Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A B C D E F G H I Bib Ind
 Top of Book   Previous Chapter   Next Chapter 

13 Bicomplexes
 13.1 Bicomplexes: Category and Representations
  13.1-1 IsHomalgBicomplex

  13.1-2 IsBicomplexOfFinitelyPresentedObjectsRep

  13.1-3 IsBicocomplexOfFinitelyPresentedObjectsRep
 13.2 Bicomplexes: Constructors
  13.2-1 HomalgBicomplex
 13.3 Bicomplexes: Properties
  13.3-1 IsBisequence

  13.3-2 IsBicomplex

  13.3-3 IsTransposedWRTTheAssociatedComplex
 13.4 Bicomplexes: Attributes
  13.4-1 TotalComplex

  13.4-2 SpectralSequence
 13.5 Bicomplexes: Operations and Functions
  13.5-1 UnderlyingComplex

  13.5-2 ByASmallerPresentation

13 Bicomplexes

Each bicomplex in homalg has an underlying complex of complexes. The bicomplex structure is simply the addition of the known sign trick which induces the obvious equivalence between the category of bicomplexes and the category of complexes with complexes as objects and chain maps as morphisms. The majority of filtered complexes in algebra and geometry (unlike topology) arise as the total complex of a bicomplex. Hence, most spectral sequences in algebra are spectral sequences of bicomplexes. Indeed, bicomplexes in homalg are mainly used as an input for the spectral sequence machinery.

13.1 Bicomplexes: Category and Representations

13.1-1 IsHomalgBicomplex
> IsHomalgBicomplex( BC )( category )

Returns: true or false

The GAP category of homalg bi(co)complexes.

(It is a subcategory of the GAP category IsHomalgObject.)

13.1-2 IsBicomplexOfFinitelyPresentedObjectsRep
> IsBicomplexOfFinitelyPresentedObjectsRep( BC )( representation )

Returns: true or false

The GAP representation of bicomplexes (homological bicomplexes) of finitley generated homalg objects.

(It is a representation of the GAP category IsHomalgBicomplex (13.1-1), which is a subrepresentation of the GAP representation IsFinitelyPresentedObjectRep.)

13.1-3 IsBicocomplexOfFinitelyPresentedObjectsRep
> IsBicocomplexOfFinitelyPresentedObjectsRep( BC )( representation )

Returns: true or false

The GAP representation of bicocomplexes (cohomological bicomplexes) of finitley generated homalg objects.

(It is a representation of the GAP category IsHomalgBicomplex (13.1-1), which is a subrepresentation of the GAP representation IsFinitelyPresentedObjectRep.)

13.2 Bicomplexes: Constructors

13.2-1 HomalgBicomplex
> HomalgBicomplex( C )( function )

Returns: a homalg bicomplex

This constructor creates a bicomplex (homological bicomplex) given a homalg complex of (co)complexes C (--> HomalgComplex (11.2-1)), resp. creates a bicocomplex (cohomological bicomplex) given a homalg cocomplex of (co)complexes C (--> HomalgCocomplex (11.2-2)). Using the usual sign-trick a complex of complexes gives rise to a bicomplex and vice versa.

gap> ZZ := HomalgRingOfIntegers( );;
gap> M := HomalgMatrix( "[ 2, 3, 4,   5, 6, 7 ]", 2, 3, ZZ );
<A homalg internal 2 by 3 matrix>
gap> M := LeftPresentation( M );
<A non-torsion left module presented by 2 relations for 3 generators>
gap> d := Resolution( M );
<A non-zero right acyclic complex containing a single morphism of left modules\
 at degrees [ 0 .. 1 ]>
gap> dd := Hom( d );
<An acyclic cocomplex containing a single morphism of right modules at degrees\
 [ 0 .. 1 ]>
<A non-zero acyclic cocomplex containing a single morphism of right modules at\
 degrees [ 0 .. 1 ]>
gap> C := Resolution( dd );
<An acyclic cocomplex containing a single morphism of right complexes at degre\
es [ 0 .. 1 ]>
gap> CC := Hom( C );
<An acyclic complex containing a single morphism of left cocomplexes at degree\
s [ 0 .. 1 ]>
gap> BC := HomalgBicomplex( CC );
<A bicomplex containing left modules at bidegrees [ 0 .. 1 ]x[ -1 .. 0 ]>
gap> Display( BC );
 * *
 * *
gap> UU := UnderlyingComplex( BC );
<An acyclic complex containing a single morphism of left cocomplexes at degree\
s [ 0 .. 1 ]>
gap> IsIdenticalObj( UU, CC );
true
gap> tBC := TransposedBicomplex( BC );
<A bicomplex containing left modules at bidegrees [ -1 .. 0 ]x[ 0 .. 1 ]>
gap> Display( tBC );
 * *
 * *

13.3 Bicomplexes: Properties

13.3-1 IsBisequence
> IsBisequence( BC )( property )

Returns: true or false

Check if all maps in BC are well-defined.

13.3-2 IsBicomplex
> IsBicomplex( BC )( property )

Returns: true or false

Check if BC is bicomplex.

13.3-3 IsTransposedWRTTheAssociatedComplex
> IsTransposedWRTTheAssociatedComplex( BC )( property )

Returns: true or false

Check if BC is transposed with respect to the associated complex of complexes.
(no method installed).

13.4 Bicomplexes: Attributes

13.4-1 TotalComplex
> TotalComplex( BC )( attribute )

Returns: a homalg (co)complex

The associated total complex.

13.4-2 SpectralSequence
> SpectralSequence( BC )( attribute )

Returns: a homalg (co)homological spectral sequence

The associated spectral sequence.

13.5 Bicomplexes: Operations and Functions

13.5-1 UnderlyingComplex
> UnderlyingComplex( BC )( function )

Returns: a homalg complex

The (co)complex of (co)complexes underlying the (co)homological bicomplex BC.

13.5-2 ByASmallerPresentation
> ByASmallerPresentation( B )( method )

Returns: a homalg bicomplex

See ByASmallerPresentation (11.5-2) on complexes.

InstallMethod( ByASmallerPresentation,
        "for homalg bicomplexes",
        [ IsHomalgBicomplex ],
        
  function( B )
    
    ByASmallerPresentation( UnderlyingComplex( B ) );
    
    IsZero( B );
    
    return B;
    
end );

This method performs side effects on its argument B and returns it.

 Top of Book   Previous Chapter   Next Chapter 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A B C D E F G H I Bib Ind

generated by GAPDoc2HTML