YAP User’s Manual

Version 4.5.2

Vitor Santos Costa,
Luis Damas,
Rogério Reis, and
Riben Azevedo

Copyright (©) 1989-2000 L. Damas, V. Santos Costa and Universidade do Porto.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents

Introduction................ 1
1 Installing YAP 3
1.1 Tuning the Functionality of YAP 3

1.2 Tuning YAP for a Particular Machine and Compiler 4

1.3 Tuning YAP for GCC. 4

1.3.1 Compiling Under Visual C++.................... 6

1.3.2 Compiling Under SGI’scc....................... 7

2 Running YAP ... i, 9
2.1 Running Yap Interactively 9

2.2 Running Prolog Files 10

3 Syntaxiiiiiiiiii i i 13
3.1 Syntax of Terms 13

3.2 Prolog Tokens......... ... 14

321 Numbers.........ooo i 14

3.2.1.1 Imtegers........ ..., 14

3.2.1.2 Floating-point Numbers 15

3.2.2 Character Strings..............ccoiiiiiiia.... 15

323 AtOMS ... 16

3.24 Variables........ 16

3.2.5 Punctuation Tokens............................ 17

326 Layout......... 17

4 Loading Programs 19
4.1 Program loading and updating 19

4.2 Changing the Compiler’s Behavior....................... 19

4.3 Saving and Loading Prolog States 22

5 The Module System 23
5.1 Module Concepts.oveiii 23

5.2 Defining a New Module.................... 23

5.3 Using Modules............. . 24

5.4 Meta-Predicates in Modules............................. 25

ii YAP Prolog User’s Manual

6 Built-In Predicates 27
6.1 Control Predicates i 27
6.2 Handling Undefined Procedures 31
6.3 Predicatesonterms............. 32
6.4 Comparing Termsooiiiiiiin. 35
6.5 Arithmetic....... 36
6.6 I/O Predicates.............c..iiiiiiiiiiiiiii.. 40

6.6.1 Handling Streams and Files 40
6.6.2 Handling Streams and Files 43
6.6.3 Handling Input/Output of Terms 44
6.6.4 Handling Input/Output of Characters........... 48
6.6.5 Input/Output Predicates applied to Streams. 50

6.6.6 Compatible C-Prolog predicates for Terminal 1/O
.. 51
6.6.7 Controlling Input/Output 51
6.6.8 Using Sockets From Yap 52
6.7 Using the Clausal Data Base............................ 54
6.7.1 Modification of the Data Base 55
6.7.2 Looking at the Data Base...................... 56
6.7.3 Using Data Base References 57
6.8 Internal Data Base............. 58
6.9 The Blackboard........... 61
6.10 Collecting Solutions toa Goal.......................... 61
6.11 Grammar Rules........... 63
6.12 Access to Operating System Functionality............... 64
6.13 Term Modification i 66
6.14 Profiling Prolog Programs 67
6.15 Counting Calls........... 68
6.16 ATTAYS ..ottt 69
6.17 Predicate Information, 71
6.18 Miscellaneous 72

7 Library Predicates........................ 81
7.1 Apply Macros. ... 81
7.2 Association Lists......... ... 82
7.3 AVL Trees. ... 83
T4 Heaps . ..o 83
7.5 List Manipulation 84
7.6 Ordered Sets...... ..o 86
7.7 Pseudo Random Number Integer Generator 87
T8 QUEUES . oottt e 88
7.9 Random Number Generator............................. 88
7.10 Red-Black Trees ..., 89
7.11 Regular Expressions......... ... 89
712 Splay Trees . ..o 91
7.13 Reading From and Writing To Strings 92
7.14 Calling The Operating System from YAP 93

7.15 Utilities On Termsot 97

7.16 Call With registered Cleanup Calls 97
7.17 Calls With Timeout 98
7.18 Updatable Binary Trees 99
7.19 Unweighted Graphs 99
8 Extensionsciiiiinnn... 103
9 Rational Trees..............ccvviiinn... 105
10 Coroutiningccovvivinnn... 107
11 Attributed Variables.................... 109
11.1 Attribute Declarations................. 109
11.2 Attribute Manipulation............. 109
11.3 Attributed Unification................................ 110
11.4 Displaying Attributes.............o 111
11.5 Projecting Attributes................... 111
11.6 Attribute Examples 111
12 CLP(Q,R) Manual................c..... 115
12.1 Introduction to CLP(Q,R) 115
12.2 Referencing CLP(Q,R) 115
12.3 CLP(QR) Acknowledgments 115
12.4 Solver Interface i 116
12.5 Notational Conventions. 116
12.6 Solver Predicates........... ... i 116
12.7 Unification 118
12.8 Feedback and Bindings, 119
12.9 Linearity and Nonlinear Residues...................... 119
12.10 How Nonlinear Residues are made to disappear........ 120
12.11 Tsolation AXIOMS 121
12.12 Numerical Precision and Rationals 122
12.13 Projection and Redundancy Elimination 125
12.14 Variable Ordering 126
12.15 Turning Answers into Terms 127
12.16 Projecting Inequalities........... 127
12.17 Why Disequations.............. 130
12.18 Syntactic Sugar...........c.coviiieeriinie.. 131
12.19 Monash Examples........... 132
12.20 Compatibility Notes............. 132
12.21 A Mixed Integer Linear Optimization Example........ 133
12.22 Implementation Architecture......................... 134
12.23 Fragments and Bits 135
12.24 CLPQR bugs ... 135
12.25 CLPQR References............. 135

iii

iv YAP Prolog User’s Manual

13 Constraint Handling Rules.............. 137
Copyrighto 137
13.1 Introduction........... ... i 137
13.2 Introductory Examples, 138
13.3 CHR Library ... 139
13.3.1 Loading the Library 139
13.3.2 Declarations 140
13.3.3 Constraint Handling Rules, Syntax............ 140
13.3.4 How CHR work 141
13.3.5 Pragmas.......... i 142
13.3.6 Options.oooinii 143
13.3.7 Built-In Predicates 144
13.3.8 Consulting and Compiling Constraint Handlers
... 145
13.3.9 Compiler-generated Predicates................ 145
13.3.10 Operator Declarations 146
13.3.11 Exceptions.............cooviiiiiii... 147
13.4 Debugging CHR Programs............................ 148
13.4.1 Control Flow Model 148
13.4.2 CHR Debugging Predicates 148
13.4.3 CHR Spy-points..........., 150
13.4.4 CHR Debugging Messages.................... 151
13.4.5 CHR Debugging Options..................... 151
13.5 Programming Hints 154
13.6 Constraint Handlers.................................. 155
13.7 Backward Compatibility 157
14 Logtalk 159
15 Threads..............cciiiiiiii.... 161
15.1 Creating and Destroying Prolog Threads............... 161
15.2 Monitoring Threads 162
15.3 Thread communication 163
15.3.1 Message QUEUESo 163
15.3.2 Signalling Threads........................... 165
15.3.3 Threads and Dynamic Predicates 166
15.4 Thread Synchronisation 166
16 Parallelism..................cooo. ... 169
17 Tablingcciiiiiiieneennnn. 171
18 Tracing at Low Level 173

19 Profiling the Abstract Machine.......... 175

20 Debuggingcovviiiiiiiiiiin... 177

20.1 Debugging Predicates, 177
20.2 Interacting with the debugger......................... 178
21 Indexingcoviiiieeeennnnnnn. 181
22 C Language interface to YAP 183
22.1 LTINS . . oo 184
22.2 Unification ... 186
22,3 SETINES - .ot 186
22.4 Memory Allocation........... 187
22.5 Controlling Yap Streams from C....................... 187
22.6 From C back to Prolog................ 188
22.7 Writing predicates in C........... 188
22.8 Loading Object Files 190
22.9 Saving and Restoring............. 191
22.10 Changes to the C-Interface in Yap4................... 191
23 Using YAP as a Library................. 193
24 Compatibility with Other Prolog systems
....................................... 197
24.1 Compatibility with the C-Prolog interpreter............ 197
24.1.1 Major Differences between YAP and C-Prolog.
... 197
24.1.2 Yap predicates fully compatible with C-Prolog
... 197
24.1.3 Yap predicates not strictly compatible with
C-Prologo 199
24.1.4 Yap predicates not available in C-Prolog 199
24.1.5 Yap predicates not available in C-Prolog 204
24.2 Compatibility with the Quintus and SICStus Prolog systems
.. 204
24.2.1 Major Differences between YAP and SICStus
Prolog..... ..o 204
24.2.2 Yap predicates fully compatible with SICStus
Prolog ... 206
24.2.3 Yap predicates not strictly compatible with SICStus
Prolog ... 210
24.2.4 Yap predicates not available in SICStus Prolog
... 211
24.3 Compatibility with the ISO Prolog standard 214

Appendix A Summary of Yap Predefined
Operators...........coiiiieniinnnn.. 215

vi YAP Prolog User’s Manual
Predicate Index............................. 217

Concept Index..............cciiiiin... 225

Introduction 1

Introduction

This document provides User information on version 4.5.2 of YAP (yet another prolog).
The YAP Prolog System is a high-performance Prolog compiler developed at LTIACC, Uni-
versidade do Porto. YAP provides several important features:

e Speed: YAP is widely considered one of the fastest available Prolog systems.

e Functionality: it supports stream I/0, sockets, modules, exceptions, Prolog debugger,
C-interface, dynamic code, internal database, DCGs, saved states, co-routining, arrays.

e We explicitly allow both commercial and non-commercial use of YAP.

YAP is based on the David H. D. Warren’s WAM (Warren Abstract Machine), with
several optimizations for better performance. YAP follows the Edinburgh tradition, and
was originally designed to be largely compatible with DEC-10 Prolog, Quintus Prolog, and
especially with C-Prolog.

YAP implements most of the ISO-Prolog standard. We are striving at full compatibil-
ity, and the manual describes what is still missing. The manual also includes a (largely
incomplete) comparison with SICStus Prolog.

The document is intended neither as an introduction to Prolog nor to the implementation
aspects of the compiler. A good introduction to programming in Prolog is the book The Art
of Prolog, by L. Sterling and E. Shapiro, published by "The MIT Press, Cambridge MA".
Other references should include the classical Programming in Prolog, by W.F. Clocksin and
C.S. Mellish, published by Springer-Verlag.

YAP 4.3 is known to build with many versions of gce (<= gece-2.7.2, >= gee-2.8.1, >=
eges-1.0.1, gee-2.95.%) and on a variety of Unixen: SunOS 4.1, Solaris 2.*, Irix 5.2, HP-UX
10, Dec Alpha Unix, Linux 1.2 and Linux 2.* (RedHat 4.0 thru 5.2, Debian 2.*) in both the
x86 and alpha platforms. It has been built on Windows NT 4.0 using Cygwin from Cygnus
Solutions (see README.nt) and using Visual C++ 6.0.

The overall copyright and permission notice for YAP4.3 can be found in the Artistic
file in this directory. YAP follows the Perl Artistic license, and it is thus non-copylefted
freeware.

If you have a question about this software, desire to add code, found a bug,
want to request a feature, or wonder how to get further assistance, please send
e-mail to yappers@ncc.up.pt. To subscribe to the mailing list, send a request to
majordomo@ncc.up.pt with body "subscribe yappers".

Online documentation is available for YAP at:
http://www.ncc.up.pt/ vsc/Yap/

Recent versions of Yap, including both source and selected binaries, can be found from
this same URL.

This manual was written by Vitor Santos Costa, Luis Damas, Rogério Reis, and Riben
Azevedo. The manual is largely based on the DECsystem-10 Prolog User’s Manual by D.L.
Bowen, L. Byrd, F. C. N. Pereira, L. M. Pereira, and D. H. D. Warren. We have also used
comments from the Edinburgh Prolog library written by R. O’Keefe. We would also like to
gratefully acknowledge the contributions from Ashwin Srinivasian.

We are happy to include in YAP several excellent packages developed under separate
licenses. Our thanks to the authors for their kind authorization to include these packages.

mailto:yappers@ncc.up.pt
mailto:majordomo@ncc.up.pt

YAP Prolog User’s Manual

The packages are, in alphabetical order:

e The CHR package developed at TUM by Ludwig-Maximilians-Universitaet Muenchen
(LMU) by Dr. Fruehwirth Thom and by Dr. Christian Holzbaur. The package is
distributed under license from LMU (Ludwig-Maximilians-University), Munich, Ger-
many:

Permission is granted to copy and distribute modified versions of this chapter under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by LMU.

Copyright (© 1996-98 LMU (Ludwig-Maximilians-University)
Munich, Germany

e The CLP(Q,R) package developed at OFAI Austrian Research Institute for Artificial
Intelligence by Christian Holzbaur. The package is distributed under the OFAT license.

Documentation on this package is a chapter of this manual, which is covered by the
OFALI license:

Copyright (© 1992,1993,1994,1995 OFAI Austrian Research Institute for Artificial In-
telligence (OFAI) Schottengasse 3 A-1010 Vienna, Austria

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the OFAL

e The Logtalk Object-Oriented system is developed at the University of Beira Interior,
Portugal, by Paulo Moura. The package is distributed under the Perl Artistic License.
Instructions about loading this package are included in this document. The documen-
tation on this package is distributed separately from yap.tex.
Copyright (© 1998-2001 Paulo Moura

e The Pillow WEB library developed at Universidad Politecnica de Madrid by the CLIP
group. This package is distributed under the FSF’s LGPL. Documentation on this
package is distributed separately from yap.tex.

e The yap2swi library implements some of the functionality of SWI’s PL interface. Please
do refer to the SWI-Prolog home page:

http://www.swi-prolog.org

for more information on SWI-Prolog and for a detailed description of its foreign inter-
face.

Chapter 1: Installing YAP 3

1 Installing YAP

To compile YAP it should be sufficient to:

1.
2.
3.

© o N T

mkdir ARCH.
cd ARCH.
../configure ...options....

Notice that by default configure gives you a vanilla configuration. For instance, in
order to use coroutining and/or CLP you need to do

../configure --enable-coroutining ...optioms...
Please see Section 1.1 [Configuration Options], page 3 for extra options.
check the Makefile for any extensions or changes you want to make.

YAP uses autoconf. Recent versions of Yap try to follow GNU conventions on where
to place software.

e The main executable is placed at BINDIR. This executable is actually a script that
calls the Prolog engine, stored at LIBDIR.

e LIBDIR is the directory where libraries are stored. YAPLIBDIR is a subdirectory
that contains the Prolog engine and a Prolog library.

e INCLUDEDIR is used if you want to use Yap as a library.

e INFODIR is where to store info files. Usually /usr/local/info, /usr/info, or
/usr/share/info.

make.

If the compilation succeeds, try ./yap.

If you feel satisfied with the result, do make install.

make install-info will create the info files in the standard info directory.
make html will create documentation in html format in the predefined directory.

In most systems you will need to be superuser in order to do make install and make
info on the standard directories.

1.1 Tuning the Functionality of YAP

Compiling Yap with the standard options give you a plain vanilla Prolog. You can tune
Yap to include extra functionality by calling configure with the appropriate options:

--enable-rational-trees=yes gives you support for infinite rational trees.

--enable-coroutining=yes gives you support for coroutining, including freezing of
goals, attributed variables, and constraints. This will also enable support for infinite
rational trees.

--enable-depth-limit=yes allows depth limited evaluation, say for implementing it-
erative deepening.

-—enable-low-level-tracer=yes allows support for tracing all calls, retries, and
backtracks in the system. This can help in debugging your application, but results
in performance loss.

4 YAP Prolog User’s Manual

e —-enable-wam-profile=yes allows profiling of abstract machine instructions. This is
useful when developing YAP, should not be so useful for normal users.

e —-enable-condor=yes allows using the Condor system that support High Throughput
Computing (HTC) on large collections of distributively owned computing resources.

e —-enable-tabling={local,batched} allows one of the two forms of tabling. This
option is still experimental.

e —-enable-parallelism={env-copy,sba,a-cow} allows or-parallelism supported by
one of these three forms. This option is still highly experimental.

e —-with-gmp[=DIR] give a path to where one can find the GMP library if not installed
in the default path.

Next follow machine dependent details:

1.2 Tuning YAP for a Particular Machine and Compiler

The default options should give you best performance under GCC. Although the system is
tuned for this compiler we have been able to compile versions of Yap under lcc in Linux,
Sun’s cc compiler, IBM’s xlc, SGI’s cc, and Microsoft’s Visual C++ 6.0.

1.3 Tuning YAP for GCC.

Yap has been developed to take advantage of GCC (but not to depend on it). The major
advantage of GCC is threaded code and explicit register reservation.

YAP is set by default to compile with the best compilation flags we know. Even so, a
few specific options reduce portability. The option

e —-enable-max-performance=yes will try to support the best available flags for a spe-
cific architectural model. Currently, the option assumes a recent version of GCC.

e —-enable-debug-yap compiles Yap so that it can be debugged by tools such as dbx or
gdb.
Here follow a few hints:
On x86 machines the flags:
YAP_EXTRAS= ... -DBP_FREE=1
tells us to use the %bp register (frame-pointer) as the emulator’s program counter. This
seems to be stable and is now default.
On Sparc/Solaris2 use:
YAP_EXTRAS= ... -mno-app-regs -DOPTIMISE_ALL_REGS_FOR_SPARC=1
and YAP will get two extra registers! This trick does not work on SunOS 4 machines.
Note that versions of GCC can be tweaked to recognize different processors within the
same instruction set, eg, 486, Pentium, and PentiumPro for the x86; or Ultrasparc, and

Supersparc for Sparc. Unfortunately, some of these tweaks do may make Yap run slower or
not at all in other machines with the same instruction set, so they cannot be made default.

Last, the best options also depends on the version of GCC you are using, and it is a good
idea to consult the GCC manual under the menus "Invoking GCC"/"Submodel Options".

Chapter 1: Installing YAP 5

Specifically, you should check -march=XXX for recent versions of GCC/EGCS. In the case
of GCC2.7 and other recent versions of GCC you can check:

486:

Pentium:

In order to take advantage of 486 specific optimizations in GCC 2.7.%*:
YAP_EXTRAS= ... -m486 -DBP_FREE=1

YAP_EXTRAS= ... -m486 -malign-loops=2 -malign-jumps=2 \
-malign-functions=2

PentiumPro and other recent Intel and AMD machines:

PentiumPros are known not to require alignment. Check your version of GCC
for the best -march option.

Super and UltraSparcs:

YAP_EXTRAS= ... -msupersparc

MIPS: if have a recent machine and you need a 64 bit wide address

space you can use the abi 64 bits or eabi option, as in:
CC="gcc -mabi=64" ./configure --...

Be careful. At least for some versions of GCC, compiling with -g seems to result
in broken code.

WIN32: GCC is distributed in the MINGW32 and CYGWIN packages.

The Mingw32 environment is available from the URL:
http://wuw.mingw.org

You will need to install the msys and mingw packages. You should be able to
do configure, make and make install.

If you use mingw32 you may want to search the contributed packages for the
gmp multi-precision arithmetic library. If you do setup Yap with gmp note that
libgmp.d1ll must be in the path, otherwise Yap will not be able to execute.

CygWin environment is available from the URL:
http://www.cygwin.com

and mirrors. We suggest using recent versions of the cygwin shell. The compi-
lation steps under the cygwin shell are as follows:

mkdir cyg

$YAPSRC/configure --enable-coroutining \\
--enable-depth-limit \\
--enable-max-performance

make

make install

By default, Yap will use the ——enable-cygwin=no option to disable the use of
the cygwin dll and to enable the mingw32 subsystem instead. Yap thus will
not need the cygwin dll. It instead accesses the system’s CRTDLL.DLL C run
time library supplied with Win32 platforms through the mingw32 interface.
Note that some older WIN95 systems may not have CRTDLL.DLL, in this case it
should be sufficient to import the file from a newer WIN95 or WIN98 machine.

YAP Prolog User’s Manual

You should check the default installation path which is set to /PROGRA™1/Yap
in the standard Makefile. This string will usually be expanded into c¢: \Program
Files\Yap by Windows.

The cygwin environment does not provide gmp. You can fetch a dll for the gmp
library from http://www.sf.net/projects/mingwrep.

It is also possible to configure Yap to be a part of the cygwin environment. In
this case you should use:

mkdir cyg

$YAPSRC/configure --enable-coroutining \\
--enable-max-performance \\
--enable-cygwin=yes

make

make install

Yap will then compile using the cygwin library and will be installed in cyg-
win’s /usr/local. You can use Yap from a cygwin console, or as a standalone
application as long as it can find cygwini.dll in its path.

1.3.1 Compiling Under Visual C++

Yap compiles cleanly under Microsoft’s Visual C++ release 6.0. We next give a step-by-step
tutorial on how to compile Yap manually using this environment.

1.

First, it is a good idea to build Yap as a DLL:
create a project named yapdll using File.New. The project will be a DLL project,
initially empty.
Notice that either the project is named yapdll or you must replace the prepro-
cessors variable YAPDLL_EXPORTS to match your project names in the files
YapInterface.h and c_interface.c.
add all .c files in the $YAPSRC/C directory and in the $YAPSRC\OPTYap directory
to the Project’s Source Files (use FileView).
add all .h files in the $YAPSRC/H directory, $YAPSRC\include directory and in the
$YAPSRC\OPTYap subdirectory to the Project’s Header Files.
Ideally, you should now use m4 to generate extra .h from .m4 files and use
configure to create a config.h. Or, you can be lazy, and fetch these files from
$YAPSRC\ VC\include.
You may want to go to Build.Set Active Configuration and set Project Type to
Release
To use Yap’s own include directories you have to set the Project option
Project.Project Settings.C/C++.Preprocessor.Additional Include
Directories to include the directories $YAPSRC\H, $YAPSRC\VC\include,
$YAPSRC\OPTYap and $YAPSRC\include. The syntax is:

$YAPSRC\H, $YAPSRC\VC\include, $YAPSRC\OPTYap, $YAPSRC\include
Build: the system should generate an yapd11l.d11 and an yapdll.lib.

Copy the file yapd11l.d1l to your path. The file yapdll.1ib should also be copied to
a location where the linker can find it.

Chapter 1: Installing YAP 7

Now you are ready to create a console interface for Yap:
1. create a second project say wyap with File.New. The project will be a WIN32 console
project, initially empty.
2. add $YAPSRC\console\yap.c to the Source Files.
3. add $YAPSRC\ VCO\include\config.h and the files in $YAPSRC\include to the Header

Files.

4. You may want to go to Build.Set Active Configuration and set Project Type to
Release.

5. you will eventually need to bootstrap the system by booting from boot.yap, so write:
-b $YAPSRC\pl\boot.yap
in Project.Project Settings.Debug.Program Arguments.
6. You need the sockets and yap libraries. Add
ws2_32.1ib yapdll.1lib to
to
to Project.Project Settings.Link.Object/Library Modules
You may also need to set the Link Path so that VC++ will find yapdll.1ib.

7. set Project.Project Settings.C/C++.Preprocessor.Additional Include
Directories to include the $YAPSRC/VC/include and $YAPSRC/include.

The syntax is:
$YAPSRC\VC\include, $YAPSRC\include
8. Build the system.
9. Use Build.Start Debug to boot the system, and then create the saved state with

[’ $YAPSRC\\p1\\init’].
save_program(startup) .
~Z
That’s it, you've got Yap and the saved state!
The $YAPSRC\VC directory has the make files to build Yap4.3.17 under VC++ 6.0.

1.3.2 Compiling Under SGI’s cc

YAP should compile under the Silicon Graphic’s cc compiler, although we advise using the
GNUCC compiler, if available.

64 bit Support for 64 bits should work by using (under Bourne shell syntax):
CC="cc -64" $YAP_SRC_PATH/configure --...

YAP Prolog User’s Manual

Chapter 2: Running YAP 9

2 Running YAP

We next describe how to invoke Yap in Unix systems.

2.1 Running Yap Interactively

Most often you will want to use Yap in interactive mode. Assuming that YAP is in the
user’s search path, the top-level can be invoked under Unix with the following command:

yap [-s n] [-h n] [-a n] [-c IP_HOST port] [filename]

All the arguments and flags are optional and have the following meaning:

-7 print a short error message.

-sn allocate n K bytes for local and global stacks
-hn allocate n K bytes for heap and auxiliary stacks
-tn allocate n K bytes for the trail stack

-1 YAP_FILE

compile the Prolog file YAP_FILE before entering the top-level.

-L YAP_FILE
compile the Prolog file YAP_FILE and then halt. This option is useful for
implementing scripts.

-b BOOT_FILE
boot code is in Prolog file BOOT_FILE. The filename must define the predicate
"$live’ /0.

-c TP_HOST port
connect standard streams to host IP_HOST at port port

filename restore state saved in the given file

- separator for arguments to Prolog code. These arguments are visible through
the unix/1 built-in.
Note that YAP will output an error message on the following conditions:
e a file name was given but the file does not exist or is not a saved YAP state;
e the necessary amount of memory could not be allocated;
e the allocated memory is not enough to restore the state.
When restoring a saved state, YAP will allocate the same amount of memory as that in

use when the state was saved, unless a different amount is specified by flags in the command

line. By default, YAP restores the file ‘startup’ from the current directory or from the
YAP library.

e YAP usually boots from a saved state. The saved state will use the default installation
directory to search for the YAP binary unless you define the environment variable
YAPBINDIR.

10

YAP Prolog User’s Manual

e YAP always tries to find saved states from the current directory first. If it cannot it

will use the environment variable YAPLIBDIR, if defined, or search the default library
directory.

e YAP will try to find library files from the YAPSHAREDIR /library directory.

2.2 Running Prolog Files

YAP can also be used to run Prolog files as scripts, at least in Unix-like environments. A
simple example is shown next:

(M
#!/usr/local/bin/yap -L

#

Hello World script file using Yap

#

:— write(’Hello World’), nl.

-)

The #! characters specify that the script should call the binary file Yap. Notice that

many systems will require the complete path to the Yap binary. The -L flag indicates that
YAP should consult the current file when booting and then halt. The remaining arguments
are then passed to YAP. Note that YAP will skip the first lines if they start with # (the
comment sign for Unix’s shell). YAP will consult the file and execute any commands.

A slightly more sophisticated example is:

(N
#!/usr/bin/yap -L --

#

Hello World script file using Yap

.

:— initialization(main).

main :- write(’Hello World’), nl.

= J

The initialization directive tells Yap to execute the goal main after consulting the
file.

Source code is thus compiled and main executed at the end. The . is useful while

debugging the script as a Prolog program: it guarantees that the syntax error will not
propagate to the Prolog code.

Notice that the —- is required so that the shell passes the extra arguments to YAP. As

an example, consider the following script dump_args:

Chapter 2: Running YAP 11

(7
#!/usr/bin/yap -L --
#.

main([]).

main([H|T]) :-
write(H), nl,
main(T).

:— unix(argv(AllArgs)), main(AllArgs).

- J

If you this run this script with the arguments:
./dump_args -s 10000
the script will start an YAP process with stack size 10MB, and the list of arguments to the
process will be empty.

Often one wants to run the script as any other program, and for this it is convenient to
ignore arguments to YAP. This is possible by using L —- as in the next version of dump_args

-
#!/usr/bin/yap -L --

main([]).

main([HIT]) :-
write(H), nl,
main(T).

:— unix(argv(AllArgs)), main(AllArgs).

The -- indicates the next arguments are not for YAP. Instead, they must be sent directly
to the argv builtin. Hence, running
./dump_args test
will write test on the standard output.

12

YAP Prolog User’s Manual

Chapter 3: Syntax 13

3 Syntax

We will describe the syntax of YAP at two levels. We first will describe the syntax for
Prolog terms. In a second level we describe the tokens from which Prolog terms are built.

3.1 Syntax of Terms

Below, we describe the syntax of YAP terms from the different classes of tokens defined
above. The formalism used will be BNF, extended where necessary with attributes denoting
integer precedence or operator type.

term ——> subterm(1200) end_of_term_marker
subterm(N) --——> term(M) [M <= N]
term(N) -—> op(N, fx) subterm(N-1)

| op(N, fy) subterm(N)

| subterm(N-1) op(N, xfx) subterm(N-1)
I subterm(N-1) op(N, xfy) subterm(N)

[subterm(N) op(N, yfx) subterm(N-1)

| subterm(N-1) op(N, xf)

| subterm(N) op(N, yf)

term(0) ----> atom ’(’ arguments ’)’
| >(? subterm(1200) ’)°

| ’{’ subterm(1200) 3}’

| list

| string

| number

| atom

| variable

arguments ----> subterm(999)
| subterm(999) ’,’ arguments

list —-——=> 1>
| >[? 1list_expr ’]°

list_expr ---—> subterm(999)
| subterm(999) list_tail

list_tail -——> ’,? list_expr
| > ..7 subterm(999)
| |’ subterm(999)

14 YAP Prolog User’s Manual

Notes:

e op(N,T) denotes an atom which has been previously declared with type 7" and base
precedence N.

e Since ') is itself a pre-declared operator with type xfy and precedence 1000, is subterm
starts with a ’(’, op must be followed by a space to avoid ambiguity with the case of a
functor followed by arguments, eg:

+ (a,b) [the same as ’+’(’,’(a,b)) of arity one]
versus
+(a,b) [the same as ’+’(a,b) of arity two]
e In the first rule for term(0) no blank space should exist between atom and ’(’.

e Each term to be read by the YAP parser must end with a single dot, followed by a
blank (in the sense mentioned in the previous paragraph). When a name consisting
of a single dot could be taken for the end of term marker, the ambiguity should be
avoided by surrounding the dot with single quotes.

3.2 Prolog Tokens

Prolog tokens are grouped into the following categories:

3.2.1 Numbers

Numbers can be further subdivided into integer and floating-point numbers.

3.2.1.1 Integers

Integer numbers are described by the following regular expression:

<integer> := {<digit>+<single-quote>|0{xXo}}<alpha_numeric_char>+

where {...} stands for optionality, + optional repetition (one or more times), <digit> denotes
one of the characters 0 ... 9, | denotes or, and <single-quote> denotes the character "’".
The digits before the <single-quote> character, when present, form the number basis, that
can go from 0, 1 and up to 36. Letters from A to Z are used when the basis is larger than
10.

Note that if no basis is specified then base 10 is assumed. Note also that the last digit
of an integer token can not be immediately followed by one of the characters ’e’, 'E’, or ’.".

Following the ISO standard, YAP also accepts directives of the form 0x to represent
numbers in hexadecimal base and of the form Oo to represent numbers in octal base. For
usefulness, YAP also accepts directives of the form OX to represent numbers in hexadecimal
base.

Example: the following tokens all denote the same integer

Chapter 3: Syntax 15

10 271010 3’101 8’12 16’a 36’a Oxa 0Ool2

Numbers of the form 0’a are used to represent character constants. So, the following
tokens denote the same integer:

0’d 100

YAP (version 4.5.2) supports integers that can fit the word size of the machine. This is
32 bits in most current machines, but 64 in some others, such as the Alpha running Linux
or Digital Unix. The scanner will read larger or smaller integers erroneously.

3.2.1.2 Floating-point Numbers
Floating-point numbers are described by:

<float> := <digit>+{<dot><digit>+}
<exponent-marker>{<sign>}<digit>+
|<digit>+<dot><digit>+
{<exponent-marker>{<sign>}<digit>+}

where <dot> denotes the decimal-point character ’.’, <exponent-marker> denotes one of e’
or 'E’, and <sign> denotes one of '+ or ’-’.

Examples:
10.0 10e3 10e-3 3.1415e+3

Floating-point numbers are represented as a double in the target machine. This is usually
a 64-bit number.

3.2.2 Character Strings

Strings are described by the following rules:

string --> ’"’ string_quoted_characters ’"’

string_quoted_characters --> ’"’ ’"’ string_quoted_characters
string_quoted_characters --> 7\’

escape_sequence string_quoted_characters
string_quoted_characters -->

string_character string_quoted_characters

escape_sequence —--> ’a’ | ’b’ | ’r’ | £’ | ¢’ | ’n’ | v’
escape_sequence —-> ’\’ | "2 | 220 | 2
escape_sequence —-> at_most_3_octal_digit_seq_char ’\’

escape_sequence —-> ’x’ at_most_2_hexa_digit_seq_char ’\’

where string_character in any character except the double quote and escape charac-
ters.

Examples:

16 YAP Prolog User’s Manual

" "a string" "a double-quote:"""

The first string is an empty string, the last string shows the use of double-quoting. The
implementation of YAP represents strings as lists of integers. Since Yap4.3.0 there is no
static limit on string size.

Escape sequences can be used to include the non-printable characters a (alert), b
(backspace), r (carriage return), £ (form feed), t (horizontal tabulation), n (new line),
and v (vertical tabulation). Escape sequences also be include the meta-characters \, ", ’,
and ‘. Last, one can use escape sequences to include the characters either as an octal or
hexadecimal number.

The next examples demonstrates the use of escape sequences in YAP:
ll\xoc\ll ll\01\|| ll\fll ||\\ll

The first three examples return a list including only character 12 (form feed). The last
example escapes the escape character.

Escape sequences were not available in C-Prolog and in original versions of YAP up to
4.2.0. Escape sequences can be disable by using;:

:- yap_flag(character_escapes,off).

3.2.3 Atoms

Atoms are defined by one of the following rules:

atom --> solo-character

atom --> lower-case-letter name-characterx*
atom --> symbol-character+

atom --> single-quote single-quote

atom --> ’’’ atom_quoted_characters ’’’

atom_quoted_characters --> ’’’ ’’’ atom_quoted_characters
atom_quoted_characters --> ’\’ atom_sequence string_quoted_characters
atom_quoted_characters —-—-> character string_quoted_characters

where:
<solo-character> denotes one of: L
<symbol-character> denotes one of: # & *x + - / <
=>70@\ " ‘"~
<lower-case-letter> denotes one of: a...z
<name-character> denotes one of: _a...zA...20....9
<single-quote> denotes: ’

and string_character denotes any character except the double quote and escape char-
acters. Note that escape sequences in strings and atoms follow the same rules.

Examples:
a al2x ’$a’ ! = 1 2’
Version 4.2.0 of YAP removed the previous limit of 256 characters on an atom. Size of
an atom is now only limited by the space available in the system.

Chapter 3: Syntax 17

3.2.4 Variables

Variables are described by:

<variable-starter><variable-character>+

where
<variable-starter> denotes one of: _A...Z
<variable-character> denotes one of: _a...z A...Z

If a variable is referred only once in a term, it needs not to be named and one can use
the character _ to represent the variable. These variables are known as anonymous vari-
ables. Note that different occurrences of _ on the same term represent different anonymous
variables.

3.2.5 Punctuation Tokens

Punctuation tokens consist of one of the following characters:

(), 1L}

These characters are used to group terms.

3.2.6 Layout

Any characters with ASCII code less than or equal to 32 appearing before a token are
ignored.

All the text appearing in a line after the character % is taken to be a comment and
ignored (including %). Comments can also be inserted by using the sequence /* to start
the comment and */ to finish it. In the presence of any sequence of comments or layout
characters, the YAP parser behaves as if it had found a single blank character. The end of
a file also counts as a blank character for this purpose.

18

YAP Prolog User’s Manual

Chapter 4: Loading Programs 19

4 Loading Programs

4.1 Program loading and updating

consult (+F)
Adds the clauses written in file F' or in the list of files F' to the program.
In YAP consult/1 does not remove previous clauses for the procedures defined
in F. Moreover, note that all code in YAP is compiled.

reconsult (+F)
Updates the program replacing the previous definitions for the predicates de-

fined in F.
[+F] The same as consult (F).
[-+F] The same as reconsult (F)
Example:

?7- [filel, -file2, -file3, file4].
will consult filel file4 and reconsult file2 and file3.

compile (+F)
In YAP, the same as reconsult/1.

ensure_loaded (+F) [IS0O]
When the files specified by F' are module files, ensure_loaded/1 loads them if
they have note been previously loaded, otherwise advertises the user about the
existing name clashes and prompts about importing or not those predicates.
Predicates which are not public remain invisible.
When the files are not module files, ensure_loaded/1 loads them if they have
not been loaded before, does nothing otherwise.

F must be a list containing the names of the files to load.

include (+F) [IS0O]
The include directive includes the text files or sequence of text files specified
by F into the file being currently consulted.

4.2 Changing the Compiler’s Behavior

This section presents a set of built-ins predicates designed to set the environment for the
compiler.

source_mode (-0,+N)
The state of source mode can either be on or off. When the source mode is on,
all clauses are kept both as compiled code and in a "hidden" database. O is
unified with the previous state and the mode is set according to N.

source After executing this goal, YAP keeps information on the source of the predicates
that will be consulted. This enables the use of listing/0, listing/1 and
clause/2 for those clauses.

20 YAP Prolog User’s Manual

The same as source_mode(_,on) or as declaring all newly defined static pro-
cedures as public.

no_source
The opposite to source.
The same as source_mode(_,off).
compile_expressions
After a call to this predicate, arithmetical expressions will be compiled. (see
example below). This is the default behavior.
do_not_compile_expressions
After a call to this predicate, arithmetical expressions will not be compiled.

?- source, do_not_compile_expressions.

yes
?- [user].
| p(X) :- X is 2 * (3 + 8).
| :- end_of_file.
?- compile_expressions.
yes
?- [user].
| q(X) :- X is 2 x (3 + 8).
| :- end_of_file.
:— listing.
p(A):-
A is 2 x (3 + 8).
q(A):-

A is 22.

hide(+Atom)
Make atom Atom invisible.

unhide (+Atom)
Make hidden atom Atom visible.

hide_predicate (+Pred)
Make predicate Pred invisible to current_predicate/2, listing, and friends.

expand_exprs (-0,+N)
Puts YAP in state N (on or off) and unify O with the previous state, where
On is equivalent to compile_expressions and off is equivalent to do_not_

compile_expressions. This predicate was kept to maintain compatibility with
C-Prolog.

path(-D) Unifies D with the current directory search-path of YAP. Note that this search-
path is only used by YAP to find the files for consult/1, reconsult/1 and
restore/1 and should not be taken for the system search path.

add_to_path(+D)
Adds D to the end of YAP’s directory search path.

Chapter 4: Loading Programs 21

add_to_path(+D,+N)
Inserts D in the position, of the directory search path of YAP, specified by N.
N must be either of first or last.

remove_from_path(+D)
Remove D from YAP’s directory search path.

style_check(+X)
Turns on style checking according to the attribute specified by X, which must
be one of the following;:

single_var
Checks single occurrences of named variables in a clause.

discontiguous
Checks non-contiguous clauses for the same predicate in a file.

multiple Checks the presence of clauses for the same predicate in more than
one file when the predicate has not been declared as multifile

all Performs style checking for all the cases mentioned above.

By default, style checking is disabled in YAP unless we are in sicstus or iso
language mode.

The style_check/1 built-in is now deprecated. Please use the set_prolog_
flag/1 instead.

no_style_check(+X)
Turns off style checking according to the attribute specified by X, which has
the same meaning as in style_check/1.

The no_style_check/1 built-in is now deprecated. Please use the set_prolog_
flag/1 instead.

multifile P [ISO]
Instructs the compiler about the declaration of a predicate P in more than
one file. It must appear in the first of the loaded files where the predicate is
declared, and before declaration of any of its clauses.

Multifile declarations affect reconsult/1 and compile/1: when a multifile
predicate is reconsulted, only the clauses from the same file are removed.

Since Yap4.3.0 multifile procedures can be static or dynamic.

discontiguous(+G) [ISO]
Declare that the arguments are discontiguous procedures, that is, clauses for
discontigous procedures may be separated by clauses from other procedures.

initialization(+G) [ISO]
The compiler will execute goals G after consulting the current file.

library_directory(+D)
Succeeds when D is a current library directory name. Library directories are
the places where files specified in the form library(File) are searched by the
predicates consult/1, reconsult/1, use_module/1 or ensure_loaded/1.

22 YAP Prolog User’s Manual

file_search_path(+NAME,-DIRECTORY)
Allows writing file names as compound terms. The NAME and DIRECTORY
must be atoms. The predicate may generate multiple solutions. The predicate
is originally defined as follows:
file_search_path(library,A) :-
library_directory(A).
file_search_path(system,A) :-
prolog_flag(host_type,A).
Thus, [library(A)] will search for a file using library_directory/1 to obtain the
prefix.

library_directory(+D)
Succeeds when D is a current library directory name. Library directories are
the places where files specified in the form library(File) are searched by the
predicates consult/1, reconsult/1, use_module/1 or ensure_loaded/1.

prolog_file_name (+Name,-FullPath)
Unify FullPath with the absolute path YAP would use to consult file Name.

public P [ISO]
Instructs the compiler that the source of a predicate of a list of predicates P
must be kept. This source is then accessible through the clause/2 procedure
and through the listing family of built-ins.
Note that all dynamic procedures are public. The source directive defines all
new or redefined predicates to be public.

Since Yap4.3.0 multifile procedures can be static or dynamic.
4.3 Saving and Loading Prolog States

save(+F) Saves an image of the current state of YAP in file F. From Yap4.1.3 onwards,
YAP saved states are executable files in the Unix ports.

save (+F,-0UT)
Saves an image of the current state of YAP in file F. From Yap4.1.3 onwards,
YAP saved states are executable files in the Unix ports.
Unify OUT with 1 when saving the file and OUT with 0 when restoring the
saved state.

save_program(+F)
Saves an image of the current state of the YAP database in file F.

save_program(+F, :G)
Saves an image of the current state of the YAP database in file F, and guarantee
that execution of the restored code will start by trying goal G.

restore(+F)
Restores a previously saved state of YAP from file F.
YAP always tries to find saved states from the current directory first. If it
cannot it will use the environment variable YAPLIBDIR, if defined, or search
the default library directory.

Chapter 5: The Module System 23

5 The Module System

Module systems are quite important for the development of large applications. YAP imple-
ments a module system compatible with the Quintus Prolog module system.

The YAP module system is predicate-based. This means a module consists of a set of
predicates (or procedures), such that some predicates are public and the others are local
to a module. Atoms and terms in general are global to the system. Moreover, the module
system is flat, meaning that we do not support an hierarchy of modules. Modules can
automatically import other modules, though. For compatibility with other module systems
the YAP module system is non-strict, meaning both that there is both a way to access
predicates private to a module and that is possible to declare predicates for a module from
some other module.

YAP allows one to ignore the module system if one does not want to use it. Last note
that using the module system does not introduce any significant overheads: only meta-calls
that cross module boundaries are slowed down by the presence of modules.

5.1 Module Concepts

The YAP module system applies to predicates. All predicates belong to a module. System
predicates belong to the module primitives, and by default new predicates belong to the
module user. Predicates from the module primitives are automatically visible to every
module.

Every predicate must belong to a module. This module is called its source module.

By default, the source module for a clause occurring in a source file with a module decla-
ration is the declared module. For goals typed in a source file without module declarations,
their module is the module the file is being loaded into. If no module declarations exist,
this is the current type-in module. The default type-in module is user, but one can set the
current module by using the built-in module/1.

Note that in this module system one can explicitly specify the source mode for a clause
by prefixing a clause with its module, say:

user:(a :— b).

In fact, to specify the source module for a clause it is sufficient to specify the source mode
for the clause’s head:

user:a :— b.
The rules for goals are similar. If a goal appears in a text file with a module declaration,

the goal’s source module is the declared module. Otherwise, it is the module the file is
being loaded into or the type-in module.

One can override this rule by prefixing a goal with the module it is supposed to be
executed into, say:

nasa:launch(apollo,13).
will execute the goal launch(apollo,13) as if the current source module was nasa.

Note that this rule breaks encapsulation and should be used with care.

24 YAP Prolog User’s Manual

5.2 Defining a New Module

A new module is defined by a module declaration:

module (+M,+L)
This predicate defines the file where it appears as a module file; it must be the
first declaration in the file. M must be an atom specifying the module name;
L must be a list containing the module’s public predicates specification, in the
form [predicate_name/arity,...].

The public predicates of a module file can be made accessible by other files
through the predicates consult/1, reconsult/1, ensure_loaded/1 or use_
module/2. The non-public predicates of a module file are not visible by other
files; they can, however, be accessed if the module name is prefixed to the file
name through the :/2 operator.

The built-in module/1 sets the current source module:

module (+M,+L, +Options)
Similar to module/2, this predicate defines the file where it appears as a module
file; it must be the first declaration in the file. M must be an atom specifying
the module name; L must be a list containing the module’s public predicates
specification, in the form [predicate_name/arity,...].

The last argument Options must be a list of options, which can be:
filename the filename for a module to import into the current module.

library(file)
a library file to import into the current module.

hide(Opt)
if Opt is false, keep source code for current module, if true, dis-
able.

module (+M)
Defines M to be the current working or type-in module. All files which are not
binded to a module are assumed to belong to the working module (also referred
to as type-in module). To compile a non-module file into a module which is
not the working one, prefix the file name with the module name, in the form
Module :File, when loading the file.

5.3 Using Modules

By default, all procedures to consult a file will load the modules defined therein. The two
following declarations allow one to import a module explicitly. They differ on whether one
imports all predicate declared in the module or not.

use_module (+F)
Loads the files specified by F, importing all their public predicates. Predi-
cate name clashes are resolved by asking the user about importing or not the
predicate. A warning is displayed when F' is not a module file.

Chapter 5: The Module System 25

use_module (+F,+L)
Loads the files specified by F, importing the predicates specified in the list L.
Predicate name clashes are resolved by asking the user about importing or not
the predicate. A warning is displayed when F' is not a module file.

use_module(?M,?F,+L)
If module M has been defined, import the procedures in L to the current module.
Otherwise, load the files specified by F, importing the predicates specified in
the list L.

5.4 Meta-Predicates in Modules

The module system must know whether predicates operate on goals or clauses. Otherwise,
such predicates would call a goal in the module they were defined, instead of calling it in
the module they are currently executing. So, for instance:

:— module(example, [a/1]).

a(G) :- call(@)

The expected behavior for this procedure is to execute goal G within the current module,
that is, within example. On the other hand, when executing call/1 the system only knows
where call/1 was defined, that is, it only knows of primitives. A similar problem arises
for assert/1 and friends.

The meta_call/1 declaration informs the system that some arguments of a procedure
are goals, clauses or clauses heads, and that these arguments must be expanded to receive
the current source module:

meta_predicate G1,....,Gn
Each Gi is a mode specification. For example, a declaration for call/1 and
setof/3 would be of the form:

:- meta_predicate call(:), setof(?7,:,7).

If the argument is : or an integer, the argument is a call and must be expanded.
Otherwise, the argument should not be expanded. Note that the system already
includes declarations for all built-ins.

In the previous example, the only argument to call/1 must be expanded, resulting in
the following code:

:- module (example, [a/1]).

a(G) :- call(example:G)

26

YAP Prolog User’s Manual

Chapter 6: Built-In Predicates 27

6 Built-In Predicates

6.1 Control Predicates

This chapter describes the predicates for controlling the execution of Prolog programs.
In the description of the arguments of functors the following notation will be used:

e a preceding plus sign will denote an argument as an "input argument" - it cannot be
a free variable at the time of the call;

e a preceding minus sign will denote an "output argument";
e an argument with no preceding symbol can be used in both ways.
+P, +Q [IS0]
Conjunction of goals (and).
Example:
pX) - qX), r(X).
should be read as "p(X) if q(X) and r(X)".
+P ; +Q [IS0]
Disjunction of goals (or).
Example:
pX) = qX); rX).
should be read as "p(X) if q(X) or r(X)".

true [ISO]
Succeeds once.

fail [IS0]
Fails always.

false The same as fail

I [180] Read as "cut". Cuts any choices taken in the current procedure. When first
found "cut" succeeds as a goal, but if backtracking should later return to it,
the parent goal (the one which matches the head of the clause containing the
"cut", causing the clause activation) will fail. This is an extra-logical predicate
and cannot be explained in terms of the declarative semantics of Prolog.
example:

member (X, [X]_1).

member (X, [_|L]) :- member(X,L).
With the above definition

?- member (X, [1,2,3]).
will return each element of the list by backtracking. With the following defini-
tion:

member (X, [X]_]) :- !.

member (X, [_|L]) :- member(X,L).
the same query would return only the first element of the list, since backtracking
could not "pass through" the cut.

28

\+ +P [IS0]

not +P

YAP Prolog User’s Manual

Goal P is not provable. The execution of this predicate fails if and only if the
goal P finitely succeeds. It is not a true logical negation, which is impossible
in standard Prolog, but "negation-by-failure".

This predicate might be defined as:
\+(P) :- P, !, fail.
\+().

if P did not include "cuts".

Goal P is not provable. The same as >\+ P’.

This predicate is kept for compatibility with C-Prolog and previous versions of
YAP. Uses of not/1 should be replace by (\+)/1, as YAP does not implement
true negation.

+P -> +() [IS0]

Read as "if-then-else" or "commit". This operator is similar to the conditional
operator of imperative languages and can be used alone or with an else part as
follows:
+P -> +Q "if P then Q".
+P -> +Q; +R
"if P then Q else R".

These two predicates could be defined respectively in Prolog as:

(P->Q :-P, !, Q.
and

(P ->Q; R) :-P, !', Q.

(P ->Q; R) :- R.
if there were no "cuts" in P, Q and R.

Note that the commit operator works by "cutting" any alternative solutions of
P.

Note also that you can use chains of commit operators like:
P->Q; R->8S ; T.

Note that (->)/2 does not affect the scope of cuts in its arguments.

repeat [IS0]

Succeeds repeatedly.

In the next example, repeat is used as an efficient way to implement a loop.
The next example reads all terms in a file:

a :- repeat, read(X), write(X), nl, X=end_of_file, !.
the loop is effectively terminated by the cut-goal, when the test-goal X=end
succeeds. While the test fails, the goals read (X), write (X), and nl are executed
repeatedly, because backtracking is caught by the repeat goal.
The built-in repeat/1 could be defined in Prolog by:

repeat.
repeat :- repeat.

Chapter 6: Built-In Predicates 29

call(+P) [ISO0]
If P is instantiated to an atom or a compound term, the goal call(P) is
executed as if the value of P was found instead of the call to call/1, except
that any "cut" occurring in P only cuts alternatives in the execution of P.

incore (+P)
The same as call/1.

call_with_args(+Name,...,?41,...)
Meta-call where Name is the name of the procedure to be called and the Ai are
the arguments. The number of arguments varies between 0 and 10.
If Name is a complex term, then call_with_args/n behaves as call/n:
call(p(X1,...,Xm), Yi,...,Yn) :- p(X1,...,Xm,Y1,...,¥Yn).
+P The same as call(P). This feature has been kept to provide compatibility
with C-Prolog. When compiling a goal, YAP generates a call(X) whenever a
variable X is found as a goal.
a(X) :- X.
is converted to:
a(X) :- call(X).
if(?G,?H,?I) [1IS0]
Call goal H once per each solution of goal H. If goal H has no solutions, call
goal I
The builtin if/3 is similar to ->/3, with the difference that it will backtrack
over the test goal. Consider the following small data-base:
a(l). b(a). c(x).
a(2). b(b). c(y).
Execution of an if/3 query will proceed as follows:
7- if (a(X),b(Y),c(Z2)).

X=1,
Y=a7?,;
X=1,
Y=b7;
X =2,
Y=a?7;
X =2,
Y=b7;
no

The system will backtrack over the two solutions for a/1 and the two solutions
for b/1, generating four solutions.

Cuts are allowed inside the first goal G, but they will only prune over G.

30 YAP Prolog User’s Manual

If you want G to be deterministic you should use if-then-else, as it is both more
efficient and more portable.

once(:G) [IS0]
Execute the goal G only once. The predicate is defined by:

once(G) :- call(G), !.

Note that cuts inside once/1 can only cut the other goals inside once/1.

abort Abandons the execution of the current goal and returns to top level. All break
levels (see break/0 below) are terminated. It is mainly used during debugging
or after a serious execution error, to return to the top-level.

break Suspends the execution of the current goal and creates a new execution level
similar to the top level, displaying the following message:

[Break (level <number>)]

telling the depth of the break level just entered. To return to the previous
level just type the end-of-file character or call the end_of_file predicate. This
predicate is especially useful during debugging.

halt [ISO]
Halts Prolog, and exits to the calling application. In YAP, halt/0 returns the
exit code 0.

halt(+ I) [IS0]
Halts Prolog, and exits to the calling application returning the code given by
the integer L

catch(+Goal,+Exception,+Action) [ISO]
The goal catch(Goal,Exception,Action) tries to execute goal Goal. If during
its execution, Goal throws an exception E’ and this exception unifies with
Exception, the exception is considered to be caught and Action is executed.
If the exception E’ does not unify with Exception, control again throws the
exception.

The top-level of YAP maintains a default exception handler that is responsible
to capture uncaught exceptions.

throw(+Ball) [IS0]
The goal throw(Ball) throws an exception. Execution is stopped, and the
exception is sent to the ancestor goals until reaching a matching catch/3, or
until reaching top-level.

garbage_collect
The goal garbage_collect forces a garbage collection.

garbage_collect_atoms
The goal garbage_collect forces a garbage collection of the atoms in the data-
base. Currently, only atoms are recovered.

gc The goal gc enables garbage collection. The same as yap_flag(gc,on).
nogc The goal nogc disables garbage collection. The same as yap_flag(gc,off).

Chapter 6: Built-In Predicates 31

grow_heap(+Size)
Increase heap size Size kilobytes.

grow_stack(+Size)
Increase stack size Size kilobytes.

6.2 Handling Undefined Procedures

A predicate in a module is said to be undefined if there are no clauses defining the predicate,
and if the predicate has not been declared to be dynamic. What YAP does when trying to
execute undefined predicates can be specified through three different ways:

e By setting an YAP flag, through the yap_flag/2 or set_prolog_flag/2 built-ins.
This solution generalizes the ISO standard.

e By using the unknown/2 built-in (this solution is compatible with previous releases of
YAP).

e By defining clauses for the hook predicate user:unknown_predicate_handler/3. This
solution is compatible with SICStus Prolog.

In more detail:

unknown (-0,+N)
Specifies an handler to be called is a program tries to call an undefined static
procedure P.
The arity of N may be zero or one. If the arity is 0, the new action must be one
of fail, warning, or error. If the arity is 1, P is an user-defined handler and
at run-time, the argument to the handler P will be unified with the undefined
goal. Note that N must be defined prior to calling unknown/2, and that the
single argument to N must be unbound.
In YAP, the default action is to fail (note that in the ISO Prolog standard
the default action is error).

After defining undefined/1 by:

undefined(A) :- format(’Undefined predicate: “w™n’), fail.
and executing the goal:

unknown (U,undefined (X)) .

a call to a predicate for which no clauses were defined will result in the output
of a message of the form:

Undefined predicate: user:xyz(A1l,A2)
followed by the failure of that call.

yap_flag(unknown,+SPEC)
Alternatively, one can use yap_flag/2, current_prolog_flag/2, or
set_prolog_flag/2, to set this functionality. In this case, the first argument
for the built-ins should be unknown, and the second argument should be either
error, warning, fail, or a goal.

32 YAP Prolog User’s Manual

user:unknown_predicate_handler (+G,+M, ?NG)
The user may also define clauses for user:unknown_predicate_handler/3
hook predicate. This user-defined procedure is called before any system pro-
cessing for the undefined procedure, with the first argument G set to the current
goal, and the second M set to the current module.

If user :unknown_predicate_handler/3 succeeds, the system will execute NG.
If user:unknown_predicate_handler/3 fails, the system will execute default
action as specified by unknown/2.

6.3 Predicates on terms

var(T) [IS0]
Succeeds if T is currently a free variable, otherwise fails.

atom(T) [IS0]
Succeeds if and only if T is currently instantiated to an atom.

atomic(T) [ISO]
Checks whether T is an atomic symbol (atom or number).

compound (T) [IS0]
Checks whether T is a compound term.

db_reference(T)
Checks whether T is a database reference.

float(T) [ISO]
Checks whether T is a floating point number.

integer(T) [IS0]
Succeeds if and only if T is currently instantiated to an integer.

nonvar (T) [ISO]
The opposite of var(T).

number (T) [IS0]
Checks whether T is an integer or a float.

primitive(T)
Checks whether T is an atomic term or a database reference.

simple(T)
Checks whether T is unbound, an atom, or a number.

callable(T)
Checks whether T is a callable term, that is, an atom or a compound term.

name(A,L)
The predicate holds when at least one of the arguments is ground (otherwise,
an error message will be displayed). The argument A will be unified with an
atomic symbol and L with the list of the ASCII codes for the characters of the
external representation of A.

Chapter 6: Built-In Predicates 33

name (yap,L) .
will return:
L = [121,97,112].

and

name (3,L) .
will return:

L = [51].

atom_chars(?4,7L) [ISO0]
The predicate holds when at least one of the arguments is ground (otherwise,
an error message will be displayed). The argument A must be unifiable with an
atom, and the argument L with the list of the ASCII codes for the characters
of the external representation of A.

The ISO-Prolog standard dictates that atom_chars/2 should unify the sec-
ond argument with a list of one-char atoms, and not the character codes. For
compatibility with previous versions of YAP, and with other Prolog imple-
mentations, YAP unifies the second argument with the character codes, as in
atom_codes/2. Use the set_prolog_flag(to_chars_mode,iso) to obtain ISO
standard compatibility.

atom_codes(74,7L) [IS0]
The predicate holds when at least one of the arguments is ground (otherwise,
an error message will be displayed). The argument A will be unified with an
atom and L with the list of the ASCII codes for the characters of the external
representation of A.

atom_concat (+4s,74)
The predicate holds when the first argument is a list of atoms, and the second
unifies with the atom obtained by concatenating all the atoms in the first list.

atom_concat (+A1,+A2,74)
The predicate holds when the first argument and second argument are atoms,
and the third unifies with the atom obtained by concatenating the first two
arguments.

atom_length(+4,7I) [ISO]
The predicate holds when the first argument is an atom, and the second unifies
with the number of characters forming that atom.

atom_concat(?A41,742,7412) [IS0]
The predicate holds when the third argument unifies with an atom, and the
first and second unify with atoms such that their representations concatenated
are the representation for A12.

If A1 and A2 are unbound, the built-in will find all the atoms that concatenated
give A12.

number_chars(?I,?L)
The predicate holds when at least one of the arguments is ground (otherwise,
an error message will be displayed). The argument I must be unifiable with a

34 YAP Prolog User’s Manual

number, and the argument L with the list of the ASCII codes for the characters
of the external representation of I.

The ISO-Prolog standard dictates that number_chars/2 should unify the sec-
ond argument with a list of one-char atoms, and not the character codes. For
compatibility with previous versions of YAP, and with other Prolog imple-
mentations, YAP unifies the second argument with the character codes, as in
number_codes/2. Use the set_prolog_flag(to_chars_mode,iso) to obtain
ISO standard compatibility.

number_codes(74,7L) [IS0]
The predicate holds when at least one of the arguments is ground (otherwise,
an error message will be displayed). The argument A will be unified with a
number and L with the list of the ASCII codes for the characters of the external
representation of A.

number_atom(?I,?L)
The predicate holds when at least one of the arguments is ground (otherwise,
an error message will be displayed). The argument I must be unifiable with a
number, and the argument L must be unifiable with an atom representing the
number.

char_code(?74,7I) [IS0]
The built-in succeeds with A bound to character represented as an atom, and
I bound to the character code represented as an integer. At least, one of either
A or I must be bound before the call.

sub_atom(+4,7?Bef, ?Size, 7After, ?At_out) [ISO]
True when A and At_out are atoms such that the name of At_out has size Size
and is a substring of the name of A, such that Bef is the number of characters
before and After the number of characters afterwards.

Note that A must always be known, but At_out can be unbound when calling
this built-in. If all the arguments for sub_atom/5 but A are unbound, the
built-in will backtrack through all possible substrings of A.

numbervars(T,+N1,-Nn)
Instantiates each variable in term T to a term of the form: >$VAR’ (I), with I
increasing from N1 to Nn.

ground (T)
Succeeds if there are no free variables in the term T.

arg(+N,+T,A) [IS0]
Succeeds if the argument N of the term T unifies with A. The arguments are
numbered from 1 to the arity of the term.

The current version will generate an error if T' or N are unbound, if T is not a
compound term, of if N is not a positive integer. Note that previous versions
of YAP would fail silently under these errors.

functor(T,F,N)
The top functor of term T is named F and has arity N.

Chapter 6: Built-In Predicates 35

When T is not instantiated, F' and N must be. If N is 0, F' must be an atomic
symbol, which will be unified with T. If N is not 0, then F' must be an atom
and T becomes instantiated to the most general term having functor F' and
arity N. If T is instantiated to a term then F and N are respectively unified
with its top functor name and arity.

In the current version of YAP the arity IN must be an integer. Previous versions
allowed evaluable expressions, as long as the expression would evaluate to an
integer. This feature is not available in the ISO Prolog standard.

T=..L [Is0]
The list L is built with the functor and arguments of the term T. If T is
instantiated to a variable, then L must be instantiated either to a list whose
head is an atom, or to a list consisting of just a number.

X =Y [Is0]
Tries to unify terms X and Y.

X \=Y [IS0O]
Succeeds if terms X and Y are not unifiable.

unify_with_occurs_check(?T1,7T2) [IS0]

Obtain the most general unifier of terms T1 and T2, if there is one.

This predicate implements the full unification algorithm. An example:n
unify_with_occurs_check(a(X,b,Z),a(X,A,£(B)).

will succeed with the bindings A = b and Z = £(B). On the other hand:
unify_with_occurs_check(a(X,b,Z2),a(X,A,£(Z)).

would fail, because Z is not unifiable with £ (Z). Note that (=) /2 would succeed

for the previous examples, giving the following bindings A = b and Z = £ (Z).

copy_term(?TI,-TF) [IS0]
Term TF is a variant of the original term TI, such that for each variable V in
the term TT there is a new variable V’ in term TF.

6.4 Comparing Terms

The following predicates are used to compare and order terms, using the standard ordering:

e variables come before numbers, numbers come before atoms which in turn come before
compound terms, ie: variables @< numbers @< atoms @< compound terms.

e variables are roughly ordered by "age" (the "oldest" variable is put first);

e floating point numbers are sorted in increasing order;

e Integers are sorted in increasing order;

e atoms are sorted in lexicographic order;

e compound terms are ordered first by name, then by arity of the main functor, and
finally by their arguments in left-to-right order.

compare(C,X,Y)
As a result of comparing X and Y, C may take one of the following values:

36 YAP Prolog User’s Manual

e =if X and Y are identical;
e < if X precedes Y in the defined order;
e > if Y precedes X in the defined order;
X ==Y [IS0]
Succeeds if terms X and Y are strictly identical. The difference between this

predicate and =/2 is that, if one of the arguments is a free variable, it only
succeeds when they have already been unified.

7- X ==
fails, but,
7-X=Y, X =

1]
<

succeeds.

7- X == 2.
fails, but,

- X =2, X = 2.
succeeds.

X \==Y [IS0]
Terms X and Y are not strictly identical.

X @< Y [Is0]
Term X precedes term Y in the standard order.

X @=< Y [IS0]
Term X does not follow term Y in the standard order.

X @ Y [IS0]
Term X follows term Y in the standard order.

X @>=Y [IS0]
Term X does not precede term Y in the standard order.

sort(+L,-S)
Unifies S with the list obtained by sorting L and merging identical (in the sense
of ==) elements.

keysort (+L,S)
Assuming L is a list of the form Key-Value, keysort (+L,S) unifies S with the
list obtained from L, by sorting its elements according to the value of Key.
?- keysort([3-a,1-b,2-c,1-a,1-b],S).
would return:
S = [1-b,1-a,1-b,2-c,3-a]
length(?7L,?7S)

Unify the well-defined list L with its length. The procedure can be used to find
the length of a pre-defined list, or to build a list of length S.

Chapter 6: Built-In Predicates

6.5 Arithmetic

Arithmetic expressions in YAP may use the following operators or evaluable predicates:
+X The value of X itself.
-X [IS0] Symmetric value.

X+Y [IS0]
Sum.

X-Y [IS0]
Difference.

X*Y [IS0]
Product.

X/Y [1IS0]
Quotient.

X//Y [1I80]
Integer quotient.

X mod Y [ISO]
Integer remainder.

XremY Integer remainder, the same as mod.

exp(X) [IS0]
Natural exponential.

log(X) [ISO]
Natural logarithm.

logl10(X) Decimal logarithm.

sqrt (X) [Is0]
Square root.

sin(X) [IS0O]
Sine.

cos(X) [IS0O]
Cosine.

tan(X) Tangent.
asin(X) Arc sine.
acos(X) Arc cosine.

atan(X) [ISO]
Arc tangent.

atan2(X) Four-quadrant arc tangent.
sinh(X) Hyperbolic sine.
cosh(X) Hyperbolic cosine.

37

38 YAP Prolog User’s Manual

tanh(X) Hyperbolic tangent.
asinh(X) Hyperbolic arc sine.
acosh(X) Hyperbolic arc cosine.
atanh(X) Hyperbolic arc tangent.

integer (X) [ISO]
If X evaluates to a float, the integer between the value of X and 0 closest to
the value of X, else if X evaluates to an integer, the value of X.

float(X) [ISO]
If X evaluates to an integer, the corresponding float, else the float itself.

float_fractional_part(X) [ISO]
The fractional part of the floating point number X, or 0.0 if X is an integer.
In the iso language mode, X must be an integer.

float_integer_part(X) [ISO]
The float giving the integer part of the floating point number X, or X if X is
an integer. In the iso language mode, X must be an integer.

abs(X) [IS0]
The absolute value of X.

ceiling(X) [ISO]
The float that is the smallest integral value not smaller than X.

In iso language mode the argument must be a floating point-number and the
result is an integer.

floor(X) [ISO]
The float that is the greatest integral value not greater than X.

In iso language mode the argument must be a floating point-number and the
result is an integer.

round (X) [ISO]
The nearest integral value to X. If X is equidistant to two integers, it will be
rounded to the closest even integral value.

In iso language mode the argument must be a floating point-number, the result
is an integer and it the float is equidistant it is rounded up, that is, to the least
integer greater than X.

sign(X) [Is0]
Return 1 if the X evaluates to a positive integer, 0 it if evaluates to 0, and -1
if it evaluates to a negative integer. If X evaluates to a floating-point number
return 1.0 for a positive X, 0.0 for 0.0, and -1.0 otherwise.

truncate(X)
The float that is the integral value between X and 0 closest to X.

max(X,Y) The greater value of X and Y.
min(X,Y) The lesser value of X and Y.

Chapter 6: Built-In Predicates 39

XY X raised to the power of Y, (from the C-Prolog syntax).
exp(X,Y) X raised to the power of Y, (from the Quintus Prolog syntax).

X *x Y [I80]
X raised to the power of Y (from ISO).

X /\ Y [IS0]
Integer bitwise conjunction.

X \/ Y [Is0]
Integer bitwise disjunction.

X #Y [Is0]
Integer bitwise exclusive disjunction.

X <Y Integer bitwise left logical shift of X by Y places.

X >> v [IsS0]
Integer bitwise right logical shift of X by Y places.

\ X [IS0] Integer bitwise negation.
gcd(X,Y) The greatest common divisor of the two integers X and Y.
msb (X) The most significant bit of the integer X.

[X] Evaluates to X for expression X. Useful because character strings in Prolog are
lists of character codes.
X is Y*10+C-"O"
is the same as
X is Y*10+C-[48].
which would be evaluated as:
X is Y*10+C-48.

Besides numbers and the arithmetic operators described above, certain atoms have a
special meaning when present in arithmetic expressions:

pi The value of pi, the ratio of a circle’s circumrefence to its diameter.
e The base of the natural logarithms.
inf Infinity according to the IEEE Floating-Point standard. Note that evaluating

this term will generate a domain error in the iso language mode.

nan Not-a-number according to the IEEE Floating-Point standard. Note that eval-
uating this term will generate a domain error in the iso language mode.

cputime CPU time in seconds, since YAP was invoked.
heapused Heap space used, in bytes.

local Local stack in use, in bytes.

global Global stack in use, in bytes.

random A "random" floating point number between 0 and 1.

40 YAP Prolog User’s Manual

The primitive YAP predicates involving arithmetic expressions are:

X is +Y [2]
This predicate succeeds iff the result of evaluating the expression Y unifies
with X. This is the predicate normally used to perform evaluation of arithmetic
expressions:

X is 2+3%4
succeeds with X = 14.

+X < +Y [IS0]
The value of the expression X is less than the value of expression Y.

+X =< +Y [IS0O]
The value of the expression X is less than or equal to the value of expression
Y.

+X > +Y [IS0]
The value of the expression X is greater than the value of expression Y.

+X >=+Y [IS0]
The value of the expression X is greater than or equal to the value of expression
Y.

+X =:=+Y [IS0]
The value of the expression X is equal to the value of expression Y.

+X =\= +Y [IS0]
The value of the expression X is different from the value of expression Y.

srandom (+X)
Use the argument X as a new seed for YAP’s random number generator. The
argument should be an integer, but floats are acceptable.

Notes:

e In contrast to previous versions of Yap, Yap4 does not convert automatically between
integers and floats.

e arguments to trigonometric functions are expressed in radians.

e if a (non-instantiated) variable occurs in an arithmetic expression YAP will generate
an exception. If no error handler is available, execution will be thrown back to the
top-level.

6.6 I/0 Predicates

Some of the I/O predicates described below will in certain conditions provide error messages
and abort only if the file_errors flag is set. If this flag is cleared the same predicates will
just fail. Details on setting and clearing this flag are given under 7.7.

Chapter 6: Built-In Predicates 41

6.6.1 Handling Streams and Files

open(+F,+M,-S) [IS0]

Opens the file with name F in mode M ('read’, 'write’ or ’append’), returning
S unified with the stream name.

At most, there are 17 streams opened at the same time. Each stream is either
an input or an output stream but not both. There are always 3 open streams:
user_input for reading, user_output for writing and user_error for writ-
ing. If there is no ambiguity, the atoms user_input and user_output may be
referred to as user.

The file_errors flag controls whether errors are reported when in mode 'read’
or 'append’ the file F' does not exist or is not readable, and whether in mode
'write” or ’append’ the file is not writable.

open(+F,+M,-S,+0pts) [IS0]

close(+3)

Opens the file with name F in mode M ('read’, 'write’ or ’append’), returning
S unified with the stream name, and following these options:

type(+T) Specify whether the stream is a text stream (default), or a binary
stream.

reposition(+Bool)
Specify whether it is possible to reposition the stream (true), or
not (false). By default, YAP enables repositioning for all files,
except terminal files and sockets.

eof _action(+Action)
Specify the action to take if attempting to input characters from
a stream where we have previously found an end-of-file. The
possible actions are error, that raises an error, reset, that tries
to reset the stream and is used for tty type files, and eof_code,
which generates a new end-of-file (default for non-tty files).

alias(+Name)
Specify an alias to the stream. The alias Name must be an atom.
The alias can be used instead of the stream descriptor for every
operation concerning the stream.

The operation will fail and give an error if the alias name is already
in use. YAP allows several aliases for the same file, but only one is
returned by stream_property/2

[1s0]

Closes the stream S. If S does not stand for a stream currently opened an error is
reported. The streams user_input, user_output, and user_error can never
be closed.

By default, give a file name, close/1 will also try to close a corresponding open
stream. This feature is not available in ISO or SICStus languages mode and is
deprecated.

42 YAP Prolog User’s Manual

close(+S,+0) [IS0]
Closes the stream S, following options O.

The only valid options are force(true) and force(false). YAP currently
ignores these options.

absolute_file_name (+Name,-FullPath)
Give the path a full path FullPath Yap would use to consult a file named Name.
Unify FullPath with user if the file name is user.

current_stream(F,M,S)
Defines the relation: The stream S is opened on the file F' in mode M. It might
be used to obtain all open streams (by backtracking) or to access the stream
for a file F' in mode M, or to find properties for a stream S.

flush_output [IS0]
Send all data in the output buffer to current output stream.

flush_output (+S) [ISO]
Send all data in the output buffer to stream S.

set_input (+5)
Set stream S as the current input stream. Predicates like read/1 and get/1
will start using stream S.

set_output (+3)
Set stream S as the current output stream. Predicates like write/1 and put/1
will start using stream S.

stream_select (+STREAMS,+TIMEOUT,-READSTREAMS)
Given a list of open STREAMS openeded in read mode and a TIMEOUT return
a list of streams who are now available for reading.
If the TIMEOUT is instantiated to off, stream_select/3 will wait indefinitely
for a stream to become open. Otherwise the timeout must be of the form
SECS:USECS where SECS is an integer gives the number of seconds to wait for a
timeout and USECS adds the number of micro-seconds.

This built-in is only defined if the system call select is available in the system.
current_input (-S) [IS0]
Unify S with the current input stream.
current_output(-S) [ISO]
Unify S with the current output stream.
at_end_of_stream [ISO]
Succeed if the current stream has stream position end-of-stream or past-end-
of-stream.
at_end_of_stream(+S) [ISO]
Succeed if the stream S has stream position end-of-stream or past-end-of-
stream. Note that S must be a readable stream.
set_stream_position(+S, +P0S) [IS0]

Given a stream position POS for a stream S, set the current stream position
for S to be POS.

Chapter 6: Built-In Predicates 43

stream_property(?Stream, ?Prop) [IS0]

Obtain the properties for the open streams. If the first argument is unbound,
the procedure will backtrack through all open streams. Otherwise, the first
argument must be a stream term (you may use current_stream to obtain a
current stream given a file name).

The following properties are recognized:
file_name(P)
An atom giving the file name for the current stream. The file names

are user_input, user_output, and user_error for the standard
streams.

mode(P) The mode used to open the file. It may be one of append, read, or

write.
input The stream is readable.
output The stream is writable.

alias(4) ISO-Prolog primitive for stream aliases. Yap returns one of the
existing aliases for the stream.

position(P)
A term describing the position in the stream.

end_of_stream(E)
Whether the stream is at the end of stream, or it has found the
end of stream and is past, or whether it has not yet reached the
end of stream.

eof _action(4)
The action to take when trying to read after reaching the end of
stream. The action may be one of error, generate an error, eof _
code, return character code -1, or reset the stream.

reposition(B)
Whether the stream can be repositioned or not, that is, whether it
is seekable.

type(T) Whether the stream is a text stream or a binary stream.

6.6.2 Handling Streams and Files

tell (+3)

If S is a currently opened stream for output, it becomes the current output
stream. If S is an atom it is taken to be a filename. If there is no output stream
currently associated with it, then it is opened for output, and the new output
stream created becomes the current output stream. If it is not possible to open
the file, an error occurs. If there is a single opened output stream currently
associated with the file, then it becomes the current output stream; if there are
more than one in that condition, one of them is chosen.

Whenever S is a stream not currently opened for output, an error may be

reported, depending on the state of the file_errors flag. The predicate just fails,
if S is neither a stream nor an atom.

44

YAP Prolog User’s Manual

telling(-S)

told

see(+S)

seeing(-S)

seen

The current output stream is unified with S.

Closes the current output stream, and the user’s terminal becomes again the
current output stream. It is important to remember to close streams after
having finished using them, as the maximum number of simultaneously opened
streams is 17.

If S is a currently opened input stream then it is assumed to be the current input
stream. If S is an atom it is taken as a filename. If there is no input stream
currently associated with it, then it is opened for input, and the new input
stream thus created becomes the current input stream. If it is not possible to
open the file, an error occurs. If there is a single opened input stream currently
associated with the file, it becomes the current input stream; if there are more
than one in that condition, then one of them is chosen.

When S is a stream not currently opened for input, an error may be reported,
depending on the state of the file_errors flag. If S is neither a stream nor
an atom the predicates just fails.

The current input stream is unified with S.

Closes the current input stream (see 6.7.).

6.6.3 Handling Input/Output of Terms

read(-T) [ISO]

Reads the next term from the current input stream, and unifies it with T. The
term must be followed by a dot (’.) and any blank-character as previously
defined. The syntax of the term must match the current declarations for op-
erators (see op). If the end-of-stream is reached, T is unified with the atom
end_of_file. Further reads from of the same stream may cause an error failure
(see open/3).

read_term(-T,+0Options) [ISO]

Reads term T from the current input stream with execution controlled by the
following options:

singletons (-Names)
Unify Names with a list of the form Name=Var, where Name is the
name of a non-anonymous singleton variable in the original term,
and Var is the variable’s representation in YAP.

syntax_errors(+Val)
Control action to be taken after syntax errors. See yap_flag/2 for
detailed information.

variable_names (-Names)
Unify Names with a list of the form Name=Var, where Name is the
name of a non-anonymous variable in the original term, and Var is
the variable’s representation in YAP.

Chapter 6: Built-In Predicates 45

variables(-Names)
Unify Names with a list of the variables in term T.

char_conversion(+IN,+0UT) [IS0O]
While reading terms convert unquoted occurrences of the character IN to the
character OUT. Both IN and OUT must be bound to single characters atoms.

Character conversion only works if the flag char_conversion is on. This is
default in the iso and sicstus language modes. As an example, character
conversion can be used for instance to convert characters from the ISO-LATIN-
1 character set to ASCII.

If IN is the same character as OUT, char_conversion/2 will remove this con-
version from the table.

current_char_conversion(?IN,?0UT) [IS0]
If IN is unbound give all current character translations. Otherwise, give the
translation for IN, if one exists.

write(T) [ISO0]
The term T is written to the current output stream according to the operator
declarations in force.

display (+T)
Displays term T on the current output stream. All Prolog terms are written in
standard parenthesized prefix notation.

write_canonical (+T) [ISO]
Displays term T on the current output stream. Atoms are quoted when neces-
sary, and operators are ignored, that is, the term is written in standard paren-
thesized prefix notation.

write_term(+T, +0Opts) [ISO]
Displays term T on the current output stream, according to the following op-
tions:

quoted (+Bool)
If true, quote atoms if this would be necessary for the atom to
be recognized as an atom by YAP’s parser. The default value is
false.

ignore_ops(+Bool)
If true, ignore operator declarations when writing the term. The
default value is false.

numbervars (+Bool)
If true, output terms of the form >$VAR’ (N), where N is an integer,
as a sequence of capital letters. The default value is false.

portrayed(+Bool)
If true, use portray/1 to portray bound terms. The default value
is false.

max_depth (+Depth)
If Depth is a positive integer, use Depth as the maximum depth to
portray a term. The default is 0, that is, unlimited depth.

46

YAP Prolog User’s Manual

writeq(T) [ISO]

print(T)

Writes the term T, quoting names to make the result acceptable to the predicate
'read’ whenever necessary.

Prints the term T to the current output stream using write/1 unless T is
bound and a call to the user-defined predicate portray/1 succeeds. To do
pretty printing of terms the user should define suitable clauses for portray/1
and use print/1.

format (+T,+L)

Print formatted output to the current output stream. The arguments in list L
are output according to the string or atom T.

A control sequence is introduced by a w. The following control sequences are
available in YAP:

2T Print a single tilde.

’7a? The next argument must be an atom, that will be printed as if by
write.

>~N¢’ The next argument must be an integer, that will be printed as a

character code. The number N is the number of times to print the
character (default 1).

) "'Ne)
) ~NE)
) ~Nf)
) ”Ng)
> “NG’ The next argument must be a floating point number. The float F,
the number N and the control code ¢ will be passed to printf as:
printf("%s.Nc", F)
As an example:
7- format(""8e, "8E, “8f, "8g, “8Gw",
[3.14,3.14,3.14,3.14,3.14,3.14]).
3.140000e+00, 3.140000E+00, 3.140000, 3.14, 3.143.14
>~“Nd’ The next argument must be an integer, and N is the number of
digits after the decimal point. If N is 0 no decimal points will be
printed. The default is N = 0.
?- format("~2d, ~d",[15000, 150001).
150.00, 15000
>~ND’ Identical to > “Nd’, except that commas are used to separate groups
of three digits.
?- format(""2D, “D", [150000, 150000]) .
1,500.00, 150,000
771 Ignore the next argument in the list of arguments:

7- format(’The “i met the boregrove’, [mimsy]).
The met the boregrove

Chapter 6: Built-In Predicates 47

’7k? Print the next argument with write_canonical:

?- format("Good night “k",a+[1,2]).
Good night +(a,[1,2])

’>~Nn’ Print N newlines (where N defaults to 1).

>~NN’ Print N newlines if at the beginning of the line (where N defaults
to 1).

>“Nr’ The next argument must be an integer, and N is interpreted as a

radix, such that 2 <= N <= 36 (the default is 8).

?- format("~2r, 0x~16r, ~r",
[150000, 150000, 150000]).
100100100111110000, 0x249f0, 444760

Note that the letters a-z denote digits larger than 9.

>~NR’ Similar to ""NR’. The next argument must be an integer, and N is
interpreted as a radix, such that 2 <= N <= 36 (the default is 8).
?- format("~2r, O0x~16r, “r",
[150000, 150000, 150000]).
100100100111110000, 0x249F0, 444760

The only difference is that letters A-Z denote digits larger than 9.

’7p’ Print the next argument with print/1:

7- format("Good night “p",a+[1,2]).
Good night a+[1,2]

g’ Print the next argument with writeq/1:

7- format("Good night “q",’Hello’+[1,2]).
Good night ’Hello’+[1,2]

’~Ns’ The next argument must be a list of character codes. The system
then outputs their representation as a string, where N is the maxi-
mum number of characters for the string (N defaults to the length
of the string).

?7- format("The ~s are ~4s",["woods","lovely"l).
The woods are love

2Ty Print the next argument with writeq/1:

?7- format("Good night ~w",’Hello’+[1,2]).
Good night Hello+[1,2]

The number of arguments, N, may be given as an integer, or it may be given
as an extra argument. The next example shows a small procedure to write a
variable number of a characters:

write_many_as(N) :-
format ("~ *c",[N,0’a]).

The format/2 built-in also allows for formatted output. One can specify column
boundaries and fill the intermediate space by a padding character:

48

YAP Prolog User’s Manual

PN Set a column boundary at position N, where N defaults to the
current position.

> "N+ Set a column boundary at N characters past the current position,
where N defaults to 8.

PNt Set padding for a column, where N is the fill code (default is SPC)).

The next example shows how to align columns and padding. We first show
left-alignment:

?- format("“n*Hello~16+*~n", []).
*Hello *

Note that we reserve 16 characters for the column.

The following example shows how to do right-alignment:

?- format("*"tHello~16+*~n", []).
* Hellox*

The ~t escape sequence forces filling before Hello.

We next show how to do centering:
?- format("*"tHello"t~16+*~n",[]).

* Hello *

The two ~t escape sequence force filling both before and after Hello. Space is
then evenly divided between the right and the left sides.

format (+S,+T,+L)

Print formatted output to stream S.

6.6.4 Handling Input/Output of Characters

put (+IV)

Outputs to the current output stream the character whose ASCII code is N.
The character N must be a legal ASCII character code, an expression yielding
such a code, or a list in which case only the first element is used.

put_byte(+N) [IS0]

Outputs to the current output stream the character whose code is N. The
current output stream must be a binary stream.

Chapter 6: Built-In Predicates 49

put_char (+N) [IS0]
Outputs to the current output stream the character who is used to build the
representation of atom A. The current output stream must be a text stream.

put_code (+N) [IS0]
Outputs to the current output stream the character whose ASCII code is N.
The current output stream must be a text stream. The character N must be
a legal ASCII character code, an expression yielding such a code, or a list in
which case only the first element is used.

get(-C) The next non-blank character from the current input stream is unified with C.
Blank characters are the ones whose ASCII codes are not greater than 32. If
there are no more non-blank characters in the stream, C is unified with -1. If
end_of_stream has already been reached in the previous reading, this call will
give an error message.

get0(-C) The next character from the current input stream is consumed, and then unified
with C. There are no restrictions on the possible values of the ASCII code for
the character, but the character will be internally converted by YAP.

get_byte(-C) [IS0]
If C is unbound, or is a character code, and the current stream is a binary
stream, read the next byte from the current stream and unify its code with C.

get_char(-C) [ISO]
If C is unbound, or is an atom representation of a character, and the current
stream is a text stream, read the next character from the current stream and
unify its atom representation with C.

get_code(-C) [IS0]
If C is unbound, or is the code for a character, and the current stream is a text
stream, read the next character from the current stream and unify its code with

C.

peek_byte(-C) [IS0]
If C is unbound, or is a character code, and the current stream is a binary
stream, read the next byte from the current stream and unify its code with C,
while leaving the current stream position unaltered.

peek_char (-C) [ISO]
If C is unbound, or is an atom representation of a character, and the current
stream is a text stream, read the next character from the current stream and
unify its atom representation with C, while leaving the current stream position
unaltered.

peek_code(-C) [IS0]
If C is unbound, or is the code for a character, and the current stream is a text
stream, read the next character from the current stream and unify its code with
C, while leaving the current stream position unaltered.

skip(+N) Skips input characters until the next occurrence of the character with ASCII
code N. The argument to this predicate can take the same forms as those for
put (see 6.11).

50 YAP Prolog User’s Manual

tab(+N) Outputs N spaces to the current output stream.

nl [ISO] Outputs a new line to the current output stream.
6.6.5 Input/Output Predicates applied to Streams

read(+S,-T) [ISO]
Reads term T from the stream S instead of from the current input stream.

read_term(+S,-T,+0Options) [ISO]
Reads term T from stream S with execution controlled by the same options as
read_term/2.

write(+S,T) [IS0]
Writes term T to stream S instead of to the current output stream.

write_canonical (+S,+T) [ISO]
Displays term T on the stream S. Atoms are quoted when necessary, and oper-
ators are ignored.

write_term(+S, +T, +0Opts) [ISO]
Displays term T on the current output stream, according to the same options
used by write_term/3.

writeq(+S,T) [IS0]

As writeq/1, but the output is sent to the stream S.
display(+S,T)

Like display/1, but using stream S to display the term.

print (+S,T)
Prints term T to the stream S instead of to the current output stream.

put (+S,+N)
As put (N), but to stream S.

put_byte(+S,+N) [ISO]
As put_byte(N), but to binary stream S.

put_char(+S,+4) [IS0]
As put_char(A), but to text stream S.

put_code(+S,+N) [ISO]
As put_code(N), but to text stream S.

get (+5,-C)
The same as get(C), but from stream S.

get0(+S,-C)
The same as get0(C), but from stream S.

get_byte(+S,-C) [ISO]
If C is unbound, or is a character code, and the stream S is a binary stream,
read the next byte from that stream and unify its code with C.

Chapter 6: Built-In Predicates 51

get_char(+S,-C) [ISO]
If C is unbound, or is an atom representation of a character, and the stream
S is a text stream, read the next character from that stream and unify its
representation as an atom with C.

get_code(+S,-C) [ISO]
If C is unbound, or is a character code, and the stream S is a text stream, read
the next character from that stream and unify its code with C.

peek_byte(+S,-C) [IS0]
If C is unbound, or is a character code, and S is a binary stream, read the
next byte from the current stream and unify its code with C, while leaving the
current stream position unaltered.

peek_char (+S,-C) [IS0O]
If C is unbound, or is an atom representation of a character, and the stream
S is a text stream, read the next character from that stream and unify its
representation as an atom with C, while leaving the current stream position
unaltered.

peek_code (+S,-C) [IS0]
If C is unbound, or is an atom representation of a character, and the stream
S is a text stream, read the next character from that stream and unify its
representation as an atom with C, while leaving the current stream position
unaltered.

skip (+S,-C)
Like skip/1, but using stream S instead of the current input stream.

tab(+S,+N)
The same as tab/1, but using stream S.

nl(+S) Outputs a new line to stream S.
6.6.6 Compatible C-Prolog predicates for Terminal 1/0

ttyput (+N)
As put (N) but always to user_output.

ttyget (-C)
The same as get (C), but from stream user_input.

ttyget0(-C)
The same as get0(C), but from stream user_input.

ttyskip(-C)
Like skip/1, but always using stream user_input. stream.

ttytab(+N)
The same as tab/1, but using stream user_output.

ttynl Outputs a new line to stream user_output.

52 YAP Prolog User’s Manual

6.6.7 Controlling Input/Output

exists(+F)
Checks if file F' exists in the current directory.

nofileerrors
Switches off the file_errors flag, so that the predicates see/1, tell/1, open/3
and close/1 just fail, instead of producing an error message and aborting
whenever the specified file cannot be opened or closed.

fileerrors
Switches on the file_errors flag so that in certain error conditions I/O predicates
will produce an appropriated message and abort.

write_depth(T,L)
Unifies T and L, respectively, with the values of the maximum depth of a term
and the maximum length of a list, that will be used by write/1 or write/2.
The default value for both arguments is 0, meaning unlimited depth and length.

?7- write_depth(3,5).

yes
7- write(a(b(c(d(e(£(g))))))).
a(b(c(....)))

yes

?- write([1,2,3,4,5,6,7,8]).
[1,2,3,4,5,...]
yes

always_prompt_user
Force the system to prompt the user even if the user_input stream is not a
terminal. This command is useful if you want to obtain interactive control from
a pipe or a socket.

6.6.8 Using Sockets From Yap

YAP includes a SICStus Prolog compatible socket interface. This is a low level interface
that provides direct access to the major socket system calls. These calls can be used both to
open a new connection in the network or connect to a networked server. Socket connections
are described as read/write streams, and standard I/O builtins can be used to write on or
read from sockets. The following calls are available:

socket (+DOMAIN,+TYPE,+PROTOCOL ,-SOCKET)
Corresponds to the BSD system call socket. Create a socket for domain DO-
MAIN of type TYPE and protocol PROTOCOL. Both DOMAIN and TYPE
should be atoms, whereas PROTOCOL must be an integer. The new socket
object is accessible through a descriptor bound to the variable SOCKET.

The current implementation of YAP only accepts two socket domains: ’>AF_
INET’> and ’AF_UNIX’. Socket types depend on the underlying operating sys-
tem, but at least the following types are supported: >SOCK_STREAM’ and ’>S0OCK_
DGRAM”.

Chapter 6: Built-In Predicates 53

socket (+DOMAIN,-SOCKET)
Call socket/4 with TYPE bound to >SOCK_STREAM’ and PROTOCOL bound
to 0.

socket_close (+SOCKET)
Close socket SOCKET. Note that sockets used in socket_connect (that is,
client sockets) should not be closed with socket_close, as they will be au-
tomatically closed when the corresponding stream is closed with close/1 or
close/2.

socket_bind (+SOCKET, ?PORT)
Interface to system call bind, as used for servers: bind socket to a port. Port
information depends on the domain:

>AF_UNIX’ (+FILENAME)
AF_FILE’ (+FILENAME)
use file name FILENAME for UNIX or local sockets.

>AF_INET’ (?HOST, ?PORT)
If HOST is bound to an atom, bind to host HOST, otherwise if
unbound bind to local host (HOST remains unbound). If port
PORT is bound to an integer, try to bind to the corresponding
port. If variable PORT is unbound allow operating systems to
choose a port number, which is unified with PORT.

socket_connect (+SOCKET, +PORT, —-STREAM)
Interface to system call connect, used for clients: connect socket SOCKET to
PORT. The connection results in the read/write stream STREAM.

Port information depends on the domain:

>AF_UNIX’ (+FILENAME)
YAF_FILE’ (+FILENAME)
connect to socket at file FILENAME.

’>AF_INET’ (+HOST,+PORT)
Connect to socket at host HOST and port PORT.

socket_listen(+SOCKET, +LENGTH)
Interface to system call 1listen, used for servers to indicate willingness to wait
for connections at socket SOCKET. The integer LENGTH gives the queue limit
for incoming connections, and should be limited to 5 for portable applications.
The socket must be of type SOCK_STREAM or SOCK_SEQPACKET.

socket_accept (+SOCKET, -STREAM)

socket_accept (+SOCKET, -CLIENT, -STREAM)
Interface to system call accept, used for servers to wait for connections at socket
SOCKET. The stream descriptor STREAM represents the resulting connection.
If the socket belongs to the domain >AF_INET’, CLIENT unifies with an atom
containing the IP address for the client in numbers and dots notation.

socket_accept (+SOCKET, -STREAM)
Accept a connection but do not return client information.

54 YAP Prolog User’s Manual

socket_buffering (+SOCKET, -MODE, -0LD, +NEW)
Set buffering for SOCKET in read or write MODE. OLD is unified with the
previous status, and NEW receives the new status which may be one of unbuf
or fullbuf.

socket_select (+SOCKETS, —-NEWSTREAMS, +TIMEOUT, +STREAMS, —-READSTREAMS)

Interface to system call select, used for servers to wait for connection requests
or for data at sockets. The variable SOCKETS is a list of form KEY-SOCKET,
where KEY is an user-defined identifier and SOCKET is a socket descrip-
tor. The variable TIMEOUT is either off, indicating execution will wait until
something is available, or of the form SEC-USEC, where SEC and USEC give
the seconds and microseconds before socket_select/5 returns. The variable
SOCKETS is a list of form KEY-STREAM, where KEY is an user-defined
identifier and STREAM is a stream descriptor

Execution of socket_select/5 unifies READSTREAMS from STREAMS with
readable data, and NEWSTREAMS with a list of the form KEY-STREAM,
where KEY was the key for a socket with pending data, and STREAM the
stream descriptor resulting from accepting the connection.

current_host (?HOSTNAME)
Unify HOSTNAME with an atom representing the fully qualified hostname for
the current host. Also succeeds if HOSTNAME is bound to the unqualified
hostname.

hostname_address (?HOSTNAME,?IP_ADDRESS)
HOSTNAME is an host name and IP_ADDRESS its IP address in number and

dots notation.

6.7 Using the Clausal Data Base

Predicates in YAP may be dynamic or static. By default, when consulting or reconsulting,
predicates are assumed to be static: execution is faster and the code will probably use less
space. Static predicates impose some restrictions: in general there can be no addition or
removal of clauses for a procedure if it is being used in the current execution.

Dynamic predicates allow programmers to change the Clausal Data Base with the same
flexibility as in C-Prolog. With dynamic predicates it is always possible to add or remove
clauses during execution and the semantics will be the same as for C-Prolog. But the
programmer should be aware of the fact that asserting or retracting are still expensive
operations, and therefore he should try to avoid them whenever possible.

dynamic +P
Declares predicate P or list of predicates [P1,...,Pn| as a dynamic predicate. P
must be written in form: name/arity.

:- dynamic god/1.
a more convenient form can be used:
:— dynamic son/3, father/2, mother/2.

or, equivalently,

Chapter 6: Built-In Predicates 55

:— dynamic [son/3, father/2, mother/2].
Note:

a predicate is assumed to be dynamic when asserted before being defined.

dynamic_predicate(+P,+Semantics)
Declares predicate P or list of predicates [P1,...,Pn] as a dynamic predicate
following either logical or immediate semantics.

6.7.1 Modification of the Data Base

These predicates can be used either for static or for dynamic predicates:

assert (+C)
Adds clause C to the program. If the predicate is undefined, declare it as
dynamic.

Most Prolog systems only allow asserting clauses for dynamic predicates. This
is also as specified in the ISO standard. YAP allows asserting clauses for static
predicates, as long as the predicate is not in use and the language flag is
cprolog. Note that this feature is deprecated, if you want to assert clauses
for static procedures you should use assert_static/1.

asserta(+C) [ISO]
Adds clause C to the beginning of the program. If the predicate is undefined,
declare it as dynamic.

assertz(+C) [IS0]
Adds clause C to the end of the program. If the predicate is undefined, declare
it as dynamic.

Most Prolog systems only allow asserting clauses for dynamic predicates. This
is also as specified in the ISO standard. YAP allows asserting clauses for static
predicates. The current version of YAP supports this feature, but this feature
is deprecated and support may go away in future versions.

abolish(+PredSpec) [ISO]
Deletes the predicate given by PredSpec from the database. If PredSpec is an
unbound variable, delete all predicates for the current module. The specification
must include the name and arity, and it may include module information. Under
iso language mode this builtin will only abolish dynamic procedures. Under
other modes it will abolish any procedures.

abolish(+P,+N)
Deletes the predicate with name P and arity N. It will remove both static and
dynamic predicates.

assert_static(:C)
Adds clause C to a static procedure. Asserting a static clause for a predicate
while choice-points for the predicate are available has undefined results.

asserta_static(:C)
Adds clause C to the beginning of a static procedure.

56 YAP Prolog User’s Manual

assertz_static(:C)
Adds clause C to the end of a static procedure. Asserting a static clause for
a predicate while choice-points for the predicate are available has undefined
results.

The following predicates can be used for dynamic predicates and for static predicates, if
source mode was on when they were compiled:

clause(+H,B) [ISO]
A clause whose head matches H is searched for in the program. Its head and
body are respectively unified with H and B. If the clause is a unit clause, B is
unified with true.

This predicate is applicable to static procedures compiled with source active,
and to all dynamic procedures.

clause(+H,B,-R)
The same as clause/2, plus R is unified with the reference to the clause in the
database. You can use instance/2 to access the reference’s value. Note that
you may not use erase/1 on the reference on static procedures.

nth_clause(+H,I,-R)
Find the Ith clause in the predicate defining H, and give a reference to the
clause. Alternatively, if the reference R is given the head H is unified with a
description of the predicate and I is bound to its position.

The following predicates can only be used for dynamic predicates:

retract (+C) [ISO]
Erases the first clause in the program that matches C. This predicate may
also be used for the static predicates that have been compiled when the source
mode was on. For more information on source/0 (see Section 4.2 [Setting the
Compiler], page 19).

retractall (+G)
Retract all the clauses whose head matches the goal G. Goal G must be a call
to a dynamic predicate.

6.7.2 Looking at the Data Base

listing Lists in the current output stream all the clauses for which source code is
available (these include all clauses for dynamic predicates and clauses for static
predicates compiled when source mode was on).

listing(+P)
Lists predicate P if its source code is available.

portray_clause (+C)
Write clause C as if written by listing/0.

portray_clause(+S,+C)
Write clause C on stream S as if written by listing/0.

Chapter 6: Built-In Predicates 57

current_atom(4)
Checks whether A is a currently defined atom. It is used to find all currently
defined atoms by backtracking.

current_predicate(F) [IS0]
F' is the predicate indicator for a currently defined user or library predicate. F
is of the form Na/Ar, where the atom Na is the name of the predicate, and Ar
its arity.

current_predicate(4,P)
Defines the relation: P is a currently defined predicate whose name is the atom

A.

system_predicate(4,P)
Defines the relation: P is a built-in predicate whose name is the atom A.

predicate_property(P,Prop)
For the predicates obeying the specification P unify Prop with a property of P.
These properties may be:

built_in true for built-in predicates,
dynamic true if the predicate is dynamic
static true if the predicate is static

meta_predicate (M)
true if the predicate has a meta_predicate declaration M.

multifile
true if the predicate was declared to be multifile

imported_from(Mod)
true if the predicate was imported from module Mod.

exported true if the predicate is exported in the current module.

public true if the predicate is public; note that all dynamic predicates are
public.

tabled true if the predicate is tabled; note that only static predicates can
be tabled in YAP.

source true if source for the predicate is available.

number_of _clauses(ClauseCount)
Number of clauses in the predicate definition. Always one if exter-
nal or built-in.

6.7.3 Using Data Base References

Data Base references are a fast way of accessing terms. The predicates erase/1 and
instance/1 also apply to these references and may sometimes be used instead of retract/1
and clause/2.

58 YAP Prolog User’s Manual

assert(+C,-R)
The same as assert(C) (see Section 6.7.1 [Modifying the Database], page 55)
but unifies R with the database reference that identifies the new clause, in a
one-to-one way. Note that asserta/2 only works for dynamic predicates. If
the predicate is undefined, it will automatically be declared dynamic.

asserta(+C,-R)
The same as asserta(C) but unifying R with the database reference that iden-
tifies the new clause, in a one-to-one way. Note that asserta/2 only works
for dynamic predicates. If the predicate is undefined, it will automatically be
declared dynamic.

assertz(+C,-R)
The same as assertz(C) but unifying R with the database reference that iden-
tifies the new clause, in a one-to-one way. Note that asserta/2 only works
for dynamic predicates. If the predicate is undefined, it will automatically be
declared dynamic.

retract(+C,-R)
Erases from the program the clause C whose database reference is R. The
predicate must be dynamic.

6.8 Internal Data Base

Some programs need global information for, eg., counting or collecting data obtained by
backtracking. As a rule, to keep this information, the internal data base should be used
instead of asserting and retracting clauses (as most novice programmers do), . In YAP (as
in some other Prolog systems) the internal data base (i.d.b. for short) is faster, needs less
space and provides a better insulation of program and data than using asserted/retracted
clauses. The i.d.b. is implemented as a set of terms, accessed by keys that unlikely what
happens in (non-Prolog) data bases are not part of the term. Under each key a list of terms
is kept. References are provided so that terms can be identified: each term in the i.d.b. has
a unique reference (references are also available for clauses of dynamic predicates).

recorda(+K,T,-R)
Makes term T the first record under key K and unifies R with its reference.

recordz(+K,T,-R)
Makes term T the last record under key K and unifies R with its reference.

recorda_at (+R0O,T,-R)
Makes term T the record preceeding record with reference RO, and unifies R
with its reference.

recordz_at (+R0O,T,-R)
Makes term T the record following record with reference R0, and unifies R with
its reference.

recordaifnot (+K,T,-R)
If a term equal to T up to variable renaming is stored under key K fail. Other-
wise, make term T the first record under key K and unify R with its reference.

Chapter 6: Built-In Predicates 59

recordzifnot (+K,T,-R)
If a term equal to T up to variable renaming is stored under key K fail. Other-
wise, make term T the first record under key K and unify R with its reference.

recorded(+K,T,R)
Searches in the internal database under the key K, a term that unifies with T
and whose reference matches R. This built-in may be used in one of two ways:

e K may be given, in this case the built-in will return all elements of the
internal data-base that match the key.

e R may be given, if so returning the key and element that match the refer-
ence.

nth_instance(?K,?Index,T,?R)
Fetches the Indexnth entry in the internal database under the key K. Entries
are numbered from one. If the key K are the Index are bound, a reference is
unified with R. Otherwise, the reference R must be given, and the term the
system will find the matching key and index.

erase(+R)
The term referred to by R is erased from the internal database. If reference R
does not exist in the database, erase just fails.

erased(+R)
Succeeds if the object whose database reference is R has been erased.

instance(+R,-T)
If R refers to a clause or a recorded term, T is unified with its most general
instance. If R refers to an unit clause C, then T is unified with C :- true.
When R is not a reference to an existing clause or to a recorded term, this goal
fails.

eraseall (+K)
All terms belonging to the key K are erased from the internal database. The
predicate always succeeds.

current_key(74,7K)
Defines the relation: K is a currently defined database key whose name is the
atom A. It can be used to generate all the keys for the internal data-base.

key_statistics(+K,-Entries,-Size,-IndexSize)
Returns several statistics for a key K. Currently, it says how many entries we
have for that key, Entries, what is the total size spent on entries, Size, and what
is the amount of space spent in indices.

key_statistics(+K,-Entries,-TotalSize)
Returns several statistics for a key K. Currently, it says how many entries we
have for that key, Entries, what is the total size spent on this key.

get_value(+4,-V)
In YAP, atoms can be associated with constants. If one such association exists

for atom A, unify the second argument with the constant. Otherwise, unify V'
with [J.

This predicate is YAP specific.

60 YAP Prolog User’s Manual

set_value(+4,+C)
Associate atom A with constant C.

The set_value and get_value built-ins give a fast alternative to the internal
data-base. This is a simple form of implementing a global counter.

read_and_increment_counter(Value) :-
get_value(counter, Value),
Valuel is Value+1,
set_value(counter, Valuel).

This predicate is YAP specific.

recordzifnot (+K,T,-R)
If a variant of T is stored under key K fail. Otherwise, make term T the last
record under key K and unify R with its reference.

This predicate is YAP specific.

recordaifnot (+K,T,-R)
If a variant of T is stored under key K fail. Otherwise, make term T the first
record under key K and unify R with its reference.

This predicate is YAP specific.

There is a strong analogy between the i.d.b. and the way dynamic predicates are stored.
In fact, the main i.d.b. predicates might be implemented using dynamic predicates:

recorda(X,T,R) :- asserta(idb(X,T),R).
recordz(X,T,R) :- assertz(idb(X,T),R).
recorded(X,T,R) :- clause(idb(X,T),R).

We can take advantage of this, the other way around, as it is quite easy to write a simple
Prolog interpreter, using the i.d.b.:

asserta(G) :- recorda(interpreter,G,_).

assertz(G) :- recordz(interpreter,G,_).

retract(G) :- recorded(interpreter,G,R), !, erase(R).

call(V) :- var(Vv), !, fail.

call((H :- B)) :- !, recorded(interpreter,(H :- B),_), call(B).
call(G) :- recorded(interpreter,G,_).

In YAP, much attention has been given to the implementation of the i.d.b., especially to the
problem of accelerating the access to terms kept in a large list under the same key. Besides
using the key, YAP uses an internal lookup function, transparent to the user, to find only
the terms that might unify. For instance, in a data base containing the terms

b

b(a)

c(d)

e(g)

b(X)

e(h)

stored under the key k/1, when executing the query
:— recorded(k(_),c(_),R).

Chapter 6: Built-In Predicates 61

recorded would proceed directly to the third term, spending almost the time as if a(X) or
b(X) was being searched. The lookup function uses the functor of the term, and its first
three arguments (when they exist). So, recorded(k(_),e(h),_) would go directly to the
last term, while recorded(k(_),e(_),_) would find first the fourth term, and then, after
backtracking, the last one.

This mechanism may be useful to implement a sort of hierarchy, where the functors of
the terms (and eventually the first arguments) work as secondary keys.

In the YAP’s i.d.b. an optimized representation is used for terms without free variables.
This results in a faster retrieval of terms and better space usage. Whenever possible, avoid
variables in terms in terms stored in the i.d.b.

6.9 The Blackboard

YAP implements a blackboard in the style of the SICStus Prolog blackboard. The black-
board uses the same underlying mechanism as the internal data-base but has several im-
portant differences:

e It is module aware, in contrast to the internal data-base.
e Keys can only be atoms or integers, and not compound terms.
e A single term can be stored per key.

e An atomic update operation is provided; this is useful for parallelism.

bb_put (+Key, ?Term)
Store term table Term in the blackboard under key Key. If a previous term
was stored under key Key it is simply forgotten.

bb_get (+Key,?Term)
Unify Term with a term stored in the blackboard under key Key, or fail silently
if no such term exists.

bb_delete(+Key,?Term)
Delete any term stored in the blackboard under key Key and unify it with
Term. Fail silently if no such term exists.

bb_update (+Key,?Term,?New)
Atomically unify a term stored in the blackboard under key Key with Term,
and if the unification succeeds replace it by New. Fail silently if no such term
exists or if unification fails.

6.10 Collecting Solutions to a Goal

When there are several solutions to a goal, if the user wants to collect all the solutions he
may be led to use the data base, because backtracking will forget previous solutions.

YAP allows the programmer to choose from several system predicates instead of writing
his own routines. findall/3 gives you the fastest, but crudest solution. The other built-in
predicates postprocess the result of the query in several different ways:

62 YAP Prolog User’s Manual

findall(T,+G,-L) [IS0O]
Unifies L with a list that contains all the instantiations of the term T satisfying
the goal G.
With the following program:
a(2,1).
a(1,1).
a(2,2).
the answer to the query
findall(X,a(X,Y),L).

would be:
X = _32
Y = _33
L = [2,1,2];
no

findall(T,+G,+L,-L0)
Similar to £indall/3, but appends all answers to list LO.

all(T,+G,-L)
Similar to £indall(T,G,L) but eliminating repeated elements. Thus, assuming
the same clauses as in the above example, the reply to the query

all(X,a(X,Y),L).

would be:
X = _32
Y = _33
L = [2,1];
no

bagof (T,+G,-L) [IS0]
For each set of possible instances of the free variables occurring in G but not
in T, generates the list L of the instances of T satisfying G. Again, assuming
the same clauses as in the examples above, the reply to the query

bagof (X,a(X,Y),L).

would be:
X = _32

Y =1

L = [2,1];
X = _32

Y =2

L = [2];
no

setof (X,+P,-B) [IS0]
Similar to bagof (T,G,L) but sorting list L and keeping only one copy of each
element. Again, assuming the same clauses as in the examples above, the reply
to the query

Chapter 6: Built-In Predicates 63

setof (X,a(X,Y),L).

would be:
X = _32
Y=1
L = [1,2];
X = _32
Y =2
L = [2];
no

6.11 Grammar Rules

Grammar rules in Prolog are both a convenient way to express definite clause grammars
and an extension of the well known context-free grammars.

A grammar rule is of the form:
head --> body

where both head and body are sequences of one or more items linked by the standard
conjunction operator ’,’.

Items can be:

e a non-terminal symbol may be either a complex term or an atom.

a terminal symbol may be any Prolog symbol. Terminals are written as Prolog lists.
e an empty body is written as the empty list '[]".

e cxtra conditions may be inserted as Prolog procedure calls, by being written inside
curly brackets '{” and ’}’.

e the left side of a rule consists of a nonterminal and an optional list of terminals.

e alternatives may be stated in the right-hand side of the rule by using the disjunction
operator ’;’.

e the cut and conditional symbol (->’) may be inserted in the right hand side of a
grammar rule

Grammar related built-in predicates:

expand_term(T,-X)
This predicate is used by YAP for preprocessing each top level term read when
consulting a file and before asserting or executing it. It rewrites a term T to
a term X according to the following rules: first try to use the user defined
predicate term_expansion/2. If this call fails then the translating process for
DCG rules is applied, together with the arithmetic optimizer whenever the
compilation of arithmetic expressions is in progress.

user:goal_expansion(+G,+M,-NG)
Yap now supports goal_expansion/3. This is an user-defined procedure that
is called after term expansion when compiling or asserting goals for each sub-
goal in a clause. The first argument is bound to the goal and the second to the
module under which the goal G will execute. If goal_expansion/3 succeeds

64 YAP Prolog User’s Manual

the new sub-goal NG will replace G and will be processed in the same way. If

goal_expansion/3 fails the system will use the default rules.
phrase(+P,L,R)

This predicate succeeds when the difference list L-R is a phrase of type P.
phrase(+P,L)

This predicate succeeds when L is a phrase of type P. The same as

phrase(P,L, [1).

Both this predicate and the previous are used as a convenient way to start
execution of grammar rules.

’C’(81,T,82)
This predicate is used by the grammar rules compiler and is defined as
’C’ ([HIT],H,T).

6.12 Access to Operating System Functionality

The following built-in predicates allow access to underlying Operating System functionality:
cd(+D) Changes the current directory (on UNIX environments).

environ(+E,-S)
Given an enviromment variable E this predicate unifies the second argument S
with its value.

getcwd(-D)
Unify the current directory, represented as an atom, with the argument D.

putenv (+E,+S)
Set environment variable E to the value S. If the environment variable E does
not exist, create a new one. Both the environment variable and the value must
be atoms.

rename (+F,+G)
Renames file F to G.

sh Creates a new shell interaction.

system(+S)
Passes command S to the Bourne shell (on UNIX environments) or the current
command interpreter in WIN32 environments.

unix(+S) Access to Unix-like functionality:

argv/1 Return a list of arguments to the program. These are the arguments
that follow a --, as in the usual Unix convention.

cd/0 Change to home directory.

cd/1 Change to given directory. Acceptable directory names are strings
or atoms.

environ/2

If the first argument is an atom, unify the second argument with
the value of the corresponding environment variable.

Chapter 6: Built-In Predicates 65

getcwd/1 Unify the first argument with an atom representing the current
directory.

putenv/2 Set environment variable E to the value S. If the environment vari-
able E does not exist, create a new one. Both the environment
variable and the value must be atoms.

shell/1 Execute command under current shell. Acceptable commands are
strings or atoms.

system/1 Execute command with /bin/sh. Acceptable commands are strings
or atoms.

shell/0 Execute a new shell.

alarm(+Seconds,+Callable,+01dAlarm)
Arranges for YAP to be interrupted in Seconds seconds. When interrupted,
YAP will execute Callable and then return to the previous execution. If Seconds
is 0, no new alarm is scheduled. In any event, any previously set alarm is
canceled.

The variable OldAlarm unifies with the number of seconds remaining until any
previously scheduled alarm was due to be delivered, or with 0 if there was no
previously scheduled alarm.

Note that execution of Callable will wait if YAP is executing built-in predicates,
such as Input/Output operations.

The next example shows how alarm/3 can be used to implement a simple clock:

loop :- loop.

ticker :- write(’.’), flush_output,
get_value(tick, yes),
alarm(1l,ticker,_).

:- set_value(tick, yes), alarm(l,ticker,_), loop.
The clock, ticker, writes a dot and then checks the flag tick to see whether it
can continue ticking. If so, it calls itself again. Note that there is no guarantee
that the each dot corresponds a second: for instance, if the YAP is waiting for
user input, ticker will wait until the user types the entry in.
The next example shows how alarm/3 can be used to guarantee that a certain
procedure does not take longer than a certain amount of time:

loop :- loop.

1= catch((alarm(10, throw(ball), _),loop),
ball,
format (’Quota exhausted.™n’,[])).
In this case after 10 seconds our loop is interrupted, ball is thrown, and the
handler writes Quota exhausted. Execution then continues from the handler.
Note that in this case Loop/0 always executes until the alarm is sent. Often, the
code you are executing succeeds or fails before the alarm is actually delivered. In

66 YAP Prolog User’s Manual

this case, you probably want to disable the alarm when you leave the procedure.
The next procedure does exactly so:

once_with_alarm(Time,Goal,DoOnAlarm) :-
catch(execute_once_with_alarm(Time, Goal), alarm, DoOnAlarm) .l

execute_once_with_alarm(Time, Goal) :-
alarm(Time, alarm, _),
(call(Goal) -> alarm(0, alarm, _) ; alarm(0, alarm, _)).H

The procedure has three arguments: the Time before the alarm is sent; the
Goal to execute; and the goal DoOnAlarm to execute if the alarm is sent. It
uses catch/3 to handle the case the alarm is sent. Then it starts the alarm,
calls the goal Goal, and disables the alarm on success or failure.

on_signal (+Signal,?01dAction,+Callable)
Set the interrupt handler for soft interrupt Signal to be Callable. OldAction is
unified with the previous handler.

Only a subset of the software interrupts (signals) can have their handlers ma-
nipulated through on_signal/3. Their POSIX names, YAP names and default
behavior is given below. The "YAP name" of the signal is the atom that is
associated with each signal, and should be used as the first argument to on_
signal/3. It is chosen so that it matches the signal’s POSIX name.

on_signal/3 succeeds, unless when called with an invalid signal name or one

that is not supported on this platform. No checks are made on the handler
provided by the user.

SIGHUP (Hangup)
sig_hup in YAP; Reconsult the initialization files ~/.yapre, ~/.pro-
logre and ~/prolog.ini.

SIGUSR1 and SIGUSR2 (User signals)
sig_usrl and sig_usr2 in YAP; Print a message and halt.

A special case is made, where if Callable is bound to default, then the default
handler is restored for that signal.

A call in the form on_signal(S,H,H) can be used to retrieve a signal’s current
handler without changing it.

It must be noted that although a signal can be received at all times, the handler
is not executed while Yap is waiting for a query at the prompt. The signal will
be, however, registered and dealt with as soon as the user makes a query.

Please also note, that neither POSIX Operating Systems nor Yap guarantee
that the order of delivery and handling is going to correspond with the order
of dispatch.

6.13 Term Modification

It is sometimes useful to change the value of instantiated variables. Although, this is against
the spirit of logic programming, it is sometimes useful. As in other Prolog systems, YAP

Chapter 6: Built-In Predicates 67

has several primitives that allow updating Prolog terms. Note that these primitives are also
backtrackable.

The setarg/3 primitive allows updating any argument of a Prolog compound terms.
The mutable family of predicates provides mutable variables. They should be used instead
of setarg/3, as they allow the encapsulation of accesses to updatable variables. Their
implementation can also be more efficient for long deterministic computations.

setarg(+I,+S,7T)
Set the value of the Ith argument of term S to term T.

create_mutable(+D,-M)
Create new mutable variable M with initial value D.

get_mutable(?D,+M)
Unify the current value of mutable term M with term D.

is_mutable(?D)
Holds if D is a mutable term.

get_mutable(?D,+M)
Unify the current value of mutable term M with term D.

update_mutable (+D,+M)
Set the current value of mutable term M to term D.

6.14 Profiling Prolog Programs

Predicates compiled with YAP’s flag profiling set to on, keep information on the number
of times the predicate was called. This information can be used to detect what are the most
commonly called predicates in the program.

The YAP profiling sub-system is currently under-development. Functionality for this
sub-system will increase with newer implementation.

Notes:
e Profiling works for both static and dynamic predicates.
e Currently only information on entries and retries to a predicate are maintained. This
may change in the future.

e As an example, the following user-level program gives a list of the most often called
procedures in a program. The procedure 1ist_profile shows all procedures, irrespec-
tive of module, and the procedure list_profile/1 shows the procedures being used
in a specific module.

list_profile :-
% get number of calls for each profiled procedure

setof (D-[M:P|D1], (current_module(M) ,profile_data(M:P,calls,D) ,profile_data

% output so that the most often called
% predicates will come last:
write_profile_data(LP).

list_profile(Module) :-

68 YAP Prolog User’s Manual

% get number of calls for each profiled procedure

setof (D-[Module:P|D1], (profile_data(Module:P,calls,D),profile_data(Module:!
% output so that the most often called

% predicates will come last:

write_profile_data(LP).

write_profile_data([]).
write_profile_data([D-[M:P|R]|SLP]) :-
% swap the two calls if you want the most often
% called predicates first.
format(’~a: w: "32+7t"d~12+"t"d~12+"n’, [M,P,D,R]),
write_profile_data(SLP).

These are the current predicates to access and clear profiling data:

profile_data(?Na/Ar, ?Parameter, —Data)
Give current profile data on Parameter for a predicate described by the pred-
icate indicator Na/Ar. If any of Na/Ar or Parameter are unbound, backtrack
through all profiled predicates or stored parameters. Current parameters are:

calls Number of times a procedure was called.

retries Number of times a call to the procedure was backtracked to and
retried.

profile_reset
Reset all profiling information.

6.15 Counting Calls

Predicates compiled with YAP’s flag call_counting set to on update counters on the
numbers of calls and of retries. Counters are actually decreasing counters, so that they can
be used as timers. Three counters are available:

e calls: number of predicate calls since execution started or since system was reset;

e retries: number of retries for predicates called since execution started or since coun-
ters were reset;

e calls_and_retries: count both on predicate calls and retries.
These counters can be used to find out how many calls a certain goal takes to execute.
They can also be used as timers.

The code for the call counters piggybacks on the profiling code. Therefore, activating
the call counters also activates the profiling counters.

These are the predicates that access and manipulate the call counters:
call_count_data(-Calls, -Retries, -CallsAndRetries)

Give current call count data. The first argument gives the current value for the
Calls counter, next the Retries counter, and last the CallsAndRetries counter.

call_count_reset
Reset call count counters. All timers are also reset.

Chapter 6: Built-In Predicates 69

call_count(?CallsMax, ?RetriesMax, 7CallsAndRetriesMax)
Set call count counter as timers. YAP will generate an exception if one of the
instantiated call counters decreases to 0. YAP will ignore unbound arguments:

e (allsMax: throw the exception call_counter when the counter calls
reaches 0;

e RetriesMax: throw the exception retry_counter when the counter
retries reaches 0;

e CallsAndRetriesMax: throw the exception call_and_retry_counter
when the counter calls_and_retries reaches 0.

Next, we show a simple example of how to use call counters:

?7- yap_flag(call_counting,on), [-user]. 1 :- 1. end_of_file. yap_flag(call_counting
yes

yes
?- catch((call_count(10000,_,_),1),call_counter,format("limit_exceeded. n",[])) .1

limit_exceeded.

yes
Notice that we first compile the looping predicate 1/0 with call_counting on. Next,
we catch/3 to handle an exception when 1/0 performs more than 10000 reductions.

6.16 Arrays

The YAP system includes experimental support for arrays. The support is enabled with
the option YAP_ARRAYS.

There are two very distinct forms of arrays in YAP. The dynamic arrays are a differ-
ent way to access compound terms created during the execution. Like any other terms,
any bindings to these terms and eventually the terms themselves will be destroyed during
backtracking. Our goal in supporting dynamic arrays is twofold. First, they provide an al-
ternative to the standard arg/3 built-in. Second, because dynamic arrays may have name
that are globally visible, a dynamic array can be visible from any point in the program. In
more detail, the clause

g(X) :- array_element(a,2,X).

will succeed as long as the programmer has used the builtin array/2 to create an array
term with at least 3 elements in the current environment, and the array was associated with
the name a. The element X is a Prolog term, so one can bind it and any such bindings will
be undone when backtracking. Note that dynamic arrays do not have a type: each element
may be any Prolog term.

The static arrays are an extension of the database. They provide a compact way for
manipulating data-structures formed by characters, integers, or floats imperatively. They
can also be used to provide two-way communication between YAP and external programs
through shared memory.

70 YAP Prolog User’s Manual

In order to efficiently manage space elements in a static array must have a type. Cur-
rently, elements of static arrays in YAP should have one of the following predefined types:

e byte: an 8-bit signed character.

e unsigned_byte: an 8-bit unsigned character.

e int: Prolog integers. Size would be the natural size for the machine’s architecture.
e float: Prolog floating point number. Size would be equivalent to a double in C.

e atom: a Prolog atom.

e dbref: an internal database reference.

e term: a generic Prolog term. Note that this will term will not be stored in the array
itself, but instead will be stored in the Prolog internal database.

Arrays may be named or anonymous. Most arrays will be named, that is associated with
an atom that will be used to find the array. Anonymous arrays do not have a name, and
they are only of interest if the TERM_EXTENSIONS compilation flag is enabled. In this case,
the unification and parser are extended to replace occurrences of Prolog terms of the form
X[I] by run-time calls to array_element/3, so that one can use array references instead
of extra calls to arg/3. As an example:

g(X,Y,Z,1,7) :- X[I] is Y[J]1+Z[I].
should give the same results as:

G(X,Y,Z,1,J) :-
array_element (X,I,E1),
array_element(Y,J,E2),
array_element(Z,I,E3),
E1l is E2+E3.

Note that the only limitation on array size are the stack size for dynamic arrays; and,
the heap size for static (not memory mapped) arrays. Memory mapped arrays are limited
by available space in the file system and in the virtual memory space.

The following predicates manipulate arrays:

array(+Name, +Size)
Creates a new dynamic array. The Size must evaluate to an integer. The Name
may be either an atom (named array) or an unbound variable (anonymous
array).

Dynamic arrays work as standard compound terms, hence space for the array
is recovered automatically on backtracking.

static_array(+Name, +Size, +Type)
Create a new static array with name Name. Note that the Name must be an
atom (named array). The Size must evaluate to an integer. The Type must be
bound to one of types mentioned previously.

static_array_properties(?Name, ?Size, ?Type)
Show the properties size and type of a static array with name Name. Can also
be used to enumerate all current static arrays.

This built-in will silently fail if the there is no static array with that name.

Chapter 6: Built-In Predicates 71

static_array_to_term(?Name, ?Term)
Convert a static array with name Name to a compound term of name Name.

This built-in will silently fail if the there is no static array with that name.

mmapped_array (+Name, +Size, +Type, +File)
Similar to static_array/3, but the array is memory mapped to file File. This
means that the array is initialized from the file, and that any changes to the
array will also be stored in the file.

This built-in is only available in operating systems that support the system call
mmap. Moreover, mmapped arrays do not store generic terms (type term).

close_static_array (+Name)
Close an existing static array of name Name. The Name must be an atom
(named array). Space for the array will be recovered and further accesses to
the array will return an error.

resize_static_array(+Name, -01dSize, +NewSize)
Expand or reduce a static array, The Size must evaluate to an integer. The
Name must be an atom (named array). The Type must be bound to one of
int, dbref, float or atom.

Note that if the array is a mmapped array the size of the mmapped file will be
actually adjusted to correspond to the size of the array.

array_element (+Name, +Index, 7Element)
Unify Element with Name[Index]. It works for both static and dynamic arrays,
but it is read-only for static arrays, while it can be used to unify with an element
of a dynamic array.

update_array(+Name, +Index, ?Value)
Attribute value Value to Name|Index]. Type restrictions must be respected
for static arrays. This operation is available for dynamic arrays if MULTI_
ASSIGNMENT_VARIABLES is enabled (true by default). Backtracking undoes up-
date_array/3 for dynamic arrays, but not for static arrays.

Note that update_array/3 actually uses setarg/3 to update elements of dy-
namic arrays, and setarg/3 spends an extra cell for every update. For intensive
operations we suggest it may be less expensive to unify each element of the array
with a mutable terms and to use the operations on mutable terms.

add_to_array_element (+Name, +Index, , +Number, ?NewValue)
Add Number Name[Index] and unify NewValue with the incremented value.
Observe that Name[Index] must be an number. If Name is a static array the
type of the array must be int or float. If the type of the array is int you
only may add integers, if it is float you may add integers or floats. If Name
corresponds to a dynamic array the array element must have been previously
bound to a number and Number can be any kind of number.

The add_to_array_element/3 built-in actually uses setarg/3 to update ele-
ments of dynamic arrays. For intensive operations we suggest it may be less
expensive to unify each element of the array with a mutable terms and to use
the operations on mutable terms.

72 YAP Prolog User’s Manual

6.17 Predicate Information

Built-ins that return information on the current predicates and modules:

current_module (M)
Succeeds if M are defined modules. A module is defined as soon as some
predicate defined in the module is loaded, as soon as a goal in the module is
called, or as soon as it becomes the current typein module.

current_module(M,F)
Succeeds if M are current modules associated to the file F.

6.18 Miscellaneous

statistics/0
Send to the current user error stream general information on space used and
time spent by the system.

7?- statistics.

memory (total) 4784124 bytes
program space 3055616 bytes: 1392224 in use, 1663392 freell
2228132 maxil
stack space 1531904 bytes: 464 in use, 1531440 freell
global stack: 96 in use, 616684 maxfi
local stack: 368 in use, 546208 maxll
trail stack 196604 bytes: 8 in use, 196596 freel}
0.010 sec. for 5 code, 2 stack, and 1 trail space overflows]]

0.130 sec. for 3 garbage collections which collected 421000 bytesf]
0.000 sec. for O atom garbage collections which collected O bytes|i

0.880 sec. runtime

1.020 sec. cputime

25.055 sec. elapsed time

The example shows how much memory the system spends. Memory is divided
into Program Space, Stack Space and Trail. In the example we have 3MB
allocated for program spaces, with less than half being actually used. Yap also
shows the maximum amount of heap space having been used which was over
2MB.

The stack space is divided into two stacks which grow against each other. We
are in the top level so very little stack is being used. On the other hand, the
system did use a lot of global and local stack during the previous execution (we
refer the reader to a WAM tutorial in order to understand what are the global
and local stacks).

Yap also shows information on how many memory overflows and garbage col-
lections the system executed, and statistics on total execution time. Cputime
includes all running time, runtime excludes garbage collection and stack over-
flow time.

Chapter 6: Built-In Predicates 73

statistics(?Param,-Info)
Gives statistical information on the system parameter given by first argument:

cputime [Time since Boot,Time From Last Call to Cputime]
This gives the total cputime in milliseconds spent executing Prolog
code, garbage collection and stack shifts time included.

garbage_collection
[Number of GCs,Total Global Recovered, Total Time Spent]
Number of garbage collections, amount of space recovered
in kbytes, and total time spent doing garbage collection in
milliseconds. More detailed information is available using
yap_flag(gc_trace,verbose).

global_stack
[Global Stack Used,Execution Stack Free]
Space in kbytes currently used in the global stack, and space avail-
able for expansion by the local and global stacks.

local_stack
[Local Stack Used,Execution Stack Free]
Space in kbytes currently used in the local stack, and space available
for expansion by the local and global stacks.

heap [Heap Used,Heap Free]
Total space in kbytes not recoverable in backtracking. It includes
the program code, internal data base, and, atom symbol table.

program [Program Space Used, Program Space Free]
Equivalent to heap.

runtime [Time since Boot, Time From Last Call to Runtime]
This gives the total cputime in milliseconds spent executing Prolog
code, not including garbage collections and stack shifts. Note that
until Yap4.1.2 the runtime statistics would return time spent on
garbage collection and stack shifting.

stack_shifts
[Number of Heap Shifts,Number of Stack Shifts, Number of
Trail Shifts]
Number of times YAP had to expand the heap, the stacks,
or the trail. More detailed information is available using
yap_flag(gc_trace,verbose).

trail [Trail Used,Trail Free]
Space in kbytes currently being used and still available for the trail.

walltime [Time since Boot,Time From Last Call to Runtime]
This gives the clock time in milliseconds since starting Prolog.

yap_flag(?Param,?Value)
Set or read system properties for Param:

74

YAP Prolog User’s Manual

argv
Read-only flag. It unifies with a list of atoms that gives the argu-
ments to Yap after —-.

bounded [IS0]

Read-only flag telling whether integers are bounded. The value
depends on whether YAP uses the GMP library or not.

profiling

If off (default) do not compile call counting information for pro-
cedures. If on compile predicates so that they calls and retries to
the predicate may be counted. Profiling data can be read through
the call_count_data/3 built-in.

char_conversion [ISO]
Writable flag telling whether a character conversion table is used

when reading terms. The default value for this flag is off except
in sicstus and iso language modes, where it is on.

character_escapes [IS0]

Writable flag telling whether a character escapes are enables, on,
or disabled, off. The default value for this flag is on.

debug [IS0O]

If Value is unbound, tell whether debugging is on or off. If Value
is bound to on enable debugging, and if it is bound to off disable
debugging.

discontiguous_warnings

If Value is unbound, tell whether warnings for discontiguous predi-
cates are on or off. If Value is bound to on enable these warnings,
and if it is bound to off disable them. The default for YAP is off,
unless we are in sicstus or iso mode.

dollar_as_lower_case

If off (default) consider the character '$’ a control character, if on
consider ’$” a lower case character.

double_quotes [ISO]

If Value is unbound, tell whether a double quoted list of characters
token is converted to a list of atoms, chars, to a list of integers,
codes, or to a single atom, atom. If Value is bound, set to the
corresponding behavior. The default value is codes.

Chapter 6: Built-In Predicates 75

fast
If on allow fast machine code, if off (default) disable it. Only
available in experimental implementations.
fileerrors
If on fileerrors is on, if off (default) fileerrors is disabled.
gc

If on allow garbage collection (default), if off disable it.

gc_margin

Set or show the minimum free stack before starting garbage collec-
tion. The default depends on total stack size.

gc_trace
If off (default) do not show information on garbage collection and
stack shifts, if on inform when a garbage collection or stack shift
happened, if verbose give detailed information on garbage collec-
tion and stack shifts. Last, if very_verbose give detailed informa-
tion on data-structures found during the garbage collection process,
namely, on choice-points.

host_type

Return configure system information, including the machine-id
for which Yap was compiled and Operating System information.

index
If on allow indexing (default), if off disable it.

informational_messages

If on allow printing of informational messages, such as the ones that
are printed when consulting. If off disable printing these messages.
It is on by default except if Yap is booted with the -L flag.

integer_rounding_function [ISO]

Read-only flag telling the rounding function used for integers. Takes
the value down for the current version of YAP.

language
Choose whether YAP is closer to C-Prolog, cprolog, iso-prolog,
iso or SICStus Prolog, sicstus. The current default is cprolog.
This flag affects update semantics, leashing mode, style_checking,
handling calls to undefined procedures, how directives are inter-
preted, when to use dynamic, character escapes, and how files are
consulted.

76

YAP Prolog User’s Manual

max_arity [ISO]

Read-only flag telling the maximum arity of a functor. Takes the
value unbounded for the current version of YAP.

max_integer [ISO]

Read-only flag telling the maximum integer in the implementation.
Depends on machine and Operating System architecture, and on
whether YAP uses the GMP multiprecision library. If bounded is
false, requests for max_integer will fail.

min_integer [IS0]

Read-only flag telling the minimum integer in the implementation.
Depends on machine and Operating System architecture, and on
whether YAP uses the GMP multiprecision library. If bounded is
false, requests for min_integer will fail.

n_of_integer_keys_in_bb

Read or set the size of the hash table that is used for looking up
the blackboard when the key is an integer.

n_of_integer_keys_in_db

Read or set the size of the hash table that is used for looking up
the internal data-base when the key is an integer.

profiling

If off (default) do not compile profiling information for procedures.
If on compile predicates so that they will output profiling infor-
mation. Profiling data can be read through the profile_data/3
built-in.

redefine_warnings

If Value is unbound, tell whether warnings for procedures defined
in several different files are on or off. If Value is bound to on
enable these warnings, and if it is bound to off disable them. The
default for YAP is off, unless we are in sicstus or iso mode.

single_var_warnings

If Value is unbound, tell whether warnings for singleton variables
are on or off. If Value is bound to on enable these warnings, and
if it is bound to off disable them. The default for YAP is off,
unless we are in sicstus or iso mode.

Chapter 6: Built-In Predicates 7

strict_iso

If Value is unbound, tell whether strict ISO compatibility mode is
on or off. If Value is bound to on set language mode to iso and
enable strict mode. If Value is bound to off disable strict mode,
and keep the current language mode. The default for YAP is off.

Under strict ISO prolog mode all calls to non-ISO built-ins generate
an error. Compilation of clauses that would call non-ISO built-ins
will also generate errors. Pre-processing for grammar rules is also
disabled. Module expansion is still performed.

Arguably, ISO Prolog does not provide all the functionality required
from a modern Prolog system. Moreover, because most Prolog im-
plementations do not fully implement the standard and because the
standard itself gives the implementor latitude in a few important
questions, such as the unification algorithm and maximum size for
numbers there is not guarantee that programs compliant with this
mode will work the same way in every Prolog and in every platform.
We thus believe this mode is mostly useful when investigating how
a program depends on a Prolog’s platform specific features.

stack_dump_on_error

If on show a stack dump when Yap finds an error. The default is
off.

syntax_errors

Control action to be taken after syntax errors while executing
read/1, read/2, or read_term/3:

decl0

Report the syntax error and retry reading the term.
fail

Report the syntax error and fail (default).
error

Report the syntax error and generate an error
quiet

Just fail

system_options

This read only flag tells which options were used to compile Yap.
Currently it informs whether the system supports coroutining,
depth_limit, the low_level_tracer, or-parallelism,
rational_trees, tabling, threads, or the wam_profiler.

to_chars_mode

Define whether YAP should follow quintus-like semantics for the

78

YAP Prolog User’s Manual

atom_chars/1 or number_chars/1 built-in, or whether it should
follow the ISO standard (iso option).

+

toplevel_hook

+If bound, set the argument to a goal to be executed before entering
the top-level. If unbound show the current goal or true if none is
presented. Only the first solution is considered and the goal is not
backtracked into.

typein_module

If bound, set the current working or type-in module to the argu-
ment, which must be an atom. If unbound, unify the argument
with the current working module.

unknown [IS0]

Corresponds to calling the unknown/2 built-in.

update_semantics

Define whether YAP should follow immediate update semantics,
as in C-Prolog (default), logical update semantics, as in Quintus
Prolog, SICStus Prolog, or in the ISO standard. There is also an
intermediate mode, logical_assert, where dynamic procedures
follow logical semantics but the internal data base still follows im-
mediate semantics.

user_error

If the second argument is bound to a stream, set user_error to
this stream. If the second argument is unbound, unify the argument
with the current user_error stream.

By default, the user_error stream is set to a stream corresponding
to the Unix stderr stream.

The next example shows how to use this flag:

?- open(’/dev/null’, append, Error,
[alias(mauri_tripa)]).

Error = ’$stream’(3) 7 ;

no
?7- set_prolog_flag(user_error, mauri_tripa).

close(mauri_tripa).

yes

Chapter 6: Built-In Predicates 79

?-

We execute three commands. First, we open a stream in write
mode and give it an alias, in this case mauri_tripa. Next, we set
user_error to the stream via the alias. Note that after we did
so prompts from the system were redirected to the stream mauri_
tripa. Last, we close the stream. At this point, YAP automatically
redirects the user_error alias to the original stderr.

user_input

If the second argument is bound to a stream, set user_input to
this stream. If the second argument is unbound, unify the argument
with the current user_input stream.

By default, the user_input stream is set to a stream corresponding
to the Unix stdin stream.

user_output

If the second argument is bound to a stream, set user_output to
this stream. If the second argument is unbound, unify the argument
with the current user_output stream.

By default, the user_output stream is set to a stream correspond-
ing to the Unix stdout stream.

version
Read-only flag that giving the current version of Yap.

write_strings

Writable flag telling whether the system should write lists of inte-
gers that are writable character codes using the list notation. It is
on if enables or off if disabled. The default value for this flag is
off.

current_prolog_flag(7?Flag,-Value) [ISO0]
Obtain the value for a YAP Prolog flag. Equivalent to calling yap_flag/2 with
the second argument unbound, and unifying the returned second argument with
Value.

prolog_flag(?Flag,-0ldValue,+NewValue)
Obtain the value for a YAP Prolog flag and then set it to a new value. Equiv-
alent to first calling current_prolog_flag/2 with the second argument Old-
Value unbound and then calling set_prolog_flag/2 with the third argument
New Value.

set_prolog_flag(+Flag,+Value) [ISO]
Set the value for YAP Prolog flag Flag. Equivalent to calling yap_flag/2 with
both arguments bound.

80 YAP Prolog User’s Manual

op(+P,+T,+A) [IS0]
Defines the operator A or the list of operators A with type T (which must be
one of xfx, xfy,yfx, xf, yf, £x or fy) and precedence P (see appendix iv for a
list of predefined operators).
Note that if there is a preexisting operator with the same name and type, this
operator will be discarded. Also, ’,’ may not be defined as an operator, and
it is not allowed to have the same for an infix and a postfix operator.

current_op(P,T,F) [IS0]
Defines the relation: P is a currently defined operator of type T" and precedence
P.

prompt (-4,+B)
Changes YAP input prompt from A to B.

initialization
Execute the goals defined by initialization/1. Only the first answer is consid-
ered.

prolog_initialization(G)
Add a goal to be executed on system initialization. This is compatible with
SICStus Prolog’s initialization/1.

version Write YAP’s boot message.

version(-Message)
Add a message to be written when yap boots or after aborting. It is not possible
to remove messages.

prolog_load_context(?Key, ?Value)
Obtain information on what is going on in the compilation process. The fol-
lowing keys are available:

directory

Full name for the directory where YAP is currently consulting the

file.

file
Full name for the file currently being consulted. Notice that in-
cluded filed are ignored.

module
Current source module.

source
Full name for the file currently being read in, which may be con-
sulted, reconsulted, or included.

stream

Stream currently being read in.

term_position

Stream position at the stream currently being read in.

Chapter 7: Library Predicates 81

7 Library Predicates

Library files reside in the library_directory path (set by the LIBDIR variable in the Makefile
for YAP). Currently, most files in the library are from the Edinburgh Prolog library.

7.1 Apply Macros

This library provides a set of utilities for applying a predicate to all elements of a list or to
all sub-terms of a term. They allow to easily perform the most common do-loop constructs
in Prolog. To avoid performance degradation due to apply/2, each call creates an equivalent
Prolog program, without meta-calls, which is executed by the Prolog engine instead. Note
that if the equivalent Prolog program already exists, it will be simply used. The library is
based on code by Joachim Schimpf.

The following routines are available once included with the use_module (library(apply_Jj
macros)) command.

maplist (+Pred, ?ListIn, 7ListOut)
Creates ListOut by applying the predicate Pred to all elements of ListIn.

checklist (+Pred, +List)
Succeeds if the predicate Pred succeeds on all elements of List.

selectlist(+Pred, +ListIn, 7List0Out)
Creates ListOut of all list elements of ListIn that pass a given test

convlist(+Pred, +ListIn, ?ListOut)
A combination of maplist and selectlist: creates ListOut by applying the pred-
icate Pred to all list elements on which Pred succeeds

sumlist (+Pred, +List, 7AccIn, ?AccOut)
Calls Pred on all elements of List and collects a result in Accumulator.

mapargs (+Pred, ?TermIn, ?TermOut)
Creates TermQut by applying the predicate Pred to all arguments of TermlIn

sumargs (+Pred, +Term, 7AccIn, 7AccOut)
Calls the predicate Pred on all arguments of Term and collects a result in
Accumulator

mapnodes (+Pred, +TermIn, ?TermOut)
Creates TermQOut by applying the predicate Pred to all sub-terms of TermlIn
(depth-first and left-to-right order)

checknodes (+Pred, +Term)
Succeeds if the predicate Pred succeeds on all sub-terms of Term (depth-first
and left-to-right order)

sumnodes (+Pred, +Term, ?AccIn, ?AccOut)
Calls the predicate Pred on all sub-terms of Term and collect a result in Accu-
mulator (depth-first and left-to-right order)

Examples:

82 YAP Prolog User’s Manual

hgiven
plus(X,Y,Z) :- Z is X + Y.
plus_if_pos(X,Y,Z) :- Y > 0, Z is X + Y.
vars(X, Y, [XIY]) :- var(X), !.
vars(_, Y, Y).
trans (TermIn, TermOut) :-
(compound(TermIn) ; atom(TermIn)),
TermIn =.. [pl|Args],
TermOut =..[ql|Args],
|
trans (X,X) .

%success

maplist(plus(1), [1,2,3,4], [2,3,4,5]).
checklist(var, [X,Y,Z]).

selectlist(<(0), [-1,0,1], [11).
convlist(plus_if_pos(1), [-1,0,1], [2]).
sumlist(plus, [1,2,3,4], 1, 11).

mapargs (number_atom,s(1,2,3), s(’1°,°2°,°3°)).
sumargs (vars, s(1,X,2,Y), [1, L[Y,X]).

mapnodes (trans, p(a,p(b,a),c), qla,q(b,a),c)).
checknodes (\==(T), p(X,p(Y,X),Z)).

sumnodes (vars, [c(X), p(X,Y), q(W1, [I, L[Y,Y,X,X]).
% another one

maplist (mapargs (number_atom), [c(1),s(1,2,3)],[c(’1°),s(?1°,°27,°3°)]).

7.2 Association Lists

The following association list manipulation predicates are available once included with the
use_module(library(assoc)) command.

assoc_to_list(+Assoc,?List)
Given an association list Assoc unify List with a list of the form Key-Val, where
the elements Key are in ascending order.

empty_assoc (+Assoc)
Succeeds if association list Assoc is empty.

gen_assoc (+4ssoc, 7Key,?Value)
Given the association list Assoc, unify Key and Value with two associated
elements. It can be used to enumerate all elements in the association list.

get_assoc(+Key,+Assoc,?Value)
If Key is one of the elements in the association list Assoc, return the associated
value.

Chapter 7: Library Predicates 83

get_assoc(+Key,+Assoc,?Value,+NAssoc,?NValue)
If Key is one of the elements in the association list Assoc, return the associated
value Value and a new association list NAssoc where Key is associated with
NValue.

list_to_assoc(+List,7Assoc)
Given a list List such that each element of List is of the form Key-Val, and all
the Keys are unique, Assoc is the corresponding association list.

map_assoc (+Pred,+4ssoc, ?New)
Given the binary predicate name Pred and the association list Assoc, New in
an association list with keys in Assoc, and such that if Key-Val is in Assoc, and
Key-Ans is in New, then Pred(Val,Ans) holds.

ord_list_to_assoc(+List,?Assoc)
Given an ordered list List such that each element of List is of the form Key-Val,
and all the Keys are unique, Assoc is the corresponding association list.

put_assoc (+Key,+Assoc,+Val,+New)
The association list New includes and element of association key with Val, and
all elements of Assoc that did not have key Key.

7.3 AVL Trees

AVL trees are balanced search binary trees. They are named after their inventors, Adelson-
Velskii and Landis, and they were the first dynamically balanced trees to be proposed. The
YAP AVL tree manipulation predicates library uses code originally written by Martin van
Emdem and published in the Logic Programming Newsletter, Autumn 1981. A bug in this
code was fixed by Philip Vasey, in the Logic Programming Newsletter, Summer 1982. The
library currently only includes routines to insert and lookup elements in the tree. Please
try red-black trees if you need deletion.

avl_insert(+Key,?Value,+T0,+TF)
Add an element with key Key and Value to the AVL tree TO creating a new
AVL tree TF. Duplicated elements are allowed.

avl_lookup(+Key,-Value,+T)
Lookup an element with key Key in the AVL tree T, returning the value Value.

7.4 Heaps

A heap is a labelled binary tree where the key of each node is less than or equal to the keys
of its sons. The point of a heap is that we can keep on adding new elements to the heap
and we can keep on taking out the minimum element. If there are N elements total, the
total time is O(NIgN). If you know all the elements in advance, you are better off doing a
merge-sort, but this file is for when you want to do say a best-first search, and have no idea
when you start how many elements there will be, let alone what they are.

The following heap manipulation routines are available once included with the use_
module (library (heaps)) command.

84 YAP Prolog User’s Manual

add_to_heap(+Heap, +key,+Datum,-NewHeap)
Inserts the new Key-Datum pair into the heap. The insertion is not stable,
that is, if you insert several pairs with the same Key it is not defined which of
them will come out first, and it is possible for any of them to come out first
depending on the history of the heap.

empty_heap (7Heap)
Succeeds if Heap is an empty heap.

get_from_heap(+Heap,-key,-Datum,-Heap)
Returns the Key-Datum pair in OldHeap with the smallest Key, and also a
Heap which is the OldHeap with that pair deleted.

heap_size(+Heap, -Size)
Reports the number of elements currently in the heap.

heap_to_list(+Heap, -List)
Returns the current set of Key-Datum pairs in the Heap as a List, sorted into
ascending order of Keys.

list_to_heap(+List, —Heap)
Takes a list of Key-Datum pairs (such as keysort could be used to sort) and
forms them into a heap.

min_of_heap(+Heap, -Key, -Datum)
Returns the Key-Datum pair at the top of the heap (which is of course the pair
with the smallest Key), but does not remove it from the heap.

min_of_heap(+Heap, -Keyl, -Datuml,

-Key2, -Datum?2) Returns the smallest (Keyl) and second smallest (Key2) pairs
in the heap, without deleting them.

7.5 List Manipulation

The following list manipulation routines are available once included with the

use_module(library(lists)) command.

append(?Prefix,?Suffix,?Combined)
True when all three arguments are lists, and the members of Combined are the
members of Prefix followed by the members of Suffix. It may be used to form
Combined from a given Prefix, Suffix or to take a given Combined apart.

delete(+List, 7Element, 7Residue)
True when List is a list, in which Element may or may not occur, and Residue
is a copy of List with all elements identical to Element deleted.

flatten(+List, ?FlattenedList)
Flatten a list of lists List into a single list FlattenedList.

?- flatten([[1],[2,3],[4,[5,6],7,81]1,L).
L =1[1,2,3,4,5,6,7,8] 7 ;

no

Chapter 7: Library Predicates 85

is_list(+List)
True when List is a proper list. That is, List is bound to the empty list (nil)

or a term with functor ’.” and arity 2.

last(+List,?Last)
True when List is a list and Last is identical to its last element.

list_concat(+Lists,?List)
True when Lists is a list of lists and List is the concatenation of Lists.

member (?Element, ?Set)
True when Set is a list, and Element occurs in it. It may be used to test for an
element or to enumerate all the elements by backtracking.

memberchk (+Element, +Set)
As member/2, but may only be used to test whether a known Element occurs
in a known Set. In return for this limited use, it is more efficient when it is
applicable.

nthO(?N, ?List, 7Elem)
True when Elem is the Nth member of List, counting the first as element 0.
(That is, throw away the first N elements and unify Elem with the next.) It
can only be used to select a particular element given the list and index. For
that task it is more efficient than member/2

nth(?N, ?List, 7Elem)
The same as nth0/3, except that it counts from 1, that is nth(1, [H|_], H).

nth0(?N, ?List, ?Elem, ?Rest)
Unifies Elem with the Nth element of List, counting from 0, and Rest with
the other elements. It can be used to select the Nth element of List (yielding
Elem and Rest), or to insert Elem before the Nth (counting from 1) element of
Rest, when it yields List, e.g. nth0(2, List, ¢, [a,b,d,e]) unifies List with
[a,b,c,d,e]. nth/4 is the same except that it counts from 1. nth0/4 can be
used to insert Elem after the Nth element of Rest.

nth(?N, ?List, 7Elem, ?Rest)
Unifies Elem with the Nth element of List, counting from 1, and Rest with
the other elements. It can be used to select the Nth element of List (yielding
Elem and Rest), or to insert Elem before the Nth (counting from 1) element of
Rest, when it yields List, e.g. nth(1, List, c, [a,b,d,e]) unifies List with
[a,b,c,d,e]l. nth/4 can be used to insert Elem after the Nth element of Rest.

permutation(+List,?Perm)
True when List and Perm are permutations of each other.

remove_duplicates(+List, 7Pruned)
Removes duplicated elements from List. Beware: if the List has non-ground
elements, the result may surprise you.

reverse(+List, 7Reversed)
True when List and Reversed are lists with the same elements but in opposite
orders.

86 YAP Prolog User’s Manual

same_length(?List1, 7List2)
True when List] and List2 are both lists and have the same number of elements.
No relation between the values of their elements is implied. Modes same_
length(-,+) and same_length(+,-) generate either list given the other; mode
same_length(-,-) generates two lists of the same length, in which case the
arguments will be bound to lists of length 0, 1, 2, ...

select(?Element, 7?Set, ?Residue)
True when Set is a list, Element occurs in Set, and Residue is everything in Set
except Element (things stay in the same order).

sublist(?Sublist, ?List)
True when both append(_,Sublist,S) and append(S,_,List) hold.

suffix(?Suffix, 7List)
Holds when append(_,Suffix,List) holds.

sum_list (?Numbers, ?Total)
True when Numbers is a list of integers, and Total is their sum.

sumlist (?Numbers, ?Total)
True when Numbers is a list of integers, and Total is their sum. The same as
sum_list/2, please do use sum_list/2 instead.

7.6 Ordered Sets

The following ordered set manipulation routines are available once included with the use_
module(library(ordsets)) command. An ordered set is represented by a list having
unique and ordered elements. Output arguments are guaranteed to be ordered sets, if the
relevant inputs are. This is a slightly patched version of Richard O’Keefe’s original library.

list_to_ord_set(+List, ?Set)
Holds when Set is the ordered representation of the set represented by the
unordered representation List.

merge(+List1, +List2, —-Merged)
Holds when Merged is the stable merge of the two given lists.

Notice that merge/3 will not remove duplicates, so merging ordered sets will
not necessarily result in an ordered set. Use ord_union/3 instead.

ord_add_element (+Setl, +Element, ?Set2)
Inserting Element in Set1 returns Set2. It should give exactly the same result as
merge(Setl, [Element], Set2), but a bit faster, and certainly more clearly.
The same as ord_insert/3.

ord_del_element (+Setl, +Element, 7Set2)
Removing Element from Setl returns Set2.

ord_disjoint(+Set1, +Set2)
Holds when the two ordered sets have no element in common.

ord_member (+Element, +Set)
Holds when Element is a member of Set.

Chapter 7: Library Predicates 87

ord_insert(+Set1, +Element, 7?Set2)
Inserting Element in Set1 returns Set2. It should give exactly the same result as
merge (Setl, [Element], Set2), but a bit faster, and certainly more clearly.
The same as ord_add_element/3.

ord_intersect (+Setl, +Set2)
Holds when the two ordered sets have at least one element in common.

ord_intersection(+Setl, +Set2, ?Intersection)
Holds when Intersection is the ordered representation of Setl and Set2.

ord_seteq(+Setl1, +Set2)
Holds when the two arguments represent the same set.

ord_setproduct (+Set1, +Set2, -Set)
If Set1 and Set2 are ordered sets, Product will be an ordered set of x1-x2 pairs.

ord_subset (+Set1, +Set2)
Holds when every element of the ordered set Setl appears in the ordered set

Set2.

ord_subtract (+Setl, +Set2, ?Difference)
Holds when Difference contains all and only the elements of Set1 which are not
also in Set2.

ord_symdiff (+Set1, +Set2, 7?Difference)
Holds when Difference is the symmetric difference of Setl and Set2.

ord_union(+Sets, ?Union)
Holds when Union is the union of the lists Sets.

ord_union(+Setl, +Set2, ?Union)
Holds when Union is the union of Setl and Set2.

ord_union(+Setl, +Set2, ?Union, 7?Diff)
Holds when Union is the union of Setl and Set2 and DIiff is the difference.

7.7 Pseudo Random Number Integer Generator

The following routines produce random non-negative integers in the range 0 .. 27 (w-1)
-1, where w is the word size available for integers, e.g., 32 for Intel machines and 64 for
Alpha machines. Note that the numbers generated by this random number generator are
repeatable. This generator was originally written by Allen Van Gelder and is based on
Knuth Vol 2.

rannum(-I)
Produces a random non-negative integer I whose low bits are not all that ran-
dom, so it should be scaled to a smaller range in general. The integer I is in
the range 0 .. 27(w-1) - 1. You can use:
rannum(X) :- yap_flag(max_integer,MI), rannum(R), X is R/MI.

to obtain a floating point number uniformly distributed between 0 and 1.

88 YAP Prolog User’s Manual

ranstart Initialize the random number generator using a built-in seed. The ranstart/0
built-in is always called by the system when loading the package.

ranstart (+Seed)
Initialize the random number generator with user-defined Seed. The same Seed
always produces the same sequence of numbers.

ranunif (+Range,-I)
ranunif/2 produces a uniformly distributed non-negative random integer I over
a caller-specified range R. If range is R, the result is in 0 .. R-1.

7.8 Queues

The following queue manipulation routines are available once included with the
use_module (library(queues)) command. Queues are implemented with difference lists.

make_queue (+Queue)
Creates a new empty queue. It should only be used to create a new queue.

join_queue(+Element, +01dQueue, -NewQueue)
Adds the new element at the end of the queue.

list_join_queue(+List, +0ldQueue, -NewQueue)
Ads the new elements at the end of the queue.

jump_queue (+Element, +01dQueue, -NewQueue)
Adds the new element at the front of the list.

list_jump_queue(+List, +0ldQueue, +NewQueue)
Adds all the elements of List at the front of the queue.

head_queue (+Queue, ?Head)
Unifies Head with the first element of the queue.

serve_queue (+01dQueue, +Head, -NewQueue)
Removes the first element of the queue for service.

empty_queue (+Queue)
Tests whether the queue is empty.

length_queue (+Queue, -Length)
Counts the number of elements currently in the queue.

list_to_queue(+List, -Queue)
Creates a new queue with the same elements as List.

queue_to_list (+Queue, -List)
Creates a new list with the same elements as Queue.

Chapter 7: Library Predicates 89

7.9 Random Number Generator

The following random number operations are included with the wuse_
module (library(random)) command. Since Yap-4.3.19 Yap uses the O’Keefe
public-domain algorithm, based on the "Applied Statistics" algorithm AS183.

getrand (-Key)
Unify Key with a term of the form rand(X,Y,Z) describing the current state
of the random number generator.

random (-Number)
Unify Number with a floating-point number in the range [0...1).

random (+LOW, +HIGH, —-NUMBER)
Unify Number with a number in the range [LOW...HIGH). If both LOW and
HIGH are integers then NUMBER will also be an integer, otherwise NUMBER
will be a floating-point number.

randseq(+LENGTH, +MAX, -Numbers)
Unify Numbers with a list of LENGTH unique random integers in the range
[1...MAX).

randset (+LENGTH, +MAX, —Numbers)
Unify Numbers with an ordered list of LENGTH unique random integers in
the range [1...MAX).

setrand (+Key)
Use a term of the form rand(X,Y,Z) to set a new state for the random number
generator. The integer X must be in the range [1...30269), the integer Y
must be in the range [1...30307), and the integer Z must be in the range
[1...30323).

7.10 Red-Black Trees

Red-Black trees are balanced search binary trees. They are named because nodes can
be classified as either red or black. The code we include is based on "Introduction to
Algorithms", second edition, by Cormen, Leiserson, Rivest and Stein. The library includes
routines to insert, lookup and delete elements in the tree.

insert (+T0,+Key,?Value,+TF)
Add an element with key Key and Value to the tree TO creating a new AVL
tree TF. Duplicated elements are not allowed.

lookup (+Key,-Value,+T)
Lookup an element with key Key in the AVL tree T, returning the value Value.

new(?T) Create a new tree.

delete(+T,+Key,-TN)
Delete element with key Key from the tree T, returning a new tree TN.

90 YAP Prolog User’s Manual

7.11 Regular Expressions

This library includes routines to determine whether a regular expression matches part or all
of a string. The routines can also return which parts parts of the string matched the expres-
sion or subexpressions of it. This library relies on Henry Spencer’s C-package and is only
available in operating systems that support dynamic loading. The C-code has been obtained
from the sources of FreeBSD-4.0 and is protected by copyright from Henry Spencer and
from the Regents of the University of California (see the file library /regex/COPYRIGHT
for further details).

Much of the description of regular expressions below is copied verbatim from Henry
Spencer’s manual page.

“I??

A regular expression is zero or more branches, separated by . It matches anything

that matches one of the branches.

A branch is zero or more pieces, concatenated. It matches a match for the first, followed
by a match for the second, etc.

A piece is an atom possibly followed by “*7, “+” or “?”. An atom followed by “*”

matches a sequence of 0 or more matches of the atom. An atom followed by “+” matches a
sequence of 1 or more matches of the atom. An atom followed by “?” matches a match of
the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the regular ex-
pression), a range (see below), “.” (matching any single character), “~” (matching the null
string at the beginning of the input string), “$” (matching the null string at the end of the
input string), a “\” followed by a single character (matching that character), or a single
character with no other significance (matching that character).

A range is a sequence of characters enclosed in “[]”. It normally matches any single
character from the sequence. If the sequence begins with “~” it matches any single character
not from the rest of the sequence. If two characters in the sequence are separated by “-”,
this is shorthand for the full list of ASCII characters between them (e.g. “[0-9]” matches
any decimal digit). To include a literal “|” in the sequence, make it the first character
(following a possible “~”). To include a literal “-”, make it the first or last character.

regexp (+RegExp,+String,+0pts)
Match regular expression RegExp to input string String according to options
Opts. The options may be:

e nocase: Causes upper-case characters in String to be treated as lower case
during the matching process.

regexp (+RegExp,+String,+0pts, SubMatchVars)

Match regular expression RegExp to input string String according to options
Opts. The variable SubMatchVars should be originally a list of unbound vari-
ables all will contain a sequence of matches, that is, the head of SubMatch Vars
will contain the characters in String that matched the leftmost parenthesized
subexpression within RegExp, the next head of list will contain the characters
that matched the next parenthesized subexpression to the right in RegExp, and
SO On.

The options may be:

Chapter 7: Library Predicates 91

e nocase: Causes upper-case characters in String to be treated as lower case
during the matching process.

e indices: Changes what is stored in SubMatchVars. Instead of storing the
matching characters from String, each variable will contain a term of the
form IO-IF giving the indices in String of the first and last characters in
the matching range of characters.

In general there may be more than one way to match a regular expression to
an input string. For example, consider the command

regexp (" (ax)bx","aabaaabb", [], [X,Y])

Considering only the rules given so far, X and Y could end up with the values
"aabb" and "aa", "aaab" and "aaa", "ab" and "a", or any of several other
combinations. To resolve this potential ambiguity regexp chooses among al-
ternatives using the rule “first then longest”. In other words, it considers the
possible matches in order working from left to right across the input string and
the pattern, and it attempts to match longer pieces of the input string before
shorter ones. More specifically, the following rules apply in decreasing order of
priority:

1. If a regular expression could match two different parts of an input string

then it will match the one that begins earliest.

2. If a regular expression contains "|" operators then the leftmost matching
sub-expression is chosen.

3. In*, +, and 7 constructs, longer matches are chosen in preference to shorter
ones.

4. In sequences of expression components the components are considered from
left to right.

In the example from above, " (a*)b*" matches "aab": the " (a*)" portion of the
pattern is matched first and it consumes the leading "aa"; then the "b*" portion
of the pattern consumes the next "b". Or, consider the following example:

regexp("(abla) (b*)c", "abc", [1, [X,Y,Z])

After this command X will be "abc", Y will be "ab", and Z will be an empty
string. Rule 4 specifies that "(abla)" gets first shot at the input string and
Rule 2 specifies that the "ab" sub-expression is checked before the "a" sub-
expression. Thus the "b" has already been claimed before the " (b*)" compo-
nent is checked and (b*) must match an empty string.

7.12 Splay Trees

Splay trees are explained in the paper "Self-adjusting Binary Search Trees", by D.D. Sleator
and R.E. Tarjan, JACM, vol. 32, No.3, July 1985, p. 668. They are designed to support
fast insertions, deletions and removals in binary search trees without the complexity of
traditional balanced trees. The key idea is to allow the tree to become unbalanced. To
make up for this, whenever we find a node, we move it up to the top. We use code by Vijay
Saraswat originally posted to the Prolog mailing-list.

92 YAP Prolog User’s Manual

splay_access(-Return,+Key,?Val,+Tree,-NewTree)
If item Key is in tree Tree, return its Val and unify Return with true. Otherwise
unify Return with null. The variable NewTree unifies with the new tree.

splay_delete(+Key,?Val,+Tree,-NewTree)
Delete item Key from tree Tree, assuming that it is present already. The
variable Val unifies with a value for key Key, and the variable NewTree unifies
with the new tree. The predicate will fail if Key is not present.

splay_init(-NewTree)
Initialize a new splay tree.

splay_insert(+Key,?Val,+Tree,-NewTree)
Insert item Key in tree Tree, assuming that it is not there already. The variable
Val unifies with a value for key Key, and the variable NewTree unifies with the
new tree. In our implementation, Key is not inserted if it is already there:
rather it is unified with the item already in the tree.

splay_join(+LeftTree,+RighTree,-NewTree)
Combine trees Left'Tree and RighTree into a single treeNew'ITee containing all
items from both trees. This operation assumes that all items in LeftTree are
less than all those in RighTree and destroys both LeftTree and Righ'Tree.

splay_split(+Key,?Val,+Tree,-LeftTree,-RightTree)
Construct and return two trees LeftTree and Right'Iree, where LeftTree con-
tains all items in Tree less than Key, and Right'Iree contains all items in Tree
greater than Key. This operations destroys Tree.

7.13 Reading From and Writing To Strings

From Version 4.3.2 onwards YAP implements SICStus Prolog compatible String I/O. The
library allows users to read from and write to a memory buffer as if it was a file. The memory
buffer is built from or converted to a string of character codes by the routines in library.
Therefore, if one wants to read from a string the string must be fully instantiated before
the library builtin opens the string for reading. These commands are available through the
use_module(library(charsio)) command.

format_to_chars(+Form, +Args, —-Result)
Execute the built-in procedure format/2 with form Form and arguments Args
outputting the result to the string of character codes Result.

format_to_chars(+Form, +Args, -Result0O, -Result)
Execute the built-in procedure format/2 with form Form and arguments Args
outputting the result to the difference list of character codes Result-Result0.

write_to_chars(+Term, -Result)
Execute the built-in procedure write/1 with argument Term outputting the
result to the string of character codes Result.

write_to_chars(+Term, -Result0O, —-Result)
Execute the built-in procedure write/1 with argument Term outputting the
result to the difference list of character codes Result-ResultO.

Chapter 7: Library Predicates 93

atom_to_chars(+Atom, -Result)
Convert the atom Atom to the string of character codes Result.

atom_to_chars(+Atom, —Result0O, —Result)
Convert the atom Atom to the difference list of character codes Result-Result0.

number_to_chars (+Number, —-Result)
Convert the number Number to the string of character codes Result.

number_to_chars (+Number, -Result0O, —-Result)
Convert the atom Number to the difference list of character codes Result-
Result0.

read_from_chars (+Chars, —Term)
Parse the list of character codes Chars and return the result in the term Term.
The character codes to be read must terminate with a dot character such that
either (i) the dot character is followed by blank characters; or (ii) the dot
character is the last character in the string.

open_chars_stream(+Chars, -Stream)
Open the list of character codes Chars as a stream Stream.

with_output_to_chars(?7Goal, -Chars)
Execute goal Goal such that its standard output will be sent to a memory
buffer. After successful execution the contents of the memory buffer will be
converted to the list of character codes Chars.

with_output_to_chars(?Goal, ?CharsO, -Chars)
Execute goal Goal such that its standard output will be sent to a memory
buffer. After successful execution the contents of the memory buffer will be
converted to the difference list of character codes Chars-Chars0.

with_output_to_chars(7Goal, -Stream, ?Chars0, -Chars)
Execute goal Goal such that its standard output will be sent to a memory
buffer. After successful execution the contents of the memory buffer will be
converted to the difference list of character codes Chars-Chars) and Stream
receives the stream corresponding to the memory buffer.

The implementation of the character 10 operations relies on three YAP builtins:

charsio:open_mem_read_stream(+String, -Stream)
Store a string in a memory buffer and output a stream that reads from this
memory buffer.

charsio:open_mem_write_stream(-Stream)
Create a new memory buffer and output a stream that writes to it.

charsio:peek_mem_write_stream(-Stream, LO, L)
Convert the memory buffer associated with stream Stream to the difference list
of character codes L-LO0.

These builtins are initialized to belong to the module charsio in init.yap. Novel proce-
dures for manipulating strings by explicitly importing these built-ins.

YAP does not currently support opening a charsio stream in append mode, or seeking
in such a stream.

94 YAP Prolog User’s Manual

7.14 Calling The Operating System from YAP

Yap now provides a library of system utilities compatible with the SICStus Prolog system
library. This library extends and to some point replaces the functionality of Operating
System access routines. The library includes Unix/Linux and Win32 C code. They are
available through the use_module(library(system)) command.

datime(datime(-Year, -Month, -DayOfTheMonth,
-Hour, -Minute, -Second) The datime/1 procedure returns the current date and
time, with information on Year, Month, DayOfTheMonth, Hour, Minute, and
Second. The Hour is returned on local time. This function uses the WIN32
GetLocalTime function or the Unix localtime function.

?- datime(X).

X = datime(2001,5,28,15,29,46) 7

delete_file(+File)
The delete_file/1 procedure removes file File. If File is a directory, remove
the directory and all its subdirectories.

?7- delete_file(x).

delete_file(+File,+0pts)
The delete_file/2 procedure removes file File according to options Opts.
These options are directory if one should remove directories, recursive if
one should remove directories recursively, and ignore if errors are not to be
reported.

This example is equivalent to using the delete_file/1 predicate:

?7- delete_file(x, [recursivel]).

directory_files(+Dir,+List)
Given a directory Dir, directory_files/2 procedures a listing of all files and
directories in the directory:

?- directory_files(’.’,L), writeq(L).
[’Makefile."17’,’sys.so’,’Makefile’,’sys.0’ ,x,.., " ."]
The predicates uses the dirent family of routines in Unix environments, and
findfirst in WIN32.

file_exists(+File)
The atom File corresponds to an existing file.

file_exists(+File,+Permissions)
The atom File corresponds to an existing file with permissions compatible with
Permissions. YAP currently only accepts for permissions to be described as a
number. The actual meaning of this number is Operating System dependent.

file_property(+File,?Property)
The atom File corresponds to an existing file, and Property will be unified
with a property of this file. The properties are of the form type (Type), which
gives whether the file is a regular file, a directory, a fifo file, or of unknown

Chapter 7: Library Predicates 95

type; size(Size), with gives the size for a file, and mod_time(Time), which
gives the last time a file was modified according to some Operating System
dependent timestamp; mode (mode), gives the permission flags for the file, and
linkto(FileName), gives the file pointed to by a symbolic link. Properties can
be obtained through backtracking;:

?7- file_property(’Makefile’,P).

P = type(regular) 7 ;

P = size(2375) 7 ;

P = mod_time(990826911) 7 ;
no

make_directory(+Dir)
Create a directory Dir. The name of the directory must be an atom.

rename_file(+01dFile,+NewFile)
Create file OIdFile to NewFile. This predicate uses the C builtin function
rename.

environ(?EnvVar,+EnvValue)
Unify environment variable EnvVar with its value EnvValue, if there is one.
This predicate is backtrackable in Unix systems, but not currently in Win32
configurations.

?- environ(’HOME’,X).

X = ’C:\\cygwin\\home\\administrator’ 7

host_id(-Id)
Unify Id with an identifier of the current host. Yap uses the hostid function
when available,

host_name (-Name)
Unify Name with a name for the current host. Yap uses the hostname function
in Unix systems when available, and the GetComputerName function in WIN32
systems.

kill (Id,+SIGNAL)
Send signal SIGNAL to process Id. In Unix this predicate is a direct interface
to kill so one can send signals to groups of processes. In WIN32 the predicate
is an interface to TerminateProcess, so it kills Id indepent of SIGNAL.

mktemp (Spec,-File)
Direct interface to mktemp: given a Spec, that is a file name with six X to it,
create a file name File. Use tmpnam/1 instead.

pid(-Id)

Unify Id with the process identifier for the current process. An interface to the
getpid function.

96 YAP Prolog User’s Manual

tmpnam(-File)
Interface with tmpnam: create an unique file and unify its name with File.

exec(+Command,[+InputStream,+OQutputStream,+ErrorStream|, -Status)
Execute command Command with its streams connected to InputStream,
OutputStream, and ErrorStream. The result for the command is returned in
Status. The command is executed by the default shell bin/sh -c in Unix.

The following example demonstrates the use of exec/3 to send a command and
process its output:

exec(ls, [std,pipe(S),nulll] ,P),repeat, get0(S,C), (C = -1, close(S) ! ; put(C

The streams may be one of standard stream, std, null stream, null, or pipe(S),
where S is a pipe stream. Note that it is up to the user to close the pipe.

working_directory(-CurDir,?NextDir)
Fetch the current directory at CurDir. If NextDir is bound to an atom, make
its value the current working directory.

popen (+Command, +TYPE, -Stream)
Interface to the popen function. It opens a process by creating a pipe, forking
and invoking Command on the current shell. Since a pipe is by definition
unidirectional the Type argument may be read or write, not both. The stream
should be closed using close/1, there is no need for a special pclose command.

The following example demonstrates the use of popen/3 to process the output
of a command, as exec/3 would do:

?- popen(ls,read,X),repeat, getO(X,C), (C = -1, ! ; put(C)).}j

X = ’C:\\cygwin\\home\\administrator’ 7
The WIN32 implementation of popen/3 relies on exec/3.

shell Start a new shell and leave Yap in background until the shell completes. Yap
uses the shell given by the environment variable SHELL. In WIN32 environment
YAP will use COMSPEC if SHELL is undefined.

shell (+Command)
Execute command Command under a new shell. Yap will be in background until
the command completes. In Unix environments Yap uses the shell given by the
environment variable SHELL with the option " -c ". In WIN32 environment
YAP will use COMSPEC if SHELL is undefined, in this case with the option " /c

shell (+Command,-Status)
Execute command Command under a new shell and unify Status with the exit
for the command. Yap will be in background until the command completes. In
Unix environments Yap uses the shell given by the environment variable SHELL
with the option " -c ". In WIN32 environment YAP will use COMSPEC if SHELL
is undefined, in this case with the option " /c ".

sleep(+Time)
Block the current process for Time seconds. The number of seconds must be
a positive number, and it may an integer or a float. The Unix implementation

Chapter 7: Library Predicates 97

uses usleep if the number of seconds is below one, and sleep if it is over a
second. The WIN32 implementation uses Sleep for both cases.

system Start a new default shell and leave Yap in background until the shell completes.
Yap uses /bin/sh in Unix systems and COMSPEC in WIN32.

system(+Command,-Res)
Interface to system: execute command Command and unify Res with the result.

wait (+PID,-Status)
Wait until process PID terminates, and return its exits Status.

7.15 Utilities On Terms

The next routines provide a set of commonly used utilities to manipulate terms. Most of
these utilities have been implemented in C for efficiency. They are available through the
use_module(library(terms)) command.

acyclic_term(?Term)
Succeed if the argument Term is an acyclic term.

cyclic_term(?Term)
Succeed if the argument Term is a cyclic term.

term_hash(+Term, 7Hash)
If Term is ground unify Hash with a positive integer calculated from the struc-
ture of the term. Otherwise the argument Hash is left unbound. The range of
the positive integer is from 0 to, but not including, 33554432.

term_hash (+Term, +Depth, +Range, 7Hash)
Unify Hash with a positive integer calculated from the structure of the term.
The range of the positive integer is from 0 to, but not including, Range. If
Depth is -1 the whole term is considered. Otherwise, the term is considered
only up to depth 1, where the constants and the principal functor have depth
1, and an argument of a term with depth I has depth I+1.

term_variables(?Term, -Variables)
Unify Variables with a list of all variables in term Term.

variant (?Terml, ?Term2)
Succeed if Terml and Term?2 are variant terms.

subsumes (?Terml, ?Term2)
Succeed if Term1 subsumes Term2. Variables in term Terml are bound so that
the two terms become equal.

subsumes_chk(?Term1, ?Term2)
Succeed if Terml subsumes Term2 but does not bind any variable in Terml.

variable_in_term(?Term,?Var)
Succeed if the second argument Var is a variable and occurs in term Term.

98 YAP Prolog User’s Manual

7.16 Call With registered Cleanup Calls

call_cleanup/1 and call_cleanup/2 allow predicates to register code for execution
after the call is finished. Predicates can be declared to be fragile to ensure that
call_cleanup is called for any Goal which needs it. This library is loaded with the
use_module(library(cleanup)) command.

:— fragile P,....,Pn
Declares the predicate P=[module:]name/arity as a fragile predicate, module
is optional, default is the current typein_module. Whenever such a fragile
predicate is used in a query it will be called through call_cleanup/1.

:— fragile foo/1,bar:baz/2.

call_cleanup(+Goal)
Execute goal Goal within a cleanup-context. Called predicates might register
cleanup Goals which are called right after the end of the call to Goal. Cuts
and exceptions inside Goal do not prevent the execution of the cleanup calls.
call_cleanup might be nested.

call_cleanup(+Goal, +CleanUpGoal)
This is similar to call_cleanup/1 with an additional CleanUpGoal which gets
called after Goal is finished.

on_cleanup (+CleanUpGoal)
Any Predicate might registers a CleanUpGoal. The CleanUpGoal is put onto
the current cleanup context. All such CleanUpGoals are executed in reverse
order of their registration when the surrounding cleanup-context ends. This call
will throw an exception if a predicate tries to register a CleanUpGoal outside
of any cleanup-context.

cleanup_all
Calls all pending CleanUpGoals and resets the cleanup-system to an initial
state. Should only be used as one of the last calls in the main program.

There are some private predicates which could be used in special cases, such as manu-
ally setting up cleanup-contexts and registering CleanUpGoals for other than the current
cleanup-context. Read the Source Luke.

7.17 Calls With Timeout

The time_out/3 command relies on the alarm/3 built-in to implement a call
with a maximum time of execution. The command is available with the use_
module (library(timeout)) command.

time_out (+Goal, +Timeout, —Result)
Execute goal Goal with time limited Timeout, where Timeout is measured in
milliseconds. If the goal succeeds, unify Result with success. If the timer expires
before the goal terminates, unify Result with timeout.

Chapter 7: Library Predicates 99

This command is implemented by activating an alarm at procedure entry. If the
timer expires before the goal completes, the alarm will through an exception
timeout.

One should note that time_out/3 is not reentrant, that is, a goal called from
time_out should never itself call time_out. Moreover, time_out/3 will deac-
tivate any previous alarms set by alarm/3 and vice-versa, hence only one of
these calls should be used in a program.

Last, even though the timer is set in milliseconds, the current implementation
relies on alarm/3, and therefore can only offer precision on the scale of seconds.

7.18 Updatable Binary Trees

The following queue manipulation routines are available once included with the
use_module(library(trees)) command.

get_label (+Index, +Tree, 7Label)
Treats the tree as an array of N elements and returns the Index-th.

list_to_tree(+List, —-Tree)
Takes a given List of N elements and constructs a binary Tree.

map_tree(+Pred, +01dTree, —-NewTree)
Holds when OldTree and NewIree are binary trees of the same shape and
Pred(01d,New) is true for corresponding elements of the two trees.

put_label (+Index, +01dTree, +Label, -NewTree)
constructs a new tree the same shape as the old which moreover has the same
elements except that the Index-th one is Label.

tree_size(+Tree, -Size)
Calculates the number of elements in the Tree.

tree_to_list(+Tree, -List)
Is the converse operation to list_to_tree.

7.19 Unweighted Graphs

The following graph manipulation routines are based from code originally written by
Richard O’Keefe. The code was then extended to be compatible with the SICStus
Prolog ugraphs library. The routines assume directed graphs, undirected graphs may be
implemented by using two edges. Graphs are represented in one of two ways:

e The P-representation of a graph is a list of (from-to) vertex pairs, where the pairs can
be in any old order. This form is convenient for input/output.

e The S-representation of a graph is a list of (vertex-neighbors) pairs, where the pairs are
in standard order (as produced by keysort) and the neighbors of each vertex are also in
standard order (as produced by sort). This form is convenient for many calculations.

These builtins are available once included with the use_module(library(ugraphs))
command.

100 YAP Prolog User’s Manual

vertices_edges_to_ugraph(+Vertices, +Edges, —Graph)
Given a graph with a set of vertices Vertices and a set of edges Edges, Graph

must unify with the corresponding s-representation. Note that the vertices
without edges will appear in Vertices but not in Edges. Moreover, it is sufficient
for a vertice to appear in Edges.

?7- vertices_edges_to_ugraph([], [1-3,2-4,4-5,1-5],L).

L = [1-[3,5],2-[4],3-[1,4-[5],5-[1] 7
The next example shows three

In this case all edges are defined implicitly.

unconnected edges:
?7- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5],L).

L = [1-[3,5],2-[4],3-[1,4-[5],5-011,6-01,7-01,8-011 7

vertices(+Graph, -Vertices)
Unify Vertices with all vertices appearing in graph Graph. In the next example:

?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[1], V).

L = [1,2,3,4,5]
edges (+Graph, -Edges)
Unify Edges with all edges appearing in graph Graph. In the next example:
?- vertices([1-[3,5],2-[4],3-[],4-[5]1,5-[11, V).

L = [1,2,3,4,5]
add_vertices(+Graph, +Vertices, —-NewGraph)
Unify NewGraph with a new graph obtained by adding the list of vertices
Vertices to the graph Graph. In the next example:
?7- add_vertices([1-[3,5],2-[4],3-[1,4-[5],
5-01,6-01,7-01,8-[11,
[0,2,9,10,11],
NG) .

NG = [0-[],1-[3,5],2-[4],3-0]1,4-[5],5-[1,
6-01,7-01,8-[1,9-[1,10-01,11-(1]
del_vertices(+Vertices, +Graph, -NewGraph)
Unify NewGraph with a new graph obtained by deleting the list of vertices
Vertices and all the edges that start from or go to a vertex in Vertices to the
graph Graph. In the next example:

?7- del_vertices([2,1],[1-[3,5],2-[4]1,3-[1,
4-[5],5-11,6-[1,7-[2,6],8-[11,NL).

NL = [3-[],4-[5],5-01,6-[1,7-[6],8-[1]

Chapter 7: Library Predicates 101

add_edges (+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of edges Edges
to the graph Graph. In the next example:
?- add_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],
7-0,8-011,[1-6,2-3,3-2,5-7,3-2,4-5] ,NL) .

NL = [1-[3,5,6],2-[3,4],3-[2],4-[5],5-[7],6-[1,7-[]1,8-[1]

sub_edges (+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by removing the list of edges Edges
from the graph Graph. Notice that no vertices are deleted. In the next example:

7- del_edges([1-[3,5],2-[4],3-[1,4-[51,5-(1,

6- [] ,7_ [] ’8_[]] })
[1-6,2-3,3-2,5-7,3-2,4-5,1-3] ,NL) .

NL = [1-[51,2-[41,3-[1,4-01,5-01,6-01,7-0[1,8-[1]

transpose (+Graph, -NewGraph)
Unify NewGraph with a new graph obtained from Graph by replacing all edges
of the form V1-V2 by edges of the form V2-V1. The cost is 0(|V|~2). In the
next example:
?- transpose([1-[3,5],2-[4],3-[],
4-(5]1,5-01,6-01,7-11,8-011, NL).

NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[1,7-01,8-[1]

Notice that an undirected graph is its own transpose.

neighbors (+Vertex, +Graph, -Vertices)
Unify Vertices with the list of neighbors of vertex Vertex in Graph. If the
vertice is not in the graph fail. In the next example:
?7- neighbors(4, [1-[3,5],2-[4],3-[],
4-01,2,7,5]1,5-01,6-01,7-01,8-[11,
NL) .

NL = [1:2’715]

neighbours (+Vertex, +Graph, -Vertices)
Unify Vertices with the list of neighbours of vertex Vertex in Graph. In the
next example:
7- neighbours (4, [1-[3,5],2-[4],3-[],
4-01,2,7,5]1,5-01,6-01,7-01,8-[11, NL).

NL = [1,2,7,5]
complement (+Graph, -NewGraph)
Unify NewGraph with the graph complementary to Graph. In the next example:

?7- complement ([1-[3,5],2-[4],3-[],
4-[1,2,7,5]1,5-[1,6-01,7-[1,8-[1], NL).

102 YAP Prolog User’s Manual

NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8],
4_[3351698] ,5-[1,233’4’6,7:8] ’6_[1:2’3,435;7’8])
7_[112’3:4’516,8] ’8-[1:2,314’5’6’7]]

compose (+LeftGraph, +RightGraph, -NewGraph)
Compose the graphs LeftGraph and RightGraph to form NewGraph. In the
next example:

7- compose([1-[2],2-[3]], [2-[4],3-[1,2,4]1],L).

L = [1-[4],2-[1,2,4],3-[]]

top_sort (+Graph, -Sort)
Generate the set of nodes Sort as a topological sorting of graph Graph, if one
is possible. In the next example we show how topological sorting works for a
linear graph:
?- top_sort ([_138-[_219],_219-[_139], _139-[11,L).

L = [_138,_219,_139]

transitive_closure(+Graph, +Closure)
Generate the graph Closure as the transitive closure of graph Graph. In the
next example:

?- transitive_closure([1-[2,3],2-[4,5],4-[611,L).

L = [1_[2,3’4:5,6] 12_[49516] 94_[6]]

reachable (+Node, +Graph, -Vertices)
Unify Vertices with the set of all vertices in graph Graph that are reachable
from Node. In the next example:

?- reachable(1,[1-[3,5],2-[4]1,3-[1,4-[51,5-[11,V).

v = [1,3,5]

Chapter 8: Extensions 103

8 Extensions

YAP includes several extensions that are not enabled by default, but that can be used to
extend the functionality of the system. These options can be set at compilation time by
enabling the related compilation flag, as explained in the Makefile

104 YAP Prolog User’s Manual

Chapter 9: Rational Trees 105

9 Rational Trees

Prolog unification is not a complete implementation. For efficiency considerations, Prolog
systems do not perform occur checks while unifying terms. As an example, X = a(X) will
not fail but instead will create an infinite term of the form a(a(a(a(a(...))))), or rational
tree.

By default, rational trees are not supported in YAP, and these terms can easily lead to
infinite computation. For example, X = a(X), X = X will enter an infinite loop.

The RATIONAL_TREES flag improves support for these terms. Internal primitives are now
aware that these terms can exist, and will not enter infinite loops. Hence, the previous
unification will succeed. Another example, X = a(X), ground(X) will succeed instead of
looping. Other affected builtins include the term comparison primitives, numbervars/3,
copy_term/2; and the internal data base routines. The support does not extend to In-
put/Output routines or to assert/1 YAP does not allow directly reading rational trees,
and you need to use write_depth/2 to avoid entering an infinite cycle when trying to write
an infinite term.

106 YAP Prolog User’s Manual

Chapter 10: Coroutining 107

10 Coroutining

Prolog uses a simple left-to-right flow of control. It is sometimes convenient to change this
control so that goals will only be executed when conditions are fulfilled. This may result
in a more "data-driven" execution, or may be necessary to correctly implement extensions
such as negation by default.

The COROUTINING flag enables this option. Note that the support for coroutining will in
general slow down execution.

The following declaration is supported:

block/1 The argument to block/1 is a condition on a goal or a conjunction of condi-
tions, with each element separated by commas. Each condition is of the form
predname(C1,...,CN), where N is the arity of the goal, and each CI is of
the form -, if the argument must suspend until the variable is bound, or 7,
otherwise.

wait/1 The argument to wait/1 is a predicate descriptor or a conjunction of these
predicates. These predicates will suspend until their first argument is bound.

The following primitives are supported:

dif(X,Y) Succeed if the two arguments do not unify. A call to dif/2 will suspend if
unification may still succeed or fail, and will fail if they always unify.

freeze(?X,:G)
Delay execution of goal G until the variable X is bound.

frozen(X,G)
Unify G with a conjunction of goals suspended on variable X, or true if no goal
has suspended.

when(+C, : G)
Delay execution of goal G until the conditions C are satisfied. The conditions
are of the following form:

C1,C2 Delay until both conditions C1 and C2 are satisfied.
C1;C2 Delay until either condition C1 or condition C2 is satisfied.

?7=(V1,C2)
Delay until terms V1 and V1 have been unified.

nonvar (V)
Delay until variable V is bound.

ground (V)
Delay until variable V is ground.

Note that when/2 will fail if the conditions fail.

call_residue(:G,L)
Call goal G. If subgoals of G are still blocked, return a list containing these
goals and the variables they are blocked in. The goals are then considered as
unblocked. The next example shows a case where dif/2 suspends twice, once
outside call_residue/2, and the other inside:

108 YAP Prolog User’s Manual

?7- dif(X,Y),
call_residue((dif(X,Y),(X = £(Z) ; Y = £(Z))), L).

X = £(2),
L = [[Y]-dif(£(2),V)],
dif (£(2),Y) ? ;

Y = £(2),
L [[X]-dif (X,f(Z))],
dif (X,£(2Z)) 7 ;

no

The system only reports one invocation of dif/2 as having suspended.

Chapter 11: Attributed Variables 109

11 Attributed Variables

YAP now supports the attributed variables packaged developed at OFAI by Christian
Holzbaur. Attributes are a means of declaring that an arbitrary term is a property for
a variable. These properties can be updated during forward execution. Moreover, the uni-
fication algorithm is aware of attributed variables and will call user defined handlers when
trying to unify these variables.

Attributed variables provide an elegant abstraction over which one can extend Prolog
systems. Their main application so far has been in implementing constraint handlers, such
as Holzbaur’s CLPQR and Fruewirth and Holzbaur’s CHR, but other applications have
been proposed in the literature.

The command
| ?- use_module(library(atts)).
enables the use of attributed variables. The package provides the following functionality:
e Each attribute must be declared first. Attributes are described by a functor and are

declared per module. Each Prolog module declares its own sets of attributes. Different
modules may have different functors with the same module.

e The built-in put_atts/2 adds or deletes attributes to a variable. The variable may be
unbound or may be an attributed variable. In the latter case, YAP discards previous
values for the attributes.

e The built-in get_atts/2 can be used to check the values of an attribute associated
with a variable.

e The unification algorithm calls the user-defined predicate verify_attributes/3 before
trying to bind an attributed variable. Unification will resume after this call.

e The user-defined predicate attribute_goal/2 converts from an attribute to a goal.

e The user-defined predicate project_attributes/2 is used from a set of variables into
a set of constraints or goals. One application of project_attributes/2 is in the
top-level, where it is used to output the set of floundered constraints at the end of a

query.
11.1 Attribute Declarations

Attributes are compound terms associated with a variable. Each attribute has a name
which is private to the module in which the attribute was defined. Variables may have at
most one attribute with a name. Attribute names are defined with the following declaration:

:— attribute AttributeSpec, ..., AttributeSpec.

where each AttributeSpec has the form (Name/Arity). One single such declaration is
allowed per module Module.

Although the YAP module system is predicate based, attributes are local to modules.
This is implemented by rewriting all calls to the builtins that manipulate attributes so that
attribute names are preprocessed depending on the module. The user:goal_expansion/3
mechanism is used for this purpose.

110 YAP Prolog User’s Manual

11.2 Attribute Manipulation

The attribute manipulation predicates always work as follows:
1. The first argument is the unbound variable associated with attributes,

2. The second argument is a list of attributes. Each attribute will be a Prolog term or a
constant, prefixed with the + and - unary operators. The prefix + may be dropped for
convenience.

The following three procedures are available to the user. Notice that these builtins are
rewritten by the system into internal builtins, and that the rewriting process depends on
the module on which the builtins have been invoked.

Module :get_atts(-Var, ?PListOfAttributes)
Unify the list ?ListOfAttributes with the attributes for the unbound variable
Var. Each member of the list must be a bound term of the form +(Attribute),
-(Attribute) (the kbd prefix may be dropped). The meaning of + and - is:

+(Attribute)
Unifies Attribute with a corresponding attribute associated with
Var, fails otherwise.

-(Attribute)
Succeeds if a corresponding attribute is not associated with Var.
The arguments of Attribute are ignored.

Module :put_atts(-Var, ?ListOfAttributes)
Associate with or remove attributes from a variable Var. The attributes are
given in 7ListOfAttributes, and the action depends on how they are prefixed:

+(Attribute)
Associate Var with Attribute. A previous value for the attribute is simply
replace (like with set_mutable/2).

-(Attribute)
Remove the attribute with the same name. If no such attribute existed, simply
succeed.

11.3 Attributed Unification

The user-predicate predicate verify_attributes/3 is called when attempting to unify an
attributed variable which might have attributes in some Module.

Module:verify_attributes(-Var, +Value, -Goals)
The predicate is called when trying to unify the attributed variable Var with
the Prolog term Value. Note that Value may be itself an attributed variable, or
may contain attributed variables. The goal verify_attributes/3 is actually
called before Var is unified with Value.

It is up to the user to define which actions may be performed by
verify_attributes/3 but the procedure is expected to return in Goals a list

Chapter 11: Attributed Variables 111

of goals to be called after Var is unified with Value. If verify_attributes/3
fails, the unification will fail.

Notice that the verify_attributes/3 may be called even if Var has no at-
tributes in module Module. In this case the routine should simply succeed with
Goals unified with the empty list.

11.4 Displaying Attributes

Attributes are usually presented as goals. The following routines are used by builtin predi-
cates such as call_residue/2 and by the Prolog top-level to display attributes:

Module :attribute_goal (-Var, -Goal)
User-defined procedure, called to convert the attributes in Var to a Goal.
Should fail when no interpretation is available.

Module :project_attributes(-QueryVars, +AttrVars)
User-defined procedure, called to project the attributes in the query, AttrVars,
given that the set of variables in the query is Query Vars.

11.5 Projecting Attributes

Constraint solvers must be able to project a set of constraints to a set of variables. This
is useful when displaying the solution to a goal, but may also be used to manipulate com-
putations. The user-defined project_attributes/2 is responsible for implementing this
projection.

Module :project_attributes (+QueryVars, +AttrVars)
Given a list of variables QueryVars and list of attributed variables AttrVars,
project all attributes in AttrVars to QueryVars. Although projection is con-
straint system dependent, typically this will involve expressing all constraints
in terms of QueryVars and considering all remaining variables as existentially
quantified.

Projection interacts with attribute_goal/2 at the prolog top level. When the query
succeeds, the system first calls project_attributes/2. The system then calls attribute_
goal/2 to get a user-level representation of the constraints. Typically, attribute_goal/2
will convert from the original constraints into a set of new constraints on the projection,
and these constraints are the ones that will have an attribute_goal/2 handler.

11.6 Attribute Examples

The following two examples example is taken from the SICStus Prolog manual. It sketches
the implementation of a simple finite domain “solver”. Note that an industrial strength
solver would have to provide a wider range of functionality and that it quite likely would
utilize a more efficient representation for the domains proper. The module exports a single
predicate domain(-Var, ?Domain) which associates Domain (a list of terms) with Var. A
variable can be queried for its domain by leaving Domain unbound.

112 YAP Prolog User’s Manual

We do not present here a definition for project_attributes/2. Projecting finite domain
constraints happens to be difficult.

module (domain, [domain/2]).

use_module(library(atts)).

use_module(library(ordsets), [
ord_intersection/3,
ord_intersect/2,
list_to_ord_set/2

D.

attribute dom/1.

verify_attributes(Var, Other, Goals) :-
get_atts(Var, dom(Da)), !, % are we involved?
(var (Other) -> % must be attributed then
(get_atts(Other, dom(Db)) -> % has a domain?
ord_intersection(Da, Db, Dc),

Dc = [El|Els], % at least one element
(Els =10 - % exactly one element
Goals = [Other=El] % implied binding
; Goals = [],
put_atts(Other, dom(Dc))% rescue intersection
)
; Goals = [],
put_atts(Other, dom(Da)) % rescue the domain
)
; Goals = [],
ord_intersect ([Other], Da) % value in domain?
).
verify_attributes(_, _, [1). % unification triggered
% because of attributes
% in other modules
attribute_goal(Var, domain(Var,Dom)) :- % interpretation as goal

get_atts(Var, dom(Dom)) .

domain(X, Dom) :-
var (Dom), !,
get_atts(X, dom(Dom)) .
domain(X, List) :-
list_to_ord_set(List, Set),

Set = [El|Els], % at least one element
(Els =101 - % exactly one element
X =El % implied binding

; put_atts(Fresh, dom(Set)),

Chapter 11: Attributed Variables 113

X = Fresh % may call
% verify_attributes/3
).

Note that the “implied binding” Other=El was deferred until after the completion of
verify_attribute/3. Otherwise, there might be a danger of recursively invoking verify_
attribute/3, which might bind Var, which is not allowed inside the scope of verify_
attribute/3. Deferring unifications into the third argument of verify_attribute/3 ef-
fectively serializes the calls to verify_attribute/3.

Assuming that the code resides in the file ‘domain.yap’, we can use it via:
| ?- use_module(domain) .

Let’s test it:
| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]).

domain(X, [1,5,6,7]),
domain(Y, [3,4,5,6]),
domain(Z,[1,6,7,8]) ?

yes
| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,81),

X=Y.

Y = X,
domain(X, [5,6]1),
domain(Z,[1,6,7,8]) 7

yes
| ?- domain(X,[5,6,7,1]), domain(Y,[3,4,5,6]), domain(Z,[1,6,7,8]),

X=Y, Y=Z.

X =26,
Y =26,
Z =6
To demonstrate the use of the Goals argument of verify_attributes/3, we give an
implementation of freeze/2. We have to name it myfreeze/2 in order to avoid a name
clash with the built-in predicate of the same name.

:— module (myfreeze, [myfreeze/2]).
:— use_module(library(atts)).
:— attribute frozen/1.

verify_attributes(Var, Other, Goals) :-
get_atts(Var, frozen(Fa)), !, % are we involved?
(var (Other) -> % must be attributed then

(get_atts(Other, frozen(Fb)) % has a pending goal?

114 YAP Prolog User’s Manual

-> put_atts(Other, frozen((Fa,Fb))) J rescue conjunction
; put_atts(Other, frozen(Fa)) % rescue the pending goal

),
Goals = []
; Goals = [Fa]
).
verify_attributes(_, _, [1).
attribute_goal(Var, Goal) :- % interpretation as goal

get_atts(Var, frozen(Goal)).

myfreeze(X, Goal) :-
put_atts(Fresh, frozen(Goal)),
Fresh = X.
Assuming that this code lives in file ‘myfreeze.yap’, we would use it via:

| ?- use_module(myfreeze).
| 7- myfreeze(X,print(bound(x,X))), X=2.

bound (x,2) % side effect
X =2 % bindings
The two solvers even work together:

| ?7- myfreeze(X,print(bound(x,X))), domain(X,[1,2,3]),
domain(Y, [2,10]), X=Y.

bound (x,2) % side effect
X =2, % bindings
Y =2

The two example solvers interact via bindings to shared attributed variables only. More
complicated interactions are likely to be found in more sophisticated solvers. The cor-
responding verify_attributes/3 predicates would typically refer to the attributes from
other known solvers/modules via the module prefix in Module :get_atts/2.

Chapter 12: CLP(Q,R) Manual 115

12 CLP(Q,R) Manual

This Manual documents a Prolog implementation of clp(Q,R), based on SICStus featuring
extensible unification via attributed variables.

Edition 1.3.3 December 1995
Christian Holzbaur christian®@ai.univie.ac.at

Copyright (©) 1992,1993,1994,1995 OFAI Austrian Research Institute for Artificial Intel-
ligence (OFAI) Schottengasse 3 A-1010 Vienna, Austria

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by the OFAL

12.1 Introduction to CLP(Q,R)

The clp(Q,R) system described in this document is an instance of the general Constraint
Logic Programming scheme introduced by [Jaffar & Michaylov 87].

The implementation is at least as complete as other existing clp(R) implementations: It
solves linear equations over rational or real valued variables, covers the lazy treatment of
nonlinear equations, features a decision algorithm for linear inequalities that detects implied
equations, removes redundancies, performs projections (quantifier elimination), allows for
linear dis-equations, and provides for linear optimization.

The full clp(Q,R) distribution, including a stand-alone manual and an examples directory
that is possibly more up to date than the version in the SICStus Prolog distribution, is
available from: http://www.ai.univie.ac.at/clpqr/.

12.2 Referencing CLP(Q,R)

When referring to this implementation of clp(Q,R) in publications, you should use the
following reference:

Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for Ar-
tificial Intelligence, Vienna, TR-95-09, 1995.

12.3 CLP(QR) Acknowledgments

Acknowledgments

The development of this software was supported by the Austrian Fonds zur Foerderung
der Wissenschaftlichen Forschung under grant P9426-PHY. Financial support for the Aus-
trian Research Institute for Artificial Intelligence is provided by the Austrian Federal Min-
istry for Science and Research.

116 YAP Prolog User’s Manual

We include a collection of examples that has been distributed with the Monash University
version of clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly
permitted by Roland Yap.

12.4 Solver Interface

Rational numbers are not first class citizens in SICStus Prolog, so rational arithmetics
has to be emulated. Because of the emulation it is too expensive to support arithmetics
with automatic coercion between all sorts of numbers, like you find it in CommonLisp, for
example.

You must choose whether you want to operate in the field of Q (Rationals) or R (Reals):
?7- use_module(library(clpq)) .
or

7- use_module(library(clpr)).
12.5 Notational Conventions

Throughout this chapter, the prompts clp(q) ?- and clp(r) ?- are used to differentiate
between clp(Q) and clp(R) in exemplary interactions.

In general there are many ways to express the same linear relationship. This degree
of freedom is manifest in the fact that the printed manual and an actual interaction with
the current version of clp(Q,R) may show syntactically different answer constraints, despite
the fact the same semantic relationship is being expressed. There are means to control
the presentation, see see Section 12.14 [Variable Ordering], page 126. The approximative
nature of floating point numbers may also produce numerical differences between the text
in this manual and the actual results of clp(R), for a given edition of the software.

12.6 Solver Predicates

The solver interface for both Q and R consists of the following predicates which are exported
from module(linear).

{+Constraint?}
Constraint is a term accepted by the the grammar below. The corresponding
constraint is added to the current constraint store and checked for satisfiability.
If you want to overload {}/1 with other solvers, you can avoid its importation
via: use_module(clpq, [1).

Constraint --> C

| ¢, C conjunction
c -—> Expr =:= Expr equation
| Expr = Expr equation
| Expr < Expr strict inequation

| Expr > Expr strict inequation

Chapter 12: CLP(Q,R) Manual

Expr -->

Expr =< Expr
Expr >= Expr
Expr =\= Expr

variable
number
+ Expr
- Expr
Expr + Expr
Expr - Expr
Expr * Expr
Expr / Expr
abs (Expr)
sin(Expr)
cos (Expr)
tan (Expr)
pow (Expr, Expr)
exp (Expr, Expr)
min (Expr,Expr)

max (Expr, Expr)

#(Const)

117

nonstrict inequation
nonstrict inequation
disequation

Prolog variable
floating point or integer
unary plus
unary minus
addition
subtraction
multiplication
division
absolute value
trigonometric sine
trigonometric cosine
trigonometric tangent
raise to the power
raise to the power
minimum of the two
arguments
maximum of the two
arguments
symbolic numerical
constant

Conjunctive constraints {-C,C} have been made part of the syntax in order
to enable grouped submission of constraints, which could be exploited by fu-
ture versions of this software. Symbolic numerical constants are provided for
compatibility only, see see Section 12.19 [Monash Examples|, page 132.

entailed(+Constraint)

Succeeds iff the linear Constraint is entailed by the current constraint store.
This predicate does not change the state of the constraint store.

clp(q) 7- {A =< 4}, entailed(A=\=5).

{A=<4}
yes

clp(q) ?7- {A =< 4}, entailed(A=\=3).

no

inf (+Expr, -Inf)

Computes the infimum of the linear expression Expr and unifies it with Inf.
Failure indicates unboundedness.

sup (+Expr, -Sup)

Computes the supremum of the linear expression Expr and unifies it with Sup.
Failure indicates unboundedness.

clp(q) 7- { 2%X+Y =< 16, X+2*Y =< 11,

118 YAP Prolog User’s Manual

X+3xY =< 15, Z = 30*xX+50%Y
}, sup(Z, Sup).

Sup = 310,
{Z=30%X+50%Y},
{X+1/2%Y=<8}

{X+3%xY=<15},
{X+2xY=<11}

minimize (+Expr)
Computes the infimum of the linear expression Expr and equates it with the
expression, i.e. as if defined as:

minimize (Expr) :- inf(Expr, Expr).

maximize (+Expr)
Computes the supremum of the linear expression Expr and equates it with the
expression.
clp(q) 7- { 2#X+Y =< 16, X+2%Y =< 11,
X+3%Y =< 15, Z = 30*X+50%Y
}, maximize(Z).

X=17,
Y =2,
Z = 310

bb_inf (+Ints, +Expr, —-Inf)
Computes the infimum of the linear expression Expr under the additional con-
straint that all of variables in the list Ints assume integral values at the infimum.
This allows for the solution of mixed integer linear optimization problems, see
see Section 12.21 [A Mixed Integer Linear Optimization Example], page 133.

ordering(+Spec)
Provides a means to control one aspect of the presentation of the answer con-
straints, see see Section 12.14 [Variable Ordering], page 126.

12.7 Unification

Equality constraints are added to the store implicitly each time variables that have been
mentioned in explicit constraints are bound - either to another such variable or to a number.

clp(r) 7- {2*A+3*B=C/2}, C=10.0, A=B.

A=1.0,
B=1.0,
C = 10.0

Is equivalent modulo rounding errors to
clp(r) 7- {2*A+3*B=C/2, C=10, A=B}.

Chapter 12: CLP(Q,R) Manual 119

A=1.0,
B = 0.9999999999999999,
C =10.0

The shortcut bypassing the use of {}q/1 is allowed and makes sense because the inter-
pretation of this equality in Prolog and clp(R) coincides. In general, equations involving
interpreted functors, +/2 in this case, must be fed to the solver explicitly:

clp(r) 7- X=3.0+1.0, X=4.0.

no

Further, variables known by clp(R) may be bound directly to floats only. Likewise,
variables known by clp(Q) may be bound directly to rational numbers only, see see Sec-
tion 12.12 [Numerical Precision and Rationals|, page 122. Failing to do so is rewarded with
an exception:

clp(q) ?- {2*A+3%B=C/2}, C=10.0, A=B.

[ERROR: not.normalized(10.0)]
This is because 10.0 is not a rational constant. To make clp(Q) happy you have to say:
clp(q) 7- {2*A+3*B=C/2}, C=rat(10,1), A=B.

A=1,
B =1,
C =10

If you use {}/1, you don’t have to worry about such details. Alternatively, you may use
the automatic expansion facility, check see Section 12.18 [Syntactic Sugar|, page 131.

12.8 Feedback and Bindings

What was covered so far was how the user populates the constraint store. The other
direction of the information flow consists of the success and failure of the above predicates
and the binding of variables to numerical values and the aliasing of variables. Example:

clp(r) ?- {A-B+C=10, C=5+5}.

B =A,
C =10.0
The linear constraints imply A=B and the solver consequently exports this binding to
the Prolog world, which is manifest in the fact that the test A==B will succeed. More
about answer presentation in see Section 12.13 [Projection and Redundancy Elimination],
page 125.

12.9 Linearity and Nonlinear Residues

The clp(Q,R) system is restricted to deal with linear constraints because the decision al-
gorithms for general nonlinear constraints are prohibitively expensive to run. If you need

120 YAP Prolog User’s Manual

this functionality badly, you should look into symbolic algebra packages. Although the
clp(Q,R) system cannot solve nonlinear constraints, it will collect them faithfully in the
hope that through the addition of further (linear) constraints they might get simple enough
to solve eventually. If an answer contains constraints, you have to be aware of the fact that
success is qualified modulo the existence of a solution to the system of residual (nonlinear)
constraints:

clp(r) 7- {sin(X) = cos(X)}.

nonlin:{sin(X)-cos(X)=0.03}
There are indeed infinitely many solutions to this constraint (X = 0.785398 + n*Pi), but
clp(Q,R) has no direct means to find and represent them.

The systems goes through some lengths to recognize linear expressions as such. The
method is based on a normal form for multivariate polynomials. In addition, some simple
isolation axioms, that can be used in equality constraints, have been added. The current
major limitation of the method is that full polynomial division has not been implemented.

This is an example where the isolation axioms are sufficient to determine the value of X.
clp(r) 7- {sin(cos(X)) = 1/2}.

X = 1.0197267436954502
If we change the equation into an inequation, clp(Q,R) gives up:
clp(r) 7- {sin(cos(X)) < 1/2}.

nonlin:{sin(cos(X))-0.5!0.0%}
The following is easy again:
clp(r) 7- {sin(X+2+2)/sin(4+X) = Y}.

Y=1.0
And so is this:
clp(r) 7- {(X+Y)*(Y+X) /X = Y*Y/X+99}.

{Y=49.5-0.5*X}
An ancient symbol manipulation benchmark consists in rising the expression X+Y+Z+1
to the 15th power:

clp(q) 7- {exp(X+Y+Z+1,15)=0}.

nonlin:{Z~16+Z"14%16+Z"13*%105+Z~12%455+Z"11%1365+Z~10%3003+. . .
. polynomial continues for a few pages ...

Computing its roots is another story.
12.10 How Nonlinear Residues are made to disappear

Binding variables that appear in nonlinear residues will reduce the complexity of the non-
linear expressions and eventually results in linear expressions:

Chapter 12: CLP(Q,R) Manual 121

clp(q) 7- {exp(X+Y+1,2) = 3*X*kX+Y*Y}.

nonlin:{Y*2-X"2%2+Y*X*x2+X*2+1=0}

Equating X and Y collapses the expression completely and even determines the values
of the two variables:

clp(q) 7- {exp(X+Y+1,2) = 3*X*X+Y*Y}, X=Y.

X
Y

-1/4,
-1/4

12.11 Isolation Axioms

These axioms are used to rewrite equations such that the variable to be solved for is moved to
the left hand side and the result of the evaluation of the right hand side can be assigned to the
variable. This allows, for example, to use the exponentiation operator for the computation
of roots and logarithms, see below.

A =B * C Residuates unless B or C is ground or A and B or C are ground.
A =B/ C Residuates unless C is ground or A and B are ground.

X =min(Y,Z)
Residuates unless Y and Z are ground.

X =max(Y,Z)
Residuates unless Y and Z are ground.

X = abs(Y)
Residuates unless Y is ground.

X =pow(Y,Z), X = exp(Y,2)
Residuates unless any pair of two of the three variables is ground. Example:

clp(r) 7- { 12=pow(2,X) }.

X = 3.5849625007211565

clp(r) ?7- { 12=pow(X,3.585) }.
X = 1.9999854993443926

clp(r) 7- { X=pow(2,3.585) }.

X = 12.000311914286545

X = sin(Y)
Residuates unless X or Y is ground. Example:

clp(r) 7- { 1/2 = sin(X) }.

X = 0.5235987755982989

122 YAP Prolog User’s Manual

X = cos(Y)
Residuates unless X or Y is ground.

X = tan(Y)
Residuates unless X or Y is ground.

12.12 Numerical Precision and Rationals

The fact that you can switch between clp(R) and clp(Q) should solve most of your numer-
ical problems regarding precision. Within clp(Q), floating point constants will be coerced
into rational numbers automatically. Transcendental functions will be approximated with
rationals. The precision of the approximation is limited by the floating point precision.
These two provisions allow you to switch between clp(R) and clp(Q) without having to
change your programs.

What is to be kept in mind however is the fact that it may take quite big rationals
to accommodate the required precision. High levels of precision are for example required
if your linear program is ill-conditioned, i.e., in a full rank system the determinant of
the coefficient matrix is close to zero. Another situation that may call for elevated levels
of precision is when a linear optimization problem requires exceedingly many pivot steps
before the optimum is reached.

If your application approximates irrational numbers, you may be out of space particularly
soon. The following program implements N steps of Newton’s approximation for the square
root function at point 2.

b
% from file: library(’clpqr/examples/root’)
b

root(N, R) :-
root(N, 1, R).

root(0, S, R) :- !, S=R.
root(N, S, R) :-
N1 is N-1,
{s1=58/2+1/8 1%,
root(N1, S1, R).
It is known that this approximation converges quadratically, which means that the num-
ber of correct digits in the decimal expansion roughly doubles with each iteration. Therefore
the numerator and denominator of the rational approximation have to grow likewise:

clp(q) 7?- use_module(library(’clpqr/examples/root’)).

clp(q) 7- root(3,R),print_decimal(R,70).

1.4142156862 7450980392 1568627450 9803921568 6274509803 9215686274
5098039215

R = 577/408

clp(q) 7?- root(4,R),print_decimal(R,70).

Chapter 12: CLP(Q,R) Manual 123

1.4142135623 7468991062 6295578890 1349101165 5962211574 4044584905
0192000543

R = 665857/470832
clp(q) ?- root(5,R),print_decimal(R,70).

1.4142135623 7309504880 1689623502 5302436149 8192577619 7428498289
4986231958

R = 886731088897/627013566048
clp(q) ?- root(6,R),print_decimal(R,70).

1.4142135623 7309504880 1688724209 6980785696 7187537723 4001561013
1331132652

R = 1572584048032918633353217/1111984844349868137938112
clp(q) ?- root(7,R),print_decimal(R,70).

1.4142135623 7309504880 1688724209 6980785696 7187537694 8073176679
7379907324

R = 4946041176255201878775086487573351061418968498177 /
3497379255757941172020851852070562919437964212608

Iterating for 8 steps produces no further change in the first 70 decimal digits of sqrt (2).
After 15 steps the approximating rational number has a numerator and a denominator with
12543 digits each, and the next step runs out of memory.

Another irrational number that is easily computed is e. The following program imple-
ments an alternating series for 1/e, where the absolute value of last term is an upper bound
on the error.

yA
% from file: library(’clpqr/examples/root’)
yA
e(N, E) :-
{ Err =:= exp(10,-(N+2)), Half =:= 1/2 },
inv_e_series(Half, Half, 3, Err, Inv.E),
{E =:=1/Inv_E }.
inv_e_series(Term, SO, ., Err, Sum) :-
{ abs(Term) =< Err }, !,
SO = Sum.

inv_e_series(Term, SO, N, Err, Sum) :-

124 YAP Prolog User’s Manual

N1 is N+1,
{ Terml =:= -Term/N, S1 =:= Term1+SO 1},
inv_e_series(Terml, S1, Ni, Err, Sum).

The computation of the rational number E that approximates e up to at least 1000 digits
in its decimal expansion requires the evaluation of 450 terms of the series, i.e. 450 calls of
inv.e. series/5.

clp(q) ?- e(1000,E).

E = 7149056228932760213666809592072842334290744221392610955845565494
3708750229467761730471738895197792271346693089326102132000338192
0131874187833985420922688804220167840319199699494193852403223700
5853832741544191628747052136402176941963825543565900589161585723
4023097417605004829991929283045372355639145644588174733401360176
9953973706537274133283614740902771561159913069917833820285608440
3104966899999651928637634656418969027076699082888742481392304807
9484725489080844360397606199771786024695620205344042765860581379
3538290451208322129898069978107971226873160872046731879753034549
3130492167474809196348846916421782850086985668680640425192038155
4902863298351349469211627292865440876581064873866786120098602898
8799130098877372097360065934827751120659213470528793143805903554
7928682131082164366007016698761961066948371407368962539467994627
1374858249110795976398595034606994740186040425117101588480000000
00
00000000000000000000000000000000000000
/
2629990810403002651095959155503002285441272170673105334466808931
6863103901346024240326549035084528682487048064823380723787110941
6809235187356318780972302796570251102928552003708556939314795678
1978390674393498540663747334079841518303636625888963910391440709
0887345797303470959207883316838346973393937778363411195624313553
8835644822353659840936818391050630360633734935381528275392050975
7271468992840907541350345459011192466892177866882264242860412188
0652112744642450404625763019639086944558899249788084559753723892
1643188991444945360726899532023542969572584363761073528841147012
2634218045463494055807073778490814692996517359952229262198396182
1838930043528583109973872348193806830382584040536394640895148751
0766256738740729894909630785260101721285704616818889741995949666
6303289703199393801976334974240815397920213059799071915067856758
6716458821062645562512745336709063396510021681900076680696945309
3660590933279867736747926648678738515702777431353845466199680991
73361873421152165477774911660108200059

The decimal expansion itself looks like this:
clp(q) ?- e(1000, E), print_decimal(E, 1000).
2

7182818284 5904523536 0287471352 6624977572 4709369995 9574966967
6277240766 3035354759 4571382178 5251664274 2746639193 2003059921

Chapter 12: CLP(Q,R) Manual

8174135966
8298807531
7614606680
5517027618
7093287091
4637721112
9316368892
6680331825
3012381970
7825098194
5988885193
4841984443
3043699418
7683964243
1718986106

2904357290
9525101901
8226480016
3860626133
2744374704
5238978442
3009879312
2886939849
6841614039
5581530175
4580727386
6346324496
4914631409
7814059271
8739696552

0334295260
1573834187
8477411853
1384583000
7230696977
5056953696
7736178215
6465105820
7019837679
6717361332
6738589422
8487560233
3431738143
4563549061
1267154688

5956307381
9307021540
7423454424
7520449338
2093101416
7707854499
4249992295
9392398294
3206832823
0698112509
8792284998
6248270419
6405462531
3031072085
9570350354

3232862794
8914993488
3710753907
2656029760
9283681902
6996794686
7635148220
8879332036
7646480429
9618188159
92086805682
7862320900
5209618369
1038375051

12.13 Projection and Redundancy Elimination

3490763233
4167509244
7744992069
6737113200
5515108657
4454905987
8269895193
2509443117
5311802328
3041690351
5749279610
2160990235
0888707016
0115747704

125

Once a derivation succeeds, the Prolog system presents the bindings for the variables in
the query. In a CLP system, the set of answer constraints is presented in analogy. A
complication in the CLP context are variables and associated constraints that were not
mentioned in the query. A motivating example is the familiar mortgage relation:

T

% from file: library(’clpqr/examples/mg’)

h

mg(P,T,I,B,

{
T=1

MP) : -

B+MP =P x (1 + I)

}

{
T>1,

mg(P,T,I,B,

MP) : -

P1 =P % (1 + I) - MP,

T1 =T

}, mg(P1,

-1

T1, I, B,

A sample query yields:

MP) .

clp(r) ?7- use_module(library(’clpqr/examples/mg’)).

clp(r) 7- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698*P-12.682503013196973*Mp}

Without projection of the answer constraints onto the query variables we would observe
the following interaction:

126 YAP Prolog User’s Manual

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=12.682503013196973%_A-11.682503013196971%P},
{Mp= -(_A)+1.01%P},

=2.01%_A-1.01%P}

3.0301%_A-2.0301%P},
4.060401000000001%_A-3.0604009999999997*P},
=5.101005010000001*_A-4.10100501*P},
6.152015060100001%_A-5.152015060099999*P},
7.213535210701001%_A-6.213535210700999%P},
8.285670562808011%_A-7.285670562808009*P},
9.368527268436091%_A-8.36852726843609*P},
=10.462212541120453%_A-9.46221254112045%P},
{_K=11.566834666531657*_A-10.566834666531655*P}

The variables _A ... _K are not part of the query, they originate from the mortgage
program proper. Although the latter answer is equivalent to the former in terms of linear
algebra, most users would prefer the former.

12.14 Variable Ordering

In general, there are many ways to express the same linear relationship between variables.
clp(Q,R) does not care to distinguish between them, but the user might. The predicate
ordering(+Spec) gives you some control over the variable ordering. Suppose that instead of
B, you want Mp to be the defined variable:

clp(r) ?- mg(P,12,0.01,B,Mp).

{B=1.1268250301319698%P-12.682503013196973*Mp}
This is achieved with:
clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp]).

{Mp= -0.0788487886783417*B+0.08884878867834171*P}

One could go one step further and require P to appear before (to the left of) B in a
addition:

clp(r) ?- mg(P,12,0.01,B,Mp), ordering([Mp,P]).

{Mp=0.08884878867834171*P-0.0788487886783417*B}

Spec in ordering(+Spec) is either a list of variables with the intended ordering,
or of the form A<B. The latter form means that A goes to the left of B. In fact,
ordering([4,B,C,D]) is shorthand for:

ordering(A < B), ordering(A < C), ordering(A < D),
ordering(B < C), ordering(B < D),
ordering(C < D)

The ordering specification only affects the final presentation of the constraints. For all
other operations of clp(Q,R), the ordering is immaterial. Note that ordering/1 acts like

Chapter 12: CLP(Q,R) Manual 127

a constraint: you can put it anywhere in the computation, and you can submit multiple
specifications.

clp(r) ?7- ordering(B < Mp), mg(P,12,0.01,B,Mp).
{B= -12.682503013196973*Mp+1.1268250301319698*P}

yes
clp(r) 7- ordering(B < Mp), mg(P,12,0.01,B,Mp), ordering(P < Mp).

{P=0.8874492252651537*B+11.255077473484631*Mp}

12.15 Turning Answers into Terms

In meta-programming applications one needs to get a grip on the results computed by the
clp(Q,R) solver. The SISCtus Prolog predicate call_residue/2 provides this functionality:

clp(r) 7- call_residue({2*A+B+C=10,C-D=E,A<10}, Constraints).

Constraints = [
[AT-{A<10.0},
[B]-{B=10.0-2.0*%A-C},
[D]-{D=C-E}
]

12.16 Projecting Inequalities

As soon as linear inequations are involved, projection gets more demanding complexity wise.
The current clp(Q,R) version uses a Fourier-Motzkin algorithm for the projection of linear
inequalities. The choice of a suitable algorithm is somewhat dependent on the number of
variables to be eliminated, the total number of variables, and other factors. It is quite easy
to produce problems of moderate size where the elimination step takes some time. For
example, when the dimension of the projection is 1, you might be better off computing the
supremum and the infimum of the remaining variable instead of eliminating n-1 variables
via implicit projection.
In order to make answers as concise as possible, redundant constraints are removed by

the system as well. In the following set of inequalities, half of them are redundant.

b

% from file: library(’clpqr/examples/elimination’)

b

example(2, [X0,X1,X2,X3,X4]) :-
{
+87*xX0 +52*%X1 +27*xX2 -54*X3 +56%X4 =< -93,
+33%xX0 -10*X1 +61%X2 -28*X3 -29%X4 =< 63,
-68xX0 +8*X1 +35*%X2 +68*%X3 +35xX4 =< -85,
+90*X0 +60*xX1 -76*X2 -53*xX3 +24*X4 =< -68,

128 YAP Prolog User’s Manual

-95%X0 -10*X1 +64*X2 +76*X3 -24xX4 =< 33,
+43%xX0 -22%X1 +67*X2 -68%X3 -92%X4 =< -97,
+39%X0 +7*X1 +62xX2 +54%X3 -26*X4 =< -27,
+48%X0 -13%X1 +7*X2 -61*%X3 -59%X4 =< -2,
+49%X0 -23%X1 -31%X2 -76*X3 +27*X4 =< 3,
-50*%X0 +58*X1 -1%xX2 +57*X3 +20%xX4 =< 6,
-13*%X0 -63*X1 +81%xX2 -3*X3 +70%xX4 =< 64,
+20%X0 +67*X1 -23%X2 -41%X3 -66*X4 =< 52,
-81xX0 -44*X1 +19%X2 -22%X3 -73%X4 =< -17,
-43%X0 -9*%X1 +14x*X2 +27*X3 +40%X4 =< 39,
+16*X0 +83%X1 +89*X2 +25xX3 +55%X4 =< 36,
+2%X0 +40xX1 +65%xX2 +59*X3 -32%X4 =< 13,
-65*%X0 -11xX1 +10*%X2 -13*X3 +91xX4 =< 49,
+93%X0 -73%X1 +91%X2 -1%X3 +23*X4 =< -87
}.

Consequently, the answer consists of the system of nine non-redundant inequalities only:

clp(q) ?7- use_module(library(’clpqr/examples/elimination’)).
clp(q) 7?- example(2, [X0,X1,X2,X3,X4]).

{X0-2/17*X1-35/68%X2-X3-35/68*X47=5/4},
{X0-73/93%X1+91/93%X2-1/93%X3+23/93%X4=<-29/31},
{X0-29/25%X1+1/50%X2-57/50%X3-2/5%X4>=-3/25},
{X0+7/39%X1+62/39%X2+18/13%xX3-2/3%X4=<-9/13},
{X0+2/19%X1-64/95%X2-4/5%X3+24/95%X4>=-33/95},
{X0+2/3%X1-38/45*X2-53/90%X3+4/15%X4=<-34/45},
{X0-23/49%X1-31/49%X2-76/49%X3+27 /49%X4=<3/49},
{X0+44/81*X1-19/81%X2+22/81*X3+73/81*%X4>=17/81},
{X0+9/43%X1-14/43%X2-27/43*X3-40/43%X4>=-39/43}

The projection (the shadow) of this polyhedral set into the X0,X1 space can be computed
via the implicit elimination of non-query variables:

clp(q) 7- example(2, [X0,X1--.1).

{X0+2619277/17854273%X1>=-851123/17854273},
{X0+6429953/16575801*X1=<-12749681/16575801},
{X0+19130/1213083*X1>=795400/404361%},
{X0-1251619/3956679+X17=21101146/3956679},
{X0+601502/4257189%X1>=220850/473021}

Projection is quite a powerful concept that leads to surprisingly terse executable speci-
fications of nontrivial problems like the computation of the convex hull from a set of points
in an n-dimensional space: Given the program

/A
% from file: library(’clpqr/examples/elimination’)
b
conv.hull(Points, Xs) :-
lin_comb(Points, Lambdas, Zero, Xs),

Chapter 12: CLP(Q,R) Manual 129

zero(Zero) ,
polytope (Lambdas) .

polytope(Xs) :-
positive_sum(Xs, 1).

positive_sum([], Z) :- {Z=0}.

positive_sum([X--Xs], SumX) :-
{X >= 0, SumX = X+Sum },
positive_sum(Xs, Sum).

zero([]).
zero([Z--Zs]) :- {Z=0}, zero(Zs).

lin_comb([], [], S1, S1).

lin_comb([Ps--Rest], [K--Ks], S1, S3) :-
lin_comb_r(Ps, K, S1, S2),
lin_comb(Rest, Ks, S2, S3).

lin_comb_r([1, ., [I, [1).

lin_comb_r([P--Ps], K, [S--Ss], [Kps--Ssi]) :-
{ Kps = K*P+S },
lin_comb_r(Ps, K, Ss, Ssl).

we can post the following query:

clp(q) ?- conv.hull([[1,1], [2,0], [3,0], [1,2], [2,2] 1, [X,Y]).

{Y=<2},
{X+1/2%Y=<3},
{xX>=1%},
{Y>=0},
{X+Y>=2%}

This answer is easily verified graphically:

2—- * *
|
I
i x
I
|
0 ———|———%———%———-
1 2 3

The convex hull program directly corresponds to the mathematical definition of the
convex hull. What does the trick in operational terms is the implicit elimination of the
Lambdas from the program formulation. Please note that this program does not limit the
number of points or the dimension of the space they are from. Please note further that

130 YAP Prolog User’s Manual

quantifier elimination is a computationally expensive operation and therefore this program
is only useful as a benchmark for the projector and not so for the intended purpose.

12.17 Why Disequations

A beautiful example of disequations at work is due to [Colmerauer 90]. It addresses the
task of tiling a rectangle with squares of all-different, a priori unknown sizes. Here is a
translation of the original Prolog-III program to clp(Q,R):
b
% from file: library(’clpqr/examples/squares’)
filled_rectangle(A, C) :-
{A>113,
distinct_squares(C),
filled_zone([-1,A,1]1, _, C, [1).

distinct_squares([]1).
distinct_squares([BIC]) :-
{B>01,
outof (C, B),
distinct_squares(C).

outof ([],).

outof ([B1|C], B) :-
{ B =\=B1 }, % *** note disequation **x
outof(C, B).

filled_zomne([V|L], [VIL], CO, CO) :-
{v>=013.

filled_zone([V|L], L3, [BIC], C2) :-
{Vv<o13,
placed_square(B, L, L1),
filled_zone(L1, L2, C, C1),
{ Vb=V+B },
filled_zone([Vb,B|L2], L3, C1, C2).

placed_square(B, [H,HO,H1|L], L1) :-
{ B > H, HO=0, H2=H+H1 },
placed_square(B, [H2|L], L1).
placed_square(B, [B,VIL], [XIL]) :-
{ X=V-B }.
placed_square(B, [HIL], [X,YI|L]) :-
{ B <H, X= -B, Y=H-B }.
There are no tilings with less than nine squares except the trivial one where the rectangle
equals the only square. There are eight solutions for nine squares. Six further solutions are
rotations of the first two.

clp(q) ?- use_module(library(’clpqr/examples/squares’)) .

Chapter 12: CLP(Q,R) Manual 131

clp(q) 7- filled_rectangle(A, Squares).

A =1,
Squares = [1] 7 ;

A = 33/32,
Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] 7 ;

A = 69/61,
Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61]
Depending on your hardware, the above query may take a few minutes. Supplying the
knowledge about the minimal number of squares beforehand cuts the computation time by
a factor of roughly four:

clp(q) 7- length(Squares, 9), filled.rectangle(A, Squares).

A = 33/32,
Squares = [15/32,9/16,1/4,7/32,1/8,7/16,1/32,5/16,9/32] 7 ;

A = 69/61,
Squares = [33/61,36/61,28/61,5/61,2/61,9/61,25/61,7/61,16/61]

12.18 Syntactic Sugar

There is a package that transforms programs and queries from a eval-quote variant of
clp(Q,R) into corresponding programs and queries in a quote-eval variant. Before you use
it, you need to know that in an eval-quote language, all symbols are interpreted unless
explicitly quoted. This means that interpreted terms cannot be manipulated syntactically
directly. Meta-programming in a CLP context by definition manipulates interpreted terms,
therefore you need quote/1 (just as in LISP) and some means to put syntactical terms back
to their interpreted life: {}/1.

In a quote-eval language, meta-programming is (pragmatically) simpler because every-
thing is implicitly quoted until explicitly evaluated. On the other hand, now object pro-
gramming suffers from the dual inconvenience.

We chose to make our version of clp(Q,R) of the quote-eval type because this matches
the intended use of the already existing boolean solver of SICStus. In order to keep the
users of the eval-quote variant happy, we provide a source transformation package. It is
activated via:

| ?- use_module(library(’clpqr/expand’)).

Loading the package puts you in a mode where the arithmetic functors like +/2, */2 and

all numbers (functors of arity 0) are interpreted semantically.
clp(r) 7- 2+2=X. X = 4.0

The package works by purifying programs and queries in the sense that all references to
interpreted terms are made explicit. The above query is expanded prior to evaluation into:

linear:{2.0+2.0=X}

The same mechanism applies when interpreted terms are nested deeper:

132

some_predicate (10, f(A+B/2), 2xcos(A))

Expands into:

linear:{Xc=2.0*cos(A)},

linear:{Xb=A+B/2},
linear:{Xa=10.0},

some_predicate(Xa, f£(Xb), Xc)

YAP Prolog User’s Manual

This process also applies when files are consulted or compiled. In fact, this is the only
situation where expansion can be applied with relative safety. To see this, consider what
happens when the toplevel evaluates the expansion, namely some calls to the clp(Q,R)
solver, followed by the call of the purified query. As we learned in see Section 12.8 [Feed-
back and Bindings]|, page 119, the solver may bind variables, which produces a goal with
interpreted functors in it (numbers), which leads to another stage of expansion, and so on.

We recommend that you only turn on expansion temporarily while consulting or com-

piling files needing expansion with expand/0 and noexpand/0.

12.19 Monash Examples

This collection of examples has been distributed with the Monash University Version of
clp(R) [Heintze et al. 87], and its inclusion into this distribution was kindly permitted by

Roland Yap.

In order to execute the examples, a small compatibility package has to be loaded first:

clp(r) ?- use_module(library(’clpqr/monash’)).

Then, assuming you are using clp(R):

clp(r) 7- expand, [library(’clpqr/examples/monash/rkf45’)],

noexpand.
clp(r) ?7- go.
Point 0.00000 :
Point 0.50000 :
Point 1.00000 :
Point 1.50000 :
Point 2.00000 :
Point 2.50000 :
Point 3.00000 :

Iteration finished

.75000
.61969
.29417
.10556
.49076
.81440
.05440

439 derivative evaluations

12.20 Compatibility Notes

O O O O O O o

.00000
.47793
.81233
.95809
.93977
. 79929
.57522

The Monash examples have been written for clp(R). Nevertheless, all but rkf45 complete
nicely in clp(Q). With rkf45, clp(Q) runs out of memory. This is an instance of the problem
discussed in see Section 12.12 [Numerical Precision and Rationals|, page 122.

Chapter 12: CLP(Q,R) Manual 133

The Monash University clp(R) interpreter features a dump/n predicate. It is used to print
the target variables according to the given ordering. Within this version of clp(Q,R), the
corresponding functionality is provided via ordering/1. The difference is that ordering/1
does only specify the ordering of the variables and no printing is performed. We think
Prolog has enough predicates to perform output already. You can still run the examples
referring to dump/n from the Prolog toplevel:

clp(r) 7- expand, [library(’clpqr/examples/monash/mortgage’)], noexpand.

% go2
h
clp(r) ?- mg(P,120,0.01,0,MP), dump([P,MP]).

{P=69.7005220313972xMP}

% go3
yA
clp(r) 7- mg(P,120,0.01,B,MP), dump([P,B,MP]).

{P=0.30299477968602706*B+69.7005220313972*MP}

% god
yA
clp(r) 7- mg(999, 3, Int, 0, 400), dump.

nonlin:{_B-_B*xInt+.A+400.0=0.0},
nonlin:{_A-_AxInt+400.0=0.0},
{_B=599.0+999.0*Int}

12.21 A Mixed Integer Linear Optimization Example

In this section we are going to exercise our solver a little by the computation of a small
mixed integer optimization problem (MIP) from miplib, a collection of MIP models, housed
at Rice University. Here are the original comments on the example:

NAME: flugpl

ROWS: 18

COLUMNS : 18

INTEGER: 11

NONZERO: 46

BEST SOLN: 1201500 (opt)

LP SOLN: 1167185.73
SOURCE: Harvey M. Wagner

John W. Gregory (Cray Research)
E. Andrew Boyd (Rice University)
APPLICATION: airline model
COMMENTS: no integer variables are binary

T

134

YAP Prolog User’s Manual

% from file: library(’clpqr/examples/mip’)

b

example(flugpl, Obj, Vs, Ints, []1)
Vs = [Anml,Anm2,Anm3,Anm4,Anm5, Anm6,
Stml,Stm2,Stm3,Stm4,Stm5,Stm6b,
UE1,UE2,UE3,UE4,UE5,UE6] ,

Ints = [Stm6, Stm5, Stm4, Stm3, Stm2,
Anm6, Anm5, Anm4, Anm3, Anm2, Anmil],

Obj = 2700*Stm1
2700*Stm2
2700*Stm3
2700*Stm4
2700%Stmb
2700*Stm6

+ 4+ + + +
+ 4+ 4+ 4+ 4+ 4+

allpos(Vs),

1500*Anm1
1500*Anm2
1500*%Anm3
1500*Anm4
1500*Anm5
1500*Anm6

{ Stml = 60, 0.9*%Stml +1*Anml

0.9%3tm2 +1%Anm2 -1*%Stm3 = 0, 0.9*%Stm3 +1*%Anm3 -1*Stm4d =
0.9%3tm4 +1*Anm4 -1%Stmb = 0, 0.9*%Stmb +1*Anmb -1*Stm6

150*%Stm1 -100*Anm1
150*Stm2 -100*Anm2
150*%Stm3 -100*Anm3
150*Stm4 -100*Anm4
150*%3tm5 -100*Anmb
150*%Stm6 -100*Anm6
-20*x3tml +1*xUE1 =<
-20*3tm4 +1*xUE4 =<

Anml =< 18, 57 =< Stm2,
57 =< Stm3, Stm3 =< 75,
Stm4 =< 75, Anm4 =< 18,
Anm5 =< 18, 57 =< Stm6,

T

allpos([1).

+
+
+
+
+
+

30*xUE1
30*UE2
30*UE3
30xUE4
30*xUEb
30*UE6,

1*Stm2 = 0,

nn
[l e]

+1%UE1 >= 8000,

+1+UE2 >=
+1*xUE3 >
+1+%UE4 >
+1*xUES >=
+1+xUE6 >=

9000,
8000,
10000,
9000,
12000,

0, -20%Stm2 +1*UE2 =< 0, -20*Stm3 +1*UE3 =< O,
0, -20*Stmb +1*UE5 =< 0, -20*Stm6 +1*UE6 =< O,

Stm2 =< 75, Anm2 =< 18,
Anm3 =< 18, 57 =< Stm4,
57 =< Stmb, Stmb =< 75,
Stm6 =< 75, Anm6 =< 18

allpos([XIXs]) :- {X >= 0}, allpos(Xs).
We can first check whether the relaxed problem has indeed the quoted infimum:
clp(r) 7- example(flugpl, Obj, _, _, _), inf(Obj, Inf).

Inf = 1167185.7255923203

Computing the infimum under the additional constraints that Stm6, Stm5, Stm4, Stm3,
Stm2, Anm6, Anm5, Anm4, Anm3, Anm2, Anm1 assume integer values at the infimum is
computationally harder, but the query does not change much:

clp(r) 7- example(flugpl, Obj, _, Ints, _), bb_inf(Ints, 0bj, Inf).

Inf = 1201500.0000000005

Chapter 12: CLP(Q,R) Manual 135

12.22 Implementation Architecture

The system consists roughly of the following components:
e A polynomial normal form expression simplification mechanism.
e A solver for linear equations [Holzbaur 92].

e A simplex algorithm to decide linear inequalities [Holzbaur 94].

12.23 Fragments and Bits

The internal data structure for rational numbers is rat (Num,Den). Den is always positive,
i.e. the sign of the rational number is the sign of Num. Further, Num and Den are relative
prime. Note that integer N looks like rat(N,1) in this representation. You can control
printing of terms with portray/1.

Partial Evaluation

Once one has a working solver, it is obvious and attractive to run the constraints in a
clause definition at read time or compile time and proceed with the answer constraints in
place of the original constraints. This gets you constant folding and in fact the full algebraic
power of the solver applied to the avoidance of computations at runtime. The mechanism
to realize this idea is to use call_residue/2 for the expansion of {}/1.

Asserting with Constraints

If you use the dynamic data base, the clauses you assert might have constraints on the
variables occurring in the clause. This should work as follows:

clp(r) 7- {A < 10}, assert(p(Ad)).

{A < 10.0%}
yes

clp(r) 7- p(X).

{X<10.0%}

YAP currently does not implement this feature.

12.24 CLPQR bugs

e The fuzzy comparison of floats is the source for all sorts of weirdness. If a result in R
surprises you, try to run the program in Q before you send me a bug report.

e The projector for floundered nonlinear relations keeps too many variables. Its output
is rather unreadable.

e Disequations are not projected properly.

e This list is probably incomplete.

Please send bug reports to christian@ai.univie.ac.at.

136 YAP Prolog User’s Manual

12.25 CLPQR References

[Colmerauer 90] Colmerauer A.: An Introduction to Prolog III, Communications of the
ACM, 33(7), 69-90, 1990.

[Heintze et al. 87] Heintze N., Jaffar J., Michaylov S., Stuckey P., Yap R.: The CLP(R)
Programmers Manual, Monash University, Clayton, Victoria, Australia, Department of
Computer Science, 1987.

[Holzbaur 92] Holzbaur C.: A High-Level Approach to the Realization of CLP Lan-
guages, in Proceedings of the JICSLP92 Post-Conference Workshop on Constraint Logic
Programming Systems, Washington D.C., 1992.

[Holzbaur 92] Holzbaur C.: Metastructures vs. Attributed Variables in the Context
of Extensible Unification, in Bruynooghe M. & Wirsing M.(eds.), Programming Language
Implementation and Logic Programming, Springer, LNCS 631, pp.260- 268, 1992.

[Holzbaur 94] Holzbaur C.: A Specialized, Incremental Solved Form Algorithm for Sys-
tems of Linear Inequalities, Austrian Research Institute for Artificial Intelligence, Vienna,
TR-94-07, 1994.

[Jaffar & Michaylov 87] Jaffar J., Michaylov S.: Methodology and Implementation of a
CLP System, in Lassez J.L.(ed.), Logic Programming - Proceedings of the 4th International
Conference - Volume 1, MIT Press, Cambridge, MA, 1987.

Chapter 13: Constraint Handling Rules 137

13 Constraint Handling Rules

Copyright

This chapter is Copyright © 1996-98 LMU

LMU (Ludwig-Maximilians-University)
Munich, Germany

Permission is granted to make and distribute verbatim copies of this chapter provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this chapter under
the conditions for verbatim copying, provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this chapter into another
language, under the above conditions for modified versions, except that this permission
notice may be stated in a translation approved by LMU.

13.1 Introduction

Experience from real-life applications using constraint-based programming has shown that
typically, one is confronted with a heterogeneous mix of different types of constraints. To be
able to express constraints as they appear in the application and to write and combine con-
straint systems, a special purpose language for writing constraint systems called constraint
handling rules (CHR) was developed. CHR have been used to encode a wide range of con-
straint handlers (solvers), including new domains such as terminological and temporal rea-
soning. Several CHR libraries exist in declarative languages such as Prolog and LISP, world-
wide more than 20 projects use CHR. You can find more information about CHR at URL:
http://www.pst.informatik.uni-muenchen.de/personen/fruehwir/chr-intro.html

The high-level CHR are an excellent tool for rapid prototyping and implementation of
constraint handlers. The usual abstract formalism to describe a constraint system, i.e.
inference rules, rewrite rules, sequents, formulas expressing axioms and theorems, can be
written as CHR in a straightforward way. Starting from this executable specification, the
rules can be refined and adapted to the specifics of the application.

The CHR library includes a compiler, which translates CHR programs into Prolog pro-
grams on the fly, and a runtime system, which includes a stepper for debugging. Many
constraint handlers are provided in the example directory of the library.

CHR are essentially a committed-choice language consisting of guarded rules that rewrite
constraints into simpler ones until they are solved. CHR define both simplification of and
propagation over constraints. Simplification replaces constraints by simpler constraints
while preserving logical equivalence (e.g. X>Y,Y>X <=> fail). Propagation adds new con-
straints which are logically redundant but may cause further simplification (e.g. X>Y,Y>Z
==> X>Z). Repeatedly applying CHR incrementally simplifies and finally solves constraints
(e.g. A>B,B>C,C>A leads to fail.

138 YAP Prolog User’s Manual

With multiple heads and propagation rules, CHR provide two features which are essential
for non-trivial constraint handling. The declarative reading of CHR as formulas of first
order logic allows one to reason about their correctness. On the other hand, regarding CHR
as a rewrite system on logical formulas allows one to reason about their termination and
confluence.

In case the implementation of CHR disagrees with your expectations based on this
chapter, drop a line to the current maintainer: christian®ai.univie.ac.at (Christian
Holzbaur).

13.2 Introductory Examples

We define a CHR constraint for less-than-or-equal, 1eq, that can handle variable arguments.
This handler can be found in the library as the file leq.pl. (The code works regardless of
options switched on or off.)

:— use_module(library(chr)).

handler leq.
constraints leq/2.
:— op(500, xfx, leq).

reflexivity @ X leq Y <=> X=Y | true.
antisymmetry @ X leq Y , Y leq X <=> X=Y.
idempotence @ X leq Y \ X leq Y <=> true.
transitivity @ X leq Y , Y leq Z ==> X leq Z.

The CHR specify how leq simplifies and propagates as a constraint. They implement
reflexivity, idempotence, antisymmetry and transitivity in a straightforward way. CHR
reflexivity states that X leq Y simplifies to true, provided it is the case that X=Y. This
test forms the (optional) guard of a rule, a precondition on the applicability of the rule.
Hence, whenever we see a constraint of the form A leq A we can simplify it to true.

The rule antisymmetry means that if we find X 1leq Y as well as Y 1eq X in the constraint
store, we can replace it by the logically equivalent X=Y. Note the different use of X=Y in the
two rules: In the reflexivity rule the equality is a precondition (test) on the rule, while
in the antisymmetry rule it is enforced when the rule fires. (The reflexivity rule could also
have been written as reflexivity X leq X <=> true.)

The rules reflexivity and antisymmetry are simplification CHR. In such rules, the
constraints found are removed when the rule applies and fires. The rule idempotence is a
simpagation CHR, only the constraints right of >\’ will be removed. The rule says that if
we find X 1eq Y and another X leq Y in the constraint store, we can remove one.

Finally, the rule transitivity states that the conjunction X leq Y, Y leq Z implies X
leq Z. Operationally, we add X leq Z as (redundant) constraint, without removing the
constraints X leq Y, Y leq Z. This kind of CHR is called propagation CHR.

Propagation CHR are useful, as the query A 1leq B,C leq A,B leq C illustrates: The first
two constraints cause CHR transitivity to fire and add C leq B to the query. This new
constraint together with B 1eq C matches the head of CHR antisymmetry, X leq Y, Y leq
X. So the two constraints are replaced by B=C. Since B=C makes B and C equivalent, CHR

Chapter 13: Constraint Handling Rules 139

antisymmetry applies to the constraints A leq B, C leq A, resulting in A=B. The query
contains no more CHR constraints, the simplification stops. The constraint handler we
built has solved A 1eq B, C leq A, B leq C and produced the answer A=B, B=C:

A leq B,C leq A,B leq C.

% C leq A, A leq B propagates C leq B by transitivity.

% C leq B, B leq C simplifies to B=C by antisymmetry.

% A leq B, C leq A simplifies to A=B by antisymmetry since B=C.
A=B,B=C.

Note that multiple heads of rules are essential in solving these constraints. Also note
that this handler implements a (partial) order constraint over any constraint domain, this
generality is only possible with CHR.

As another example, we can implement the sieve of Eratosthenes to compute primes
simply as (for variations see the handler ‘primes.pl’):

:- use_module(library(chr)).
handler eratosthenes.
constraints primes/1,prime/1.

primes (1) <=> true.
primes(N) <=> N>1 | M is N-1,prime(N),primes(M). % generate candidates

absorb(J) @ prime(I) \ prime(J) <=> Jmod I =:= 0 | true.

The constraint primes(N) generates candidates for prime numbers, prime (M), where M
is between 1 and N. The candidates react with each other such that each number absorbs
multiples of itself. In the end, only prime numbers remain.

Looking at the two rules defining primes/1, note that head matching is used in CHR, so
the first rule will only apply to primes(1). The test N>1 is a guard (precondition) on the
second rule. A call with a free variable, like primes(X), will delay (suspend). The third,
multi-headed rule absorb(J) reads as follows: If there is a constraint prime(I) and some
other constraint prime (J) such that J mod I =:= 0 holds, i.e. J is a multiple of I, then keep
prime(I) but remove prime(J) and execute the body of the rule, true.

13.3 CHR Library

CHR extend the Prolog syntax by a few constructs introduced in the next sections. Tech-
nically, the extension is achieved through the user:term_expansion/2 mechanism. A file
that contains a constraint handler may also contain arbitrary Prolog code. Constraint han-
dling rules can be scattered across a file. Declarations and options should precede rules.
There can only be at most one constraint handler per module.

13.3.1 Loading the Library

Before you can load or compile any file containing a constraint handler (solver) written in
CHR, the chr library module has to be imported:

| ?7- use_module(library(chr)).

140 YAP Prolog User’s Manual

It is recommended to include the corresponding directive at the start of your files con-
taining handlers:

:- use_module(library(chr)).

13.3.2 Declarations

Declarations in files containing CHR affect the compilation and thus the behavior of the
rules at runtime.

The mandatory handler declaration precedes any other CHR specific code. Example:
handler minmax.

A handler name must be a valid Prolog atom. Per module, only one constraint handler
can be defined.

The constraints must be declared before they are used by rules. With this mandatory
declaration one lists the constraints the rules will later talk about. The declaration can be
used more than once per handler. Example:

constraints leq/2, minimum/3, maximum/3.

The following optional declaration allows for conditional rule compilation. Only the
rules mentioned get compiled. Rules are referred to by their names (see Section 13.3.3
[CHR Syntax|, page 140). The latest occurrence takes precedence if used more than once
per handler. Although it can be put anywhere in the handler file, it makes sense, as with
other declarations, to use it early. Example:

rules antisymmetry, transitivity.

To simplify the handling of operator declarations, in particular during fcompile/1,
operator/3 declarations with the same denotation as op/3, but taking effect during com-
pilation and loading, are helpful. Example:

operator (700, xfx, ::).
operator (600, xfx, :).

13.3.3 Constraint Handling Rules, Syntax

A constraint handling rule has one or more heads, an optional guard, a body and an optional
name. A Head is a Constraint. A constraint is a callable Prolog term, whose functor is
a declared constraint. The Guard is a Prolog goal. The Body of a rule is a Prolog goal
(including constraints). A rule can be named with a Name which can be any Prolog term
(including variables from the rule).

There are three kinds of constraint handling rules:
Rule --> [Name @]
(Simplification | Propagation | Simpagation)
[pragma Pragma].

Simplification --> Heads <=> [Guard ’|’] Body
Propagation --> Heads ==> [Guard ’|’] Body
Simpagation --> Heads \ Heads <=> [Guard ’|’] Body

Chapter 13: Constraint Handling Rules 141

Heads --> Head | Head, Heads

Head --> Constraint | Constraint # Id
Constraint --> a callable term declared as constraint
Id --> a unique variable

Guard -—> Ask | Ask & Tell

Ask --> Goal

Tell --> Goal

Goal --> a callable term,

including conjunction and disjunction etc.
Body --> Goal

Pragma --> a conjunction of terms usually referring to
one or more heads identified via #/2
The symbol ‘|’ separates the guard (if present) from the body of a rule. Since ‘|’ is read
as ‘;’ (disjunction) by the reader, care has to be taken when using disjunction in the guard
or body of the rule. The top level disjunction will always be interpreted as guard-body
separator ‘|’; so proper bracketing has to be used, e.g. a <=> (b;c) | (d;e) instead of a
<=>Db;c | d;e and a <=> true | (d;e) instead of a <=> (d;e).

In simpagation rules, ‘\’ separates the heads of the rule into two parts.

Individual head constraints may be tagged with variables via ‘#’, which may be used
as identifiers in pragma declarations, for example. Constraint identifiers must be distinct
variables, not occurring elsewhere in the heads.

Guards test the applicability of a rule. Guards come in two parts, tell and ask, separated
by ‘&’. If the ‘&’ operator is not present, the whole guard is assumed to be of the ask type.

Declaratively, a rule relates heads and body provided the guard is true. A simplification
rule means that the heads are true if and only if the body is true. A propagation rule means
that the body is true if the heads are true. A simpagation rule combines a simplification and
a propagation rule. The rule Heads1 \ Heads2 <=> Body is equivalent to the simplification
rule Heads1, Heads2 <=> Heads1, Body. However, the simpagation rule is more compact to
write, more efficient to execute and has better termination behavior than the corresponding
simplification rule, since the constraints comprising Heads1 will not be removed and inserted
again.

13.3.4 How CHR work

Each CHR constraint is associated with all rules in whose heads it occurs by the CHR
compiler. Every time a CHR constraint is executed (called) or woken and reconsidered,
it checks itself the applicability of its associated CHR by trying each CHR. By default,
the rules are tried in textual order, i.e. in the order they occur in the defining file. To
try a CHR, one of its heads is matched against the constraint. Matching succeeds if the
constraint is an instance of the head. If a CHR has more than one head, the constraint
store is searched for partner constraints that match the other heads. Heads are tried from
left to right, except that in simpagation rules, the heads to be removed are tried before the

142 YAP Prolog User’s Manual

head constraints to be kept (this is done for efficiency reasons). If the matching succeeds,
the guard is executed. Otherwise the next rule is tried.

The guard either succeeds or fails. A guard succeeds if the execution of its Ask and Tell
parts succeeds and in the ask part no variable that occurs also in the heads was touched or
the cause of an instantiation error. The ask guard will fail otherwise. A variable is touched
if it is unified with a term (including other variables from other constraints) different from
itself. Tell guards, on the contrary, are trusted and not checked for that property. If the
guard succeeds, the rule applies. Otherwise the next rule is tried.

If the firing CHR is a simplification rule, the matched constraints are removed from the
store and the body of the CHR is executed. Similarly for a firing simpagation rule, except
that the constraints that matched the heads preceding ‘\’ are kept. If the firing CHR is
a propagation rule the body of the CHR is executed without removing any constraints.
It is remembered that the propagation rule fired, so it will not fire again with the same
constraints if the constraint is woken and reconsidered. If the currently active constraint
has not been removed, the next rule is tried.

If the current constraint has not been removed and all rules have been tried, it delays
until a variable occurring in the constraint is touched. Delaying means that the constraint
is inserted into the constraint store. When a constraint is woken, all its rules are tried
again. (This process can be watched and inspected with the CHR debugger, see below.)

13.3.5 Pragmas

Pragmas are annotations to rules and constraints that enable the compiler to generate more
specific, more optimized code. A pragma can be a conjunction of the following terms:

already_in_heads

The intention of simplification and simpagation rules is often to combine the
heads into a stronger version of one of them. Depending on the strength of the
guard, the new constraint may be identical to one of the heads to removed by
the rule. This removal followed by addition is inefficient and may even cause
termination problems. If the pragma is used, this situation is detected and
the corresponding problems are avoided. The pragma applies to all constraints
removed by the rule.

already_in_head(Id)
Shares the intention of the previous pragma, but affects only the constraint
indicated via Id. Note that one can use more than one pragma per rule.

passive(Id)
No code will be generated for the specified constraint in the particular head
position. This means that the constraint will not see the rule, it is passive in
that rule. This changes the behavior of the CHR system, because normally, a
rule can be entered starting from each head constraint. Usually this pragma
will improve the efficiency of the constraint handler, but care has to be taken
in order not to lose completeness.

For example, in the handler 1leq, any pair of constraints, say A 1leq B, B leq A,
that matches the head X 1eq Y , Y leq X of the antisymmetry rule, will also

Chapter 13: Constraint Handling Rules 143

match it when the constraints are exchanged, B 1eq A, A leq B. Therefore it
is enough if a currently active constraint enters this rule in the first head only,
the second head can be declared to be passive. Similarly for the idempotence
rule. For this rule, it is more efficient to declare the first head passive, so that
the currently active constraint will be removed when the rule fires (instead of
removing the older constraint and redoing all the propagation with the cur-
rently active constraint). Note that the compiler itself detects the symmetry
of the two head constraints in the simplification rule antisymmetry, thus it is
automatically declared passive and the compiler outputs CHR eliminated code
for head 2 in antisymmetry.

antisymmetry X leq Y, Y leq X # Id <=> X=Y
pragma passive(Id).

idempotence X leq Y # Id \ X leq Y <=> true
pragma passive(Id).

transitivity X leq Y # Id, Y leq Z ==> X leq Z
pragma passive(Id).

Declaring the first head of rule transitivity passive changes the behavior
of the handler. It will propagate less depending on the order in which the
constraints arrive:

7- X leq Y, Y leq Z.
X leq VY,
Y leq Z,
X leq Z2 7

?7- Y leq Z, X leq Y.
Y leq Z,
Xleq Y 7

?7- Y leq Z, X leq Y, Z leq X.

Y = X,

Z=X7
The last query shows that the handler is still complete in the sense that all
circular chains of leq-relations are collapsed into equalities.

13.3.6 Options

Options parametrise the rule compilation process. Thus they should precede the rule defi-
nitions. Example:
option(check_guard_bindings, off).

The format below lists the names of the recognized options together with the acceptable
values. The first entry in the lists is the default value.

option(debug_compile, [off,on]).
Instruments the generated code such that the execution of the rules may be
traced (see Section 13.4 [CHR Debugging], page 148).

144 YAP Prolog User’s Manual

option(check_guard_bindings, [on,off]).
Per default, for guards of type ask the CHR runtime system makes sure that
no variables are touched or the cause of an instantiation error. These checks
may be turned off with this option, i.e. all guards are treated as if they were of
the tell variety. The option was kept for backward compatibility. Tell and ask
guards offer better granularity.

option(already_in_store, [off,on]).
If this option is on, the CHR runtime system checks for the presence of an
identical constraint upon the insertion into the store. If present, the attempted
insertion has no effect. Since checking for duplicates for all constraints costs,
duplicate removal specific to individual constraints, using a few simpagation
rules of the following form instead, may be a better solution.

Constraint \ Constraint <=> true.

option(already_in_heads, [off,on]).

The intention of simplification and simpagation rules is often to combine the
heads into a stronger version of one of them. Depending on the strength of
the guard, the new constraint may be identical to one of the heads removed by
the rule. This removal followed by addition is inefficient and may even cause
termination problems. If the option is enabled, this situation is detected and
the corresponding problems are avoided. This option applies to all constraints
and is provided mainly for backward compatibility. Better grained control can
be achieved with corresponding pragmas. (see Section 13.3.5 [CHR Pragmas],
page 142).

The remaining options are meant for CHR implementors only:

option(flatten, [on,off]).
option(rule_ordering, [canonical,heuristic]).
option(simpagation_scheme, [single,multil).
option(revive_scheme, [new,o0ld]).
option(dead_code_elimination, [on,off]).

13.3.7 Built-In Predicates

This table lists the predicates made available by the CHR library. They are meant for
advanced users, who want to tailor the CHR system towards their specific needs.

current_handler (?Handler, ?Module)
Nondeterministically enumerates the defined handlers with the module they are
defined in.

current_constraint (?Handler, 7?Constraint)
Nondeterministically enumerates the defined constraints in the form
Functor/Arity and the handlers they are defined in.

insert_constraint (+Constraint, -Id)
Inserts Constraint into the constraint store without executing any rules. The
constraint will be woken and reconsidered when one of the variables in Con-

Chapter 13: Constraint Handling Rules 145

straint is touched. Id is unified with an internal object representing the con-
straint. This predicate only gets defined when a handler and constraints are
declared (see Section 13.3.2 [CHR Declarations|, page 140).

insert_constraint (+Constraint, -Id, ?Term)
Inserts Constraint into the constraint store without executing any rules. The
constraint will be woken and reconsidered when one of the variables in Term is
touched. Id is unified with an internal object representing the constraint. This
predicate only gets defined when a handler and constraints are declared (see
Section 13.3.2 [CHR Declarations], page 140).

find_constraint (?Pattern, -Id)
Nondeterministically enumerates constraints from the constraint store that
match Pattern, i.e. which are instances of Pattern. Id is unified with an
internal object representing the constraint.

find_constraint(-Var, ?Pattern, -Id)
Nondeterministically enumerates constraints from the constraint store that de-
lay on Var and match Pattern, i.e. which are instances of Pattern. The identifier
Id can be used to refer to the constraint later, e.g. for removal.

findall_constraints(?Pattern, ?List)
Unifies List with a list of Constraint # Id pairs from the constraint store that
match Pattern.

findall_constraints(-Var, ?Pattern, 7List)
Unifies List with a list of Constraint # Id pairs from the constraint store that
delay on Var and match Pattern.

remove_constraint (+Id)
Removes the constraint Id, obtained with one of the previous predicates, from
the constraint store.

unconstrained(?Var)
Succeeds if no CHR constraint delays on Var. Defined as:

unconstrained(X) :-
find_constraint(X, _, _), !, fail.
unconstrained(_).

notify_constrained(?Var)
Leads to the reconsideration of the constraints associated with Var. This mech-
anism allows solvers to communicate reductions on the set of possible values of
variables prior to making bindings.

13.3.8 Consulting and Compiling Constraint Handlers

The CHR compilation process has been made as transparent as possible. The user deals
with files containing CHR just as with files containing ordinary Prolog predicates. Thus
CHR may be consulted, compiled with various compilation modes, and compiled to file.

146 YAP Prolog User’s Manual

13.3.9 Compiler-generated Predicates

Besides predicates for the defined constraints, the CHR compiler generates some support
predicates in the module containing the handler. To avoid naming conflicts, the following
predicates must not be defined or referred to by user code in the same module:

verify_attributes/3
attribute_goal/2
attach_increment/2
’attach_F/A’/2
for every defined constraint F/A.

'F/AN_M_. ..’ /Arity
for every defined constraint F/A. N.M is are integers, Arity > A.

For the prime number example that is:

attach_increment/2
attach_prime/1/2
attach_primes/1/2
attribute_goal/2
goal_expansion/3
prime/1
prime/1_1/2
prime/1_1_0/3
prime/1_2/2
primes/1
primes/1_1/2
verify_attributes/3

If an author of a handler wants to avoid naming conflicts with the code that uses the
handler, it is easy to encapsulate the handler. The module declaration below puts the
handler into module primes, which exports only selected predicates - the constraints in our
example.

:- module(primes, [primes/1,prime/1]).
:— use_module(library(chr)).

handler eratosthenes.
constraints primes/1,prime/1.

13.3.10 Operator Declarations

This table lists the operators as used by the CHR library:

Chapter 13: Constraint Handling Rules 147

:— op(1200, xfx, @).

:- op(1190, xfx, pragma).

:- op(1180, xfx, [==>,<=>]).
:- op(1180, fy, chr_spy).
:- op(1180, fy, chr_nospy).
:- op(1150, fx, handler).
:- op(1150, fx, constraints).
:- op(1150, fx, rules).

:- op(1100, xfx, ’|°).

:= op(1100, xfx, \).

:- op(1050, xfx, &).

:— op(500, yfx, #).

13.3.11 Exceptions

The CHR runtime system reports instantiation and type errors for the predicates:

find_constraint/2
findall_constraints/3
insert_constraint/2
remove_constraint/1
notify_constrained/1

The only other CHR specific runtime error is:

{CHR ERROR: registering <New>, module <Module> already hosts <01d>}
An attempt to load a second handler New into module <Module> already host-
ing handler <Old> was made.

The following exceptional conditions are detected by the CHR compiler:

{CHR Compiler ERROR: syntax rule <N>: <Term>}
If the N-th <Term> in the file being loaded violates the CHR syntax (see Sec-
tion 13.3.3 [CHR Syntax]|, page 140).

{CHR Compiler ERROR: too many general heads in <Name>}
Unspecific heads in definitions like C \ C <=> true must not be combined with
other heads in rule <Name>.

{CHR Compiler ERROR: bad pragma <Pragma> in <Name>}
The pragma <Pragma> used in rule <Name> does not qualify. Currently this
only happens if <Pragma> is unbound.

{CHR Compiler ERROR: found head <F/A> in <Name>, expected one of: <F/A list>}
Rule <Name> has a head of given F/A which is not among the defined con-
straints.

{CHR Compiler ERROR: head identifiers in <Name> are not unique variables}
The identifiers to refer to individual constraints (heads) via ‘#’ in rule <Name>
do not meet the indicated requirements.

148 YAP Prolog User’s Manual

{CHR Compiler ERROR: no handler defined}
CHR specific language elements, declarations or rules for example, are used
before a handler was defined. This error is usually reported a couple of times,
i.e. as often as there are CHR forms in the file expecting the missing definition.

{CHR Compiler ERROR: compilation failed}
Not your fault. Send us a bug report.

13.4 Debugging CHR Programs

Use option(debug_compile,on) preceding any rules in the file containing the handler
to enable CHR debugging. The CHR debugging mechanism works by instrumenting the
code generated by the CHR compiler. Basically, the CHR debugger works like the Prolog
debugger. The main differences are: there are extra ports specific to CHR, and the CHR
debugger provides no means for the user to change the flow of control, i.e. there are currently
no retry and fail options available.

13.4.1 Control Flow Model

The entities reflected by the CHR debugger are constraints and rules. Constraints are
treated like ordinary Prolog goals with the usual ports: [call,exit,redo,fail]. In
addition, constraints may get inserted into or removed from the constraint store (ports:
insert,remove), and stored constraints containing variables will be woken and reconsid-
ered (port: wake) when variables are touched.

The execution of a constraint consists of trying to apply the rules mentioning the con-
straint in their heads. Two ports for rules reflect this process: At a try port the active
constraint matches one of the heads of the rule, and matching constraints for the remaining
heads of the rule, if any, have been found as well. The transition from a try port to an
apply port takes place when the guard has been successfully evaluated, i.e. when the rule
commits. At the apply port, the body of the rule is just about to be executed. The body is
a Prolog goal transparent to the CHR debugger. If the rule body contains CHR, constraints,
the CHR debugger will track them again. If the rules were consulted, the Prolog debugger
can be used to study the evaluations of the other predicates in the body.

13.4.2 CHR Debugging Predicates

The following predicates control the operation of the CHR debugger:

chr_trace
Switches the CHR debugger on and ensures that the next time control enters
a CHR port, a message will be produced and you will be asked to interact.

At this point you have a number of options. See Section 13.4.5 [CHR Debugging
Options], page 151. In particular, you can just type (@) (Return) to creep (or
single-step) into your program. You will notice that the CHR debugger stops
at many ports. If this is not what you want, the predicate chr_leash gives full
control over the ports at which you are prompted.

Chapter 13: Constraint Handling Rules 149

chr_debug
Switches the CHR debugger on and ensures that the next time control enters
a CHR port with a spy-point set, a message will be produced and you will be
asked to interact.

chr_nodebug
Switches the CHR debugger off. If there are any spy-points set then they will
be kept.

chr_notrace
Equivalent to chr_nodebug.

chr_debugging
Prints onto the standard error stream information about the current CHR de-
bugging state. This will show:

1. Whether the CHR debugger is switched on.
2. What spy-points have been set (see below).
3. What mode of leashing is in force (see below).

chr_leash(+Mode)
The leashing mode is set to Mode. It determines the CHR ports at which
you are to be prompted when you creep through your program. At unleashed
ports a tracing message is still output, but program execution does not stop
to allow user interaction. Note that the ports of spy-points are always leashed
(and cannot be unleashed). Mode is a list containing none, one or more of the
following port names:

call Prompt when a constraint is executed for the first time.

exit Prompt when the constraint is successfully processed, i.e. the ap-
plicable rules have applied.

redo Prompt at subsequent exits generated by non-deterministic rule
bodies.

fail Prompt when a constraint fails.

wake Prompt when a constraint from the constraint store is woken and

reconsidered because one of its variables has been touched.

try Prompt just before the guard evaluation of a rule, after constraints
matching the heads have been found.

apply Prompt upon the application of a rule, after the successful guard
evaluation, when the rule commits and fires, just before evaluating
the body.

insert Prompt when a constraint gets inserted into the constraint store,

i.e. after all rules have been tried.

remove Prompt when a constraint gets removed from the constraint store,
e.g. when a simplification rule applies.

The initial value of the CHR leashing mode is [call,exit,fail,wake,apply].
Predefined shortcuts are:

150 YAP Prolog User’s Manual

chr_leash(none), chr_leash(off)
To turn leashing off.

chr_leash(all)
To prompt at every port.

chr_leash(default)
Same as chr_leash([call,exit,fail,wake,applyl).

chr_leash(call)
No need to use a list if only a singular port is to be leashed.

13.4.3 CHR Spy-points

For CHR programs of any size, it is clearly impractical to creep through the entire program.
Spy-points make it possible to stop the program upon an event of interest. Once there, one
can set further spy-points in order to catch the control flow a bit further on, or one can
start creeping.

Setting a spy-point on a constraint or a rule indicates that you wish to see all control flow
through the various ports involved, except during skips. When control passes through any
port with a spy-point set on it, a message is output and the user is asked to interact. Note
that the current mode of leashing does not affect spy-points: user interaction is requested
at every port.

Spy-points are set and removed by the following predicates, which are declared as prefix
operators:

chr_spy Spec
Sets spy-points on constraints and rules given by Spec, which is is of the form:

_ (variable)
denoting all constraints and rules, or:

constraints Cs
where Cs is one of

- (variable)
denoting all constraints

C,....C denoting a list of constraints C

Name denoting all constraints with this functor, regardless of
arity
Name/Arity

denoting the constraint of that name and arity
rules Rs where Rs is one of:

_ (variable)
denoting all rules

R,...,R denoting a list of rules R

Name where Name is the name of a rule in any handler.

Chapter 13: Constraint Handling Rules 151

already_in_store
The name of a rule implicitly defined by the system
when the option already_in_store is in effect.

already_in_heads
The name of a rule implicitly defined by the system
when the option already_in_heads or the correspond-
ing pragmas are in effect.

Handler:Name
where Handler is the name of a constraint handler and
Name is the name of a rule in that handler
Examples:
| ?- chr_spy rules rule(3), transitivity, already_in_store.
| ?- chr_spy constraints prime/1.
If you set spy-points, the CHR debugger will be switched on.
chr_nospy Spec
Removes spy-points on constraints and rules given by Spec, where Spec is of the
form as described for chr_spy Spec. There is no chr_nospyall/0. To remove
all CHR spy-points use chr_nospy _.

The options available when you arrive at a spy-point are described later. See Section 13.4.5
[CHR Debugging Options|, page 151.

13.4.4 CHR Debugging Messages

All trace messages are output to the standard error stream. This allows you to trace
programs while they are performing file I/O. The basic format is as follows:

S 3 1 try eratosthenes:absorb(10) @ prime(9)#<c4>, prime(10)#<c2> 7
S is a spy-point indicator. It is printed as ¢ ’ if there is no spy-point, as ‘r’, indicating that
there is a spy-point on this rule, or as ‘c’ if one of the involved constraints has a spy-point.

The first number indicates the current depth of the execution; i.e. the number of direct
ancestors the currently active constraint has.

The second number indicates the head position of the currently active constraint at rule
ports.

The next item tells you which port is currently traced.

A constraint or a matching rule are printed next. Constraints print as Term#Id, where Id
is a unique identifier pointing into the constraint store. Rules are printed as Handler: Name
@, followed by the constraints matching the heads.

The final ‘?’ is the prompt indicating that you should type in one of the debug options
(see Section 13.4.5 [CHR Debugging Options|, page 151).

13.4.5 CHR Debugging Options

This section describes the options available when the system prompts you after printing out
a debugging message. Most of them you know from the standard Prolog debugger. All the

152

options are

YAP Prolog User’s Manual

one letter mnemonics, some of which can be optionally followed by a decimal

integer. They are read from the standard input stream up to the end of the line (Return,
(Zer>)). Blanks will be ignored.

The only option which you really have to remember is ‘h’. This provides help in the
form of the following list of available options.

CHR d
<c
1
S
g
&
n
+
<
a
?
C
1
S
S 1
g

ebugging options:
r> creep c creep
leap
skip s <i> skip (ancestor i)
ancestors
constraints & <i> constraints (details)
nodebug = debugging
spy this
nospy this . show rule
reset printdepth < <n> set printdepth
abort b break
help h help

creep causes the debugger to single-step to the very next port and print a mes-
sage. Then if the port is leashed, the user is prompted for further interaction.
Otherwise, it continues creeping. If leashing is off, creep is the same as leap (see
below) except that a complete trace is printed on the standard error stream.

leap causes the debugger to resume running your program, only stopping when
a spy-point is reached (or when the program terminates). Leaping can thus be
used to follow the execution at a higher level than exhaustive tracing.

skip over the entire execution of the constraint. That is, you will not see
anything until control comes back to this constraint (at either the exit port or
the fail port). This includes ports with spy-points set; they will be masked
out during the skip. The command can be used with a numeric argument to
skip the execution up to and including the ancestor indicated by the argument.
Example:

4

- exit prime(8)#<c6> 7 g

Ancestors:
1 1 apply eratosthenes:rule(2) @ primes(10)#<c1>
2 1 apply eratosthenes:rule(2) @ primes(9)#<c3>
3 1 apply eratosthenes:rule(2) @ primes(8)#<c5>
4 - call prime(8)#<c6>
4 - exit prime(8)#<c6> 7 s 2
2 - exit primes(9)#<c3> 7

print ancestors provides you with a list of ancestors to the currently active
constraint, i.e. all constraints not yet exited that led to the current constraint
in the derivation sequence. The format is the same as with trace messages.

Chapter 13: Constraint Handling Rules 153

Constraints start with call entries in the stack. The subsequent application
of a rule replaces the call entry in the stack with an apply entry. Later the
constraint shows again as redo or fail entry. Example:

0 - call primes(10)#<c1> 7
1 1 try eratosthenes:rule(2) @ primes(10)#<cl> 7 g
Ancestors:
1 - call primes(10)#<c1>
1 1 try eratosthenes:rule(2) @ primes(10)#<cl1> 7
1 1 apply eratosthenes:rule(2) @ primes(10)#<cl> 7
1 - call prime(10)#<c2> ?
2 - insert prime(10)#<c2>
2 - exit prime(10)#<c2> 7 g
Ancestors:
1 1 apply eratosthenes:rule(2) @ primes(10)#<cl>
2 - call prime (10)#<c2>
& print constraints prints a list of the constraints in the constraint store. With a

numeric argument, details relevant primarily to CHR implementors are shown.
n nodebug switches the CHR debugger off.

= debugging outputs information concerning the status of the CHR debugger as
via chr_debugging/0

+ spy this sets a spy-point on the current constraint or rule.
- nospy this removes the spy-point from the current constraint or rule, if it exists.

show rule prints the current rule instantiated by the matched constraints. Ex-
ample:

8 1 apply era:absorb(8) @ prime(4)#<c14> \ prime(8)#<c6> 7 .

absorb(8) @
prime(4)#<c14> \
prime(8)#<c6> <=>

8 mod 4=:=
|
true.
<
<n While in the debugger, a printdepth is in effect for limiting the subterm nesting

level when printing rules and constraints. The limit is initially 10. This com-
mand, without arguments, resets the limit to 10. With an argument of n, the
limit is set to n. An argument n of 0 disables depth limit in the debugger.

a abort calls the built-in predicate abort/0.

154 YAP Prolog User’s Manual

b break calls the built-in predicate break/0, thus putting you at a recursive top-
level. When you end the break (entering “D) you will be re-prompted at the
port at which you broke. The CHR debugger is temporarily switched off as you
call the break and will be switched on again when you finish the break and go
back to the old execution. Any changes to the CHR leashing or to spy-points
during the break will remain in effect.

help displays the table of options given above.

13.5 Programming Hints

This section gives you some programming hints for CHR. For maximum efficiency of your
constraint handler, see also the previous subsections on declarations and options.

Constraint handling rules for a given constraint system can often be derived from its
definition in formalisms such as inference rules, rewrite rules, sequents, formulas expressing
axioms and theorems. CHR can also be found by first considering special cases of each
constraint and then looking at interactions of pairs of constraints sharing a variable. Cases
that do not occur in the application can be ignored.

It is important to find the right granularity of the constraints. Assume one wants to
express that n variables are different from each other. It is more efficient to have a single
constraint all_different(List_of_n_Vars) than n*n inequality constraints between each
pair of different variables. However, the extreme case of having a single constraint modeling
the whole constraint store will usually be inefficient.

Starting from an executable specification, the rules can then be refined and adapted to
the specifics of the application. Efficiency can be improved by weakening the guards to
perform simplification as early as needed and by strengthening the guards to do the just
right amount of propagation. Propagation rules can be expensive, because no constraints
are removed.

The more heads a rule has, the more expensive it is. Rules with several heads are more
efficient, if the heads of the rule share a variable (which is usually the case). Then the search
for a partner constraint has to consider less candidates. In the current implementation,
constraints are indexed by their functors, so that the search is only performed among the
constraints containing the shared variable. Moreover, two rules with identical (or sufficiently
similar) heads can be merged into one rule so that the search for a partner constraint is
only performed once instead of twice.

As guards are tried frequently, they should be simple tests not involving side-effects.
Head matching is more efficient than explicitly checking equalities in the ask-part of the
guard. In the tell part of a guard, it should be made sure that variables from the head
are never touched (e.g. by using nonvar or ground if necessary). For efficiency and clarity
reasons, one should also avoid using constraints in guards. Besides conjunctions, disjunc-
tions are allowed in the guard, but they should be used with care. The use of other control
built-in predicates in the guard is discouraged. Negation and if-then-else in the ask part of
a guard can give wrong results, since e.g. failure of the negated goal may be due to touching
its variables.

Chapter 13: Constraint Handling Rules 155

Several handlers can be used simultaneously if they do not share constraints with the
same name. The implementation will not work correctly if the same constraint is defined in
rules of different handlers that have been compiled separately. In such a case, the handlers
must be merged by hand. This means that the source code has to be edited so that the
rules for the shared constraint are together (in one module). Changes may be necessary
(like strengthening guards) to avoid divergence or loops in the computation.

13.6 Constraint Handlers

The CHR library comes with plenty of constraint handlers written in CHR. The most recent
versions of these are maintained at:

http://wwuw.pst.informatik.uni-muenchen.de/ " fruehwir/chr-solver.html
‘arc.pl’ classical arc-consistency over finite domains
‘bool.pl’ simple Boolean constraints
‘cft.pl’ feature term constraints according to the CFT theory

‘domain.pl’
finite domains over arbitrary ground terms and interval domains over integers
and reals, but without arithmetic functions

‘ged.pl’ elegant two-liner for the greatest common divisor

‘interval.pl’
straightforward interval domains over integers and reals, with arithmetic func-
tions

‘kl-one.pl’
terminological reasoning similar to KL-ONE or feature trees

‘leq.pl’ standard introductory CHR example handler for less-than-or-equal
‘list.pl’ equality constraints over concatenations of lists (or strings)

‘listdom.pl’
a straightforward finite enumeration list domains over integers, similar to
‘interval.pl’

‘math-elim.pl’
solves linear polynomial equations and inequations using variable elimination,
several variations possible

‘math-fougau.pl’
solves linear polynomial equations and inequations by combining variable elimi-
nation for equations with Fourier’s algorithm for inequations, several variations
possible

‘math-fourier.pl’
a straightforward Fouriers algorithm to solve polynomial inequations over the
real or rational numbers

156 YAP Prolog User’s Manual

‘math-gauss.pl’
a straightforward, elegant implementation of variable elimination for equations
in one rule

‘minmax.pl’
simple less-than and less-than-or-equal ordering constraints together with min-
imum and maximum constraints

‘modelgenerator.pl’
example of how to use CHR for model generation in theorem proving

‘monkey.pl’
classical monkey and banana problem, illustrates how CHR can be used as a
fairly efficient production rule system

‘osf.pl’ constraints over order sorted feature terms according to the OSF theory

‘oztype.pl’
rational trees with disequality and OZ type constraint with intersection

‘pathc.pl’
the most simple example of a handler for path consistency - two rules

‘primes.pl’
elegant implementations of the sieve of Eratosthenes reminiscent of the chem-
ical abstract machine model, also illustrates use of CHR as a general purpose
concurrent constraint language

‘scheduling.pl’
simple classical constraint logic programming scheduling example on building
a house

‘tarski.pl’
most of Tarski’s axiomatization of geometry as constraint system

‘term.pl’ Prolog term manipulation built-in predicates functor/3, arg/3, =../2 as con-
straints

‘time-pc.pl’
grand generic handler for path-consistency over arbitrary constraints, load via
‘time.pl’ to get a powerful solver for temporal constraints based on Meiri’s
unifying framework. ‘time-rnd.pl’ contains a generator for random test prob-
lems.

‘time-point.pl’
quantitative temporal constraints over time points using path-consistency

‘tree.pl’ equality and disequality over finite and infinite trees (terms)
‘type.pl’ equalities and type constraints over finite and infinite trees (terms)

You can consult or compile a constraint handler from the CHR library using e.g.:

?- [library(’chr/examples/gcd’)].
7- compile(library(’chr/examples/gcd’)).

If you want to learn more about the handlers, look at their documented source code.

Chapter 13: Constraint Handling Rules 157

In addition, there are files with example queries for some handlers, their file name starts
with ‘examples-’ and the file extension indicates the handler, e.g. ‘.bool’:

examples-adder.bool
examples-benchmark.math
examples-deussen.bool
examples-diaz.bool
examples-fourier.math
examples-holzbaur.math
examples-1liml.math
examples-1im2.math
examples-1lim3.math
examples-puzzle.bool
examples—-queens.bool
examples-queens.domain
examples-stuckey.math
examples-thom.math

13.7 Backward Compatibility

In this section, we discuss backward compatibility with the CHR library of Eclipse Prolog.

1. The restriction on at most two heads in a rule has been abandoned. A rule can have
as many heads as you like. Note however, that searching for partner constraints can
be expensive.

2. By default, rules are compiled in textual order. This gives the programmer more control
over the constraint handling process. In the Eclipse library of CHR, the compiler was
optimizing the order of rules. Therefore, when porting a handler, rules may have to be
reordered. A good heuristic is to prefer simplification to simpagation and propagation
and to prefer rules with single heads to rules with several heads. Instead of manually
rearranging an old handler one may also use the following combination of options to
get the corresponding effect:

option(rule_ordering,heuristic).
option(revive_scheme,o0ld).

3. For backward compatibility, the already_in_store, already_in_head and guard_
bindings options are still around, but there are CHR syntax extensions: Section 13.3.3
[CHR Syntax], page 140 and pragmas Section 13.3.5 [CHR Pragmas], page 142 offering
better grained control.

4. The Eclipse library of CHR provided automatic built-in labeling through the
label_with declaration. Since it was not widely used and can be easily simulated,
built-in labeling was dropped. The same effect can be achieved by replacing the dec-
laration label_with Constraint if Guard by the simplification rule chr_labeling,
Constraint <=> Guard | Constraint’, chr_labeling and by renaming the head in
each clause Constraint :- Body into Constraint’ :- Body where Constraint’ is a
new predicate. Efficiency can be improved by declaring Constraint to be passive:
chr_labeling, Constraint#Id <=> Guard | Constraint’, chr_labeling pragma
passive(Id). This translation will not work if option(already_in_heads,on).

158

YAP Prolog User’s Manual

In that case use e.g. chr_labeling(_), Constraint <=> Guard | Constraint’,
chr_labeling(_) to make the new call to chr_labeling differ from the head
occurrence.

The set of built-in predicates for advanced CHR users is now larger and better designed.
Also the debugger has been improved. The Opium debugging environment is not
available in SICStus Prolog.

Chapter 14: Logtalk 159

14 Logtalk

The Logtalk object-oriented extension is available once included with the wuse_
module (library(logtalk)) command. Note that, although we load Logtalk using the
use_module/1 built-in predicate, the system is not packaged as a module not does it use
modules in its implementation.

Logtalk documentation is included in the Logtalk directory. For the latest news, please
see the URL http://www.logtalk.org/.

160 YAP Prolog User’s Manual

Chapter 15: Threads 161

15 Threads

YAP implements a SWI-Prolog compatible multithreading library. Like in SWI-Prolog,
Prolog threads have their own stacks and only share the Prolog heap: predicates, records,
flags and other global non-backtrackable data. The package is based on the POSIX thread
standard (Butenhof:1997:PPT) used on most popular systems except for MS-Windows.

15.1 Creating and Destroying Prolog Threads

thread_create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying C-thread) and start it by executing
Goal. If the thread is created succesfully, the thread-identifier of the created
thread is unified to Id. Options is a list of options. Currently defined options

are:

stack Set the limit in K-Bytes to which the Prolog stacks of this thread
may grow. If omited, the limit of the calling thread is used. See
also the commandline -S option.

trail Set the limit in K-Bytes to which the trail stack of this thread may
grow. If omited, the limit of the calling thread is used. See also the
commandline option -T.

alias Associate an alias-name with the thread. This named may be used

to refer to the thread and remains valid until the thread is joined
(see thread_join/2).

detached If false (default), the thread can be waited for using thread_
join/2. thread_join/2 must be called on this thread to reclaim
the all resources associated to the thread. If true, the system
will reclaim all associated resources automatically after the thread
finishes. Please note that thread identifiers are freed for reuse after
a detached thread finishes or a normal thread has been joined. See
also thread_join/2 and thread_detach/1.

The Goal argument is copied to the new Prolog engine. This implies further
instantiation of this term in either thread does not have consequences for the
other thread: Prolog threads do not share data from their stacks.

thread_self (-Id)
Get the Prolog thread identifier of the running thread. If the thread has an
alias, the alias-name is returned.

thread_join(+Id, -Status)
Wait for the termination of thread with given Id. Then unify the result-status
of the thread with Status. After this call, Id becomes invalid and all resources
associated with the thread are reclaimed. Note that threads with the attribute
detached true cannot be joined. See also current_thread/2.

A thread that has been completed without thread_join/2 being called on it is
partly reclaimed: the Prolog stacks are released and the C-thread is destroyed.

162 YAP Prolog User’s Manual

A small data-structure representing the exit-status of the thread is retained
until thread_join/2 is called on the thread. Defined values for Status are:

true The goal has been proven successfully.
false The goal has failed.
exception(Term)

The thread is terminated on an exception. See print_message/2
to turn system exceptions into readable messages.

exited(Term)
The thread is terminated on thread_exit/1 using the argument
Term.

thread_detach(+Id)
Switch thread into detached-state (see detached option at thread_create/3
at runtime. Id is the identifier of the thread placed in detached state.

One of the possible applications is to simplify debugging. Threads that are
created as detached leave no traces if they crash. For not-detached threads the
status can be inspected using current_thread/2. Threads nobody is waiting
for may be created normally and detach themselves just before completion.
This way they leave no traces on normal completion and their reason for failure
can be inspected.

thread_exit (+Term)
Terminates the thread immediately, leaving exited(Term) as result-state for
thread_join/2. If the thread has the attribute detached true it terminates,
but its exit status cannot be retrieved using thread_join/2 making the value
of Term irrelevant. The Prolog stacks and C-thread are reclaimed.

thread_at_exit (: Term)
Run Goal just before releasing the thread resources. This is to be compared
to at_halt/1, but only for the current thread. These hooks are ran regardless
of why the execution of the thread has been completed. As these hooks are
run, the return-code is already available through current_thread/2 using the
result of thread_self/1 as thread-identifier.

thread_setconcurrency (+01d, -New)
Determine the concurrency of the process, which is defined as the maximum
number of concurrently active threads. ‘Active’ here means they are using CPU
time. This option is provided if the thread-implementation provides pthread_
setconcurrency(). Solaris is a typical example of this family. On other sys-
tems this predicate unifies Old to 0 (zero) and succeeds silently.

15.2 Monitoring Threads

Normal multi-threaded applications should not need these the predicates from this section
because almost any usage of these predicates is unsafe. For example checking the existence
of a thread before signalling it is of no use as it may vanish between the two calls. Catching
exceptions using catch/3 is the only safe way to deal with thread-existence errors.

Chapter 15: Threads 163

These predicates are provided for diagnosis and monitoring tasks.

current_thread(+Id, -Status)
Enumerates identifiers and status of all currently known threads. Calling cur-
rent_thread/2 does not influence any thread. See also thread_join/2. For
threads that have an alias-name, this name is returned in Id instead of the
numerical thread identifier. Status is one of:

running The thread is running. This is the initial status of a thread. Please
note that threads waiting for something are considered running too.

false The Goal of the thread has been completed and failed.
true The Goal of the thread has been completed and succeeded.
exited(Term)

The Goal of the thread has been terminated using thread_exit/1
with Term as argument. If the underlying native thread has exited
(using pthread_exit()) Term is unbound.

exception(Term)
The Goal of the thread has been terminated due to an uncaught
exception (see throw/1 and catch/3).

thread_statistics(+Id, +Key, -Value)
Obtains statistical information on thread Id as statistics/2 does in single-
threaded applications. This call returns all keys of statistics/2, although
only information statistics about the stacks and CPU time yield different values
for each thread.

mutex_statistics

Print usage statistics on internal mutexes and mutexes associated with dynamic
predicates. For each mutex two numbers are printed: the number of times the
mutex was acquired and the number of collisions: the number times the calling
thread has to wait for the mutex. The collistion-count is not available on
Windows as this would break portability to Windows-95/98/ME or significantly
harm performance. Generally collision count is close to zero on single-CPU
hardware.

15.3 Thread communication

15.3.1 Message Queues

Prolog threads can exchange data using dynamic predicates, database records, and other
globally shared data. These provide no suitable means to wait for data or a condition as
they can only be checked in an expensive polling loop. Message queues provide a means for
threads to wait for data or conditions without using the CPU.

Each thread has a message-queue attached to it that is identified by the thread. Addi-
tional queues are created using message_queue_create/2.

164 YAP Prolog User’s Manual

thread_send_message (+QueueOrThreadId, +Term)
Place Term in the given queue or default queue of the indicated thread (which
can even be the message queue of itself (see thread_self/1). Any term can
be placed in a message queue, but note that the term is copied to the receiving
thread and variable-bindings are thus lost. This call returns immediately.

If more than one thread is waiting for messages on the given queue and at least
one of these is waiting with a partially instantiated Term, the waiting threads
are all sent a wakeup signal, starting a rush for the available messages in the
queue. This behaviour can seriously harm performance with many threads
waiting on the same queue as all-but-the-winner perform a useless scan of the
queue. If there is only one waiting thread or all waiting threads wait with an
unbound variable an arbitrary thread is restarted to scan the queue.%

thread_get_message (?Term)
Examines the thread message-queue and if necessary blocks execution until a
term that unifies to Term arrives in the queue. After a term from the queue
has been unified unified to Term, the term is deleted from the queue and this
predicate returns.

Please note that not-unifying messages remain in the queue. After the follow-
ing has been executed, thread 1 has the term gnu in its queue and continues
execution using A is gnat.

<thread 1>
thread_get_message(a(A)),

<thread 2>
thread_send_message (b(gnu)),
thread_send_message(a(gnat)),

See also thread_peek_message/1.

thread_peek_message (?Term)
Examines the thread message-queue and compares the queued terms with Term
until one unifies or the end of the queue has been reached. In the first case the
call succeeds (possibly instantiating Term. If no term from the queue unifies
this call fails.

thread_message_queue_create(?Queue)
If Queue is an atom, create a named queue. To avoid ambiguity on thread_
send_message/2, the name of a queue may not be in use as a thread-name. If
Queue is unbound an anonymous queue is created and Queue is unified to its
identifier.

thread_message_queue_destroy (+Queue)
Destroy a message queue created with message_queue_create/1. It is not allows
to destroy the queue of a thread. Neither is it allowed to destroy a queue other
threads are waiting for or, for anynymous message queues, may try to wait for
later.%

Chapter 15: Threads 165

thread_get_message (+Queue, +Term)
As thread_get_message/1, operating on a given queue. It is allowed to peek
into another thread’s message queue, an operation that can be used to check
whether a thread has swallowed a message sent to it.

Explicit message queues are designed with the worker-pool model in mind, where multiple
threads wait on a single queue and pick up the first goal to execute. Below is a simple
implementation where the workers execute arbitrary Prolog goals. Note that this example
provides no means to tell when all work is done. This must be realised using additional
synchronisation.

% create_workers(+Id, +N)
yA

% Create a pool with given Id and number of workers.

create_workers(Id, N) :-

message_queue_create(Id),

forall(between(l, N, _),
thread_create(do_work(Id), _, [1)).

do_work(Id) :-
repeat,
thread_get_message(Id, Goal),
(catch(Goal, E, print_message(error, E))
-> true
; print_message(error, goal_failed(Goal, worker(Id)))
),
fail.

% work(+Id, +Goal)
b
/» Post work to be done by the pool

work(Id, Goal) :-
thread_send_message(Id, Goal).

15.3.2 Signalling Threads

These predicates provide a mechanism to make another thread execute some goal as an
interrupt. Signalling threads is safe as these interrupts are only checked at safe points in the
virtual machine. Nevertheless, signalling in multi-threaded environments should be handled
with care as the receiving thread may hold a mutezr (see with_mutex). Signalling probably
only makes sense to start debugging threads and to cancel no-longer-needed threads with
throw/1, where the receiving thread should be designed carefully do handle exceptions at
any point.

thread_signal (+ThreadId, :Goal)
Make thread Threadld execute Goal at the first opportunity. In the current im-
plementation, this implies at the first pass through the Call-port. The predicate

166 YAP Prolog User’s Manual

thread_signal/2 itself places Goal into the signalled-thread’s signal queue and
returns immediately.

Signals (interrupts) do not cooperate well with the world of multi-threading,
mainly because the status of mutexes cannot be guaranteed easily. At the call-
port, the Prolog virtual machine holds no locks and therefore the asynchronous
execution is safe.

Goal can be any valid Prolog goal, including throw/1 to make the receiving
thread generate an exception and trace/0 to start tracing the receiving thread.

15.3.3 Threads and Dynamic Predicates

Besides queues threads can share and exchange data using dynamic predicates. The multi-
threaded version knows about two types of dynamic predicates. By default, a predicate
declared dynamic (see dynamic/1) is shared by all threads. Each thread may assert, retract
and run the dynamic predicate. Synchronisation inside Prolog guarantees the consistency
of the predicate. Updates are logical: visible clauses are not affected by assert/retract after
a query started on the predicate. In many cases primitive from thread synchronysation
should be used to ensure application invariants on the predicate are maintained.

Besides shared predicates, dynamic predicates can be declared with the thread_local/1
directive. Such predicates share their attributes, but the clause-list is different in each
thread.

thread_local (+Functor/Arity)
related to the dynamic/1 directive. It tells the system that the predicate may
be modified using assert/1, retract/1, etc, during execution of the program.
Unlike normal shared dynamic data however each thread has its own clause-list
for the predicate. As a thread starts, this clause list is empty. If there are
still clauses as the thread terminates these are automatically reclaimed by the
system. The thread_local property implies the property dynamic.

Thread-local dynamic predicates are intended for maintaining thread-specific
state or intermediate results of a computation.

It is not recommended to put clauses for a thread-local predicate into a file as
in the example below as the clause is only visible from the thread that loaded
the source-file. All other threads start with an empty clause-list.

:— thread_local
foo/1.

foo(gnat) .
15.4 Thread Synchronisation

All internal Prolog operations are thread-safe. This implies two Prolog threads can operate
on the same dynamic predicate without corrupting the consistency of the predicate. This
section deals with user-level mutezes (called monitors in ADA or critical-sections by Mi-
crosoft). A mutex is a MUTual EXclusive device, which implies at most one thread can
hold a mutex.

Chapter 15: Threads 167

Mutexes are used to realise related updates to the Prolog database. With ‘related’,
we refer to the situation where a ‘transaction’ implies two or more changes to the Prolog
database. For example, we have a predicate address/2, representing the address of a person
and we want to change the address by retracting the old and asserting the new address.
Between these two operations the database is invalid: this person has either no address or
two addresses, depending on the assert/retract order.

Here is how to realise a correct update:

:— initialization
mutex_create(addressbook) .

change_address(Id, Address) :-
mutex_lock(addressbook) ,
retractall (address(Id, _)),
asserta(address(Id, Address)),
mutex_unlock(addressbook) .

mutex_create(?MutexId)
Create a mutex. if MutexId is an atom, a named mutex is created. If it is a
variable, an anonymous mutex reference is returned. There is no limit to the
number of mutexes that can be created.

mutex_destroy (+MutexId)
Destroy a mutex. After this call, MutexId becomes invalid and further refer-
ences yield an existence_error exception.

with_mutex (+MutexId, :Goal)
Execute Goal while holding MutexId. If Goal leaves choicepoints, these are
destroyed (as in once/1). The mutex is unlocked regardless of whether Goal
succeeds, fails or raises an exception. An exception thrown by Goal is re-thrown
after the mutex has been successfully unlocked. See also mutex_create/2.

Although described in the thread-section, this predicate is also available in the
single-threaded version, where it behaves simply as once/1.

mutex_lock(+MutexId)
Lock the mutex. Prolog mutexes are recursive mutexes: they can be locked
multiple times by the same thread. Only after unlocking it as many times as it
is locked, the mutex becomes available for locking by other threads. If another
thread has locked the mutex the calling thread is suspended until to mutex is
unlocked.

If MutexId is an atom, and there is no current mutex with that name, the mutex
is created automatically using mutex_create/1. This implies named mutexes
need not be declared explicitly.

Please note that locking and unlocking mutexes should be paired carefully.
Especially make sure to unlock mutexes even if the protected code fails or
raises an exception. For most common cases use with_mutex/2, wich provides
a safer way for handling prolog-level mutexes.

168 YAP Prolog User’s Manual

mutex_trylock(+MutexId)
As mutex_lock/1, but if the mutex is held by another thread, this predicates

fails immediately.

mutex_unlock (+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling
thread. If this is not the case, a permission_error exception is raised.

mutex_unlock_all
Unlock all mutexes held by the current thread. This call is especially useful
to handle thread-termination using abort/0 or exceptions. See also thread_
signal/2.

current_mutex (?MutexId, ?ThreadId, 7Count)
Enumerates all existing mutexes. If the mutex is held by some thread, Threadld
is unified with the identifier of te holding thread and Count with the recursive
count of the mutex. Otherwise, Threadld is [1 and Count is 0.

Chapter 16: Parallelism 169

16 Parallelism

There has been a sizeable amount of work on an or-parallel implementation for YAP, called
YapOr. Most of this work has been performed by Ricardo Rocha. In this system parallelism
is exploited implicitly by running several alternatives in or-parallel. This option can be
enabled from the configure script or by checking the system’s Makefile.

YapOr is still a very experimental system, going through rapid development. The fol-
lowing restrictions are of note:

e YapOr currently only supports the Linux/X86 and SPARC/Solaris platforms. Porting
to other Unix-like platforms should be straightforward.

e YapOr does not support parallel updates to the data-base.
e YapOr does not support opening or closing of streams during parallel execution.
e Garbage collection and stack shifting are not supported in YapOr.

e Built-ins that cause side-effects can only be executed when left-most in the search-tree.
There are no primitives to provide asynchronous or cavalier execution of these built-ins,
as in Aurora or Muse.

e YAP does not support voluntary suspension of work.

We expect that some of these restrictions will be removed in future releases.

170 YAP Prolog User’s Manual

Chapter 17: Tabling 171

17 Tabling

An initial cut for an implementation of tabling in the style of XSB-Prolog is now available.
Tabling was implemented by Ricardo Rocha. To experiment with tabling use ~-DTABLING
to YAP_EXTRAS in the system’s Makefile.

You can use the directive table to force calls for the argument predicate to be tabled.
Tabling information is stored in a trie, as for XSB-Prolog.

172 YAP Prolog User’s Manual

Chapter 18: Tracing at Low Level 173

18 Tracing at Low Level

It is possible to follow the flow at abstract machine level if YAP is compiled with the flag
LOW_LEVEL_TRACER. Note that this option is of most interest to implementers, as it quickly
generates an huge amount of information.

Low level tracing can be toggled from an interrupt handler by using the option T. There
are also two builtins that activate and deactivate low level tracing:

start_low_level_trace
Begin display of messages at procedure entry and retry.

stop_low_level_trace
Stop display of messages at procedure entry and retry.

Note that this compile-time option will slow down execution.

174 YAP Prolog User’s Manual

Chapter 19: Profiling the Abstract Machine 175

19 Profiling the Abstract Machine

Implementors may be interested in detecting on which abstract machine instructions are
executed by a program. The ANALYST flag can give WAM level information. Note that this
option slows down execution very substantially, and is only of interest to developers of the
system internals, or to system debuggers.

reset_op_counters
Reinitialize all counters.

show_op_counters(+4)
Display the current value for the counters, using label A. The label must be an
atom.

show_ops_by_group (+4)
Display the current value for the counters, organized by groups, using label A.
The label must be an atom.

176 YAP Prolog User’s Manual

Chapter 20: Debugging 177

20 Debugging

20.1 Debugging Predicates

The following predicates are available to control the debugging of programs:

debug

debugging

nodebug

spy +P

nospy +P

nospyall
notrace

leash(+M)

Switches the debugger on.

Outputs status information about the debugger which includes the leash mode
and the existing spy-points, when the debugger is on.

Switches the debugger off.

Sets spy-points on all the predicates represented by P. P can either be a sin-
gle specification or a list of specifications. Each one must be of the form
Name/Arity or Name. In the last case all predicates with the name Name
will be spied. As in C-Prolog, system predicates and predicates written in C,
cannot be spied.

Removes spy-points from all predicates specified by P. The possible forms for
P are the same as in spy P.

Removes all existing spy-points.

Switches off the debugger and stops tracing.

Sets leashing mode to M. The mode can be specified as:

full prompt on Call, Exit, Redo and Fail
tight prompt on Call, Redo and Fail

half prompt on Call and Redo

loose prompt on Call

off never prompt

none never prompt, same as off

The initial leashing mode is full.

The user may also specify directly the debugger ports where he wants to be
prompted. If the argument for leash is a number N, each of lower four bits of
the number is used to control prompting at one the ports of the box model.
The debugger will prompt according to the following conditions:

e if N/\ 1 =\= 0 prompt on fail
e if N/\ 2 =\= 0 prompt on redo
if N/\ 4 =\= 0 prompt on exit
if N/\ 8 =\= 0 prompt on call

178 YAP Prolog User’s Manual

Therefore, leash(15) is equivalent to leash(full) and leash(0) is equivalent
to leash(off).

Another way of using leash is to give it a list with the names of the ports where
the debugger should stop. For example, leash([call,exit,redo,faill) is
the same as leash(full) or leash(15) and leash([fail]) might be used
instead of leash(1).

spy_write(+Stream,Term)
If defined by the user, this predicate will be used to print goals by the debugger
instead of write/2.

trace Switches on the debugger and starts tracing.

20.2 Interacting with the debugger

Debugging with YAP is similar to debugging with C-Prolog. Both systems include a pro-
cedural debugger, based in the four port model. In this model, execution is seen at the
procedure level: each activation of a procedure is seen as a box with control flowing into
and out of that box.

In the four port model control is caught at four key points: before entering the procedure,
after exiting the procedure (meaning successful evaluation of all queries activated by the
procedure), after backtracking but before trying new alternative to the procedure and after
failing the procedure. Each one of these points is named a port:

,m —————— *
Call | | Exit
————————— > + descendant(X,Y) :- offspring(X,Y). + -——-——-—->

| |
| descendant(X,Z) :- |

<mmmmmmmee + offspring(X,Y), descendant(Y,Z). + <-——----—-
Fail | | Redo
R *

Call The call port is activated before initial invocation of procedure. Afterwards,
execution will try to match the goal with the head of existing clauses for the
procedure.

Exit This port is activated if the procedure succeeds. Control will now leave the

procedure and return to its ancestor.

Redo if the goal, or goals, activated after the call port fail then backtracking will
eventually return control to this procedure through the redo port.

Fail If all clauses for this predicate fail, then the invocation fails, and control will
try to redo the ancestor of this invocation.

To start debugging, the user will usually spy the relevant procedures, entering debug
mode, and start execution of the program. When finding the first spy-point, YAP’s debugger
will take control and show a message like:

* (1) call: quicksort([1,2,3],.38) 7

The debugger message will be shown while creeping, or at spy-points, and it includes
four or five fields:

Chapter 20: Debugging 179

e The first two characters are used to point out special states of the debugger. If the first
character is a *, execution is at a spy-point. If the second character is a >, execution
has returned either from a skip, a fail or a redo command.

e The second field is the activation number, and uniquely identifies the activation. The
number will start from 1 and will be incremented for each activation found by the
debugger.

e In the third field, the debugger shows the active port.
e The fourth field is the goal. The goal is written by write/1.

If the active port is leashed, the debugger will prompt the user with a ?, and wait for
a command. A debugger command is just a character, followed by a return. By default,
only the call and redo entries are leashed, but the leash/1 predicate can be used in order
to make the debugger stop where needed.

There are several commands available, but the user only needs to remember the help
command, which is h. This command shows all the available options, which are:

c - creep this command makes YAP continue execution and stop at the next leashed
port.

return - creep
the same as ¢

1 -leap YAP will continue execution until a port of a spied predicate is found;

k - quasi-leap
similar to leap but faster since the computation history is not kept; useful when
leap becomes too slow.

s - skip YAP will continue execution without showing any messages until returning to
the current activation. Spy-points will be ignored in this mode. This command
is meaningless, and therefore illegal, in the fail and exit ports.

t - fast-skip
similar to skip but faster since the computation history is not kept; useful when
skip becomes too slow.

q — quasi-leap
YAP will continue execution until a port of a spied predicate is found or until
returning to the current activation.

f - fail forces YAP to fail the goal proceeding directly to the fail port. The command
is not available in the fail port.

r - retry after this command, YAP will retry the present goal, and so go back to the call
port. Note that any side effects of the goal will not be undone. This command
is not available at the call port.

a - abort execution will be aborted, and the interpreter will return to the top-level.

n - nodebug
stop debugging but continue execution. The command will clear all active spy-
points, leave debugging mode and continue execution.

180 YAP Prolog User’s Manual

e - exit leave YAP.

h - help show the debugger commands.

I Query execute a query. YAP will not show the result of the query.

b - break break active execution and launch a break level. This is the same as | break.

+ - spy this goal
start spying the active goal. The same as ! spy G where G is the active goal.

- - nospy this goal
stop spying the active goal. The same as ! nospy G where G is the active goal.

p - print shows the active goal using print/1

d - display
shows the active goal using display/1

<Depth - debugger write depth
sets the maximum write depth, both for composite terms and lists, that will
be used by the debugger. For more information about write_depth/2 (see
Section 6.6.7 [I/O Control], page 52).

< - full term
resets to the default of ten the debugger’s maximum write depth. For more
information about write_depth/2 (see Section 6.6.7 [I/O Control], page 52).

The debugging information, when fast-skip quasi-leap is used, will be lost.

Chapter 21: Indexing 181

21 Indexing

The indexation mechanism restricts the set of clauses to be tried in a procedure by using
information about the status of a selected argument of the goal (in YAP, as in most com-
pilers, the first argument). This argument is then used as a key, selecting a restricted set
of a clauses from all the clauses forming the procedure.

As an example, the two clauses for concatenate:

concatenate([],L,L).
concatenate([H|T],A, [HINT]) :- concatenate(T,A,NT).

If the first argument for the goal is a list, then only the second clause is of interest. If
the first argument is the nil atom, the system needs to look only for the first clause. The
indexation generates instructions that test the value of the first argument, and then proceed
to a selected clause, or group of clauses.

Note that if the first argument was a free variable, then both clauses should be tried. In
general, indexation will not be useful if the first argument is a free variable.

When activating a predicate, a Prolog system needs to store state information. This
information, stored in a structure known as choice point or fail point, is necessary when
backtracking to other clauses for the predicate. The operations of creating and using a
choice point are very expensive, both in the terms of space used and time spent. Creating
a choice point is not necessary if there is only a clause for the predicate as there are no
clauses to backtrack to. With indexation, this situation is extended: in the example, if the
first argument was the atom nil, then only one clause would really be of interest, and it is
pointless to create a choice point. This feature is even more useful if the first argument is a
list: without indexation, execution would try the first clause, creating a choice point. The
clause would fail, the choice point would then be used to restore the previous state of the
computation and the second clause would be tried. The code generated by the indexation
mechanism would behave much more efficiently: it would test the first argument and see
whether it is a list, and then proceed directly to the second clause.

An important side effect concerns the use of "cut". In the above example, some pro-
grammers would use a "cut" in the first clause just to inform the system that the predicate
is not backtrackable and force the removal the choice point just created. As a result, less
space is needed but with a great loss in expressive power: the "cut" would prevent some
uses of the procedure, like generating lists through backtracking. Of course, with indexation
the "cut" becomes useless: the choice point is not even created.

Indexation is also very important for predicates with a large number of clauses that are
used like tables:

logician(aristhoteles,greek).

logician(frege,german) .

logician(russel,english).

logician(godel,german) .

logician(whitehead,english).

An interpreter like C-Prolog, trying to answer the query:

7- logician(godel,X).
would blindly follow the standard Prolog strategy, trying first the first clause, then the
second, the third and finally finding the relevant clause. Also, as there are some more

182 YAP Prolog User’s Manual

clauses after the important one, a choice point has to be created, even if we know the next
clauses will certainly fail. A "cut" would be needed to prevent some possible uses for the
procedure, like generating all logicians. In this situation, the indexing mechanism generates
instructions that implement a search table. In this table, the value of the first argument
would be used as a key for fast search of possibly matching clauses. For the query of the
last example, the result of the search would be just the fourth clause, and again there would
be no need for a choice point.

If the first argument is a complex term, indexation will select clauses just by testing its
main functor. However, there is an important exception: if the first argument of a clause
is a list, the algorithm also uses the list’s head if not a variable. For instance, with the
following clauses,

rules([],B,B).

rules([n(N)|T],I,0) :- rules_for_noun(N,I,N), rules(T,N,0).
rules([v(V)|T],I,0) :- rules_for_verb(V,I,N), rules(T,N,0).
rules([q(Q)IT],I,0) :- rules_for_qualifier(Q,I,N), rules(T,N,0).

if the first argument of the goal is a list, its head will be tested, and only the clauses
matching it will be tried during execution.
Some advice on how to take a good advantage of this mechanism:
e Try to make the first argument an input argument.

e Try to keep together all clauses whose first argument is not a variable, that will decrease
the number of tests since the other clauses are always tried.

e Try to avoid predicates having a lot of clauses with the same key. For instance, the
procedure:

type (n(mary) ,person) .
type(n(john), person).
type(n(chair) ,object) .
type(v(eat) ,active).

type(v(rest) ,passive).

becomes more efficient with:

type(n(N),T) :- type_of_noun(N,T).
type(v(V),T) :- type_of_verb(V,T).

type_of_noun(mary,person) .
type_of_noun(john,person) .
type_of_noun(chair,object).

type_of_verb(eat,active).
type_of_verb(rest,passive).

Chapter 22: C Language interface to YAP 183

22 C Language interface to YAP

YAP provides the user with the necessary facilities for writing predicates in a language
other than prolog. Since, under Unix systems, most language implementations are link-able
to C, we will describe here only the YAP interface to the C language.

Before describing in full detail how to interface to C code, we will examine a brief
example.

Assume the user requires a predicate my_process_id (Id) which succeeds when Id unifies
with the number of the process under which YAP is running.

In this case we will create a my_process. c file containing the C-code described below.

-
#include "Yap/YapInterface.h"

static int my_process_id(void)

{
YAP_Term pid = YAP_MkIntTerm(getpid());
YAP_Term out = YAP_ARG1;
return(YAP_Unify(out,pid));
}
void init_my_predicates()
{
YAP_UserCPredicate("my_process_id",my_process_id,1);
}
=

The commands to compile the above file depend on the operating system. Under Linux
(1386 and Alpha) you should use:

gcc —-c¢ -shared -fPIC my_process.c
1d -shared -o my_process.so my_process.o

Under Solaris2 it is sufficient to use:
gcc -fPIC -c my_process.c
Under SunOS it is sufficient to use:
gcc -C my_process.c
Under Digital Unix you need to create a so file. Use:

gce tst.c -c —fpic
1d my_process.o -o my_process.so -shared -expect_unresolved ’x*’

and replace my process.so for my process.o in the remainder of the example. And could
be loaded, under YAP, by executing the following prolog goal

load_foreign_files([’my_process’], [],init_my_predicates).

Note that since Yap4.3.3 you should not give the suffix for object files. YAP will deduce
the correct suffix from the operating system it is running under.

184 YAP Prolog User’s Manual

Yap4.3.3 now supports loading WIN/NT DLLs. Currently you must compile YAP under
cygwin to create a library yap.dll first. You can then use this dll to create your own dlls.
Have a look at the code in library /regex to see how to create a dll under the cygwin/mingw32
environment.

After loading that file the following prolog goal
my_process_id (N)
would unify N with the number of the process under which Yap is running.

Having presented a full example, we will now examine in more detail the contents of the
C source code file presented above.

The include statement is used to make available to the C source code the macros for the
handling of prolog terms and also some Yap public definitions.

The function my_process_id is the implementation, in C, of the desired predicate. Note
that it returns an integer denoting the success of failure of the goal and also that it has
no arguments even though the predicate being defined has one. In fact the arguments of
a prolog predicate written in C are accessed through macros, defined in the include file,
with names YAP_ARGI1, YAP_ARG2, ..., YAP_ARGI16 or with YAP_A(N) where N is the
argument number (starting with 1). In the present case the function uses just one local
variable of type YAP_Term, the type used for holding Yap terms, where the integer returned
by the standard unix function getpid() is stored as an integer term (the conversion is done
by YAP_MkIntTerm(Int)). Then it calls the pre-defined routine YAP_Unify(YAP_Term,
YAP_Term) which in turn returns an integer denoting success or failure of the unification.

The role of the procedure init_my_predicates is to make known to YAP, by calling
YAP_UserCPredicate, the predicates being defined in the file. This is in fact why, in the
example above, init_my_predicates was passed as the third argument to load_foreign_
files.

The rest of this appendix describes exhaustively how to interface C to YAP.

22.1 Terms

This section provides information about the primitives available to the C programmer for
manipulating prolog terms.

Several C typedefs are included in the header file yap/YapInterface.h to describe, in
a portable way, the C representation of prolog terms. The user should write is programs
using this macros to ensure portability of code across different versions of YAP.

The more important typedef is YAP_Term which is used to denote the type of a prolog
term.

Terms, from a point of view of the C-programmer, can be classified as follows

uninstantiated variables
stantiated variables
integers

floating-point numbers
database references
atoms

Chapter 22: C Language interface to YAP 185

pairs (lists)
compound terms
The primitive
YAP_Bool YAP_IsVarTerm(YAP_Term t)
returns true iff its argument is an uninstantiated variable. Conversely the primitive
YAP_Bool YAP_NonVarTerm(YAP_Term t)
returns true iff its argument is not a variable.
The user can create a new uninstantiated variable using the primitive
Term YAP_MkVarTerm()

The following primitives can be used to discriminate among the different types of non-
variable terms:

YAP_Bool YAP_IsIntTerm(YAP_Term t)

YAP_Bool YAP_IsFloatTerm(YAP_Term t)
YAP_Bool YAP_IsDbRefTerm(YAP_Term t)
YAP_Bool YAP_IsAtomTerm(YAP_Term t)
YAP_Bool YAP_IsPairTerm(YAP_Term t)
YAP_Bool YAP_IsApplTerm(YAP_Term t)

Next, we mention the primitives that allow one to destruct and construct terms. All
the above primitives ensure that their result is dereferenced, i.e. that it is not a pointer to
another term.

The following primitives are provided for creating an integer term from an integer and
to access the value of an integer term.

YAP_Term YAP_MkIntTerm(YAP_Int i)
YAP_Int YAP_IntOfTerm(YAP_YAP_Term t)

where YAP_Int is a typedef for the C integer type appropriate for the machine or compiler
in question (normally a long integer). The size of the allowed integers is implementation
dependent but is always greater or equal to 24 bits: usually 32 bits on 32 bit machines, and
64 on 64 bit machines.

The two following primitives play a similar role for floating-point terms

YAP_Term YAP_MkFloatTerm(YAP_flt double)
YAP_fl1t YAP_FloatOfTerm(YAP_YAP_Term t)

where f1t is a typedef for the appropriate C floating point type, nowadays a double
Currently, no primitives are supplied to users for manipulating data base references.

A special typedef YAP_Atom is provided to describe prolog atoms (symbolic constants).
The two following primitives can be used to manipulate atom terms

YAP_Term YAP_MkAtomTerm(YAP_Atom at)
YAP_Atom YAP_AtomOfTerm(YAP_YAP_Term t)

The following primitives are available for associating atoms with their names

YAP_Atom YAP_LookupAtom(char * s)
YAP_Atom YAP_FullLookupAtom(char * s)
char *YAP_AtomName (YAP_Atom t)

186 YAP Prolog User’s Manual

The function YAP_LookupAtom looks up an atom in the standard hash table. The function
YAP_FullLookupAtom will also search if the atom had been "hidden": this is useful for
system maintenance from C code. The functor YAP_AtomName returns a pointer to the
string for the atom.

A pair is a Prolog term which consists of a tuple of two prolog terms designated as
the head and the tail of the term. Pairs are most often used to build lists. The following
primitives can be used to manipulate pairs:

YAP_Term YAP_MkPairTerm(YAP_Term Head, YAP_Term Tail)
YAP_Term YAP_MkNewPairTerm(void)

YAP_Term YAP_HeadOfTerm(YAP_Term t)

YAP_Term YAP_TailOfTerm(YAP_Term t)

One can construct a new pair from two terms, or one can just build a pair whose head
and tail are new unbound variables. Finally, one can fetch the head or the tail.

A compound term consists of a functor and a sequence of terms with length equal to the
arity of the functor. A functor, described in C by the typedef Functor, consists of an atom
and of an integer. The following primitives were designed to manipulate compound terms
and functors

YAP_Term YAP_MkApplTerm(YAP_Functor f, unsigned long int n, YAP_Term[] args)
YAP_Term YAP_MkNewApplTerm(YAP_Functor f, int n)
YAP_Term YAP_ArgOfTerm(int argno,YAP_Term ts)

YAP_Functor YAP_FunctorOfTerm(YAP_YAP_Term ts)

The YAP_MkApplTerm function constructs a new term, with functor f (of arity n), and using
an array args of n terms with n equal to the arity of the functor. YAP_MkNewApplTerm
builds up a compound term whose arguments are unbound variables. YAP_ArgQOfTerm gives
an argument to a compound term. argno should be greater or equal to 1 and less or equal
to the arity of the functor.

YAP allows one to manipulate the functors of compound term. The function YAP_
FunctorOfTerm allows one to obtain a variable of type YAP_Functor with the functor to
a term. The following functions then allow one to construct functors, and to obtain their
name and arity.

YAP_Functor YAP_MkFunctor(YAP_Atom a,unsigned long int arity)
YAP_Atom YAP_NameOfFunctor (YAP_Functor f)
YAP_Int YAP_ArityOfFunctor (YAP_Functor f)

Note that the functor is essentially a pair formed by an atom, and arity.

22.2 Unification

YAP provides a single routine to attempt the unification of two prolog terms. The routine
may succeed or fail:

Int YAP_Unify(YAP_Term a, YAP_Term b)

The routine attempts to unify the terms a and b returning TRUE if the unification succeeds
and FALSE otherwise.

Chapter 22: C Language interface to YAP 187

22.3 Strings

The YAP C-interface now includes an utility routine to copy a string represented as a list
of a character codes to a previously allocated buffer

int YAP_StringToBuffer(YAP_Term String, char *buf, unsigned int buf-}
size)

The routine copies the list of character codes String to a previously allocated buffer buf.
The string including a terminating null character must fit in bufsize characters, otherwise
the routine will simply fail. The StringToBuffer routine fails and generates an exception if
String is not a valid string.

The C-interface also includes utility routines to do the reverse, that is, to copy a from a
buffer to a list of character codes or to a list of character atoms

YAP_Term YAP_BufferToString(char *buf)
YAP_Term YAP_BufferToAtomList(char *buf)

The user-provided string must include a terminating null character.

22.4 Memory Allocation

The next routine can be used to ask space from the Prolog data-base:
void *YAP_AllocSpaceFromYap(int size)

The routine returns a pointer to a buffer allocated from the code area, or NULL if sufficient
space was not available.

The space allocated with YAP_AllocSpaceFromYap can be released back to Yap by using:
void YAP_FreeSpaceFromYap(void *buf)

The routine releases a buffer allocated from the code area. The system may crash if buf is
not a valid pointer to a buffer in the code area.

22.5 Controlling Yap Streams from C

The C-Interface also provides the C-application with a measure of control over the Yap
Input/Output system. The first routine allows one to find a file number given a current
stream:

int YAP_StreamToFileNo(YAP_Term stream)

This function gives the file descriptor for a currently available stream. Note that null
streams and in memory streams do not have corresponding open streams, so the routine
will return a negative. Moreover, Yap will not be aware of any direct operations on this
stream, so information on, say, current stream position, may become stale.

A second routine that is sometimes useful is:
void YAP_CloseAllOpenStreams(void)

This routine closes the Yap Input/Output system except for the first three streams, that
are always associated with the three standard Unix streams. It is most useful if you are
doing fork().

188 YAP Prolog User’s Manual

The next routine allows a currently open file to become a stream. The routine receives
as arguments a file descriptor, the true file name as a string, an atom with the user name,
and a set of flags:

void YAP_OpenStream(void *FD, char *name, YAP_Term t, int flags)]]

The available flags are YAP_INPUT_STREAM, YAP_OUTPUT_STREAM, YAP_APPEND_STREAM,
YAP_PIPE_STREAM, YAP_TTY_STREAM, YAP_POPEN_STREAM, YAP_BINARY_STREAM, and
YAP_SEEKABLE_STREAM. By default, the stream is supposed to be at position 0. The
argument name gives the name by which YAP should know the new stream.

22.6 From C back to Prolog

Newer versions of YAP allow for calling the Prolog interpreter from C. One must first
construct a goal G, and then it is sufficient to perform:

YAP_Bool YapCallProlog(YAP_Term G)
the result will be FALSE, if the goal failed, or TRUE, if the goal succeeded. In this case, the
variables in G will store the values they have been unified with. Execution only proceeds

until finding the first solution to the goal, but you can call findall/3 or friends if you need
all the solutions.

22.7 Writing predicates in C

We will distinguish two kinds of predicates:

deterministic predicates which either fail or succeed but are not
backtrackable, like the one in the introduction;

backtrackable
predicates which can succeed more than once.

The first kind of predicates should be implemented as a C function with no arguments
which should return zero if the predicate fails and a non-zero value otherwise. The predicate
should be declared to YAP, in the initialization routine, with a call to

void YAP_UserCPredicate(char *name, YAP_Bool *fn(), unsigned long int ar-Jj
ity);

where name is the name of the predicate, fn is the C function implementing the predicate
and arity is its arity.

For the second kind of predicates we need two C functions. The first one which is called
when the predicate is first activated, and the second one to be called on backtracking to
provide (possibly) other solutions. Note also that we normally also need to preserve some
information to find out the next solution.

In fact the role of the two functions can be better understood from the following prolog
definition

p :— start.
p :— repeat,
continue.

Chapter 22: C Language interface to YAP 189

where start and continue correspond to the two C functions described above.

As an example we will consider implementing in C a predicate n100(N) which, when
called with an instantiated argument should succeed if that argument is a numeral less
or equal to 100, and, when called with an uninstantiated argument, should provide, by
backtracking, all the positive integers less or equal to 100.

To do that we first declare a structure, which can only consist of prolog terms, containing
the information to be preserved on backtracking and a pointer variable to a structure of
that type.

typedef struct {
YAP_Term next_solution; /* the next solution */
} n100_data_type;

nl00_data_type *nl00_data;
We now write the C function to handle the first call:

static int start_n100()
{
YAP_Term t = ARG1;
YAP_PRESERVE_DATA (n100_data,n100_data_type) ;
if (YAP_IsVarTerm(t)) {
n100_data->next_solution = YAP_MkIntTerm(O) ;
return(continue_n100(Q));
}
if (1YAP_IsIntTerm(t) || YAP_IntOfTerm(t)<O || YAP_IntOfTerm(t)>100) {Nl
YAP_cut_fail();
} else {
YAP_cut_succeed();

The routine starts by getting the dereference value of the argument. The call to YAP_
PRESERVE_DATA is used to initialize the memory which will hold the information to be
preserved across backtracking. The first argument is the variable we shall use, and the
second its type. Note that we can only use YAP_PRESERVE_DATA once, so often we will want
the variable to be a structure.

If the argument of the predicate is a variable, the routine initializes the structure to be
preserved across backtracking with the information required to provide the next solution,
and exits by calling continue_n100 to provide that solution.

If the argument was not a variable, the routine then checks if it was an integer, and if
so, if its value is positive and less than 100. In that case it exits, denoting success, with
YAP_cut_succeed, or otherwise exits with YAP_cut_fail denoting failure.

The reason for using for using the functions YAP_cut_succeed and YAP_cut_fail instead
of just returning a non-zero value in the first case, and zero in the second case, is that
otherwise, if backtracking occurred later, the routine continue_n100 would be called to
provide additional solutions.

The code required for the second function is

190 YAP Prolog User’s Manual

static int continue_n100()
{
int n;
Term t;
Term sol = ARG1;
YAP_PRESERVED_DATA(nlOO_data,nlOO_data_type);
n = YAP_IntOfTerm(n100_data->next_solution);
if(n == 100) {
t = YAP_MkIntTerm(n);
YAP_Unify(&sol,&t);
YAP_cut_succeed();

}

else {
YAP_Unify(&sol,&(n100_data->next_solution));
n100_data->next_solution = YAP_MkIntTerm(n+1);
return(TRUE) ;

¥

Note that again the macro YAP_PRESERVED_DATA is used at the beginning of the function
to access the data preserved from the previous solution. Then it checks if the last solution
was found and in that case exits with YAP_cut_succeed in order to cut any further back-
tracking. If this is not the last solution then we save the value for the next solution in the
data structure and exit normally with 1 denoting success. Note also that in any of the two
cases we use the function YAP_unify to bind the argument of the call to the value saved in
n100_state->next_solution.

Note also that the only correct way to signal failure in a backtrackable predicate is to
use the YAP_cut_fail macro.

Backtrackable predicates should be declared to YAP, in a way similar to what happened
with deterministic ones, but using instead a call to

void YAP_UserBackCPredicate(char *name,
int *init (), int *cont (),
unsigned long int arity, unsigned int sizeof);
where name is a string with the name of the predicate, init and cont are the C functions
used to start and continue the execution of the predicate, arity is the predicate arity, and
sizeof is the size of the data to be preserved in the stack.

22.8 Loading Object Files

The primitive predicate

load_foreign_files(Files,Libs,InitRoutine)
should be used, from inside YAP, to load object files produced by the C compiler. The
argument ObjectFiles should be a list of atoms specifying the object files to load, Libs is
a list (possibly empty) of libraries to be passed to the unix loader (1d) and InitRoutine is
the name of the C routine (to be called after the files are loaded) to perform the necessary
declarations to YAP of the predicates defined in the files.

Chapter 22: C Language interface to YAP 191

YAP will search for ObjectFiles in the current directory first. If it cannot find them
it will search for the files using the environment variable YAPLIBDIR, if defined, or in the
default library.

In a.out systems YAP by default only reserves a fixed amount of memory for object code

(64 Kbytes in the current version). Should this size prove inadequate the flag -c n can be
passed to YAP (in the command line invoking YAP) to force the allocation of n Kbytes.

22.9 Saving and Restoring

Yap4 currently does not support save and restore for object code loaded with load_
foreign_files. We plan to support save and restore in future releases of Yap.

22.10 Changes to the C-Interface in Yap4

Yap4 includes several changes over the previous load_foreign_files interface. These
changes were required to support the new binary code formats, such as ELF used in Solaris2
and Linux.

e All Names of YAP objects now start with YAP_. This is designed to avoid clashes
with other code. Use YapInterface.h to take advantage of the new interface. c_
interface.h is still available if you cannot port the code to the new interface.

e Access to elements in the new interface always goes through functions. This includes
access to the argument registers, YAP_ARG1 to YAP_ARG16. This change breaks code
such as unify (&ARG1,&t), which is nowadays:

{
YAP_Unify(ARG1, t);
}

e cut_fail() and cut_succeed() are now functions.

e The use of Deref is deprecated. All functions that return Prolog terms, including the
ones that access arguments, already dereferenciate their arguments.

e Space allocated with PRESERVE_DATA is ignored by garbage collection and stack
shifting. As a result, any pointers to a Prolog stack object, including some terms, may
be corrupted after garbage collection or stack shifting. Prolog terms should instead be
stored as arguments to the backtrackable procedure.

192 YAP Prolog User’s Manual

Chapter 23: Using YAP as a Library 193

23 Using YAP as a Library

YAP can be used as a library to be called from other programs. To do so, you must first
create the YAP library:

make library
make install_library

This will install a file 1ibyap.a in LIBDIR and the Prolog headers in INCLUDEDIR.

The library contains all the functionality available in YAP, except the foreign function loader
and for Yap’s startup routines.

1.

To actually use this library you must follow a five step process:

You must initialize the YAP environment. A single function, YAP_FastInit asks for
a contiguous chunk in your memory space, fills it in with the data-base, and sets up
YAP’s stacks and execution registers. You can use a saved space from a standard
system by calling save_program/1.

You then have to prepare a query to give to YAP. A query is a Prolog term, and you
just have to use the same functions that are available in the C-interface.

You can then use YAP_RunGoal (query) to actually evaluate your query. The argument
is the query term query, and the result is 1 if the query succeeded, and 0 if it failed.

4. You can use the term destructor functions to check how arguments were instantiated.

If you want extra solutions, you can use YAP_RestartGoal () to obtain the next solu-
tion.

The next program shows how to use this system. We assume the saved program contains

two facts for the procedure b:

(N
#include <stdio.h>
#include "Yap/YapInterface.h"
int
main(int argc, char *argv[]) {
if (YAP_FastInit("saved_state") == YAP_BOOT_FROM_SAVED_ERROR)
exit(1);
if (YAP_RunGoal (YAP_MkAtomTerm(YAP_LookupAtom("do")))) {
printf ("Success\n");
while (YAP_RestartGoal())
printf ("Success\n");
}
printf ("NO\n") ;
}
N J

The program first initializes YAP, calls the query for the first time and succeeds, and

then backtracks twice. The first time backtracking succeeds, the second it fails and exits.

To compile this program it should be sufficient to do:

194 YAP Prolog User’s Manual

cc -o exem -I../Yap4.3.0 test.c -1Yap -lreadline -1lm
You may need to adjust the libraries and library paths depending on the Operating

System and your installation of Yap.

Note that Yap4.3.0 provides the first version of the interface. The interface may change

and improve in the future.

The following C-functions are available from Yap:

YapCompileClause(Term Clause) Compile the Prolog term Clause and assert it as the
last clause for the corresponding procedure.

int YapContinueGoal(void) Continue execution from the point where it stopped.

void YapError(char * error_description) Generate an YAP System Error with descrip-
tion given by the string error_description.

void YapExit(int exit_code) Exit YAP immediately. The argument exit_code gives
the error code and is supposed to be 0 after successful execution in Unix and Unix-like
systems.

Term YapGetValue(Atom at) Return the term value associated with the atom at. If no
such term exists the function will return the empty list.

YapFastInit(char * SavedState) Initialize a copy of YAP from SavedState. The copy
is monolithic and currently must be loaded at the same address where it was saved.
YapFastInit is a simpler version of YapInit.

YaplInit(char * SavedState, int HeapSize, int StackSize, int TrailSize, int Num-
berofWorkers, int SchedulerLoop, int DelayedReleaseLoad, int argc, char ** argv)
Initialize YAP. In the future the arguments as a single C structure.

If SavedState is not NULL, try to open and restore the file SavedState. Initially YAP
will search in the current directory. If the saved state does not exist in the current
directory YAP will use either the default library directory or the directory given by the
environment variable YAPLIBDIR. Note that currently the saved state must be loaded
at the same address where it was saved.

If HeapSize is different from 0 use HeapSize as the minimum size of the Heap (or code
space). If StackSize is different from 0 use HeapSize as the minimum size for the Stacks.
If TrailSize is different from 0 use TrailSize as the minimum size for the Trails.

The NumberofWorkers, NumberofWorkers, and DelayedReleaseLoad are only of inter-
est to the or-parallel system.

The argument count argc and string of arguments argv arguments are to be passed to
user programs as the arguments used to call YAP.

void YapPutValue(Atom at, Term value) Associate the term value with the atom at.
The term value must be a constant. This functionality is used by YAP as a simple way
for controlling and communicating with the Prolog run-time.

Term YapRead(int (x) (void) GetC) Parse a Term using the function GetC to input
characters.

int YapRunGoal(Term Goal) Execute query Goal and return 1 if the query succeeds,
and 0 otherwise.

int YapRestartGoal(void) Look for the next solution to the current query by forcing
YAP to backtrack.

Chapter 23: Using YAP as a Library 195

int YapReset(void) Reset execution environment (similar to the abort/0 builtin).
This is useful when you want to start a new query before asking all solutions to the
previous query.

void YapWrite(Term t, void (%) (int) PutC, int flags) Write a Term ¢ using the
function PutC to output characters. The term is written according to a mask of the
following flags in the flag argument: YAP_WRITE_QUOTED, YAP_WRITE_HANDLE_VARS,
and YAP_WRITE_IGNORE_OPS.

void YaplnitConsult(int mode, char * filename) Enter consult mode on file filename.
This mode maintains a few data-structures internally, for instance to know whether a
predicate before or not. It is still possible to execute goals in consult mode.

If mode is TRUE the file will be reconsulted, otherwise just consulted. In practice, this
function is most useful for bootstrapping Prolog, as otherwise one may call the Prolog
predicate compile/1 or consult/1 to do compilation.

Note that it is up to the user to open the file filename. The YapInitConsult function
only uses the file name for internal bookkeeping.

void YapEndConsult(void) Finish consult mode.

Some observations:

The system will core dump if you try to load the saved state in a different address from
where it was made. This may be a problem if your program uses mmap. This problem
will be addressed in future versions of YAP.

Currently, the YAP library will pollute the name space for your program.

The initial library includes the complete YAP system. In the future we plan to split
this library into several smaller libraries (e.g., if you do not want to perform I/0).

You can generate your own saved states. Look at the boot.yap and init.yap files.

196 YAP Prolog User’s Manual

Chapter 24: Compatibility with Other Prolog systems 197

24 Compatibility with Other Prolog systems

YAP has been designed to be as compatible as possible with other Prolog systems, and
initially with C-Prolog. More recent work on YAP has included features initially proposed
for the Quintus and SICStus Prolog systems.

Developments since Yap4.1.6 we have striven at making YAP compatible with the ISO-
Prolog standard.

24.1 Compatibility with the C-Prolog interpreter

24.1.1 Major Differences between YAP and C-Prolog.

YAP includes several extensions over the original C-Prolog system. Even so, most C-Prolog
programs should run under YAP without changes.

The most important difference between YAP and C-Prolog is that, being YAP a compiler,
some changes should be made if predicates such as assert, clause and retract are used.
First predicates which will change during execution should be declared as dynamic by using
commands like:

:— dynamic f/n.

where £ is the predicate name and n is the arity of the predicate. Note that several such
predicates can be declared in a single command:

:- dynamic £/2, ..., g/1.

Primitive predicates such as retract apply only to dynamic predicates. Finally note
that not all the C-Prolog primitive predicates are implemented in YAP. They can easily be
detected using the unknown system predicate provided by YAP.

Last, by default YAP enables character escapes in strings. You can disable the special
interpretation for the escape character by using:

:- yap_flag(character_escapes,off).
or by using:

:- yap_flag(language,cprolog) .
24.1.2 Yap predicates fully compatible with C-Prolog

These are the Prolog built-ins that are fully compatible in both C-Prolog and YAP:

! . 27
L0 o 27

<
,)2 40
e 27

198

== 40
) 40
D 36
NS/ 40
>

5 40
S 40
Q

Q</2 o 36
@5/2 .o 36
@>=/ 2. 36
FI/L 19
172 19
N+ L 28
N==/2 36
A

abort/0........ ... 30
atom/1 ... 32
atomic/l 32
B

bagof/3 62
break/0.o 30
C

call/1 ... o 29
close/1. . i 41
COMPATE/3 ..ot 35
consult/1 ... 19
current_atom/1......... L. 57
current_predicate/1............... 57
D

db_reference/1............. 32
debug/0 ... 177
debugging/0............. i 177

display /1. 45

YAP Prolog User’s Manual

E

erase/1 59
erased/1 ... 59
exists/1 ... 52
expand_exprs/2. 20
expand_term/2 o L. 63
F

FAL/0 e e 27
fileerrors/0 52
findall/3 62
functor/3 34
G

get/1 .o 49
getO/1 ..o 49
H

halt/0 ..o 30
I

instance/2............ .. 59
integer/1..... 32
K

keysort/2 ... 36
L

leash/1 ... 177
length/2 36
N

NAME/2 .. 32
NL/O . 50
nodebug/0 ... 177
nofileerrors/0............. ... i 52
nonvar/l... 32
NOSPY /1. 177
Nnot/L ..o 28
number/1o 32
O

OD/B e 80

Chapter 24: Compatibility with Other Prolog systems 199

P

primitive/1.... 32
print/l... ... 46
Prompt/2 ... 80
put/l. .. 48
R

read/1 ..o 44
reconsult/1...... L 19
recorda/3 58
recorded/3 i 59
Tecordz/3 .o 58
TENAME/2 .ottt 64
repeat/0 28
S

save/l ... 22
see/l .. 44
seeing/l. 44
seen/0 44
setof /3. ... 62

sh/0 ..o 64
SKID/L + oo 49
SOrt/2. .. 36
SPY/ L e 177
statistics/0....... i 72
system/1..... ... 64
T

tab/1 50
BeIL/L . 43
telling/1 ..o 44
term_expansion/2............ ... L. 63
BOIA/O - e 44
true/0 . 27
Vv

var/l ..o 32
write/1 ... 45
writeq/1 46

24.1.3 Yap predicates not strictly compatible with C-Prolog

These are YAP built-ins that are also available in C-Prolog, but that are not fully compat-

ible:

A

abolish/1....... 55
abolish/2...... 55
assert/1..... 55
assert/2. 58
asserta/l..... 55
asserta/2. 58
assertz/1. 55
assertz/2. 58
C

clause/2. 56
clause/3. 56

I

18/2 . 40
L

listing/0 56
listing/1 ... 56
N

nth_clause/3 L 56
R

retract/2. ... 58

24.1.4 Yap predicates not available in C-Prolog

These are YAP built-ins not available in C-Prolog.

200

NS/ 35
A

absolute_file_.name/2......................... 42
add_edges/3...... L. 101
add_to_array_element/4 71
add_to_heap/4.............o 84
add_vertices/3........... 100
alarm/3 65
All/3 . 62
always_prompt_user/0........................ 52
append/3 84
ALG/3 o 34
AITAY /2 .o 70
array_element/3 L 71
assert_static/1......... 55
asserta_static/1............ 55
assertz_static/1............., 56
assoc_to_list/2......... 82
at_end_of_stream/0.......................... 42
at_end_of_stream/1 42
atom_chars/2............ 33
atom_codes/2 L. 33
atom_concat/2 oL 33
atom_concat/3 ... 33
atom_length/2.. 33
atom_to_chars/2........... 93
atom_to_chars/3.......... 93
attribute_goal/2 111
avl_insert/4 i 83
avl_-lookup/3 o 83
B

bb_delete/2 61
bb_get/2. 61
bb_put/2... 61
bb_update/3 L 61
C

O3 64
call_cleanup/1........ 98
call_cleanup/2........ 98
call_count_data/0............................ 68
call_count_data/3 68, 69
call_residue/2 107
call_with_args/m........... 29
callable/1 32
catch/3 30
O/ L e 64
char_code/2...... 34
char_conversion/2............. 45
checklist/2 i 81

checknodes/3.......... L 81

YAP Prolog User’s Manual

cleanup_all/0.......... 98
Close/2. .. 42
close_static_array/1.......................... 71
compile/1....... 19
compile/1 (directive)............... 19
compile_expressions/0........................ 20
complement/2........... 101
COMPOSE/3 ..o 102
compound/1 ... 32
convlist/3....... 81
COPY_term/2. ...t 35
create_mutable/2 L L. 67
current_char_conversion/2 45
current_input/1........ L 42
current_key/2 o 59
current_module/1......... oL 72
current_module/2. oL 72
current_mutex/3........ L 168
current_op/3 80
current_output/1 42
current_predicate/2.......... 57
current_prolog_flag/2......................... 79
current_stream/3 42
current_thread/2 163
cyclicoterm/1. ... 97
D

datime/1...... 94
del_vertices/3 100
delete/3 84, 89
delete_file/1...... ... i 94
delete_file/2 94
/2. 107
directory_files/2 94
discontiguous/1 (directive) 21
AISPLAY /L« oo 45, 50
display/2. ... 50
do_not_compile_expressions/0................. 20
dynamic/1 54
dynamic_predicate/2......................... 55
E

empty_assoc/l............. i 82
empty_heap/1........... 84
empty_queue/1......... 88
environ/2. oo 64, 95
eraseall/1 59
EXEC/B it 96

Chapter 24: Compatibility with Other Prolog systems 201

F

false/0o 27
file_exists/1 94
file_exists/2 ... 94
file_property/2 94
file_search_path/2............................ 22
ndall/4 ..o 62
flatten/2 ... 84
float/1..... ..o 32
flush_output/0........ 42
flush_output/1......... 42
format/2.......... 46
format/3.... 48
format_to_chars/3 92
format_to_chars/4, 92
fragile ... 98
freeze/2. 107
frozen/2 107
G

garbage_collect/0 30
garbage_collect_atoms/0...................... 30
gC/0 30
GEN_assoC/3 82
Get/2 . 50
get_assoc/3. ... 82
get_assoc/b. ... 83
get_atts/2. ... 110
get_byte/1 49
get_byte/2 50
get_char/1 49
get_char/2 51
get_code/1 49
get_code/2 51
get_from_heap/4......... 84
get_label/3 99
get_mutable/2......... L 67
get_value/2. 59
get0/2 ..o 50
getewd/1. 64
getrand/1........ i 89
goal_expansion/3 63
ground/1.. 34
grow_heap/1 31
grow_stack/1 i 31
H

halb/1 .o 30
head_queue/2 88
heap_size/2 84
heap_to_list/2.........., 84
Bide/ 1« oo 20
hide_predicate/1.............. 20
host_id/1 95

host_name/1 95

|

/3 29
incore/1..... ... 29
initialization/0 L. 80
initialization/1 (directive) 21
insert/4...... 89
isclist/1. ... 85
is_mutable/1o 67
J

join_queue/3 ol 88
jump_queue/3 ... 88
K

key_statistics/3........... ... L 59
key_statistics/4........... ... L 59
Kill/2 .o 95
L

last/2. ..o 85
length_queue/2...... 88
library_directory/1 21, 22
list_concat/2l 85
list_join_queue/3.............ciiiiii... 88
list_jump_queue/3 88
list_t0_assoC/2. ..o 83
list_to_heap/2 84
list_to_ord_set/2................, 86
list_to_queue/2 88
list_to_tree/2......... 99
lookup/3.... ... 89
M
make_directory/2........ 95
make_queue/1............ . 88
MAP_ASSOC/3 . e o i i 83
map_tree/3. 99
MAPALES/3 oo et e 81
maplist/3 81
mapnodes/3. 81
member/2. 85
memberchk/2 oo 85
Merge/3. ... 86
meta_predicate/1 (directive).................. 25
min_of_heap/3........ L 84
min_of_heap/5........l 84
mktemp/2 ... 95
module/1 24
module/2 (directive) 24
module/3 (directive) 24
multifile/1 (directive) 21
mutex_create/1....... 167
mutex_destroy/1........... 167

202

mutex_lock/1.... L 167
mutex_statistics/0......... L 163
mutex_trylock/1...... 168
mutex_unlock/1 L 168
mutex_unlock_all/0......................... 168
N

neighbors/3 oL 101
neighbours/3........ 101
new/l ... 89
nl/1 . 51
no_source/0 20
noge/0. ..o 30
nospyall /0.......... 177
NEh/2 . 85
nth/4.. .. o 85
nth_recorded/3, 59
NEhO/2 . .o 85
NEhO/A 85
number_atom/2 ... 34
number_chars/2 33
number_codes/2 L. 34
number_to_chars/2............... 93
number_to_chars/3............ 93
numbervars/3 34
@)

on_cleanup/1......... 98
on.signal/3... 66
once/l. ... 30
ODEI/3 . oot 41
ODPEN 4 oo 41
open_chars_stream/2......................... 93
ord_add_element/3............ 86
ord_del_element/3 86
ord_disjoint/2 86
ord_insert/3....... i 87
ord_intersect/2 o . 87
ord_intersect/3 87
ord_list_to_assoc/2.......... 83
ord-member/2....... L. 86
ord_seteq/2 ... 87
ord_setproduct/3l 87
ord_subtract/3 oL 87
ord_symdiff/3 o 87
ord_union/2.......ol 87
ord_union/3............ 87
ord_union/4........ i 87

ordsubset/2 87

YAP Prolog User’s Manual

P

path/1 20, 21
peek_byte/1 49
peek_byte/2. 51
peek_char/1......... 49
peek_char/2...... 51
peek_code/1... 49
peek_code/2. 51
permutation/2......... 85
phrase/2....... i 64
phrase/3 64
PA/L oo 95
PODPEN/3 oottt 96
portray_clause/1........... 56
portray_clause/2......... 56
predicate_property/2............. .. 57
pPrint/2. ... 50
profile_data/3 68
profiled_reset/0............ 68
project_attributes/2 oL 111
prolog_file name/2............... 22
prolog_flag/3 L 79
prolog_initialization/1........................ 80
prolog_load_context/2........................ 80
public/1 (directive) 22
PUL/2 . o 50
put_assoc/4d ... 83
put_atts/2 ... 110
put_byte/1 48
put_byte/2 50
put_char/1....... 49
put_char/2....... 50
put_code/1.. ... 49
put_code/2. ... 50
put_label/4. 99
PUtenv/2. 64
Q

queue_to_list/2 oL 88
R

random/1 89
random/3 89
randseq/3 89
randset/3 89
rannum/1. ... 87
ranstart /0. 88
ranstart/1. ... 88
ranunif/2 ... 88
reachable/3 102
read/2 50
read_from_chars/2 93
read_term/2....... L. 44
read_term/3........ oL 50
recorda/3 59
recorda_at/3 ... 58

Chapter 24: Compatibility with Other Prolog systems 203

recordaifnot/3..........o 58, 60
recordz_at/3. ... 58
recordzifnot/3 60
TEEEXD/3 o ot 90
TEEEXD/4 .ot 90
remove_duplicates/2 85
remove_from_path/1 21
rename_file/2. L 95
reset_op_counters/0......................... 175
resize_static_array/3 L. 71
restore/1. 22
retract/1...... ... 56
retractall/1........... ... 56
TEVETSE/2 . ottt et 85
S

same_length/2........ 86
SAVE/2 L 22
save_program/1.............. 22
SAVE_PrOGIAM/2. .\ ottt 22
select/3 ..o 86
selectlist/3 81
SEIVE_QUEUE/3 ...ttt 88
set_input/1......... ... 42
set_output/1 42
set_prolog_flag/2.........., 79
set_stream_position/2................ 42
set_value/2. 60
Setarg/3n 67
setrand/1 89
shell/O ... 96
shell /1. ..o 96
show_op_counters/1......................... 175
show_ops_by_group/1 175
simple/1 32
skip/2 ..o 51
sleep/1. ... 96
socket/2 ... L 53
socket/4 ... 52
socket_accept/2....... o 53
socket_accept/3. 53
socket_bind/2 ool 53
socket_buffering/4 L 54
socket_close/1....... 53
socket_connect/3 L 53
socket_listen/2. L. 53
socket_select/5 oL 54
source/0 19
source_mode/2 ... oo 19
splay_access/5. ... 92
splay_delete/4 92
splay_init/3 92
splay_insert/4 o . 92
splay_join/3 ... 92
splay_split/5 ... 92
spy-write/2 178

standom/1 oL 40

start_low_level_trace/0...................... 173
static_array/3.......... 70, 71
static_array_properties/3 70
static_array_to_term/3 71
statistics/2. 73
stream_property/2.............. .. 43
stream_select/3......... ... L. 42
style_check/1 21
sub_atom/5 34
sub_edges/3 101
sublist/2 86
SUbSUMES/2 97
subsumes_chk/2 L 97
suffix/2 ... 86
sum_list/2. 86
SUMATES/ 4. oottt 81
sumlist/2 ... 86
sumlist/4 ... 81
sumnodes/4 o 81
system/0. 97
System/2. 97
system_predicate/2 57
T

AD/2 .o 51
term_hash/2........... 97
term_hash/4....... 97
term_variables/2...........l 97
thread_at_exit/1............................ 162
thread_create/3............. 161
thread_detach/1............. 162
thread_exit/1...............c ... 162
thread_get_message/1....................... 164
thread_get_message/2..............ccoouo... 165
thread_join/2............ 161
thread_local/1 (directive).................... 166
thread_message_queue_create/1.............. 164
thread_message_queue_destroy/1............. 164
thread_peek_message/1 164
thread_self/1 161
thread_send_message/2...................... 164
thread_setconcurrency/2 162
thread_signal/2............................. 165
thread_statistics/3.......................... 163
throw/1... 30
time_out/3 98
tmpnam/1 96
top_sort/2 102
transitive_closure/2 102
Eranspose/3 101
tree_Size/2 99
tree_to_list/2....... ... L 99
thyget /L. 51
thygetO/1 oo 51
BEyDL/0. 51
ttyput/1 ... 51
ttyskip/1. ..o 51

204 YAP Prolog User’s Manual

ttytab/1 ..o 51 vertices_edges_to_ugraph/3.................. 100
U W

unhide/l 20 Wait/2 """""""""""""""""""""""""" 97
un?fy—fith—occurs—("he(?k/ 2o 22 When/2 ... 107
UHLX/ Ly Sl withomutex/2....... 167
unknown/2. :

) with_output_to_chars/2 93
unl(ilni)wn,predécate,handler/ B ?? with_output_to_chars/3 93
uPdate’arr?yl/Dl /2 """""""""""""""" 67 with_output_to_chars/4 93
ESe artrl(j);lmuiie/ell Of & rrrrrrrreeee e 24 working_directory/2............ 96

o WIIbe/2 .o 50
use_module/2 25 .
use_module/3 ... 25 writedepth/2 ... o2
- write_term/2o 45
write_term/3 50
V write_to_chars/2............., 92
variable_in_term/2......... L 97 WEEZ,t/oichars/ Broir 2(2]
variant /2. ... 97 R
verify_attributes/3........ L 110
version/0. 80
version/1. ... 80 Y
VEItICeS /2 .ot 100 vapflag/2. 73

24.1.5 Yap predicates not available in C-Prolog

These are C-Prolog built-ins not available in YAP:

LC? The following Prolog text uses lower case letters.

’NOLC’ The following Prolog text uses upper case letters only.

24.2 Compatibility with the Quintus and SICStus Prolog
systems

The Quintus Prolog system was the first Prolog compiler to use Warren’s Abstract Machine.
This system was very influential in the Prolog community. Quintus Prolog implemented
compilation into an abstract machine code, which was then emulated. Quintus Prolog also
included several new built-ins, an extensive library, and in later releases a garbage collector.
The SICStus Prolog system, developed at SICS (Swedish Institute of Computer Science), is
an emulator based Prolog system largely compatible with Quintus Prolog. SICStus Prolog
has evolved through several versions. The current version includes several extensions, such
as an object implementation, co-routining, and constraints.

Recent work in YAP has been influenced by work in Quintus and SICStus Prolog. Wher-
ever possible, we have tried to make YAP compatible with recent versions of these systems,
and specifically of SICStus Prolog. You should use

:- yap_flag(language, sicstus).

for maximum compatibility with SICStus Prolog.

Chapter 24: Compatibility with Other Prolog systems 205

24.2.1 Major Differences between YAP and SICStus Prolog.

Both YAP and SICStus Prolog obey the Edinburgh Syntax and are based on the WAM.
Even so, there are quite a few important differences:

Differently from SICStus Prolog, YAP does not have a notion of interpreted code. All
code in YAP is compiled.

YAP does not support an intermediate byte-code representation, so the fcompile/1
and load/1 built-ins are not available in YAP.

YAP implements escape sequences as in the ISO standard. SICStus Prolog implements
Unix-like escape sequences.

YAP implements initialization/1 as per the ISO standard. Use prolog_
initialization/1 for the SICStus Prolog compatible built-in.

Prolog flags are different in SICStus Prolog and in YAP.

The SICStus Prolog on_exception/3 and raise_exception built-ins correspond to
the ISO builtins catch/3 and throw/1.

The following SICStus Prolog v3 built-ins are not (currently) implemented in YAP
(note that this is only a partial list): call_cleanup/1, file_search_path/2, stream_
interrupt/3, reinitialize/0, help/0, help/1, trimcore/0, load_files/1, load_
files/2, and require/1.

The previous list is incomplete. We also cannot guarantee full compatibility for other
built-ins (although we will try to address any such incompatibilities). Last, SICStus
Prolog is an evolving system, so one can be expect new incompatibilities to be intro-
duced in future releases of SICStus Prolog.

YAP allows asserting and abolishing static code during execution through the assert_
static/1 and abolish/1 builtins. This is not allowed in Quintus Prolog or SICStus
Prolog.

YAP implements rational trees and co-routining but they are not included by default
in the system. You must enable these extensions when compiling the system.

YAP does not currently implement constraints.

The socket predicates, although designed to be compatible with SICStus Prolog, are
built-ins, not library predicates, in YAP.

This list is incomplete.

The following differences only exist if the language flag is set to yap (the default):

The consult/1 predicate in YAP follows C-Prolog semantics. That is, it adds clauses
to the data base, even for preexisting procedures. This is different from consult/1 in
SICStus Prolog.

By default, the data-base in YAP follows "immediate update semantics", instead of
"logical update semantics", as Quintus Prolog or SICStus Prolog do. The difference is
depicted in the next example:

:- dynamic a/1.

?- assert(a(l)).

206 YAP Prolog User’s Manual

?- retract(a(X)), X1 is X +1, assertz(a(X)).

With immediate semantics, new clauses or entries to the data base are visible in back-
tracking. In this example, the first call to retract/1 will succeed. The call to assertz/1
will then succeed. On backtracking, the system will retry retract/1. Because the
newly asserted goal is visible to retract/1, it can be retracted from the data base,
and retract (a(X)) will succeed again. The process will continue generating integers
for ever. Immediate semantics were used in C-Prolog.

With logical update semantics, any additions or deletions of clauses for a goal will not
affect previous activations of the goal. In the example, the call to assertz/1 will not
see the update performed by the assertz/1, and the query will have a single solution.

Calling yap_flag(update_semantics,logical) will switch YAP to use logical update
semantics.

e dynamic/1 is a built-in, not a directive, in YAP.
e By default, YAP fails on undefined predicates. To follow default SICStus Prolog use:
:— yap_flag(unknown,error) .

e By default, directives in YAP can be called from the top level.

24.2.2 Yap predicates fully compatible with SICStus Prolog

These are the Prolog built-ins that are fully compatible in both SICStus Prolog and YAP:

! >
L0 27 > 40
S 40
9
2 o @
@</2 36
@>/2 36
- @>=/2. 36
3 28
; Nt/ L 28
L 97 NFT/Ze 36
< A
abort/0........ 30
L 0t e ey s
add_edges/3... ...l 101
— add_to_heap/4.......... 84
add_vertices/3........ oo 100
= 35 append/3 ... 84
:/2 .. 35 arg/g ““““““““““““““““““““““““““ 34
e 40 assoc_to_list/2. ... 82
=</2 40 at_end_of_stream/0........................ .. 42
) R 36 at_end_of_stream/1 42

=\=/2 40 atom/1 ... 32

Chapter 24: Compatibility with Other Prolog systems 207

atom_codes/2 33
atom_concat/3 33
atom_to_chars/2.............. 93
atom_to_chars/3............. 93
atomic/l 32
attribute_goal /2 oL 111
B

bb_delete/2 61
bb_get/2. 61
bb_put/2..... 61
bb_update/3 61
break/0......... 30
C

O3 64
call/1 ... 29
call_cleanup/1............................... 98
call_cleanup/2........ 98
call_residue/2l 107
callable/1..... 32
char_code/2...... i 34
char_conversion/2............................ 45
cleanup_all/0........... oL 98
close/1. .o 41
COMPATE/3 o oottt 35
compile/1o 19
complement/2........... L 101
COMPOSE/3 ..ot 102
compound/1 32
copy_term/2......... ... 35
create_mutable/2 L 67
current_atom/1......... L 57
current_char_conversion/2 45
current_input/1....... L 42
current_key/2 ... Lo 59
current_module/1............ 72
current_module/2......... 72
current_op/3 80
current_output/1 42
current_predicate/1.......... 57
current_predicate/2............ 57
current_stream/3 L 42
cyclic_term/1. 97
D

datime/1........ 94
db_reference/1............ 32
debugging/0. ... 177
del_vertices/3 100
delete/3.o 84
delete_file/1 94
delete_file/2 94
Aif/2. 107

directory_files/2 L. 94

discontiguous/1 (directive) 21
display/1 ... 45, 50
display/2. ... 50
E

empty_assoc/l............ ... oL 82
empty_heap/l......... i 84
empty_queue/1 88
eNvIron/2 64, 95
EXEC/3 ot 96
expand_term/2 o L 63
F

£l /0 . . 27
false/0 27
file_exists/1 ... 94
file_exists/2 94
file_property/2 94
file_search_path/2............................ 22
fileerrors/0 52
Bdall/3 ..o 62
findall/4 ... 62
flatten/2 ... 84
Hoat/1 ..o 32
flush_output/0............ 42
flush_output/1........ 42
format_to_chars/3 92
format_to_chars/4, 92
fragile 98
freeze/2.l 107
frozen/2 107
functor/3 34
G

garbage_collect /0 30
garbage_collect_atoms/0...................... 30
/0 o 30
GEN_assoC/3 82
get/1 ..o 49
get/2 .. 50
get_assoc/3. ... 82
get_assOC/B. i 83
get_atts/2. 110
get_from_heap/4.......... L. 84
get_label/3 99
get_mutable/2. L 67
8et0/L o 49
get0/2 .o 50
getrand/1........ol 89
ground/1. 34

208

H

halt/0 ... 30
halt/L ..o 30
head_queue/2, 88
heap_size/2 84
heap_to_list/2..........., 84
host_id/1 ..o 95
host_name/1 95
I

/8 29
incore/l..........oiiiii 29
initialization/0 80
integer/l....... 32
1/2 0 e 40
s list/1 ..o 85
is_mutable/1 67
J

join_queue/3 L. 88
jump_queue/3 ... 88
K

keysort/2 ... 36
Kill/2 ..o 95
L

last /2. ... o 85
leash/1 ... 177
length/2 36
length_queue/2....... 88
list_join_queue/3...... 88
list_jump_queue/3 38
list_t0-a880C/2. . ..o 83
list_to_heap/2 84
list_to_ord_set/2........... 86
list_to_queue/2 88
list_to_tree/2......... i 99
listing/1 ... 56
M
make_directory/2.........o 95
make_queue/1........ L. 88
map_assoC/3 83
map-tree/3....... ... 99
member/2. 85
memberchk/2 o 85
MErge/3. .o 86
meta_predicate/1 (directive).................. 25
min_of_ heap/3....... 84
min_of_heap/5.......... 84

mktemp/2 ... 95

YAP Prolog User’s Manual

module/1 24
module/2 (directive) 24
module/3 (directive) 24
multifile/1 (directive) 21
N

NAME/2 .ot 32
neighbors/3 101
neighbours/3........... 101
NL/0 . 50
NU/1 . 51
nodebug/0l 177
nofileerrors/0............... 52
NOZC/0 e 30
nonvar/l. ... 32
NOSPY /1. 177
nospyall/O..........co i 177
NEh/2 85
NEN/A 85
NEhO/2 . .o 85
NEhO/4 . .o 85
number/1 32
number_codes/2 34
number_to_chars/2........................... 93
number_to_chars/3............ 93
numbervars/3 34
@)

on_cleanup/1l............ 98
OD/ B e 80
OPEN/3. i 41
open_chars_stream/2......................... 93
ord_add_element/3........................... 86
ord_del_element/3 86
ord_disjoint/2 L 86
ord_insert/3 87
ord_intersect/2 87
ord_intersect/3 oL 87
ord_list_to_assoc/2..........., 83
ord_member/2........ L. 86
ord_seteq/2 ... 87
ord_setproduct/3 L 87
ord_subtract/3 oLl 87
ord_symdiff/3 L 87
ord_union/2.......... 87
ord_union/3...... o 87
ord_union/4 87
ordsubset/2 o 87

Chapter 24: Compatibility with Other Prolog systems 209

P

peek_char/1...... 49
permutation/2............ ... 85
phrase/2 ... 64
phrase/3 64
DAA/T o 95
PODEN/3 oot 96
portray_clause/1..........., 56
portray_clause/2............ 56
primitive/1....... 32
print/l... ... 46
Print/2. 50
project_attributes/2 L 111
prolog_file_name/1........................... 22
prolog_flag/3 79
prolog_load_context/2........................ 80
Prompt/2 ..o 80
put/l ... 48
PUL/2. o 50
put_assoc/4d ... 83
put_atts/2 ... 110
put_label/4... 99
Q

queue_to_list/2 L. 88
R

random/1 89
random/3 89
randseq/3 89
randset/3 89
reachable/3 102
read/1 ... 44
read/2 50
read_from_chars/2 93
remove_duplicates/2 85
rename_file/2. oo 95
repeat/0 28
restore/1. 22
TEVEISE/2 . ottt et 85
S

same_length/2. 86
save_program/l......... 22
SAVE_PrOGram /2.ooueeiueane ... 22
see/l .. 44
seeing/l.o 44
seen/0 ... 44
select/3 ... o 86
SEIVE_QUEUE/3 ..ttt 88
set_input/1........... 42
set_output/1 42
set_stream_position/2............... 42

setrand /1 89

shell/O. ... 96
shell /1. ..o 96
simple/1 32
skip/1 ..o 49
skip/2 ..o 51
sleep/1.. ..o 96
socket/2 ... 53
socket/4 ... 52
socket_accept/2. 53
socket_accept/3....... L 53
socket_bind/2 oL 53
socket_buffering/4 54
socket_close/1 53
socket_connect/3 oL 53
socket_listen/2......... L. 53
socket_select/5 54
SOTt/2. . L 36
SPY/ L oo 177
stream_select/3...... oL 42
sub_edges/3 101
sublist/2 86
subsumes/2 ... 97
subsumes_chk/2 oL 97
suffix/2 ... 86
sumlist/2 ... 86
system/0. 97
SYStem/2. 97
system_predicate/2 57
T

b/ e 50
D)2 e 51
bell/1 . 43
telling/1 . ..o 44
term_expansion/2............ L 63
term_hash/2........... 97
term_hash/4........ 97
term_variables/2......... L. 97
time_out/3 98
tmpnam/1 ... 96
BOIA/0 - oo 44
BOp-_SOrt /2 ..o 102
transitive_closure/2......... 102
Eranspose/3 101
tree_size/2 99
tree_to_list/2......... ... i 99
true/0 ... 27
thyget/1. .o 51
ttygetO/1 .o 51
ttynl/0. ..o 51
ttyput/1 ..o 51
ttyskip/1. ..o o 51
BEyEab/1 - 51

210

U

unify_with_occurs_check/2.................... 35
unknown_predicate_handler/3 32
update_mutable/2 L 67
use_module/1 24
use_module/2 o 25
use_module/3 ... 25

A%

var/l ... 32
variant/2. ... 97
verify_attributes/3............ L. 110
version/1. 80
Vertices/2 100

vertices_edges_to_ugraph/3.................. 100

YAP Prolog User’s Manual

WAIL/2 . 97
when/2 107
with_output_to_chars/2 93
with_output_to_chars/3 93
with_output_to_chars/4 93
working_directory/2........... 96
write/1 ... 45
Write/2 ... 50
write_term/2o 45
write_term/3 50
write_to_chars/2................ 92
write_to_chars/3.............o 92
writeq/1 ... 46
WITbeq/2 .o 50

Chapter 24: Compatibility with Other Prolog systems 211

24.2.3 Yap predicates not strictly compatible with SICStus Prolog

These are YAP built-ins that are also available in SICStus Prolog, but that are not fully

compatible:

F1/L 19
/1 19
A

abolish/1........ 55
abolish/2....... 55
assert/1 55
assert/2. 58
asserta/l..... 55
asserta/2. 58
assertz/1.... ... 55
assertz/2. 58
atom_chars/2....... 33
B

bagof/3 62
C

clause/2. ... o 56
clause/3. 56
close/2. . .. 42
D

debug/0 177
dynamic/1 54
E

erase/1 59
erased/1 59
F

format/2....... 46
format/3 48
I

instance/2........... . . i 59

L

listing/0 56
N

nth_clause/3 L. 56
nth_recorded/3 59
number_chars/2 L. 33
OPEN/A . oo 41
P

predicate_property/2............, 57
prolog_initialization/1........................ 80
R

read_term/2. 44
read_term/3 50
recorda/3 58
recordaifnot/3............ ... 58
recorded/3 59
recordz/3 ... 58
retract/1. 56
retract/2. 58
retractall/1... 56
setof /3. ... 62
statistics/0. 72
statistics/2. 73
U

unknown/2. ... 31
Vv

version/0. 80

212

YAP Prolog User’s Manual

24.2.4 Yap predicates not available in SICStus Prolog

These are YAP built-ins not available in SICStus Prolog.

\

N=/2 35
A

add_to_array_element/4 71
alarm/3 65
all/3 . 62
always_prompt_user/0........................ 52
AITAY /2 oot 70
array_element/3 L 71
assert_static/1......... 55
asserta_static/l........... 55
assertz_static/1............. 56
atom_concat/2 33
atom_concat/3 ... 33
atom_length/2....... 33
avlinsert/4 i 83
avl_lookup/3o 83
C

call_count_data/0............................ 68
call_count_data/3 68, 69
call_with_args/n........... 29
catch/3 30
Cd/L e 64
checklist/2 i 81
checknodes/3............ L. 81
close_static_array/1.......................... 71
compile/1 (directive) 19
compile_expressions/0........................ 20
consult/1 ... 19
convlist/3 81
current_mutex/3...... L. 168
current_prolog_flag/2......................... 79
current_thread/2 163
D

delete/3.o 89
do_not_compile_expressions/0................. 20
dynamic_predicate/2......................... 55
E

eraseall/1 59
exists/1. ... 52

expand_exprs/2. 20

get_byte/1 49
get_byte/2 ... 50
get_char/1 49
get_char/2 51
get_code/1 49
get_code/2 51
get_value/2. 59
getewd/1.. 64
goal_expansion/3 63
grow_heap/l i 31
grow_stack/1..... L. 31
H

hide/1 ..o 20
hide_predicate/1................, 20
I

initialization/1 (directive) 21
insert/4..... ... 89
K

key_statistics/3.......... ... L 59
key_statistics/4.......... ... o i 59
L

library_directory/1 21, 22
list_concat/2 85
lookup/3.......oo 89
M

MAPALES/3 < oo 81
maplist/3 81
mapnodes/3. 81
mutex_create/1....... 167
mutex_destroy/1........... 167
mutex_lock/1....... L. 167
mutex_statistics/0 163
mutex_trylock/1........... 168
mutex_unlock/1 168
mutex_unlock_all/0......................... 168

Chapter 24: Compatibility with Other Prolog systems 213

N

new/l ... 89
no_source/0 20
not/l ... 28
number_atom/2 L 34
O

on.signal/3.. 66
once/l. ... 30
P

PAE/T © e 20, 21
peek_byte/1 i 49
peek_byte/2. 51
peek_char/2...... L. 51
peek_code/1........ L. 49
peek_code/2. oL 51
profile_data/3 68
profiled_reset/0............, 68
public/1 (directive) 22
put_byte/1...... 48
put_byte/2 50
put_char/1....... ... i 49
put_char/2....... 50
put_code/1 49
put_code/2. 50
putenv/2.... ... 64
R

rannum/1. ... 87
ranstart/0.......... . 88
ranstart/1... 88
ranunif/2 ... 88
reconsult/1...... L 19
recorda/3 59
recorda_at/3 58
recordaifnot/3...... ol 60
recordz_at/3...... o 58
recordzifnot/3 60
TEEEXD/3 oot 90
TEEEXD/4 oot 90
remove_from_path/1........... 21
TENAME/2 .ottt 64
reset_op_counters/0......................... 175
resize_static_array/3 71
S

save/l ... 22
SAVE/2 .. 22
selectlist/3 81
set_prolog flag/2.......... 79
set_value/2. 60

setarg/3n 67

sh/0 ..o 64
show_op_counters/1......................... 175
show_ops_by_group/1 175
source/0 19
sourcemode/2 19
splay_access/5. 92
splay_delete/4 92
splay_init/3 92
splay_insert/4 L 92
splay_join/3 ... 92
splay_split/5 ... 92
spy-write/2 ... 178
srandom/1 i 40
start_low_level_trace/0...................... 173
static_array/3............. 70, 71
static_array_properties/3 70
static_array_to_term/3 71
stream_property/2............. .. 43
style_check/1 21
sub_atom/5 ... 34
sum_list/2. ... 86
SUMATES /4. o voe e 81
sumlist/4 ... 81
sumnodes/4 81
system/1..... .. 64
T

thread_at_exit/1............................ 162
thread_create/3............................. 161
thread_detach/1......... 162
thread_exit/1............ 162
thread_get_message/1....................... 164
thread_get_message/2....................... 165
thread_join/2............ 161
thread_local/1 (directive).................... 166
thread_message_queue_create/1.............. 164
thread_message_queue_destroy/1............. 164
thread_peek_message/1 164
thread_self/1........, 161
thread_send_message/2...................... 164
thread_setconcurrency/2 162
thread_signal/2................ 165
thread_statistics/3.......................... 163
throw/1. 30
U

unhide/1 20
unix/1. ... 64
update_array/3 ... 71
A%

variable_in_term/2......... L. 97

214 YAP Prolog User’s Manual

W Y
with-mutex/2 167
write_depth/2 52 vap-flag/2..... 73

24.3 Compatibility with the ISO Prolog standard

The Prolog standard was developed by ISO/IEC JTC1/SC22/WG17, the international stan-
dardization working group for the programming language Prolog. The book "Prolog: The
Standard" by Deransart, Ed-Dbali and Cervoni gives a complete description of this stan-
dard. Development in YAP from YAP4.1.6 onwards have striven at making YAP compatible
with ISO Prolog. As such:

e YAP now supports all of the built-ins required by the ISO-standard, and,
e Error-handling is as required by the standard.
YAP by default is not fully ISO standard compliant. You can set the language flag to
iso to obtain very good compatibility. Setting this flag changes the following:

e By default, YAP uses "immediate update semantics" for its database, and not "logical
update semantics", as per the standard, (see Section 24.2 [SICStus Prolog|, page 204).
This affects assert/1, retract/1, and friends.

Calling set_prolog_flag(update_semantics,logical) will switch YAP to use logi-
cal update semantics.

e By default, YAP implements the atom_chars/2 (see Section 6.3 [Testing Terms],
page 32), and number_chars/2, (see Section 6.3 [Testing Terms|, page 32), built-ins as
per the original Quintus Prolog definition, and not as per the ISO definition.

Calling set_prolog_flag(to_chars_mode,iso) will switch YAP to use the ISO defi-
nition for atom_chars/2 and number_chars/2.

e By default, YAP fails on undefined predicates. To follow the ISO Prolog standard use:
:- set_prolog_flag(unknown,error) .

e By default, YAP allows executable goals in directives. In ISO mode most directives
can only be called from top level (the exceptions are set_prolog_flag/2 and op/3).

e Error checking for meta-calls under ISO Prolog mode is stricter than by default.
e The strict_iso flag automatically enables the ISO Prolog standard. This feature
should disable all features not present in the standard.
The following incompatibilities between YAP and the ISO standard are known to still
exist:

e Currently, YAP does not handle overflow errors in integer operations, and handles
floating-point errors only in some architectures. Otherwise, YAP follows IEEE arith-
metic.

Please inform the authors on other incompatibilities that may still exist.

Appendix A: Summary of Yap Predefined Operators 215

Appendix A Summary of Yap Predefined
Operators

The Prolog syntax caters for operators of three main kinds:
e prefix;
e infix;
e postfix.

FEach operator has precedence in the range 1 to 1200, and this precedence is used to
disambiguate expressions where the structure of the term denoted is not made explicit
using brackets. The operator of higher precedence is the main functor.

If there are two operators with the highest precedence, the ambiguity is solved analyzing
the types of the operators. The possible infix types are: xfx, xfy, yfx.

With an operator of type xfx both sub-expressions must have lower precedence than the
operator itself, unless they are bracketed (which assigns to them zero precedence). With
an operator type xfy only the left-hand sub-expression must have lower precedence. The
opposite happens for yfx type.

A prefix operator can be of type fx or fy, and a postfix operator, xf, yf. The meaning of
the notation is analogous to the above.
a+b*xc
means
a+ (b * c)
as + and * have the following types and precedences:
:-op(500,yfx,’+°).
:—op(400,yfx, *’).
Now defining
:-op(700,xfy, ++°).
:-op(700,xfx,’=:=").
a ++ b =:=c¢
means
a ++ (b =:= c)
The following is the list of the declarations of the predefined operators:
:-op(1200,fx, [??-7, 2:=’]).
:-op(1200,xfx, [’ :=2,’=-=>]).
:-op(1150,fx, [block,dynamic,mode,public,multifile,meta_predicate,
sequential,table,initialization]).
:-op(1100,xfy,[?;7,71°1).
:-op(1050,xfy,->).
:-op(1000,xfy,’,’).
:-op(999,xfy,’.”).
:-op(900,fy, [’\+’, not]).
:-op(900,fx, [nospy, spyl).
:-op(700,xfx, [@>=,0=<,0<,0>,<,=,>,=:=,=\=,\==,>=,=<,==,\=,=..,is]).
:-op(800,yfx, [’\/’,7/\?,’+7,>="1).

216 YAP Prolog User’s Manual

:-op(500,fx,[’+’,’-"]).

:_Op(400,ny’ [1<<? , ;>>:,;//;’;*; , 1 /07).
:-op(300,xfx,mod) .

:—op(200,xfy, [>77,2*x’]).
:-op(50,xfx,same) .

Predicate Index

Predicate Index

!
L 0 27
9
s 27
S 28
;
47 27
<
L 40
T & 35
] 35
Sm 40
=< 40
S D 36
SN 40
>
> 40
> 40
(@
0K/ 2 e 36
O=</ 2 36
O3/ 2 e 36
O>=/ 2 36
I 2 19
1/ 19
\
RN 2 28
NS/ 35

217
A
abolish/1 55
abolish/2 55
AboTt/0. . 30
absolute_file_name/2....................... 42
add_edges/3 101
add_to_array_element/4 71
add_to_heap/4ot 84
add_to_path/1, 20
add_to_path/2........ i 21
add_vertices/3...... ... 100
alarm/3. ... 65
All/3 . 62
always_prompt_user/0....................... 52
append/3. 84
ATG/3 . 34
argv (yap_flag/2 option) 74
AXTAY/2. .ot 70
array_element/3.................... ... 71
assert/1.. ... 55
assert/2. ... 58
assert_static/1................ 55
asserta/l 55
asserta/2 58
asserta_static/1............c ... 55
assertz/1 55
aSSETtZ/2 .o 58
assertz_static/1............. 56
assoc_to_list/2.......... ... 82
at_end_of_stream/O......................... 42
at_end_of_stream/1............ 42
atom/1. ... 32
atom_chars/2co i 33
atom_codes/2 33
atom_concat/2 33
atom_concat/3 33
atom_length/2........ 33
atom_to_chars/2................ccoiiiii... 93
atom_to_chars/3............co ... 93
atomic/1. 32
attribute/1 (declaration) 109
attribute_goal/2.................. 111
avl_insert/4 ... 83
avl_lookup/3 83
B
bagof/3. . .. 62
bb_delete/2 ... 61
bb_get/2. 61
bb_put/2. ... 61
bb_update/3 61
bounded (yap_flag/2 option) 74
break/0.o 30

218

C/ B 64
call/d ... 29
call_cleanup/1lcouiiiiniiineinn.. 98
call_cleanup/2ovveeiieei 98
call_count_data/O............coviurinen... 68
call_count_data/3 68, 69
call_counting (yap_flag/2 option) 74
call_residue/2.........ccuiiiiiii.. 107
call with_ args/n............. ... 29
callable/1 ..., 32
catch/3. ... 30
CA/ L 64
char_code/2 ... 34
char_conversion (yap_flag/2 option) 74
char_conversion/2........................ 45
character_escapes (yap_flag/2 option) 74
checklist/2o 81
checknodes/3 ...t 81
chr_debug/0 149
chr_debugging/0........................... 149
chr_leash/1 ..., 149
chr_nodebug/0ccvviiiiinnniiii. 149
chr_nospy/1 151
chr_notrace/Oc.uuiiiiiiiiinnn. .. 149
chr_spy/1 ... 150
chr_trace/0 ... 148
clause/2. ... 56
clause/3. ... 56
cleanup_all/0cviiiineiineinaen.. 98
close/d .. 41
Close/ 2. . 42
close_static_array/l..............o... 71
compare/3 ... 35
compile/1 19
compile_expressions/0 20
complement/2 101
compose/3 ... 102
compound/1 32
consult/1 19
convlist/3 ... 81
copy_term/2 35
cputime (statistics/2 option).............. 73
create_mutable/2........................... 67
current_atom/1 57
current_char_conversion/2 45
current_constraint/2...................... 144
current_handler/2............ 144
current_input/1............ 42
current_key/2 59
current_module/1............. 72
current_module/2 72
current_mutex/3 168
CUTTEnt_OP/3 ..ottt e 80
current_output/1........... 42
current_predicate/1............. 57
current_predicate/2................ ... 57

current_prolog_flag/2 79

YAP Prolog User’s Manual

current_stream/3................. ... 42
current_thread/2.......... 163
cyclic_term/1 97

D

datime/1. 94
db_reference/1C 32
debug (yap_flag/2 option) 74
debug/0. ..o 177
debugging/0 177
del_vertices/3ciiiiiii., 100
delete/3o 84, 89
delete_file/1 94
delete_file/2o 94
dif/2. 107
directory (prolog_load_context/2 option).. 80
directory_files/2.............. 94
discontiguous/1 (directive) 21
discontiguous_warnings (yap_flag/2 option)
..................................... 74, 76
display/lo 45, 50
display/2 ... 50
do_not_compile_expressions/0.............. 20
dollar_as_lower_case (yap_flag/2 option).. 74
double_quotes (yap_flag/2 option) 74
dynamic/1 54
dynamic_predicate/2........................ 55

E

empty_assoc/1..... 82
empty_heap/1 il 84
empty_queue/1 88
ensure_loaded/1............. ... 19
environ/2 ... 64, 95
erase/l. ... 59
eraseall/1l ... 59
erased/1......... 59
eXEC/ B . 96
exists/1. .. 52
expand_exXprs/2 i 20
expand_term/2 63

fail/0. o 27
false/O. ..o 27
fast (yap_flag/2 option) 75
file (prolog_load_context/2 option) 80
file_exists/1o 94
file_exists/2 94
file_property/2......... 94
file_search_path/2......................... 22
fileerrors (yap_flag/2 option)............. 75
fileerrors/0o 52
find_constraint/2............. 145
find_constraint/3.............. 145

Predicate Index

findall/3 62
findall/4 ... 62
findall_constraints/2 145
findall_constraints/3 145
flatten/2 84
float/d. .o 32
flush_output/0........coiiiineine.. 42
flush output/1...... ..., 42
format/2. 46
format/3. 48
format_to_chars/3............ccuiiiiiian... 92
format_to_chars/4.................c.oo.... 92
fragile........ 98
freeze/2 107
frozen/2 ... 107
functor/3 34

G

garbage_collect/O.......................... 30
garbage_collect_atoms/0O 30
garbage_collection (statistics/2 option).. 73
gc (yap_flag/2 option) 75
BC/0 oo 30
gc_margin (yap_flag/2 option).............. 75
gc_trace (yap_flag/2 option)............... 75
gen_assoC/3 82
get/L. o 49
get/2. . 50
get_assoc/3 82
get_assoc/5 ... 83
get_atts/2 110
get_byte/1 49
get_byte/2 50
get_char/1 49
get_char/2 ol 51
get_code/1 49
get_code/2 51
get_from_heap/4........ 84
get_label/3 99
get_mutable/2............ 67
get_value/2 59
getO/1 . o 49
get0/2. .. 50
getewd/1. ... 64
getrand/1 89
global_stack (statistics/2 option) 73
goal_expansion/3........................... 63
ground/1................. i 34
grow_stack/l 31

H

halt/O0. .. 30
halt/d ... 30
head_queue/2t 88
heap (statistics/2 option) 73
heap_size/2 ... 84

219
heap_to_list/2.........., 84
hide/1 ... o 20
hide_predicate/1........... 20
host_id/1 i 95
host_name/1o 95
host_type (yap_flag/2 option).............. 75
I
T T 29
include/1 (directive) 19
incore/l. ..o 29
index (yap_flag/2 option) 75
informational_messages (yap_flag/2 option)

.. 75
initialization/O................ciunii... 80
initialization/1 (directive) 21
INSeTt/4. .o 89
insert_constraint/2.............. ... 144
insert_constraint/3............. 145
instance/2 59
integer/1 il 32
integer_rounding_function (yap_flag/2

option) ... 75
18/ 40
is_1Ast/1 o 85
is_mutable/1 67
J
join_queue/3 ...l 88
jump_queue/3 88
K
key_statistics/3.............. 59
key_statistics/4.......... 59
keysort/2 oo 36
K111/ 2. o 95
L
language (yap_flag/2 option)............... 75
1aST/ 2. ot 85
leash/1.. . oo 177
length/2.o 36
length_queue/2....................couoo... 88
library_directory/1 21, 22
list_concat/2.........ooiiiiiiiiinan. 85
list_join_queue/3.............. 88
list_jump_queue/3................ 88
1ist_t0_assoC/2... ... 83
list_to_heap/2........... ... 84
list_to_ord_set/2.........coiiiiiiino... 86
list_to_queue/2..........cviiiiniiinainn.. 88
list_to_tree/2.......... ... 99
1isting/0 ..o 56

TEASTANG/T oo 56

220
local_stack (statistics/2 option) 73
LooKUP/3. . oo 89

M

make_directory/2............ 95
make_queue/1 i 88
map_assoc/3 83
map_tree/3 99
mapargs/3 81
maplist/3o 81
mapnodes/3 i 81
max_arity (yap_flag/2 option).............. 76
max_integer (yap_flag/2 option) 76
member/2. 85
memberchk/2 i 85
Merge/3 86
meta_predicate/1 (directive) 25
min_integer (yap_flag/2 option) 76
min_of _heap/3t 84
min_of _heap/5ciiiiiii 84
mktemp/2. ... 95
module (prolog_load_context/2 option) 80
module/1.o 24
module/2 (directive) 24
module/3 (directive) 24
multifile/1 (directive) 21
mutex_create/1......... 167
mutex_destroy/1........ 167
mutex_lock/1 167
mutex_statistics/0........................ 163
mutex_trylock/1................. 168
mutex_unlock/1 168
mutex_unlock_all/O........................ 168

N

n_of_integer_keys_in_bb (yap_flag/2 option)

.. 76
n_of_integer_keys_in_db (yap_flag/2 option)

.. 76
name/2. 32
neighbors/3, 101
neighbours/3 101
new/l... 89
NL/0 . 50
nl/1 . 51
no_source/0 i 20
no_style_check/1........................... 21
nodebug/0 ... 177
nofileerrors/0, 52
NOGC/0. . ot 30
nONVAT/ L. oot 32
nospy/1.. ... 177
nospyall/O i 177
NOL/ L. 28
notify_constrained/1...................... 145
nth/2. .. 85

YAP Prolog User’s Manual

nth/4 ... 85
nth_clause/3o . 56
nth_recorded/3............. 59
nthO/2. .. 85
NthO/4 . ..o 85
number/1. 32
number_atom/2 34
number_chars/2.................uiiii... 33
number_codes/2 i 34
number_to_chars/2.......................... 93
number_to_chars/3.......................... 93
NUMbeTrvars/3ooie et 34

@)

on_cleanup/1 ...t 98
on_signal/3 66
once/l 30
0P/ B e 80
OPEI/3 . ot 41
OPEN/4 . oot 41
open_chars_stream/2........................ 93
ord_add_element/3.......................... 86
ord_del_element/3.......................... 86
ord_disjoint/2.......... 86
ord_insert/3 87
ord_intersect/2......... 87
ord_intersect/3........ 87
ord_list_to_assoc/2...............iiiii.. 83
ord_member/2 86
ord_seteq/2l 87
ord_setproduct/3.................... 87
ord_subtract/3............, 87
ord_symdiff/3 87
ord_union/2 87
ord_union/3 87
ord_union/4 87
ordsubset/2 87

P

path/1l.. 20
peek_byte/1 49
peek_byte/2 51
peek_char/1 49
peek_char/2 51
peek_code/1 49
peek_code/2 51
permutation/2............. L. 85
phrase/2.......... 64
phrase/3.... 64
PAA/d 95
POPEN/3. . 96
portray_clause/1............... 56
portray_clause/2............... 56
predicate_property/2....................... 57
primitive/1 32

Print/l.. ... 46

Predicate Index

Print/2. 50
profile_data/3 ..., 68
profiled_reset/O............ 68
profiling (yap_flag/2 option).............. 76
program (statistics/2 option).............. 73
project_attributes/2...................... 111
prolog_file mame/2......................... 22
prolog_flag/3 79
prolog_initialization/1 80
prolog_load_context/2 80
Prompt/2. 80
public/1 (directive)c..... 22
PUt/1. 48
PUL/2. 50
put_assoc/4 ... 83
put_atts/2 ... 110
put_byte/1 48
put_byte/2 50
put_char/1 49
put_char/2, 50
put_code/1 49
put_code/2 50
put_label/4 99
PUtenv/2............ . 64
Q

queue_to_list/2............ ... 88

R

random/1. 89
random/3. 89
randseq/3 89
randset/3 89
rannum/1........ ... 87
ranstart/0 88
ranstart/1 88
ranunif/2 88
reachable/3c .. 102
read/l. 44
read/2. ... 50
read_from_chars/2...........coiiiininn... 93
read_term/2 44
read_term/3 50
reconsult/1 19
recorda/3 58, 59
recorda_at/3 58
recordaifnot/3.......... 58, 60
recorded/3 59
recordz/3 58
recordz_at/3 58
recordzifnot/3 60
TeGeXP/3 . o 90
regexp/A. ... 90
remove_constraint/1....................... 145
remove_duplicates/2...............ia... 85

remove_from_path/1......................... 21

221
rename/2. ... 64
rename_file/2 95
repeat/O. 28
reset_op_counters/0....................... 175
resize_static_array/3 71
restore/l 22
retract/1 56
retract/2 ... 58
retractall/1 56
TEVETSE/2 . oottt 85
runtime (statistics/2 option).............. 73
S
same_length/2 86
save/l. .. 22
SAVE/ 2 ot 22
save_program/1 22
SAVEe_Program/2cueeiiniiiina 22
see/l . 44
seeing/l.ot 44
SEeN/0 . . 44
select/3. ... 86
selectlist/3 81
serve_queue/3 88
set_input/1 42
set_output/1 ... 42
set_prolog_flag/2.......................... 79
set_stream_position/2 42
set_value/2 ... 60
setarg/3n ... 67
setof /3. . 62
setrand/1 89
Sh/0 . oo 64
shell/O0. 96
shell/1. . ..o 96
show_op_counters/1........................ 175
show_ops_by_group/1....................... 175
simple/1.. 32
single_var_warnings (yap_flag/2 option) ... 76
singletons/1 (read_term/2 option) 44
SKIP/ 1. 49
SKIP/2. 51
sleep/l. ..o 96
SOCKet/ 2. .o 53
SoCKet /4. .o 52
socket_accept/2......l 53
socket_accept/3........... ...l 53
socket_bind/2......... ... 53
socket_buffering/4......................... 54
socket_close/1 ..., 53
socket_connect/3.......... ..., 53
socket_listen/2...........c. i 53
socket_select/5 54
SOTE/ 2 o 36
SOUTCE/0. oot 19
source_mode/2 19
splay_access/5 92

222

splay_delete/4 92
splay_init/3 o 92
splay_insert/4........ 92
splay_join/3 i 92
splay_split/5..... 92
SPY/ L. 177
Spy_write/2 178
srandom/1l 40
stack_dump_on_error (yap_flag/2 option)... 77
stack_shifts (stack_shifts/3 option) 73
start_low_level_trace/0.................. 173
static_array/3................. 70, 71
static_array_properties/3................. 70
static_array_to_term/3 71
statistics/O0...........l 72
statistics/2........... il 73
stream_property/2.................. 43
stream_select/3 42
strict_iso (prolog_flag/2 option) 77
style_check/1o, 21
sub_atom/5 34
sub_edges/3 ... 101
SUbLISt/2 oot 86
SUDSUMES/2 ..o v ettt 97
subsumes_chk/2, 97
SUffix/2. . 86
sum_1ist/2 ... 86
SUMArgS/4 ... 81
SUMlisSt/2 .ot 86
sumlist/4 ... 81
SUMNOAeS/4 . oot 81
syntax_errors (yap_flag/2 option) "
syntax_errors/1 (read_term/2 option) 44
system/O0. 97
system/1.. 64
system/2.. 97
system_options (yap_flag/2 option) 77
system_predicate/2.............. 57

tab/ L. 50
tab/2 . 51
tell/d . 43
telling/1 ... 44
term_expansion/2............... 63
term_hash/2 97
term_hash/4 97
term_variables/2................... ... 97
thread_at_exit/1.......................... 162
thread_create/3.................ccoon... 161
thread_detach/1........................... 162
thread_exit/1 162
thread_get_message/1...................... 164
thread_get_message/2...................... 165
thread_join/2c.ouiiiiiiin... 161
thread_local/1 (directive) 166

thread_message_queue_create/1............ 164

YAP Prolog User’s Manual

thread_message_queue_destroy/1........... 164
thread_peek_message/1 164
thread_self/1 161
thread_send_message/2 164
thread_setconcurrency/2 162
thread_signal/2........................... 165
thread_statistics/3....................... 163
throw/1. ..o 30
time_out/3 ... 98
tmpnam/1............ .. 96
to_chars_modes (yap_flag/2 option) 77
t0Ld/0. oot 44
top_sort/2 102
toplevel_hook (yap_flag/2 option) 78
trail (statistics/2 option)................ 73
transitive_closure/2...................... 102
transpose/3o 101
tree_Size/2 ... 99
tree_to_list/2 99
true/0. ... 27
ttyget/1. . 51
ttygetO/1 ..o 51
tEynl/0. .o 51
ttyput/1.. ... 51
ttyskip/1 ..o 51
ttytab/1. ..o 51
typein_module (yap_flag/2 option) 78

U

unconstrained/1.................. 145
unhide/1......... . 20
unify_with_occurs_check/2................. 35
unix/1. .. 64
unknown (yap_flag/2 option) 78
UNKNOWN/2ttt 31
unknown_predicate_handler/3............... 32
update_array/3 ... 71
update_mutable/2........................... 67
update_semantics (yap_flag/2 option) 78
use_module/1o 24
use_module/2 25
use_module/3 ... 25
user_error (yap_flag/2 option)............. 78
user_input (yap_flag/2 option)............. 79
user_output (yap_flag/2 option) 79

Var/d . 32
variable_in_term/2.............c.uiiiiii... 97
variable_names/1 (read_term/2 option) 44
variables/1 (read_term/2 option) 45
variant/2 97
verify_attributes/3........... 110
version (yap_flag/2 option)................ 79
version/0 80
version/1 ... 80

Predicate Index

Vertices/2 ... 100
vertices_edges_to_ugraph/3............... 100
W
Wait/2 . 97
walltime (statistics/2 option)............. 73
When/2. ... 107
with_mutex/2 167
with_output_to_chars/2 93
with_output_to_chars/3 93
with_output_to_chars/4 93
working_directory/2........................ 96
write/l. 45
Write/2. .. 50
write_depth/2............ 52
write_strings (yap_flag/2 option) 79
write_term/2 45
write_term/3 50
write_to_chars/2...........ccvuiiiiiino... 92
write_to_chars/3...........ccuiiiiiiino... 92
writeq/1... oo 46
writeq/2........ . 50
Y
YAP_AllocSpaceFromYap (C-Interface function)
....................................... 187
YAP_ArgOfTerm (C-Interface function) 186
YAP_ArityOfFunctor (C-Interface function)
....................................... 186
YAP_AtomName (C-Interface function) 185
YAP_AtomOfTerm (C-Interface function).... 185
YAP_BufferToAtomList (C-Interface function)
....................................... 187
YAP_BufferToString (C-Interface function)
....................................... 187
YAP_CallProlog (C-Interface function) 188
YAP_CloseAllOpenStreams (C-Interface
function) 187
YAP_cutfail (C-Interface function) 188
YAP_cutsucceed (C-Interface function) 188
yap_flag/2 73

YAP_FloatOfTerm (C-Interface function) ... 185
YAP_FreeSpaceFromYap (C-Interface function)
....................................... 187

YAP_HeadOfTerm (C-Interface function) 186
YAP_IntOfTerm (C-Interface function) 185

223
YAP_IsApplTerm (C-Interface function) 185
YAP_IsAtomTerm (C-Interface function) 185

YAP_IsDBRefTerm (C-Interface function) ... 185
YAP_IsFloatTerm (C-Interface function) ... 185

YAP_IsIntTerm (C-Interface function) 185
YAP_IsNonVarTerm (C-Interface function) .. 185
YAP_IsPairTerm (C-Interface function) 185
YAP_IsVarTerm (C-Interface function) 185
YAP_LookupAtom (C-Interface function) 185
YAP_MkApplTerm (C-Interface function) 186
YAP_MkAtomTerm (C-Interface function) 185
YAP_MkFloatTerm (C-Interface function) ... 185
YAP_MkFunctor (C-Interface function) 186
YAP_MkIntTerm (C-Interface function) 185
YAP_MkNewApplTerm (C-Interface function)
....................................... 186
YAP_MkNewPairTerm (C-Interface function)
....................................... 186
YAP_MkPairTerm (C-Interface function) 186
YAP_NameOfFunctor (C-Interface function)
....................................... 186
YAP_OpenStream (C-Interface function) 187
YAP_PRESERVE_DATA (C-Interface function)
....................................... 188
YAP_PRESERVED_DATA (C-Interface function)
....................................... 188
YAP_StreamToFileNo (C-Interface function)
....................................... 187
YAP_StringToBuffer (C-Interface function)
....................................... 187
YAP_TailOfTerm (C-Interface function) 186
YAP_Unify (C-Interface function) 186
YAP_UserBackCPredicate (C-Interface
function) 188
YAP_UserCPredicate (C-Interface function)
....................................... 188
YAPBINDIR. e 9
YapCompileClause/1........................ 194
YapContinueGoal/O......................... 194
YapEndConsult/0......... ..o, 195
YapError/1 194
YapExit/1 194
YapFastInit/1............. 194
YapGetValue/1 194
YapInit/9 ... 194
YapInitConsult/2.......................... 195
YAPLIBDIR. ...t 9
YapPutValue/2cooeoo... 194
YapRead/1coiiiiiiiiiia.. 194, 195
YapReset/Ool 195
YapRestartGoal/O.......................... 194
YapRunGoal/1ooiiiiii... 194
YAPSHAREDIR, 10

224 YAP Prolog User’s Manual

Concept Index

Concept Index

A

anonymous variable,
association list...............................

B

booting

C

CHR control flow model.....................
CHR debugging messages
CHR debugging options.....................
CHR debugging predicates
CHR spy-pointsccooiiiiinn. ...

E

endofterm
environment variables........................

F

floating-point number

installation...............
Integer.

L

list manipulation
logtalk

225
M
machine optimizations 4
INACTOS « « v e vttt et et e e e e 81
mutable variables 67
N
number 14
Operating System Utilities 94
or-parallelism.................... 169
ordered St ... 86
parallelism 169
profiling........ L L 67
pseudo random 87
punctuation token 17
QUEUE . .ottt e et 88, 89
Red-Black Trees 89
regular expressions.................. 90
splay trees ... 91
String 15
string I/O ... 92
SYNtaX . ..o 3, 13
T
tabling............ 171
timeout 98
token . ..o 14
unweighted graphs........................... 99
updatable tree................ 99
update semantics 205
updating terms 66
utilitieson terms 97
\%
variable 17

226 YAP Prolog User’s Manual

	Introduction
	Installing YAP
	Tuning the Functionality of YAP
	Tuning YAP for a Particular Machine and Compiler
	Tuning YAP for GCC.
	Compiling Under Visual C++
	Compiling Under SGI's cc

	Running YAP
	Running Yap Interactively
	Running Prolog Files

	Syntax
	Syntax of Terms
	Prolog Tokens
	Numbers
	Integers
	Floating-point Numbers

	Character Strings
	Atoms
	Variables
	Punctuation Tokens
	Layout

	Loading Programs
	Program loading and updating
	Changing the Compiler's Behavior
	Saving and Loading Prolog States

	The Module System
	Module Concepts
	Defining a New Module
	Using Modules
	Meta-Predicates in Modules

	Built-In Predicates
	Control Predicates
	Handling Undefined Procedures
	Predicates on terms
	Comparing Terms
	Arithmetic
	I/O Predicates
	Handling Streams and Files
	Handling Streams and Files
	Handling Input/Output of Terms
	Handling Input/Output of Characters
	Input/Output Predicates applied to Streams
	Compatible C-Prolog predicates for Terminal I/O
	Controlling Input/Output
	Using Sockets From Yap

	Using the Clausal Data Base
	Modification of the Data Base
	Looking at the Data Base
	Using Data Base References

	Internal Data Base
	The Blackboard
	Collecting Solutions to a Goal
	Grammar Rules
	Access to Operating System Functionality
	Term Modification
	Profiling Prolog Programs
	Counting Calls
	Arrays
	Predicate Information
	Miscellaneous

	Library Predicates
	Apply Macros
	Association Lists
	AVL Trees
	Heaps
	List Manipulation
	Ordered Sets
	Pseudo Random Number Integer Generator
	Queues
	Random Number Generator
	Red-Black Trees
	Regular Expressions
	Splay Trees
	Reading From and Writing To Strings
	Calling The Operating System from YAP
	Utilities On Terms
	Call With registered Cleanup Calls
	Calls With Timeout
	Updatable Binary Trees
	Unweighted Graphs

	Extensions
	Rational Trees
	Coroutining
	Attributed Variables
	Attribute Declarations
	Attribute Manipulation
	Attributed Unification
	Displaying Attributes
	Projecting Attributes
	Attribute Examples

	CLP(Q,R) Manual
	Introduction to CLP(Q,R)
	Referencing CLP(Q,R)
	CLP(QR) Acknowledgments
	Solver Interface
	Notational Conventions
	Solver Predicates
	Unification
	Feedback and Bindings
	Linearity and Nonlinear Residues
	How Nonlinear Residues are made to disappear
	Isolation Axioms
	Numerical Precision and Rationals
	Projection and Redundancy Elimination
	Variable Ordering
	Turning Answers into Terms
	Projecting Inequalities
	Why Disequations
	Syntactic Sugar
	Monash Examples
	Compatibility Notes
	A Mixed Integer Linear Optimization Example
	Implementation Architecture
	Fragments and Bits
	CLPQR bugs
	CLPQR References

	Constraint Handling Rules
	Copyright
	Introduction
	Introductory Examples
	CHR Library
	Loading the Library
	Declarations
	Constraint Handling Rules, Syntax
	How CHR work
	Pragmas
	Options
	Built-In Predicates
	Consulting and Compiling Constraint Handlers
	Compiler-generated Predicates
	Operator Declarations
	Exceptions

	Debugging CHR Programs
	Control Flow Model
	CHR Debugging Predicates
	CHR Spy-points
	CHR Debugging Messages
	CHR Debugging Options

	Programming Hints
	Constraint Handlers
	Backward Compatibility

	Logtalk
	Threads
	Creating and Destroying Prolog Threads
	Monitoring Threads
	Thread communication
	Message Queues
	Signalling Threads
	Threads and Dynamic Predicates

	Thread Synchronisation

	Parallelism
	Tabling
	Tracing at Low Level
	Profiling the Abstract Machine
	Debugging
	Debugging Predicates
	Interacting with the debugger

	Indexing
	C Language interface to YAP
	Terms
	Unification
	Strings
	Memory Allocation
	Controlling Yap Streams from C
	From C back to Prolog
	Writing predicates in C
	Loading Object Files
	Saving and Restoring
	Changes to the C-Interface in Yap4

	Using YAP as a Library
	Compatibility with Other Prolog systems
	Compatibility with the C-Prolog interpreter
	Major Differences between YAP and C-Prolog.
	Yap predicates fully compatible with C-Prolog
	Yap predicates not strictly compatible with C-Prolog
	Yap predicates not available in C-Prolog
	Yap predicates not available in C-Prolog

	Compatibility with the Quintus and SICStus Prolog systems
	Major Differences between YAP and SICStus Prolog.
	Yap predicates fully compatible with SICStus Prolog
	Yap predicates not strictly compatible with SICStus Prolog
	Yap predicates not available in SICStus Prolog

	Compatibility with the ISO Prolog standard

	Summary of Yap Predefined Operators
	Predicate Index
	Concept Index

