Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A B C D E F G H I Bib Ind
 Top of Book   Previous Chapter   Next Chapter 

14 Bigraded Objects
 14.1 BigradedObjects: Categories and Representations
  14.1-1 IsHomalgBigradedObject

  14.1-2 IsHomalgBigradedObjectAssociatedToAnExactCouple

  14.1-3 IsHomalgBigradedObjectAssociatedToAFilteredComplex

  14.1-4 IsHomalgBigradedObjectAssociatedToABicomplex

  14.1-5 IsBigradedObjectOfFinitelyPresentedObjectsRep
 14.2 Bigraded Objects: Constructors
  14.2-1 HomalgBigradedObject

  14.2-2 AsDifferentialObject

  14.2-3 DefectOfExactness
 14.3 Bigraded Objects: Properties
  14.3-1 IsEndowedWithDifferential

  14.3-2 IsStableSheet
 14.4 Bigraded Objects: Operations and Functions
  14.4-1 ByASmallerPresentation

14 Bigraded Objects

Bigraded objects in homalg provide a data structure for the sheets (or pages) of spectral sequences.

14.1 BigradedObjects: Categories and Representations

14.1-1 IsHomalgBigradedObject
> IsHomalgBigradedObject( Er )( category )

Returns: true or false

The GAP category of homalg bigraded objects.

(It is a subcategory of the GAP category IsHomalgObject.)

14.1-2 IsHomalgBigradedObjectAssociatedToAnExactCouple
> IsHomalgBigradedObjectAssociatedToAnExactCouple( Er )( category )

Returns: true or false

The GAP category of homalg bigraded objects associated to an exact couple.

(It is a subcategory of the GAP category IsHomalgBigradedObject.)

14.1-3 IsHomalgBigradedObjectAssociatedToAFilteredComplex
> IsHomalgBigradedObjectAssociatedToAFilteredComplex( Er )( category )

Returns: true or false

The GAP category of homalg bigraded objects associated to a filtered complex.
The 0-th spectral sheet E_0 stemming from a filtration is a bigraded (differential) object, which, in general, does not stem from an exact couple (although E_1, E_2, ... do).

(It is a subcategory of the GAP category IsHomalgBigradedObject.)

14.1-4 IsHomalgBigradedObjectAssociatedToABicomplex
> IsHomalgBigradedObjectAssociatedToABicomplex( Er )( category )

Returns: true or false

The GAP category of homalg bigraded objects associated to a bicmplex.

(It is a subcategory of the GAP category
IsHomalgBigradedObjectAssociatedToAFilteredComplex.)

14.1-5 IsBigradedObjectOfFinitelyPresentedObjectsRep
> IsBigradedObjectOfFinitelyPresentedObjectsRep( Er )( representation )

Returns: true or false

The GAP representation of bigraded objects of finitley generated homalg objects.

(It is a representation of the GAP category IsHomalgBigradedObject (14.1-1), which is a subrepresentation of the GAP representation IsFinitelyPresentedObjectRep.)

14.2 Bigraded Objects: Constructors

14.2-1 HomalgBigradedObject
> HomalgBigradedObject( B )( operation )

Returns: a homalg bigraded object

This constructor creates a homological (resp. cohomological) bigraded object given a homological (resp. cohomological) homalg bicomplex B (--> HomalgBicomplex (13.2-1)). This is nothing but the level zero sheet (without differential) of the spectral sequence associated to the bicomplex B. So it is the double array of homalg objects (i.e. modules or complexes) in B forgetting the morphisms.

gap> ZZ := HomalgRingOfIntegers( );;
gap> M := HomalgMatrix( "[ 2, 3, 4,   5, 6, 7 ]", 2, 3, ZZ );;
gap> M := LeftPresentation( M );
<A non-torsion left module presented by 2 relations for 3 generators>
gap> d := Resolution( M );;
gap> dd := Hom( d );;
gap> C := Resolution( dd );;
gap> CC := Hom( C );
<An acyclic complex containing a single morphism of left cocomplexes at degree\
s [ 0 .. 1 ]>
gap> B := HomalgBicomplex( CC );
<A bicomplex containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>
gap> E0 := HomalgBigradedObject( B );
<A bigraded object containing left modules at bidegrees [ 0 .. 1 ]x
[ -1 .. 0 ]>
gap> Display( E0 );
Level 0:

 * *
 * *

14.2-2 AsDifferentialObject
> AsDifferentialObject( Er )( method )

Returns: a homalg bigraded object

Add the induced bidegree ( -r, r - 1 ) (resp. ( r, -r + 1 )) differential to the level r homological (resp. cohomological) bigraded object stemming from a homological (resp. cohomological) bicomplex. This method performs side effects on its argument Er and returns it.

For an example see DefectOfExactness (14.2-3) below.

14.2-3 DefectOfExactness
> DefectOfExactness( Er )( method )

Returns: a homalg bigraded object

Homological: Compute the homology of a level r differential homological bigraded object, that is the r-th sheet of a homological spectral sequence endowed with a bidegree ( -r, r - 1 ) differential. The result is a level r+1 homological bigraded object without its differential.

Cohomological: Compute the cohomology of a level r differential cohomological bigraded object, that is the r-th sheet of a cohomological spectral sequence endowed with a bidegree ( r, -r + 1 ) differential. The result is a level r+1 cohomological bigraded object without its differential.

The differential of the resulting level r+1 object can a posteriori be computed using AsDifferentialObject (14.2-2). The objects in the result are subquotients of the objects in Er. An object in Er (at a spot (p,q)) is called stable if no passage to a true subquotient occurs at any higher level. Of course, a zero object (at a spot (p,q)) is always stable.

gap> ZZ := HomalgRingOfIntegers( );;
gap> M := HomalgMatrix( "[ 2, 3, 4,   5, 6, 7 ]", 2, 3, ZZ );;
gap> M := LeftPresentation( M );
<A non-torsion left module presented by 2 relations for 3 generators>
gap> d := Resolution( M );;
gap> dd := Hom( d );;
gap> C := Resolution( dd );;
gap> CC := Hom( C );
<An acyclic complex containing a single morphism of left cocomplexes at degree\
s [ 0 .. 1 ]>
gap> B := HomalgBicomplex( CC );
<A bicomplex containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>

Now we construct the spectral sequence associated to the bicomplex B, also called the first spectral sequence:

gap> I_E0 := HomalgBigradedObject( B );
<A bigraded object containing left modules at bidegrees [ 0 .. 1 ]x
[ -1 .. 0 ]>
gap> Display( I_E0 );
Level 0:

 * *
 * *
gap> AsDifferentialObject( I_E0 );
<A bigraded object with a differential of bidegree
[ 0, -1 ] containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>
gap> I_E0;
<A bigraded object with a differential of bidegree
[ 0, -1 ] containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>
gap> AsDifferentialObject( I_E0 );
<A bigraded object with a differential of bidegree
[ 0, -1 ] containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>
gap> I_E1 := DefectOfExactness( I_E0 );
<A bigraded object containing left modules at bidegrees [ 0 .. 1 ]x
[ -1 .. 0 ]>
gap> Display( I_E1 );
Level 1:

 * *
 . .
gap> AsDifferentialObject( I_E1 );
<A bigraded object with a differential of bidegree
[ -1, 0 ] containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>
gap> I_E2 := DefectOfExactness( I_E1 );
<A bigraded object containing left modules at bidegrees [ 0 .. 1 ]x
[ -1 .. 0 ]>
gap> Display( I_E2 );
Level 2:

 s .
 . .

Legend:

The second spectral sequence of the bicomplex is, by definition, the spectral sequence associated to the transposed bicomplex:

gap> tB := TransposedBicomplex( B );
<A bicomplex containing left modules at bidegrees [ -1 .. 0 ]x[ 0 .. 1 ]>
gap> II_E0 := HomalgBigradedObject( tB );
<A bigraded object containing left modules at bidegrees [ -1 .. 0 ]x
[ 0 .. 1 ]>
gap> Display( II_E0 );
Level 0:

 * *
 * *
gap> AsDifferentialObject( II_E0 );
<A bigraded object with a differential of bidegree
[ 0, -1 ] containing left modules at bidegrees [ -1 .. 0 ]x[ 0 .. 1 ]>
gap> II_E1 := DefectOfExactness( II_E0 );
<A bigraded object containing left modules at bidegrees [ -1 .. 0 ]x
[ 0 .. 1 ]>
gap> Display( II_E1 );
Level 1:

 * *
 . s
gap> AsDifferentialObject( II_E1 );
<A bigraded object with a differential of bidegree
[ -1, 0 ] containing left modules at bidegrees [ -1 .. 0 ]x[ 0 .. 1 ]>
gap> II_E2 := DefectOfExactness( II_E1 );
<A bigraded object containing left modules at bidegrees [ -1 .. 0 ]x
[ 0 .. 1 ]>
gap> Display( II_E2 );
Level 2:

 s .
 . s

14.3 Bigraded Objects: Properties

14.3-1 IsEndowedWithDifferential
> IsEndowedWithDifferential( Er )( property )

Returns: true or false

Check if Er is a differential bigraded object.
(no method installed)

14.3-2 IsStableSheet
> IsStableSheet( Er )( property )

Returns: true or false

Check if Er is stable.
(no method installed)

14.4 Bigraded Objects: Operations and Functions

14.4-1 ByASmallerPresentation
> ByASmallerPresentation( Er )( method )

Returns: a homalg bigraded object

See ByASmallerPresentation (9.5-2) on modules.

InstallMethod( ByASmallerPresentation,
        "for homalg bigraded objects",
        [ IsHomalgBigradedObject ],
        
  function( Er )
    
    List( Flat( ObjectsOfBigradedObject( Er ) ), ByASmallerPresentation );
    
    return Er;
    
end );

This method performs side effects on its argument Er and returns it.

 Top of Book   Previous Chapter   Next Chapter 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A B C D E F G H I Bib Ind

generated by GAPDoc2HTML