Free Component Library (FCL):
Reference guide.

Reference guide for FCL units.
Document version 2.1
November 2005

Michaél Van Canneyt

Contents

0.1 OVerviewo e e e 8
1 Reference for unit ’contnrs’ 9
1.1 Usedunits oo oo e e e e e e 9
L2 Overview e e 9
1.3 Constants, types and variables 9
131 Types . . . o oo e 9

1.4 Procedures and functions L L e 10
141 RSHash 10

1.5 EDuplicate e e e e e 10
1.6 EKeyNotFound 10
1.7 TClassList o o o o e e 10
1.7.1 Description o e e e 10

1.7.2 Methodoverview e 10

1.7.3 Property OVerviewo i e e 10

1.74 TClassList.Add e 10

1.7.5 TClassList.Extract 11

1.7.6 TClassListRemove 11

1.7.7 TClassList.IndexOf 11

1.7.8 TClassList.First 12

1.7.9 TClassList.Last 12
1.7.10 TClassList.Insert 12
1.7.11 TClassList.Items 12

1.8 TComponentList 13
1.8.1 Description e e 13

1.8.2 Methodoverview e 13

1.8.3 Property OVerviewo e e 13

1.84 TComponentList.Destroy 13
1.8.5 TComponentList Add 13

1.8.6 TComponentList.Extract 14

1.8.7 TComponentList.tRemove 14

CONTENTS

1.8.8 TComponentList.IndexOf 14
1.8.9 TComponentList.First 15
1.8.10 TComponentList.Last 15
1.8.11 TComponentListInsert 15
1.8.12 TComponentListItems 15
1.9 TFPHashTable e 16
1.9.1 Methodoverview e 16
1.9.2 Property OVerview e 16
1.9.3 TFPHashTable.Create 16
1.9.4 TFPHashTable.CreateWith 16
1.9.5 TFPHashTable.Destroy 16
1.9.6 TFPHashTable.ChangeTableSize 16
1.9.7 TFPHashTable.Clear 17
1.9.8 TFPHashTable. Add 17
1.9.9 TFPHashTable.Delete 17
1.9.10 TFPHashTable.Find 17
1.9.11 TFPHashTableIsEmpty 17
1.9.12 TFPHashTable.HashFunction 17
1.9.13 TFPHashTable.Count 17
1.9.14 TFPHashTable.HashTableSize 17
1.9.15 TFPHashTable.Items 18
1.9.16 TFPHashTable.HashTable 18
1.9.17 TFPHashTable.VoidSlots 18
1.9.18 TFPHashTable.LoadFactor 18
1.9.19 TFPHashTable. AVGChainLen 18
1.9.20 TFPHashTable.MaxChainLength 18
1.9.21 TFPHashTable.NumberOfCollisions 18
1.9.22 TFPHashTable.Density 19
1.10 TFPObjectList. e 19
1.10.1 Description v i vt e e e e e 19
1.10.2 Methodoverview 19
1.10.3 Property OVerview i 19
1.10.4 TFPObjectList.Create 19
1.10.5 TFPObjectList.Destroy v i i v i et e 20
1.10.6 TFPObjectList.Clear 20
1.10.7 TFPObjectList Add 20
1.10.8 TFPObjectListDelete 21
1.10.9 TFPObjectList.Exchange 21
1.10.10 TFPObjectList.Expand 21
1.10.11 TFPObjectList.Extract 21

CONTENTS

1.10.12 TFPObjectListRemove 22
1.10.13 TFPObjectListIndexOf 22
1.10.14 TFPObjectList.FindInstanceOf 22
1.10.15 TFPObjectList.Insert 23
1.10.16 TFPObjectList.First e 23
1.10.17 TFPObjectList.Last o et e e e 23
1.10.18 TFPObjectListMove 23
1.10.19 TFPObjectList. Assign e 24
1.10.20 TFPObjectList.Pack 24
1.10.21 TFPObjectList.Sort o i e e e 24
1.10.22 TFPObjectList.Capacity o vttt et 25
1.10.23 TFPObjectList.Count it 25
1.10.24 TFPObjectList.OwnsObjects o v v v v i it 25
1.10.25 TFPObjectList.Items o . v i e e e 25
1.10.26 TFPObjectList.List o o 26
1.11 THTNode e e e e e e e e e 26
1.11.1 Methodoverview e 26
1.11.2 Property OVEIrVIEW v v v v it e e e e e e 26
1.11.3 THTNode.CreateWith 26
1.11.4 THTNodeHasKey 26
1.11.5 THTNode.Key e e 26
1.11.6 THTNodeData i 26
1.12 TObjectList o e 27
L1121 Description v v it e e e 27
1.12.2 Methodoverview L. e 27
1.12.3 Property OVEIrViewW o v v v v it e e e e e e e e e e 27
1.12.4 TObjectList.create v v v v it e e 27
1.12.5 TObjectList Add 27
1.12.6 TObjectList.Extract. 28
1.12.7 TObjectListRemove e 28
1.12.8 TObjectListIndexOf 28
1.12.9 TObjectList.FindInstanceOf 29
1.12.10 TObjectList.Insert 29
1.12.11 TObjectList.First e 29
1.12.12 TObjectList.Last 29
1.12.13 TObjectList.OwnsObjects v 30
1.12.14 TObjectList.Items 30
1.13 TObjectQueue o v it e e e e e e e e 30
1.13.1 Methodoverview 30
1.13.2 TObjectQueue.Push 30

CONTENTS

1.13.3 TObjectQueue.Pop 31
1.13.4 TObjectQueue.Peek 31

1.14 TObjectStack e 31
1.14.1 Description i e e e e 31
1.142 Methodoverview L 31
1.14.3 TObjectStack.Push 31
1.14.4 TObjectStack.Pop 32
1.14.5 TObjectStack.Peek 32

1.15 TOrderedList e 32
1.15.1 Description i i e e e e e e e 32
1.152 Methodoverview 32
1.15.3 TOrderedList.Create 32
1.15.4 TOrderedList.Destroy v 33
1.15.5 TOrderedList.Count 33
1.15.6 TOrderedList.AtLeast 33
1.15.7 TOrderedList.Push 34
1.15.8 TOrderedList.Pop. 34
1.15.9 TOrderedList.Peek 34

1.16 TQueue e e e e e 34
1.16.1 Description o v vt e e 34
117 TStack o o 35
L17.1 Description oo v vt i e e e e 35

2 Reference for unit ’dbugintf’ 36
2.1 Writingadebugserver e e e e 36
22 OVEIVIEW . . . v v vt i e e e e 36
2.3 Constants, types and variables Lo 36
2.3.1 Resource strings e e e e e 36
232 Constants e e e 37
233 TYPES « o o e 37

2.4 Procedures and functions 37
24.1 InitDebugClient. 37
24.2 SendBoolean 38
243 SendDateTime 38
244 SendDebug 38
245 SendDebugEx 38
24.6 SendDebugFmt 39
24.7 SendDebugFmtEx o 39
248 SendInteger 39
249 SendMethodEnter 40

CONTENTS

2.4.10 SendMethodExit 40
24.11 SendPointer e 40
2.4.12 SendSeparator 41
2.4.13 StartDebugServer 41

3 Reference for unit ’iostream’ 42
3.1 Usedunitso oL e e e e e 42
32 OVerVIeWo e e e 42
3.3 Constants, types and variables L L 42
330 TYPES . o 42
34 EIOStreamError e e 43
341 Description L e e e e 43
3.5 TIOStream e 43
35.1 Descriptiono 43
352 Methodoverviewol e e 43
3.5.3 TIOStream.Create i it 43
354 TIOStream.Read 43
3.5.5 TIOStream.Write i 44
3.5.6 TIOStream.SetSize 44
3.5.7 TIOStream.Seek L 44

4 Reference for unit "Pipes’ 45
4.1 Usedunits o 45
4.2 OVEIVIBW . . . v vttt e e 45
4.3 Constants, types and variables L oo 45
431 Constants e e e e e e e e e 45
4.4 Procedures and functions 46
4.4.1 CreatePipeHandles 46
442 CreatePipeStreams 46
45 ENoReadPipe 46
451 Descriptiono e e e e e e e e e 46
4.6 ENoWritePipe e 46
4.6.1 DesCription v vt e e e e e 46
4.7 EPipeCreationot e e 46
47.1 Descriptiono e e e e e e e e 46
4.8 EPipeError e e 47
4.8.1 DesCription v vt e e e e 47
49 EPipeSeek 47
4.9.1 Description e e e e e e e e e 47
4.10 TInputPipeStream i e e e 47
4.10.1 DesCription v vt v vt e e e e e e e 47

CONTENTS

4.10.2 Method overview Lo 47
4.10.3 TInputPipeStream.Write 47
4.10.4 TInputPipeStream.Seek 47
4.10.5 TInputPipeStream.Read, 48
4.11 TOutputPipeStream o e 48
4.11.1 Description o v e e e e e e e e 48
4112 Methodoverview 48
4.11.3 TOutputPipeStream.Seek o 48
4.11.4 TOutputPipeStream.Read 49
Reference for unit *process’ 50
5.0 Usedunitso o e e e e 50
52 OVEIVIEW . . o o vt e e e 50
5.3 Constants, types and variables Lo 50
531 Types . . oo e 50
54 TProcesso e e 52
541 Description e e e e e e e e 52
542 Methodoverview 52
5.4.3 Property OVerviewo e 53
544 TProcess.Create i e 53
5.4.5 TProcess.Destroy e e 53
54.6 TProcess.Execute 54
547 TProcess.Resume 54
5.4.8 TProcess.Suspend e 55
5.4.9 TProcess.Terminate 55
5.4.10 TProcess.WaitOnExit o 55
5.4.11 TProcess.WindowRect 55
5.4.12 TProcess.Handle 56
5.4.13 TProcess.ProcessHandle 56
5.4.14 TProcess.ThreadHandle 56
5.4.15 TProcess.ProcessID 56
5.4.16 TProcess.ThreadID 57
5.4.17 TProcess.Input e 57
5.4.18 TProcess.OutPut 57
5.4.19 TProcess.StdErr 58
5.4.20 TProcess.ExitStatus e 58
5.4.21 TProcess.InheritHandles 58
5.4.22 TProcess.ACtive i e 59
5.4.23 TProcess.ApplicationName 59
5.4.24 TProcess.CommandLine 59

CONTENTS

5.4.25 TProcess.ConsoleTitle 60
5.4.26 TProcess.CurrentDirectory v v v vt i e 60
5.4.27 TProcess.DeskTop 60
5.4.28 TProcess.Environment 61
5.4.29 TProcess.Options v v v v v it e e e e 61
5.4.30 TProcess.Priority e 61
5.4.31 TProcess.StartUpOptions o 62
5.4.32 TProcess.Running 63
5.4.33 TProcess.ShowWindow, 63
5.4.34 TProcess.WindowColumns 63
5.4.35 TProcess.WindowHeight 64
5.4.36 TProcess.WindowlLeft 64
5.4.37 TProcess.WindowRows 64
5.4.38 TProcess.WindowTop i 64
5.4.39 TProcess.WindowWidth 65
5.440 TProcess.FillAttribute 65

6 Reference for unit ’StreamIO’ 66
6.1 Usedunits 66
6.2 OVerview e 66
6.3 Procedures and functions L oL 66
6.3.1 AssignStream Lo 66
6.3.2 GetStream 67

CONTENTS

About this guide

This document describes all constants, types, variables, functions and procedures as they are declared
in the units that come standard with the FCL (Free Component Library).

Throughout this document, we will refer to functions, types and variables with typewriter font.
Functions and procedures gave their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.

0.1 Overview

The Free Component Library is a series of units that implemenent various classes and non-visual
components for use with Free Pascal. They are building blocks for non-visual and visual programs,
such as designed in Lazarus.

The TDataset descendents have been implemented in a way that makes them compatible to the
Delphi implementation of these units. There are other units that have counterparts in Delphi, but
most of them are unique to Free Pascal.

Chapter 1

Reference for unit ’contnrs’

1.1 Used units

Table 1.1: Used units by unit ’contnrs’

Name Page
Classes 2?
sysutils 7?

1.2 Overview
The contnrs implements various general-purpose classes:

Stacks Stack classes to push/pop pointers or objects

Object lists lists that manage objects instead of pointers, and which automatically dispose of the
objects.

Component lists lists that manage components instead of pointers, and which automatically dispose
the components.

Class lists lists that manage class pointers instead of pointers.
Stacks Stack classes to push/pop pointers or objects

Queues Classes to manage a FIFO list of pointers or objects
1.3 Constants, types and variables
1.3.1 Types

THashFunction = function(const S: String;const TableSize: LongWord)
LongWord

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

TIteratorMethod = procedure (Item: Pointer;const Key: String;
var Continue: Boolean) of object

1.4 Procedures and functions

1.4.1 RSHash
Declaration: function RSHash (const S: String;const TableSize: LongWord) : LongWord

Visibility: default

1.5 EDuplicate
1.6 EKeyNotFound

1.7 TClassList

1.7.1 Description

TClassList is a Tlist (??) descendent which stores class references instead of pointers. It intro-
duces no new behaviour other than ensuring all stored pointers are class pointers.

The OwnsObjects property as found in TComponentList and TObjectList is not imple-
mented as there are no actual instances.

1.7.2 Method overview
Page Property Description

10 Add Add a new class pointer to the list.
11 Extract Extract a class pointer from the list.
12 First Return first non-nil class pointer

11 IndexOf Search for a class pointer in the list.
12 Insert Insert a new class pointer in the list.
12 Last Return last non-Ni1 class pointer

11 Remove Remove a class pointer from the list.

1.7.3 Property overview

Page Property Access Description
12 Items ™w Index based access to class pointers.

1.7.4 TClassList.Add

Synopsis: Add a new class pointer to the list.
Declaration: function Add(AClass: TClass) : Integer
Visibility: public

Description: Add adds AClass to the list, and returns the position at which it was added. It simply overrides the
TList (??) bevahiour, and introduces no new functionality.

10

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TClassList.Extract (11), #rtl.classes.tlist.add (??)

1.7.5 TClassList.Extract

Synopsis: Extract a class pointer from the list.
Declaration: function Extract (Item: TClass) : TClass
Visibility: public

Description: Ext ract extracts a class pointer Item from the list, if it is present in the list. It returns the
extracted class pointer, or Nil if the class pointer was not present in the list. It simply overrides the
implementation in TList so it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Remove (11), #rtl.classes.Tlist.Extract (2?)

1.7.6 TClassList.Remove

Synopsis: Remove a class pointer from the list.
Declaration: function Remove (AClass: TClass) : Integer
Visibility: public

Description: Remove removes a class pointer Item from the list, if it is present in the list. It returns the index of
the removed class pointer, or —1 if the class pointer was not present in the list. It simply overrides the
implementation in TList so it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Extract (11), #rtl.classes.Tlist.Remove (2?)

1.7.7 TClassList.IndexOf

Synopsis: Search for a class pointer in the list.
Declaration: function IndexOf (AClass: TClass) : Integer
Visibility: public

Description: ITndexOf searches for AClass in the list, and returns it’s position if it was found, or -1 if it was
not found in the list.

Errors: None.

See also: #rtl.classes.tlist.indexof (??)

11

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.7.8 TClassList.First

Synopsis: Return first non-nil class pointer
Declaration: function First : TClass
Visibility: public

Description: First returns a reference to the first non-N1i1 class pointer in the list. If no non-Nil element is
found, Nil is returned.

Errors: None.

See also: TClassList.Last (12), TClassList.Pack (10)

1.7.9 TClassList.Last
Synopsis: Return last non-N1i1 class pointer

Declaration: function Last : TClass
Visibility: public

Description: Last returns a reference to the last non-Ni1l class pointer in the list. If no non-Nil element is
found, Nil is returned.

Errors: None.

See also: TClassList.First (12), TClassList.Pack (10)

1.7.10 TClassList.Insert

Synopsis: Insert a new class pointer in the list.
Declaration: procedure Insert (Index: Integer;AClass: TClass)
Visibility: public

Description: Insert inserts a class pointer in the list at position Index. It simply overrides the parent imple-
mentation so it only accepts class pointers. It introduces no new behaviour.

Errors: None.

See also: #rtl.classes. TList.Insert (??), TClassList.Add (10), TClassList.Remove (11)

1.7.11 TClassList.ltems

Synopsis: Index based access to class pointers.
Declaration: Property Items[Index: Integer]: TClass; default
Visibility: public
Access: Read,Write

Description: Items provides index-based access to the class pointers in the list. TClassList overrides the
default Ttems implementation of TList so it returns class pointers instead of pointers.

See also: #rtl.classes. TList.Items (??), #rtl.classes. TList.Count (??)

12

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.8 TComponentList

1.8.1 Description

TComponentList is a TObjectList (27) descendent which has as the default array property TCom-
ponents (??) instead of objects. It overrides some methods so only components can be added.

In difference with TObjectList (27), TComponentList removes any TComponent from the list
if the TComponent instance was freed externally. It uses the FreeNotification mechanism
for this.

1.8.2 Method overview
Page Property Description

13 Add Add a component to the list.

13 Destroy Destroys the instance

14 Extract ~ Remove a component from the list without destroying it.
15 First First non-nil instance in the list.

14 IndexOf Search for an instance in the list

15 Insert Insert a new component in the list

15 Last Last non-nil instance in the list.

14 Remove Remove a component from the list, possibly destroying it.

1.8.3 Property overview

Page Property Access Description
15 Items ™w Index-based access to the elements in the list.

1.8.4 TComponentList.Destroy

Synopsis: Destroys the instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy unhooks the free notification handler and then calls the inherited destroy to clean up the
TComponentList instance.

Errors: None.

See also: TObjectList (27), #rtl.classes. TComponent (??)

1.8.5 TComponentList.Add

Synopsis: Add a component to the list.
Declaration: function Add(AComponent: TComponent) : Integer
Visibility: public

Description: Add overrides the Add operation of it’s ancestors, so it only accepts TComponent instances. It
introduces no new behaviour.

The function returns the index at which the component was added.

Errors: If not enough memory is available to expand the list, an exception may be raised.

13

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

See also: TObectList.Add (9)

1.8.6 TComponentList.Extract

Synopsis: Remove a component from the list without destroying it.
Declaration: function Extract (Item: TComponent) : TComponent
Visibility: public

Description: Ext ract removes a component (Item) from the list, without destroying it. It overrides the imple-
mentation of TObjectList (27) so only TComponent descendents can be extracted. It introduces no
new behaviour.

Extract returns the instance that was extracted, or Ni1 if no instance was found.

See also: TComponentList.Remove (14), TObjectList.Extract (28)

1.8.7 TComponentList.Remove

Synopsis: Remove a component from the list, possibly destroying it.
Declaration: function Remove (AComponent: TComponent) : Integer
Visibility: public

Description: Remove removes item from the list, and if the list owns it’s items, it also destroys it. It returns the
index of the item that was removed, or -1 if no item was removed.

Remove simply overrides the implementation in TObjectList (27) so it only accepts TComponent
descendents. It introduces no new behaviour.

Errors: None.

See also: TComponentList.Extract (14), TObjectList.Remove (28)

1.8.8 TComponentList.IndexOf

Synopsis: Search for an instance in the list
Declaration: function IndexOf (AComponent: TComponent) : Integer
Visibility: public

Description: IndexOf searches for an instance in the list and returns it’s position in the list. The position is
zero-based. If no instance is found, -1 is returned.

IndexOf just overrides the implementation of the parent class so it accepts only TComponent
instances. It introduces no new behaviour.

Errors: None.

See also: TObjectList.IndexOf (28)

14

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.8.9 TComponentList.First

Synopsis: First non-nil instance in the list.
Declaration: function First : TComponent
Visibility: public

Description: First overrides the implementation of it’s ancestors to return the first non-nil instance of TComponent
in the list. If no non-nil instance is found, Ni1 is returned.

Errors: None.

See also: TComponentList.Last (15), TObjectList.First (29)

1.8.10 TComponentList.Last
Synopsis: Last non-nil instance in the list.

Declaration: function Last : TComponent
Visibility: public

Description: Last overrides the implementation of it’s ancestors to return the last non-nil instance of TComponent
in the list. If no non-nil instance is found, Ni1 is returned.

Errors: None.

See also: TComponentList.First (15), TObjectList.Last (29)

1.8.11 TComponentList.Insert

Synopsis: Insert a new component in the list
Declaration: procedure Insert (Index: Integer;AComponent: TComponent)
Visibility: public

Description: Insert inserts a TComponent instance (AComponent) in the list at position Index. It simply
overrides the parent implementation so it only accepts TComponent instances. It introduces no new
behaviour.

Errors: None.

See also: TObjectList.Insert (29), TComponentList.Add (13), TComponentList.Remove (14)

1.8.12 TComponentList.ltems

Synopsis: Index-based access to the elements in the list.
Declaration: Property Items[Index: Integer]: TComponent; default
Visibility: public
Access: Read,Write

Description: Ttems provides access to the components in the list using an index. It simply overrides the default
property of the parent classes so it returns/accepts TComponent instances only. Note that the index
is zero based.

See also: TObjectList.Items (30)

15

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.9 TFPHashTable

1.9.1 Method overview

Page Property Description
17 Add

16 ChangeTableSize

17 Clear

16 Create

16 CreateWith

17 Delete

16 Destroy

17 Find

17 IsEmpty

1.9.2 Property overview

Page Property Access Description
18 AVGChainLen r

17 Count r

19 Density r

17 HashFunction ™w

18 HashTable r

17 HashTableSize ™w

18 Items ™w

18 LoadFactor

18 MaxChainLength

18 NumberOfCollisions
18 VoidSlots

- =

1.9.3 TFPHashTable.Create

Declaration: constructor Create

Visibility: public

1.9.4 TFPHashTable.CreateWith

Declaration: constructor CreateWith (AHashTableSize: LongWord;
aHashFunc: THashFunction)

Visibility: public

1.9.5 TFPHashTable.Destroy

Declaration: destructor Destroy; Override

Visibility: public

1.9.6 TFPHashTable.ChangeTableSize

Declaration: procedure ChangeTableSize (const ANewSize: LongWord) ;

16

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Visibility: public

1.9.7 TFPHashTable.Clear
Declaration: procedure Clear; Virtual

Visibility: public

1.9.8 TFPHashTable.Add

Declaration: procedure Add(const aKey: String;AItem: pointer); Virtual

Visibility: public

1.9.9 TFPHashTable.Delete
Declaration: procedure Delete (const aKey: String); Virtual

Visibility: public

1.9.10 TFPHashTable.Find
Declaration: function Find(const aKey: String) : THTNode

Visibility: public

1.9.11 TFPHashTable.IsEmpty
Declaration: function IsEmpty : Boolean

Visibility: public

1.9.12 TFPHashTable.HashFunction
Declaration: Property HashFunction : THashFunction
Visibility: public

Access: Read,Write

1.9.13 TFPHashTable.Count
Declaration: Property Count : Inté64
Visibility: public

Access: Read

1.9.14 TFPHashTable.HashTableSize
Declaration: Property HashTableSize : LongWord
Visibility: public

Access: Read,Write

17

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.9.15 TFPHashTable.ltems

Declaration: Property Items[index: String]: Pointer; default
Visibility: public

Access: Read,Write

1.9.16 TFPHashTable.HashTable

Declaration: Property HashTable : TFPObjectList
Visibility: public

Access: Read

1.9.17 TFPHashTable.VoidSlots

Declaration: Property VoidSlots : LongWord
Visibility: public

Access: Read

1.9.18 TFPHashTable.LoadFactor

Declaration: Property LoadFactor : double
Visibility: public

Access: Read

1.9.19 TFPHashTable.AVGChainLen

Declaration: Property AVGChainLen : double
Visibility: public

Access: Read

1.9.20 TFPHashTable.MaxChainLength
Declaration: Property MaxChainLength : Int64

Visibility: public

Access: Read

1.9.21 TFPHashTable.NumberOfCollisions

Declaration: Property NumberOfCollisions : Int64
Visibility: public

Access: Read

18

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.9.22 TFPHashTable.Density
Declaration: Property Density LongWord
Visibility: public

Access: Read

1.10 TFPObjectList

1.10.1 Description

TFPObjectList is a TFPList (??) based list which has as the default array property TObjects (??)
instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TObjectList (27), TFPObjectList offers no notification mechanism of list op-
erations, allowing it to be faster than TOb jectList. For the same reason, it is also not a descendent
of TFPList (although it uses one internally).

1.10.2 Method overview

Page Property Description

20 Add Add an object to the list.

24 Assign Copy the contents of a list.

20 Clear Clear all elements in the list.

19 Create Create a new object list

21 Delete Delete an element from the list.

20 Destroy Clears the list and destroys the list instance
21 Exchange Exchange the location of two objects

21 Expand Expand the capacity of the list.

21 Extract Extract an object from the list

22 FindInstanceOf Search for an instance of a certain class

23 First Return the first non-nil object in the list

22 IndexOf Search for an object in the list

23 Insert Insert a new object in the list

23 Last Return the last non-nil object in the list.

23 Move Move an object to another location in the list.
24 Pack Remove all Ni1 references from the list
22 Remove Remove an item from the list.

24 Sort Sort the list of objects

1.10.3 Property overview

Page Property Access Description

25 Capacity ™w Capacity of the list

25 Count ™w Number of elements in the list.

25 Items ™w Indexed access to the elements of the list.

26 List r Internal list used to keep the objects.

25 OwnsObjects 1w Should the list free elements when they are removed.

1.10.4 TFPObijectList.Create

Synopsis: Create a new object list

19

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Declaration: constructor Create
constructor Create (FreeObjects: Boolean)

Visibility: public

Description: Create instantiates a new object list. The FreeObjects parameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TFPObjectList.Destroy (20), TFPObjectList.OwnsObjects (25), TObjectList (27)

1.10.5 TFPObjectList.Destroy

Synopsis: Clears the list and destroys the list instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy clears the list, freeing all objects in the list if OwnsObjects (25) is True.

See also: TFPObjectList.OwnsObjects (25), TObjectList.Create (27)

1.10.6 TFPObjectList.Clear

Synopsis: Clear all elements in the list.
Declaration: procedure Clear
Visibility: public
Description: Removes all objects from the list, freeing all objects in the list if OwnsObjects (25) is True.

See also: TObjectList.Destroy (27)

1.10.7 TFPObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: 2dd adds AObject to the list and returns the index of the object in the list.

Note that when OwnsObjects (25) is True, an object should not be added twice to the list: this will
result in memory corruption when the object is freed (as it will be freed twice). The Add method
does not check this, however.

Errors: None.

See also: TFPObjectList.OwnsObjects (25), TFPObjectList.Delete (21)

20

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.10.8 TFPObjectList.Delete

Synopsis: Delete an element from the list.
Declaration: procedure Delete (Index: Integer)
Visibility: public

Description: Delete removes the object at index Index from the list. When OwnsObjects (25) is True, the
object is also freed.

Errors: An access violation may occur when OwnsObjects (25) is True and either the object was freed
externally, or when the same object is in the same list twice.

See also: TTFPObjectList.Remove (9), TFPObjectList.Extract (21), TFPObjectList.OwnsObjects (25), TTF-
PObjectList.Add (9), TTFPObjectList.Clear (9)

1.10.9 TFPObjectList.Exchange

Synopsis: Exchange the location of two objects
Declaration: procedure Exchange (Indexl: Integer;Index2: Integer)
Visibility: public

Description: Exchange exchanges the objects at indexes Index1 and Index?2 in a direct operation (i.e. no
delete/add is performed).

Errors: If either Index1 or Index?2 is invalid, an exception will be raised.

See also: TTFPObjectList.Add (9), TTFPObjectList.Delete (9)

1.10.10 TFPObjectList.Expand
Synopsis: Expand the capacity of the list.

Declaration: function Expand : TFPObjectList
Visibility: public

Description: Expand increases the capacity of the list. It calls #rtl.classes.tfplist.expand (??) and then returns a
reference to itself.

Errors: If there is not enough memory to expand the list, an exception will be raised.

See also: TFPObjectList.Pack (24), TFPObjectList.Clear (20), #rtl.classes.tfplist.expand (??)

1.10.11 TFPObjectList.Extract

Synopsis: Extract an object from the list
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes Item from the list, if it is present in the list. It returns Item if it was found,
Nil if item was not present in the list.

Note that the object is not freed, and that only the first found object is removed from the list.

21

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Errors: None.

See also: TFPObjectList.Pack (24), TFPObjectList.Clear (20), TFPObjectList.Remove (22), TFPObjectList.Delete
21

1.10.12 TFPObijectList.Remove

Synopsis: Remove an item from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes Item from the list, if it is present in the list. It frees It em if OwnsObjects (25) is
True, and returns the index of the object that was found in the list, or -1 if the object was not found.

Note that only the first found object is removed from the list.
Errors: None.

See also: TFPObjectList.Pack (24), TFPObjectList.Clear (20), TFPObjectList.Delete (21), TFPObjectList.Extract
(21)

1.10.13 TFPObjectList.IndexOf
Synopsis: Search for an object in the list

Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public

Description: IndexOf searches for the presence of A0bject in the list, and returns the location (index) in the
list. The index is O-based, and -1 is returned if AOb ject was not found in the list.

Errors: None.

See also: TFPObjectList.Items (25), TFPObjectList.Remove (22), TFPObjectList.Extract (21)

1.10.14 TFPObjectList.FindinstanceOf

Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

Description: FindInstanceOf will look through the instances in the list and will return the first instance which
is a descendent of class AClass if AExact is False. If AExact is true, then the instance should
be of class AClass.

If no instance of the requested class is found, Nil is returned.
Errors: None.

See also: TFPObjectList.IndexOf (22)

22

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.10.15 TFPObjectList.Insert

Synopsis: Insert a new object in the list
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insert inserts AObject at position Index in the list. All elements in the list after this position
are shifted. The index is zero based, i.e. an insert at position 0 will insert an object at the first position
of the list.

Errors: None.

See also: TFPObjectList.Add (20), TFPObjectList.Delete (21)

1.10.16 TFPObjectList.First

Synopsis: Return the first non-nil object in the list
Declaration: function First : TObject
Visibility: public

Description: First returns a reference to the first non-Ni1 element in the list. If no non-Ni 1 element is found,
Nil is returned.

Errors: None.

See also: TFPObjectList.Last (23), TFPObjectList.Pack (24)

1.10.17 TFPObjectList.Last

Synopsis: Return the last non-nil object in the list.
Declaration: function Last : TObject
Visibility: public

Description: Last returns a reference to the last non-Nil element in the list. If no non-Nil element is found,
Nil is returned.

Errors: None.

See also: TFPObjectList.First (23), TFPObjectList.Pack (24)

1.10.18 TFPObjectList.Move
Synopsis: Move an object to another location in the list.
Declaration: procedure Move (CurIndex: Integer;NewIndex: Integer)
Visibility: public
Description: Move moves the object at current location CurIndex to location NewIndex. Note that the

NewIndex is determined affer the object was removed from location Cur Index, and can hence be
shifted with 1 position if CurIndex is less than NewIndex.

Contrary to exchange (21), the move operation is done by extracting the object from it’s current
location and inserting it at the new location.

23

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Errors: If either Cur Index or NewIndex is out of range, an exception may occur.

See also: TFPObjectList.Exchange (21), TFPObjectList.Delete (21), TFPObjectList.Insert (23)

1.10.19 TFPObjectList.Assign

Synopsis: Copy the contents of a list.
Declaration: procedure Assign (Obj: TFPObjectList)
Visibility: public
Description: Assign copies the contents of Ob j if Obj is of type TFPObjectList

Errors: None.

1.10.20 TFPObjectList.Pack

Synopsis: Remove all Nil references from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Ni1 elements from the list.
Errors: None.

See also: TFPObjectList.First (23), TFPObjectList.Last (23)

1.10.21 TFPObjectList.Sort
Synopsis: Sort the list of objects

Declaration: procedure Sort (Compare: TListSortCompare)
Visibility: public

Description: sort will perform a quick-sort on the list, using Compare as the compare algorithm. This function
should accept 2 pointers and should return the following result:

less than OIf the first pointer comes before the second.
equal to OIf the pointers have the same value.

larger than 0If the first pointer comes after the second.

The function should be able to deal with Ni1l values.
Errors: None.

See also: #rtl.classes. TList.Sort (??)

24

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.10.22 TFPObjectList.Capacity
Synopsis: Capacity of the list
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity is the number of elements that the list can contain before it needs to expand itself, i.e.,
reserve more memory for pointers. It is always equal or larger than Count (25).

See also: TFPObjectList.Count (25)

1.10.23 TFPObjectList.Count
Synopsis: Number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the number of elements in the list. Note that this includes Ni1 elements.

See also: TFPObjectList.Capacity (25)

1.10.24 TFPODbjectList.OwnsObjects

Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsObjects determines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is True then they are freed.
If the property is False the elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TFPObjectList.Create (19), TFPObjectList.Delete (21), TFPObjectList.Remove (22), TFPObjectList.Clear
(20)

1.10.25 TFPObjectList.ltems
Synopsis: Indexed access to the elements of the list.
Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Items is the default property of the list. It provides indexed access to the elements in the list. The
index Index is zero based, i.e., runs from O (zero) to Count—1.

See also: TFPObjectList.Count (25)

25

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.10.26 TFPObijectList.List

Synopsis: Internal list used to keep the objects.
Declaration: Property List : TFPList
Visibility: public
Access: Read
Description: List is a reference to the TFPList (??) instance used to manage the elements in the list.

See also: #rtl.classes.tfplist (??)

1.11 THTNode

1.11.1 Method overview

Page Property Description
26 CreateWith
26 HasKey

1.11.2 Property overview

Page Property Access Description
26 Data ™w
26 Key r

1.11.3 THTNode.CreateWith

Declaration: constructor CreateWith (const AString: String)

Visibility: public

1.11.4 THTNode.HasKey

Declaration: function HasKey (const AKey: String) : Boolean

Visibility: public

1.11.5 THTNode.Key

Declaration: Property Key : String
Visibility: public

Access: Read

1.11.6 THTNode.Data

Declaration: Property Data : pointer
Visibility: public

Access: Read,Write

26

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.12 TODbjectList

1.12.1 Description

TObjectList is a TList (??) descendent which has as the default array property TObjects (??)
instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TFPObjectList (19), TOb jectList offers a notification mechanism of list change
operations: insert, delete. This slows down bulk operations, so if the notifications are not needed,
TObJjectList may be more appropriate.

1.12.2 Method overview

Page Property Description

27 Add Add an object to the list.

27 create Create a new object list.

28 Extract Extract an object from the list.

29 FindInstanceOf Search for an instance of a certain class

29 First Return the first non-nil object in the list

28 IndexOf Search for an object in the list

29 Insert Insert an object in the list.

29 Last Return the last non-nil object in the list.

28 Remove Remove (and possibly free) an element from the list.

1.12.3 Property overview

Page Property Access Description
30 Items ™wW Indexed access to the elements of the list.
30 OwnsObjects 1w Should the list free elements when they are removed.

1.12.4 TObjectList.create

Synopsis: Create a new object list.

Declaration: constructor create
constructor create (freeobjects: Boolean)

Visibility: public

Description: Create instantiates a new object list. The FreeObjects parameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TObjectList.Destroy (27), TObjectList.OwnsObjects (30), TFPObjectList (19)

1.12.5 TObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer

Visibility: public

27

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Description: Add overrides the TList (??) implementation to accept objects (AObject) instead of pointers.

The function returns the index of the position where the object was added.
Errors: If the list must be expanded, and not enough memory is available, an exception may be raised.

See also: TObjectList.Insert (29), #rtl.classes. TList.Delete (??), TObjectList.Extract (28), TObjectList.Remove
(28)

1.12.6 TObjectList.Extract

Synopsis: Extract an object from the list.
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes the object Item from the list if it is present in the list. Contrary to Remove (28),
Extract does not free the extracted element if OwnsObjects (30) is True

The function returns a reference to the item which was removed from the list, or Ni1 if no element
was removed.

Errors: None.

See also: TObjectList.Remove (28)

1.12.7 TObjectList.Remove

Synopsis: Remove (and possibly free) an element from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes Item from the list, if it is present in the list. It frees Tt em if OwnsObjects (30) is
True, and returns the index of the object that was found in the list, or -1 if the object was not found.

Note that only the first found object is removed from the list.
Errors: None.

See also: TObjectList.Extract (28)

1.12.8 TODbjectList.IndexOf

Synopsis: Search for an object in the list
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public
Description: IndexOf overrides the TList (??) implementation to accept an object instance instead of a pointer.
The function returns the index of the first match for AOb ject in the list, or -1 if no match was found.
Errors: None.

See also: TObjectList.FindInstanceOf (29)

28

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.12.9 TObjectList.FindinstanceOf
Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public
Description: FindInstanceOf will look through the instances in the list and will return the first instance which

is a descendent of class AClass if AExact is False. If AExact is true, then the instance should
be of class AClass.

If no instance of the requested class is found, Ni1 is returned.
Errors: None.
See also: TObjectList.IndexOf (28)

1.12.10 TObjectList.Insert
Synopsis: Insert an object in the list.
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public
Description: Insert inserts AObject in the list at position Index. The index is zero-based. This method
overrides the implementation in TList (??) to accept objects instead of pointers.

Errors: If an invalid Index is specified, an exception is raised.

See also: TObjectList.Add (27), TObjectList.Remove (28)

1.12.11 TObjectList.First
Synopsis: Return the first non-nil object in the list
Declaration: function First : TObject
Visibility: public
Description: First returns a reference to the first non-Ni1 element in the list. If no non-Ni 1 element is found,
Nil is returned.

Errors: None.
See also: TObjectList.Last (29), TObjectList.Pack (27)

1.12.12 TObjectList.Last
Synopsis: Return the last non-nil object in the list.
Declaration: function Last : TObject
Visibility: public
Description: Last returns a reference to the last non-Ni1 element in the list. If no non-Ni1 element is found,
Nil is returned.

Errors: None.
See also: TObjectList.First (29), TObjectList.Pack (27)

29

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.12.13 TObjectList.OwnsObjects

Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsObjects determines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is True then they are freed.
If the property is False the elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TObjectList.Create (27), TObjectList.Delete (27), TObjectList.Remove (28), TObjectList.Clear (27)

1.12.14 TObjectList.ltems
Synopsis: Indexed access to the elements of the list.

Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Items is the default property of the list. It provides indexed access to the elements in the list. The
index Index is zero based, i.e., runs from O (zero) to Count—1.

See also: #rtl.classes. TList.Count (??)

1.13 TObjectQueue

1.13.1 Method overview
Page Property Description

31 Peek Look at the first object in the queue.
31 Pop Pop the first element off the queue
30 Push Push an object on the queue

1.13.2 TObjectQueue.Push
Synopsis: Push an object on the queue

Declaration: function Push (AObject: TObject) : TObject
Visibility: public

Description: Push pushes another object on the queue. It overrides the Push method as implemented in TQueue
so it accepts only objects as arguments.

Errors: If not enough memory is available to expand the queue, an exception may be raised.

See also: TObjectQueue.Pop (31), TObjectQueue.Peek (31)

30

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.13.3 TObjectQueue.Pop
Synopsis: Pop the first element off the queue
Declaration: function Pop : TObject
Visibility: public
Description: Pop removes the first element in the queue, and returns a reference to the instance. If the queue is
empty, Nil is returned.

Errors: None.

See also: TObjectQueue.Push (30), TObjectQueue.Peek (31)

1.13.4 TObjectQueue.Peek
Synopsis: Look at the first object in the queue.
Declaration: function Peek : TObject
Visibility: public
Description: Peek returns the first object in the queue, without removing it from the queue. If there are no more
objects in the queue, N1i1 is returned.

Errors: None

See also: TObjectQueue.Push (30), TObjectQueue.Pop (31)

1.14 TObjectStack

1.14.1 Description
TObjectStack is a stack implementation which manages pointers only.

TObjectStack introduces no new behaviour, it simply overrides some methods to accept and/or
return TOb ject instances instead of pointers.

1.14.2 Method overview
Page Property Description

32 Peek Look at the top object in the stack.
32 Pop Pop the top object of the stack.
31 Push Push an object on the stack.

1.14.3 TObjectStack.Push
Synopsis: Push an object on the stack.
Declaration: function Push (AObject: TObject) : TObject
Visibility: public
Description: Push pushes another object on the stack. It overrides the Push method as implemented in TSt ack
so it accepts only objects as arguments.

Errors: If not enough memory is available to expand the stack, an exception may be raised.

See also: TObjectStack.Pop (32), TObjectStack.Peek (32)

31

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.14.4 TObjectStack.Pop
Synopsis: Pop the top object of the stack.

Declaration: function Pop : TObject
Visibility: public

Description: Pop pops the top object of the stack, and returns the object instance. If there are no more objects on
the stack, Ni1 is returned.

Errors: None

See also: TObjectStack.Push (31), TObjectStack.Peek (32)

1.14.5 TObjectStack.Peek
Synopsis: Look at the top object in the stack.

Declaration: function Peek : TObject
Visibility: public

Description: Peek returns the top object of the stack, without removing it from the stack. If there are no more
objects on the stack, Nil is returned.

Errors: None

See also: TObjectStack.Push (31), TObjectStack.Pop (32)

1.15 TOrderedList

1.15.1 Description

TOrderedList provides the base class for TQueue (34) and TStack (35). It provides an interface
for pushing and popping elements on or off the list, and manages the internal list of pointers.

Note that TOrderedList does not manage objects on the stack, i.e. objects are not freed when the
ordered list is destroyed.

1.15.2 Method overview
Page Property Description

33 AtLeast Check whether the list contains a certain number of elements.
33 Count Number of elements on the list.

32 Create Create a new ordered list

33 Destroy Free an ordered list

34 Peek Return the next element to be popped from the list.

34 Pop Remove an element from the list.

34 Push Push another element on the list.

1.15.3 TOrderedList.Create

Synopsis: Create a new ordered list

Declaration: constructor Create

32

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

Visibility: public
Description: Create instantiates a new ordered list. It initializes the internal pointer list.
Errors: None.

See also: TOrderedList.Destroy (33)

1.15.4 TOrderedList.Destroy

Synopsis: Free an ordered list
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy cleans up the internal pointer list, and removes the TOrderedList instance from mem-
ory.

Errors: None.

See also: TOrderedList.Create (32)

1.15.5 TOrderedList.Count
Synopsis: Number of elements on the list.

Declaration: function Count : Integer
Visibility: public
Description: Count is the number of pointers in the list.
Errors: None.

See also: TOrderedList. AtLeast (33)

1.15.6 TOrderedList.AtLeast

Synopsis: Check whether the list contains a certain number of elements.
Declaration: function AtLeast (ACount: Integer) : Boolean
Visibility: public

Description: At Least returns True if the number of elements in the list is equal to or bigger than ACount. It
returns False otherwise.

Errors: None.

See also: TOrderedList.Count (33)

33

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.15.7 TOrderedList.Push

Synopsis: Push another element on the list.
Declaration: function Push (AItem: Pointer) : Pointer
Visibility: public
Description: Push adds ATtem to the list, and returns ATtem.
Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TOrderedList.Pop (34), TOrderedList.Peek (34)

1.15.8 TOrderedList.Pop

Synopsis: Remove an element from the list.
Declaration: function Pop : Pointer
Visibility: public

Description: Pop removes an element from the list, and returns the element that was removed from the list. If no
element is on the list, Ni1 is returned.

Errors: None.

See also: TOrderedList.Peek (34), TOrderedList.Push (34)

1.15.9 TOrderedList.Peek

Synopsis: Return the next element to be popped from the list.
Declaration: function Peek : Pointer
Visibility: public

Description: Peek returns the element that will be popped from the list at the next call to Pop (34), without
actually popping it from the list.

Errors: None.

See also: TOrderedList.Pop (34), TOrderedList.Push (34)

1.16 TQueue

1.16.1 Description

TQueue is a descendent of TOrderedList (32) which implements Push (34) and Pop (34) behaviour
as a queue: what is first pushed on the queue, is popped of first (FIFO: First in, first out).

TQueue offers no new methods, it merely implements some abstract methods introduced by TOrderedList
(32)

34

CHAPTER 1. REFERENCE FOR UNIT "CONTNRS’

1.17 TStack

1.17.1 Description

TStack is a descendent of TOrderedList (32) which implements Push (34) and Pop (34) behaviour
as a stack: what is last pushed on the stack, is popped of first (LIFO: Last in, first out).

TStack offers no new methods, it merely implements some abstract methods introduced by TOrderedList
(32)

35

Chapter 2

Reference for unit ’dbugintf’

2.1 Writing a debug server

Writing a debug server is relatively easy. It should instantiate a TSimpleIPCServer class from
the SimpleIPC (36) unit, and use the DebugServerID as ServerID identification. This constant,
as well as the record containing the message which is sent between client and server is defined in the
msgintf unit.

The dbugintf unit relies on the SimpleIPC (36) mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcess to
start the debug server if needed, so the process (36) unit should also be functional.

2.2 Overview

Use dbugintf to add debug messages to your application. The messages are not sent to standard
output, but are sent to a debug server process which collects messages from various clients and
displays them somehow on screen.

The unit is transparant in its use: it does not need initialization, it will start the debug server by itself
if it can find it: the program should be called debugserver and should be in the PATH. When the
first debug message is sent, the unit will initialize itself.

The FCL contains a sample debug server (dbugsvr) which can be started in advance, and which
writes debug message to the console (both on Windows and Linux). The Lazarus project contains a
visual application which displays the messages in a GUIL

The dbugintf unit relies on the SimpleIPC (36) mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcess to
start the debug server if needed, so the process (36) unit should also be functional.

2.3 Constants, types and variables

2.3.1 Resource strings

SEntering = ’'> Entering '
String used when sending method enter message.

SExiting = < Exiting '

36

CHAPTER 2. REFERENCE FOR UNIT 'DBUGINTF’

String used when sending method exit message.

SProcessID = 'Process %s’

String used when sending identification message to the server.
SSeparator = '>-=-=-=-=-=-=-=-=-=-=-=-=-=—=-<'

String used when sending a separator line.

2.3.2 Constants

SendError : String = '’

Whenever a call encounteres an exception, the exception message is stored in this variable.

2.3.3 Types

TDebugLevel = (dlInformation,dlWarning,dlError)

Table 2.1: Enumeration values for type TDebugLevel

Value Explanation

dlError Error message
dlInformation Informational message
dlWarning Warning message

TDebugLevel indicates the severity level of the debug message to be sent. By default, an informa-
tional message is sent.

2.4 Procedures and functions

2.4.1 InitDebugClient
Synopsis: Initialize the debug client.

Declaration: procedure InitDebugClient
Visibility: default

Description: InitDebugClient starts the debug server and then performs all necessary initialization of the
debug IPC communication channel.

Normally this function should not be called. The SendDebug (38) call will initialize the debug client
when it is first called.

Errors: None.

See also: SendDebug (38), StartDebugServer (41)

37

CHAPTER 2. REFERENCE FOR UNIT 'DBUGINTF’

2.4.2 SendBoolean
Synopsis: Send the value of a boolean variable
Declaration: procedure SendBoolean (const Identifier: String;const Value: Boolean)
Visibility: default

Description: SsendBoolean is a simple wrapper around SendDebug (38) which sends the name and value of a
boolean value as an informational message.

Errors: None.
See also: SendDebug (38), SendDateTime (38), SendInteger (39), SendPointer (40)

2.4.3 SendDateTime
Synopsis: Send the value of a TDateTime variable.

Declaration:procedure SendDateTime (const Identifier: String;const Value: TDateTime)

Visibility: default

Description: SendDateTime is a simple wrapper around SendDebug (38) which sends the name and value of an
integer value as an informational message. The value is converted to a string using the DateTimeToStr

(??) call.
Errors: None.
See also: SendDebug (38), SendBoolean (38), SendInteger (39), SendPointer (40)

2.4.4 SendDebug

Synopsis: Send a message to the debug server.
Declaration: procedure SendDebug (const Msg: String)

Visibility: default

Description: SendDebug sends the message Msg to the debug server as an informational message (debug level
dlInformation). If no debug server is running, then an attempt will be made to start the server

first.

The binary that is started is called debugserver and should be somewhere on the PATH. A sample
binary which writes received messages to standard output is included in the FCL, it is called dbugsrv.
This binary can be renamed to debugserver or can be started before the program is started.

Errors: Errors are silently ignored, any exception messages are stored in SendError (37).

See also: SendDebugEx (38), SendDebugFmt (39), SendDebugFmtEx (39)

2.4.5 SendDebugEx

Synopsis: Send debug message other than informational messages

Declaration: procedure SendDebugEx (const Msg: String;MType: TDebugLevel)

Visibility: default

38

CHAPTER 2. REFERENCE FOR UNIT 'DBUGINTF’

Description: SendDebugEx allows to specify the debug level of the message to be sent in MType. By default,
SendDebug (38) uses informational messages.

Other than that the function of SendDebugEx is equal to that of SendDebug
Errors: None.

See also: SendDebug (38), SendDebugFmt (39), SendDebugFmtEx (39)

2.4.6 SendDebugFmt

Synopsis: Format and send a debug message
Declaration: procedure SendDebugFmt (const Msg: String;const Args: Array[] of const)
Visibility: default

Description: sendDebugFmt is a utility routine which formats a message by passing Msg and Args to Format
(??) and sends the result to the debug server using SendDebug (38). It exists mainly to avoid the
Format call in calling code.

Errors: None.

See also: SendDebug (38), SendDebugEx (38), SendDebugFmtEx (39), #rtl.sysutils.format (??)

2.4.7 SendDebugFmtEx

Synopsis: Format and send message with alternate type

Declaration: procedure SendDebugFmtEx (const Msg: String;const Args: Array[] of const;
MType: TDebugLevel)

Visibility: default

Description: sendDebugFmtEx is a utility routine which formats a message by passing Msg and Args to
Format (??) and sends the result to the debug server using SendDebugEx (38) with Debug level
MType. It exists mainly to avoid the Format call in calling code.

Errors: None.

See also: SendDebug (38), SendDebugEx (38), SendDebugFmt (39), #rtl.sysutils.format (??)

2.4.8 Sendinteger

Synopsis: Send the value of an integer variable.

Declaration: procedure SendInteger (const Identifier: String;const Value: Integer;
HexNotation: Boolean)

Visibility: default

Description: SsendInteger is a simple wrapper around SendDebug (38) which sends the name and value of
an integer value as an informational message. If HexNotation is True, then the value will be
displayed using hexadecimal notation.

Errors: None.

See also: SendDebug (38), SendBoolean (38), SendDateTime (38), SendPointer (40)

39

CHAPTER 2. REFERENCE FOR UNIT 'DBUGINTF’

2.4.9 SendMethodEnter
Synopsis: Send method enter message
Declaration: procedure SendMethodEnter (const MethodName: String)
Visibility: default

Description: SsendMethodEnter sends a "Entering MethodName" message to the debug server. After that it
increases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odExit (40), the indentation of messages can be decreased again.

By using the SendMethodEnter and SendMethodExit methods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Errors: None.

See also: SendDebug (38), SendMethodExit (40), SendSeparator (41)

2.4.10 SendMethodExit
Synopsis: Send method exit message

Declaration: procedure SendMethodExit (const MethodName: String)
Visibility: default

Description: SendMethodExit sends a "Exiting MethodName" message to the debug server. After that it
decreases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odEnter (40), the indentation of messages can be increased again.

By using the SendMethodEnter and SendMethodExit methods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Note that the indentation level will not be made negative.
Errors: None.

See also: SendDebug (38), SendMethodEnter (40), SendSeparator (41)

2.4.11 SendPointer

Synopsis: Send the value of a pointer variable.
Declaration: procedure SendPointer (const Identifier: String;const Value: Pointer)
Visibility: default

Description: sendInteger is a simple wrapper around SendDebug (38) which sends the name and value of
a pointer value as an informational message. The pointer value is displayed using hexadecimal
notation.

Errors: None.

See also: SendDebug (38), SendBoolean (38), SendDateTime (38), SendInteger (39)

40

CHAPTER 2. REFERENCE FOR UNIT 'DBUGINTF’

2.4.12 SendSeparator

Synopsis: Send a separator message
Declaration: procedure SendSeparator
Visibility: default

Description: sendSeparator is a simple wrapper around SendDebug (38) which sends a short horizontal line
to the debug server. It can be used to visually separate execution of blocks of code or blocks of
values.

Errors: None.

See also: SendDebug (38), SendMethodEnter (40), SendMethodExit (40)

2.4.13 StartDebugServer
Synopsis: Start the debug server

Declaration: function StartDebugServer : Integer
Visibility: default

Description: startDebugServer attempts to start the debug server. The process started is called debugserver
and should be located in the PATH.

Normally this function should not be called. The SendDebug (38) call will attempt to start the server
by itself if it is not yet running.

Errors: On error, False is returned.

See also: SendDebug (38), InitDebugClient (37)

41

Chapter 3

Reference for unit ’iostream’

3.1 Used units

Table 3.1: Used units by unit ’iostream’

Name Page
Classes 2?

3.2 Overview

The iostream implements a descendent of THandleStream (??) streams that can be used to read from
standard input and write to standard output and standard diagnostic output (stderr).

3.3 Constants, types and variables

3.3.1 Types
TIOSType = (iosInput,iosOutPut, iosError)
Table 3.2: Enumeration values for type TIOSType
Value Explanation

iosError The stream can be used to write to standard diagnostic output
iosInput The stream can be used to read from standard input
iosOutPut The stream can be used to write to standard output

TIOSType is passed to the Create (43) constructor of TIOStream (43), it determines what kind of
stream is created.

42

CHAPTER 3. REFERENCE FOR UNIT "'IOSTREAM’

3.4 EIOStreamError

3.4.1 Description

Error thrown in case of an invalid operation on a TIOStream (43).

3.5 TIOStream

3.5.1 Description

TIOStream can be used to create a stream which reads from or writes to the standard input, output
or stderr file descriptors. It is a descendent of THandleStream. The type of stream that is created
is determined by the TIOSType (42) argument to the constructor. The handle of the standard input,
output or stderr file descriptors is determined automatically.

The TIOStream keeps an internal Position, and attempts to provide minimal Seek (44) be-
haviour based on this position.

3.5.2 Method overview
Page Property Description

43 Create Construct a new instance of TIOStream (43)
43 Read Read data from the stream.

44 Seek Set the stream position

44 SetSize Set the size of the stream

44 Write Write data to the stream

3.5.3 TIOStream.Create

Synopsis: Construct a new instance of TIOStream (43)
Declaration: constructor Create (aIOSType: TIOSType)
Visibility: public
Description: Create creates a new instance of TIOStream (43), which can subsequently be used

Errors: No checking is performed to see whether the requested file descriptor is actually open for read-
ing/writing. In that case, subsequent calls to Read or Write or seek will fail.

See also: TIOStream.Read (43), TIOStream. Write (44)

3.5.4 TIOStream.Read
Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read checks first whether the type of the stream allows reading (type is iosInput). If not, it
raises a EIOStreamError (43) exception. If the stream can be read, it calls the inherited Read to
actually read the data.

Errors: An EIOStreamError exception is raised if the stream does not allow reading.

See also: TIOSType (42), TIOStream. Write (44)

43

CHAPTER 3. REFERENCE FOR UNIT "'IOSTREAM’

3.5.5 TIOStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write checks first whether the type of the stream allows writing (type is 1osOutput or iosError).
If not, it raises a EIOStreamError (43) exception. If the stream can be written to, it calls the inherited
Write to actually read the data.

Errors: An EIOStreamError exception is raised if the stream does not allow writing.

See also: TIOSType (42), TIOStream.Read (43)

3.5.6 TIOStream.SetSize

Synopsis: Set the size of the stream
Declaration: procedure SetSize (NewSize: LongInt); Override
Visibility: public

Description: set Size overrides the standard Set Size implementation. It always raises an exception, because
the standard input, output and stderr files have no size.

Errors: An EIOStreamError exception is raised when this method is called.

See also: EIOStreamError (43)

3.5.7 TIOStream.Seek
Synopsis: Set the stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: Seek overrides the standard Seek implementation. Normally, standard input, output and stderr are

not seekable. The TIOStream stream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them, if the stream is of type
iosInput.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EIOStreamError exception.

Errors: An EIOStreamError (43) exception is raised if the stream does not allow the requested seek opera-
tion.

See also: EIOStreamError (43)

44

Chapter 4

Reference for unit ’Pipes’

4.1 Used units

Table 4.1: Used units by unit "Pipes’

Name Page
Classes 2?
sysutils ?2?

4.2 Overview

The Pipes unit implements streams that are wrappers around the OS’s pipe functionality. It creates
a pair of streams, and what is written to one stream can be read from another.

4.3 Constants, types and variables

4.3.1 Constants

ENoReadMSg = ’'Cannot read from OuputPipeStream.’
Constant used in ENoReadPipe (46) exception.

ENoSeekMsg = ’Cannot seek on pipes’

Constant used in EPipeSeek (47) exception.

ENoWriteMsg = ’'Cannot write to InputPipeStream.’
Constant used in ENoWritePipe (46) exception.

EPipeMsg = ’'Failed to create pipe.’

Constant used in EPipeCreation (46) exception.

45

CHAPTER 4. REFERENCE FOR UNIT "PIPES’

4.4 Procedures and functions

441 CreatePipeHandles

Synopsis: Function to create a set of pipe handles

Declaration: function CreatePipeHandles (var Inhandle: LongInt;var OutHandle: LonglInt)
Boolean

Visibility: default

Description: CreatePipeHandles provides an OS-independent way to create a set of pipe filehandles. These
handles are inheritable to child processes. The reading end of the pipe is returned in InHandle, the
writing end in OutHandle.

Errors: On error, False is returned.

See also: CreatePipeStreams (46)

4.4.2 CreatePipeStreams

Synopsis: Create a pair of pipe stream.

Declaration: procedure CreatePipeStreams (var InPipe: TInputPipeStream;
var OutPipe: TOutputPipeStream)

Visibility: default

Description: CreatePipeStreams creates a set of pipe file descriptors with CreatePipeHandles (46), and if
that call is succesfull, a pair of streams is created: InPipe and OutPipe.

Errors: If no pipe handles could be created, an EPipeCreation (46) exception is raised.

See also: CreatePipeHandles (46), TInputPipeStream (47), TOutputPipeStream (48)

4.5 ENoReadPipe

4.5.1 Description

Exception raised when a write operation is attempted on a write-only pipe.

4.6 ENoWritePipe

4.6.1 Description

Exception raised when a read operation is attempted on a read-only pipe.

4.7 EPipeCreation

4.7.1 Description

Exception raised when an error occurred during the creation of a pipe pair.

46

CHAPTER 4. REFERENCE FOR UNIT "PIPES’

4.8 EPipeError

4.8.1 Description

Exception raised when an invalid operation is performed on a pipe stream.

4.9 EPipeSeek

4.9.1 Description

Exception raised when an invalid seek operation is attempted on a pipe.

4.10 TInputPipeStream

4.10.1 Description

TInputPipeStream is created by the CreatePipeStreams (46) call to represent the reading end
of a pipe. It is a TStream (??) descendent which does not allow writing, and which mimics the seek
operation.

4.10.2 Method overview
Page Property Description

48 Read Read data from the stream to a buffer.
47 Seek Set the current position of the stream
47 Write Write data to the stream.

4.10.3 TInputPipeStream.Write

Synopsis: Write data to the stream.
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write overrides the parent implementation of Write. On a TInputPipeStream will always
raise an exception, as the pipe is read-only.

Errors: An ENoWritePipe (46) exception is raised when this function is called.

See also: TInputPipeStream.Read (48), TInputPipeStream.Seek (47)

4.10.4 TinputPipeStream.Seek

Synopsis: Set the current position of the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek overrides the standard Seek implementation. Normally, pipe streams stderr are not seek-
able. The TInputPipeStream stream tries to provide seek capabilities for the following limited
number of cases:

47

CHAPTER 4. REFERENCE FOR UNIT "PIPES’

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentlf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EPipeSeek exception.
Errors: An EPipeSeek (47) exception is raised if the stream does not allow the requested seek operation.

See also: EPipeSeek (47), #rtl.classes.tstream.seek (??)

4.10.5 TInputPipeStream.Read

Synopsis: Read data from the stream to a buffer.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Read calls the inherited read and adjusts the internal position pointer of the stream.
Errors: None.

See also: TInputPipeStream.Write (47), TInputPipeStream.Seek (47)

4.11 TOutputPipeStream

4.11.1 Description

TOutputPipeStream is created by the CreatePipeStreams (46) call to represent the writing end
of a pipe. It is a TStream (??) descendent which does not allow reading.

4.11.2 Method overview

Page Property Description
49 Read Read data from the stream.
48 Seek Sets the position in the stream

4.11.3 TOutputPipeStream.Seek
Synopsis: Sets the position in the stream

Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seek is overridden in TOutputPipeStream. Calling this method will always raise an exception:
an output pipe is not seekable.

Errors: An EPipeSeck (47) exception is raised if this method is called.

48

CHAPTER 4. REFERENCE FOR UNIT "PIPES’

4.11.4 TOutputPipeStream.Read

Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read overrides the parent Read implementation. It always raises an exception, because a output
pipe is write-only.

Errors: An ENoReadPipe (46) exception is raised when this function is called.

See also: TOutputPipeStream.Seek (48)

49

Chapter 5

Reference for unit ’process’

5.1 Used units

Table 5.1: Used units by unit "process’

Name Page
Classes ??
Pipes 45
sysutils 2?

5.2 Overview

The Process unit contains the code for the TProcess (52) component, a cross-platform component to
start and control other programs, offering also access to standard input and output for these programs.

5.3 Constants, types and variables

5.3.1 Types

TProcessOption = (poRunSuspended,poWaitOnkExit,poUsePipes,
poStderrToOutPut, poNoConsole, poNewConsole,
poDefaultErrorMode, poNewProcessGroup, poDebugProcess,
poDebugOnlyThisProcess)

When a new process is started using TProcess.Execute (54), these options control the way the process
is started. Note that not all options are supported on all platforms.

TProcessOptions= Set of (poDebugOnlyThisProcess,poDebugProcess,
poDefaultErrorMode, poNewConsole,
poNewProcessGroup, poNoConsole, poRunSuspended,
poStderrToOutPut, poUsePipes, poWaitOnExit)

Set of TProcessOption (50).

50

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Table 5.2: Enumeration values for type TProcessOption

Value Explanation

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)

poDebugProcess Allow debugging of the process (Win32 only)

poDefaultErrorMode Use default error handling.

poNewConsole Start a new console window for the process (Win32 only)

poNewProcessGroup Start the process in a new process group (Win32 only)

poNoConsole Do not allow access to the console window for the process (Win32 only)

poRunSuspended Start the process in suspended state.

poStderrToOutPut Redirect standard error to the standard output stream.

poUsePipes Use pipes to redirect standard input and output.

poWaitOnExit Wait for the process to terminate before returning.
TProcessPriority = (ppHigh,ppIdle,ppNormal, ppRealTime)

Table 5.3: Enumeration values for type TProcessPriority

Value Explanation

ppHigh The process runs at higher than normal priority.

ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

This enumerated type determines the priority of the newly started process. It translates to default
platform specific constants. If finer control is needed, then platform-dependent mechanism need to
be used to set the priority.

TShowWindowOptions = (swoNone, swoHIDE, swoMaximize, swoMinimize,
swoRestore, swoShow, swoShowDefault,
swoShowMaximized, swoShowMinimized,
swoshowMinNOActive, swoShowNA, swoShowNoActivate,
swoShowNormal)

This type describes what the new process’ main window should look like. Most of these have only
effect on Windows. They are ignored on other systems.

TStartupOption = (suoUseShowWindow, suoUseSize, suoUsePosition,
suoUseCountChars, suoUseFillAttribute)

These options are mainly for Win32, and determine what should be done with the application once
it’s started.

TstartUpoptions= Set of (suoUseCountChars,suoUseFillAttribute,
suoUsePosition, suoUseShowWindow, suoUseSize)

Set of TStartUpOption (51).

51

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Table 5.4: Enumeration values for type TShowWindowOptions

Value Explanation

swoHIDE The main window is hidden.

swoMaximize The main window is maximized.

swoMinimize The main window is minimized.

swoNone Allow system to position the window.

swoRestore Restore the previous position.

swoShow Show the main window.

swoShowDefault When showing Show the main window on

swoShowMaximized The main window is shown maximized

swoShowMinimized The main window is shown minimized

swoshowMinNOActive The main window is shown minimized but not activated

swoShowNA The main window is shown but not activated

swoShowNoActivate The main window is shown but not activated

swoShowNormal The main window is shown normally

Table 5.5: Enumeration values for type TStartupOption

Value Explanation
suoUseCountChars Use the console character width as specified in TProcess (52).
suoUseFillAttribute Use the console fill attribute as specified in TProcess (52).
suoUsePosition Use the window sizes as specified in TProcess (52).
suoUseShowWindow Use the Show Window options specified in TShowWindowOption (51)
suoUseSize Use the window sizes as specified in TProcess (52)

5.4 TProcess

5.4.1

Description

TProcess is a component that can be used to start and control other processes (programs/binaries).
It contains a lot of options that control how the process is started. Many of these are Win32 specific,
and have no effect on other platforms, so they should be used with care.

The simplest way to use this component is to create an instance, set the CommandLine (59) property
to the full pathname of the program that should be executed, and call Execute (54). To determine
whether the process is still running (i.e. has not stopped executing), the Running (63) property can
be checked.

More advanced techniques can be used with the Options (61) settings.

5.4.2 Method overview

Page Property Description

53 Create Create a new instance of the TProcess class.
53 Destroy Destroy this instance of TProcess

54 Execute Execute the program with the given options

54 Resume Resume execution of a suspended process

55 Suspend Suspend a running process

55 Terminate Terminate a running process

55 WaitOnExit Wait for the program to stop executing.

52

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

5.4.3 Property overview

Page Property Access Description

59 Active w Start or stop the process.

59 ApplicationName 1w Name of the application to start

59 CommandLine w Command-line to execute

60 ConsoleTitle ™w Title of the console window

60 CurrentDirectory rw Working directory of the process.

60 DeskTop w Desktop on which to start the process.

61 Environment ™w Environment variables for the new process

58 ExitStatus r Exit status of the process.

65 FillAttribute ™w Color attributes of the characters in the console window
(Windows only)

56 Handle r Handle of the process

58 InheritHandles w Should the created process inherit the open handles of the
current process.

57 Input r Stream connected to standard input of the process.

61 Options ™ Options to be used when starting the process.

57 OutPut r Stream connected to standard output of the process.

61 Priority w Priority at which the process is running.

56 ProcessHandle r Alias for Handle (56)

56 ProcessID r ID of the process.

63 Running r Determines wheter the process is still running.

63 ShowWindow w Determines how the process main window is shown (Win-
dows only)

62 StartUpOptions w Additional (Windows) startup options

58 StdErr r Stream connected to standard diagnostic output of the pro-
cess.

56 ThreadHandle r Main process thread handle

57 ThreadID r ID of the main process thread

63 WindowColumns rw Number of columns in console window (windows only)

64 WindowHeight ™ Height of the process main window

64 WindowLeft ™ X-coordinate of the initial window (Windows only)

55 WindowRect ™ Positions for the main program window.

64 WindowRows ™w Number of rows in console window (Windows only)

64 WindowTop w Y-coordinate of the initial window (Windows only)

65 WindowWidth ™w Height of the process main window (Windows only)

5.4.4 TProcess.Create

Synopsis: Create a new instance of the TProcess class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create creates a new instance of the TProcess class. After calling the inherited constructor, it
simply sets some default values.

5.4.5 TProcess.Destroy

Synopsis: Destroy this instance of TProcess

Declaration: destructor Destroy; Override

53

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Visibility: public

Description: Destroy cleans up this instance of TProcess. Prior to calling the inherited destructor, it cleans
up any streams that may have been created. If a process was started and is still executed, it is not
stopped, but the standard input/output/stderr streams are no longer available, because they have been
destroyed.

Errors: None.

See also: TProcess.Create (53)

5.4.6 TProcess.Execute

Synopsis: Execute the program with the given options
Declaration: procedure Execute; Virtual
Visibility: public

Description: Execute actually executes the program as specified in CommandLine (59), applying as much as
of the specified options as supported on the current platform.

If the poWaitOnExit option is specified in Options (61), then the call will only return when the
program has finished executing (or if an error occured). If this option is not given, the call returns
immediatly, but the WaitOnEXxit (55) call can be used to wait for it to close, or the Running (63) call
can be used to check whether it is still running.

The TProcess.Terminate (55) call can be used to terminate the program if it is still running, or the
Suspend (55) call can be used to temporarily stop the program’s execution.

The ExitStatus (58) function can be used to check the program’s exit status, after it has stopped
executing.

Errors: On error a EProcess (50) exception is raised.

See also: TProcess.Running (63), TProcess.WaitOnExit (55), TProcess.Terminate (55), TProcess.Suspend
(55), TProcess.Resume (54), TProcess.ExitStatus (58)

5.4.7 TProcess.Resume

Synopsis: Resume execution of a suspended process
Declaration: function Resume : Integer; Virtual
Visibility: public

Description: Resume should be used to let a suspended process resume it’s execution. It should be called in
particular when the poRunSuspended flag is set in Options (61).

Errors: None.

See also: TProcess.Suspend (55), TProcess.Options (61), TProcess.Execute (54), TProcess.Terminate (55)

54

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

5.4.8 TProcess.Suspend

Synopsis: Suspend a running process
Declaration: function Suspend : Integer; Virtual
Visibility: public

Description: Suspend suspends a running process. If the call is successful, the process is suspended: it stops
running, but can be made to execute again using the Resume (54) call.

Suspend is fundamentally different from TProcess.Terminate (55) which actually stops the process.
Errors: On error, a nonzero result is returned.

See also: TProcess.Options (61), TProcess.Resume (54), TProcess. Terminate (55), TProcess.Execute (54)

5.4.9 TProcess.Terminate

Synopsis: Terminate a running process
Declaration: function Terminate (AExitCode: Integer) : Boolean; Virtual
Visibility: public
Description: Terminate stops the execution of the running program. It effectively stops the program.

On Windows, the program will report an exit code of AExitCode, on other systems, this value is
ignored.

Errors: On error, a nonzero value is returned.

See also: TProcess.ExitStatus (58), TProcess.Suspend (55), TProcess.Execute (54), TProcess. WaitOnExit (55)

5.4.10 TProcess.WaitOnExit

Synopsis: Wait for the program to stop executing.
Declaration: function WaitOnExit : DWord
Visibility: public
Description: WaitOnExit waits for the running program to exit and then returns the exit status of the program.
Errors: On error, -1 is returned. Other values are system dependent.

See also: TProcess.ExitStatus (58), TProcess.Terminate (55), TProcess.Running (63)

5.4.11 TProcess.WindowRect

Synopsis: Positions for the main program window.
Declaration: Property WindowRect : Trect
Visibility: public
Access: Read,Write

Description: WindowRect can be used to specify the position of

55

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

5.4.12 TProcess.Handle

Synopsis: Handle of the process
Declaration: Property Handle : THandle
Visibility: public
Access: Read

Description: Handle identifies the process. In Unix systems, this is the process ID. On windows, this is the
process handle. It can be used to signal the process.

The handle is only valid after TProcess.Execute (54) has been called. It is not reset after the process
stopped.

See also: TProcess.ThreadHandle (56), TProcess.ProcessID (56), TProcess.ThreadID (57)

5.4.13 TProcess.ProcessHandle
Synopsis: Alias for Handle (56)

Declaration: Property ProcessHandle : THandle
Visibility: public
Access: Read
Description: ProcessHandle equals Handle (56) and is provided for completeness only.

See also: TProcess.Handle (56), TProcess. ThreadHandle (56), TProcess.ProcessID (56), TProcess.ThreadID
(57)

5.4.14 TProcess.ThreadHandle

Synopsis: Main process thread handle
Declaration: Property ThreadHandle : THandle
Visibility: public
Access: Read

Description: ThreadHand1e is the main process thread handle. On Unix, this is the same as the process ID, on
Windows, this may be a different handle than the process handle.

The handle is only valid after TProcess.Execute (54) has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (56), TProcess.ProcessID (56), TProcess.ThreadID (57)

5.4.15 TProcess.ProcessID
Synopsis: ID of the process.

Declaration: Property ProcessID : Integer
Visibility: public

Access: Read

56

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Description: ProcessID is the ID of the process. It is the same as the handle of the process on Unix systems,
but on Windows it is different from the process Handle.

The ID is only valid after TProcess.Execute (54) has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (56), TProcess. ThreadHandle (56), TProcess. ThreadID (57)

5.4.16 TProcess.ThreadlD

Synopsis: ID of the main process thread
Declaration: Property ThreadID : Integer
Visibility: public
Access: Read

Description: ProcessID is the ID of the main process thread. It is the same as the handle of the main proces
thread (or the process itself) on Unix systems, but on Windows it is different from the thread Handle.

The ID is only valid after TProcess.Execute (54) has been called. It is not reset after the process
stopped.

See also: TProcess.ProcessID (56), TProcess.Handle (56), TProcess.ThreadHandle (56)

5.4.17 TProcess.Input

Synopsis: Stream connected to standard input of the process.
Declaration: Property Input : TOutputPipeStream
Visibility: public
Access: Read

Description: Input is a stream which is connected to the process’ standard input file handle. Anything written
to this stream can be read by the process.

The Input stream is only instantiated when the poUsePipes flag is used in Options (61).

Note that writing to the stream may cause the calling process to be suspended when the created
process is not reading from it’s input, or to cause errors when the process has terminated.

See also: TProcess.OutPut (57), TProcess.StdErr (58), TProcess.Options (61), TProcessOption (50)

5.4.18 TProcess.OutPut

Synopsis: Stream connected to standard output of the process.
Declaration: Property OutPut : TInputPipeStream
Visibility: public

Access: Read

57

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Description: Output is a stream which is connected to the process’ standard output file handle. Anything written
to standard output by the created process can be read from this stream.

The Output stream is only instantiated when the poUsePipes flag is used in Options (61).

The Output stream also contains any data written to standard diagnostic output (stderr) when
the poStdErrToOutPut flag is used in Options (61).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (57), TProcess.StdErr (58), TProcess.Options (61), TProcessOption (50)

5.4.19 TProcess.StdErr

Synopsis: Stream connected to standard diagnostic output of the process.
Declaration: Property StdErr : TInputPipeStream
Visibility: public
Access: Read

Description: StdErr is a stream which is connected to the process’ standard diagnostic output file handle
(StdErr). Anything written to standard diagnostic output by the created process can be read from
this stream.

The StdErr stream is only instantiated when the poUsePipes flag is used in Options (61).

The Output stream equals the Output (57) when the poStdErrToOutPut flag is used in Options
(61).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (57), TProcess.Output (57), TProcess.Options (61), TProcessOption (50)

5.4.20 TProcess.ExitStatus

Synopsis: Exit status of the process.
Declaration: Property ExitStatus : Integer
Visibility: public
Access: Read

Description: ExitStatus contains the exit status as reported by the process when it stopped executing. The
value of this property is only meaningful when the process is no longer running. If it is not running
then the value is zero.

See also: TProcess.Running (63), TProcess.Terminate (55)

5.4.21 TProcess.InheritHandles

Synopsis: Should the created process inherit the open handles of the current process.
Declaration: Property InheritHandles : Boolean

Visibility: public

58

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Access: Read,Write

Description: InheritHandles determines whether the created process inherits the open handles of the current
process (value True) or not (False).

On Unigx, setting this variable has no effect.

See also: TProcess.InPut (57), TProcess.Output (57), TProcess.StdErr (58)

5.4.22 TProcess.Active
Synopsis: Start or stop the process.
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ive starts the process if it is set to True, or terminates the process if set to False. It’s mostly
intended for use in an IDE.

See also: TProcess.Execute (54), TProcess. Terminate (55)

5.4.23 TProcess.ApplicationName
Synopsis: Name of the application to start

Declaration: Property ApplicationName : String
Visibility: published
Access: Read,Write

Description: ApplicationName is an alias for TProcess.CommandLine (59). It’s mostly foruse in the Win-
dows CreateProcess call. If CommandLine is not set, then ApplicationName will be used
instead.

Note that either CommandLine or ApplicationName must be set prior to calling Execute.

See also: TProcess.CommandLine (59)

5.4.24 TProcess.CommandLine

Synopsis: Command-line to execute
Declaration: Property CommandLine : String
Visibility: published
Access: Read,Write

Description: CommandLine is the command-line to be executed: this is the name of the program to be executed,
followed by any options it should be passed.

If the command to be executed or any of the arguments contains whitespace (space, tab character,
linefeed character) it should be enclosed in single or double quotes.

If no absolute pathname is given for the command to be executed, it is searched for in the PATH
environment variable. On Windows, the current directory always will be searched first. On other
platforms, this is not so.

Note that either CommandLine or ApplicationName must be set prior to calling Execute.

59

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

See also: TProcess.ApplicationName (59)

5.4.25 TProcess.ConsoleTitle

Synopsis: Title of the console window
Declaration: Property ConsoleTitle : String
Visibility: published
Access: Read,Write

Description: ConsoleTitle is used on Windows when executing a console application: it specifies the title
caption of the console window. On other platforms, this property is currently ignored.

Changing this property after the process was started has no effect.

See also: TProcess. WindowColumns (63), TProcess.WindowRows (64)

5.4.26 TProcess.CurrentDirectory
Synopsis: Working directory of the process.

Declaration: Property CurrentDirectory : String
Visibility: published
Access: Read,Write

Description: CurrentDirectory specifies the working directory of the newly started process.

Changing this property after the process was started has no effect.

See also: TProcess.Environment (61)

5.4.27 TProcess.DeskTop

Synopsis: Desktop on which to start the process.

Declaration: Property DeskTop : String
Visibility: published
Access: Read,Write

Description: DeskTop is used on Windows to determine on which desktop the process’ main window should be
shown. Leaving this empty means the process is started on the same desktop as the currently running
process.

Changing this property after the process was started has no effect.

On unix, this parameter is ignored.

See also: TProcess.Input (57), TProcess.Output (57), TProcess.StdErr (58)

60

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

5.4.28 TProcess.Environment

Synopsis: Environment variables for the new process
Declaration: Property Environment : TStrings
Visibility: published
Access: Read,Write

Description: Environment contains the environment for the new process; it’s a list of Name=Value pairs,
one per line.

If it is empty, the environment of the current process is passed on to the new process.

See also: TProcess.Options (61)

5.4.29 TProcess.Options

Synopsis: Options to be used when starting the process.
Declaration: Property Options : TProcessOptions
Visibility: published
Access: Read,Write

Description: Opt ions determine how the process is started. They should be set before the Execute (54) call is

made.
Table 5.6:

option Meaning
poRunSuspended Start the process in suspended state.
poWaitOnExit Wait for the process to terminate before returning.
poUsePipes Use pipes to redirect standard input and output.
poStderrToOutPut Redirect standard error to the standard output stream.
poNoConsole Do not allow access to the console window for the process (Win32 only)
poNewConsole Start a new console window for the process (Win32 only)
poDefaultErrorMode Use default error handling.
poNewProcessGroup Start the process in a new process group (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)

See also: TProcessOption (50), TProcessOptions (50), TProcess.Priority (61), TProcess.StartUpOptions (62)

5.4.30 TProcess.Priority

Synopsis: Priority at which the process is running.
Declaration: Property Priority : TProcessPriority
Visibility: published

Access: Read,Write

61

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Table 5.7:
Priority Meaning
ppHigh The process runs at higher than normal priority.
ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

Description: Priority determines the priority at which the process is running.

Note that not all priorities can be set by any user. Usually, only users witha dministrative rights (the
root user on Unix) can set a higher process priority.

On unix, the process priority is mapped on Nice values as follows:

Table 5.8:
Priority Nice value
ppHigh 20
ppldle 20
ppNormal 0

ppRealTime -20

See also: TProcessPriority (51)

5.4.31 TProcess.StartUpOptions
Synopsis: Additional (Windows) startup options

Declaration: Property StartUpOptions : TstartUpoptions
Visibility: published
Access: Read,Write

Description: StartUpOptions contains additional startup options, used mostly on Windows system. They de-
termine which other window layout properties are taken into account when starting the new process.

Table 5.9:
Priority Meaning
suoUseShowWindow Use the Show Window options specified in ShowWindow (63)
suoUseSize Use the specified window sizes
suoUsePosition Use the specified window sizes.
suoUseCountChars Use the specified console character width.

suoUseFillAttribute Use the console fill attribute specified in FillAttribute (65).

See also: TProcess.ShowWindow (63), TProcess.WindowHeight (64), TProcess.WindowWidth (65), TPro-
cess.WindowLeft (64), TProcess.WindowTop (64), TProcess.WindowColumns (63), TProcess. WindowRows
(64), TProcess.FillAttribute (65)

62

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

5.4.32 TProcess.Running

Synopsis: Determines wheter the process is still running.
Declaration: Property Running : Boolean
Visibility: published
Access: Read
Description: Running can be read to determine whether the process is still running.

See also: TProcess.Terminate (55), TProcess.Active (59), TProcess.ExitStatus (58)

5.4.33 TProcess.ShowWindow
Synopsis: Determines how the process main window is shown (Windows only)
Declaration: Property ShowWindow : TShowWindowOptions
Visibility: published
Access: Read,Write

Description: showWindow determines how the process’ main window is shown. It is useful only on Windows.

Table 5.10:
Option Meaning
swoNone Allow system to position the window.
swoHIDE The main window is hidden.
swoMaximize The main window is maximized.
swoMinimize The main window is minimized.
swoRestore Restore the previous position.
swoShow Show the main window.
swoShowDefault When showing Show the main window on a default position
swoShowMaximized The main window is shown maximized
swoShowMinimized The main window is shown minimized
swoshowMinNOActive The main window is shown minimized but not activated
SWOoShowNA The main window is shown but not activated
swoShowNoActivate The main window is shown but not activated
swoShowNormal The main window is shown normally

5.4.34 TProcess.WindowColumns
Synopsis: Number of columns in console window (windows only)
Declaration: Property WindowColumns : Cardinal
Visibility: published
Access: Read,Write

Description: WindowColumns is the number of columns in the console window, used to run the command in.
This property is only effective if suoUseCountChars is specified in StartupOptions (62)

See also: TProcess.WindowHeight (64), TProcess. WindowWidth (65), TProcess. WindowLeft (64), TProcess. WindowTop
(64), TProcess.WindowRows (64), TProcess.Fill Attribute (65), TProcess.StartupOptions (62)

63

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

5.4.35 TProcess.WindowHeight

Synopsis: Height of the process main window
Declaration: Property WindowHeight : Cardinal
Visibility: published
Access: Read,Write

Description: WindowHeight is the initial height (in pixels) of the process’ main window. This property is only
effective if suoUseSize is specified in StartupOptions (62)

See also: TProcess.WindowWidth (65), TProcess. WindowLeft (64), TProcess.WindowTop (64), TProcess. WindowColumns
(63), TProcess.WindowRows (64), TProcess.Fill Attribute (65), TProcess.StartupOptions (62)

5.4.36 TProcess.WindowLeft

Synopsis: X-coordinate of the initial window (Windows only)
Declaration: Property WindowLeft : Cardinal
Visibility: published
Access: Read,Write

Description: WindowLeft is the initial X coordinate (in pixels) of the process’ main window, relative to the
left border of the desktop. This property is only effective if suoUsePosition is specified in
StartupOptions (62)

See also: TProcess.WindowHeight (64), TProcess. WindowWidth (65), TProcess.WindowTop (64), TProcess. WindowColumns
(63), TProcess.WindowRows (64), TProcess.Fill Attribute (65), TProcess.StartupOptions (62)

5.4.37 TProcess.WindowRows

Synopsis: Number of rows in console window (Windows only)
Declaration: Property WindowRows : Cardinal
Visibility: published
Access: Read,Write

Description: WindowRows is the number of rows in the console window, used to run the command in. This
property is only effective if suoUseCountChars is specified in StartupOptions (62)

See also: TProcess.WindowHeight (64), TProcess. WindowWidth (65), TProcess. WindowLeft (64), TProcess. WindowTop
(64), TProcess.WindowColumns (63), TProcess.Fill Attribute (65), TProcess.StartupOptions (62)

5.4.38 TProcess.WindowTop

Synopsis: Y-coordinate of the initial window (Windows only)
Declaration: Property WindowTop : Cardinal
Visibility: published

Access: Read,Write

64

CHAPTER 5. REFERENCE FOR UNIT 'PROCESS’

Description: WindowTop is the initial Y coordinate (in pixels) of the process’ main window, relative to the
top border of the desktop. This property is only effective if suoUsePosition is specified in
StartupOptions (62)

See also: TProcess.WindowHeight (64), TProcess. WindowWidth (65), TProcess.WindowLeft (64), TProcess. WindowColumns
(63), TProcess.WindowRows (64), TProcess.FillAttribute (65), TProcess.StartupOptions (62)

5.4.39 TProcess.WindowWidth

Synopsis: Height of the process main window (Windows only)
Declaration: Property WindowWidth : Cardinal
Visibility: published
Access: Read,Write

Description: WindowWidth is the initial width (in pixels) of the process’ main window. This property is only
effective if suoUseS1ize is specified in StartupOptions (62)

See also: TProcess.WindowHeight (64), TProcess. WindowLeft (64), TProcess.WindowTop (64), TProcess. WindowColumns
(63), TProcess.WindowRows (64), TProcess.FillAttribute (65), TProcess.StartupOptions (62)

5.4.40 TProcess.FillAttribute

Synopsis: Color attributes of the characters in the console window (Windows only)
Declaration: Property FillAttribute : Cardinal
Visibility: published
Access: Read,Write

Description: Fil1Attribute is a WORD value which specifies the background and foreground colors of the
console window.

See also: TProcess.WindowHeight (64), TProcess. WindowWidth (65), TProcess. WindowLeft (64), TProcess. WindowTop
(64), TProcess.WindowColumns (63), TProcess. WindowRows (64), TProcess.StartupOptions (62)

65

Chapter 6

Reference for unit ’StreamlQO’

6.1 Used units

Table 6.1: Used units by unit ’StreamIO’

Name Page
Classes 2?
sysutils 7?

6.2 Overview

The StreamIO unit implements a call to reroute the input or output of a text file to a descendents of
TStream (??).

This allows to use the standard pascal Read (??) and Write (??) functions (with all their possibilities),
on streams.

6.3 Procedures and functions

6.3.1 AssignStream

Synopsis: Assign a text file to a stream.
Declaration: procedure AssignStream(var F: Textfile;Stream: TStream)
Visibility: default

Description: AssignStream assigns the stream St ream to file F. The file can subsequently be used to write
to the stream, using the standard Write (??) calls.

Before writing, call Rewrite (??) on the stream. Before reading, call Reset (2?).
Errors: if St ream is Ni1, an exception will be raised.

See also: #rtl.classes. TStream (??), GetStream (67)

66

CHAPTER 6. REFERENCE FOR UNIT 'STREAMIO’

6.3.2 GetStream

Synopsis: Return the stream, associated with a file.
Declaration: function GetStream(var F: TTextRec) : TStream
Visibility: default

Description: Get St ream returns the instance of the stream that was associated with the file F using Assign-
Stream (66).

Errors: An invalid class reference will be returned if the file was not associated with a stream.

See also: AssignStream (66), #rtl.classes. TStream (2?)

67

	Overview
	Reference for unit 'contnrs'
	Used units
	Overview
	Constants, types and variables
	Types

	Procedures and functions
	RSHash

	EDuplicate
	EKeyNotFound
	TClassList
	Description
	Method overview
	Property overview
	TClassList.Add
	TClassList.Extract
	TClassList.Remove
	TClassList.IndexOf
	TClassList.First
	TClassList.Last
	TClassList.Insert
	TClassList.Items

	TComponentList
	Description
	Method overview
	Property overview
	TComponentList.Destroy
	TComponentList.Add
	TComponentList.Extract
	TComponentList.Remove
	TComponentList.IndexOf
	TComponentList.First
	TComponentList.Last
	TComponentList.Insert
	TComponentList.Items

	TFPHashTable
	Method overview
	Property overview
	TFPHashTable.Create
	TFPHashTable.CreateWith
	TFPHashTable.Destroy
	TFPHashTable.ChangeTableSize
	TFPHashTable.Clear
	TFPHashTable.Add
	TFPHashTable.Delete
	TFPHashTable.Find
	TFPHashTable.IsEmpty
	TFPHashTable.HashFunction
	TFPHashTable.Count
	TFPHashTable.HashTableSize
	TFPHashTable.Items
	TFPHashTable.HashTable
	TFPHashTable.VoidSlots
	TFPHashTable.LoadFactor
	TFPHashTable.AVGChainLen
	TFPHashTable.MaxChainLength
	TFPHashTable.NumberOfCollisions
	TFPHashTable.Density

	TFPObjectList
	Description
	Method overview
	Property overview
	TFPObjectList.Create
	TFPObjectList.Destroy
	TFPObjectList.Clear
	TFPObjectList.Add
	TFPObjectList.Delete
	TFPObjectList.Exchange
	TFPObjectList.Expand
	TFPObjectList.Extract
	TFPObjectList.Remove
	TFPObjectList.IndexOf
	TFPObjectList.FindInstanceOf
	TFPObjectList.Insert
	TFPObjectList.First
	TFPObjectList.Last
	TFPObjectList.Move
	TFPObjectList.Assign
	TFPObjectList.Pack
	TFPObjectList.Sort
	TFPObjectList.Capacity
	TFPObjectList.Count
	TFPObjectList.OwnsObjects
	TFPObjectList.Items
	TFPObjectList.List

	THTNode
	Method overview
	Property overview
	THTNode.CreateWith
	THTNode.HasKey
	THTNode.Key
	THTNode.Data

	TObjectList
	Description
	Method overview
	Property overview
	TObjectList.create
	TObjectList.Add
	TObjectList.Extract
	TObjectList.Remove
	TObjectList.IndexOf
	TObjectList.FindInstanceOf
	TObjectList.Insert
	TObjectList.First
	TObjectList.Last
	TObjectList.OwnsObjects
	TObjectList.Items

	TObjectQueue
	Method overview
	TObjectQueue.Push
	TObjectQueue.Pop
	TObjectQueue.Peek

	TObjectStack
	Description
	Method overview
	TObjectStack.Push
	TObjectStack.Pop
	TObjectStack.Peek

	TOrderedList
	Description
	Method overview
	TOrderedList.Create
	TOrderedList.Destroy
	TOrderedList.Count
	TOrderedList.AtLeast
	TOrderedList.Push
	TOrderedList.Pop
	TOrderedList.Peek

	TQueue
	Description

	TStack
	Description

	Reference for unit 'dbugintf'
	Writing a debug server
	Overview
	Constants, types and variables
	Resource strings
	Constants
	Types

	Procedures and functions
	InitDebugClient
	SendBoolean
	SendDateTime
	SendDebug
	SendDebugEx
	SendDebugFmt
	SendDebugFmtEx
	SendInteger
	SendMethodEnter
	SendMethodExit
	SendPointer
	SendSeparator
	StartDebugServer

	Reference for unit 'iostream'
	Used units
	Overview
	Constants, types and variables
	Types

	EIOStreamError
	Description

	TIOStream
	Description
	Method overview
	TIOStream.Create
	TIOStream.Read
	TIOStream.Write
	TIOStream.SetSize
	TIOStream.Seek

	Reference for unit 'Pipes'
	Used units
	Overview
	Constants, types and variables
	Constants

	Procedures and functions
	CreatePipeHandles
	CreatePipeStreams

	ENoReadPipe
	Description

	ENoWritePipe
	Description

	EPipeCreation
	Description

	EPipeError
	Description

	EPipeSeek
	Description

	TInputPipeStream
	Description
	Method overview
	TInputPipeStream.Write
	TInputPipeStream.Seek
	TInputPipeStream.Read

	TOutputPipeStream
	Description
	Method overview
	TOutputPipeStream.Seek
	TOutputPipeStream.Read

	Reference for unit 'process'
	Used units
	Overview
	Constants, types and variables
	Types

	TProcess
	Description
	Method overview
	Property overview
	TProcess.Create
	TProcess.Destroy
	TProcess.Execute
	TProcess.Resume
	TProcess.Suspend
	TProcess.Terminate
	TProcess.WaitOnExit
	TProcess.WindowRect
	TProcess.Handle
	TProcess.ProcessHandle
	TProcess.ThreadHandle
	TProcess.ProcessID
	TProcess.ThreadID
	TProcess.Input
	TProcess.OutPut
	TProcess.StdErr
	TProcess.ExitStatus
	TProcess.InheritHandles
	TProcess.Active
	TProcess.ApplicationName
	TProcess.CommandLine
	TProcess.ConsoleTitle
	TProcess.CurrentDirectory
	TProcess.DeskTop
	TProcess.Environment
	TProcess.Options
	TProcess.Priority
	TProcess.StartUpOptions
	TProcess.Running
	TProcess.ShowWindow
	TProcess.WindowColumns
	TProcess.WindowHeight
	TProcess.WindowLeft
	TProcess.WindowRows
	TProcess.WindowTop
	TProcess.WindowWidth
	TProcess.FillAttribute

	Reference for unit 'StreamIO'
	Used units
	Overview
	Procedures and functions
	AssignStream
	GetStream

