[Amberg-Kazarin-2000] Amberg, B. and Kazarin, L. S. On the adjoint group of a finite nilpotent $p$-algebra, J. Math. Sci. (New York), 102 (3), (2000), p. 3979--3997
[Amberg-Sysak-2001] Amberg, B. and Sysak, Y. P. Radical rings and their adjoint groups in , Topics in infinite groups, Dept. Math., Seconda Univ. Napoli, Caserta, Quad. Mat., 8, (2001), p. 21--43
[Amberg-Sysak-2002] Amberg, B. and Sysak, Y. P. Radical rings with soluble adjoint groups, J. Algebra, 247 (2), (2002), p. 692--702
[Amberg-Sysak-2004] Amberg, B. and Sysak, Y. P. Associative rings with metabelian adjoint group, J. Algebra, 277 (2), (2004), p. 456--473
[Artemovych-Ishchuk-1997] Artemovych, O. D. and Ishchuk, Y. B. On semiperfect rings determined by adjoint groups, Mat. Stud., 8 (2), (1997), p. 162--170, 237
[Gorlov-1995] Gorlov, V. O. Finite nilpotent algebras with a metacyclic quasiregular group, Ukra\"\i n. Mat. Zh., 47 (10), (1995), p. 1426--1431
[Kazarin-Soules-2004] Kazarin, L. S. and Soules, P. Finite nilpotent $p$-algebras whose adjoint group has three generators, JP J. Algebra Number Theory Appl., 4 (1), (2004), p. 113--127
[Popovich-Sysak-1997] Popovich, S. V. and Sysak, Y. P. Radical algebras whose subgroups of adjoint groups are subalgebras, Ukra\"\i n. Mat. Zh., 49 (12), (1997), p. 1646--1652
generated by GAPDoc2HTML