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Abstract

This document describes the Fortran 90 and C user interfeld®MP $ersion 4.7.3 We describe in
detail the data structures, parameters, calling sequeacdsrror diagnostics. Example programs using
MUMP@re also given.

*Information on how to obtain updated copies of MUMPS can betainbd from the Web pages
http://www.enseeiht.fr/lapo/MUMPS/ and http://graal.ens-lyon.frfMUMPS/ or by sending email to
mumps@cerfacs.fr
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1 Introduction

MUMP%‘MUItifrontal Massively Parallel Solver”) is a packagerfsolving systems of linear equations
of the form Ax = b, whereA is a square sparse matrix that can be either unsymmetricnstic
positive definite, or general symmetriUMPSIses a multifrontal technique which is a direct method
based on either th&U or the LDLT factorization of the matrix. We refer the reader to the paper
[3,4,7,16,17, 21, 20, 8] for full details of the techniquesd.MUMP $xploits both parallelism arising
from sparsity in the matriA and from dense factorizations kernels.

The main features of th®MlUMP$ackage include the solution of the transposed systemf wifpu
the matrix in assembled format (distributed or centraljzmdelemental format, error analysis, iterative
refinement, scaling of the original matrix, detection ofapivots, and return of a Schur complement
matrix. MUMP®ffers several built-in ordering algorithms, a tight iféee to some external ordering
packages such as METIS [22] (strongly recommended) and PRBIDand the possibility for the user
to input a given ordering. FinalllylUMP$s available in various arithmetics (real or complex, singt
double precision).

The software is written in Fortran 90 although a C interfacavailable (see Section 8). The parallel
version ofMUMP $equires MPI [24] for message passing and makes use of theSHIL2, 13], BLACS,
and ScalLAPACK [10] libraries. The sequential version omllyas on BLAS.

MUMPS$s downloaded from the web site almost once a day on averagjéas been run on very
many machines, compilers and operating systems, althouglexperience is really only with UNIX-
based systems. We have tested it extensively on parallgbai@ms from SGI, Cray, and IBM and on
clusters of workstations.

MUMPSlistributes the work tasks among the processors, but arifideinprocessor (the host) is
required to perform most of the analysis phase, to distilthe incoming matrix to the other processors
(slaves) in the case where the matrix is centralized, andlteat the solution. The systeAx = b is
solved in three main steps:

1. Analysis. The host performs an ordering (see Section 2.2) based onitimaatrized patterm\ +
AT, and carries out symbolic factorization. A mapping of thdtifrontal computational graph is
then computed, and symbolic information is transferrethftbe host to the other processors. Using
this information, the processors estimate the memory sacg$or factorization and solution.

2. Factorization. The original matrix is first distributed to processors thall participate in the
numerical factorization. The numerical factorization acle frontal matrix is conducted by a
masterprocessor (determined by the analysis phase) and one orstaveprocessors (determined
dynamically). Each processor allocates an array for thealectcontribution blocks and for the
factors; the factors must be kept for the solution phase.

3. Solution. The right-hand sid® is broadcast from the host to the other processors. Thesegsors
compute the solutios using the (distributed) factors computed during Step 2,taadsolution is
either assembled on the host or kept distributed on the psocs.

Each of these phases can be called separately and seveealces ofMUMPSan be handled
simultaneouslyMUMP&llows the host processor to participate in computatiomBiguhe factorization
and solve phases, just like any other processor (see S&c8pn

For both the symmetric and the unsymmetric algorithms usethé code, we have chosen a
fully asynchronous approach with dynamic scheduling of thenputational tasks. Asynchronous
communication is used to enable overlapping between conwation and computation. Dynamic
scheduling was initially chosen to accommodate numerioaitipg in the factorization. The other
important reason for this choice was that, with dynamic dalirg, the algorithm can adapt itself at
execution time to remap work and data to more appropriategssors. In fact, we combine the main
features of static and dynamic approaches; we use the éstimabtained during the analysis to map
some of the main computational tasks; the other tasks arenaigally scheduled at execution time. The
main data structures (the original matrix and the factors)semilarly partially mapped according to the
analysis phase.



2 Main functionalities of MUMPS 4.7.3

We describe here the main functionalities of the solMeIMPSThe user should refer to Sections 4
and 5 for a complete description of the parameters that meisseb or that are referred to in this
Section. The variables mentioned in this section are coemmtsnof a structurenumpspar of type
[SDCZ]MUMPSSTRUC(see Section 3) and for the sake of clarity, we refer to thety by their
component name. For example, we use ICNTL to refentonpspar%ICNTL .

2.1 Input matrix structure

MUMPSrovides several possibilities for inputting the matrix. heT selection is controlled by the
parameters ICNTL(5) and ICNTL(18).

The input matrix can be supplied glemental formatind must then be input centrally on the host
(ICNTL(5)=1 and ICNTL(18)=0). For full details see Sectidr6. Otherwise, it can be supplied in
assembled formah coordinate form (ICNTL(5)=0), and, in this case, there several possibilities (see
Sections 4.5 and 4.7):

1. the matrix can be input centrally on the host processdlIq18)=0);

2. only the matrix structure is provided on the host for thalgsis phase and the matrix entries are
provided for the numerical factorization, distributedass the processors:

e either according to a mapping supplied by the analysis (10(48)=1),
e or according to a user determined mapping (ICNTL(18)=2);

3. itis also possible to distribute the matrix pattern arelghtries in any distribution in local triplets
(ICNTL(18)=3) for both analysis and factorization (recosmded option for distributed entry).

By default the input matrix is considered in assembled farff@GNTL(5)=0) and input centrally on
the host processor (ICNTL(18)=0).

2.2 Symmetric orderings

A range of orderings to preserve sparsity is available iratfeysis phase. Most of them were introduced
in Release 4.2 of thllUMPPackage. The parameter ICNTL(7) is used to determine theriogl

In addition to the approximate minimum degree ordering (AME]), an approximate minimum
degree ordering with automatic quasi-dense row detec®@iMD, [1]), an approximate minimum fill-in
ordering (AMF), an ordering where bottom-up strategiesused to build separators by Jurgen Schulze
from University of Paderborn (PORD, [23]), and the METIS kage from Univ. of Minnesota [22] are
possible choices. When using the METIS package, only the IMEIODEND hybrid ordering routine
can be used.

A user-supplied ordering can also be provided and the pidtgranust be set by the user in PERM
(see Section 4.9). Also, it should be noted that the logittithadles this case is different from the built-in
orderings so that, for example, a different performancedifierent internal data structures are created
by a run that generates an ordering and a separate one ttatlfie¢ same ordering array in as input.

If ICNTL(7)=7, theMUMP $ackage will automatically choose the ordering dependimine ordering
packages installed, the type of the matrix (symmetric oyomsetric), the size of the matrix and the
number of processors available.

The default value of ICNTL(7) is 7.

2.3 Other pre-processing facilities

In addition to the symmetric orderingslUMP $ffers other pre-processing facilities: permuting to zero
free diagonal and prescaling.

Permutations to a zero-free diagonal can be applied to vesymmetric matrices and can help reduce
fill-in and arithmetic, see [14, 15]. This functionality isrtrolled by ICNTL(6). For symmetric matrices
this permutation can also be used to constrain the symnparinutation (see ICNTL(12) option).

Prescaling of the input matrix can help reduce fill-in durifagtorization and can improve the
numerical accuracy. A range of classical scalings are geaand can be automatically performed at the



beginning of the numerical factorization phase. This fiomality is controlled by ICNTL(8). For some
values of ICNTL(6) or ICNTL(12) the arrays COLSCA/ROWSCAndae allocated and built during the
analysis phase (see Section 4.8). Symmetric indefiniteieeatpreprocessings, as described in [18], can
be applied and are controlled by ICNTL(12).

2.4 Post-processing facilities

It has been shown [9] that with only two to three steps of tieearefinement the solution can often be
significantly improved. Iterative refinement can be optllynperformed after the solution step using the
parameter ICNTL(10).

MUMPSlso enables the user to perform classical error analysiedoan the residuals (see the
description of ICNTL(11) in Section 5). We calculate an mstie of the sparse backward error using
the theory and metrics developed in [9]. We use the notatifor the computed solution and a modulus
sign on a vector or a matrix to indicate the vector or matritaoted by replacing all entries by their
moduli. The scaled residual

b — Ax|,
(bl + TAT 1x]), @
(/b + [A] [x]);
is computed for all equations except those for which the matoe is nonzero and the denominator is
small. For all the exceptional equations,

b — Ax|,
A — | AlZ — (2)
(AL + (Al o 1%[] oo
is used instead, wher; is row: of A. The largest scaled residual (1) is returnedin RINFOG(d)tar

largest scaled residual (2) is returned in RINFOG(8). Ikglliations are in category (1), zero is returned
in RINFOG(8). The computed solutiohis the exact solution of the equation

(A +3A)x = (b+ 6b),

where
§A;; < max(RINFOG(7), RINFOG(8))|A|,,

andob; < max(RINFOG(7)|b|,, RINFOG(8)||A:|| . [IX]|..)- Note thatd A respects the sparsity of
A. An upper bound for the error in the solution is returned INRDG(9). Finally condition numbers
cond; andconds for the matrix are returned in RINFOG(10) and RINFOG(113pextively, and

% < RINFOG(7) x cond; + RINFOG(8) x conds.

2.5 Solving the transposed system

Given a sparse matriA, the systemAX = B or ATX = B can be solved during the solve stage,
whereA is square of order andX andB are of ordem by nrhs. This is controlled by ICNTL(9).

2.6 Reduce/condense a problem on an interface (Schur compient and
reduced/condensed right-hand side)

A Schur complement matrix (centralized or provided as 2xbloyclic matrix) can be returned to the
user (see ICNTL(19), ICNTL(26) and Section 4.10). The usestspecify the list of indices of the Schur
matrix. MUMP &en provides both a partial factorization of the complestrin and returns the assembled
Schur matrix in user memory. The Schur matrix is considesed full matrix. The partial factorization
that builds the Schur matrix can also be used to solve lingstesis associated with the “interior”
variables (ICNTL(26)=0) and also to handle a reduced/cosee right-hand-side (ICNTL(26)=1,2) as
described in the following discussion.
Let us consider a partitioned matrix (here with an unsymimetatrix) where the variables ok »,

specified by the user, correspond to the Schur variables awihich a partial factorization has been



performed. In the following, and only for the sake of cleaswe have ordered last all variables belonging

to the Schur.
. Ain A\ _ ([ Lia O Ui Uip
A= (A2,1 Az,z)_<L2,1 I)( 0 S ) ®)
Thus the Schur complement, as returnedlyMPSs such thaB = A, 5 — A2,1A;}A1,2.

ICNTL(26) can then be used during the solution phase to destiow this partial factorization can
be used to solvéAx = b:

. ‘ Compute a partial solutio‘n
If ICNTL(26)=0 then the solve is performed on the internal problem:

A1,1£C1 = bl.

Entries in the right-hand side corresponding to indicemftbe Schur matrix need not be set on
entry and they are explicitly set to zero on output.

° ‘ Solve the complete system in three stFps

Lip O U, U T N
(B ) (% %) (n) =(%)

1. ‘ Reduction/condensation pha{se
One can compute with ICNTL(26)=1, the intermediateector, in whichy, is often referred
to as the reduced/condensed right-hand-side.

Lix O Y1 _( b1
(e ) () -(0)
Then one has to solve
U1 Uip 1 [ n
(%)) -(n)

2. ‘ Using Schur matri*:
The Schur matrix is an output of the factorisation phases thé responsabiltiy of the user to
computezs such thaSzs = yo.

3. | Expansion phasg

Givenzx, andy., option ICNTL(26)=2 of the solve phase can be used to compyteNote
that the package usgs computed (and stored in thrumpsstructure) during the first step
(ICNTL(26)=1) and that the complete solutieris provided on output.

Note that the Schur complement could be considered as amet@ontribution to the interface block
in a domain decomposition approaddUMP $ould then be used to solve this interface problem using
the element entry functionality.

2.7 Arithmetic versions

Several versions of the packaygJMP%re available:REAL DOUBLE PRECISIONCOMPLEXand
DOUBLE COMPLEX
This document applies to all four precisions. In the follogiive use the conventions below:

the ternreal is used folREALor DOUBLE PRECISION

the terncomplexis used folCOMPLEXr DOUBLE COMPLEX

real version means eithBEALor DOUBLE PRECISIONersion,
complex version means eitheOMPLEXor DOUBLE COMPLE#Xérsion.

A w DN PR



2.8 The working host processor

The analysis phase is performed on the host processor. Ttiggsor is the one with rank 0 in the
communicator provided tMUMP By setting the variable PAR to 1 (see Section 4\)MP &llows the
host to participate in computations during the factor@atind solve phases, just like any other processor.
This allowsMUMPSo run on a single processor and prevents the host processw iolle during the
factorization and solve phases (as would be the case for BAR¥e thus generally recommend using a
working host processor (PAR=1).

The only case where it may be worth using PAR=0 is with a lasy@ralized matrix on a purely
distributed architecture with relatively small local menyto PAR=1 will lead to a memory imbalance
because of the storage related to the initial matrix on ts. ho

2.9 Sequential version

It is possible to uséIUMPSequentially by limiting the number of processors to oné the link phase
still requires the MPI, BLACS, and ScaLAPACK libraries art tuser program needs to make explicit
calls toMPI_INIT andMPI_FINALIZE .

A purely sequential version dlUMP$s also available. For this, a special library is distrilaliteat
provides all external references neededMiyMPSor a sequential environmentMUMPSan thus be
used in a simple sequential program, ignoring everythitafed to parallelism or MPI. Details on how
to build a purely sequential version BRUMP@re available in the file README available in tMUMPS
distribution. Note that for the sequential version, the ponent PAR must be set to 1 (see Section 4.3)
and that the calling program should not make use of MPI.

2.10 Shared memory version

On networks of SMP nodes (multiprocessor nodes with a shasadory), a parallel shared memory
BLAS library (also called multithread BLAS) is often proed by the manufacturer. Using shared
memory BLAS (between 2 and 4 threads per MPI process) cagbiisantly more efficient than running
with only MPI processes. For example on a computer with 2 Seiiea and 16 processors per node, we
advise to run using 16 MPI processes with 2 threads per MRigss

2.11 Main changes between versions

MUMP$ an evolving package and new facilities and algorithmshaen added that result in changes
to the version number. Please refehttp://www.enseeiht.fr/apo/MUMPS/fag.html and
http://graal.ens-lyon.frfMUMPS/faq.html to an history of the main modifications where
we also report the most frequently asked question about dkiters The README file with our
distribution can be consulted for more details and for theslaf the releases.

3 Sequence in which routines are called

In the following, we use the notatig8DCZ]MUMPSo refer toDMUMPSMUMPZMUMP8rCMUMPS
for REAL DOUBLE PRECISIONCOMPLEXNdDOUBLE COMPLEXrsions, respectively. Similarly
[SDCZ]MUMPSSTRUC refers to either SMUMPSTRUC DMUMPSTRUC CMUMPSTRUC
or ZMUMPSTRUGC and [sdczlmumps _struc.h  to smumpsstruc.h , dmumpsstruc.h
cmumpsstruc.h  or zmumpsstruc.h

In the Fortran 90 interface, there is a single user callableraitine per precision, called
[SDCZ]JMUMPS that has a single parametemumpspar of Fortran 90 derived datatype
[SDCZ]MUMPSSTRUCdefined in [sdczlmumpstruc.h. The interface is the same for the sequential
version, only the compilation process and libraries needhaaged. In the case of the parallel version,
MPI must be initialized by the user before the first calf$® CZ]MUMPSs made. The calling sequence
for theDOUBLE PRECISIONersion may look as follows:

INCLUDE ’'mpif.h’
INCLUDE ’'dmumps_struc.h’



INTEGER IERR
TYPE (DMUMPS_STRUC) :: mumps_par

CALL MPL_INIT(IERR) I Not needed in purely sequential versi on
CALL DMUMPS( mumps_par )

CALL MPI_FINALIZE(IERR) ! Not needed in purely sequential v ersion

For other precisions, dmumpsstruc.h should be replaced bysmumpsstruc.h
cmumpsstruc.h  , or zmumpsstruc.h , and the’'D’ in DMUMPSnd DMUMPSTRUC by
'S’ ,’C or’Z

The variablenumpspar of datatypg SDCZ]MUMPSSTRUGCholds all the data for the problem. It
has many components, only some of which are of interest tagbe The other components are internal
to the package. Some of the components must only be definebeonost. Others must be defined
on all processors. The filsdczlmumps _struc.h  defines the derived datatype and must always
be included in the program that caNMUMPSThe file [sdczlmumps _root.h , which is included in
[sdczlmumps _struc.h , must also be available at compilation time. Componenthefstructure
[SDCZ]MUMPSSTRUGhat are of interest to the user are shown in Figure 1.

The interface toMUMPSonsists in calling the subroutinDCZ]MUMPSwith the appropriate
parameters set imumpspar .



INCLUDE ’[sdcz]mumps_root.h’
TYPE [SDCZ]MUMPS_STRUC
SEQUENCE
C INPUT PARAMETERS
C *hkkkkkkkkkkkkkkkk
Problem definition
Solver (SYM=0 Unsymmetric, SYM=1 Sym. Positive Definite, SYM=2 General Symmetric)
Type of parallelism (PAR=1 host working, PAR=0 host not wor king)
INTEGER SYM, PAR, JOB

Control parameters

INTEGER ICNTL(40)

real CNTL(15)

INTEGER N ! Order of input matrix
Assembled input matrix : User interface

o0 0000

[eX@)

INTEGER NZ
real/complex, DIMENSION(:), POINTER :: A

INTEGER, DIMENSION(:), POINTER :: IRN, JCN
C Case of distributed matrix entry

INTEGER NZ_loc
INTEGER, DIMENSION(:), POINTER :: IRN_loc, JCN_loc

real/complex, DIMENSION(:), POINTER :: A _LOC
C Unassembled input matrix: User interface

INTEGER NELT
INTEGER, DIMENSION(:), POINTER :: ELTPTR, ELTVAR

real/complex, DIMENSION(:), POINTER :: A _ELT
MPI Communicator

INTEGER COMM
Ordering and scaling, if given by user (optional)

o0 00

INTEGER, DIMENSION(:), POINTER :: PERM_IN
real/complex DIMENSION(:), POINTER :: COLSCA, ROWSCA
INPUT/OUTPUT data

FhEEIIIFFFEEKIIKAK

RHS/SOL_loc : on input it holds the right-hand side
on output it always holds the assembled solution

00000

real/complex DIMENSION(:), POINTER :: RHS, REDRHS
real/complex DIMENSION(:), POINTER :: RHS _SPARSE

INTEGER, DIMENSION(:), POINTER :: IRHS_SPARSE, IRHS_PTR
INTEGER NRHS, LRHS, NZ_RHS, LSOL_LOC, LREDRHS

real/complex DIMENSION(:), POINTER :: SOL _LOC

INTEGER, DIMENSION(:), POINTER :: ISOL_LOC
OUTPUT data and Statistics
*hkkkkkkkkkkkkkhkhkhkhkhxk
INTEGER, DIMENSION(:), POINTER :: SYM_PERM, UNS_PERM
INTEGER INFO(40)
INTEGER INFOG(40) ! Global information (host only)

real RINFO(20)
real RINFOG(20) ! Global information (host only)

C Schur
INTEGER SIZE_SCHUR, NPROW, NPCOL, MBLOCK, NBLOCK
INTEGER SCHUR_MLOC, SCHUR_NLOC, SCHUR_LLD
INTEGER, DIMENSION(:), POINTER :: LISTVAR_SCHUR

real/complex DIMENSION(:), POINTER :: SCHUR

C Mapping if provided by MUMPS

INTEGER, DIMENSION(:), POINTER :: MAPPING
C Version number

CHARACTER(LEN=80) VERSION_NUMBER

[eX@)

END TYPE [SDCZ]JMUMPS_STRUC

Figure 1: Main components of the structurdSDCZIMUMPSSTRUC defined in
[sdczlmumps _struc.h . real/complex qualifies parameters that are real in the real version and
complex in the complex version, where&sal is 4Sd for parameters that are always real, even in the
complex version oMUMPS



4 Input and output parameters

In this section, we describe the components of the variablampgpar of datatype
[SDCZ]MUMPSSTRUC Those components define the argumentsMidMPShat must be set by
the user, or that are returned to the user.

4.1 \Version number

mumpspar?/ERSION_NUMBER (string) is set byMUMP %o the version number of MUMPS after a
call to the initialization phase (JOB=-1).

4.2 Control of the three main phases: Analysis, Factorizatin, Solve

mumpspar%JOB (integer) must be initialized by the user on all processefste a call taMUMPS
It controls the main action taken BYUMPSt is not altered byMUMPS

JOB = -1 initializes an instance of the package. A call with J&B-1 must be performed before
any other call to the package on the same instance. It seasltieélues for other components of
MUMPSTRUC(such as ICNTL, see below), which may then be altered befabsexjuent calls
to MUMPSNote that three components of the structure must alwaysbbysthe user (on all
processors) before a call with JGB-1. These are

e mumpspar%COMM,
e mumpspar%SYM, and
e mumpspar%PAR.

Note that, after a call to JOB —1, the internal component mumpsar%MYID contains the rank of
the calling processor in the communicator provideMtdMPSThus, the test “(mumppar%MYID
== 0)" may be used to identify the host processor (see Se2tRn

Furthermore, the version number is returned in mupa$LLVERSIONNUMBER (see
Section 4.1).

JOB = -2 destroys an instance of the package. All data structssesceted with the instance, except
those provided by the user in mumpar, are deallocated. It should be called by the user onlywhe
no further calls taMUMP$ith this instance are required. It should be called befdigther JOB
= —1 call with the same argument murnpar.

JOB=1 performs the analysis. In this phaskJMP$hooses pivots from the diagonal using a selection
criterion to preserve sparsity. It uses the pattermAof- A” but ignores numerical values. It
subsequently constructs subsidiary information for thaewical factorization (a JOB=2 call).

An option exists for the user to input the pivotal sequen@N{TL(7)=1, see below) in which case
only the necessary information for a JOB=2 call will be geted.

The numerical values of the original matrix, mumpesr%A, must be provided by the user during
the analysis phase only if ICNTL(6) is set to a value betwean@7. See ICNTL(6) in Section 5
for more details.

MUMP&ses the pattern of the matriX input by the user. In the case afcentralized matrixthe
following components of the structure defining the matriitgra must be set by the user only on
the host:

e mumpspar%N, mumpspar%NZ, mumpspar%IRN, and mumppar%JCN if the user wishes
to input the structure of the matrix @ssembled formglCNTL(5)=0 and ICNTL(18)# 3)
(see Section 4.5),

e mumpspar%N, mumpgpar%NELT, mumppar%ELTPTR, and mumpgar%ELTVAR if the
user wishes to input the matrix elemental forma(l CNTL(5)=1) (see Section 4.6).
These components should be passed unchanged when laiteg tadl factorization (JOB=2) and
solve (JOB=3) phases.
In the case o& distributed assembled matrigee Section 4.7 for more details and options),

11



e [fICNTL(18) =1 or 2, the previous requirements hold excépttiRN and JCN are no longer
required and need not be passed unchanged to the factomnipdtase.
e IfICNTL(18) = 3, the user should provide
— mumpspar%N on the host
— mumpspar%NZloc, mumpspar%IRNloc and mumpgar%JCNIloc on all slave
processors. Those should be passed unchanged to theAatitri(JOB=2) and solve
(JOB=3) phases.

A call to MUMP®iith JOB=1 must be preceded by a call with J&B-1 on the same instance.

JOB=2 performs the factorization. It uses the numericaleslof the matrixA provided by the user
and the information from the analysis phase (JOB=1) to famdhe matrixA..

If the matrix is centralize@n the host (ICNTL(18)=0), the pattern of the matrix shouddgassed
unchanged since the last call to the analysis phase (seel)OiBe following components of the
structure define the numerical values and must be set by #rg(as the host only) before a call
with JOB=2:
e mumpspar%aA if the matrix is in assembled format (ICNTL(5)=0), or
e mumpspar%A_ELT if the matrix is in elemental format (ICNTL(5)=1).
If the initial matrix is distributed ICNTL(5)=0 and ICNTL(18) # 0), then the following
components of the structure must be set by the user on ak gliencessors before a call with
JOB=2:
e mumpspar%A.loc on all slave processors, and
e mumpspar%NZloc, mumpspar%IRNIoc and mumpspar%JCNIoc if ICNTL(18)=1 or 2.
(For ICNTL(18)=3, NZloc, IRN_loc and JCNIoc have already been passed to the analysis
step and must be passed unchanged.)
(See Sections 4.5, 4.6, and 4.7.)
The actual pivot sequence used during the factorization diffgr slightly from the sequence
returned by the analysis if the matri is not diagonally dominant.
An option exists for the user to input scaling vectors or MtYMPScompute such vectors
automatically (in arrays COLSCA/ROWSCA, ICNTL(&) 0, see Section 4.8).
A call to MUMPS®vith JOB=2 must be preceded by a call with JOB=1 on the santarios.

JOB=3 performs the solution. It can also be used (see ICNG))L({@® compute the null space basis
provided that “null pivot row” detection (ICNTL(24)) was and that the number of null pivots
INFOG(28) was different from 0. It uses the right-hand s&)& provided by the user and the
factors generated by the factorization (JOB=2) to solvestesy of equationAX = BorA”X =
B. The pattern and values of the matrix should be passed ugeHtasince the last call to the
factorization phase (see JOB=2). The structure componentpapar%RHS must be set by the
user (on the host only) before a call with JOB=3. (See Seibd.)

A call to MUMPSvith JOB=3 must be preceded by a call with JOB=2 (or JOB=4)hensame
instance.

JOB=4 combines the actions of JOB=1 with those of JOB=2. ktrbe preceded by a call MUMPS
with JOB= —1 on the same instance.

JOB=5 combines the actions of JOB=2 and JOB=3. It must beegeetby a call tMUMP&ith JOB=1
on the same instance.

JOB=6 combines the actions of calls with JOB=1, 2, and 3. Ktrbe preceded by a call MUMP&/ith
JOB= -1 on the same instance.

Consecutive calls with JOB=2,3,5 on the same instance aslpe.
4.3 Control of parallelism

mumpspar%COMM (integer) must be set by the user on all processors beforaittaization phase
(JOB=-1) and must not be changed. It must be set to a valid MPI corioaian that will be used
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for message passing insillJMPSIt is not altered byMUMPSThe processor with rank 0 in this
communicator is used lYJUMP&s thehost processor. Note that only the processors belonging to
the communicator should cdlUMPS

mumpspar¥PAR (integer) must be initialized by the user on all processarsia accessed IMUMPS
only during the initialization phase (JOB —1). It is not altered byMUMPSnd its value is
communicated internally to the other phases as requiressilBle values for PAR are:

0 host is not involved in factorization/solve phases
1 host is involved in factorization/solve phases

Other values are treated as 1.

If PAR is set to 0, the host will only hold the initial problemerform symbolic computations during
the analysis phase, distribute data, and collect reswoits fither processors. If setto 1, the host will
also participate in the factorization and solve phaseddfnitial problem is large and memory is
an issue, PAR = 1 is not recommended if the matrix is centrdlan processor 0 because this can
lead to memory imbalance, with processor 0 having a largenongload than the other processors.
Note that setting PAR to 1, and using only 1 processor, laadssequential code.

4.4 Matrix type

mumpspar%SYM (integer) must be initialized by the user on all processatsia accessed IMUMPS
only during the initialization phase (JOB -1). It is not altered bjUMP@xcept for the complex
version ofMUMPSvhere SYM=1 is replaced by SYM=2 and structural symmetryjdated up
to the root. Its value is communicated internally to the pffteases as required. Possible values for
SYM are:

0 A is unsymmetric
1 A is symmetric positive definite
2 A is general symmetric

For the complex version, the value SYM=1 is currently trdate SYM=2. We do not have a version
for Hermitian matrices in this release MUMPS

4.5 Centralized assembled matrix input: ICNTL(5)=0 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), and muwpg@$ocA (eal/complex
array pointer, dimension NZ) hold the matrix in assemblechfit. These components should be set
by the user only on the host and only when ICNTL(5)=0 and ICKB)=0; they are not modified
by the package.

e N is the order of the matriA, N > 0. Itis not altered bMUMPS
e NZis the number of entries being input, NZ0. Itis not altered bjUMPS

e IRN, JCN are integer arrays of length NZ containing the roe e@slumn indices, respectively,
for the matrix entries.

e Ais areal (complexin the complex version) array of length NZ. The user must &) £
the value of the entry in row IRN(k) and column JCN(k) of thetrixa A is accessed when
JOB=1 only when ICNTL(6) 0. Duplicate entries are summed and any with IRN(k) or
JCN(k) out-of-range are ignored.
Note that, in the case of the symmetric solver, a diagonatem;; is held as A(K)=i:,
IRN(K)=JCN(k)=, and a pair of off-diagonal nonzeras; = a;; is held as A(k)=;; and
IRN(K)=¢, JCN(K)=j or vice-versa. Again, duplicate entries are summed andesntvith
IRN(k) or JCN(k) out-of-range are ignored.

The components N, NZ, IRN, and JCN describe the pattern ofrthigix and must be set by the
user before the analysis phase (JOB=1). Component A mudtheefore the factorization phase
(JOB=2).
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4.6 Element matrix input: ICNTL(5)=1 and ICNTL(18)=0

mumpspar%N (integer), mumppar%NELT (integer), mumppar%ELTPTR (integer array pointer,
dimension NELT+1), mumppar%ELTVAR (integer array pointer, dimension ELTPTR(NEHI)
— 1), and mumppar%AELT (real/complex array pointer) hold the matrix in elemental format.
These components should be set by the user only on the hoshgndthen ICNTL(5)=1:

N is the order of the matriA, N > 0. Itis not altered bMUMPS

NELT is the number of elements being input, NELTO. It is not altered bMUMPS

ELTPTR is an integer array of length NELT+1. ELTPTR(j) paitt the position in ELTVAR

of the first variable in element j, and ELTPTR(NELT+1) mustdee to the position after the

last variable of the last element. Note that ELTPTR(1) sthdnd equal to 1. ELPTR is not

altered byMUMPS

ELTVAR is an integer array of length ELTPTR(NELT+1) — 1 and shibe set to the lists

of variables of the elements. It is not altered MyMPSThose for element j are stored in

positions ELTPTR()), ..., ELTPTR(j+1)-1. Out-of-rangerigdles are ignored.

A_ELT is areal (complexin the complex version) array. IV, denotes ELTPTR(p+1)—

ELTPTR(p), then the values for element j are stored in pmstK; + 1, ..., Kj + Lj, where
- K; =317 Np?, andL; = N;* in the unsymmetric case (SYM = 0)

- K; = J;:ll(Np - (Np +1))/2, andL; = (Nj - (N + 1))/2 in the symmetric case
(SYM #£ 0). Only the lower triangular part is stored.
Values within each element are stored column-wise. Valeesesponding to out-of-range
variables are ignored and values corresponding to duplicatiables within an element are
summed. AELT is not accessed when JOB = 1. Note that, although the elimaatrix may
be symmetric or unsymmetric in value, its structure is asveymmetric.

The components N, NELT, ELTPTR, and ELTVAR describe thegratof the matrix and must
be set by the user before the analysis phase (JOB=1). ComipAnELT must be set before the
factorization phase (JOB=2). Note that, in the currentasdeof the package, the element entry
must be centralized on the host.

4.7 Distributed assembled matrix input: ICNTL(5)=0 and ICNTL(18)+0

When the matrix is in assembled form (ICNTL(5)=0), we offevaral options, defined by the control
parameter ICNTL(18) described in Section 5. The followirgnponents of the structure define the
distributed assembled matrix input. They are valid for revozvalues of ICNTL(18), otherwise the user
should refer to Section 4.5.

mumpspar%N (integer), mumppar%NZ (integer), mumppar%IRN (integer array pointer, dimension
NZ), mumpspar%JCN (integer array pointer, dimension NZ), mumpps%IRN.loc (integer array
pointer, dimension NZoc), mumpspar%JCNIoc (integer array pointer, dimension N#c),
mumpspar%A.loc (real/complexarray pointer, dimension Nibc), and mumpgar%MAPPING
(integer array, dimension NZ).

e N is the order of the matriA, N > 0. It must be set on the host before analysis. It is not

altered byMUMPS

NZ is the number of entries being input in the definitiondfNZ > 0. It must be defined on
the host before analysis if ICNTL(18) = 1, or 2.

IRN, JCN are integer arrays of length NZ containing the roa @slumn indices, respectively,
for the matrix entries. They must be defined on the host befoatysis if ICNTL(18) = 1, or
2. They can be deallocated by the user just after the analysis

NZ_loc is the number of entries local to a processor. It must i@el on all processors in
the case of the working host model of parallelism (PAR=1} an all processors except the
host in the case of the non-working host model of parallel{f®R=0), before analysis if
ICNTL(18) = 3, and before factorization if ICNTL(18) = 1 or 2.
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e |IRN_loc, JCNloc are integer arrays of length Nc containing the row and column indices,
respectively, for the matrix entries. They must be definecbiprocessors if PAR=1, and
on all processors except the host if PAR=0, before analydiSNTL(18) = 3, and before
factorization if ICNTL(18) =1 or 2.

e A_loc is areal (complexin the complex version) array of dimension Nac that must be
defined before the factorization phase (JOB=2) on all psmasif PAR = 1, and on all
processors except the host if PAR = 0. The user must sktck) to the value in row
IRN_loc(k) and column JCNoc(K).

e MAPPING is an integer array of size NZ which is returned MiMPSn the host after
the analysis phase as an indication of a preferred mappilgNTL(18) = 1. In that case,
MAPPING (i) = IPROC means that entry IRN(i), JCN(i) shoulddrevided on processor with
rank IPROC in thelUMP$ommunicator.

We recommend the use of options ICNTL(18)= 2 or 3 becauseatethe simplest and most flexible
options. Furthermore, those options (2 or 3) are in gendmabst as efficient as the more sophisticated
(but more complicated for the user) option ICNTL(18)=1.

4.8 Scaling

mumpspar%COLSCA, mumpspar¥ROWSCA (double precision array pointers, dimension N) are
optional scaling arrays required only by the host. If a secplis provided by the user
(ICNTL(8) = —1), these arrays must be allocated and initialized by tlee ais the host, before a
call to the factorization phase (JOB=2). They might also lteraatically allocated and computed
by the package during analysis (if ICNTL(6)=5 or 6), in whizdse ICNTL(8)= —2 will be set by
the package during analysis and should be passed unchantiedsolve phase (JOB=3).

4.9 Given ordering: ICNTL(7)=1

mumpspar%PERM_IN (integer array pointer, dimension N) must be allocated aitdhlized by the
user on the host if ICNTL(7)=1. It is accessed during thegsial(JOB=1) and PERNN(i), i=1,
..., N'must hold the position of variable i in the pivot ordbiote that, even when the ordering is
provided by the user, the analysis must still be performédrbenumerical factorization.

4.10 Schur complement with reduced (or condensed) right-hal side:
ICNTL(19) and ICNTL(26)

mumpspar%SIZE _SCHUR (integer) must be initialized on the host to the number oiades defining
the Schur complement if ICNTL(19) = 1, 2, or 3. Itis accessadrd) the analysis phase and should
be passed unchanged to the factorization and solve phases.

mumpsparISTVAR _SCHUR (integer array pointer, dimension mumpar%SIZE_SCHUR) must
be allocated and initialized by the user on the host if ICNI®)(= 1, 2 or 3. It is not altered by
MUMPS3t is accessed during analysis (JOB=1) and LISTVBRHUR(), i=1, ..., SIZESCHUR
must hold the*" variable of the Schur complement matrix.

Centralized Schur complement (ICNTL(19)=1)

mumpspar%SCHUR is areal (complexin the complex version) 1-dimensional pointer array that
should point to size SIZESCHUR x SIZE_.SCHUR locations in memory. It must be allocated
by the user on the host (independently of the value of mupgy86PAR) before the factorization
phase. On exit, it holds the Schur complement matrix. Onudftpm the factorization phase, and
on the host node, the 1-dimensional pointer array SCHURngjtleSIZESCHUR*SIZESCHUR
holds the (dense) Schur matrix of order SIBEHUR. Note that the order of the indices in the
Schur matrix is identical to the order provided by the usér 8TVAR_SCHUR and that the Schur
matrix is storeddy rows. If the matrix is symmetric then only the lower triangulartpaf the Schur
matrix is provided iy rows) and the upper part is not significant. (This can also be vieagethe
upper triangular part stored by columns in which case thetqart is not defined.)
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Distributed Schur complement (ICNTL(19)=2 or 3)

For symmetric matrices, the value of ICNTL(19) controls e only the lower part (ICNTL(19) =
2) or the complete matrix (ICNTL(19) = 3) is generated. Weals/ provide the complete matrix for
unsymmetric matrices so either value for ICNTL(19) has tmae effect.

If ICNTL(19)=2 or 3, the following parameters should be defin on the host on

‘ entry to the analysis pha#e

mumpspar¥NPROW, mumpspar¥dNPCOL, mumpspar¥dMBLOCK , and mumpsar¥&NBLOCK
are integers corresponding to the characteristics of a 2Bkbtyclic grid of processors. They
should be defined on the host before a call to the analysieplfay of these quantities is smaller
than or equal to zero or has not been defined by the user, orRIONPx NPCOL is larger than
the number of slave processors available (total numberamfgssors if mumppar%PAR=1, total
number of processors minus 1 if mumpar%PAR=0), then a grid shape will be computed by the
analysis phase dlUMP&nd NPROW, NPCOL, MBLOCK, NBLOCK will be overwritten on exit
from the analysis phase. Please refer to [10] (for examplebre details on the notion of grid of
processors and on 2D block cyclic distributions. We briefigatibe the meaning of the four above
parameters here:

e NPROW is the number of processors in a row of the process grid,

e NPCOL is the number of processors in a column of the proceds gr

e MBLOCK is the blocking factor used to distribute the rows leé tSchur complement,

o NBLOCK is the blocking factor used to distribute the colunafisthe Schur complement.
As in ScaLAPACK, we use a row-major process grid of processtirat is, process ranks (as
provided toMUMPSn the MPI communicator) are consecutive in a row of the psscgrid.

NPROW, NPCOL, MBLOCK and NBLOCK should be passed unchanget the analysis phase
to the factorization phase.

On exit from the analysis pha#ethe following two components are set BJUMPSon the first

NPROW x NPCOL slave processors (the host is excluded if PAR=0 ancptbeessors with largest
MPI ranks in the communicator provided iUMP $nay not be part of the grid of processors).

mumpsparSCHUR_MLOC is an integer giving the number of rows of the local Schur clemgnt
matrix on the concerned processor. It is equal to MAX(1,NUMKRSIZESCHUR, MBLOCK,
myrow;, 0, NPROW)), where

e NUMROC is an INTEGER function defined in most ScaLAPACK impkntations (also used
internally by theMUMP$ackage),
e SIZE.SCHUR, MBLOCK, NPROW have been defined earlier, and

e myrowis defined as follows:
Let myid be the rank of the calling process in the communicator COM#ipled toMUMPS
(myidcan be returned by the MPI routihdPI_COMNMRANK)

— if PAR = 1 myrowis equal tomyid/ NPCOL,

— if PAR = 0 myrowis equal to(myid— 1) / NPCOL.
Note that an upperbound of the minimum value of leading dsien(SCHURLLD defined below)
is equal to ((SIZESCHUR+MBLOCK-1)/MBLOCK+NPROW-1)/NPROW*MBLOCK.

mumpsparSCHUR_NLOC is an integer giving the number of columns of the local Schur
complement matrix on the concerned processor. It is equaNWMROC(SIZESCHUR,
NBLOCK, mycol 0, NPCOL), where
e SIZE SCHUR, NBLOCK, NPCOL have been defined earlier, and

e mycolis defined as follows:
Let myid be the rank of the calling process in the communicator COM#ipled toMUMPS
(myidcan be returned by the MPI routihdPI_COMNMRANK)

— if PAR = 1 myrowis equal to MODfnyid NPCOL),
— if PAR = 0 myrowis equal to MODfnyid— 1, NPCOL).
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On entry to the factorization pha‘f(a]OB = 2), SCHURLLD should be defined by the user and
SCHUR should be allocated by the user on the NPRQWPCOL first slave processors (the host is
excluded if PAR=0 and the processors with largest MPI rankfié communicator provided tdUMPS
may not be part of the grid of processors).

mumpspar¥SCHUR_LLD is an integer defining the leading dimension of the local cbmplement
matrix. It should be larger or equal to the local number ofs@f that matrix, SCHURMLOC
(as returned bMUMP®n exit from the analysis phase on the processors that ipatécin the
computation of the Schur). SCHURLD is not modified byMUMPS

mumpspar%SCHUR is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before a call to the factiwizgphase. Its size should be at
least equal to SCHURLD x (SCHURNLOC - 1) + SCHURMLOC, where SCHURMLOC,
SCHURNLOC, and SCHURLLD have been defined above. On exit to the factorization @has
the pointer array SCHUR contains the Schur complementedtby columns, in the format
corresponding to the 2D cyclic grid of NPROWNPCOL processors, with block sizes MBLOCK
and NBLOCK, and local leading dimensions SCHWRD.
The Schur complement is stored by columns. Note that seftiR€OL x NPROW = 1
will centralize the Schur complement matrigtored by columnginstead of by rows as in the
ICNTL(19)=1 option). It will then be available on the hostd®if PAR=1, and on the node with
MPI identifier 1 (first working slave processor) if PAR=0.
If ICNTL(19)=2 and the Schur is symmetric (SYM=1 or 2), only the lower trianig provided,
stored by columns.

If ICNTL(19)=3 and the Schur is symmetric (SYM=1 or 2), then both the lowed apper
triangles are provided, stored by columns. Note that if ICKP)=3, then the constraint
mumpspar%MBLOCK = mumpspar%NBLOCK should hold.

(For unsymmetric matrices, ICNTL(19)=2 and ICNTL(19)=3%&ahe same effect.)

Using partial factorization during solution phase (ICNTL(26)=0, 1 or 2)

As explained in Section 2.6, when a Schur complement hasdmeputed during the factorization phase,
then either the solution phase computes a solution on tleeniait problem (ICNTL(26)=0, see control
parameter ICNTL(26)), or the complete problem can use acetitigh-hand side to build the solution of
the problem on the Schur variables (ICNTL(26)=1 and ICNRB)&2).

If ICNTL(26)=1 or 2, then the following parameters must bdimed on the host on entry to the
solution step:

mumpspar?d REDRHS is an integer defining the leading dimension of the reducglht-fiand side,
REDRHS. It must be larger or equal to SIZEZHUR, the size of the Schur complement.

mumpspar¥REDRHS is areal (complexin the complex version) one-dimensional pointer array that
should be allocated by the user before entering the solptiase. Its size should be at least equal
to LREDRHSx (NRHS-1)+ SIZESCHUR. If ICNTL(26)=1, then on exit from the solution phase,
REDRHS(i+(k-1)*LREDRHS), i=1,..., SIZESCHUR, k=1,..., NRHS will hold the reduced
right-hand side. If ICNTL(26)=2, then REDRHS(i+(k-1)*LRIRHS), i=1,. .., SIZESCHUR,
k=1, ..., NRHS must be set (on entry to the solution phase) to theisoloh the Schur variables.
In that case (ie, ICNTL(26)=2), it is not altered MUMPS

4.11 Workspace parameters

mumpspar¥MAXIS and mumppar¥dMAXS (integers) are defined, for each processor, as the size
of the integer and the real (complex for the complex versiwnjkspaces respectively required for
factorization and/or solve. On return from analysis (JOB,#MFO(7) and INFO(8) return the minimum
values for MAXIS and MAXS, respectively, to the user. If thieuhas reason to believe that significant
numerical pivoting will be required, it may be desirable hmose a higher value for MAXIS (or MAXS)
than output from the analysis, or to increase the value oflI014). At the beginning of the factorization,
MAXIS and MAXS are set to the maximum of estimates based ofyaisgphase data (but including the
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memory relaxation resulting from the value of ICNTL(14) yided to the factorization) and the values
supplied by the user. An integer array IS of size MAXIS anda feomplex in the complex version)
array S of size MAXS are then dynamically allocated and usethd the factorization and solve phases
to hold the factors and contribution blocks.

4.12 Right-hand side and solution vectors/matrices

The formats of the right-hand side and of the solution ardrotied by ICNTL(20) and ICNTL(21),
respectively.

Centralized dense right-hand side (ICNTL(20)=0) and/or catralized dense solution
(ICNTL(21)=0)

If ICNTL(20)=0 or ICNTL(21)=0, the following should be defid on the host.

mumpspar¥RHS (real/complex array pointer, dimension NRH&_RHS) is areal (complexin the
complex version) array that should be allocated by the uséh@host before a call tdUMP 8ith
JOB=3, 5, or 6.
On entry, if ICNTL(20)=0, RHS(i+(k-1XLRHS) must hold the i-th component &th right-hand
side vector of the equations being solved.
On exit, if ICNTL(21)=0, then RHS(i+(k-2YLRHS) will hold the i-th component of théth
solution vector.

mumpspar¥dNRHS (integer) is an optional parameter that is significant onttbst before a call to
MUMPSvith JOB = 3, 5, or 6. If set, it should hold the number of ridfatad side vectors. If not
set, the value 1 is assumed to ensure backward compatititihe MUMP $hterface with versions
prior to 4.3.3. Note that if NRHS- 1, then functionalities related to iterative refinement andr
analysis (see ICNTL(10) and ICNTL(11) are currently disabl

mumpspar?dRHS (integer) is an optional parameter that is significant onftbst before a call to
MUMPSvith JOB=3, 5, or 6. If NRHS is provided, LRHS should then htild leading dimension
of the array RHS. Note that in that case, LRHS should be gréze or equal to N.

Sparse right-hand side (ICNTL(20)=1)

If ICNTL(20)=1, the following input parameters should bdided on the host only before a callMlUMPS
with JOB=3, 5, or 6:

mumpspariNZ_RHS (integer) should hold the number of non-zeros in all thetriggnd side vectors.

mumpspar¥NRHS (integer), if set, should hold the number of right-hand sidetors. If not set, the
value 1 is assumed.

mumpspar¥KRHS_SPARSE (real/complex array pointer, dimension NRHS) should hold the
numerical values of the non-zero inputs of each right-haael wector. See also IRHBTR below.

mumpspardRHS _SPARSE((integer array pointer, dimension NRHS should hold the indices of the
variables of the non-zero inputs of each right-hand sidéovec

mumpspar’dRHS_PTR is an integer array pointer of dimension NRHS+1. IRABR
is such that the i-th right-hand side vector is defined by imn-nero row indices
IRHS_SPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1) and the corresponding  numerical
values RHSSPARSE(IRHSPTR(i)...IRHSPTR(i+1)-1). Note that IRH®TR(1)=1 and
IRHS_PTR(NRHS+1)=NZRHS+1.

Note that, if the right-hand side is sparse and the solut®rentralized (ICNTL(21)=0), then
mumpsparRHS should still be allocated on the host, as explained in theipue section. On exit
from a call toMUMP&ith JOB=3, 5, or 6, it will hold the centralized solution.
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Distributed solution (ICNTL(21)=1)

On some networks with low bandwidth, and especially whemettzge many right-hand side vectors,
centralizing the solution on the host processor might bestlycoperation in the solution phase from
MUMPS. If this is critical to the user, this functionalitylalvs the solution to be left distributed over the
processors. The solution should then be exploited in itsibiged form by the user application.

mumpspar%SOL_LOC is areal/complex array pointer, of dimension LSQLOCxNRHS (where
NRHS corresponds to the value provided in mumpps%NRHS on the host), that should be
allocated by the user before the solve phase (JOB=3) onakpsors in the case of the working
host model of parallelism (PAR=1), and on all processorepithe host in the case of the non-
working host model of parallelism (PAR=0). Its leading dimi®n LSOLLOC should be larger
than or equal to INFO(23), where INFO(23) has the value netiroy MUMP®n exit from the
factorization phase. On exit from the solve phase, SQIC(i+(k-1)x LSOL_LOC) will contain
the value corresponding to variable IS@OC(i) in the k*" solution vector.

mumpspar?d_SOL _LOC (integer). LSOLLOC must be set to the leading dimension of SOQC
(see above) and should be larger than or equal to INFO(23renNFO(23) has the value returned
by MUMP®n exit from the factorization phase.

mumpspardSOL _LOC (integer array pointer, dimension INFO(23)) ISQIOC should be allocated
by the user before the solve phase (JOB=3) on all processtine case of the working host model
of parallelism (PAR=1), and on all processors except the imahe case of the non-working host
model of parallelism (PAR=0). ISQLOC should be of size at least INFO(23), where INFO(23)
has the value returned BYUMP®n exit from the factorization phase. On exit from the solkege,
ISOL_LOC(i) contains the index of the variables for which the siolu (in SOLLOC) is available
on the local processor. Note that if successive calls todhe phase (JOB=3) are performed for a
given matrix, ISOLLOC will have the same contents for each of these calls.

Note that if the solution is kept distributed, then functbties related to error analysis and iterative
refinement (see ICNTL(10) and ICNTL(11)) are currently neikable.

5 Control parameters

On exit from the initialization call (JOB= —1), the control parameters are set to default values. If the
user wishes to use values other than the defaults, the pondisg entries in mumppar%ICNTL and
mumpspar%CNTL should be reset after this initial call and befdre ¢all in which they are used.

mumpspar?dCNTL is an integer array of dimension 40.

ICNTL(2) is the output stream for error messages. If it isaie@ or zero, these messages will be
suppressed. Default value is 6.

ICNTL(2) is the output stream for diagnostic printing, &#ts, and warning messages. If it is negative
or zero, these messages will be suppressed. Default value is

ICNTL(3) is the output stream for global information, called on the host. If it is negative or zero,
these messages will be suppressed. Default value is 6.

ICNTL(4) is the level of printing for error, warning, and diaostic messages. Maximum value is 4 and
default value is 2 (errors and warnings printed). Possiblees are
e < 0: No messages output.
e 1: Only error messages printed.
e 2: Errors, warnings, and main statistics printed.
e 3: Errors and warnings and terse diagnostics (only first gries of arrays) printed.
e 4 : Errors and warnings and information on input and outpuameters printed.

ICNTL(5) has default value 0 and is only accessed by the ha$toaly during the analysis phase. If
ICNTL(5) = 0, the input matrix must be given in assembled fatin the structure components N,
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NZ, IRN, JCN, and A (or NZloc, IRN_loc, JCNloc, A_loc, see Section 4.7). If ICNTL(5) = 1, the
input matrix must be given

N, NELT, ELTPTR, ELTVAR, and AELT.

ICNTL(6) has default value 7 (automatic choice done by thekpge) and is used to control an option
for permuting and scaling the matrix. It is only accessedhgyttost and only during the analysis
phase. For unsymmetric matrices, if ICNTL(6)=1, 2, 3, 4, B 6olumn permutation (based on
weighted bipartite matching algorithms described in [12]) 1s applied to the original matrix to
get a zero-free diagonal. For symmetric matrices, if ICNA)E(, 2, 3, 4, 5, 6 a set of recommended
1x1 and2x2 pivots is computed (see [18] for more details) from the corageolumn permutation.

Possible values of ICNTL(6) are:

e 0: No column permutation is computed.

e 1 : The permuted matrix has as many entries on its diagonalitdes The values on the
diagonal are of arbitrary size.

e 2: The smallest value on the diagonal of the permuted matmxaximized.

e 3: Variant of option 2 with different performance.

e 4: The sum of the diagonal entries of the permuted matrix simized.

5 : The product of the diagonal entries of the permuted madrixaximized. Vectors are

also computed (and stored in COLSCA and ROWSCA, only if ICKB]Lis set to 7) to scale

the permuted matrix so that the nonzero diagonal entrieseérpermuted matrix are one in

absolute value and all the off-diagonal entries are legs thaqual to one in absolute value.

6 : Similar to 5 but with a different algorithm.

e 7 : Based on the structural symmetry of the input matrix andtten availability of the
numerical values, the value of ICNTL(6) is automaticallypsén by the software.

Other values are treated as 0.

Except for ICNTL(6)=0 or 1, the numerical values of the angi matrix, mumpgar%A, must be
provided by the user during the analysis phase. If the marsymmetric positive definite (SYM
= 1), orin elemental format (ICNTL(5)=1), or the ordering i®pided by the user (ICNTL(7)=1),
or the Schur option (ICNTL(19% 1, 2, or 3) is required, or the matrix is initially distribate
(ICNTL(18) # 0), then ICNTL(6) is treated as 0.

‘ On unsymmetric matrice{s(SYM = 0), the user is advised to set ICNTL(6) to a nonzero value
when the matrix is very unsymmetric in structure. On outpatf the analysis phase, when the
column permutation is not the identity, the pointer mumps%UNSPERM (internal data valid
until a call toMUMP Svith JOB=-2) provides access to the permutation. (The colpermutation

is such that entry; ,,...,(;) is on the diagonal of the permuted matrix.) Otherwise, thatpois
unassociated.

‘ On general symmetric matrice§SYM = 2), we advise either to leMlUMPSelect the strategy
(ICNTL(6) = 7) or to set ICNTL(6)= 5 if the user knows that the matrix is for example an
augmented system (which is a system with a large zero diagtwwk). On output from the analysis
the pointer mumppar%UNSPERM is unassociated.

On output from the analysis phase, INFOG(23) holds the vafUENTL(6) that was effectively
used.

ICNTL(7) has default value 7 and is only accessed by the hudtoaly during the analysis phase. It
determines the pivot order to be used for the factorizatidote that, even when the ordering is
provided by the user, the analysis must be performed beforerical factorization. In exceptional
cases, ICNTL(7) may be modified lUMPSvhen the ordering is not compatible with the value
of ICNTL(12). Possible values are:

e 0: Approximate Minimum Degree (AMD) [2] is used,

e 1: the pivot order should be set by the user in PERMIn this case, PERMN(i), (i=1, ...
N) holds the position of variable i in the pivot order.

e 2: Approximate Minimum Fill (AMF) is used,
e 3: Not available in the current version (treated as 7).
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4 : PORD [23] is used,

5 : the METIZ [22] routine METISNODEND is used,

6 : Approximate Minimum Degree with automatic quasi-dens® detection (QAMD) is
used.

e 7 : Automatic choice by the software during analysis phashis Thoice will depend on
the ordering packages made available, on the matrix (typese), and on the number of
processors.

Other values are treated as 7. Currently, options 4 and 5rdyeawailable if the corresponding
packages are installed (see comments in the Makefiles tdUB1P%now about them). If the
packages are not installed then options 4 and 5 are treafed as

e [f the user asks for a Schur complement matrix and the matt@ssembled then only options
0, 1, 5 and 7 are currently available. Other options aredteas 7 which will (currently) be
treated as 5 if the METIS package has been installed (syaegbmmended) or 0 (AMD)
otherwise.

. F0r| elemental matrice|s(ICNTL(5):1), only options 0, 1, 5 and 7 are available, witbtion
7 leading to an automatic choice between AMD and METIS (o®tid or 5); other values are
treated as 7. Furthermore, if the user asks for a Schur comgpiematrix, only options 0, 1
and 7 are currently available. Other options are treatedvelsidh will (currently) be treated
as 0 (AMD).

Generally, with the automatic choice corresponding to ICN)=7, the option chosen by
the package depends on the ordering packages installedtypleeof matrix (symmetric or
unsymmetric), the size of the matrix and the number of prames
For matrices with relatively dense rows, we highly recomdheption 6 which may significantly
reduce the time for analysis.
On output, the pointer mumpgsar%SYMPERM provides access to the symmetric permutation
that is effectively used by the MUMPS package, and INFOGg§7he ordering option that was
effectively used. (mumppar%SYMPERM(i), (i=1, ... N) holds the position of variable i in the
pivot order.)

ICNTL(8) has default value 7. It is used to describe the sgaditrategy and is only accessed by the
host.

On entry to the analysis pha}sdac ICNTL(8) = 7, then an automatic choice of the scaling optis
performed during the analysis and ICNTL(8) is modified adougly. In particular, if ICNTL(8) is
set to -2 by the user or reset to -2 by the package during tHgsas\ascaling arrays are computed
internally and will be ready to be used by the factorizatibage.

‘ On entry to the factorization pha‘feif ICNTL(8) = -1, scaling vectors must be provided in
COLSCA and ROWSCA by the user, who is then responsible focating and freeing them, if

ICNTL(8) = -2, scaling vectors must be provided in COLSCA and ROWSCAbypeackage (see

previous paragraph). If ICNTL(8) = 0, no scaling is perfodnand arrays COLSCA/ROWSCA

are not used. If ICNTL(8)> 0, the scaling arrays COLSCA/ROWSCA are allocated and céedpu
by the package during the factorization phase.

Possible values of ICNTL(8) are listed below:

e -2: Scaling computed during analysis (see [14, 15] for treyammetric case and [18] for the
symmetric case).

e -1: Scaling provided on entry to the numerical factorizajihase,
: No scaling applied/computed.

: Diagonal scaling,

: Scaling based on [11],

: Column scaling,

e 4: Row and column scaling,

[ ]
w N - O

1Distributed within MUMPS by permission of J. Schulze (Unisigy of Paderborn).
2See http://glaros.dtc.umn.edu/gkhome/metis/metisiase to obtain a copy.
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e 5: Scaling based on [11] followed by column scaling,
e 6: Scaling based on [11] followed by row and column scaling.
e 7 (analysis only) : Automatic choice of scaling value dondrmyanalysis.

If the input matrix is symmetric (SYM£ 0), then only options -2, -1, 0, 1 and 7 are allowed and
other options are treated as O; if ICNTL®)—1, the user should ensure that the array ROWSCA is
equal to the array COLSCA. If the input matrix is in elemeritaimat (ICNTL(5) = 1), then only
options —1 and 0 are allowed and other options are treated Hish@ initial matrix is distributed
(ICNTL(18) # 0 and ICNTL(5) = 0) then the value of ICNTL(8) is ignored and swaling is
applied. If ICNTL(8)= -2 then the user has to provide the numerical value (in mupag&A) on
entry to the analysis.

ICNTL(9) has default value 1 and is only accessed by the hagtglthe solve phase. If ICNTL(9) =1,
Ax = b is solved, otherwiseA”x = b is solved.

ICNTL(10) has default value 0 and is only accessed by the #ioshg the solve phase. If NRHS
=1, then ICNTL(10) corresponds to the maximum number ofswpiterative refinement. If
ICNTL(10) < 0, iterative refinement is not performed.

In the current version, if ICNTL(21)=1 (solution kept dibuited) or NRHS> 1, then iterative
refinement is not performed and ICNTL(10) is treated as O.

ICNTL(11) has default value 0 and is only accessed by the d&odtonly during the solve phase. A
positive value will return statistics related to the linesgstem solvedAx = bor ATx = b
depending on the value of ICNTL(9)): the infinite norm of thpuit matrix, the computed solution,
and the scaled residual in RINFOG(4) to RINFOG(6), respeliti a backward error estimate in
RINFOG(7) and RINFOG(8), an estimate for the error in thesoh in RINFOG(9), and condition
numbers for the matrix in RINFOG(10) and RINFOG(11). Se® &sction 2.4. Note that if
performance is important, ICNTL(11) should be left set toREnally, note that, in the current
version, if NRHS> 1 or if ICNTL(21)=1 (solution vector kept distributed) themror analysis is
not performed and ICNTL(11) is treated as O.

ICNTL(12) is meaningful only on general symmetric matri¢g€¥M = 2) and its default value is 0
(automatic choice). For unsymmetric matrices (SYM=0) ansyetric definite positive matrices
(SYM=1) all values of ICNTL(12) are treated as 1 (nothing epnit is only accessed by the host
and only during the analysis phase. It defines the orderiatesty (see [18] for more details) and
is used, in conjunction with ICNTL(6), to add constraintsthe ordering algorithm. (ICNTL(7)
option). Possible values of ICNTL(12) are :

e 0: automatic choice

1 : usual ordering (nothing done)

2 : ordering on the compressed graph associated with théxmatr
e 3: constrained ordering, only available WAMF(ICNTL(7)=2).

Other values are treated as 0. ICNTL(12), ICNTL(6), ICNTL{Alues are strongly related.
Therefore, as for ICNTL(6), if the matrix is in elemental fioat (ICNTL(5)=1), or the ordering
is provided by the user (ICNTL(7)=1), or the Schur optionN(19) # 0) is required, or the
matrix is initially distributed (ICNTL(18)~ 0) then ICNTL(12) is treated as one.

If MUMPSletects some incompatibility between control parametees it uses the following
rules to automatically reset the control parameters. IFit€&INTL(12) has a lower priority than
ICNTL(7) so that if ICNTL(12)= 3 and the ordering required is né&MFthen ICNTL(12)
is internally treated as 2. Secondly ICNTL(12) has a higheoripy than ICNTL(6) and
ICNTL(8). Thus if ICNTL(12)= 2 and ICNTL(6) was not active (ICNTL(6)=0) then ICNTL(6)
is automatically reset (treated as ICNTL(6)=7). Furthemnd ICNTL(12) = 3 then ICNTL(6) is
automatically set to 5 and ICNTL(8) is set to -2.

On output from the analysis phase, INFOG(24) holds the vVefuENTL(12) that was effectively
used. Note that INFOG(7) and INFOG(23) hold the values of TCN) and ICNTL(6)
(respectively) that were effectively used.

ICNTL(13) has default value 0 and is only accessed by thedwoitg the analysis phase. If ICNTL(13)
< 0, ScaLAPACK will be used for the root frontal matrix (lastHsic complement to be factored)
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if its size is larger than a machine-dependent minimum siggtherwise (ICNTL(13)> 0),
ScaLAPACK will not be used and the root node will be treategusatially. Processing the root
sequentially can be useful when the user is interested iiménga of the matrix (see INFO(12) and
INFOG(12)), or when the user wants to detect null pivots (€2¢TL(24)).

This parameter also controls splitting of the root frontatrix. If the number of working processors
is strictly larger than ICNTL(13) with ICNTL(13}0 (ScaLAPACK off), then splitting of the root
node is performed, in order to automatically recover pathefparallelism lost because the root
node was processed sequentially. Finally, setting ICNB)L(a& -1 will force splitting of the root
node in all cases (even sequentially), while values syratialler than -1 will be treated as 0.

Note that, although ICNTL(13) controls the efficiency of tfextorization and solve phases,
preprocessing work is performed during analysis and thisomust be set on entry to the analysis
phase.

ICNTL(14) is accessed by the host both during the analysigtaa factorization phases. It corresponds
to the percentage increase in the estimated working spaben\ignificant extra fill-in is caused
by numerical pivoting, larger values of ICNTL(14) may heketthe real/complex working space
more efficiently. Except in special cases, the default ved(29 %.

ICNTL(15-17) Not used in current version.

ICNTL(18) has default value 0 and is only accessed by theduritg the analysis phase, if the matrix
format is assembled (ICNTL(5) = 0). ICNTL(18) defines theattgy for the distributed input
matrix. Possible values are:

e 0: the input matrix is centralized on the host. This is theadif see Section 4.5.

e 1: the user provides the structure of the matrix on the hostnatysis,MUMPSeturns a
mapping and the user should then provide the matrix digetbaccording to the mapping on
entry to the numerical factorization phase.

e 2: the user provides the structure of the matrix on the hosnatysis, and the distributed
matrix on all slave processors at factorization. Any digttion is allowed.

e 3: user directly provides the distributed matrix input bfithanalysis and factorization.

For options 1, 2, 3, see Section 4.7 for more details on thetfoptput parameters tdUMPSFor
flexibility, options 2 or 3 are recommended.

ICNTL(19) has default value 0 and is only accessed by the Hasing the analysis phase. If
ICNTL(19)=1, then the Schur complement matrix will be retedl to the user on the host after
the factorization phase. If ICNTL(19)=2 or 3, then the Schilf be returned to the user on the
slave processors in the form of a 2D block cyclic distributeatrix (ScaLAPACK style). Values
not equal to 1, 2 or 3 are treated as 0. IF ICNTL(19) equals ar 3, the user must set on entry to
the analysis phase, on the host node:

e the integer variable SIZESCHUR to the size of the Schur matrix,
e the integer array pointer LISTVARBCHUR to the list of indices of the Schur matrix.

For a distributed Schur complement (ICNTL(19)=2 or 3), thieger variables NPROW, NPCOL,
MBLOCK, NBLOCK may also be defined on the host before the aislyphase (default
values will otherwise be provided). Furthermore, workspabould be allocated by the user
before the factorization phase in order fdiJMP$o store the Schur complement (see SCHUR,
SCHURMLOC, SCHURNLOC, and SCHURLLD in Section 4.10).

Note that the partial factorization of the interior variedlcan then be exploited to perform a solve
phase (transposed matrix or not, see ICNTL(9)). Note thatitiht-hand side (RHS) provided on
input must still be of size N (or Nk NRHS in case of multiple right-hand sides) even if only the
N-SIZE_.SCHUR indices will be considered and if only N-SIZECHUR indices of the solution
will be relevant to the user.

Finally note that since the Schur complement can be viewedpastial factorization of the global
matrix (with partial ordering of the variables provided by tuser) the following options 1UMPS
are incompatible with the Schur option: maximum transJeezaling, iterative refinement, error
analysis. Note that if the ordering is given (ICNTL(7)=1gththe following property should hold:
PERM.IN(LISTVAR _SCHUR(i)) = N-SIZESCHURHi, for i=1,SIZESCHUR.
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ICNTL(20) has default value 0 and is only accessed by the Wdosing the solve phase. If
ICNTL(20)=0, the right-hand side must be given in dense forthme structure component RHS. If
ICNTL(20)=1, then the right-hand side must be given in spéosm using the structure components
IRHS_SPARSE, RHSSPARSE, IRHSPTR and NZRHS. Values different from 0 and 1 are treated
as 0. (See Section 4.12).

ICNTL(21) has default value 0 and is only accessed by thedw#itg the solve phase. If ICNTL(21)=0,
the solution vector will be assembled and stored in the straccomponent RHS, that must have
been allocated earlier by the user. If ICNTL(21)=1, the 8otuvector is kept distributed at the
end of the solve phase, and will be available on each slavaepsor in the structure components
ISOL_loc and SOLloc. ISOLloc and SOLloc must then have been allocated by the user and
must be of size at least INFO(23), where INFO(23) has beemmed by MUMPS at the end of the
factorization phase. Values of ICNTL(21) different fromifidal are currently treated as 0.

Note that if the solution is kept distributed, error anadyand iterative refinement (controlled by
ICNTL(10) and ICNTL(11)) are not applied.

ICNTL(22-23) are not used in current version

ICNTL(24) has default value 0 and controls the detectionrafllpivot rows”.  Null pivot rows are
modified to enable the solution phase to provide one solwimong the possible solutions of
the numerically deficient matrix. Note that the list of rowdices corresponding to null pivots
is returned on the host in PIVNULIST(1:INFOG(28)). The solution phase (JOB=3) can then
be used to either provide a “regular” solution (in the sers it is a possible solution of the
complete system when the right-hand-side belongs to thedfjthe original matrix) or to compute
the associated vectors of the null-space basis (see ICSYI(€ombined with the option for null
space computation (see ICNTL(25)) during the solution phéige null space associated to those
null pivot rows can then be computed. Possible values of I]97) are:

e 0 Nothing done. A null pivot will result in error INFO(1)=-10

e 1 Null pivot row detection; CNTL(3) is used to compute theestrold to decide that a pivot
row is “null”. The parameter CNTL(5) then defines the fixattbat will be used to enable the
solution phase to provide a possible solution to the origigatem.

Note that when ScalLAPACK is applied on the root node (see IQN3)), then exact null pivots
on the root will stop the factorization (INFO(1)=-10) whtiay pivots on the root node will still be
factored. Setting ICNTL(13) to a non-zero value will helgthe correct detection of null pivots
but degrade performance.

ICNTL(25) has default value 0 and is only accessed duringaihation phase. It allows the computation
of a null space basis, which is meaningful only if a zero-pidetection option was requested
(ICNTL(24) # 0) during the factorization and if the matrix was found to ledicdent (INFOG(28)
> 0); Possible values of ICNTL(25) are:

e 0 A normal solution step is performed. If the matrix was fowimgular during factorization

then one possible solution is returned

e ;with 1 < i < INFOG(28). The i-th vector of the null space basis is comgute

e -1. The complete null space basis is computed.

e Other values result in an error.
Note that when vectors from the null space are requestel deattralized and distributed solutions
options can be used. In both cases space to store the nudl gpetors must be allocated by the
user and provided to MUMPS. If the solution is centralizedNITL(21)=0), then the null space
vectors are returned to the user in the array RHS, allocatedebuser on the host. If the solution
is distributed (ICNTL(21)=1), then the null space vectoms @turned in the array SQLOC. In
both cases, note that the number of columns of RHS or 8OC must be equal to the number of
vectors requested, do that NRHS is equal to:

e 1if 1 <ICNTL(25) < INFOG(28);

e INFOG(28) if ICNTL(25)=-1.
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Finally, note that iterative refinement, error analysig] #re option to solve the transpose system
(ICNTL(9)) are ignored when the solution step is used torreteectors from the null space
(ICNTL(25) # 0).

ICNTL(26) has default value 0 and is only accessed by the Hosnhg the solution phase. It is
only significant if combined with the Schur option (ICNTL({1% O, see above). It can be
used to condense/reduce (ICNTL(26)=1) the right-hand sidthe Schur variables, or to expand
(ICNTL(26)=2) the Schur local solution on the complete siolu (see Section 2.6).

If ICNTL(26) # 0, then the user should provide workspace in the pointey ®EDRHS, as well
as a leading dimension LREDRHS (see Section 4.10).

If ICNTL(26)=1 then only a forward substitution is performed. The solutorresponding to the
‘internal” (non-Schur) variables is returned togetherhvitite reduced/condensed right-hand-side.
The reduced right-hand side is made available on the hosEIDRRHS.

If ICNTL(26)=2 then REDRHS is considered to be the solution correspontiintpe Schur
variables. The backward substitution is then performedi #ie given right-hand side to compute
the solution associated with the "internal” variables. @&lttat the solution corresponding to the
Schur variables is also made available in the main solutamtor/matrix.

Values different from 1 and 2 are treated as 0. Note that if clmuSEcomplement was computed,
ICNTL(26) = 1 or 2 results in an error. Finally, if ICNTL(26) £ or 2, then error analysis and
iterative refinements are disabled.

ICNTL(27-40) are not used in the current version.

mumpspar%CNTL is areal (alsoreal in the complex version) array of dimension 5.

CNTL(1) is the relative threshold for numerical pivotingt forms a trade-off between preserving
sparsity and ensuring numerical stability during the fezagion. In general, a larger value of
CNTL(1) increases fill-in but leads to a more accurate fazaion. If CNTL(1) is nonzero,
numerical pivoting will be performed. If CNTL(1) is zero, rsuch pivoting will be performed
and the subroutine will fail if a zero pivot is encounteredthie matrix is diagonally dominant,
then setting CNTL(1) to zero will decrease the factorizatione while still providing a stable
decomposition. If the code is called for unsymmetric or gahgymmetric matrices, CNTL(1) has
default value 0.01. For symmetric positive definite masginemerical pivoting is suppressed and
the default value is 0.0. Values less than 0.0 are treatedaiithe unsymmetric case (respectively
symmetric case), values greater than 1.0 (respectivejyabeireated as 1.0 (respectively 0.5).

CNTL(2) is the stopping criterion for iterative refinememidais only accessed by the host during the
solve phase. LeBerr = max; W [9]. lterative refinement will stop when either the
required accuracy is reacheBdrr < CNTL(2) ) or the convergence rate is too sloiRerr does

not decrease by at least a factor of 5). Default valugds

CNTL(3) is only used combined with null pivot detection (ICN(24) = 1) and is not used otherwise.
CNTL(3) has default value -1.0 and is only accessed by thechogg the numerical factorization
phase A pivot is considered to be null if its row/column is Berathanthres x || Al|, where
thres=CNTL(3) if CNTL(3) > 0. If CNTL(3) < 0, thenthres = ¢ x 107° x ||A]|, wheree
holds the machine precision, is used.

CNTL(4) determines the threshold for static pivoting. Ibidy accessed by the host, and must be set
either before the factorization phase, or before the aimplsase. It has default value -1.0. If
CNTL(4) < 0.0 static pivoting is not activated. If CNTL(4} 0.0 static pivoting is activated and
the magnitude of small pivots smaller than CNTL(4) will bé ®eCNTL(4). If CNTL(4) = 0.0
static pivoting is activated and the threshold value usettisrmined automatically.

CNTL(5) is the fixation for null pivots and is effective onlyh&n null pivot detection is active
(ICNTL(24) = 1). CNTL(5) has default value 0.0 and is only accessed by ts¢ tluring the
numerical factorization phase. If CNTL(5) O the detected null pivot is set to CNTL()||A]|.
Furthermore, the sign of the pivot is preserved in the matlifimgonal entry. If CNTL(5K O,
then the pivot row (except the pivot) is set to zero and thetpssset to one. In symmetric case, the
pivot column (except the pivot) is also set to 0.

CNTL(6-15) are not used in the current version.
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6 Information parameters

The parameters described in this section are returnedlBiIP&nd hold information that may be of
interest to the user. Some of the information is local to gacicessor and some only on the host. If an
error is detected (see Section 7), the information may benipdete.

6.1 Information local to each processor

The arrays mumppar¥RINFO and mumpspardNFO are local to each process.

mumpspar¥RINFO is a double precision array of dimension 20. It contains thiéoing local
information on the execution IUMPS

RINFO(1) - after analysis: The estimated number of floapigit operations on the processor for the
elimination process.

RINFO(2) - after factorization: The number of floating-pbimperations on the processor for the
assembly process.

RINFO(3) - after factorization: The number of floating-pbimperations on the processor for the
elimination process.

RINFO(4) - RINFO(20) are not used in the current version.

mumpspar?dNFO is an integer array of dimension 40. It contains the follayiacal information on
the execution oMUMPS

INFO(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Secjioar7
positive if a warning is returned.

INFO(2) holds additional information about the error or t@ning. If INFO(1)= -1, INFO(2) is the
processor number (in communicator mungas%COMM) on which the error was detected.

INFO(3) - after analysis: Estimated real space needed oprtieessor for the factors.
INFO(4) - after analysis: Estimated integer space needeteprocessor for factors.
INFO(5) - after analysis: Estimated maximum front size omphocessor.

INFO(6) - after analysis: Number of nodes in the complete.tr&he same value is returned on all
processors.

INFO(7) - after analysis: Minimum value of MAXIS estimated khe analysis phase to run the
numerical factorization successfully.

INFO(8) - after analysis: Minimum value of MAXS estimatedthg analysis phase to run the numerical
factorization successfully.

INFO(9) - after factorization: Size of the real space usethermprocessor to store the factors.
INFO(10) - after factorization: Size of the integer spacedusn the processor to store the factors.
INFO(11) - after factorization: Order of the largest frdntaatrix processed on the processor.

INFO(12) - after factorization: Number of off-diagonal pt¢ selected on the processor if SYM=0 or
number of negative pivots on the processor if SYM=1 or 2. INTZ (13)=0 (the default), this
excludes pivots from the parallel root node treated by SE2A@K. (This means that the user
should set ICNTL(13)=1 or use a single processor in ordeetdlge exact number of off-diagonal
or negative pivots rather than a lower bound.) Note that iM&Y or 2, INFO(12) will be 0 for
complex symmetric matrices.

INFO(13) - after factorization: The number of uneliminatedtiables, corresponding to delayed pivots,
sent to the father. If a delayed pivot is subsequently passttk father of the father, it is counted
a second time.

INFO(14) - after factorization: Number of memory compresse the processor.

INFO(15) - after analysis: estimated total size (in milkoof bytes) of allIMUMPSnternal data for
running numerical factorization.
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INFO(16) - after factorization: total size (in millions of/tes) of allMUMP $ternal data used during
numerical factorization.

INFO(18) - after factorization: local number of null pivatstected when ICNTL(241.
INFO(19) - INFO(22) are not used in the current version. Agete zero.

INFO(23) - after factorization: total number of pivots eiitated on the processor. In the case of a
distributed solution (see ICNTL(21)), this should be usgdhe user to allocate solution vectors
ISOL_loc and SOLloc of appropriate dimensions (ISALOC of size INFO(23), SOLLOC of size
LSOL_LOC x NRHS where LSOLLOC > INFO(23)) on that processor, between the factorization
and solve steps.

INFO(24) - INFO(40) are not used in the current version.

6.2 Information available on all processors
The arrays mumppar%RINFOG and mumppar%INFOG :

mumpspar¥RINFOG is a double precision array of dimension 20. It contains tilwing global
information on the execution dIUMPS

RINFOG(1) - after analysis: The estimated number of floapfioit operations (on all processors) for
the elimination process.

RINFOG(2) - after factorization: The total number of flogtipoint operations (on all processors) for
the assembly process.

RINFOG(3) - after factorization: The total number of flogtipoint operations (on all processors) for
the elimination process.

RINFOG(4) to RINFOG(11) - after solve with error analysisnl@returned if ICNTL(11)# 0. See
description of ICNTL(11).

RINFOG(12) - RINFOG(20) are not used in the current version.

mumpspar%dNFOG is an integer array of dimension 40. It contains the follgyghobal information on
the execution oMUMPS

INFOG(1) is 0 if the call toMUMPSvas successful, negative if an error occurred (see Secjioor 7
positive if a warning is returned.

INFOG(2) holds additional information about the error & thiarning.

The difference between INFOG(1:2) and INFO(1:2) is that@G{1:2) is the same on all processors. It
has the value of INFO(1:2) of the processor which returneti tie most negative INFO(1) value. For
example, if processagy returns with INFO(1)=-13, and INFO(2)=10000, then all athbeocessors will
return with INFOG(1)=-13 and INFOG(2)=10000, but still IBFL)=-1 and INFO(2)».

INFOG(3) - after analysis: Total estimated real/complexkspace for factors on all processors. |If
negative, then the absolute value correspondsilidons of real/complex entries in the workspace
allocated for the factors. (Note that for symmetric masieed in parallel, this can be larger than
INFOG(20).)

INFOG(4) - after analysis: Total estimated integer workspfor factors on all processors.
INFOG(5) - after analysis: Estimated maximum front sizenia tomplete tree.

INFOG(6) - after analysis: Number of nodes in the complete.tr

INFOG(7) - after analysis: ordering option effectively dgsee ICNTL(7)).

INFOG(8) - after analysis: structural symmetry in perc&t((: symmetric, O : fully unsymmetric) of
the (permuted) matrix. (-1 indicates that the structurahsetry was not computed which will be
the case if the input matrix is in elemental form.)

INFOG(9) - after factorization: Total real/complex work&e to store the LU factors. If negative, then
the absolutie value corresponds to the sizeniflions of real/complex entries used to store the
factors.
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INFOG(10) - after factorization: Total integer space tastihe LU factors.
INFOG(11) - after factorization: Order of largest frontahtrix.

INFOG(12) - after factorization: Total number of off-diagg pivots if SYM=0 or total number of
negative pivots (real arithmetic) if SYM=1 or 2. If ICNTL()}=20 (the default) this excludes pivots
from the parallel root node treated by ScaLAPACK. (This nesthiat the user should set ICNTL(13)
to a positive value, say 1, or use a single processor in oodgettthe exact number of off-diagonal
or negative pivots rather than a lower bound.) Note that iV&Y or 2, INFOG(12) will be O for
complex symmetric matrices.

INFOG(13) - after factorization: Total number of delayedqts.
INFOG(14) - after factorization: Total number of memory quesses.
INFOG(15) - after solution: Number of steps of iterative mefnent.

INFOG(16) - after analysis: Estimated size (in million oftéy) of allMUMP $ternal data for running
factorization (value on the most memory consuming proagsso

INFOG(17) - after analysis: Estimated size (in millions gfds) of alMUMP $ternal data for running
factorization (sum over all processors).

INFOG(18) - after factorization: Size in millions of bytes al MUMP$ternal data allocated during
factorization: value on the most memory consuming progesso

INFOG(19) - after factorization: Size in millions of bytes al MUMP$ternal data allocated during
factorization: sum over all processors.

INFOG(20) - after analysis: Estimated number of entrieshimfactors. If negative the absolute value
corresponds tanillions of entries in the factors.

INFOG(21) - after factorization: Size in millions of byted memory effectively used during
factorization: value on the most memory consuming progesso

INFOG(22) - after factorization: Size in millions of byted memory effectively used during
factorization: sum over all processors.

INFOG(23) - After analysis: value of ICNTL(6) effectivelysad.

INFOG(24) - After analysis: value of ICNTL(12) effectivelysed.

INFOG(25) - After factorization : number of tiny pivots (nio@r of pivots modified by static pivoting)
INFOG(26-27) are not used in the current version.

INFOG(28) - After factorization : number of null pivots enstdered. See CNTL(3) for the definition
of a null pivot.

INFOG(29) - INFOG(40) are not used in the current version.

7 Error diagnostics

MUMP&ises the following mechanism to process errors that mayrataming the parallel execution of
the code. If, during a call tMUMPSan error occurs on a processor, this processor informbheabther
processors before they return from the call. In parts of ddeavhere messages are sent asynchronously
(for example the factorization and solve phases), the gsmeon which the error occurs sends a message
to the other processors with a specific error tag. On the bidued, if the error occurs in a subroutine that
does not use asynchronous communication, the procesgmgates the error to the other processors.
On successful completion, a callMIUMP il exit with the parameter mumppar%INFOG(1) set to
zero. A negative value for mumgsar%INFOG(1) indicates that an error has been detected ®@ofdhe
processors. For example, if processaeturns with INFO(1)= -8 and INFO(2)=1000, then processor
s ran out of integer workspace during the factorization amddifze of the workspace MAXIS should be
increased by 1000 at least. The other processors are irdagbait this error and return with INFO(H
-1 (i.e., an error occurred on another processor) and INEQ(2e., the error occurred on processr
Processors that detected a local error, do not overwrit©i(d}; i.e., only processors that did not produce
an error will set INFO(1) to —1 and INFO(2) to the processaiitg the most negative error code.
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The behaviour is slightly different for INFOG(1) and INFQZ{( in the previous example, all
processors would return with INFOG(3H -8 and INFOG(2)=1000.
The possible error codes returned in INFO(1) (and INFOGt{aye the following meaning:

—1 An error occurred on processor INFO(2).
—2 NZis out of range. INFO(2)=NZ.

-3 MUMPSvas called with an invalid value for JOB. This may happen fearaple if the analysis
(JOB=1) was not performed before the factorization (JOB=#) the factorization was not
performed before the solve (JOB=3), or the initializatitrage (JOB=-1) was performed a second
time on an instance not freed (JOB=-2). See description BfiliBection 3. This error also occurs
if JOB does not contain the same value on all processes ontettUMPS

—4 Error in user-provided permutation array PERNIin position INFO(2). This error occurs on the
host only.

-5 Problem of REAL workspace allocation of size INFO(2) durarlysis.
—6 Matrix is singular in structure.
—7 Problem of INTEGER workspace allocation of size INFO(2)idgranalysis.

—8 MAXIS too small for factorization. This may happen, for exalm if numerical pivoting leads to
significantly more fill-in than was predicted by the analySike user should increase the value of
ICNTL(14) or the value of MAXIS before recalling the factoaition (JOB=2).

-9 MAXS too small for factorization. The user should incredsevalue of ICNTL(14) or MAXS before
recalling the factorization (JOB=2).

—10 Numerically singular matrix.

—11 MAXS too small for solution. See error INFO(H -9.

—12 MAXS too small for iterative refinement. See error INFO&)-9.

—13 Error in a Fortran ALLOCATE statement. INFO(2) contains $iiee that the package requested.
—14 MAXIS too small for solution. See error INFO(H —8.

—15 MAXIS too small for iterative refinement and/or error anadysSee error INFO(13}- —8.

—16 N is out of range. INFO(2)=N.

—17 The internal send buffer that was allocated dynamicalllMiyMP®n the processor is too small.
The user should increase the value of ICNTL(14) beforermgMUMP&gain.

—18 MAXIS too small to process root node. See error INFC£L)8.
—19 MAXS too small to process root node. See error INFG£H9.

—20 The internal reception buffer that was allocated dynarhida MUMP& too small. INFO(2) holds
the minimum size of the reception buffer required (in bytdd)e user should increase the value of
ICNTL(14) before callinguUMP&gain.

—21 Value of PAR=0 is not allowed because only one processomitadle; INFO(2) is set to the number
of processors, 1. RunninglUMPS3n host-node mode (the host is not a slave processor itself)
requires at least two processors. The user should eithéAgetto 1 or increase the number of
processors.

—22 A pointer array is provided by the user that is either

e not associated, or
¢ has insufficient size, or
e is associated and should not be associated (for example o0RH8N-host processors).

INFO(2) points to the pointer array having the wrong fornmethie table below:
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INFO(2) array
1 IRN or ELTPTR
2 JCN or ELTVAR
3 PERM.IN
4 AorA_ELT
5 ROWSCA
6 COLSCA
7 RHS
8 LISTVAR_SCHUR
9 SCHUR
10 RHS SPARSE
11 IRHS_SPARSE
12 IRHS.PTR
13 ISOL.LOC
14 SOLLOC
15 REDRHS

—23 MPI was not initialized by the user prior to a callMUMP8&vith JOB= —1.
—24 NELT is out of range. INFO(2)=NELT.

—25 A problem has occurred in the initialization of the BLACS.i¥may be because you are using a
vendor’s BLACS. Try using a BLACS version from netlib instea

—26 LRHS is out of range. INFO(2) = LRHS.

—27 NZ_RHS and IRHSPTR(NRHS+1) do not match. INFO(2) = IRHSTR(NRHS+1).
—28 IRHS_PTR(1) is not equal to 1. INFO(2) = IRHBTR(L).

—29 LSOL_LOC is smaller than KEEP(89). INFO(2)=LSQLOC.

—30 SCHURLLD is out of range. INFO(2) = SCHURLLD.

—31 A 2D block cyclic Schur complement is required with the optidCNTL(19)=3, but the
user has provided a process grid that does not satisfy thstreont MBLOCK=NBLOCK.
INFO(2)=MBLOCK-NBLOCK.

—32 Incompatible values of NRHS and ICNTL(25). Either ICNTLj2bas set to -1 and NRHS is
different from INFOG(28); or ICNTL(25) was set ip1 < ¢ < INFOG(28) and NRHS is different
from 1. Value of NRHS is stored in INFO(2).

—33 ICNTL(26) was asked during solve phase but Schur complemers not computed during
factorization. INFO(2)=ICNTL(26).

—34 LREDRHS is out of range. INFO(2)=LRHS.

—35 Expansion phase was called (ICNTL(26) = 2) but reductiorsph@NTL(26)=1) was not called
before.

—36 Incompatible values of ICNTL(25) and INFOG(28). Value oNTL(25) is stored in INFO(2).

A positive value of INFO(1) is associated with a warning naggs which will be output on unit
ICNTL(2) when ICNTL(4)> 2.

+1 Index (in IRN or JCN) out of range. Action taken by subroutis¢o ignore any such entries and
continue. INFO(2) is set to the number of faulty entries. dilstof the first ten are printed on unit
ICNTL(2).

+2 During error analysis the max-norm of the computed soluivas found to be zero.
+4 User data JCN has been corrupted.
+8 Warning return from the iterative refinement routine. Mdrart ICNTL(10) iterations are required.

+ Combinations of the above warnings will correspond to sungntihe constituent warnings.

30



8 Calling MUMPS from C

MUMP$s a Fortran 90 library, designed to be used from Fortran &erahan C. However a basic C
interface is provided that allows users to ddiIUMP@lirectly from C programs. Similarly to the Fortran
90 interface, the C interface uses a structure whose componeatch those in thelUMPStructure for
Fortran (Figure 1). Thus the description of the paramete8eictions 4 and 5 applies. Figure 2 shows the
C structurdSDCZ]JMUMPSSTRUCC. This structure is defined in the include figlczlmumps _c.h

and there is one main routine per available precision wighféflowing prototype:

void [sdczlmumps_c(MUMPS_STRUC_C = idptr);

typedef struct

{
int sym, par, job;
int comm _fortran; / * Fortran communicator */
int icntl[40];
real cntl[15];
int n;
/* Assembled entry  /
int nz; int *irn; int xjcn;  real/complex *a;
/ = Distributed entry */

int nz _loc; int +irn _loc; int +jcn _loc;  real/complex *a_loc;
/ = Element entry */

int nelt; int * eltptr; int * eltvar; real/complex *a_elt;

/= Ordering, if given by user * [

int  *perm._in;

/ * Scaling (input only in this version) * [

real/complex * colsca; real/complex * rowsca,

/* RHS, solution, output data and statistics * [
real/complex *rhs, =*redrhs, xrhs _sparse, *sol _loc;

int =*irhs _sparse, =*irhs _ptr, =*isol _loc;

int nrhs, Irhs, Iredrhs, nz _rhs, Isol  _oc;

int info[40],infog[40];

real rinfo[20], rinfog[20];

int  *sym_perm, *uns_perm;

int * mapping;

[+ Schur =/ int size  _schur; int xlistvar  _schur; real/complex *schur;
int nprow, npcol, mblock, nblock, schur Ald, schur  _mloc,schur _nloc;
/* Version number  */

char version _number[80];

/= Internal parameters * [

int instance _number;

} [SDCZ]JMUMPSSTRUCC;

Figure 2: Definition of the C structuf€SDCZ]MUMPSSTRUCC. real/complexis used for data that can
be either real or complexeal for data that stays redll¢at  or double ) in the complex version.

An example of callingdUMP&om C for a complex assembled problem is given in SectioB.1Dhe
following subsections discuss some technical issues thiaeashould be aware of before using the C
interface toMUMPS

In the following, we suppose that has been declared of typ@DCZ]MUMPSSTRUCC.
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8.1 Array indices

Arrays in C start atindex 0 whereas they normally start atfoiriran. Therefore, care must be taken when
providing arrays to the C structure. For example, the roviceslof the matrixd, stored iNRN(1:NZ)

in the Fortran version should be storedinin[0:nz-1] in the C version. (Note that the contents of
irn itself is unchanged with values between 1 and N.) One salutialeal with this is to define macros:

#tdefine ICNTL( i ) icntl (i) - 1 ]
#define A( i) af (i) -1 ]
#define IRN( i ) im[ (i) -1 ]

and then use the uppercase notation with parenthesisdthstfelowercase/brackets). In that case, the
notationid.IRN(I)  , wherel isin{1, 2, ... NZ can be used instead iof.irn[l-1] ; this notation
then matches exactly with the description in Sections 4 aneh&re arrays are supposed to start at 1.

This can be slightly more confusing for element matrix infage Section 4.6), where some arrays
are used to index other arrays. For instance, the first valgdtptr , eltptr[0] , pointing into
the list of variables of the first element mtvar , should be equal to 1. Effectively, using the
notation above, the list of variables for elemgnt= 1 starts at locatiorELTVAR(ELTPTR())) =
ELTVAR(eltptr[j-1]) = eltvar[eltptr[j-1]-1]

8.2 Issues related to the C and Fortran communicators

In general, C and Fortran communicators have a differerdtgla¢ and are not directly compatible.
For the C interfaceMUMPS3equires a Fortran communicator to be provideddicomm _fortran

If, however, this field is initialized to the special value87®54, the Fortran communicator
MPI_COMMVORLI3 used by default. If you need to cMlUMP8ased on a smaller number of processors
defined by a C subcommunicator, then you should convert yazor@municator to a Fortran one. This
has not been included MUMP8ecause itis dependent on @1 implementation and thus not portable.
ForMPI2, and most MPI implementations, you may just do

id.comm_fortran = (F_INT) MPI_Comm_c2f(comm_c);

(Note that F_INT is defined in[sdczlmumps _c.h and normally is an int) For MPI
implementations where the Fortran and the C communicators the same integer representation

id.comm_fortran = (F_INT) comm_gc;

should work.
For some MPI implementations, check if id.comm _fortran =
MPIR_FromPointer(comm _¢) can be used.

8.3 Fortran I/O

Diagnostic, warning and error messages (controlleddiyTL(1:4) /icntl[0..3] ) are based on
Fortran file units. Use the value 6 for the Fortran unit 6 whichresponds tstdout . For a more
general usage with specific file names from C, passing a C fildleais not currently possible. One
solution would be to use a Fortran subroutine along the liidlse model below:

SUBROUTINE OPENFILE( UNIT, NAME )
INTEGER UNIT

CHARACTER +) NAME

OPEN(UNIT, file=NAME)

RETURN

END

and have (in the C user code) a statement like

openfile  _( &mumps_par.ICNTL(1), name, name _ength _byval)
(or slightly different depending on the C-Fortran callimeentions); something similar could be done
to close the file.
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8.4 Runtime libraries

The Fortran 90 runtime library corresponding to the commpiked to compildMUMP$s required at the
link stage. One way to provide it is to perform the link phasthhe Fortran compiler (instead of the C
compiler orld ).

8.5 Integer, real and complex datatypes in C and Fortran

We assume that thiet , float anddouble types are compatible with the FortrtdTEGER REAL
andDOUBLE PRECISIONlatatypes. If this were not the case, the fllgsczlmumps _prec.h or
Makefiles would need to be modified accordingly.

Since not all C compilers define tikemplex datatype (this only appeared in the C99 standard), we
define the following, compatible with the Fortr&OMPLEXndDOUBLE COMPLE}pes:

typedef struct {float r,i; } mumpscomplex; for simple precisiondmumps), and
typedef struct {double r,i; } mumpsdouble _complex; for double precision
(zmumps).

Types for complex data from the user program should be cabipatith those above.

8.6 Sequential version

The C interface ttMUMP$ compatible with the sequential version; see Section 2.9.

9 Scilab and MATLAB interfaces

The main callable functions are

id = initmumps;
id = dmumps(id [,mat] );
id = zmumps(id [,mat] );
We have designed these interfaces such that their usagsiisite as possible to the existing C and

Fortran interfaces to MUMPS, and where only the parametdedad to the sequential code are used.
The main differences and characteristics are:

e The existence of a functionitmumps (usageid=initmumps ) that builds an initial structure
id inwhichid.JOB issetto-1andd.SYM is setto O (unsymmetric solver by default).

e Only the double precision and double complex versions of MRBVare interfaced, since they
correspond to the arithmetic precisions used in MATLABI&zi

e the sparse matrid is passed to the interface functiashmumpsandzmumpsas a Scilab/MATLAB
object (parameters ICNTL(5), N, NZ, NELT, ... are thus iexglnt).

e the right-hand side vector or matrix, possibly sparse, §sed to the interface functiosnumps
and/orzmumpsin the argumentd.RHS , as a Scilab/MATLAB object (paramaters ICNTL(20),
NRHS, NZRHS, ... are thus irrelevant).

e The Schur complement matrix, if required, is allocated imitthe interface and returned as a
Scilab/MATLAB dense matrix. Furthermore, the parametdZESSCHUR and ICNTL(19) need
not be set by the user; they are set automatically dependitigecavailability and size of the list of
Schur variablesd.VAR _SCHUR

e We have chosen to use a new varialidleSOL to store the solution, instead of overwriting
id.RHS .

Please refer to the report [19] for a more detailed desonipif these interfaces. Please also refer to the
README file in directories MATLAB or Scilab of the main MUMPSdtribution for more information
on installation. For example, one important thing to notéhat at installation, the user must provide
the Fortran 90 runtime libraries corresponding to the cteddlUMP$ackage. This can be done in
the makefile for the MATLAB interface (filenake.inc ) and in the builder for the Scilab interface (file
builder.sce ).
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Finally, note that examples of usage of the MATLAB and theleécinterfaces are provided in
directoriesMATLABand Scilab/examples  , respectively. In the following, we describe the input
and output parameters of the functjglzlmumps , that are relevant in the context of this interface to the
sequential version of MUMPS.

Input Parameters

e mat : sparse matrix which has to be provided as the second arguheimumps if id.JOB is
strictly larger than 0.

e id.SYM : controls the matrix type (symmetric positive definite, sgatric indefinite or
unsymmetric) and it has do be initialized by the user befbeeinitialization phase oMUMPS
(see id.JOB). Its value is set to 0 after the call of initmumps

e id.JOB : defines the action that will be realized MUMPSinitialize, analyze and/or factorize
and/or solve and relead¢UMP $hternal C/Fortran data. It has to be set by the user beforealh
to MUMP $except after a call to initmumps, which sets its value to -1)

e id.ICNTL and id.CNTL : define control parameters that can be set after the iziéitdin call
(id.JOB = -1). See Section “Control parameters” for moraaiet If the user does not modify
an entry in id.ICNTL therMUMPSises the default parameter. For example, if the user wants to
use the AMD ordering, he/she should set id.ICNTL(7) = 0. Nzt the following parameters
are inhibited because they are automatically set withinrteeface: id.ICNTL(19) which controls
the Schur complement option and id.ICNTL(20) which corgrible format of the right-hand side.
Note that parameters id.ICNTL(1:4) may not work properlpeleding on your compiler and your
environment. In case of problem, we recommand to swith ipgraff by setting id.ICNL(1:4)=-1.

e id.PERM_IN : corresponds to the given ordering option (see Sectionitiapd output parameters”
for more details). Note that this permutation is only acedséthe parameter id.ICNTL(7) is set to
1.

e id.COLSCA and id.ROWSCA : are optional scaling arrays (see Section “Input and output
parameters” for more details)

e id.RHS : defines the right-hand side. The parameter id.ICNTL(2[@}e€ to its format (sparse or
dense) is automatically set within the interface. Note iti&&HS is not modified (as iIMUMPE
the solution is returned in id.SOL.

e id.VAR_SCHUR : corresponds to the list of variables that appear in the Sabmplement matrix
(see Section “Input and output parameters” for more details

e id.REDRHS (input parameter only if id. VARSCHUR was provided during the factorization and
if ICNTL(26)=2 on entry to the solve phase): partial solation the variables corresponding
to the Schur complement. It is provided by the user and ndymasults from both the Schur
complement and the reduced right-hand side that were edbyMUMP $ a previous call. When
ICNTL(26)=2,MUMP&ses this information to build the solution id.SOL on the ptete problem.
See Section “Schur complement” for more details.

Output Parameters

e id.SCHUR :ifid.VAR _SCHUR is provided of size SIZECHUR, then id.SCHUR corresponds to
a dense array of size (SIZECHUR,SIZESCHUR) that holds the Schur complement matrix (see
Section “Input and output parameters” for more detailsk Wiker does not have to initialize it.

e id.REDRHS (output parameter only if ICNTL(26)=1 and id.VARCHUR was defined): Reduced
right-hand side (or condensed right-hand side on the i@satssociated to the Schur complement).
It is computed byMUMPSluring the solve stage if ICNTL(26)=1. It can then be usedsioet
MUMPStogether with the Schur complement, to build a solution o interface. See Section
“Schur complement” for more details.

e id.INFOG and id.RINFOG : information parameters (see Section “Information patensg ).
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e id.SYM_PERM : corresponds to a symmetric permutation of the variableg @iscussion
regarding ICNTL(7) in Section “Control parameters” ). Tipisrmutation is computed during the
analysis and is followed by the numerical factorizationeptavhen numerical pivoting occurs.

e id.UNS_PERM : column permutation (if any) on exit from the analysis phaseéMUMP$see
discussion regarding ICNTL(6) in Section “Control paraenst ).

e id.SOL : dense vector or matrix containing the solution aftlyMP Solution phase.

Internal Parameters

e id.INST: (MUMP ®eserved componentlUMP $iternal parameter.
e id. TYPE: MUMPSeserved component) defines the arithmetic (complex orldquriecision).

10 Examples of use of MUMPS

10.1 Anassembled problem

An example program illustrating a possible use MUMPSon assembledOUBLE PRECISION
problems is given Figure 3. Two files must be included in thegpam: mpif.h  for MPI and
mumpsstruc.h  for MUMPSThe filemumpsroot.h  must also be available because it is included in
mumpsstruc.h . The initialization and termination of MPI are performedlie user program via the
calls toMPI_INIT andMPI_FINALIZE .

The MUMP®ackage is initialized by callinglUMPSvith JOB= —1, the problem is read in by the
host (in the components N, NZ, IRN, JCN, A, and RHS), and thetism is computed in RHS with a
call on all processors tMUMPSvith JOB=6. Finally, a call taMUMPSvith JOB= -2 is performed to
deallocate the data structures used by the instance of tkaga

Thus for the assembledx 5 matrix and right-hand side

we could have as input
5 N

e
N}
Z
N

WEFRP WNWOAOEFRLNOBRMDN
WWNAORARNRPRPRPOOWWDN

3.0

-3.0

2.0

1.0

3.0

2.0

4.0

2.0

6.0

-1.0

4.0

1.0 A
20.0

24.0

9.0

6.0

13.0 ‘RHS

and we obtain the solution RHS(i) =i,i=1, ..., 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE 'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, |
CALL MPI_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define problem on the host (processor 0)

IF ( id%MYID .eq. 0 ) THEN
READ(5, *) id%N
READ(5, *) id%NZ
ALLOCATE( id%IRN ( id%NZ ) )
ALLOCATE( id%JCN ( id%NZ ) )
ALLOCATE( id%A( id%NZ ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, *) ( id%IRN(l) ,I=1, id%NZ )
READ(5, *) ( id%JCN(I) ,I=1, id%NZ )
READ(5, *) ( id%A(l),I=1, id%NZ )
READ(5, ) ( id%RHS(l) ,I=1, id%N )

END IF
Call package for solution
id%JOB = 6

CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(1),1=1,id%N)
END IF
Deallocate user data
IF ( id%MYID .eq. O )THEN
DEALLOCATE( id%IRN )
DEALLOCATE( id%JCN )
DEALLOCATE( id%A )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure S)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 3: Example program usingUMP®n an assembledOUBLE PRECISIONyroblem
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10.2 An elemental problem

An example of a driver to uslUMP $or elementDOUBLE PRECISIONroblems is given in Figure 4.
The calling sequence is similar to that for the assembleblenoin Section 10.1 but now the host reads
the problem in components N, NELT, ELTPTR, ELTVAR,RLT, and RHS. Note that for elemental
problems ICNTL(5) must be set to 1 and that elemental matidbeays have a symmetric structure. For
the two-element matrix and right-hand side

12
1 -1 2 3 3 2 -1 3 7
2(211), 4<1 2—1), 23
3 1 1 1 5 3 2 1 6
22
we could have as input
5
2
6
18
147
123345
-1.0 20 1.0 20 1.0 1.0 3.0 1.0 1.0 20 1.0 3.0 -1.0 2.0 2.0 3.0 - 1.0 1.0
12.0 7.0 23.0 6.0 22.0
and we obtain the solution RHS(i) =i,i=1,...,5.

10.3 An example of calling MUMPS from C

An example of a driver to uselUMP®&om C is given in Figure 5.
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PROGRAM MUMPS_EXAMPLE
INCLUDE ’'mpif.h’
INCLUDE ’dmumps_struc.h’
TYPE (DMUMPS_STRUC) id
INTEGER IERR, LELTVAR, NA ELT
CALL MPL_INIT(IERR)
Define a communicator for the package
id%COMM = MPI_COMM_WORLD
Ask for unsymmetric code

id%SYM = 0

Host working
id%PAR = 1

Initialize an instance of the package
id%JOB = -1

CALL DMUMPS(id)
Define the problem on the host (processor 0)
IF ( id%MYID .eq. 0 ) THEN
READ(5, *) id%N
READ(5, *) id%NELT
READ(5, *) LELTVAR
READ(5, *) NA_ELT
ALLOCATE( id%ELTPTR ( id%NELT+1 ) )
ALLOCATE( id%ELTVAR ( LELTVAR ) )
ALLOCATE( id%A_ELT( NA_ELT ) )
ALLOCATE( id%RHS ( id%N ) )
READ(5, *) ( id%ELTPTR(l) ,I=1, id%NELT+1 )
READ(5, *) ( id%ELTVAR() ,I=1, LELTVAR )
READ(5, *) ( id%A_ELT(l),I=1, NA_ELT )
READ(5, *) ( id%RHS(l) ,I=1, id%N )
END IF
Specify element entry
id%ICNTL(5) = 1
Call package for solution
id%JOB = 6
CALL DMUMPS(id)
Solution has been assembled on the host
IF ( id%MYID .eq. 0 ) THEN
WRITE( 6, * ) ' Solution is ’,(id%RHS(1),1=1,id%N)
Deallocate user data
DEALLOCATE( id%ELTPTR )
DEALLOCATE( Id%ELTVAR )
DEALLOCATE( id%A _ELT )
DEALLOCATE( id%RHS )

END IF
Destroy the instance (deallocate internal data structure s)
id%JOB = -2

CALL DMUMPS(id)

CALL MPI_FINALIZE(IERR)
STOP

END

Figure 4: Example program usidgUMP$n an elementdDOUBLE PRECISIONyroblem.
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/= Example program using the C interface to the
* double precision version of MUMPS, dmumps_c.
* We solve the system A x = RHS with
* A = diag(1 2) and RHS = [1 4]'T
* Solution is [1 2]'T */

#include <stdio.h>

#include "mpi.h"

#include "dmumps_c.h"

#define JOB_INIT -1

#define JOB_END -2

#define USE_COMM_WORLD -987654

int main(int argc, char * argv) {
DMUMPS_STRUC_C id;
int n = 2;
int nz = 2;
int irn[] = {1,2};
int jen[] = {1,2};
double a[2];

double rhs[2];

int myid, ierr;

ierr = MPI_Init(&argc, &argv);

ierr = MPI_Comm_rank(MPI_COMM_WORLD, &myid);
[+ Define A and rhs  */

rhs[0]=1.0;rhs[1]=4.0;

a[0]=1.0;a[1]=2.0;

/ * Initialize a MUMPS instance. Use MPI_COMM_WORLD. */
id.job=JOB_INIT; id.par=1; id.sym=0;id.comm_fortran=U SE_COMM_WORLD;
dmumps_c(&id);
/ = Define the problem on the host */
if (myid == 0) {

id.n n; id.nz =nz; id.irn=irn; id.jcn=jcn;

id.a a; id.rhs = rhs;
#define ICNTL(I) icntl[(1)-1] / * macro s.t. indices match documentation * [
/* No outputs */

id.ICNTL(1)=-1; id.ICNTL(2)=-1; id.ICNTL(3)=-1; id.ICN TL(4)=0;
[+ Call the MUMPS package. =/

id.job=6;

dmumps_c(&id);

id.job=JOB_END; dmumps_c(&id); / * Terminate instance */

if (myid == 0) {

printf("Solution is : (%8.2f %8.2f)\n", rhs[0],rhs[1]);
}

return O;

Figure 5: Example program usidgUMP®&om C on an assembled problem.

39



11 Notes on MUMPS distribution

This version of MUMPS is provided to you free of charge. It is p ublic
domain, based on public domain software developed during th e Esprit IV
European project PARASOL (1996-1999) by CERFACS, ENSEEIHT -IRIT and RAL.
Since this first public domain version in 1999, the developm ents are
supported by the following institutions: CERFACS, ENSEEIH T-IRIT, and
INRIA Rhone-Alpes.

Main contributors are Patrick Amestoy, lain Duff, Abdou Gue rmouche,

Jacko Koster, Jean-Yves L’Excellent, and Stephane Pralet.

Up-to-date copies of the MUMPS package can be obtained
from the Web pages http://www.enseeiht.fr/lapo/MUMPS/
or http://graal.ens-lyon.ffMUMPS

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

User documentation of any code that uses this software can

include this complete notice. You can acknowledge (using

references [1], [2], and [3] the contribution of this packag e
in any scientific publication dependent upon the use of the

package. You shall use reasonable endeavours to notify

the authors of the package of this publication.

[1] P. R. Amestoy, |. S. Duff and J.-Y. L'Excellent (1998),

Multifrontal parallel distributed symmetric and unsymmet ric solvers,
Comput. Methods in Appl. Mech. Eng., 184, 501-520 (2000).

[2] P. R. Amestoy, |. S. Duff, J. Koster and J.-Y. L’Excellent ,
A fully asynchronous multifrontal solver using distribute d dynamic

scheduling, SIAM Journal of Matrix Analysis and Applicatio ns,
Vol 23, No 1, pp 15-41 (2001).

[3] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and

S. Pralet (2005), Hybrid scheduling for the parallel soluti on
of linear systems, Parallel Computing Vol 32, No 2, pp 136--1 56
(2006).
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