. The master file meets this
criterion; you might also set up a quick file that also meets this criterion.

This will all get more clear with examples:

6.2. Foods Text files: an example

Here is an example Foods Text file:

Example 6-1. A sample Foods Text file

#source:name:qty:unit:date:meal:group:comment:options
#Options: x=exact match; i=ignore case
/home/massysett/pantry-data/master:Milk, reduced fat, fluid, 2% milkfat, with added vitamin A:1.0:cup:2007-06-30:Breakfast:Cereal and Milk::x
/home/massysett/pantry-data/master:Papayas:1 1/2:medium
/home/massysett/pantry-data/master:blueberries, raw:5:oz:::::i

61

Chapter 6. Plain text Foods files, and choosing which type of Foods file to use

The first thing to notice is that you can begin comments anywhere on a line with a hash mark, #. Pantry
ignores any text after the comment symbol. Here, the first two lines are handy reminders of the syntax of
the Foods Text file.

Colons separate the fields in the Foods Text file. If you need to include a colon or a hash mark in a field,
you can precede it with a backslash, \. To include a backslash, precede it with a backslash. A single
backslash followed by any character other than a backslash, colon, or hash mark generates an error.

Here is what appears in each column of the Foods Text file:

Columns in the Foods Text file

Column: 1
Contents: The source file; that is, the filename of the file holding the food that contains the nutrient and
unit data for this food. It is best to include a full, absolute path specification here. You can use a relative
path, but it will be resolved relative to the working directory of the pantry command when you invoke it,
not relative to the directory of the text data file. This is confusing, which is why I recommend including
an absolute path specification.

Column: 2
Contents: The name of the food. Pantry uses this to look up a food in the source file, which then serves
as the basis for this food. This is a regular expression, unless x is specified in the options column. The
search is case-sensitive unless i is specified in the options column. After looking up the food using the
contents of this column and the source column, Pantry changes the traits of the food according to the
following columns.

Column: 3
Contents: The quantity for the food.

Column: 4
Contents: The unit for the new food. The unit is selected from the food’s available units. The value in
this column is a regular expression, unless x is specified in the options column, and the search is case
sensitive unless i is specified in the options column.

Column: 5
Contents: The date trait for the new food.

Column: 6
Contents: The meal trait for the new food.

Column: 7
Contents: The group trait for the new food.

62

Chapter 6. Plain text Foods files, and choosing which type of Foods file to use

Column: 8
Contents: The comment trait for the new food.

Column: 9
Contents: These are search options. This column may have zero, one, or two letters. x specifies that the
search for the food name and for the unit must be an exact match, rather than a regular expression. i
makes searches case insensitive.

If you only need to use some of the columns, you can leave out trailing columns. The only columns that
you must specify are the first two, for the source and the food name.

You may have noticed that there is a column to set most of the food’s traits, but there is no column to set
the food’s order trait. This is because Pantry automatically sets the food’s order trait so that it is equal
to the line number of the food in the file, although it is left-padded with zeroes so that it will equal four
digits.

6.3. Using Foods Text files

After you have completed your Foods Text file, you can use it just as you would any other Pantry file.
Here is an example:

Example 6-2. Using a Foods Text file

$ pantry --print traits-units-blank foods.txt

Papayas, raw

Group: Fruits and Fruit Juices

Order: 0007

Refuse: 33 percent Seeds and skin

1 medium (5-1/8" long x 3" dia) (304g)

small (4-1/2" long x 2-3/4" dia)

medium (5-1/8" long x 3" dia)

cup, mashed

cup, cubes

large (5-3/4" long x 3-1/4" dia)

Blueberries, raw

Group: Fruits and Fruit Juices

Order: 0008

Refuse: 5 percent Stems and green or spoiled berries

5 oz (142g)

pint as purchased, yields

cup

Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

Group: Cereal and Milk

Date: 2007-06-30 Meal: Breakfast Order: 0006

1.0 cup (244g)

63

Chapter 6. Plain text Foods files, and choosing which type of Foods file to use

quart

fl oz

cup

The nice thing about Foods Text files is that although you can edit them with your text editor, you can
also manipulate them using ordinary Pantry commands. For example:

Example 6-3. Changing a Foods Text file

$ pantry --name "Apples, raw, with skin" --c-date "April \

> 15" --c-qty 1 --c-unit medium --add foods.txt master

$ cat foods.txt

Sample foods.txt file.

The first column indicates the source file. It is best to use an absolute pathname

here.

#source:name:qty:unit:date:meal:group:comment:options

#Options: x=exact match; i=ignore case

/home/massysett/pantry-data/master:Milk, reduced fat, fluid, 2% milkfat, with added vitamin A:1.0:cup:2007-06-30:Breakfast:Cereal and Milk::x

/home/massysett/pantry-data/master:Papayas:1:medium

/home/massysett/pantry-data/master:blueberries, raw:5:oz:::::i

/home/massysett/pantry/sandbox/master:Apples, raw, with skin:1:medium (2-3/4" dia) (approx 3 per lb):April 15::Fruits and Fruit Juices::x

As you can see, when you add foods to a Foods Text file using pantry, appropriate text is added to the
end of the file. However, beware that if you change the name of the food using the --c-name option,
Pantry will not be able to locate the food in the source file. You can, however, change any of the other
traits, although Pantry will override any changes you make to the order trait because the order trait is
automatically set to the line number of the food. Thus the --auto-order option has no effect when
using Foods Text files.

6.4. Which sort of file should I use?

Thus, there are three different file formats that do similar things: keep Pantry foods. You might be
wondering which one you should use.

Each file format has advantages and disadvantages. The Pantry native file is the fastest one for Pantry to
work with, but it cannot be edited with a text editor. The Pantry XML file is plain-text, but Pantry takes
some time to open it and to write changes to it because it is XML. The Foods Text file is also plain-text,
and very easy to edit, but it does not hold all the data needed for a food and so it must rely on source files.

I find it best to use a Foods Text file for my diaries. It is remarkably easy to edit, which makes it easy to
fix mistakes. It’s also easiest to reorder foods in a Foods Text file; then I can easily sort the reports using
the --sort o option. It’s also possible to assign the order trait to foods in other files using the
--c-order option, but that is more cumbersome.

64

Chapter 6. Plain text Foods files, and choosing which type of Foods file to use

For files that will contain many foods, such as a master file, I use a Pantry native file because it is the
speediest. Of course, when adding entirely new foods with new nutrient information, my only choice is
to use a Pantry XML file.2 I otherwise avoid Pantry XML files because XML is a bit cumbersome to edit.

I also keep a quick file for easy access to the foods I use often. I keep this in a Pantry native file, but if
your quick file is relatively short (under a couple of hundred foods, say) there’s no reason not to use a
Foods Text file for this (except for the fact that you’ll have to make sure it stays harmonized with the
source file--that is, you have to ensure that the foods that the Foods Text file looks up in the source file
remain in the source file.)3

Notes
1. The distinction between binary files and plain-text files is quite arbitrary. It is fair to say that there is

no such thing as plain text (http://www.joelonsoftware.com/articles/Unicode.html). But for our
purposes we will call anything that you usually edit in a text editor "plain text".

2. I have considered making a way to add entirely new foods using the Pantry command-line interface,
but I don’t see how much of a benefit this would be.

3. Here is as good a place as any to point out that there is yet another Pantry file format: the Foods Zip
file. This is what I use to import the SR data from the Zip file that USDA provides. If you are
curious, you can download (http://www.ars.usda.gov/Services/docs.htm?docid=13746) the full
plain-text version and run something like pantry --add master sr19.zip to make your very
own master file. I can’t guarantee that this will work with any releases subsequent to SR 19, and it
takes lots of RAM too (about 200 MB, maybe.)

65

Chapter 7. Adding recipes

So far, you know how to add your own foods to Pantry. However, to add a food, you have to know what
its nutrient content is. If you have a food that is a mixture of several different foods, then making a recipe
can help. You’ll learn how to do that in this chapter.

This chapter will lead you through how to create your own recipes. If you would rather jump right into
an example, you can try consulting the examples directory in the Pantry distribution, which has some
example files.

7.1. When to use recipes

The basic building block of Pantry is the food. Each food has traits, nutrient content, and available units.
In Pantry, you can combine several foods into one single food using recipes. Thus, for example, you can
combine corn meal, flour, water, baking powder, sugar, salt, and eggs using a recipe. The result will be a
single food that you can call corn bread. This new food will have traits, available units, and nutrients, just
like any other food in Pantry.

Sometimes using a recipe is overkill. For example, say you have a few foods that you always eat together
in a certain quantity. It can be much quicker and easier to simply give these foods a common group trait.
For example, I often eat two ounces of cold cereal with one cup of milk. I could create a recipe for these
foods. Instead, I have simply added both of these foods to my quick file, and I have changed the group
trait of both foods to Cereal and Milk. Then, when I want to record in my diary that I have eaten
these two foods, I simply issue pantry --group ’Cereal and Milk’ --add diary.txt quick.

Thus you will find recipes most useful in two instances. First, recipes are handy if you have several foods
that you wish to combine into one food. Then the nutrient breakdown of all the foods will appear
together in your reports. Second, you have to use recipes if you wish take several foods, combine them,
and subdivide the results. For example, if I wanted to eat an entire 9x9-inch dish of corn bread, perhaps I
could treat corn bread in Pantry the same way I record my cereal and milk. However, because I want to
divide the corn bread into multiple portions and eat them separately, I must use a recipe.

7.2. Creating a recipe

Just like when you add new foods, you can write recipes in Pantry by using the Pantry XML file. While
you enter foods in Pantry XML files by using the foods element, to enter recipes you use the recipe
element.

66

Chapter 7. Adding recipes

7.2.1. Creating a recipes file and a recipe element

To create a Pantry XML file, start your favorite text editor and open a text file. For the purposes of our
example we’ll use pantry.xml, though you can create any filename that ends with .xml.

As we saw earlier when we created new foods, the root element of a Pantry XML file is pantry. Each
recipe is contained in a recipe element. The recipe elemen thas the same attributes as the food
element that we learned about earlier:

namegrouprefuserefDescdatemealqtycommentunit

Of all these attributes, you are required to set only the unit and qty attributes. You can leave as many of
the other ones out as you wish, though ordinarily you will set the name and group attributes while
leaving many of the others blank.

Just like when you create a new food using the food element, you must set the unit attribute to one of
the available units for the recipe. Pantry will automatically create the g, oz, and lb units for you. You
can also have Pantry create a serving unit, as we will discuss shortly.

For our example, we will create a recipe with the name Easy Corn Bread. As you will see, the new
recipe has its unit set to serving; shortly we will see exactly how this works. You will also notice that
many of the attributes for the various traits, such as date and meal, are not set at all; Pantry will set such
traits to the empty string.

Example 7-1. Creating the recipe element

<pantry>
<recipe name="Easy Corn Bread"
group="Baked Products" pctRefuse=” refDesc=”
qty=’1’ unit=’serving’>
</recipe>
</pantry>

7.2.2. Setting the yield of a recipe

Next you will need to set the yield of your recipe. The yield element has three attributes: grams,
servings, and text. The servings attribute is easiest to understand, so we will discuss it first.

7.2.2.1. The servings attribute

Often when you make a recipe, you split it into an even number of servings. If that is the case for your
recipe, you may enter an appropriate value for the servings attribute. Pantry will automatically create a

67

Chapter 7. Adding recipes

serving available unit for the food in this case. If you do not wish to specify a number of servings, you
can simply not use the servings attribute at all.

For our corn bread example, we will say that the recipe makes nine servings.

7.2.2.2. The grams attribute

In order for Pantry to accurately calculate the nutrient content of a particular amount of food, it needs to
know what the total mass of your completed recipe is, after it has been fully prepared (that is, after
cooking, baking, mixing, etc., as the case may be.)

Pantry can "guess" what the total mass of your completed recipe is. Pantry guesses by adding up the
mass of all the ingredients you entered for the recipe. To have Pantry guess for you, simply use an empty
string for the grams attribute, or just leave the grams attribute out entirely. However, you will often find
that the completed recipe weighs significantly less than the mass of all the ingredients. This is because a
lot of water often evaporates as you cook or bake foods. Thus, for the most accurate results, you may
enter the mass of your completed recipe so that Pantry may take it into account. To do this, enter the
appropriate value (in grams) for the grams attribute.

However, if you have entered a servings attribute, and you will use only the serving available unit
when you use the recipe, then entering a grams attribute will do you no good. This is because Pantry will
calculate each serving so that it is the appropriate fraction of the total, but the actual total mass will not
matter.

I always cut my cornbread into nine neat squares, and I always eat only one square at a time. Thus, since
I will use only the servings available unit for the corn bread, I will simply enter an empty string for the
grams attribute.

7.2.2.3. The text attribute

Finally, you may enter any text you wish for the text attribute. This text can be used to describe the
yield of the recipe.

I make my corn bread in a 8x8-inch dish, so I will make an appropriate entry for the yield element.

7.2.2.4. A complete yield element

Here is an example yield element:

68

Chapter 7. Adding recipes

Example 7-2. Setting the recipe yield

<pantry>
<recipe name="Easy Corn Bread"
group="Baked Products" pctRefuse=” refDesc=”
qty=’1’ unit=’serving’>

<yield grams=” servings=’9’ text=’One square pan’ />
</recipe>
</pantry>

7.2.3. Setting the ingredients of a recipe

No recipe is complete without ingredients. Each single ingredient is represented by a ingredient
element. The ingredient element has four attributes: name, qty, unit, comment, and file.

As you will recall, each ingredient in a Pantry recipe is a another Pantry food. These foods come from
another Pantry file. For each ingredient, you will specify the source file by specifying the path to the file
in the file attribute. It is best to use a full, absolute path specification here. If you use a relative path
specification, it will be resolved relative to the working directory of the pantry command when it is run,
not the directory of the XML file. This is confusing, which is why I recommend using an absolute path
specification.

For each ingredient, Pantry will look in the file specified for the food you specify using the name
attribute. Unlike much of the rest of Pantry, the text of the name attribute is not a regular expression.
Instead, you must exactly match every space, and you must exactly match the mixture of upper- and
lower-case letters, as well.

The qty attribute is simply the quantity of the ingredient. As with most other numeric values in Pantry,
you may use an integer, a floating-point number, a fraction, or even a mixed number.

The unit attribute is an exact match of the available unit you wish to use for this ingredient. As with the
name attribute, this is case-sensitive.

Finally, the last attribute, comment, is optional. This can be whatever helpful text you may wish to enter.

Here is our corn bread example, complete with all its ingredients.

Example 7-3. A recipe with its ingredients

<pantry>
<recipe name="Easy Corn Bread"
group="Baked Products" pctRefuse=” refDesc=”
qty=’1’ unit=’serving’>

69

Chapter 7. Adding recipes

<yield grams=” servings=’9’ text=’One square pan’ />

<ingredient name=’Wheat flour, white, all-purpose, enriched, unbleached’
qty=’1 1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Cornmeal, whole-grain, yellow’
qty=’3/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Sugars, granulated’
qty=’1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Leavening agents, baking powder, double-acting, straight phosphate’
qty=’2’ unit=’tsp’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Salt, table’
qty=’1/2’ unit=’tsp’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Milk, reduced fat, fluid, 2% milkfat, with added vitamin A’
qty=’1’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Oil, canola and soybean’
qty=’1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Egg, whole, raw, fresh’
qty=’1’ unit=’large’ comment=” file=’/home/massysett/pantry-data/master’ />

</recipe>
</pantry>

7.2.4. Setting the available units for a recipe

Finally, you may create additional available units for the food. Pantry automatically creates the g, oz,
and lb units for you; in addition, if you specified a servings attribute to the yield element, as we
discussed above, then Pantry will also automatically create a serving available unit. If you wish to
create any additional available units, you will need to know the weight (in grams) of that unit. If for
instance you are entering a recipe for cookies and you want to create an avaiable unit for one cookie,
you’ll need to know the weight in grams of one cookie.

To create available units, create one or more unit elements. Each unit element will have both name

and grams attributes. As I stated above, I always eat one serving of corn bread, so I do not have any use
for the units element here. However, for the sake of illustration, we’ll say that a large piece of corn
bread weighs 70 grams.

Example 7-4. A recipe’s units

<pantry>
<recipe name="Easy Corn Bread"
group="Baked Products" pctRefuse=” refDesc=”
qty=’1’ unit=’serving’>

<yield grams=” servings=’9’ text=’One square pan’ />

<ingredient name=’Wheat flour, white, all-purpose, enriched, unbleached’
qty=’1 1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Cornmeal, whole-grain, yellow’

70

Chapter 7. Adding recipes

qty=’3/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />
<ingredient name=’Sugars, granulated’

qty=’1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />
<ingredient name=’Leavening agents, baking powder, double-acting, straight phosphate’

qty=’2’ unit=’tsp’ comment=” file=’/home/massysett/pantry-data/master’ />
<ingredient name=’Salt, table’

qty=’1/2’ unit=’tsp’ comment=” file=’/home/massysett/pantry-data/master’ />
<ingredient name=’Milk, reduced fat, fluid, 2% milkfat, with added vitamin A’

qty=’1’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />
<ingredient name=’Oil, canola and soybean’

qty=’1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />
<ingredient name=’Egg, whole, raw, fresh’

qty=’1’ unit=’large’ comment=” file=’/home/massysett/pantry-data/master’ />

<unit name=’large piece’ grams=’70’ />
</recipe>
</pantry>

7.2.5. Directions for a recipe

Finally, you need something to tell you how to put together all those ingredients. You can do this by
including an optional directions element. Enclose each paragraph of your directions inside a p
element. Eventually I will probably add additional formatting tags, such as b and i, but for now you’re
stuck with just p.

Example 7-5. Recipe directions

<pantry>
<recipe name="Easy Corn Bread"
group="Baked Products" pctRefuse=” refDesc=”
qty=’1’ unit=’serving’>

<yield grams=” servings=’9’ text=’One square pan’ />

<ingredient name=’Wheat flour, white, all-purpose, enriched, unbleached’
qty=’1 1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Cornmeal, whole-grain, yellow’
qty=’3/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Sugars, granulated’
qty=’1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Leavening agents, baking powder, double-acting, straight phosphate’
qty=’2’ unit=’tsp’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Salt, table’
qty=’1/2’ unit=’tsp’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Milk, reduced fat, fluid, 2% milkfat, with added vitamin A’
qty=’1’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Oil, canola and soybean’
qty=’1/4’ unit=’cup’ comment=” file=’/home/massysett/pantry-data/master’ />

<ingredient name=’Egg, whole, raw, fresh’
qty=’1’ unit=’large’ comment=” file=’/home/massysett/pantry-data/master’ />

71

Chapter 7. Adding recipes

<unit name=’large piece’ grams=’70’ />

<directions>
<p>

Heat oven to 400 degrees F. Grease 8 or 9-inch pan.
Combine dry ingredients. Stir in milk, oil, and egg,
mixing just until dry ingredients are moistened. Pour
batter into prepared pan. Bake 20 to 25 minutes or until
light golden brown and wooden pick inserted in center
comes out clean. Serve warm.

</p>
</directions>

</recipe>
</pantry>

7.3. Using recipes

You can use a Pantry XML file that contains recipes just as you would use any Pantry file. As we
discussed earlier when we talked about creating foods, I would recommend adding the contents of a
Pantry XML file to a Pantry native file, because Pantry works with native files much faster than it works
with XML files.

Example 7-6. Using a Pantry XML file

$ pantry --name "Easy Corn Bread" --print traits-units-nuts \

> pantry.xml

Easy Corn Bread

Group: Baked Products

1 serving (73g)

serving

Nutrient Amount %G %TOT

Calories 197 kcal 10 100

Total Fat 8 g 12 100

Saturated Fat 1 g 5 100

Cholesterol 26 mg 9 100

Sodium 233 mg 10 100

Total Carbohydrate 28 g 9 100

Dietary Fiber 1 g 5 100

Sugars 7 g NA 100

Protein 4 g 8 100

Vitamin A 100 IU 2 100

Vitamin C 0 mg 0 100

Calcium 113 mg 11 100

Iron 1 mg 8 100

72

Chapter 7. Adding recipes

Example 7-7. Adding a recipe to a Pantry native file

$ pantry --name "Easy Corn Bread" --add master pantry.xml

$ pantry --name "Easy Corn Bread" --print names master

Easy Corn Bread

Now that you know how to create recipes, you will find that there are several additional reports that will
come in handy when you are using the --print option. You can use all the reports you have already
learned about; they work identically with both regular foods and with recipes. The most handy additional
report is the recipe report. It gives you a plain-text representation of a recipe, along with some
additional handy information such as the weight of each ingredient:

Example 7-8. The recipe report

$ pantry --name "Easy Corn Bread" --print recipe master

Easy Corn Bread

One square pan (658g)

1 1/4 cup (5.511oz, 156g) Wheat flour, white, all-purpose, enriched, unbleached

3/4 cup (3.228oz, 92g) Cornmeal, whole-grain, yellow

1/4 cup (1.764oz, 50g) Sugars, granulated

2 tsp (0.325oz, 9g) Leavening agents, baking powder, double-acting, straight phosphate

1/2 tsp (0.106oz, 3g) Salt, table

1 cup (8.607oz, 244g) Milk, reduced fat, fluid, 2% milkfat, with added vitamin A

1/4 cup (1.922oz, 54g) Oil, canola and soybean

1 large (1.764oz, 50g) Egg, whole, raw, fresh

Heat oven to 400 degrees F. Grease 8 or 9-inch pan. combine dry ingredients. Stir in milk, oil, and egg, mixing just until dry ingredients are moistened. Pour batter into prepared pan. Bake 20 to 25 minutes or until light golden brown and wooden pick inserted in center comes out clean. Serve warm.

You can get the same information by using --print

names-yield-blank-ingredients-blank-directions, but --print recipe is a bit shorter to
type. You can use the other reports, such as ingredients, if you’re only interested in a subset of the
information. Of course, you can combine the recipe report with other Pantry reports. You can also use
handy utilities such as fold, which should already be installed if you are using a GNU operating system.1

This gives you nice printer-ready output that you can feed to lp:

Example 7-9. Using the recipe report with other cool stuff

$ pantry --name "Easy Corn Bread" --print recipe-blank-traits- \

> nuts master | fold --spaces --width=68

Easy Corn Bread

One square pan (658g)

1 1/4 cup (5.511oz, 156g) Wheat flour, white, all-purpose,

enriched, unbleached

3/4 cup (3.228oz, 92g) Cornmeal, whole-grain, yellow

1/4 cup (1.764oz, 50g) Sugars, granulated

2 tsp (0.325oz, 9g) Leavening agents, baking powder, double-acting,

straight phosphate

1/2 tsp (0.106oz, 3g) Salt, table

73

Chapter 7. Adding recipes

1 cup (8.607oz, 244g) Milk, reduced fat, fluid, 2% milkfat, with

added vitamin A

1/4 cup (1.922oz, 54g) Oil, canola and soybean

1 large (1.764oz, 50g) Egg, whole, raw, fresh

Heat oven to 400 degrees F. Grease 8 or 9-inch pan. combine dry

ingredients. Stir in milk, oil, and egg, mixing just until dry

ingredients are moistened. Pour batter into prepared pan. Bake 20

to 25 minutes or until light golden brown and wooden pick inserted

in center comes out clean. Serve warm.

Easy Corn Bread

Group: Baked Products

1 serving (73g)

Nutrient Amount %G %TOT

Calories 197 kcal 10 100

Total Fat 8 g 12 100

Saturated Fat 1 g 5 100

Cholesterol 26 mg 9 100

Sodium 233 mg 10 100

Total Carbohydrate 28 g 9 100

Dietary Fiber 1 g 5 100

Sugars 7 g NA 100

Protein 4 g 8 100

Vitamin A 100 IU 2 100

Vitamin C 0 mg 0 100

Calcium 113 mg 11 100

Iron 1 mg 8 100

Now that you know how to create both foods and recipes, you can create them both in the same Pantry
XML file.

Notes
1. Non-GNU UNIX systems will likely have a fold utility installed, but it might not have handy options

such as --spaces. Windows won’t have fold at all.

74

Appendix A. Reference pages

This appendix contains reference pages for the commands that Pantry uses. They are identical to the man
pages.

pantry

Name
pantry — nutrient analyzer

Synopsis

pantry [options...] [file...]

pantry [--dump dumpable]

Description

pantry copies foods from FILEs into a buffer. All foods are copied, unless SEARCH OPTIONS are
specified, in which case only matching foods are copied. SEARCH OPTIONS are cumulative. pantry then
changes every food in the buffer using any CHANGE OPTIONS specified.

If --edit or --delete is specified, pantry deletes the unchanged foods from the corresponding
original FILEs. If --edit is specified, pantry adds changed foods to corresponding original FILEs.

If --print REPORT is specified, buffer is printed using REPORT If --nutrient-list NUTRIENT-LIST

is specified, buffer is printed using NUTRIENT-LIST; otherwise, the default nutrient list is used. Buffer is
unsorted unless --sort TRAITS is specified.

If --add is specified, each food in the buffer is added to FILE.

Options

Pantry uses Perl compatible regular expressions.

75

Appendix A. Reference pages

Search options

-n regexp

--name regexp

Include foods whose name trait matches regexp.

-g regexp

--group regexp

Include foods whose group trait matches regexp.

-d regexp

--date regexp

Include foods whose date trait matches regexp.

-m regexp

--meal regexp

Include foods whose meal trait matches regexp.

-u regexp

--unit regexp

Include foods whose unit trait matches regexp.

-c regexp

--comment regexp

Include foods whose comment trait matches regexp.

-q number

--qty number

Include foods whose qty trait matches number.

-o regexp

--order regexp

Include foods whose order trait matches regexp.

Change options

-N string

--c-name string

Change name trait to string.

-G string

--c-group string

Change group trait to string.

76

Appendix A. Reference pages

-D string

--c-date string

Change date trait to string.

-M string

--c-meal string

Change meal trait to string.

-U regexp

--c-unit regexp

Search each food’s available units using regexp. If there is exactly one match, set unit trait to that
match; otherwise, print warning, remove food from buffer, and do not process the --delete or
--edit options for this food.

-C string

--c-comment string

Change comment trait to string.

-Q number

--c-qty number

Change qty trait to number.

-O string

--c-order string

Change order trait to string.

--by-nut regexp amount

Change quantity of food so that amount of nutrient matched by regexp equals amount

-K amount

Same as --by-nut Calories amount

--refuse -R

Reduce qty of every food in buffer by its corresponding refuse trait

--auto-order

-A

When adding each food to files specified with --add, pantry will search the file for other foods
with identical date and meal traits. The result will be sorted in ascending order by the order trait.
If the highest food’s order trait matches the regular expression ^[0-9]{4}$, then pantry will
take the highest food’s order trait, remove any leading zeroes, removes the last digit, and
increment the result by one. The result is multiplied by ten, and then is left-padded with zeroes so
that it is four characters long. pantry will then change the order trait of the food to the result
before adding it to the file.

77

Appendix A. Reference pages

If there are no foods with identical date and meal traits, then pantry will set the food’s order trait
to 0010.

--auto-order has no effect when adding foods to Foods Text files.

Print options

-p report

--print report

Print buffer using report.

-l nutrient-list

--nutrient-list nutrient-list

use nutrient-list when printing report

-s traits

--sort traits

Sorts foods by trait when printing a report. Specify traits by their first letter; for example, to sort by
name, date, and meal, specify --sort ndm. Use lower-case letters to sort in ascending order; use
upper-case letters to sort in descending order.

Other general options

-i

--ignore-case

Make all Search options, and the --c-unit option, case insensitive

-x

--exact-match

Arguments to Search options, to --c-unit option, and to --by-nut option must exactly
match food traits or nutrient names, rather than using regular expressions

-a file

--add file,

Add buffer to file. To specify multiple files, use multiple --add options, e.g. --add file1

--add file2.

--edit

Delete original foods from corresponding source files, and add changed foods to corresponding
source files

--delete

Delete original foods from corresponding source files

78

Appendix A. Reference pages

Other options

--force-valid

Ordinarily pantry automatically validates all XML files unless they are over 300 kilobytes in size;
use this option to validate all XML files regardless of their size.

--skip-valid

Do not validate any XML files

-h

--help

Show brief help message and exit

--version

Print version information and exit

--dump

Display an internal Pantry variable and exit (see DUMP OPTIONS below)

Reports

Two types of reports are available. Food reports are printed once per food in the buffer. Summary reports
are printed once for the entire buffer. To print more than one report, specify each report name, separated
by dashes; for example, --print names-nuts. Reports may also be specified with an unambiguous
specification of the first letters of the report, such as --print na-nu.

The following reports are available:

Food reports

names

Food names

traits

Food traits

units

Available units. g, oz, and lb are not printed as these are available for every food.

measures

Like units, but also shows the gram weight of every unit. Shows all available units, including g,
oz, and lb.

79

Appendix A. Reference pages

nuts

Nutrients. For details of how pantry decides which nutrients to print, and what all the columns in
this report mean, see .

blank

A blank line

paste

Each food name, printed with one available unit per line; quoted so that output may be easily pasted
into subsequent pantry commands.

yield

The yield of a recipe: its total gram weight, description of yield, and number of servings. Prints
warning for foods that are not recipes.

ingredients

Each ingredient of a recipe; prints warning for foods that are not recipes.

directions

A recipe’s directions; prints warning for foods that are not recipes.

recipe

Same as names-makes-blank-ingredients-blank-directions.

Summary reports

sum

Nutrient total of all nutrients in the buffer

groups

Group names, the number of foods in each group, and the total number of foods in the buffer

list

The nutrient list, along with its goals

Nutrient lists

A nutrient report has four columns. The first shows the name of the nutrient. The second column shows
the amount (both the numeric amount and the units.) The third column shows this nutrient’s percent of a
nutrient goal, or blank if that nutrient has no goal. The fourth column shows this nutrient’s percentage of
the total nutrients in this buffer. The fourth column is not present in sum reports.

80

Appendix A. Reference pages

The nutrient-list parameter determines which nutrients are shown and in what order, as well as
determining what goals are used to calculate the third column. The user may configure her own
nutrient-lists in pantryrc.xml(5). The following default nutrient lists are available:

facts

Mimics the USA "Nutrition Facts" panel.

dv

Nutrients for which there is a USA FDA Daily Value.

all

All nutrients.

short

Only Calories, Total Fat, Total Carbohydrate, and Protein.

Dump options

--dump takes a single argument, which will print one of the following pantry internal variables. After
printing the variable, pantry will exit.

version

Version and copyright information; same as --version.

pantryDTD

DTD used to validate Pantry XML files

rcDTD

DTD used to validate pantryrc files

config

All configuration variables after the pantryrc is processed

Bugs

Under certain circumstances, consumes about 100MB of RAM, though briefly, when buffer totals about
7,000 foods (the number in the USDA database.)

Pantry is not a perfect UNIX citizen because it will not read its data from standard input; thus, Pantry
cannot be used as a filter.

81

Appendix A. Reference pages

Pantry’s core file format is a dbm database, not a text file; this is a primary reason the above bug will
likely never be fixed.

Report additional bugs to <pantry-users@lists.sourceforge.net>.

Version

This manual page written for Pantry version 21.

82

Appendix B. Pantry’s birth

I have used computers to analyze recipes and track food intake for years now. Years ago I still used
Microsoft Windows. There are some good proprietary programs in Windows that are useful for food
analysis, but even the best aren’t extremely well-documented. So once I discovered that the USDA food
database is freely available, Microsoft Access seemed a natural way for me to develop my own
application.

My Access application went through many iterations. Then I switched to Linux, which taught me one big
lesson: never rely on expensive proprietary software. I poked around to see if there were any good Linux
food analysis programs. The only well-developed one I could find, NUT, was a console program. At the
time this scared me, so I just did not have a food analysis program for quite some time.

As I gained more experience with Linux, I discovered that there were Access-like applications for it,
such as OpenOffice Base (which is still fairly new) and Kexi. But I did not trust these applications much:
I generally found that huge office-suite programs for Linux are not very well documented and tend to be
bloated. True, Access and Microsoft Office are bloated too, but at least there are tons of tutorials
available on the Net. So I never touched OpenOffice Base or Kexi.

Though the Linux console scared me at first, as I used Linux more and more I realized how powerful and
simple the console is. I came to appreciate its flexibility and even its beauty. So I took another look at
NUT. Though I realized it is an excellent program, I couldn’t quite get along with it. It ran in an console,
but it was menu-driven and seemed to have arbitrary limits that I didn’t like. There are Web-based
programs for this purpose too, but I always find them cumbersome to use and poorly designed.

Then I slowly learned of command-line tools such as cut and join. I was surprised to learn that one can
build a relational database management system (http://www.rdb.com/) using shell tools. I also was
inspired by other command-line oriented tools that did things that I previously thought would be possible
to do well only in a GUI. An excellent example of this is Ledger
(http://www.newartisans.com/ledger.html), a program that I now find indispensable for tracking my
finances. So I decided to try writing a shell-based food analysis program; I called the program bashfood
and, later, Shellfood.

Shellfood worked okay when it was small, but as it grew it became unmanageable. Shells are great for
certain things, but building large programs is not one of those things. Eventually it became apparent to
me that I would need to switch to a different language. Python seemed a natural choice, as it is often
recommended for beginners. It is also a full-fledged language used by professionals--Linux always
impresses me because tools that cost several hundreds of dollars for Windows are available free on
Linux--better tools, too.

So, the result of several months of work is Pantry. It has evolved constantly as I have used and refined it.
It works even better than I had envisioned, though others might find it hopelessly complicated. We’ll see.
Let me know what you think! Report bugs, too--I know they must be in here. Send emails to

83

Appendix B. Pantry’s birth

pantry-users@lists.sourceforge.net.

If you like Pantry, be sure to check out other command-line programs like Ledger
(http://www.newartisans.com/ledger.html) and Todo.txt (http://todotxt.com/) because they can make your
life a lot easier. Good text editors like Vim and Emacs are indispensable, as is a nice shell like Zsh.

84

	Pantry User Guide
	Table of Contents
	List of Examples
	About Pantry
	1. What Pantry is
	2. Pantry's advantages
	3. Pantry disadvantages
	4. Alternatives
	5. Getting support and reporting bugs

	Chapter 1. Installing Pantry
	1.1. Installation instructions
	1.2. Tailoring your installation
	1.3. About the documentation

	Chapter 2. Basic Pantry commands
	2.1. The Pantry Paradigm
	Food traits

	2.2. Basic food searches
	2.3. Using the print option
	2.3.1. Combining reports

	2.4. Details on searching
	2.4.1. More traits you may use to search
	2.4.2. Searches are regular expressions
	2.4.3. My search is returning foods I don't want!
	2.4.4. Searches are case sensitive

	2.5. Changing food traits
	2.6. Using nutrient lists to compare foods to particular nutrient goals
	2.6.1. What are nutrient lists?
	Nutrient lists included with Pantry

	2.6.2. How nutrient lists are displayed in nuts reports
	2.6.3. Using a different nutrient list

	2.7. Using summary reports to see information about an entire buffer
	2.7.1. Using the sum report
	2.7.2. Using the groups report

	2.8. Saving new foods with add and edit; deleting with the delete option

	Chapter 3. Using Pantry: practical examples
	3.1. Finding nutrient amounts
	3.2. Keeping a food diary
	3.3. Organizing your foods into files
	3.3.1. A quick file
	3.3.2. Organizing diary files

	Chapter 4. More Pantry usage
	4.1. Using the sort option to sort foods within a report
	4.2. More change options
	4.2.1. Using the autoorder option
	4.2.2. Changing food quantities by refuse amount

	4.3. Configuring Pantry
	4.3.1. Specifying your own nutrient lists
	4.3.1.1. Specifying your own nutrient lists: an example

	4.3.2. Specifying custom sort orders

	4.4. Changing food quantities by nutrient amount
	4.5. Pantry usage shortcuts
	4.5.1. Using short options
	4.5.2. Learn your shell, and write scripts or functions to automate common tasks
	4.5.3. Learn other Unix utilities

	4.6. Using Pantry with screen
	4.7. Multilingual Pantry

	Chapter 5. Adding new foods and editing the nutrients or units of existing foods
	5.1. Creating a new food
	5.1.1. Create a new blank XML file
	5.1.2. Create a food element
	5.1.3. Create nutrients elements
	5.1.4. Creating unit elements

	5.2. Using a Pantry XML file
	5.3. Using Pantry XML files to edit units or nutrients of foods
	5.4. Validation of Pantry XML files

	Chapter 6. Plain text Foods files, and choosing which type of Foods file to use
	6.1. How Foods Text files work
	6.2. Foods Text files: an example
	Columns in the Foods Text file

	6.3. Using Foods Text files
	6.4. Which sort of file should I use?

	Chapter 7. Adding recipes
	7.1. When to use recipes
	7.2. Creating a recipe
	7.2.1. Creating a recipes file and a recipe element
	7.2.2. Setting the yield of a recipe
	7.2.2.1. The servings attribute
	7.2.2.2. The grams attribute
	7.2.2.3. The text attribute
	7.2.2.4. A complete yield element

	7.2.3. Setting the ingredients of a recipe
	7.2.4. Setting the available units for a recipe
	7.2.5. Directions for a recipe

	7.3. Using recipes

	Appendix A. Reference pages
	pantry
	Name
	Synopsis
	Description
	Options
	Search options
	Change options
	Print options
	Other general options
	Other options

	Reports
	Food reports
	Summary reports

	Nutrient lists
	Dump options
	Bugs
	Version

	Appendix B. Pantry's birth

