next up previous contents
Next: *STEADY STATE DYNAMICS Up: Input deck format Previous: *SPECIFIC HEAT   Contents


*STATIC

Keyword type: step

This procedure is used to perform a static analysis. The load consists of the sum of the load of the last *STATIC step and the load specified in the present step with replacement of redefined loads.

There are two optional parameters: SOLVER and DIRECT. SOLVER determines the package used to solve the ensuing system of equations. The following solvers can be selected:

Default is the SGI solver. If this solver is not installed, default is SPOOLES. If neither the SGI solver nor SPOOLES are installed, default is TAUCS. Finally, if neither the SGI solver, nor SPOOLES nor TAUCS are installed, the default is the iterative solver, which comes with the CalculiX package.

The SGI solver is the fastest, but is is proprietary: if you own SGI hardware you might have gotten the scientific software package as well, which contains the SGI sparse system solver. SPOOLES is also very fast, but has no out-of-core capability: the size of systems you can solve is limited by your RAM memory. With 2GB of RAM you can solve up to 250,000 equations. TAUCS is also good, but my experience is limited to the $ LL^T$ decomposition, which only applies to positive definite systems. It has an out-of-core capability and also offers a $ LU$ decomposition, however, I was not able to run either of them so far. Next comes the iterative solver. If SOLVER=ITERATIVE SCALING is selected, the preconditioning is limited to a scaling of the diagonal terms, SOLVER=ITERATIVE CHOLESKY triggers Incomplete Cholesky preconditioning. Cholesky preconditioning leads to a better convergence and maybe to shorter execution times, however, it requires additional storage roughly corresponding to the nonzeros in the matrix. If you are short of memory, diagonal scaling might be your last resort. The iterative methods perform well for truely three-dimensional structures. For instance, calculations for a hemisphere were about nine times faster with the ITERATIVE SCALING solver, and three times faster with the ITERATIVE CHOLESKY solver than with SPOOLES. For two-dimensional structures such as plates or shells, the performance might break down drastically and convergence often requires the use of Cholesky preconditioning. SPOOLES (and any of the other direct solvers) performs well in most situations with emphasis on slender structures but requires much more storage than the iterative solver.

The parameter DIRECT is relevant for nonlinear calculations only, and indicates that automatic incrementation should be switched off.

In a static step, loads are by default applied in a linear way. Other loading patterns can be defined by an *AMPLITUDE card.

If nonlinearities are present in the model (geometric nonlinearity or material nonlinearity), the solution is obtained through iteration. Since the step may be too large to obtain convergence, a subdivision of the step in increments is usually necessary. The user can define the length of the initial increment. This size is kept constant if the parameter DIRECT is selected, else it is varied by CalculiX according to the convergence properties of the solution. In a purely linear calculation the step size is always 1., no iterations are performed and, consequently, no second line underneath *STATIC is needed.


First line:

Second line (only relevant for nonlinear analyses; for linear analyses, the step length is always 1)

Example:

*STATIC,DIRECT
.1,1.

defines a static step and selects the SPOOLES solver as linear equation solver in the step (default). If the step is a linear one, the other parameters are of no importance. If the step is nonlinear, the second line indicates that the initial time increment is .1 and the total step time is 1. Furthermore, the parameter DIRECT leads to a fixed time increment. Thus, if successful, the calculation consists of 10 increments of length 0.1.


Example files: beampic, beampis.


next up previous contents
Next: *STEADY STATE DYNAMICS Up: Input deck format Previous: *SPECIFIC HEAT   Contents
guido dhondt 2007-02-18