
Contents

1 Resolutions of the ground ring 3

2 Resolutions of modules 4

3 Induced equivariant chain maps 5

4 Functors 6

5 Chain complexes 7

6 Homology and cohomology groups 8

7 Poincare series 9

8 Cohomology ring structure 10

9 Commutator and nonabelian tensor computations 11

10 Lie commutators and nonabelian Lie tensors 12

11 Generators and relators of groups 13

12 Orbit polytopes and fundamental domains 14

13 Cocycles 15

14 Words in free ZG-modules 16

15 F pG-modules 17

16 Meataxe modules 18

17 G-Outer Groups 19

18 Cat-1-groups 20

19 Coxeter diagrams and graphs of groups 21

20 Some functions for accessing basic data 22

1

2

21 Parallel Computation - Core Functions 23

22 Parallel Computation - Extra Functions 24

23 Topological Data Analysis 25

24 Pseudo lists 26

25 Miscellaneous 27

Chapter 1

Resolutions of the ground ring

ResolutionAbelianGroup(L,n) ResolutionAbelianGroup(G,n) Inputs a list L := [m1,m2, ...,md] of nonnegative integers, and a positive integer n. It returns n terms of a ZG-resolution for the abelian group G = ZL[1]+ZL[2]+ Â∆Â∆Â∆+ZL[d] . If G is finite then the first argument can also be the abelian group G itself.
ResolutionAlmostCrystalGroup(G,n) Inputs a positive integer n and an almost crystallographic pcp group G. It returns n terms of a free ZG-resolution. (A group is almost crystallographic if it is nilpotent-by-finite and has no non-trivial finite normal subgroup. Such groups can be constructed using the ACLIB package.)
ResolutionAlmostCrystalQuotient(G,n,c) ResolutionAlmostCrystalQuotient(G,n,c,false) An almost crystallographic group G is an extension of a finite group P by a nilpotent group T , and has no non-trivial finite normal subgroup. We define the relative lower central series by setting T1 = T and Ti+1 = [Ti,G]. This function inputs an almost crystallographic group G together with positive integers n and c. It returns n terms of a free ZQ-resolution R for the group Q = G/Tc . In addition to the usual components, the resolution R has the component R.quotientHomomorphism which gives the quotient homomorphism G −→ Q. If a fourth optional variable is set equal to ”false” then the function omits to test whether Q is finite and a ”more canonical” resolution is constructed.
ResolutionArtinGroup(D,n) Inputs a Coxeter diagram D and an integer n > 1. It returns n terms of a free ZG-resolution R where G is the Artin monoid associated to D. It is conjectured that R is also a free resolution for the Artin group G. The conjecture is known to hold in certain cases. G = R.group is infinite and returned as a finitely presented group. The list R.elts is a partial listing of the elements of G which grows as R is used. Initially R.elts is empty and then, any time the boundary of a resolution generator is called, R.elts is updated to include elements of G involved in the boundary. The contracting homotopy on R has not yet been implemented! Furthermore, the group G is currently returned only as a finitely presented group (without any method for solving the word problem).
ResolutionAsphericalPresentation(F,R,n) Inputs a free group F , a set R of words in F which constitute an aspherical presentation for a group G, and a positive integer n. (Asphericity can be a difficult property to verify. The function IsAspherical(F,R) could be of help.) The function returns n terms of a free ZG-resolution R which has generators in dimensions < 3 only. No contracting homotopy on R will be returned.
ResolutionBieberbachGroup(G)
ResolutionBieberbachGroup(G, v) Inputs a Bieberbach group G (represented using AffineCrystGroupOnRight as in the GAP package Cryst). It also optionally inputs a choice of vector v in the euclidean space Rn on which G acts freely. The function returns n+1 terms of the free ZG-resolution of Z arising as the cellular chain complex of the tesselation of Rn by the Dirichlet-Voronoi fundamental domain determined by v. This is a HAPcryst function and is thus only available if HAPcryst is loaded. The function requires the use of Polymake software.
ResolutionDirectProduct(R,S) ResolutionDirectProduct(R,S,"internal") Inputs a ZG-resolution R and ZH-resolution S. It outputs a ZD-resolution for the direct product D = GxH. If G and H lie in a common group K, and if they commute and have trivial intersection, then an optional third variable ”internal” can be used. This will force D to be the subgroup GH in K.
ResolutionExtension(g,R,S) ResolutionExtension(g,R, S,"TestFiniteness") ResolutionExtension(g,R,S,"NoTest",GmapE) Inputs a surjective group homomorphism g : E −→ G with kernel N. It also inputs a ZN-resolution R and a ZG-resolution S. It returns a ZE-resolution. The groups E and G can be infinite. If an optional fourth argument is set equal to ”TestFiniteness” then the groups N and G will be tested to see if they are finite. If they are finite then some speed saving routines will be invoked. If the homomorphism g is such that the GAP function PreImagesElement(g,x) doesn’t work, then a function GmapE() should be included as a fifth input. For any x in G this function should return an element GmapE(x) in E which gets mapped onto x by g. The contracting homotopy on the ZE-resolution has not yet been fully implemented for infinite groups!
ResolutionFiniteDirectProduct(R,S) ResolutionFiniteDirectProduct(R,S, "internal") Inputs a ZG-resolution R and ZH-resolution S where G and H are finite groups. It outputs a ZD-resolution for the direct product D = GÃH. If G and H lie in a common group K, and if they commute and have trivial intersection, then an optional third variable ”internal” can be used. This will force D to be the subgroup GH in K.
ResolutionFiniteExtension(gensE,gensG,R,n) ResolutionFiniteExtension(gensE,gensG,R,n,true) ResolutionFiniteExtension(gensE,gensG,R,n,false,S) Inputs: a set gensE of generators for a finite group E; a set gensG equal to the image of gensE in a quotient group G of E; a ZG-resolution R up to dimension at least n; a positive integer n. It uses the TwistedTensorProduct() construction to return n terms of a ZE-resolution. The function has an optional fourth argument which, when set equal to ”true”, invokes tietze reductions in the construction of a resolution for the kernel of E −→ G. If a ZN-resolution S is available, where N is the kernel of the quotient E −→ G, then this can be incorporated into the computations using an optional fifth argument.
ResolutionFiniteGroup(gens,n) ResolutionFiniteGroup(gens,n,true) ResolutionFiniteGroup(gens,n,false,p) Inputs a set gens of generators for a finite group G and a positive integer n. It outputs n terms of a ZG-resolution. The function has an optional third argument which, when set equal to true, invokes tietze reductions in the construction of the resolution. The function has an optional fourth argument which, when set equal to a prime p, records the fact that the resolution will only be used for mod p calculations. This could speed up subsequent constructions.
ResolutionFiniteSubgroup(R,K) ResolutionFiniteSubgroup(R,gensG,gensK) Inputs a ZG-resolution for a finite group G and a subgroup K of index |G : K|. It returns a free ZK-resolution whose ZK-rank is |G : K| times the ZG-rank in each dimension. Generating sets gensG, gensK for G and K can also be input to the function (though the method does not depend on a choice of generators). This ZK-resolution is not reduced. ie. it has more than one generator in dimension 0.
ResolutionGraphOfGroups(D,n) ResolutionGraphOfGroups(D,n,L) Inputs a graph of groups D and a positive integer n. It returns n terms of a free ZG-resolution for the fundamental group G of D. An optional third argument L = [R1, . . . ,Rt] can be used to list (in any order) free resolutions for some/all of the vertex and edge groups in D. If for some vertex or edge group no resolution is listed in L then the function ResolutionFiniteGroup() will be used to try to construct the resolution. The ZG-resolution is usually not reduced. i.e. it has more than one generator in dimension 0. The contracting homotopy on the ZG-resolution has not yet been implemented! Furthermore, the group G is currently returned only as a finitely presented group (without any method for solving the word problem).
ResolutionNilpotentGroup(G,n) ResolutionNilpotentGroup(G,n,"TestFiniteness") Inputs a nilpotent group G and positive integer n. It returns n terms of a free ZG-resolution. The resolution is computed using a divide-and-conquer technique involving the lower central series. This function can be applied to infinite groups G. For finite groups the function ResolutionNormalSeries() probably gives better results. If an optional third argument is set equal to ”TestFiniteness” then the groups N and G will be tested to see if they are finite. If they are finite then some speed saving routines will be invoked. The contracting homotopy on the ZE-resolution has not yet been fully implemented for infinite groups.
ResolutionNormalSeries(L,n) ResolutionNormalSeries(L,n,true) ResolutionNormalSeries(L,n,false,p) Inputs a positive integer n and a list L = [L1, ...,Lk] of normal subgroups Li of a finite group G satisfying G = L1 > L2 >.. . >Lk. Alternatively, L = [gensL1, ...gensLk] can be a list of generating sets for the Li (and these particular generators will be used in the construction of resolutions). It returns a ZG-resolution by repeatedly using the function ResolutionFiniteExtension(). The function has an optional third argument which, if set equal to true, invokes tietze reductions in the construction of resolutions. The function has an optional fourth argument which, if set equal to p > 0, produces a resolution which is only valid for mod p calculations.
ResolutionPrimePowerGroup(P,n) ResolutionPrimePowerGroup(G,n,p) Inputs a p-group P and integer n>0. It uses GAP’s standard linear algebra functions over the field F of p elements to construct a free FP-resolution for mod p calculations only. The resolution is minimal - meaning that the number of generators of Rn equals the rank of Hn(P,F). The function can also be used to obtain a free non-minimal FG-resolution of a small group G of non-prime-power order. In this case the prime p must be entered as the third input variable. (In the non-prime-power case the algorithm is naive and not very good.)
ResolutionSmallFpGroup(G,n) ResolutionSmallFpGroup(G,n,p) Inputs a small finitely presented group G and an integer n>0. It returns n terms of a ZG-resolution which, in dimensions 1 and 2, corresponds to the given presentation for G. The method returns no contracting homotopy for the resolution. The function has an optional fourth argument which, when set equal to a prime p, records the fact that the resolution will only be used for mod p calculations. This could speed up subsequent constructions. This function was written by Irina Kholodna.
ResolutionSubgroup(R,K) Inputs a ZG-resolution for an (infinite) group G and a subgroup K of finite index |G : K|. It returns a free ZK-resolution whose ZK-rank is |G : K| times the ZG-rank in each dimension. If G is finite then the function ResolutionFiniteSubgroup(R,G,K) will probably work better. In particular, resolutions from this function probably won’t work with the function EquivariantChainMap(). This ZK-resolution is not reduced. i.e. it has more than one generator in dimension 0.
ResolutionSubnormalSeries(L,n) Inputs a positive integer n and a list L = [L1, . . . ,Lk] of subgroups Li of a finite group G = L1 such that L1 > L2 . . . > Lk is a subnormal series in G (meaning that each Li+1 must be normal in Li). It returns a ZG-resolution by repeatedly using the function ResolutionFiniteExtension(). If L is a series of normal subgroups in G then the function ResolutionNormalSeries(L,n) will possibly work more efficiently.
TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE) Inputs a ZG-resolution R, a ZN-resolution S, and other data relating to a short exact sequence 1 −→ N −→ E −→ G −→ 1. It uses a perturbation technique of CTC Wall to construct a ZE-resolution F . Both G and N could be infinite. The ”length” of F is equal to the minimum of the ”length”s of R and S. The resolution R needs no contracting homotopy if no such homotopy is requied for F .

3

file:About/aboutArtinGroups.html

Chapter 2

Resolutions of modules

ResolutionFpGModule(M,n) Inputs an F pG-module M and a positive integer n. It returns n terms of a minimal free FG-resolution of the module M (where G is a finite group and F the field of p elements).

4

Chapter 3

Induced equivariant chain maps

EquivariantChainMap(R,S,f) Inputs a ZG-resolution R, a ZG′-resolution S, and a group homomorphism f : G −→ G′. It outputs a component object M with the following components.M!.source is the resolution R. M!.target is the resolution S. M!.mapping(w,n) is a function which gives the image in Sn, under a chain map induced by f , of a word w in Rn. (Here Rn and Sn are the n-th modules in the resolutions R and S.) F!.properties is a list of pairs such as [”type”, ”equivariantChainMap”]. The resolution S must have a contracting homotopy.

5

Chapter 4

Functors

••••
HomToIntegers(X) Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R −→ S). It returns the cochain complex or cochain map obtained by applying HomZG(,Z) where Z is the trivial module of integers (characteristic 0).
HomToIntegersModP(R) Inputs a ZG-resolution R and returns the cochain complex obtained by applying HomZG(,Zp) where Zp is the trivial module of integers mod p. (At present this functor does not handle equivariant chain maps.)
HomToIntegralModule(R,f) Inputs a ZG-resolution R and a group homomorphism f : G −→ GLn(Z) to the group of nÃn invertible integer matrices. Here Z must have characteristic 0. It returns the cochain complex obtained by applying HomZG(,A) where A is the ZG-module Zn with G action via f . (At present this function does not handle equivariant chain maps.)
HomToGModule(R,A) Inputs a ZG-resolution R and an abelian G-outer group A. It returns the G-cocomplex obtained by applying HomZG(,A). (At present this function does not handle equivariant chain maps.)
LowerCentralSeriesLieAlgebra(G) LowerCentralSeriesLieAlgebra(f) Inputs a pcp group G. If each quotient Gc/Gc+1 of the lower central series is free abelian or p-elementary abelian (for fixed prime p) then a Lie algebra L(G) is returned. The abelian group underlying L(G) is the direct sum of the quotients Gc/Gc+1 . The Lie bracket on L(G) is induced by the commutator in G. (Here G1 = G, Gc+1 = [Gc,G] .) The function can also be applied to a group homomorphism f : G −→ G′ . In this case the induced homomorphism of Lie algebras L(f) : L(G)−→ L(G′) is returned. If the quotients of the lower central series are not all free or p-elementary abelian then the function returns fail. This function was written by Pablo Fernandez Ascariz
TensorWithIntegers(X) Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R −→ S). It returns the chain complex or chain map obtained by tensoring with the trivial module of integers (characteristic 0).
TensorWithIntegersModP(X,p) Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R −→ S), and a prime p. It returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulo p.
TensorWithRationals(R) Inputs a ZG-resolution R and returns the chain complex obtained by tensoring with the trivial module of rational numbers.

6

Chapter 5

Chain complexes

ChevalleyEilenbergComplex(X,n) Inputs either a Lie algebra X = A (over the ring of integers Z or over a field K) or a homomorphism of Lie algebras X = (f : A −→ B), together with a positive integer n. It returns either the first n terms of the Chevalley-Eilenberg chain complex C(A), or the induced map of Chevalley-Eilenberg complexes C(f) : C(A)−→C(B). (The homology of the Chevalley-Eilenberg complex C(A) is by definition the homology of the Lie algebra A with trivial coefficients in Z or K). This function was written by Pablo Fernandez Ascariz
LeibnizComplex(X,n) Inputs either a Lie or Leibniz algebra X = A (over the ring of integers Z or over a field K) or a homomorphism of Lie or Leibniz algebras X = (f : A −→ B), together with a positive integer n. It returns either the first n terms of the Leibniz chain complex C(A), or the induced map of Leibniz complexes C(f) : C(A)−→C(B). (The Leibniz complex C(A) was defined by J.-L.Loday. Its homology is by definition the Leibniz homology of the algebra A). This function was written by Pablo Fernandez Ascariz

7

Chapter 6

Homology and cohomology groups

Cohomology(X,n) Inputs either a cochain complex X = C (or G-cocomplex C) or a cochain map X = (C −→ D) over the integers Z together with a non-negative intereg n.If X = C then the torsion coefficients of Hn(C) are retuned. If X = (C −→ D) then the induced homomorphism Hn(C)−→ Hn(D) is returned as a homomorphism of finitely presented groups.
CohomologyModule(C,n) Inputs a G-cocomplex C together with a non-negative integer n. It returns the cohomology Hn(C) as a G-outer group. If C was constructed from a resolution R by homing to an abelian G-outer group A then, for each x in H:=CohomologyModule(C,n), there is a function f:=H!.representativeCocycle(x) which is a standard n-cocycle corresponding to the cohomology class x. (At present this works only for n=1,2,3.)
CohomologyPrimePart(C,n,p) Inputs a cochain complex C in characteristic 0, a positive integer n, and a prime p. It returns a list of those torsion coefficients of Hn(C) that are positive powers of p. The function uses the EDIM package by Frank Luebeck.
GroupCohomology(X,n) GroupCohomology(X,n,p) Inputs a positive integer n and either a finite group X = G or a Coxeter diagram X = D representing an infinite Artin group G. It returns the torsion coefficients of the integral cohomology Hn(G,Z). There is an optional third argument which, when set equal to a prime p, causes the function to return the the mod p cohomology Hn(G,Zp) as a list of length equal to its rank. This function is a composite of more basic functions, and makes choices for a number of parameters. For a particular group you would almost certainly be better using the more basic functions and making the choices yourself!
GroupHomology(X,n)
GroupHomology(X,n,p) Inputs a positive integer n and either a finite group X = G or a Coxeter diagram X = D representing an infinite Artin group G. It returns the torsion coefficients of the integral homology Hn(G,Z). There is an optional third argument which, when set equal to a prime p, causes the function to return the mod p homology Hn(G,Zp) as a list of lenth equal to its rank. This function is a composite of more basic functions, and makes choices for a number of parameters. For a particular group you would almost certainly be better using the more basic functions and making the choices yourself!
Homology(X,n) Inputs either a chain complex X = C or a chain map X = (C −→ D).If X = C then the torsion coefficients of Hn(C) are retuned. If X = (C −→ D) then the induced homomorphism Hn(C)−→ Hn(D) is returned as a homomorphism of finitely presented groups.
HomologyPb(C,n) This is a back-up function which might work in some instances where Homology(C,n) fails. It is most useful for chain complexes whose boundary homomorphisms are sparse. It inputs a chain complex C in characteristic 0 and returns the torsion coefficients of Hn(C) . There is a small probability that an incorrect answer could be returned. The computation relies on probabilistic Smith Normal Form algorithms implemented in the Simplicial Homology GAP package. This package therefore needs to be loaded. The computation is stored as a component of C so, when called a second time for a given C and n, the calculation is recalled without rerunning the algorithm. The choice of probabalistic algorithm can be changed using the command SetHomologyAlgorithm(HomologyAlgorithm[i]); where i = 1,2,3 or 4. The upper limit for the probability of an incorrect answer can be set to any rational number 0<e<= 1 using the following command. SetUncertaintyTolerence(e); See the Simplicial Homology package manual for further details.
HomologyPrimePart(C,n,p) Inputs a chain complex C in characteristic 0, a positive integer n, and a prime p. It returns a list of those torsion coefficients of Hn(C) that are positive powers of p. The function uses the EDIM GAP package by Frank Luebeck.
LeibnizAlgebraHomology(A,n) Inputs a Lie or Leibniz algebra X = A (over the ring of integers Z or over a field K), together with a positive integer n. It returns the n-dimensional Leibniz homology of A.
LieAlgebraHomology(A,n) Inputs a Lie algebra A (over the integers or a field) and a positive integer n. It returns the homology Hn(A,k) where k denotes the ground ring.
PrimePartDerivedFunctor(G,R,F,n) Inputs a finite group G, a positive integer n, at least n+1 terms of a ZP-resolution for a Sylow subgroup P<G and a ”mathematically suitable” covariant additive functor F such as TensorWithIntegers . It returns the abelian invariants of the p-component of the homology Hn(F(R)) . Warning: All calculations are assumed to be in characteristic 0. The function should not be used if the coefficient module is over the field of p elements. ”Mathematically suitable” means that the Cartan-Eilenberg double coset formula must hold.
RankHomologyPGroup(G,n) RankHomologyPGroup(R,n) RankHomologyPGroup(G,n,"empirical") Inputs a (smallish) p-group G, or n terms of a minimal ZpG-resolution R of Zp , together with a positive integer n. It returns the minimal number of generators of the integral homology group Hn(G,Z). If an option third string argument ”empirical” is included then an empirical algorithm will be used. This is one which always seems to yield the right answer but which we can’t prove yields the correct answer.
RankPrimeHomology(G,n) Inputs a (smallish) p-group G together with a positive integer n. It returns a function dim(k) which gives the rank of the vector space Hk(G,Zp) for all 0 <= k <= n.

8

Chapter 7

Poincare series

••••
EfficientNormalSubgroups(G)
EfficientNormalSubgroups(G,k) Inputs a prime-power group G and, optionally, a positive integer k. The default is k = 4. The function returns a list of normal subgroups N in G such that the Poincare series for G equals the Poincare series for the direct product (N× (G/N)) up to degree k.
ExpansionOfRationalFunction(f,n) Inputs a positive integer n and a rational function f (x) = p(x)/q(x) where the degree of the polynomial p(x) is less than that of q(x). It returns a list [a0,a1,a2,a3, . . . ,an] of the first n+1 coefficients of the infinite expansion f (x) = a0 +a1x+a2x2 +a3x3 +
PoincareSeries(G,n) PoincareSeries(R,n)
PoincareSeries(L,n)
PoincareSeries(G) Inputs a finite p-group G and a positive integer n. It returns a quotient of polynomials f (x) = P(x)/Q(x) whose coefficient of xk equals the rank of the vector space Hk(G,Zp) for all k in the range k = 1 to k = n. (The second input variable can be omitted, in which case the function tries to choose a ”reasonable” value for n.) In place of the group G the function can also input (at least n terms of) a minimal mod p resolution R for G. Alternatively, the first input variable can be a list L of integers. In this case the coefficient of xk in f (x) is equal to the (k +1)st term in the list.
PoincareSeriesPrimePart(G,p,n) Inputs a finite group G, a prime p, and a positive integer n. It returns a quotient of polynomials f (x) = P(x)/Q(x) whose coefficient of xk equals the rank of the vector space Hk(G,Zp) for all k in the range k = 1 to k = n. The efficiency of this function needs to be improved.
Prank(G) Inputs a p-group G and returns the rank of the largest elementary abelian subgroup.

9

Chapter 8

Cohomology ring structure

IntegralCupProduct(R,u,v,p,q)
IntegralCupProduct(R,u,v,p,q,P,Q,N) (Various functions used to construct the cup product are also available.) Inputs a ZG-resolution R, a vector u representing an element in H p(G,Z), a vector v representing an element in Hq(G,Z) and the two integers p,q >0. It returns a vector w representing the cup product u · v in H p+q(G,Z). This product is associative and u · v = (−1)pqv ·u . It provides H∗(G,Z) with the structure of an anti-commutative graded ring. This function implements the cup product for characteristic 0 only. The resolution R needs a contracting homotopy. To save the function from having to calculate the abelian groups Hn(G,Z) additional input variables can be used in the form IntegralCupProduct(R,u,v, p,q,P,Q,N) , whereP is the output of the command CRCocyclesAndCoboundaries(R, p, true) Q is the output of the command CRCocyclesAndCoboundaries(R,q, true) N is the output of the command CRCocyclesAndCoboundaries(R, p+q, true) .
IntegralRingGenerators(R,n) Inputs at least n+1 terms of a ZG-resolution and integer n> 0. It returns a minimal list of cohomology classes in Hn(G,Z) which, together with all cup products of lower degree classes, generate the group Hn(G,Z) . (Let ai be the i-th canonical generator of the d-generator abelian group Hn(G,Z). The cohomology class n1a1 + ...+ndad is represented by the integer vector u = (n1, ...,nd).)
ModPCohomologyGenerators(G,n)
ModPCohomologyGenerators(R) Inputs either a p-group G and positive integer n, or else n terms of a minimal ZpG-resolution R of Zp. It returns a pair whose first entry is a minimal set of homogeneous generators for the cohomology ring A = H∗(G,Zp) modulo all elements in degree greater than n. The second entry of the pair is a function deg which, when applied to a minimal generator, yields its degree. WARNING: the following rule must be applied when multiplying generators xi together. Only products of the form x1 ∗ (x2 ∗ (x3 ∗ (x4 ∗ ...))) with deg(xi)≤ deg(xi+1) should be computed (since the xi belong to a structure constant algebra with only a partially defined structure constants table).
ModPCohomologyRing(G,n)
ModPCohomologyRing(G,n,level)
ModPCohomologyRing(R)
ModPCohomologyRing(R,level) Inputs either a p-group G and positive integer n, or else n terms of a minimal ZpG-resolution R of Zp. It returns the cohomology ring A = H∗(G,Zp) modulo all elements in degree greater than n. The ring is returned as a structure constant algebra A. The ring A is graded. It has a component A!.degree(x) which is a function returning the degree of each (homogeneous) element x in GeneratorsO f Algebra(A). An optional input variable ”level” can be set to one of the strings ”medium” or ”high”. These settings determine parameters in the algorithm. The default setting is ”medium”. When ”level” is set to ”high” the ring A is returned with a component A!.niceBasis. This component is a pair [Coe f f ,Bas]. Here Bas is a list of integer lists; a ”nice” basis for the vector space A can be constructed using the command List(Bas,x−> Product(List(x, i−> Basis(A)[i])). The coefficients of the canonical basis element Basis(A)[i] are stored as Coe f f [i]. If the ring A is computed using the setting ”level”=”medium” then the component A!.niceBasis can be added to A using the command A := ModPCohomologyRingpart2(A).
ModPRingGenerators(A) Inputs a mod p cohomology ring A (created using the preceeding function). It returns a minimal generating set for the ring A. Each generator is homogeneous.

10

file: CR_functions.html

Chapter 9

Commutator and nonabelian tensor
computations

•••
BaerInvariant(G,c) Inputs a nilpotent group G and integer c>0. It returns the Baer invariant M(c)(G) defined as follows. For an arbitrary group G let L∗c+1(G) be the (c+1)-st term of the upper central series of the group U = F/[[[R,F],F]...] (with c copies of F in the denominator) where F/R is any free presentation of G. This is an invariant of G and we define M(c)(G) to be the kernel of the canonical homomorphism M(c)(G)−→ G. For c = 1 the Baer invariant M(1)(G) is isomorphic to the second integral homology H2(G,Z). This function requires the NQ package.
Coclass(G) Inputs a group G of prime-power order pn and nilpotency class c say. It returns the integer r = n− c .
EpiCentre(G,N)
EpiCentre(G) Inputs a finite group G and normal subgroup N and returns a subgroup Z∗(G,N) of the centre of N. The group Z∗(G,N) is trivial if and only if there is a crossed module d : E −→ G with N = Image(d) and with Ker(d) equal to the subgroup of E consisting of those elements on which G acts trivially. If no value for N is entered then it is assumed that N = G. In this case the group Z∗(G,G) is trivial if and only if G is isomorphic to a quotient G = E/Z(E) of some group E by the centre of E. (See also the command U pperE picentralSeries(G,c).)
NonabelianExteriorProduct(G,N) Inputs a finite group G and normal subgroup N. It returns a record E with the following components.E.homomorphism is a group homomorphism Âµ : (G∧N)−→ G from the nonabelian exterior product (G∧N) to G. The kernel of Âµ is the relative Schur multiplier. E.pairing(x,y) is a function which inputs an element x in G and an element y in N and returns (x∧ y) in the exterior product (G∧N) . This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.
NonabelianSymmetricKernel(G)
NonabelianSymmetricKernel(G,m) Inputs a finite or nilpotent infinite group G and returns the abelian invariants of the Fourth homotopy group SG of the double suspension SSK(G,1) of the Eilenberg-Mac Lane space K(G,1). For non-nilpotent groups the implementation of the function NonabelianSymmetricKernel(G) is far from optimal and will soon be improved. As a temporary solution to this problem, an optional second variable m can be set equal to 0, and then the function efficiently returns the abelian invariants of groups A and B such that there is an exact sequence 0 −→ B −→ SG −→ A −→ 0. Alternatively, the optional second varible m can be set equal to a positive multiple of the order of the symmetric square (G⊗̃G). In this case the function returns the abelian invariants of SG. This might help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable accurate).
NonabelianSymmetricSquare(G)
NonabelianSymmetricSquare(G,m) Inputs a finite or nilpotent infinite group G and returns a record T with the following components.T.homomorphism is a group homomorphism Âµ : (G⊗̃G)−→ G from the nonabelian symmetric square of G to G. The kernel of Âµ is isomorphic to the fourth homotopy group of the double suspension SSK(G,1) of an Eilenberg-Mac Lane space. T.pairing(x,y) is a function which inputs two elements x,y in G and returns the tensor (x⊗ y) in the symmetric square (G⊗G) . An optional second varible m can be set equal to a multiple of the order of the symmetric square (G⊗̃G). This might help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable accurate) as the bound is used in the solvable quotient algorithm. The optional second variable m can also be set equal to 0. In this case the Todd-Coxeter procedure will be used to enumerate the symmetric square even when G is solvable. This function should work for reasonably small solvable groups or extremely small non-solvable groups.
NonabelianTensorProduct(G,N) Inputs a finite group G and normal subgroup N. It returns a record E with the following components.E.homomorphism is a group homomorphism Âµ : (G⊗N)−→ G from the nonabelian exterior product (G⊗N) to G. E.pairing(x,y) is a function which inputs an element x in G and an element y in N and returns (x⊗ y) in the tensor product (G⊗N) . This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.
NonabelianTensorSquare(G)
NonabelianTensorSquare(G,m) Inputs a finite or nilpotent infinite group G and returns a record T with the following components.T.homomorphism is a group homomorphism Âµ : (G⊗G)−→ G from the nonabelian tensor square of G to G. The kernel of Âµ is isomorphic to the third homotopy group of the suspension SK(G,1) of an Eilenberg-Mac Lane space. T.pairing(x,y) is a function which inputs two elements x,y in G and returns the tensor (x⊗ y) in the tensor square (G⊗G) . An optional second varible m can be set equal to a multiple of the order of the tensor square (G⊗G). This might help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable accurate) as the bound is used in the solvable quotient algorithm. The optional second variable m can also be set equal to 0. In this case the Todd-Coxeter procedure will be used to enumerate the tensor square even when G is solvable. This function should work for reasonably small solvable groups or extremely small non-solvable groups.
RelativeSchurMultiplier(G,N) Inputs a finite group G and normal subgroup N. It returns the homology group H2(G,N,Z) that fits into the exact sequence . . .−→ H3(G,Z)−→ H3(G/N,Z)−→ H2(G,N,Z)−→ H3(G,Z)−→ H3(G/N,Z)−→ This function should work for reasonably small nilpotent groups G or extremely small non-nilpotent groups.
TensorCentre(G) Inputs a group G and returns the largest central subgroup N such that the induced homomorphism of nonabelian tensor squares (G⊗G)−→ (G/N⊗G/N) is an isomorphism. Equivalently, N is the largest central subgroup such that π3(SK(G,1))−→ π3(SK(G/N,1)) is injective.
ThirdHomotopyGroupOfSuspensionB(G)
ThirdHomotopyGroupOfSuspensionB(G,m) Inputs a finite or nilpotent infinite group G and returns the abelian invariants of the third homotopy group JG of the suspension SK(G,1) of the Eilenberg-Mac Lane space K(G,1). For non-nilpotent groups the implementation of the function T hirdHomotopyGroupO f SuspensionB(G) is far from optimal and will soon be improved. As a temporary solution to this problem, an optional second variable m can be set equal to 0, and then the function efficiently returns the abelian invariants of groups A and B such that there is an exact sequence 0 −→ B −→ JG −→ A −→ 0. Alternatively, the optional second varible m can be set equal to a positive multiple of the order of the tensor square (G⊗G). In this case the function returns the abelian invariants of JG. This might help when G is solvable but not nilpotent (especially if the estimated upper bound m is reasonable accurate).
UpperEpicentralSeries(G,c) Inputs a nilpotent group G and an integer c. It returns the c-th term of the upper epicentral series 1 < Z∗1(G) < Z∗2(G) < The upper epicentral series is defined for an arbitrary group G. The group Z∗c (G) is the image in G of the c-th term Zc(U) of the upper central series of the group U = F/[[[R,F],F] . . .] (with c copies of F in the denominator) where F/R is any free presentation of G. This functions requires the NQ package.

11

Chapter 10

Lie commutators and nonabelian Lie
tensors

••••••••
Functions on this page are joint work with Hamid Mohammadzadeh, and implemented by him.
LieCoveringHomomorphism(L) Inputs a finite dimensional Lie algebra L over a field, and returns a surjective Lie homomorphism phi : C → L where:the kernel of phi lies in both the centre of C and the derived subalgebra of C, the kernel of phi is a vector space of rank equal to the rank of the second Chevalley-Eilenberg homology of L.
LeibnizQuasiCoveringHomomorphism(L) Inputs a finite dimensional Lie algebra L over a field, and returns a surjective homomorphism phi : C → L of Leibniz algebras where:the kernel of phi lies in both the centre of C and the derived subalgebra of C, the kernel of phi is a vector space of rank equal to the rank of the kernel J of the homomorphism L⊗L → L from the tensor square to L. (We note that, in general, J is NOT equal to the second Leibniz homology of L.)
LieEpiCentre(L) Inputs a finite dimensional Lie algebra L over a field, and returns an ideal Z∗(L) of the centre of L. The ideal Z∗(L) is trivial if and only if L is isomorphic to a quotient L = E/Z(E) of some Lie algebra E by the centre of E.
LieExteriorSquare(L) Inputs a finite dimensional Lie algebra L over a field. It returns a record E with the following components.E.homomorphism is a Lie homomorphism Âµ : (L∧L)−→ L from the nonabelian exterior square (L∧L) to L. The kernel of Âµ is the Lie multiplier. E.pairing(x,y) is a function which inputs elements x,y in L and returns (x∧ y) in the exterior square (L∧L) .
LieTensorSquare(L) Inputs a finite dimensional Lie algebra L over a field and returns a record T with the following components.T.homomorphism is a Lie homomorphism Âµ : (L⊗L)−→ L from the nonabelian tensor square of L to L. T.pairing(x,y) is a function which inputs two elements x,y in L and returns the tensor (x⊗ y) in the tensor square (L⊗L) .
LieTensorCentre(L) Inputs a finite dimensional Lie algebra L over a field and returns the largest ideal N such that the induced homomorphism of nonabelian tensor squares (L⊗L)−→ (L/N⊗L/N) is an isomorphism.

12

Chapter 11

Generators and relators of groups

••••••••
CayleyGraphDisplay(G,X)
CayleyGraphDisplay(G,X,"mozilla") Inputs a finite group G together with a subset X of G. It displays the corresponding Cayley graph as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument. The argument G can also be a finite set of elements in a (possibly infinite) group containing X . The edges of the graph are coloured according to which element of X they are labelled by. The list X corresponds to the list of colours [blue, red, green, yellow, brown, black] in that order. This function requires Graphviz software.
IdentityAmongRelatorsDisplay(R,n) IdentityAmongRelatorsDisplay(R,n,"mozilla") Inputs a free ZG-resolution R and an integer n. It displays the boundary R!.boundary(3,n) as a tessellation of a sphere. It displays the tessellation as a .gif file and uses the Mozilla web browser as a default display mechanism. An alternative browser can be set using a second argument. (The resolution R should be reduced and, preferably, in dimension 1 it should correspond to a Cayley graph for G.) This function uses GraphViz software.
IsAspherical(F,R) Inputs a free group F and a set R of words in F . It performs a test on the 2-dimensional CW-space K associated to this presentation for the group G = F/<R>F . The function returns ”true” if K has trivial second homotopy group. In this case it prints: Presentation is aspherical. Otherwise it returns ”fail” and prints: Presentation is NOT piece-wise Euclidean non-positively curved. (In this case K may or may not have trivial second homotopy group. But it is NOT possible to impose a metric on K which restricts to a Euclidean metric on each 2-cell.) The function uses Polymake software.
PresentationOfResolution(R) Inputs at least two terms of a reduced ZG-resolution R and returns a record P with componentsP. f reeGroup is a free group F , P.relators is a list S of words in F , where G is isomorphic to F modulo the normal closure of S. This presentation for G corresponds to the 2-skeleton of the classifying CW-space from which R was constructed. The resolution R requires no contracting homotopy.
TorsionGeneratorsAbelianGroup(G) Inputs an abelian group G and returns a generating set [x1, . . . ,xn] where no pair of generators have coprime orders.

13

Chapter 12

Orbit polytopes and fundamental
domains

••
FundamentalDomainAffineCrystGroupOnRight(v,G) Inputs a crystallographic group G (represented using AffineCrystGroupOnRight as in the GAP package Cryst). It also inputs a choice of vector v in the euclidean space Rn on which G acts. It returns the Dirichlet-Voronoi fundamental cell for the action of G on euclidean space corresponding to the vector v. The fundamental cell is a fundamental domain if G is Bieberbach. The fundamental cell/domain is returned as a “Polymake object”. Currently the function only applies to certain crystallographic groups. See the manuals to HAPcryst and HAPpolymake for full details. This is a HAPcryst function and is thus only available if HAPcryst is loaded. The function requires the use of Polymake software.
OrbitPolytope(G,v,L) Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both cases there is a natural action of G on v. Let P(G,v) be the convex polytope arising as the convex hull of the Euclidean points in the orbit of v under the action of G. The function also inputs a sublist L of the following list of strings: [”dimension”,”vertex degree”, ”visual graph”, ”schlegel”,”visual”] Depending on the sublist, the function:prints the dimension of the orbit polytope P(G,v); prints the degree of a vertex in the graph of P(G,v); visualizes the graph of P(G,v); visualizes the Schlegel diagram of P(G,v); visualizes P(G,v) if the polytope is of dimension 2 or 3. The function uses Polymake software.
PolytopalComplex(G,v)
PolytopalComplex(G,v,n) Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both cases there is a natural action of G on v. Let P(G,v) be the convex polytope arising as the convex hull of the Euclidean points in the orbit of v under the action of G. The cellular chain complex C∗ = C∗(P(G,v)) is an exact sequence of (not necessarily free) ZG-modules. The function returns a component object R with components:R!.dimension(k) is a function which returns the number of G-orbits of the k-dimensional faces in P(G,v). If each k-face has trivial stabilizer subgroup in G then Ck is a free ZG-module of rank R.dimension(k). R!.stabilizer(k,n) is a function which returns the stabilizer subgroup for a face in the n-th orbit of k-faces. If all faces of dimension <k +1 have trivial stabilizer group then the first k terms of C∗ constitute part of a free ZG-resolution. The boundary map is described by the function boundary(k,n) . (If some faces have non-trivial stabilizer group then C∗ is not free and no attempt is made to determine signs for the boundary map.) R!.elements, R!.group, R!.properties are as in a ZG-resolution. If an optional third input variable n is used, then only the first n terms of the resolution C∗ will be computed. The function uses Polymake software.
PolytopalGenerators(G,v) Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both cases there is a natural action of G on v, and the vector v must be chosen so that it has trivial stabilizer subgroup in G. Let P(G,v) be the convex polytope arising as the convex hull of the Euclidean points in the orbit of v under the action of G. The function returns a record P with components:P.generators is a list of all those elements g in G such that g · v has an edge in common with v. The list is a generating set for G. P.vector is the vector v. P.hasseDiagram is the Hasse diagram of the cone at v. The function uses Polymake software. The function is joint work with Seamus Kelly.
VectorStabilizer(G,v) Inputs a permutation group or matrix group G of degree n and a rational vector of degree n. In both cases there is a natural action of G on v and the function returns the group of elements in G that fix v.

14

Chapter 13

Cocycles

••••••••••••
CcGroup(A,f) Inputs a G-module A (i.e. an abelian G-outer group) and a standard 2-cocycle f GxG−−−> A. It returns the extension group determined by the cocycle. The group is returned as a CcGroup. This is a HAPcocyclic function and thus only works when HAPcocyclic is loaded.
CocycleCondition(R,n) Inputs a resolution R and an integer n>0. It returns an integer matrix M with the following property. Suppose d = R.dimension(n). An integer vector f = [f1, . . . , fd] then represents a ZG-homomorphism Rn −→ Zq which sends the ith generator of Rn to the integer fi in the trivial ZG-module Zq (where possibly q = 0). The homomorphism f is a cocycle if and only if Mt f = 0 mod q.
StandardCocycle(R,f,n)
StandardCocycle(R,f,n,q) Inputs a ZG-resolution R (with contracting homotopy), a positive integer n and an integer vector f representing an n-cocycle Rn −→ Zq where G acts trivially on Zq. It is assumed q = 0 unless a value for q is entered. The command returns a function F(g1, ...,gn) which is the standard cocycle Gn −→ Zq corresponding to f . At present the command is implemented only for n = 2 or 3.
Syzygy(R,g) Inputs a ZG-resolution R (with contracting homotopy) and a list g = [g[1], ...,g[n]] of elements in G. It returns a word w in Rn. The word w is the image of the n-simplex in the standard bar resolution corresponding to the n-tuple g. This function can be used to construct explicit standard n-cocycles. (Currently implemented only for n<4.)

15

Chapter 14

Words in free ZG-modules

AddFreeWords(v,w) Inputs two words v,w in a free ZG-module and returns their sum v+w. If the characteristic of Z is greater than 0 then the next function might be more efficient.
AddFreeWordsModP(v,w,p) Inputs two words v,w in a free ZG-module and the characteristic p of Z. It returns the sum v+w. If p = 0 the previous function might be fractionally quicker.
AlgebraicReduction(w)
AlgebraicReduction(w,p) Inputs a word w in a free ZG-module and returns a reduced version of the word in which all pairs of mutually inverse letters have been cancelled. The reduction is performed in a free abelian group unless the characteristic p of Z is entered.
Multiply Word(n,w) Inputs a word w and integer n. It returns the scalar multiple n ·w.
Negate([i,j]) Inputs a pair [i, j] of integers and returns [−i, j].
NegateWord(w) Inputs a word w in a free ZG-module and returns the negated word −w.
PrintZGword(w,elts) Inputs a word w in a free ZG-module and a (possibly partial but sufficient) listing elts of the elements of G. The function prints the word w to the screen in the form r1E1 + . . .+ rnEn where ri are elements in the group ring ZG, and Ei denotes the i-th free generator of the module.
TietzeReduction(S,w) Inputs a set S of words in a free ZG-module, and a word w in the module. The function returns a word w′ such that {S,w′} generates the same abelian group as {S,w}. The word w′ is possibly shorter (and certainly no longer) than w. This function needs to be improved!

16

Chapter 15

F pG-modules

DirectSumOfFpGModules(M,N)
DirectSumOfFpGModules([M[1], M[2], ..., M[k]])) Inputs two F pG-modules M and N with common group and characteristic. It returns the direct sum of M and N as an F pG-Module. Alternatively, the function can input a list of F pG-modules with common group G. It returns the direct sum of the list.
FpGModule(A,P)
FpGModule(A,G,p) Inputs a p-group P and a matrix A whose rows have length a multiple of the order of G. It returns the “canonical” F pG-module generated by the rows of A. A small non-prime-power group G can also be input, provided the characteristic p is entered as a third input variable.
FpGModuleDualBasis(M) Inputs an F pG-module M. It returns a record R with two components:R. f reeModule is the free module FG of rank one. R.basis is a list representing an F-basis for the module HomFG(M,FG). Each term in the list is a matrix A whose rows are vectors in FG such that M!.generators[i]−→ A[i] extends to a module homomorphism M −→ FG.
FpGModuleHomomorphism(M,N,A)
FpGModuleHomomorphismNC(M,N,A) Inputs F pG-modules M and N over a common p-group G. Also inputs a list A of vectors in the vector space spanned by N!.matrix. It tests that the function M!.generators[i]−→ A[i] extends to a homomorphism of F pG-modules and, if the test is passed, returns the corresponding F pG-module homomorphism. If the test is failed it returns fail. The ”NC” version of the function assumes that the input defines a homomorphism and simply returns the F pG-module homomorphism.
DesuspensionFpGModule(M,n)
DesuspensionFpGModule(R,n) Inputs a positive integer n and and FpG-module M. It returns an FpG-module DnM which is mathematically related to M via an exact sequence 0 −→ DnM −→ Rn −→ . . .−→ R0 −→ M −→ 0 where R∗ is a free resolution. (If G = Group(M) is of prime-power order then the resolution is minimal.) Alternatively, the function can input a positive integer n and at least n terms of a free resolution R of M.
RadicalOfFpGModule(M) Inputs an F pG-module M with G a p-group, and returns the Radical of M as an F pG-module. (Ig G is not a p-group then a submodule of the radical is returned.
GeneratorsOfFpGModule(M) Inputs an F pG-module M and returns a matrix whose rows correspond to a minimal generating set for M.
ImageOfFpGModuleHomomorphism(f) Inputs an F pG-module homomorphism f : M −→ N and returns its image f (M) as an F pG-module.
IntersectionOfFpGModules(M,N) Inputs two F pG-modules M,N arising as submodules in a common free module (FG)n where G is a finite group and F the field of p-elements. It returns the F pG-module arising as the intersection of M and N.
IsFpGModuleHomomorphismData(M,N,A) Inputs F pG-modules M and N over a common p-group G. Also inputs a list A of vectors in the vector space spanned by N!.matrix. It returns true if the function M!.generators[i]−→ A[i] extends to a homomorphism of F pG-modules. Otherwise it returns false.
MultipleOfFpGModule(w,M) Inputs an F pG-module M and a list w := [g1, ...,gt] of elements in the group G = M!.group. The list w can be thought of as representing the element w = g1 + . . .+gt in the group algebra FG, and the function returns a semi-echelon matrix B which is a basis for the vector subspace wM .
ProjectedFpGModule(M,k) Inputs an F pG-module M of ambient dimension n|G|, and an integer k between 1 and n. The module M is a submodule of the free module (FG)n . Let Mk denote the intersection of M with the k-th summand of (FG)n . The function returns Mk as an F pG-module with ambient dimension n|G|.
RandomHomomorphismOfFpGModules(M,N) Inputs two F pG-modules M and N over a common group G. It returns a random matrix A whose rows are vectors in N such that the function M!.generators[i]−→ A[i] extends to a homomorphism M −→ N of F pG-modules. (There is a problem with this function at present.)
Rank(f) Inputs an F pG-module homomorphism f : M −→ N and returns the dimension of the image of f as a vector space over the field F of p elements.
SumOfFpGModules(M,N) Inputs two F pG-modules M,N arising as submodules in a common free module (FG)n where G is a finite group and F the field of p-elements. It returns the F pG-Module arising as the sum of M and N.
SumOp(f,g) Inputs two F pG-module homomorphisms f ,g : M −→ N with common sorce and common target. It returns the sum f +g : M −→ N . (This operation is also available using ”+”.
VectorsToFpGModuleWords(M,L) Inputs an F pG-module M and a list L = [v1, . . . ,vk] of vectors in M. It returns a list L′ = [x1, ...,xk] . Each x j = [[W1,G1], ..., [Wt ,Gt]] is a list of integer pairs corresponding to an expression of v j as a word v j = g1 ∗w1 +g2 ∗w1 + ...+gt ∗wt where gi = Elements(M!.group)[Gi] wi = GeneratorsO f F pGModule(M)[Wi] .

17

Chapter 16

Meataxe modules

••
DesuspensionMtxModule(M) Inputs a meataxe module M over the field of p elements and returns an FpG-module DM. The two modules are related mathematically by the existence of a short exact sequence DM −→ FM −→ M with FM a free module. Thus the homological properties of DM are equal to those of M with a dimension shift. (If G := Group(M.generators) is a p-group then FM is a projective cover of M in the sense that the homomorphism FM −→ M does not factor as FM −→ P −→ M for any projective module P.)
FpG to MtxModule(M) Inputs an FpG-module M and returns an isomorphic meataxe module.
GeneratorsOfMtxModule(M) Inputs a meataxe module M acting on, say, the vector space V . The function returns a minimal list of row vectors in V which generate V as a G-module (where G=Group(M.generators)).

18

Chapter 17

G-Outer Groups

GOuterGroup(E,N)
GOuterGroup() Inputs a group E and normal subgroup N. It returns N as a G-outer group where G = E/N. The function can be used without an argument. In this case an empty outer group C is returned. The components must be set using SetActingGroup(C,G), SetActedGroup(C,N) and SetOuterAction(C,alpha).
GOuterGroupHomomorphismNC(A,B,phi)
GOuterGroupHomomorphismNC() Inputs G-outer groups A and B with common acting group, and a group homomorphism phi:ActedGroup(A) –> ActedGroup(B). It returns the corresponding G-outer homomorphism PHI:A–> B. No check is made to verify that phi is actually a group homomorphism which preserves the G-action. The function can be used without an argument. In this case an empty outer group homomorphism PHI is returned. The components must then be set.
GOuterHomomorphismTester(A,B,phi) Inputs G-outer groups A and B with common acting group, and a group homomorphism phi:ActedGroup(A) –> ActedGroup(B). It tests whether phi is a group homomorphism which preserves the G-action. The function can be used without an argument. In this case an empty outer group homomorphism PHI is returned. The components must then be set.
Centre(A) Inputs G-outer group A and returns the group theoretic centre of ActedGroup(A) as a G-outer group.
DirectProductGog(A,B)
DirectProductGog(Lst) Inputs G-outer groups A and B with common acting group, and returns their group-theoretic direct product as a G-outer group. The outer action on the direct product is the diagonal one. The function also applies to a list Lst of G-outer groups with common acting group. For a direct product D constructed using this function, the embeddings and projections can be obtained (as G-outer group homomorphisms) using the functions Embedding(D,i) and Projection(D,i).

19

Chapter 18

Cat-1-groups

AutomorphismGroupAsCatOneGroup(G) Inputs a group G and returns the Cat-1-group C corresponding th the crossed module G → Aut(G).
HomotopyGroup(C,n) Inputs a cat-1-group C and an integer n. It returns the nth homotopy group of C.
HomotopyModule(C,2) Inputs a cat-1-group C and an integer n=2. It returns the second homotopy group of C as a G-module (i.e. abelian G-outer group) where G is the fundamental group of C.
ModuleAsCatOneGroup(G,alpha,M) Inputs a group G, an abelian group M and a homomorphism α:G → Aut(M). It returns the Cat-1-group C corresponding th the zero crossed module 0:M → G.
MooreComplex(C) Inputs a cat-1-group C and returns its Moore complex [M1 → M0] as a list whose single entry is a homomorphism of groups.
NormalSubgroupAsCatOneGroup(G,N) Inputs a group G with normal subgroup N. It returns the Cat-1-group C corresponding th the inclusion crossed module N → G.

20

Chapter 19

Coxeter diagrams and graphs of groups

CoxeterDiagramComponents(D) Inputs a Coxeter diagram D and returns a list [D1, ...,Dd] of the maximal connected subgraphs Di.
CoxeterDiagramDegree(D,v) Inputs a Coxeter diagram D and vertex v. It returns the degree of v (i.e. the number of edges incident with v).
CoxeterDiagramDisplay(D)
CoxeterDiagramDisplay(D,"web browser") Inputs a Coxeter diagram D and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument. This function requires Graphviz software.
CoxeterDiagramFpArtinGroup(D) Inputs a Coxeter diagram D and returns the corresponding finitely presented Artin group.
CoxeterDiagramFpCoxeterGroup(D) Inputs a Coxeter diagram D and returns the corresponding finitely presented Coxeter group.
CoxeterDiagramIsSpherical(D) Inputs a Coxeter diagram D and returns ”true” if the associated Coxeter groups is finite, and returns ”false” otherwise.
CoxeterDiagramMatrix(D) Inputs a Coxeter diagram D and returns a matrix representation of it. The matrix is given as a function DiagramMatrix(D)(i, j) where i, j can range over the vertices.
CoxeterSubDiagram(D,V) Inputs a Coxeter diagram D and a subset V of its vertices. It returns the full sub-diagram of D with vertex set V .
CoxeterDiagramVertices(D) Inputs a Coxeter diagram D and returns its set of vertices.
EvenSubgroup(G) Inputs a group G and returns a subgroup G+. The subgroup is that generated by all products xy where x and y range over the generating set for G stored by GAP. The subgroup is probably only meaningful when G is an Artin or Coxeter group.
GraphOfGroupsDisplay(D)
GraphOfGroupsDisplay(D,"web browser") Inputs a graph of groups D and displays it as a .gif file. It uses the Mozilla web browser as a default to view the diagram. An alternative browser can be set using a second argument. This function requires Graphviz software.
GraphOfGroupsTest(D) Inputs an object D and itries to test whether it is a Graph of Groups. However, it DOES NOT test the injectivity of any homomorphisms. It returns true if D passes the test, and false otherwise. Note that there is no function IsHapGraphO f Groups() because no special data type has been created for these graphs.

21

Chapter 20

Some functions for accessing basic data

BoundaryMap(C) Inputs a resolution, chain complex or cochain complex C and returns the function C!.boundary.
BoundaryMatrix(C,n) Inputs a chain or cochain complex C and integer n>0. It returns the n-th boundary map of C as a matrix.
Dimension(C)
Dimension(M) Inputs a resolution, chain complex or cochain complex C and returns the function C!.dimension . Alternatively, inputs an F pG-module M and returns its dimension as a vector space over the field of p elements.
EvaluateProperty(X,"name") Inputs a component object X (such as a ZG-resolution or chain map) and a string ”name” (such as ”characteristic” or ”type”). It searches X .property for the pair [”name”,value] and returns value. If X .property does not exist, or if [”name”,value] does not exist, it returns fail.
GroupOfResolution(R) Inputs a ZG-resolution R and returns the group G.
Length(R) Inputs a resolution R and returns its length (i.e. the number of terms of R that HAP has computed).
Map(f) Inputs a chain map, or cochain map or equivariant chain map f and returns the mapping function (as opposed to the target or the source of f) .
Source(f) Inputs a chain map, or cochain map, or equivariant chain map, or F pG-module homomorphism f and returns it source.
Target(f) Inputs a chain map, or cochain map, or equivariant chain map, or F pG-module homomorphism f and returns its target.

22

Chapter 21

Parallel Computation - Core Functions

ChildProcess()
ChildProcess("computer.ac.wales") This starts a GAP session as a child process and returns a stream to the child process. If no argument is given then the child process is created on the local machine; otherwise the argument should be the address of a remote computer for which ssh has been configured to require no password from the user. (To configure ssh so that the user can login without a password prompt from ”thishost” to ”remotehost” either consult ”man ssh” or

- open a shell on thishost
- cd .ssh
- ls
-> if id dsa, id rsa etc exists, skip the next two steps!
- ssh-keygen -t rsa
- ssh-keygen -t dsa
- scp *.pub user@remotehost:˜/
- ssh remotehost -l user
- cat id rsa.pub >> .ssh/authorized keys
- cat id dsa.pub >> .ssh/authorized keys
- rm id rsa.pub id dsa.pub
- exit

You should now be able to connect from ”thishost” to ”remotehost” without a password prompt.)
ChildClose(s) This closes the stream s to a child GAP process.
ChildCommand("cmd;",s) This runs a GAP command ”cmd;” on the child process accessed by the stream s. Here ”cmd;” is a string representing the command.
NextAvailableChild(L) Inputs a list L of child processes and returns a child in L which is ready for computation (as soon as such a child is available).
IsAvailableChild(s) Inputs a child process s and returns true if s is currently available for computations, and false otherwise.
ChildPut(A,"B",s) This copies a GAP object A on the parent process to an object B on the child process s. (The copying relies on the function PrintObj(A);)
ChildGet("A",s) This functions copies a GAP object A on the child process s and returns it on the parent process. (The copying relies on the function PrintObj(A);)
HAPPrintTo("file",R) Inputs a name ”file” of a new text file and a HAP object R. It writes the object R to ”file”. Currently this is only implemented for R equal to a resolution.
HAPRead("file",R) Inputs a name ”file” containing a HAP object R and returns the object. Currently this is only implemented for R equal to a resolution.

23

Chapter 22

Parallel Computation - Extra Functions

ChildFunction("function(arg);",s) This runs the GAP function ”function(arg);” on a child process accessed by the stream s. The output from ”func;” can be accessed via the stream.
ChildRead(s) This returns, as a string, the output of the last application of ChildFunction(” f unction(arg); ”,s).
ChildReadEval(s) This returns, as an evaluated string, the output of the last application of ChildFunction(” f unction(arg); ”,s).
ParallelList(I,fn,L) Inputs a list I, a function f n such that f n(x) is defined for all x in I, and a list of children L. It uses the children in L to compute List(I,x−> f n(x)). (Obviously the function f n must be defined on all child processes in L.)

24

Chapter 23

Topological Data Analysis

MatrixToTopologicalSpace(A,n) Inputs an integer matrix A and an integer n. It returns a 2-dimensional topological space corresponding to the black/white image determined by the threshold n and the values of the pixels in A.
ReadImageAsTopologicalSpace("file.png",n) ReadImageAsTopologicalSpace("file.png",[m,n]) Reads an image file (”file.png”, ”file.eps”, ”file.bmp” etc) and an integer n or pair [m,n] of integers between 0 and 765. It returns a topological space based on the black/white version of the image determined by the threshold n or threshold range [m,n].
ReadImageAsMatrix("file.png") Reads an image file (”file.png”, ”file.eps”, ”file.bmp” etc) and returns an integer matrix whose entries are the sum of the RGB values of the pixels in the image.
WriteTopologicalSpaceAsImage(T,"filename","ext") Inputs a 2-dimensional topological space T, and a filename followed by its extension (e.g. ”myfile” followed by ”png”). A black/white image is saved to the file.
ViewTopologicalSpace(T) ViewTopologicalSpace(T,"mozilla") Inputs a topological space T, and optionally a command such as ”mozilla” for viewing image files. A black/white image is displayed.
Bettinumbers(T,n) Bettinumbers(T) Inputs a topological space T and a non-negative integer n. It returns the n-th betti number of T . If the integer n is not input then a list of all betti numbers is returned.
PathComponent(T,n) Inputs a topological space T and an integer n in the rane 0, ..., Bettinumbers(T,0) . It returns the n-th path component of T as a topological space.
SingularChainComplex(A) Inputs a topological space T and returns a (usually very large) integral chain complex that is homotopy equivalent to the singular chain complex of T .
ContractTopologicalSpace(T) Inputs a topological space T of dimension d and removes d-dimensional cells from T without changing the homotopy type of T . When the function has been applied, no further d-cells can be removed from T without changing the homotopy type.
BoundaryTopologicalSpace(T) Inputs a topological space T and returns its boundars as a topological space.
BoundarySingularities(T) Inputs a topological space T and returns the subspace of points in the boundary where the boundary is not differentiable. (The method for deciding differentiability at a point is crude/discrete and prone to errors.) The zeroth betti number of the set of points is a measure of the number of ”corners” in the boundary of T .
ThickenedTopologicalSpace(T) ThickenedTopologicalSpace(T,n) Inputs a topological space T and returns a topological space S. If a euclidean point is in T then this point and all its perpendicularly neighbouring euclidean points are included in S. If a positive integer n is input as a second argument then the thickening process is repeated n times.
ComplementTopologicalSpace(T) Inputs a topological space T and returns a topological space S. A euclidean point is in S precisely when the point is not in T .
ConcatenatedTopologicalSpace(L) Inputs a list L of topological spaces whose underlying arrays of numbers all have equal dimensions. It returns a topological space T got by juxtaposing the spaces L[1],L[2], ...,L[Length(L)].

25

Chapter 24

Pseudo lists

Add(L,x) Let L be a pseudo list of length n, and x an object compatible with the entries in L. If x is not in L then this operation converts L into a pseudo list of length n+1 by adding x as the final entry. If x is in L the operation has no effect on L.
Append(L,K) Let L be a pseudo list and K a list whose objects are compatible with those in L. This operation applies Add(L,x) for each x in K.
ListToPseudoList(L) Inputs a list L and returns the pseudo list representation of L.

26

Chapter 25

Miscellaneous

BigStepLCS(G,n) Inputs a group G and a positive integer n. It returns a subseries G = L1>L2>.. .Lk = 1 of the lower central series of G such that Li/Li+1 has order greater than n.
Compose(f,g) Inputs two F pG-module homomorphisms f : M −→ N and g : L −→ M with Source(f) = Target(g) . It returns the composite homomorphism f g : L −→ N . This also applies to group homomorphisms f ,g.
HAPcopyright() This function provides details of HAP’S GNU public copyright licence.
IsLieAlgebraHomomorphism(f) Inputs an object f and returns true if f is a homomorphism f : A −→ B of Lie algebras (preserving the Lie bracket).
IsSuperperfect(G) Inputs a group G and returns ”true” if both the first and second integral homology of G is trivial. Otherwise, it returns ”false”.
MakeHAPManual() This function creates the manual for HAP from an XML file.
PermToMatrixGroup(G,n) Inputs a permutation group G and its degree n. Returns a bijective homomorphism f : G −→ M where M is a group of permutation matrices.
SolutionsMatDestructive(M,B) Inputs an mÃn matrix M and a kÃn matrix B over a field. It returns a k×m matrix S satisfying SM = B. The function will leave matrix M unchanged but will probably change matrix B. (This is a trivial rewrite of the standard GAP function SolutionMatDestructive(<mat>,<vec>) .)
TestHap() This runs a representative sample of HAP functions and checks to see that they produce the correct output.

27

Index

Add, 26
AddFreeWords, 16
AddFreeWordsModP, 16
AlgebraicReduction, 16
Append, 26
AutomorphismGroupAsCatOneGroup, 20

BaerInvariant, 11
Bettinumbers, 25
BigStepLCS, 27
BoundaryMap, 22
BoundaryMatrix, 22
BoundarySingularities, 25
BoundaryTopologicalSpace, 25

CayleyGraphDisplay, 13
CcGroup (HAPcocyclic), 15
Centre, 19
ChevalleyEilenbergComplex, 7
ChildClose, 23
ChildCommand, 23
ChildFunction, 24
ChildGet, 23
ChildProcess, 23
ChildPut, 23
ChildRead, 24
ChildReadEval, 24
Coclass, 11
CocycleCondition, 15
Cohomology, 8
CohomologyModule, 8
CohomologyPrimePart, 8
ComplementTopologicalSpace, 25
Compose(f,g), 27
ConcatenatedTopologicalSpace, 25
ContractTopologicalSpace, 25
CoxeterDiagramComponents, 21
CoxeterDiagramDegree, 21
CoxeterDiagramDisplay, 21

CoxeterDiagramFpArtinGroup, 21
CoxeterDiagramFpCoxeterGroup, 21
CoxeterDiagramIsSpherical, 21
CoxeterDiagramMatrix, 21
CoxeterDiagramVertices, 21
CoxeterSubDiagram, 21

DesuspensionFpGModule, 17
DesuspensionMtxModule, 18
Dimension, 22
DirectProductGog, 19
DirectSumOfFpGModules, 17

EpiCentre, 11
EquivariantChainMap, 5
EvaluateProperty, 22
EvenSubgroup, 21
ExpansionOfRationalFunction, 9

FpGModule, 17
FpGModuleDualBasis, 17
FpGModuleHomomorphism, 17
FpG to MtxModule, 18
Fundamental domains (HAPcryst), 14

GeneratorsOfFpGModule, 17
GeneratorsOfMtxModule, 18
GOuterGroup, 19
GOuterGroupHomomorphismNC, 19
GOuterHomomorphismTester, 19
GraphOfGroupsDisplay, 21
GraphOfGroupsTest, 21
GroupCohomology, 8
GroupHomology, 8
GroupOfResolution, 22

HAPcopyright, 27
HAPPrintTo, 23
HAPRead, 23
Homology, 8

28

29

HomologyPb, 8
HomologyPrimePart, 8
HomotopyGroup, 20
HomotopyModule, 20
HomToGModule, 6
HomToIntegers, 6
HomToIntegersModP, 6
HomToIntegralModule, 6

IdentityAmongRelatorsDisplay, 13
ImageOfFpGModuleHomomorphism, 17
IntegralCupProduct, 10
IntegralRingGenerators, 10
IntersectionOfFpGModules, 17
IsAspherical, 13
IsAvailableChild, 23
IsFpGModuleHomomorphismData, 17
IsLieAlgebraHomomorphism, 27
IsSuperperfect, 27

LeibnizAlgebraHomology, 8
LeibnizComplex, 7
LeibnizQuasiCoveringHomomorphism, 12
Length, 22
LieAlgebraHomology, 8
LieCoveringHomomorphism, 12
LieEpiCentre, 12
LieExteriorSquare, 12
LieTensorCentre, 12
LieTensorSquare, 12
ListToPseudoList, 26
LowerCentralSeriesLieAlgebra, 6

MakeHAPManual, 27
Map, 22
MatrixToTopologicalSpace, 25
ModPCohomologyGenerators, 10
ModPCohomologyRing, 10
ModPRingGenerators, 10
ModuleAsCatOneGroup, 20
MooreComplex, 20
MultipleOfFpGModule, 17
MultiplyWord, 16

Negate, 16
NegateWord, 16
NextAvailableChild, 23
NonabelianExteriorProduct, 11

NonabelianSymmetricKernel, 11
NonabelianSymmetricSquare, 11
NonabelianTensorProduct, 11
NonabelianTensorSquare, 11
NormalSubgroupAsCatOneGroup, 20

OrbitPolytope, 14

ParallelList, 24
PathComponent, 25
PermToMatrixGroup, 27
PoincareSeries, 9
PoincareSeriesPrimePart, 9
PolytopalComplex, 14
PolytopalGenerators, 14
Prank, 9
PresentationOfResolution, 13
PrimePartDerivedFunctor, 8
PrintZGword, 16
ProjectedFpGModule, 17

RadicalOfFpGModule, 17
RandomHomomorphismOfFpGModules, 17
Rank, 17
RankHomologyPGroup, 8
RankPrimeHomology, 8
ReadImageAsMatrix, 25
ReadImageAsTopologicalSpace, 25
RelativeSchurMultiplier, 11
ResolutionAbelianGroup, 3
ResolutionAlmostCrystalGroup, 3
ResolutionAlmostCrystalQuotient, 3
ResolutionArtinGroup, 3
ResolutionAsphericalPresentation, 3
ResolutionBieberbachGroup (HAPcryst), 3
ResolutionDirectProduct, 3
ResolutionExtension, 3
ResolutionFiniteDirectProduct, 3
ResolutionFiniteExtension, 3
ResolutionFiniteGroup, 3
ResolutionFiniteSubgroup, 3
ResolutionFpGModule, 4
ResolutionGraphOfGroups, 3
ResolutionNilpotentGroup, 3
ResolutionNormalSeries, 3
ResolutionPrimePowerGroup, 3
ResolutionSmallFpGroup, 3
ResolutionSubgroup, 3

30

ResolutionSubnormalSeries, 3

SingularChainComplex, 25
SolutionsMatDestructive, 27
Source, 22
StandardCocycle, 15
SumOfFpGModules, 17
SumOp, 17
Syzygy, 15

Target, 22
TensorCentre, 11
TensorWithIntegers, 6
TensorWithIntegersModP, 6
TensorWithRationals, 6
TestHap, 27
ThickenedTopologicalSpace, 25
ThirdHomotopyGroupOfSuspensionB, 11
TietzeReduction, 16
TorsionGeneratorsAbelianGroup, 13
TwistedTensorProduct, 3

UpperEpicentralSeries, 11

VectorStabilizer, 14
VectorsToFpGModuleWords, 17
ViewTopologicalSpace, 25

WriteTopologicalSpaceAsImage, 25

