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1 Miscellaneous Tools for Size-Change Termina-
tion

theory Misc-Tools
imports Main
begin

1.1 Searching in lists

fun index-of :: ′a list ⇒ ′a ⇒ nat
where

index-of [] c = 0
| index-of (x#xs) c = (if x = c then 0 else Suc (index-of xs c))

lemma index-of-member :
(x ∈ set l) =⇒ (l ! index-of l x = x )
by (induct l) auto

lemma index-of-length:
(x ∈ set l) = (index-of l x < length l)
by (induct l) auto

1.2 Some reasoning tools

lemma three-cases:
assumes a1 =⇒ thesis
assumes a2 =⇒ thesis
assumes a3 =⇒ thesis
assumes

∧
R. [[a1 =⇒ R; a2 =⇒ R; a3 =⇒ R]] =⇒ R

shows thesis
using assms
by auto

1.3 Sequences

types
′a sequence = nat ⇒ ′a
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1.3.1 Increasing sequences

definition
increasing :: (nat ⇒ nat) ⇒ bool where
increasing s = (∀ i j . i < j −→ s i < s j )

lemma increasing-strict :
assumes increasing s
assumes i < j
shows s i < s j
using assms
unfolding increasing-def by simp

lemma increasing-weak :
assumes increasing s
assumes i ≤ j
shows s i ≤ s j
using assms increasing-strict [of s i j ]
by (cases i < j ) auto

lemma increasing-inc:
assumes increasing s
shows n ≤ s n

proof (induct n)
case 0 then show ?case by simp

next
case (Suc n)
with increasing-strict [OF 〈increasing s〉, of n Suc n]
show ?case by auto

qed

lemma increasing-bij :
assumes [simp]: increasing s
shows (s i < s j ) = (i < j )

proof
assume s i < s j
show i < j
proof (rule classical)

assume ¬ ?thesis
hence j ≤ i by arith
with increasing-weak have s j ≤ s i by simp
with 〈s i < s j 〉 show ?thesis by simp

qed
qed (simp add :increasing-strict)

1.3.2 Sections induced by an increasing sequence

abbreviation
section s i == {s i ..< s (Suc i)}
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definition
section-of s n = (LEAST i . n < s (Suc i))

lemma section-help:
assumes increasing s
shows ∃ i . n < s (Suc i)

proof −
have n ≤ s n

using 〈increasing s〉 by (rule increasing-inc)
also have . . . < s (Suc n)

using 〈increasing s〉 increasing-strict by simp
finally show ?thesis ..

qed

lemma section-of2 :
assumes increasing s
shows n < s (Suc (section-of s n))
unfolding section-of-def
by (rule LeastI-ex ) (rule section-help [OF 〈increasing s〉])

lemma section-of1 :
assumes [simp, intro]: increasing s
assumes s i ≤ n
shows s (section-of s n) ≤ n

proof (rule classical)
let ?m = section-of s n

assume ¬ ?thesis
hence a: n < s ?m by simp

have nonzero: ?m 6= 0
proof

assume ?m = 0
from increasing-weak have s 0 ≤ s i by simp
also note 〈. . . ≤ n〉

finally show False using 〈?m = 0 〉 〈n < s ?m〉 by simp
qed
with a have n < s (Suc (?m − 1 )) by simp
with Least-le have ?m ≤ ?m − 1

unfolding section-of-def .
with nonzero show ?thesis by simp

qed

lemma section-of-known:
assumes [simp]: increasing s
assumes in-sect : k ∈ section s i
shows section-of s k = i (is ?s = i)

proof (rule classical)
assume ¬ ?thesis
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hence ?s < i ∨ ?s > i by arith
thus ?thesis
proof

assume ?s < i
hence Suc ?s ≤ i by simp
with increasing-weak have s (Suc ?s) ≤ s i by simp
moreover have k < s (Suc ?s) using section-of2 by simp
moreover from in-sect have s i ≤ k by simp
ultimately show ?thesis by simp

next
assume i < ?s hence Suc i ≤ ?s by simp
with increasing-weak have s (Suc i) ≤ s ?s by simp
moreover
from in-sect have s i ≤ k by simp
with section-of1 have s ?s ≤ k by simp
moreover from in-sect have k < s (Suc i) by simp
ultimately show ?thesis by simp

qed
qed

lemma in-section-of :
assumes increasing s
assumes s i ≤ k
shows k ∈ section s (section-of s k)
using assms
by (auto intro:section-of1 section-of2 )

end

2 Kleene Algebras

theory Kleene-Algebras
imports Main
begin

A type class of kleene algebras

class star =
fixes star :: ′a ⇒ ′a

class idem-add = ab-semigroup-add +
assumes add-idem [simp]: x + x = x

lemma add-idem2 [simp]: (x :: ′a::idem-add) + (x + y) = x + y
unfolding add-assoc[symmetric]
by simp

class order-by-add = idem-add + ord +
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assumes order-def : a ≤ b ←→ a + b = b
assumes strict-order-def : a < b ←→ a ≤ b ∧ ¬ b ≤ a

begin

lemma ord-simp1 [simp]: x ≤ y =⇒ x + y = y
unfolding order-def .

lemma ord-simp2 [simp]: x ≤ y =⇒ y + x = y
unfolding order-def add-commute .

lemma ord-intro: x + y = y =⇒ x ≤ y
unfolding order-def .

subclass order proof
fix x y z :: ′a
show x ≤ x unfolding order-def by simp
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z
proof (rule ord-intro)

assume x ≤ y y ≤ z
have x + z = x + y + z by (simp add :〈y ≤ z 〉 add-assoc)
also have . . . = y + z by (simp add :〈x ≤ y〉)
also have . . . = z by (simp add :〈y ≤ z 〉)
finally show x + z = z .

qed
show x ≤ y =⇒ y ≤ x =⇒ x = y unfolding order-def

by (simp add : add-commute)
show x < y ←→ x ≤ y ∧ ¬ y ≤ x by (fact strict-order-def )

qed

lemma plus-leI :
x ≤ z =⇒ y ≤ z =⇒ x + y ≤ z
unfolding order-def by (simp add : add-assoc)

end

class pre-kleene = semiring-1 + order-by-add
begin

subclass pordered-semiring proof
fix x y z :: ′a

assume x ≤ y

show z + x ≤ z + y
proof (rule ord-intro)

have z + x + (z + y) = x + y + z by (simp add :add-ac)
also have . . . = z + y by (simp add :〈x ≤ y〉 add-ac)
finally show z + x + (z + y) = z + y .

qed
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show z ∗ x ≤ z ∗ y
proof (rule ord-intro)

from 〈x ≤ y〉 have z ∗ (x + y) = z ∗ y by simp
thus z ∗ x + z ∗ y = z ∗ y by (simp add :right-distrib)

qed

show x ∗ z ≤ y ∗ z
proof (rule ord-intro)

from 〈x ≤ y〉 have (x + y) ∗ z = y ∗ z by simp
thus x ∗ z + y ∗ z = y ∗ z by (simp add :left-distrib)

qed
qed

lemma zero-minimum [simp]: 0 ≤ x
unfolding order-def by simp

end

class kleene = pre-kleene + star +
assumes star1 : 1 + a ∗ star a ≤ star a
and star2 : 1 + star a ∗ a ≤ star a
and star3 : a ∗ x ≤ x =⇒ star a ∗ x ≤ x
and star4 : x ∗ a ≤ x =⇒ x ∗ star a ≤ x

class kleene-by-complete-lattice = pre-kleene
+ complete-lattice + recpower + star +
assumes star-cont : a ∗ star b ∗ c = SUPR UNIV (λn. a ∗ b ˆ n ∗ c)

begin

lemma (in complete-lattice) le-SUPI ′:
assumes l ≤ M i
shows l ≤ (SUP i . M i)
using assms by (rule order-trans) (rule le-SUPI [OF UNIV-I ])

end

instance kleene-by-complete-lattice < kleene
proof

fix a x :: ′a

have [simp]: 1 ≤ star a
unfolding star-cont [of 1 a 1 , simplified ]
by (subst power-0 [symmetric]) (rule le-SUPI [OF UNIV-I ])

show 1 + a ∗ star a ≤ star a
apply (rule plus-leI , simp)
apply (simp add :star-cont [of a a 1 , simplified ])
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apply (simp add :star-cont [of 1 a 1 , simplified ])
apply (subst power-Suc[symmetric])
by (intro SUP-leI le-SUPI UNIV-I )

show 1 + star a ∗ a ≤ star a
apply (rule plus-leI , simp)
apply (simp add :star-cont [of 1 a a, simplified ])
apply (simp add :star-cont [of 1 a 1 , simplified ])

by (auto intro: SUP-leI le-SUPI simp add : power-Suc[symmetric] power-commutes
simp del : power-Suc)

show a ∗ x ≤ x =⇒ star a ∗ x ≤ x
proof −

assume a: a ∗ x ≤ x

{
fix n
have a ˆ (Suc n) ∗ x ≤ a ˆ n ∗ x
proof (induct n)

case 0 thus ?case by (simp add : a)
next

case (Suc n)
hence a ∗ (a ˆ Suc n ∗ x ) ≤ a ∗ (a ˆ n ∗ x )

by (auto intro: mult-mono)
thus ?case

by (simp add : mult-assoc)
qed

}
note a = this

{
fix n have a ˆ n ∗ x ≤ x
proof (induct n)

case 0 show ?case by simp
next

case (Suc n) with a[of n]
show ?case by simp

qed
}
note b = this

show star a ∗ x ≤ x
unfolding star-cont [of 1 a x , simplified ]
by (rule SUP-leI ) (rule b)

qed

show x ∗ a ≤ x =⇒ x ∗ star a ≤ x
proof −

assume a: x ∗ a ≤ x
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{
fix n
have x ∗ a ˆ (Suc n) ≤ x ∗ a ˆ n
proof (induct n)

case 0 thus ?case by (simp add : a)
next

case (Suc n)
hence (x ∗ a ˆ Suc n) ∗ a ≤ (x ∗ a ˆ n) ∗ a

by (auto intro: mult-mono)
thus ?case

by (simp add : power-commutes mult-assoc)
qed

}
note a = this

{
fix n have x ∗ a ˆ n ≤ x
proof (induct n)

case 0 show ?case by simp
next

case (Suc n) with a[of n]
show ?case by simp

qed
}
note b = this

show x ∗ star a ≤ x
unfolding star-cont [of x a 1 , simplified ]
by (rule SUP-leI ) (rule b)

qed
qed

lemma less-add [simp]:
fixes a b :: ′a :: order-by-add
shows a ≤ a + b
and b ≤ a + b
unfolding order-def
by (auto simp:add-ac)

lemma add-est1 :
fixes a b c :: ′a :: order-by-add
assumes a: a + b ≤ c
shows a ≤ c
using less-add(1 ) a
by (rule order-trans)

lemma add-est2 :
fixes a b c :: ′a :: order-by-add
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assumes a: a + b ≤ c
shows b ≤ c
using less-add(2 ) a
by (rule order-trans)

lemma star3 ′:
fixes a b x :: ′a :: kleene
assumes a: b + a ∗ x ≤ x
shows star a ∗ b ≤ x

proof (rule order-trans)
from a have b ≤ x by (rule add-est1 )
show star a ∗ b ≤ star a ∗ x

by (rule mult-mono) (auto simp:〈b ≤ x 〉)

from a have a ∗ x ≤ x by (rule add-est2 )
with star3 show star a ∗ x ≤ x .

qed

lemma star4 ′:
fixes a b x :: ′a :: kleene
assumes a: b + x ∗ a ≤ x
shows b ∗ star a ≤ x

proof (rule order-trans)
from a have b ≤ x by (rule add-est1 )
show b ∗ star a ≤ x ∗ star a

by (rule mult-mono) (auto simp:〈b ≤ x 〉)

from a have x ∗ a ≤ x by (rule add-est2 )
with star4 show x ∗ star a ≤ x .

qed

lemma star-idemp:
fixes x :: ′a :: kleene
shows star (star x ) = star x
oops

lemma star-unfold-left :
fixes a :: ′a :: kleene
shows 1 + a ∗ star a = star a

proof (rule order-antisym, rule star1 )

have 1 + a ∗ (1 + a ∗ star a) ≤ 1 + a ∗ star a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule star1 )
done
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with star3 ′ have star a ∗ 1 ≤ 1 + a ∗ star a .
thus star a ≤ 1 + a ∗ star a by simp

qed

lemma star-unfold-right :
fixes a :: ′a :: kleene
shows 1 + star a ∗ a = star a

proof (rule order-antisym, rule star2 )

have 1 + (1 + star a ∗ a) ∗ a ≤ 1 + star a ∗ a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule star2 )
done

with star4 ′ have 1 ∗ star a ≤ 1 + star a ∗ a .
thus star a ≤ 1 + star a ∗ a by simp

qed

lemma star-zero[simp]:
shows star (0 :: ′a::kleene) = 1
by (rule star-unfold-left [of 0 , simplified ])

lemma star-commute:
fixes a b x :: ′a :: kleene
assumes a: a ∗ x = x ∗ b
shows star a ∗ x = x ∗ star b

proof (rule order-antisym)

show star a ∗ x ≤ x ∗ star b
proof (rule star3 ′, rule order-trans)

from a have a ∗ x ≤ x ∗ b by simp
hence a ∗ x ∗ star b ≤ x ∗ b ∗ star b

by (rule mult-mono) auto
thus x + a ∗ (x ∗ star b) ≤ x + x ∗ b ∗ star b

using add-mono by (auto simp: mult-assoc)

show . . . ≤ x ∗ star b
proof −

have x ∗ (1 + b ∗ star b) ≤ x ∗ star b
by (rule mult-mono[OF - star1 ]) auto

thus ?thesis
by (simp add :right-distrib mult-assoc)

qed
qed
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show x ∗ star b ≤ star a ∗ x
proof (rule star4 ′, rule order-trans)

from a have b: x ∗ b ≤ a ∗ x by simp
have star a ∗ x ∗ b ≤ star a ∗ a ∗ x

unfolding mult-assoc
by (rule mult-mono[OF - b]) auto

thus x + star a ∗ x ∗ b ≤ x + star a ∗ a ∗ x
using add-mono by auto

show . . . ≤ star a ∗ x
proof −

have (1 + star a ∗ a) ∗ x ≤ star a ∗ x
by (rule mult-mono[OF star2 ]) auto

thus ?thesis
by (simp add :left-distrib mult-assoc)

qed
qed

qed

lemma star-assoc:
fixes c d :: ′a :: kleene
shows star (c ∗ d) ∗ c = c ∗ star (d ∗ c)
by (auto simp:mult-assoc star-commute)

lemma star-dist :
fixes a b :: ′a :: kleene
shows star (a + b) = star a ∗ star (b ∗ star a)
oops

lemma star-one:
fixes a p p ′ :: ′a :: kleene
assumes p ∗ p ′ = 1 and p ′ ∗ p = 1
shows p ′ ∗ star a ∗ p = star (p ′ ∗ a ∗ p)

proof −
from assms
have p ′ ∗ star a ∗ p = p ′ ∗ star (p ∗ p ′ ∗ a) ∗ p

by simp
also have . . . = p ′ ∗ p ∗ star (p ′ ∗ a ∗ p)

by (simp add : mult-assoc star-assoc)
also have . . . = star (p ′ ∗ a ∗ p)

by (simp add : assms)
finally show ?thesis .

qed

lemma star-mono:
fixes x y :: ′a :: kleene
assumes x ≤ y
shows star x ≤ star y
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oops

lemma x-less-star [simp]:
fixes x :: ′a :: kleene
shows x ≤ x ∗ star a

proof −
have x ≤ x ∗ (1 + a ∗ star a) by (simp add :right-distrib)
also have . . . = x ∗ star a by (simp only : star-unfold-left)
finally show ?thesis .

qed

2.1 Transitive Closure

definition
tcl (x :: ′a::kleene) = star x ∗ x

lemma tcl-zero:
tcl (0 :: ′a::kleene) = 0
unfolding tcl-def by simp

lemma tcl-unfold-right : tcl a = a + tcl a ∗ a
proof −

from star-unfold-right [of a]
have a ∗ (1 + star a ∗ a) = a ∗ star a by simp
from this[simplified right-distrib, simplified ]
show ?thesis

by (simp add :tcl-def star-commute mult-ac)
qed

lemma less-tcl : a ≤ tcl a
proof −

have a ≤ a + tcl a ∗ a by simp
also have . . . = tcl a by (rule tcl-unfold-right [symmetric])
finally show ?thesis .

qed

2.2 Naive Algorithm to generate the transitive closure

function (default λx . 0 , tailrec, domintros)
mk-tcl :: ( ′a::{plus,times,ord ,zero}) ⇒ ′a ⇒ ′a

where
mk-tcl A X = (if X ∗ A ≤ X then X else mk-tcl A (X + X ∗ A))
by pat-completeness simp

declare mk-tcl .simps[simp del ]
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lemma mk-tcl-code[code]:
mk-tcl A X =
(let XA = X ∗ A
in if XA ≤ X then X else mk-tcl A (X + XA))
unfolding mk-tcl .simps[of A X ] Let-def ..

lemma mk-tcl-lemma1 :
fixes X :: ′a :: kleene
shows (X + X ∗ A) ∗ star A = X ∗ star A

proof −
have A ∗ star A ≤ 1 + A ∗ star A by simp
also have . . . = star A by (simp add :star-unfold-left)
finally have star A + A ∗ star A = star A by simp
hence X ∗ (star A + A ∗ star A) = X ∗ star A by simp
thus ?thesis by (simp add :left-distrib right-distrib mult-ac)

qed

lemma mk-tcl-lemma2 :
fixes X :: ′a :: kleene
shows X ∗ A ≤ X =⇒ X ∗ star A = X
by (rule order-antisym) (auto simp:star4 )

lemma mk-tcl-correctness:
fixes A X :: ′a :: {kleene}
assumes mk-tcl-dom (A, X )
shows mk-tcl A X = X ∗ star A
using assms
by induct (auto simp:mk-tcl-lemma1 mk-tcl-lemma2 )

lemma graph-implies-dom: mk-tcl-graph x y =⇒ mk-tcl-dom x
by (rule mk-tcl-graph.induct) (auto intro:accp.accI elim:mk-tcl-rel .cases)

lemma mk-tcl-default : ¬ mk-tcl-dom (a,x ) =⇒ mk-tcl a x = 0
unfolding mk-tcl-def
by (rule fundef-default-value[OF mk-tcl-sumC-def graph-implies-dom])

We can replace the dom-Condition of the correctness theorem with some-
thing executable

lemma mk-tcl-correctness2 :
fixes A X :: ′a :: {kleene}
assumes mk-tcl A A 6= 0
shows mk-tcl A A = tcl A
using assms mk-tcl-default mk-tcl-correctness
unfolding tcl-def
by (auto simp:star-commute)
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end

3 General Graphs as Sets

theory Graphs
imports Main Misc-Tools Kleene-Algebras
begin

3.1 Basic types, Size Change Graphs

datatype ( ′a, ′b) graph =
Graph ( ′a × ′b × ′a) set

primrec dest-graph :: ( ′a, ′b) graph ⇒ ( ′a × ′b × ′a) set
where dest-graph (Graph G) = G

lemma graph-dest-graph[simp]:
Graph (dest-graph G) = G
by (cases G) simp

lemma split-graph-all :
(
∧

gr . PROP P gr) ≡ (
∧

set . PROP P (Graph set))
proof

fix set
assume

∧
gr . PROP P gr

then show PROP P (Graph set) .
next

fix gr
assume

∧
set . PROP P (Graph set)

then have PROP P (Graph (dest-graph gr)) .
then show PROP P gr by simp

qed

definition
has-edge :: ( ′n, ′e) graph ⇒ ′n ⇒ ′e ⇒ ′n ⇒ bool

(- ` - ;- -)
where

has-edge G n e n ′ = ((n, e, n ′) ∈ dest-graph G)

3.2 Graph composition

fun grcomp :: ( ′n, ′e::times) graph ⇒ ( ′n, ′e) graph ⇒ ( ′n, ′e) graph
where

grcomp (Graph G) (Graph H ) =
Graph {(p,b,q) | p b q .
(∃ k e e ′. (p,e,k)∈G ∧ (k ,e ′,q)∈H ∧ b = e ∗ e ′)}
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declare grcomp.simps[code del ]

lemma graph-ext :
assumes

∧
n e n ′. has-edge G n e n ′ = has-edge H n e n ′

shows G = H
using assms
by (cases G , cases H ) (auto simp:split-paired-all has-edge-def )

instantiation graph :: (type, type) comm-monoid-add
begin

definition
graph-zero-def : 0 = Graph {}

definition
graph-plus-def [code del ]: G + H = Graph (dest-graph G ∪ dest-graph H )

instance proof
fix x y z :: ( ′a, ′b) graph
show x + y + z = x + (y + z )
and x + y = y + x
and 0 + x = x

unfolding graph-plus-def graph-zero-def by auto
qed

end

instantiation graph :: (type, type) {distrib-lattice, complete-lattice}
begin

definition
graph-leq-def [code del ]: G ≤ H ←→ dest-graph G ⊆ dest-graph H

definition
graph-less-def [code del ]: G < H ←→ dest-graph G ⊂ dest-graph H

definition
[code del ]: bot = Graph {}

definition
[code del ]: top = Graph UNIV

definition
[code del ]: inf G H = Graph (dest-graph G ∩ dest-graph H )

definition
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[code del ]: sup (G :: ( ′a, ′b) graph) H = G + H

definition
Inf-graph-def [code del ]: Inf = (λGs. Graph (

⋂
(dest-graph ‘ Gs)))

definition
Sup-graph-def [code del ]: Sup = (λGs. Graph (

⋃
(dest-graph ‘ Gs)))

instance proof
fix x y z :: ( ′a, ′b) graph
fix A :: ( ′a, ′b) graph set

show (x < y) = (x ≤ y ∧ ¬ y ≤ x )
unfolding graph-leq-def graph-less-def
by (cases x , cases y) auto

show x ≤ x unfolding graph-leq-def ..

{ assume x ≤ y y ≤ z
with order-trans show x ≤ z

unfolding graph-leq-def . }

{ assume x ≤ y y ≤ x thus x = y
unfolding graph-leq-def
by (cases x , cases y) simp }

show inf x y ≤ x inf x y ≤ y
unfolding inf-graph-def graph-leq-def
by auto

{ assume x ≤ y x ≤ z thus x ≤ inf y z
unfolding inf-graph-def graph-leq-def
by auto }

show x ≤ sup x y y ≤ sup x y
unfolding sup-graph-def graph-leq-def graph-plus-def by auto

{ assume y ≤ x z ≤ x thus sup y z ≤ x
unfolding sup-graph-def graph-leq-def graph-plus-def by auto }

show bot ≤ x unfolding graph-leq-def bot-graph-def by simp

show x ≤ top unfolding graph-leq-def top-graph-def by simp

show sup x (inf y z ) = inf (sup x y) (sup x z )
unfolding inf-graph-def sup-graph-def graph-leq-def graph-plus-def by auto

{ assume x ∈ A thus Inf A ≤ x
unfolding Inf-graph-def graph-leq-def by auto }
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{ assume
∧

x . x ∈ A =⇒ z ≤ x thus z ≤ Inf A
unfolding Inf-graph-def graph-leq-def by auto }

{ assume x ∈ A thus x ≤ Sup A
unfolding Sup-graph-def graph-leq-def by auto }

{ assume
∧

x . x ∈ A =⇒ x ≤ z thus Sup A ≤ z
unfolding Sup-graph-def graph-leq-def by auto }

qed

end

lemma in-grplus:
has-edge (G + H ) p b q = (has-edge G p b q ∨ has-edge H p b q)
by (cases G , cases H , auto simp:has-edge-def graph-plus-def )

lemma in-grzero:
has-edge 0 p b q = False
by (simp add :graph-zero-def has-edge-def )

3.2.1 Multiplicative Structure

instantiation graph :: (type, times) mult-zero
begin

definition
graph-mult-def [code del ]: G ∗ H = grcomp G H

instance proof
fix a :: ( ′a, ′b) graph

show 0 ∗ a = 0
unfolding graph-mult-def graph-zero-def
by (cases a) (simp add :grcomp.simps)

show a ∗ 0 = 0
unfolding graph-mult-def graph-zero-def
by (cases a) (simp add :grcomp.simps)

qed

end

instantiation graph :: (type, one) one
begin

definition
graph-one-def : 1 = Graph { (x , 1 , x ) |x . True}

instance ..
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end

lemma in-grcomp:
has-edge (G ∗ H ) p b q
= (∃ k e e ′. has-edge G p e k ∧ has-edge H k e ′ q ∧ b = e ∗ e ′)
by (cases G , cases H ) (auto simp:graph-mult-def has-edge-def image-def )

lemma in-grunit :
has-edge 1 p b q = (p = q ∧ b = 1 )
by (auto simp:graph-one-def has-edge-def )

instance graph :: (type, semigroup-mult) semigroup-mult
proof

fix G1 G2 G3 :: ( ′a, ′b) graph

show G1 ∗ G2 ∗ G3 = G1 ∗ (G2 ∗ G3 )
proof (rule graph-ext , rule trans)

fix p J q
show has-edge ((G1 ∗ G2 ) ∗ G3 ) p J q =

(∃G i H j I .
has-edge G1 p G i
∧ has-edge G2 i H j
∧ has-edge G3 j I q
∧ J = (G ∗ H ) ∗ I )
by (simp only :in-grcomp) blast

show . . . = has-edge (G1 ∗ (G2 ∗ G3 )) p J q
by (simp only :in-grcomp mult-assoc) blast

qed
qed

instantiation graph :: (type, monoid-mult) {semiring-1 , idem-add , recpower , star}
begin

primrec power-graph :: ( ′a::type, ′b::monoid-mult) graph ⇒ nat => ( ′a, ′b) graph
where

(A :: ( ′a, ′b) graph) ˆ 0 = 1
| (A :: ( ′a, ′b) graph) ˆ Suc n = A ∗ (A ˆ n)

definition
graph-star-def : star (G :: ( ′a, ′b) graph) = (SUP n. G ˆ n)

instance proof
fix a b c :: ( ′a, ′b) graph

show 1 ∗ a = a
by (rule graph-ext) (auto simp:in-grcomp in-grunit)

show a ∗ 1 = a
by (rule graph-ext) (auto simp:in-grcomp in-grunit)
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show (a + b) ∗ c = a ∗ c + b ∗ c
by (rule graph-ext , simp add :in-grcomp in-grplus) blast

show a ∗ (b + c) = a ∗ b + a ∗ c
by (rule graph-ext , simp add :in-grcomp in-grplus) blast

show (0 ::( ′a, ′b) graph) 6= 1 unfolding graph-zero-def graph-one-def
by simp

show a + a = a unfolding graph-plus-def by simp

show a ˆ 0 = 1
∧

n. a ˆ (Suc n) = a ∗ a ˆ n
by simp-all

qed

end

lemma graph-leqI :
assumes

∧
n e n ′. has-edge G n e n ′ =⇒ has-edge H n e n ′

shows G ≤ H
using assms
unfolding graph-leq-def has-edge-def
by auto

lemma in-graph-plusE :
assumes has-edge (G + H ) n e n ′

assumes has-edge G n e n ′ =⇒ P
assumes has-edge H n e n ′ =⇒ P
shows P
using assms
by (auto simp: in-grplus)

lemma in-graph-compE :
assumes GH : has-edge (G ∗ H ) n e n ′

obtains e1 k e2
where has-edge G n e1 k has-edge H k e2 n ′ e = e1 ∗ e2
using GH
by (auto simp: in-grcomp)

lemma
assumes x ∈ S k
shows x ∈ (

⋃
k . S k)

using assms by blast

lemma graph-union-least :
assumes

∧
n. Graph (G n) ≤ C

shows Graph (
⋃

n. G n) ≤ C
using assms unfolding graph-leq-def
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by auto

lemma Sup-graph-eq :
(SUP n. Graph (G n)) = Graph (

⋃
n. G n)

proof (rule order-antisym)
show (SUP n. Graph (G n)) ≤ Graph (

⋃
n. G n)

by (rule SUP-leI ) (auto simp add : graph-leq-def )

show Graph (
⋃

n. G n) ≤ (SUP n. Graph (G n))
by (rule graph-union-least , rule le-SUPI ′, rule)

qed

lemma has-edge-leq : has-edge G p b q = (Graph {(p,b,q)} ≤ G)
unfolding has-edge-def graph-leq-def
by (cases G) simp

lemma Sup-graph-eq2 :
(SUP n. G n) = Graph (

⋃
n. dest-graph (G n))

using Sup-graph-eq [of λn. dest-graph (G n), simplified ]
by simp

lemma in-SUP :
has-edge (SUP x . Gs x ) p b q = (∃ x . has-edge (Gs x ) p b q)
unfolding Sup-graph-eq2 has-edge-leq graph-leq-def
by simp

instance graph :: (type, monoid-mult) kleene-by-complete-lattice
proof

fix a b c :: ( ′a, ′b) graph

show a ≤ b ←→ a + b = b unfolding graph-leq-def graph-plus-def
by (cases a, cases b) auto

from less-le-not-le show a < b ←→ a ≤ b ∧ ¬ b ≤ a .

show a ∗ star b ∗ c = (SUP n. a ∗ b ˆ n ∗ c)
unfolding graph-star-def
by (rule graph-ext) (force simp:in-SUP in-grcomp)

qed

lemma in-star :
has-edge (star G) a x b = (∃n. has-edge (G ˆ n) a x b)
by (auto simp:graph-star-def in-SUP)

lemma tcl-is-SUP :
tcl (G ::( ′a::type, ′b::monoid-mult) graph) =
(SUP n. G ˆ (Suc n))
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unfolding tcl-def
using star-cont [of 1 G G ]
by (simp add :power-Suc power-commutes)

lemma in-tcl :
has-edge (tcl G) a x b = (∃n>0 . has-edge (G ˆ n) a x b)
apply (auto simp: tcl-is-SUP in-SUP simp del : power-graph.simps power-Suc)
apply (rule-tac x = n − 1 in exI , auto)
done

3.3 Infinite Paths

types ( ′n, ′e) ipath = ( ′n × ′e) sequence

definition has-ipath :: ( ′n, ′e) graph ⇒ ( ′n, ′e) ipath ⇒ bool
where

has-ipath G p =
(∀ i . has-edge G (fst (p i)) (snd (p i)) (fst (p (Suc i))))

3.4 Finite Paths

types ( ′n, ′e) fpath = ( ′n × ( ′e × ′n) list)

inductive has-fpath :: ( ′n, ′e) graph ⇒ ( ′n, ′e) fpath ⇒ bool
for G :: ( ′n, ′e) graph

where
has-fpath-empty : has-fpath G (n, [])
| has-fpath-join: [[G ` n ;e n ′; has-fpath G (n ′, es)]] =⇒ has-fpath G (n, (e,
n ′)#es)

definition
end-node p =
(if snd p = [] then fst p else snd (snd p ! (length (snd p) − 1 )))

definition path-nth :: ( ′n, ′e) fpath ⇒ nat ⇒ ( ′n × ′e × ′n)
where

path-nth p k = (if k = 0 then fst p else snd (snd p ! (k − 1 )), snd p ! k)

lemma endnode-nth:
assumes length (snd p) = Suc k
shows end-node p = snd (snd (path-nth p k))
using assms unfolding end-node-def path-nth-def
by auto

lemma path-nth-graph:
assumes k < length (snd p)
assumes has-fpath G p
shows (λ(n,e,n ′). has-edge G n e n ′) (path-nth p k)

using assms
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proof (induct k arbitrary : p)
case 0 thus ?case

unfolding path-nth-def by (auto elim:has-fpath.cases)
next

case (Suc k p)

from 〈has-fpath G p〉 show ?case
proof (rule has-fpath.cases)

case goal1 with Suc show ?case by simp
next

fix n e n ′ es
assume st : p = (n, (e, n ′) # es)

G ` n ;e n ′

has-fpath G (n ′, es)
with Suc
have (λ(n, b, a). G ` n ;b a) (path-nth (n ′, es) k) by simp
with st show ?thesis by (cases k , auto simp:path-nth-def )

qed
qed

lemma path-nth-connected :
assumes Suc k < length (snd p)
shows fst (path-nth p (Suc k)) = snd (snd (path-nth p k))
using assms
unfolding path-nth-def
by auto

definition path-loop :: ( ′n, ′e) fpath ⇒ ( ′n, ′e) ipath (omega)
where

omega p ≡ (λi . (λ(n,e,n ′). (n,e)) (path-nth p (i mod (length (snd p)))))

lemma fst-p0 : fst (path-nth p 0 ) = fst p
unfolding path-nth-def by simp

lemma path-loop-connect :
assumes fst p = end-node p
and 0 < length (snd p) (is 0 < ?l)
shows fst (path-nth p (Suc i mod (length (snd p))))
= snd (snd (path-nth p (i mod length (snd p))))
(is . . . = snd (snd (path-nth p ?k)))

proof −
from 〈0 < ?l 〉 have i mod ?l < ?l (is ?k < ?l)

by simp

show ?thesis
proof (cases Suc ?k < ?l)

case True
hence Suc ?k 6= ?l by simp
with path-nth-connected [OF True]
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show ?thesis
by (simp add :mod-Suc)

next
case False
with 〈?k < ?l 〉 have wrap: Suc ?k = ?l by simp

hence fst (path-nth p (Suc i mod ?l)) = fst (path-nth p 0 )
by (simp add : mod-Suc)

also from fst-p0 have . . . = fst p .
also have . . . = end-node p by fact
also have . . . = snd (snd (path-nth p ?k))

by (auto simp: endnode-nth wrap)
finally show ?thesis .

qed
qed

lemma path-loop-graph:
assumes has-fpath G p
and loop: fst p = end-node p
and nonempty : 0 < length (snd p) (is 0 < ?l)
shows has-ipath G (omega p)

proof −
{

fix i
from 〈0 < ?l 〉 have i mod ?l < ?l (is ?k < ?l)

by simp
from this and 〈has-fpath G p〉

have pk-G : (λ(n,e,n ′). has-edge G n e n ′) (path-nth p ?k)
by (rule path-nth-graph)

from path-loop-connect [OF loop nonempty ] pk-G
have has-edge G (fst (omega p i)) (snd (omega p i)) (fst (omega p (Suc i)))

unfolding path-loop-def has-edge-def split-def
by simp

}
then show ?thesis by (auto simp:has-ipath-def )

qed

definition prod :: ( ′n, ′e::monoid-mult) fpath ⇒ ′e
where

prod p = foldr (op ∗) (map fst (snd p)) 1

lemma prod-simps[simp]:
prod (n, []) = 1
prod (n, (e,n ′)#es) = e ∗ (prod (n ′,es))

unfolding prod-def
by simp-all

lemma power-induces-path:
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assumes a: has-edge (A ˆ k) n G m
obtains p

where has-fpath A p
and n = fst p m = end-node p
and G = prod p
and k = length (snd p)

using a
proof (induct k arbitrary :m n G thesis)

case (0 m n G)
let ?p = (n, [])
from 0 have has-fpath A ?p m = end-node ?p G = prod ?p

by (auto simp:in-grunit end-node-def intro:has-fpath.intros)
thus ?case using 0 by (auto simp:end-node-def )

next
case (Suc k m n G)
hence has-edge (A ∗ A ˆ k) n G m

by (simp add :power-Suc power-commutes)
then obtain G ′ H j where

a-A: has-edge A n G ′ j
and H-pow : has-edge (A ˆ k) j H m
and [simp]: G = G ′ ∗ H
by (auto simp:in-grcomp)

from H-pow and Suc
obtain p

where p-path: has-fpath A p
and [simp]: j = fst p m = end-node p H = prod p
k = length (snd p)
by blast

let ?p ′ = (n, (G ′, j )#snd p)
from a-A and p-path
have has-fpath A ?p ′ m = end-node ?p ′ G = prod ?p ′

by (auto simp:end-node-def nth.simps intro:has-fpath.intros split :nat .split)
thus ?case using Suc by auto

qed

3.5 Sub-Paths

definition sub-path :: ( ′n, ′e) ipath ⇒ nat ⇒ nat ⇒ ( ′n, ′e) fpath
((-〈-,-〉))
where

p〈i ,j 〉 =
(fst (p i), map (λk . (snd (p k), fst (p (Suc k)))) [i ..< j ])

lemma sub-path-is-path:
assumes ipath: has-ipath G p
assumes l : i ≤ j
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shows has-fpath G (p〈i ,j 〉)
using l

proof (induct i rule:inc-induct)
case base show ?case by (auto simp:sub-path-def intro:has-fpath.intros)

next
case (step i)
with ipath upt-rec[of i j ]
show ?case

by (auto simp:sub-path-def has-ipath-def intro:has-fpath.intros)
qed

lemma sub-path-start [simp]:
fst (p〈i ,j 〉) = fst (p i)
by (simp add :sub-path-def )

lemma nth-upto[simp]: k < j − i =⇒ [i ..< j ] ! k = i + k
by (induct k) auto

lemma sub-path-end [simp]:
i < j =⇒ end-node (p〈i ,j 〉) = fst (p j )
by (auto simp:sub-path-def end-node-def )

lemma foldr-map: foldr f (map g xs) = foldr (f o g) xs
by (induct xs) auto

lemma upto-append [simp]:
assumes i ≤ j j ≤ k
shows [ i ..< j ] @ [j ..< k ] = [i ..< k ]
using assms and upt-add-eq-append [of i j k − j ]
by simp

lemma foldr-monoid : foldr (op ∗) xs 1 ∗ foldr (op ∗) ys 1
= foldr (op ∗) (xs @ ys) (1 :: ′a::monoid-mult)
by (induct xs) (auto simp:mult-assoc)

lemma sub-path-prod :
assumes i < j
assumes j < k
shows prod (p〈i ,k〉) = prod (p〈i ,j 〉) ∗ prod (p〈j ,k〉)
using assms
unfolding prod-def sub-path-def
by (simp add :map-compose[symmetric] comp-def )
(simp only :foldr-monoid map-append [symmetric] upto-append)

lemma path-acgpow-aux :
assumes length es = l
assumes has-fpath G (n,es)
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shows has-edge (G ˆ l) n (prod (n,es)) (end-node (n,es))
using assms
proof (induct l arbitrary :n es)

case 0 thus ?case
by (simp add :in-grunit end-node-def )

next
case (Suc l n es)
hence es 6= [] by auto
let ?n ′ = snd (hd es)
let ?es ′ = tl es
let ?e = fst (hd es)

from Suc have len: length ?es ′ = l by auto

from Suc
have [simp]: end-node (n, es) = end-node (?n ′, ?es ′)

by (cases es) (auto simp:end-node-def nth.simps split :nat .split)

from 〈has-fpath G (n,es)〉
have has-fpath G (?n ′, ?es ′)

by (rule has-fpath.cases) (auto intro:has-fpath.intros)
with Suc len
have has-edge (G ˆ l) ?n ′ (prod (?n ′, ?es ′)) (end-node (?n ′, ?es ′))

by auto
moreover
from 〈es 6= []〉
have prod (n, es) = ?e ∗ (prod (?n ′, ?es ′))

by (cases es) auto
moreover
from 〈has-fpath G (n,es)〉 have c:has-edge G n ?e ?n ′

by (rule has-fpath.cases) (insert 〈es 6= []〉, auto)

ultimately
show ?case

unfolding power-Suc
by (auto simp:in-grcomp)

qed

lemma path-acgpow :
has-fpath G p

=⇒ has-edge (G ˆ length (snd p)) (fst p) (prod p) (end-node p)
by (cases p)

(rule path-acgpow-aux [of snd p length (snd p) - fst p, simplified ])

lemma star-paths:
has-edge (star G) a x b =
(∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p)
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proof
assume has-edge (star G) a x b
then obtain n where pow : has-edge (G ˆ n) a x b

by (auto simp:in-star)

then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
by (rule power-induces-path)

thus ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p
by blast

next
assume ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p
then obtain p where

has-fpath G p a = fst p b = end-node p x = prod p
by blast

hence has-edge (G ˆ length (snd p)) a x b
by (auto intro:path-acgpow)

thus has-edge (star G) a x b
by (auto simp:in-star)

qed

lemma plus-paths:
has-edge (tcl G) a x b =
(∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p ∧ 0 < length

(snd p))
proof

assume has-edge (tcl G) a x b

then obtain n where pow : has-edge (G ˆ n) a x b and 0 < n
by (auto simp:in-tcl)

from pow obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
n = length (snd p)
by (rule power-induces-path)

with 〈0 < n〉

show ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p ∧ 0 <
length (snd p)

by blast
next

assume ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p
∧ 0 < length (snd p)

then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
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0 < length (snd p)
by blast

hence has-edge (G ˆ length (snd p)) a x b
by (auto intro:path-acgpow)

with 〈0 < length (snd p)〉
show has-edge (tcl G) a x b

by (auto simp:in-tcl)
qed

definition
contract s p =
(λi . (fst (p (s i)), prod (p〈s i ,s (Suc i)〉)))

lemma ipath-contract :
assumes [simp]: increasing s
assumes ipath: has-ipath G p
shows has-ipath (tcl G) (contract s p)
unfolding has-ipath-def

proof
fix i
let ?p = p〈s i ,s (Suc i)〉

from increasing-strict
have fst (p (s (Suc i))) = end-node ?p by simp

moreover
from increasing-strict [of s i Suc i ] have snd ?p 6= []

by (simp add :sub-path-def )
moreover
from ipath increasing-weak [of s] have has-fpath G ?p

by (rule sub-path-is-path) auto
ultimately
show has-edge (tcl G)

(fst (contract s p i)) (snd (contract s p i)) (fst (contract s p (Suc i)))
unfolding contract-def plus-paths
by (intro exI ) auto

qed

lemma prod-unfold :
i < j =⇒ prod (p〈i ,j 〉)
= snd (p i) ∗ prod (p〈Suc i , j 〉)
unfolding prod-def
by (simp add :sub-path-def upt-rec[of i j ])

lemma sub-path-loop:
assumes 0 < k
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assumes k : k = length (snd loop)
assumes loop: fst loop = end-node loop
shows (omega loop)〈k ∗ i ,k ∗ Suc i〉 = loop (is ?ω = loop)

proof (rule prod-eqI )
show fst ?ω = fst loop

by (auto simp:path-loop-def path-nth-def split-def k)

show snd ?ω = snd loop
proof (rule nth-equalityI [rule-format ])

show leneq : length (snd ?ω) = length (snd loop)
unfolding sub-path-def k by simp

fix j assume j < length (snd (?ω))
with leneq and k have j < k by simp

have a:
∧

i . fst (path-nth loop (Suc i mod k))
= snd (snd (path-nth loop (i mod k)))
unfolding k
apply (rule path-loop-connect [OF loop])
using 〈0 < k 〉 and k
apply auto
done

from 〈j < k 〉

show snd ?ω ! j = snd loop ! j
unfolding sub-path-def
apply (simp add :path-loop-def split-def add-ac)
apply (simp add :a k [symmetric])
apply (simp add :path-nth-def )
done

qed
qed

end

4 The Size-Change Principle (Definition)

theory Criterion
imports Graphs Infinite-Set
begin

4.1 Size-Change Graphs

datatype sedge =
LESS (↓)
| LEQ (⇓)

instantiation sedge :: comm-monoid-mult

29



begin

definition
one-sedge-def : 1 = ⇓

definition
mult-sedge-def : a ∗ b = (if a = ↓ then ↓ else b)

instance proof
fix a b c :: sedge
show a ∗ b ∗ c = a ∗ (b ∗ c) by (simp add :mult-sedge-def )
show 1 ∗ a = a by (simp add :mult-sedge-def one-sedge-def )
show a ∗ b = b ∗ a unfolding mult-sedge-def

by (cases a, simp) (cases b, auto)
qed

end

lemma sedge-UNIV :
UNIV = { LESS , LEQ }

proof (intro equalityI subsetI )
fix x show x ∈ { LESS , LEQ }

by (cases x ) auto
qed auto

instance sedge :: finite
proof

show finite (UNIV ::sedge set)
by (simp add : sedge-UNIV )

qed

types ′a scg = ( ′a, sedge) graph
types ′a acg = ( ′a, ′a scg) graph

4.2 Size-Change Termination

abbreviation (input)
desc P Q == ((∃n.∀ i≥n. P i) ∧ (∃∞i . Q i))

abbreviation (input)
dsc G i j ≡ has-edge G i LESS j

abbreviation (input)
eqp G i j ≡ has-edge G i LEQ j

abbreviation
eql :: ′a scg ⇒ ′a ⇒ ′a ⇒ bool
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(- ` - ; -)
where

eql G i j ≡ has-edge G i LESS j ∨ has-edge G i LEQ j

abbreviation (input) descat :: ( ′a, ′a scg) ipath ⇒ ′a sequence ⇒ nat ⇒ bool
where

descat p ϑ i ≡ has-edge (snd (p i)) (ϑ i) LESS (ϑ (Suc i))

abbreviation (input) eqat :: ( ′a, ′a scg) ipath ⇒ ′a sequence ⇒ nat ⇒ bool
where

eqat p ϑ i ≡ has-edge (snd (p i)) (ϑ i) LEQ (ϑ (Suc i))

abbreviation (input) eqlat :: ( ′a, ′a scg) ipath ⇒ ′a sequence ⇒ nat ⇒ bool
where

eqlat p ϑ i ≡ (has-edge (snd (p i)) (ϑ i) LESS (ϑ (Suc i))
∨ has-edge (snd (p i)) (ϑ i) LEQ (ϑ (Suc i)))

definition is-desc-thread :: ′a sequence ⇒ ( ′a, ′a scg) ipath ⇒ bool
where

is-desc-thread ϑ p = ((∃n.∀ i≥n. eqlat p ϑ i) ∧ (∃∞i . descat p ϑ i))

definition SCT :: ′a acg ⇒ bool
where

SCT A =
(∀ p. has-ipath A p −→ (∃ϑ. is-desc-thread ϑ p))

definition no-bad-graphs :: ′a acg ⇒ bool
where

no-bad-graphs A =
(∀n G . has-edge A n G n ∧ G ∗ G = G
−→ (∃ p. has-edge G p LESS p))

definition SCT ′ :: ′a acg ⇒ bool
where

SCT ′ A = no-bad-graphs (tcl A)

end

5 Proof of the Size-Change Principle

theory Correctness
imports Main Ramsey Misc-Tools Criterion
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begin

5.1 Auxiliary definitions

definition is-thread :: nat ⇒ ′a sequence ⇒ ( ′a, ′a scg) ipath ⇒ bool
where

is-thread n ϑ p = (∀ i≥n. eqlat p ϑ i)

definition is-fthread ::
′a sequence ⇒ ( ′a, ′a scg) ipath ⇒ nat ⇒ nat ⇒ bool

where
is-fthread ϑ mp i j = (∀ k∈{i ..<j}. eqlat mp ϑ k)

definition is-desc-fthread ::
′a sequence ⇒ ( ′a, ′a scg) ipath ⇒ nat ⇒ nat ⇒ bool

where
is-desc-fthread ϑ mp i j =
(is-fthread ϑ mp i j ∧
(∃ k∈{i ..<j}. descat mp ϑ k))

definition
has-fth p i j n m =
(∃ϑ. is-fthread ϑ p i j ∧ ϑ i = n ∧ ϑ j = m)

definition
has-desc-fth p i j n m =
(∃ϑ. is-desc-fthread ϑ p i j ∧ ϑ i = n ∧ ϑ j = m)

5.2 Everything is finite

lemma finite-range:
fixes f :: nat ⇒ ′a
assumes fin: finite (range f )
shows ∃ x . ∃∞i . f i = x

proof (rule classical)
assume ¬(∃ x . ∃∞i . f i = x )
hence ∀ x . ∃ j . ∀ i>j . f i 6= x

unfolding INFM-nat by blast
with choice
have ∃ j . ∀ x . ∀ i>(j x ). f i 6= x .
then obtain j where

neq :
∧

x i . j x < i =⇒ f i 6= x by blast

from fin have finite (range (j o f ))
by (auto simp:comp-def range-composition)

with finite-nat-bounded
obtain m where range (j o f ) ⊆ {..<m} by blast
hence j (f m) < m unfolding comp-def by auto

with neq [of f m m] show ?thesis by blast
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qed

lemma finite-range-ignore-prefix :
fixes f :: nat ⇒ ′a
assumes fA: finite A
assumes inA: ∀ x≥n. f x ∈ A
shows finite (range f )

proof −
have a: UNIV = {0 ..< (n::nat)} ∪ { x . n ≤ x } by auto
have b: range f = f ‘ {0 ..< n} ∪ f ‘ { x . n ≤ x }

(is . . . = ?A ∪ ?B)
by (unfold a) (simp add :image-Un)

have finite ?A by (rule finite-imageI ) simp
moreover
from inA have ?B ⊆ A by auto
from this fA have finite ?B by (rule finite-subset)
ultimately show ?thesis using b by simp

qed

definition
finite-graph G = finite (dest-graph G)

definition
all-finite G = (∀n H m. has-edge G n H m −→ finite-graph H )

definition
finite-acg A = (finite-graph A ∧ all-finite A)

definition
nodes G = fst ‘ dest-graph G ∪ snd ‘ snd ‘ dest-graph G

definition
edges G = fst ‘ snd ‘ dest-graph G

definition
smallnodes G =

⋃
(nodes ‘ edges G)

lemma thread-image-nodes:
assumes th: is-thread n ϑ p
shows ∀ i≥n. ϑ i ∈ nodes (snd (p i))

using prems
unfolding is-thread-def has-edge-def nodes-def
by force

lemma finite-nodes: finite-graph G =⇒ finite (nodes G)
unfolding finite-graph-def nodes-def
by auto

lemma nodes-subgraph: A ≤ B =⇒ nodes A ⊆ nodes B
unfolding graph-leq-def nodes-def
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by auto

lemma finite-edges: finite-graph G =⇒ finite (edges G)
unfolding finite-graph-def edges-def
by auto

lemma edges-sum[simp]: edges (A + B) = edges A ∪ edges B
unfolding edges-def graph-plus-def
by auto

lemma nodes-sum[simp]: nodes (A + B) = nodes A ∪ nodes B
unfolding nodes-def graph-plus-def
by auto

lemma finite-acg-subset :
A ≤ B =⇒ finite-acg B =⇒ finite-acg A
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def graph-leq-def
by (auto elim:finite-subset)

lemma scg-finite:
fixes G :: ′a scg
assumes fin: finite (nodes G)
shows finite-graph G
unfolding finite-graph-def

proof (rule finite-subset)
show dest-graph G ⊆ nodes G × UNIV × nodes G (is - ⊆ ?P)

unfolding nodes-def
by force

show finite ?P
by (intro finite-cartesian-product fin finite)

qed

lemma smallnodes-sum[simp]:
smallnodes (A + B) = smallnodes A ∪ smallnodes B
unfolding smallnodes-def
by auto

lemma in-smallnodes:
fixes A :: ′a acg
assumes e: has-edge A x G y
shows nodes G ⊆ smallnodes A

proof −
have fst (snd (x , G , y)) ∈ fst ‘ snd ‘ dest-graph A

unfolding has-edge-def
by (rule imageI )+ (rule e[unfolded has-edge-def ])

then have G ∈ edges A
unfolding edges-def by simp

thus ?thesis
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unfolding smallnodes-def
by blast

qed

lemma finite-smallnodes:
assumes fA: finite-acg A
shows finite (smallnodes A)
unfolding smallnodes-def edges-def

proof
from fA
show finite (nodes ‘ fst ‘ snd ‘ dest-graph A)

unfolding finite-acg-def finite-graph-def
by simp

fix M assume M ∈ nodes ‘ fst ‘ snd ‘ dest-graph A
then obtain n G m

where M : M = nodes G and nGm: (n,G ,m) ∈ dest-graph A
by auto

from fA
have all-finite A unfolding finite-acg-def by simp
with nGm have finite-graph G

unfolding all-finite-def has-edge-def by auto
with finite-nodes
show finite M

unfolding finite-graph-def M .
qed

lemma nodes-tcl :
nodes (tcl A) = nodes A

proof
show nodes A ⊆ nodes (tcl A)

apply (rule nodes-subgraph)
by (subst tcl-unfold-right) simp

show nodes (tcl A) ⊆ nodes A
proof

fix x assume x ∈ nodes (tcl A)
then obtain z G y

where z : z ∈ dest-graph (tcl A)
and dis: z = (x , G , y) ∨ z = (y , G , x )
unfolding nodes-def
by auto force+

from dis
show x ∈ nodes A
proof

assume z = (x , G , y)
with z have has-edge (tcl A) x G y unfolding has-edge-def by simp
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then obtain n where n > 0 and An: has-edge (A ˆ n) x G y
unfolding in-tcl by auto

then obtain n ′ where n = Suc n ′ by (cases n, auto)
hence A ˆ n = A ∗ A ˆ n ′ by (simp add :power-Suc)
with An obtain e k

where has-edge A x e k by (auto simp:in-grcomp)
thus x ∈ nodes A unfolding has-edge-def nodes-def

by force
next

assume z = (y , G , x )
with z have has-edge (tcl A) y G x unfolding has-edge-def by simp
then obtain n where n > 0 and An: has-edge (A ˆ n) y G x

unfolding in-tcl by auto
then obtain n ′ where n = Suc n ′ by (cases n, auto)
hence A ˆ n = A ˆ n ′ ∗ A by (simp add :power-Suc power-commutes)
with An obtain e k

where has-edge A k e x by (auto simp:in-grcomp)
thus x ∈ nodes A unfolding has-edge-def nodes-def

by force
qed

qed
qed

lemma smallnodes-tcl :
fixes A :: ′a acg
shows smallnodes (tcl A) = smallnodes A

proof (intro equalityI subsetI )
fix n assume n ∈ smallnodes (tcl A)
then obtain x G y where edge: has-edge (tcl A) x G y

and n ∈ nodes G
unfolding smallnodes-def edges-def has-edge-def
by auto

from 〈n ∈ nodes G〉

have n ∈ fst ‘ dest-graph G ∨ n ∈ snd ‘ snd ‘ dest-graph G
(is ?A ∨ ?B)
unfolding nodes-def by blast

thus n ∈ smallnodes A
proof

assume ?A
then obtain m e where A: has-edge G n e m

unfolding has-edge-def by auto

have tcl A = A ∗ star A
unfolding tcl-def
by (simp add : star-commute[of A A A, simplified ])

with edge
have has-edge (A ∗ star A) x G y by simp
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then obtain H H ′ z
where AH : has-edge A x H z and G : G = H ∗ H ′

by (auto simp:in-grcomp)
from A
obtain m ′ e ′ where has-edge H n e ′ m ′

by (auto simp:G in-grcomp)
hence n ∈ nodes H unfolding nodes-def has-edge-def

by force
with in-smallnodes[OF AH ] show n ∈ smallnodes A ..

next
assume ?B
then obtain m e where B : has-edge G m e n

unfolding has-edge-def by auto

with edge
have has-edge (star A ∗ A) x G y by (simp add :tcl-def )
then obtain H H ′ z

where AH ′: has-edge A z H ′ y and G : G = H ∗ H ′

by (auto simp:in-grcomp)
from B
obtain m ′ e ′ where has-edge H ′ m ′ e ′ n

by (auto simp:G in-grcomp)
hence n ∈ nodes H ′ unfolding nodes-def has-edge-def

by force
with in-smallnodes[OF AH ′] show n ∈ smallnodes A ..

qed
next

fix x assume x ∈ smallnodes A
then show x ∈ smallnodes (tcl A)

by (subst tcl-unfold-right) simp
qed

lemma finite-nodegraphs:
assumes F : finite F
shows finite { G :: ′a scg . nodes G ⊆ F } (is finite ?P)

proof (rule finite-subset)
show ?P ⊆ Graph ‘ (Pow (F × UNIV × F )) (is ?P ⊆ ?Q)
proof

fix x assume xP : x ∈ ?P
obtain S where x [simp]: x = Graph S

by (cases x ) auto
from xP
show x ∈ ?Q

apply (simp add :nodes-def )
apply (rule imageI )
apply (rule PowI )
apply force
done

qed
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show finite ?Q
by (auto intro:finite-imageI finite-cartesian-product F finite)

qed

lemma finite-graphI :
fixes A :: ′a acg
assumes fin: finite (nodes A) finite (smallnodes A)
shows finite-graph A

proof −
obtain S where A[simp]: A = Graph S

by (cases A) auto

have finite S
proof (rule finite-subset)

show S ⊆ nodes A × { G :: ′a scg . nodes G ⊆ smallnodes A } × nodes A
(is S ⊆ ?T )

proof
fix x assume xS : x ∈ S
obtain a b c where x [simp]: x = (a, b, c)

by (cases x ) auto

then have edg : has-edge A a b c
unfolding has-edge-def using xS
by simp

hence a ∈ nodes A c ∈ nodes A
unfolding nodes-def has-edge-def by force+

moreover
from edg have nodes b ⊆ smallnodes A by (rule in-smallnodes)
hence b ∈ { G :: ′a scg . nodes G ⊆ smallnodes A } by simp
ultimately show x ∈ ?T by simp

qed

show finite ?T
by (intro finite-cartesian-product fin finite-nodegraphs)

qed
thus ?thesis

unfolding finite-graph-def by simp
qed

lemma smallnodes-allfinite:
fixes A :: ′a acg
assumes fin: finite (smallnodes A)
shows all-finite A
unfolding all-finite-def

proof (intro allI impI )
fix n H m assume has-edge A n H m
then have nodes H ⊆ smallnodes A
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by (rule in-smallnodes)
then have finite (nodes H )

by (rule finite-subset) (rule fin)
thus finite-graph H by (rule scg-finite)

qed

lemma finite-tcl :
fixes A :: ′a acg
shows finite-acg (tcl A) ←→ finite-acg A

proof
assume f : finite-acg A
from f have g : finite-graph A and all-finite A

unfolding finite-acg-def by auto

from g have finite (nodes A) by (rule finite-nodes)
then have finite (nodes (tcl A)) unfolding nodes-tcl .
moreover
from f have finite (smallnodes A) by (rule finite-smallnodes)
then have fs: finite (smallnodes (tcl A)) unfolding smallnodes-tcl .
ultimately
have finite-graph (tcl A) by (rule finite-graphI )

moreover from fs have all-finite (tcl A)
by (rule smallnodes-allfinite)

ultimately show finite-acg (tcl A) unfolding finite-acg-def ..
next

assume a: finite-acg (tcl A)
have A ≤ tcl A by (rule less-tcl)
thus finite-acg A using a

by (rule finite-acg-subset)
qed

lemma finite-acg-empty : finite-acg (Graph {})
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by simp

lemma finite-acg-ins:
assumes fA: finite-acg (Graph A)
assumes fG : finite G
shows finite-acg (Graph (insert (a, Graph G , b) A))
using fA fG
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by auto

lemmas finite-acg-simps = finite-acg-empty finite-acg-ins finite-graph-def
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5.3 Contraction and more

abbreviation
pdesc P == (fst P , prod P , end-node P)

lemma pdesc-acgplus:
assumes has-ipath A p
and i < j
shows has-edge (tcl A) (fst (p〈i ,j 〉)) (prod (p〈i ,j 〉)) (end-node (p〈i ,j 〉))
unfolding plus-paths
apply (rule exI )
apply (insert prems)
by (auto intro:sub-path-is-path[of A p i j ] simp:sub-path-def )

lemma combine-fthreads:
assumes range: i < j j ≤ k
shows
has-fth p i k m r =
(∃n. has-fth p i j m n ∧ has-fth p j k n r) (is ?L = ?R)

proof (intro iffI )
assume ?L
then obtain ϑ

where is-fthread ϑ p i k
and [simp]: ϑ i = m ϑ k = r
by (auto simp:has-fth-def )

with range
have is-fthread ϑ p i j and is-fthread ϑ p j k

by (auto simp:is-fthread-def )
hence has-fth p i j m (ϑ j ) and has-fth p j k (ϑ j ) r

by (auto simp:has-fth-def )
thus ?R by auto

next
assume ?R
then obtain n ϑ1 ϑ2

where ths: is-fthread ϑ1 p i j is-fthread ϑ2 p j k
and [simp]: ϑ1 i = m ϑ1 j = n ϑ2 j = n ϑ2 k = r
by (auto simp:has-fth-def )

let ?ϑ = (λi . if i < j then ϑ1 i else ϑ2 i)
have is-fthread ?ϑ p i k

unfolding is-fthread-def
proof

fix l assume range: l ∈ {i ..<k}

show eqlat p ?ϑ l
proof (cases rule:three-cases)

assume Suc l < j
with ths range show ?thesis
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unfolding is-fthread-def Ball-def
by simp

next
assume Suc l = j
hence l < j ϑ2 (Suc l) = ϑ1 (Suc l) by auto
with ths range show ?thesis

unfolding is-fthread-def Ball-def
by simp

next
assume j ≤ l
with ths range show ?thesis

unfolding is-fthread-def Ball-def
by simp

qed arith
qed
moreover
have ?ϑ i = m ?ϑ k = r using range by auto
ultimately show has-fth p i k m r

by (auto simp:has-fth-def )
qed

lemma desc-is-fthread :
is-desc-fthread ϑ p i k =⇒ is-fthread ϑ p i k
unfolding is-desc-fthread-def
by simp

lemma combine-dfthreads:
assumes range: i < j j ≤ k
shows
has-desc-fth p i k m r =
(∃n. (has-desc-fth p i j m n ∧ has-fth p j k n r)
∨ (has-fth p i j m n ∧ has-desc-fth p j k n r)) (is ?L = ?R)

proof
assume ?L
then obtain ϑ

where desc: is-desc-fthread ϑ p i k
and [simp]: ϑ i = m ϑ k = r
by (auto simp:has-desc-fth-def )

hence is-fthread ϑ p i k
by (simp add : desc-is-fthread)

with range have fths: is-fthread ϑ p i j is-fthread ϑ p j k
unfolding is-fthread-def
by auto

hence hfths: has-fth p i j m (ϑ j ) has-fth p j k (ϑ j ) r
by (auto simp:has-fth-def )
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from desc obtain l
where i ≤ l l < k
and descat p ϑ l
by (auto simp:is-desc-fthread-def )

with fths
have is-desc-fthread ϑ p i j ∨ is-desc-fthread ϑ p j k

unfolding is-desc-fthread-def
by (cases l < j ) auto

hence has-desc-fth p i j m (ϑ j ) ∨ has-desc-fth p j k (ϑ j ) r
by (auto simp:has-desc-fth-def )

with hfths show ?R
by auto

next
assume ?R
then obtain n ϑ1 ϑ2

where (is-desc-fthread ϑ1 p i j ∧ is-fthread ϑ2 p j k)
∨ (is-fthread ϑ1 p i j ∧ is-desc-fthread ϑ2 p j k)
and [simp]: ϑ1 i = m ϑ1 j = n ϑ2 j = n ϑ2 k = r
by (auto simp:has-fth-def has-desc-fth-def )

hence ths2 : is-fthread ϑ1 p i j is-fthread ϑ2 p j k
and dths: is-desc-fthread ϑ1 p i j ∨ is-desc-fthread ϑ2 p j k
by (auto simp:desc-is-fthread)

let ?ϑ = (λi . if i < j then ϑ1 i else ϑ2 i)
have is-fthread ?ϑ p i k

unfolding is-fthread-def
proof

fix l assume range: l ∈ {i ..<k}

show eqlat p ?ϑ l
proof (cases rule:three-cases)

assume Suc l < j
with ths2 range show ?thesis

unfolding is-fthread-def Ball-def
by simp

next
assume Suc l = j
hence l < j ϑ2 (Suc l) = ϑ1 (Suc l) by auto
with ths2 range show ?thesis

unfolding is-fthread-def Ball-def
by simp

next
assume j ≤ l
with ths2 range show ?thesis

unfolding is-fthread-def Ball-def
by simp

qed arith
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qed
moreover
from dths
have ∃ l . i ≤ l ∧ l < k ∧ descat p ?ϑ l
proof

assume is-desc-fthread ϑ1 p i j

then obtain l where range: i ≤ l l < j and descat p ϑ1 l
unfolding is-desc-fthread-def Bex-def by auto

hence descat p ?ϑ l
by (cases Suc l = j , auto)

with 〈j ≤ k 〉 and range show ?thesis
by (rule-tac x=l in exI , auto)

next
assume is-desc-fthread ϑ2 p j k
then obtain l where range: j ≤ l l < k and descat p ϑ2 l

unfolding is-desc-fthread-def Bex-def by auto
with 〈i < j 〉 have descat p ?ϑ l i ≤ l

by auto
with range show ?thesis

by (rule-tac x=l in exI , auto)
qed
ultimately have is-desc-fthread ?ϑ p i k

by (simp add : is-desc-fthread-def Bex-def )

moreover
have ?ϑ i = m ?ϑ k = r using range by auto

ultimately show has-desc-fth p i k m r
by (auto simp:has-desc-fth-def )

qed

lemma fth-single:
has-fth p i (Suc i) m n = eql (snd (p i)) m n (is ?L = ?R)

proof
assume ?L thus ?R

unfolding is-fthread-def Ball-def has-fth-def
by auto

next
let ?ϑ = λk . if k = i then m else n
assume edge: ?R
hence is-fthread ?ϑ p i (Suc i) ∧ ?ϑ i = m ∧ ?ϑ (Suc i) = n

unfolding is-fthread-def Ball-def
by auto

thus ?L
unfolding has-fth-def
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by auto
qed

lemma desc-fth-single:
has-desc-fth p i (Suc i) m n =
dsc (snd (p i)) m n (is ?L = ?R)

proof
assume ?L thus ?R

unfolding is-desc-fthread-def has-desc-fth-def is-fthread-def
Bex-def
by (elim exE conjE ) (case-tac k = i , auto)

next
let ?ϑ = λk . if k = i then m else n
assume edge: ?R
hence is-desc-fthread ?ϑ p i (Suc i) ∧ ?ϑ i = m ∧ ?ϑ (Suc i) = n

unfolding is-desc-fthread-def is-fthread-def Ball-def Bex-def
by auto

thus ?L
unfolding has-desc-fth-def
by auto

qed

lemma mk-eql : (G ` m ;e n) =⇒ eql G m n
by (cases e, auto)

lemma eql-scgcomp:
eql (G ∗ H ) m r =
(∃n. eql G m n ∧ eql H n r) (is ?L = ?R)

proof
show ?L =⇒ ?R

by (auto simp:in-grcomp intro!:mk-eql)

assume ?R
then obtain n where l : eql G m n and r :eql H n r by auto
thus ?L

by (cases dsc G m n) (auto simp:in-grcomp mult-sedge-def )
qed

lemma desc-scgcomp:
dsc (G ∗ H ) m r =
(∃n. (dsc G m n ∧ eql H n r) ∨ (eqp G m n ∧ dsc H n r)) (is ?L = ?R)

proof
show ?R =⇒ ?L by (auto simp:in-grcomp mult-sedge-def )

assume ?L
thus ?R

by (auto simp:in-grcomp mult-sedge-def )
(case-tac e, auto, case-tac e ′, auto)

qed

44



lemma has-fth-unfold :
assumes i < j
shows has-fth p i j m n =

(∃ r . has-fth p i (Suc i) m r ∧ has-fth p (Suc i) j r n)
by (rule combine-fthreads) (insert 〈i < j 〉, auto)

lemma has-dfth-unfold :
assumes range: i < j
shows
has-desc-fth p i j m r =
(∃n. (has-desc-fth p i (Suc i) m n ∧ has-fth p (Suc i) j n r)
∨ (has-fth p i (Suc i) m n ∧ has-desc-fth p (Suc i) j n r))
by (rule combine-dfthreads) (insert 〈i < j 〉, auto)

lemma Lemma7a:
i ≤ j =⇒ has-fth p i j m n = eql (prod (p〈i ,j 〉)) m n

proof (induct i arbitrary : m rule:inc-induct)
case base show ?case

unfolding has-fth-def is-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def )

next
case (step i)
note IH = 〈

∧
m. has-fth p (Suc i) j m n =

eql (prod (p〈Suc i ,j 〉)) m n〉

have has-fth p i j m n
= (∃ r . has-fth p i (Suc i) m r ∧ has-fth p (Suc i) j r n)
by (rule has-fth-unfold [OF 〈i < j 〉])

also have . . . = (∃ r . has-fth p i (Suc i) m r
∧ eql (prod (p〈Suc i ,j 〉)) r n)
by (simp only :IH )

also have . . . = (∃ r . eql (snd (p i)) m r
∧ eql (prod (p〈Suc i ,j 〉)) r n)
by (simp only :fth-single)

also have . . . = eql (snd (p i) ∗ prod (p〈Suc i ,j 〉)) m n
by (simp only :eql-scgcomp)

also have . . . = eql (prod (p〈i ,j 〉)) m n
by (simp only :prod-unfold [OF 〈i < j 〉])

finally show ?case .
qed

lemma Lemma7b:
assumes i ≤ j
shows

has-desc-fth p i j m n =
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dsc (prod (p〈i ,j 〉)) m n
using prems
proof (induct i arbitrary : m rule:inc-induct)

case base show ?case
unfolding has-desc-fth-def is-desc-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def )

next
case (step i)
thus ?case

by (simp only :prod-unfold desc-scgcomp desc-fth-single
has-dfth-unfold fth-single Lemma7a) auto

qed

lemma descat-contract :
assumes [simp]: increasing s
shows
descat (contract s p) ϑ i =
has-desc-fth p (s i) (s (Suc i)) (ϑ i) (ϑ (Suc i))
by (simp add :Lemma7b increasing-weak contract-def )

lemma eqlat-contract :
assumes [simp]: increasing s
shows
eqlat (contract s p) ϑ i =
has-fth p (s i) (s (Suc i)) (ϑ i) (ϑ (Suc i))
by (auto simp:Lemma7a increasing-weak contract-def )

5.3.1 Connecting threads

definition
connect s ϑs = (λk . ϑs (section-of s k) k)

lemma next-in-range:
assumes [simp]: increasing s
assumes a: k ∈ section s i
shows (Suc k ∈ section s i) ∨ (Suc k ∈ section s (Suc i))

proof −
from a have k < s (Suc i) by simp

hence Suc k < s (Suc i) ∨ Suc k = s (Suc i) by arith
thus ?thesis
proof

assume Suc k < s (Suc i)
with a have Suc k ∈ section s i by simp
thus ?thesis ..

next
assume eq : Suc k = s (Suc i)
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with increasing-strict have Suc k < s (Suc (Suc i)) by simp
with eq have Suc k ∈ section s (Suc i) by simp
thus ?thesis ..

qed
qed

lemma connect-threads:
assumes [simp]: increasing s
assumes connected : ϑs i (s (Suc i)) = ϑs (Suc i) (s (Suc i))
assumes fth: is-fthread (ϑs i) p (s i) (s (Suc i))

shows
is-fthread (connect s ϑs) p (s i) (s (Suc i))
unfolding is-fthread-def

proof
fix k assume krng : k ∈ section s i

with fth have eqlat : eqlat p (ϑs i) k
unfolding is-fthread-def by simp

from krng and next-in-range
have (Suc k ∈ section s i) ∨ (Suc k ∈ section s (Suc i))

by simp
thus eqlat p (connect s ϑs) k
proof

assume Suc k ∈ section s i
with krng eqlat show ?thesis

unfolding connect-def
by (simp only :section-of-known 〈increasing s〉)

next
assume skrng : Suc k ∈ section s (Suc i)
with krng have Suc k = s (Suc i) by auto

with krng skrng eqlat show ?thesis
unfolding connect-def
by (simp only :section-of-known connected [symmetric] 〈increasing s〉)

qed
qed

lemma connect-dthreads:
assumes inc[simp]: increasing s
assumes connected : ϑs i (s (Suc i)) = ϑs (Suc i) (s (Suc i))
assumes fth: is-desc-fthread (ϑs i) p (s i) (s (Suc i))

shows
is-desc-fthread (connect s ϑs) p (s i) (s (Suc i))
unfolding is-desc-fthread-def
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proof
show is-fthread (connect s ϑs) p (s i) (s (Suc i))

apply (rule connect-threads)
apply (insert fth)
by (auto simp:connected is-desc-fthread-def )

from fth
obtain k where dsc: descat p (ϑs i) k and krng : k ∈ section s i

unfolding is-desc-fthread-def by blast

from krng and next-in-range
have (Suc k ∈ section s i) ∨ (Suc k ∈ section s (Suc i))

by simp
hence descat p (connect s ϑs) k
proof

assume Suc k ∈ section s i
with krng dsc show ?thesis unfolding connect-def

by (simp only :section-of-known inc)
next

assume skrng : Suc k ∈ section s (Suc i)
with krng have Suc k = s (Suc i) by auto

with krng skrng dsc show ?thesis unfolding connect-def
by (simp only :section-of-known connected [symmetric] inc)

qed
with krng show ∃ k∈section s i . descat p (connect s ϑs) k ..

qed

lemma mk-inf-thread :
assumes [simp]: increasing s
assumes fths:

∧
i . i > n =⇒ is-fthread ϑ p (s i) (s (Suc i))

shows is-thread (s (Suc n)) ϑ p
unfolding is-thread-def

proof (intro allI impI )
fix j assume st : s (Suc n) ≤ j

let ?k = section-of s j
from in-section-of st
have rs: j ∈ section s ?k by simp

with st have s (Suc n) < s (Suc ?k) by simp
with increasing-bij have n < ?k by simp
with rs and fths[of ?k ]
show eqlat p ϑ j by (simp add :is-fthread-def )

qed

lemma mk-inf-desc-thread :
assumes [simp]: increasing s
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assumes fths:
∧

i . i > n =⇒ is-fthread ϑ p (s i) (s (Suc i))
assumes fdths: ∃∞i . is-desc-fthread ϑ p (s i) (s (Suc i))
shows is-desc-thread ϑ p
unfolding is-desc-thread-def

proof (intro exI conjI )

from mk-inf-thread [of s n ϑ p] fths
show ∀ i≥s (Suc n). eqlat p ϑ i

by (fold is-thread-def ) simp

show ∃∞l . descat p ϑ l
unfolding INFM-nat

proof
fix i

let ?k = section-of s i
from fdths obtain j

where ?k < j is-desc-fthread ϑ p (s j ) (s (Suc j ))
unfolding INFM-nat by auto

then obtain l where s j ≤ l and desc: descat p ϑ l
unfolding is-desc-fthread-def
by auto

have i < s (Suc ?k) by (rule section-of2 ) simp
also have . . . ≤ s j

by (rule increasing-weak [OF 〈increasing s〉]) (insert 〈?k < j 〉, arith)
also note 〈. . . ≤ l 〉
finally have i < l .
with desc
show ∃ l . i < l ∧ descat p ϑ l by blast

qed
qed

lemma desc-ex-choice:
assumes A: ((∃n.∀ i≥n. ∃ x . P x i) ∧ (∃∞i . ∃ x . Q x i))
and imp:

∧
x i . Q x i =⇒ P x i

shows ∃ xs. ((∃n.∀ i≥n. P (xs i) i) ∧ (∃∞i . Q (xs i) i))
(is ∃ xs. ?Ps xs ∧ ?Qs xs)

proof
let ?w = λi . (if (∃ x . Q x i) then (SOME x . Q x i)

else (SOME x . P x i))

from A
obtain n where P :

∧
i . n ≤ i =⇒ ∃ x . P x i

by auto
{

fix i :: ′a assume n ≤ i
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have P (?w i) i
proof (cases ∃ x . Q x i)

case True
hence Q (?w i) i by (auto intro:someI )
with imp show P (?w i) i .

next
case False
with P [OF 〈n ≤ i 〉] show P (?w i) i

by (auto intro:someI )
qed

}

hence ?Ps ?w by (rule-tac x=n in exI ) auto

moreover
from A have ∃∞i . (∃ x . Q x i) ..
hence ?Qs ?w by (rule INFM-mono) (auto intro:someI )
ultimately
show ?Ps ?w ∧ ?Qs ?w ..

qed

lemma dthreads-join:
assumes [simp]: increasing s
assumes dthread : is-desc-thread ϑ (contract s p)
shows ∃ϑs. desc (λi . is-fthread (ϑs i) p (s i) (s (Suc i))

∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

(λi . is-desc-fthread (ϑs i) p (s i) (s (Suc i))
∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

apply (rule desc-ex-choice)
apply (insert dthread)
apply (simp only :is-desc-thread-def )
apply (simp add :eqlat-contract)
apply (simp add :descat-contract)
apply (simp only :has-fth-def has-desc-fth-def )
by (auto simp:is-desc-fthread-def )

lemma INFM-drop-prefix :
(∃∞i ::nat . i > n ∧ P i) = (∃∞i . P i)
apply (auto simp:INFM-nat)
apply (drule-tac x = max m n in spec)
apply (elim exE conjE )
apply (rule-tac x = na in exI )
by auto
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lemma contract-keeps-threads:
assumes inc[simp]: increasing s
shows (∃ϑ. is-desc-thread ϑ p)
←→ (∃ϑ. is-desc-thread ϑ (contract s p))
(is ?A ←→ ?B)

proof
assume ?A
then obtain ϑ n

where fr : ∀ i≥n. eqlat p ϑ i
and ds: ∃∞i . descat p ϑ i

unfolding is-desc-thread-def
by auto

let ?cϑ = λi . ϑ (s i)

have is-desc-thread ?cϑ (contract s p)
unfolding is-desc-thread-def

proof (intro exI conjI )

show ∀ i≥n. eqlat (contract s p) ?cϑ i
proof (intro allI impI )

fix i assume n ≤ i
also have i ≤ s i

using increasing-inc by auto
finally have n ≤ s i .

with fr have is-fthread ϑ p (s i) (s (Suc i))
unfolding is-fthread-def by auto

hence has-fth p (s i) (s (Suc i)) (ϑ (s i)) (ϑ (s (Suc i)))
unfolding has-fth-def by auto

with less-imp-le[OF increasing-strict ]
have eql (prod (p〈s i ,s (Suc i)〉)) (ϑ (s i)) (ϑ (s (Suc i)))

by (simp add :Lemma7a)
thus eqlat (contract s p) ?cϑ i unfolding contract-def

by auto
qed

show ∃∞i . descat (contract s p) ?cϑ i
unfolding INFM-nat

proof
fix i

let ?K = section-of s (max (s (Suc i)) n)
from 〈∃∞i . descat p ϑ i 〉 obtain j

where s (Suc ?K ) < j descat p ϑ j
unfolding INFM-nat by blast
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let ?L = section-of s j
{

fix x assume r : x ∈ section s ?L

have e1 : max (s (Suc i)) n < s (Suc ?K ) by (rule section-of2 ) simp
note 〈s (Suc ?K ) < j 〉

also have j < s (Suc ?L)
by (rule section-of2 ) simp

finally have Suc ?K ≤ ?L
by (simp add :increasing-bij )

with increasing-weak have s (Suc ?K ) ≤ s ?L by simp
with e1 r have max (s (Suc i)) n < x by simp

hence (s (Suc i)) < x n < x by auto
}
note range-est = this

have is-desc-fthread ϑ p (s ?L) (s (Suc ?L))
unfolding is-desc-fthread-def is-fthread-def

proof
show ∀m∈section s ?L. eqlat p ϑ m
proof

fix m assume m∈section s ?L
with range-est(2 ) have n < m .
with fr show eqlat p ϑ m by simp

qed

from in-section-of inc less-imp-le[OF 〈s (Suc ?K ) < j 〉]
have j ∈ section s ?L .

with 〈descat p ϑ j 〉

show ∃m∈section s ?L. descat p ϑ m ..
qed

with less-imp-le[OF increasing-strict ]
have a: descat (contract s p) ?cϑ ?L

unfolding contract-def Lemma7b[symmetric]
by (auto simp:Lemma7b[symmetric] has-desc-fth-def )

have i < ?L
proof (rule classical)

assume ¬ i < ?L
hence s ?L < s (Suc i)

by (simp add :increasing-bij )
also have . . . < s ?L

by (rule range-est(1 )) (simp add :increasing-strict)
finally show ?thesis .

qed
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with a show ∃ l . i < l ∧ descat (contract s p) ?cϑ l
by blast

qed
qed
with exI show ?B .

next
assume ?B
then obtain ϑ

where dthread : is-desc-thread ϑ (contract s p) ..

with dthreads-join inc
obtain ϑs where ths-spec:

desc (λi . is-fthread (ϑs i) p (s i) (s (Suc i))
∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

(λi . is-desc-fthread (ϑs i) p (s i) (s (Suc i))
∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

(is desc ?alw ?inf )
by blast

then obtain n where fr : ∀ i≥n. ?alw i by blast
hence connected :

∧
i . n < i =⇒ ϑs i (s (Suc i)) = ϑs (Suc i) (s (Suc i))

by auto

let ?jϑ = connect s ϑs

from fr ths-spec have ths-spec2 :∧
i . i > n =⇒ is-fthread (ϑs i) p (s i) (s (Suc i))
∃∞i . is-desc-fthread (ϑs i) p (s i) (s (Suc i))

by (auto intro:INFM-mono)

have p1 :
∧

i . i > n =⇒ is-fthread ?jϑ p (s i) (s (Suc i))
by (rule connect-threads) (auto simp:connected ths-spec2 )

from ths-spec2 (2 )
have ∃∞i . n < i ∧ is-desc-fthread (ϑs i) p (s i) (s (Suc i))

unfolding INFM-drop-prefix .

hence p2 : ∃∞i . is-desc-fthread ?jϑ p (s i) (s (Suc i))
apply (rule INFM-mono)
apply (rule connect-dthreads)
by (auto simp:connected)

with 〈increasing s〉 p1
have is-desc-thread ?jϑ p

by (rule mk-inf-desc-thread)
with exI show ?A .

qed
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lemma repeated-edge:
assumes

∧
i . i > n =⇒ dsc (snd (p i)) k k

shows is-desc-thread (λi . k) p
proof−

have th: ∀ m. ∃na>m. n < na by arith
show ?thesis using prems
unfolding is-desc-thread-def
apply (auto)
apply (rule-tac x=Suc n in exI , auto)
apply (rule INFM-mono[where P=λi . n < i ])
apply (simp only :INFM-nat)
by (auto simp add : th)

qed

lemma fin-from-inf :
assumes is-thread n ϑ p
assumes n < i
assumes i < j
shows is-fthread ϑ p i j
using prems
unfolding is-thread-def is-fthread-def
by auto

5.4 Ramsey’s Theorem

definition
set2pair S = (THE (x ,y). x < y ∧ S = {x ,y})

lemma set2pair-conv :
fixes x y :: nat
assumes x < y
shows set2pair {x , y} = (x , y)
unfolding set2pair-def

proof (rule the-equality , simp-all only :split-conv split-paired-all)
from 〈x < y〉 show x < y ∧ {x ,y}={x ,y} by simp

next
fix a b
assume a: a < b ∧ {x , y} = {a, b}
hence {a, b} = {x , y} by simp-all
hence (a, b) = (x , y) ∨ (a, b) = (y , x )

by (cases x = y) auto
thus (a, b) = (x , y)
proof

assume (a, b) = (y , x )
with a and 〈x < y〉

show ?thesis by auto
qed
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qed

definition
set2list = inv set

lemma finite-set2list :
assumes finite S
shows set (set2list S ) = S
unfolding set2list-def

proof (rule f-inv-f )
from 〈finite S 〉 have ∃ l . set l = S

by (rule finite-list)
thus S ∈ range set

unfolding image-def
by auto

qed

corollary RamseyNatpairs:
fixes S :: ′a set

and f :: nat × nat ⇒ ′a

assumes finite S
and inS :

∧
x y . x < y =⇒ f (x , y) ∈ S

obtains T :: nat set and s :: ′a
where infinite T

and s ∈ S
and

∧
x y . [[x ∈ T ; y ∈ T ; x < y ]] =⇒ f (x , y) = s

proof −
from 〈finite S 〉

have set (set2list S ) = S by (rule finite-set2list)
then
obtain l where S : S = set l by auto
also from set-conv-nth have . . . = {l ! i |i . i < length l} .
finally have S = {l ! i |i . i < length l} .

let ?s = length l

from inS
have index-less:

∧
x y . x 6= y =⇒ index-of l (f (set2pair {x , y})) < ?s

proof −
fix x y :: nat
assume neq : x 6= y
have f (set2pair {x , y}) ∈ S
proof (cases x < y)

case True hence set2pair {x , y} = (x , y)
by (rule set2pair-conv)

with True inS
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show ?thesis by simp
next

case False
with neq have y-less: y < x by simp
have x :{x ,y} = {y ,x} by auto
with y-less have set2pair {x , y} = (y , x )

by (simp add :set2pair-conv)
with y-less inS
show ?thesis by simp

qed

thus index-of l (f (set2pair {x , y})) < length l
by (simp add : S index-of-length)

qed

have ∃Y . infinite Y ∧
(∃ t . t < ?s ∧

(∀ x∈Y . ∀ y∈Y . x 6= y −→
index-of l (f (set2pair {x , y})) = t))

by (rule Ramsey2 [of UNIV ::nat set , simplified ])
(auto simp:index-less)

then obtain T i
where inf : infinite T
and i : i < length l
and d :

∧
x y . [[x ∈ T ; y∈T ; x 6= y ]]

=⇒ index-of l (f (set2pair {x , y})) = i
by auto

have l ! i ∈ S unfolding S using i
by (rule nth-mem)

moreover
have

∧
x y . x ∈ T =⇒ y∈T =⇒ x < y

=⇒ f (x , y) = l ! i
proof −

fix x y assume x ∈ T y ∈ T x < y
with d have

index-of l (f (set2pair {x , y})) = i by auto
with 〈x < y〉

have i = index-of l (f (x , y))
by (simp add :set2pair-conv)

with 〈i < length l 〉
show f (x , y) = l ! i

by (auto intro:index-of-member [symmetric] iff :index-of-length)
qed
moreover note inf
ultimately
show ?thesis using prems

by blast
qed
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5.5 Main Result

theorem LJA-Theorem4 :
assumes finite-acg A
shows SCT A ←→ SCT ′ A

proof
assume SCT A

show SCT ′ A
proof (rule classical)

assume ¬ SCT ′ A

then obtain n G
where in-closure: (tcl A) ` n ;G n
and idemp: G ∗ G = G
and no-strict-arc: ∀ p. ¬(G ` p ;↓ p)
unfolding SCT ′-def no-bad-graphs-def by auto

from in-closure obtain k
where k-pow : A ˆ k ` n ;G n
and 0 < k
unfolding in-tcl by auto

from power-induces-path k-pow
obtain loop where loop-props:

has-fpath A loop
n = fst loop n = end-node loop
G = prod loop k = length (snd loop) .

with 〈0 < k 〉 and path-loop-graph
have has-ipath A (omega loop) by blast
with 〈SCT A〉

have thread : ∃ϑ. is-desc-thread ϑ (omega loop) by (auto simp:SCT-def )

let ?s = λi . k ∗ i
let ?cp = λi ::nat . (n, G)

from loop-props have fst loop = end-node loop by auto
with 〈0 < k 〉 〈k = length (snd loop)〉
have

∧
i . (omega loop)〈?s i ,?s (Suc i)〉 = loop

by (rule sub-path-loop)

with 〈n = fst loop〉 〈G = prod loop〉 〈k = length (snd loop)〉
have a: contract ?s (omega loop) = ?cp

unfolding contract-def
by (simp add :path-loop-def split-def fst-p0 )

from 〈0 < k 〉 have increasing ?s
by (auto simp:increasing-def )

with thread have ∃ϑ. is-desc-thread ϑ ?cp
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unfolding a[symmetric]
by (unfold contract-keeps-threads[symmetric])

then obtain ϑ where desc: is-desc-thread ϑ ?cp by auto

then obtain n where thr : is-thread n ϑ ?cp
unfolding is-desc-thread-def is-thread-def
by auto

have finite (range ϑ)
proof (rule finite-range-ignore-prefix )

from 〈finite-acg A〉

have finite-acg (tcl A) by (simp add :finite-tcl)
with in-closure have finite-graph G

unfolding finite-acg-def all-finite-def by blast
thus finite (nodes G) by (rule finite-nodes)

from thread-image-nodes[OF thr ]
show ∀ i≥n. ϑ i ∈ nodes G by simp

qed
with finite-range
obtain p where inf-visit : ∃∞i . ϑ i = p by auto

then obtain i where n < i ϑ i = p
by (auto simp:INFM-nat)

from desc
have ∃∞i . descat ?cp ϑ i

unfolding is-desc-thread-def by auto
then obtain j

where i < j and descat ?cp ϑ j
unfolding INFM-nat by auto

from inf-visit obtain k where j < k ϑ k = p
by (auto simp:INFM-nat)

from 〈i < j 〉 〈j < k 〉 〈n < i 〉 thr
fin-from-inf [of n ϑ ?cp]
〈descat ?cp ϑ j 〉

have is-desc-fthread ϑ ?cp i k
unfolding is-desc-fthread-def
by auto

with 〈ϑ k = p〉 〈ϑ i = p〉

have dfth: has-desc-fth ?cp i k p p
unfolding has-desc-fth-def
by auto

from 〈i < j 〉 〈j < k 〉 have i < k by auto
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hence prod (?cp〈i , k〉) = G
proof (induct i rule:strict-inc-induct)

case base thus ?case by (simp add :sub-path-def )
next

case (step i) thus ?case
by (simp add :sub-path-def upt-rec[of i k ] idemp)

qed

with 〈i < j 〉 〈j < k 〉 dfth Lemma7b[of i k ?cp p p]
have dsc G p p by auto
with no-strict-arc have False by auto
thus ?thesis ..

qed
next

assume SCT ′ A

show SCT A
proof (rule classical)

assume ¬ SCT A

with SCT-def
obtain p

where ipath: has-ipath A p
and no-desc-th: ¬ (∃ϑ. is-desc-thread ϑ p)
by blast

from 〈finite-acg A〉

have finite-acg (tcl A) by (simp add : finite-tcl)
hence finite (dest-graph (tcl A)) (is finite ?AG)

by (simp add : finite-acg-def finite-graph-def )

from pdesc-acgplus[OF ipath]
have a:

∧
x y . x<y =⇒ pdesc p〈x ,y〉 ∈ dest-graph (tcl A)

unfolding has-edge-def .

obtain S G
where infinite S G ∈ dest-graph (tcl A)
and all-G :

∧
x y . [[ x ∈ S ; y ∈ S ; x < y ]] =⇒

pdesc (p〈x ,y〉) = G
apply (rule RamseyNatpairs[of ?AG λ(x ,y). pdesc p〈x , y〉])
apply (rule 〈finite ?AG〉)
by (simp only :split-conv , rule a, auto)

obtain n H m where
G-struct : G = (n, H , m) by (cases G)

let ?s = enumerate S
let ?q = contract ?s p
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note all-in-S [simp] = enumerate-in-set [OF 〈infinite S 〉]
from 〈infinite S 〉

have inc[simp]: increasing ?s
unfolding increasing-def by (simp add :enumerate-mono)

note increasing-bij [OF this, simp]

from ipath-contract inc ipath
have has-ipath (tcl A) ?q .

from all-G G-struct
have all-H :

∧
i . (snd (?q i)) = H

unfolding contract-def
by simp

have loop: (tcl A) ` n ;H n
and idemp: H ∗ H = H

proof −
let ?i = ?s 0 and ?j = ?s (Suc 0 ) and ?k = ?s (Suc (Suc 0 ))

have pdesc (p〈?i ,?j 〉) = G
and pdesc (p〈?j ,?k〉) = G
and pdesc (p〈?i ,?k〉) = G
using all-G
by auto

with G-struct
have m = end-node (p〈?i ,?j 〉)

n = fst (p〈?j ,?k〉)
and Hs: prod (p〈?i ,?j 〉) = H
prod (p〈?j ,?k〉) = H
prod (p〈?i ,?k〉) = H

by auto

hence m = n by simp
thus tcl A ` n ;H n

using G-struct 〈G ∈ dest-graph (tcl A)〉
by (simp add :has-edge-def )

from sub-path-prod [of ?i ?j ?k p]
show H ∗ H = H

unfolding Hs by simp
qed
moreover have

∧
k . ¬dsc H k k

proof
fix k :: ′a assume dsc H k k

with all-H repeated-edge
have ∃ϑ. is-desc-thread ϑ ?q by fast

with inc have ∃ϑ. is-desc-thread ϑ p
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by (subst contract-keeps-threads)
with no-desc-th
show False ..

qed
ultimately
have False

using 〈SCT ′ A〉[unfolded SCT ′-def no-bad-graphs-def ]
by blast

thus ?thesis ..
qed

qed

end

6 Applying SCT to function definitions

theory Interpretation
imports Main Misc-Tools Criterion
begin

definition
idseq R s x = (s 0 = x ∧ (∀ i . R (s (Suc i)) (s i)))

lemma not-acc-smaller :
assumes notacc: ¬ accp R x
shows ∃ y . R y x ∧ ¬ accp R y

proof (rule classical)
assume ¬ ?thesis
hence

∧
y . R y x =⇒ accp R y by blast

with accp.accI have accp R x .
with notacc show ?thesis by contradiction

qed

lemma non-acc-has-idseq :
assumes ¬ accp R x
shows ∃ s. idseq R s x

proof −

have ∃ f . ∀ x . ¬accp R x −→ R (f x ) x ∧ ¬accp R (f x )
by (rule choice, auto simp:not-acc-smaller)

then obtain f where
in-R:

∧
x . ¬accp R x =⇒ R (f x ) x

and nia:
∧

x . ¬accp R x =⇒ ¬accp R (f x )
by blast

let ?s = λi . (f ˆ i) x
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{
fix i
have ¬accp R (?s i)

by (induct i) (auto simp:nia 〈¬accp R x 〉)
hence R (f (?s i)) (?s i)

by (rule in-R)
}

hence idseq R ?s x
unfolding idseq-def
by auto

thus ?thesis by auto
qed

types ( ′a, ′q) cdesc =
( ′q ⇒ bool) × ( ′q ⇒ ′a) ×( ′q ⇒ ′a)

fun in-cdesc :: ( ′a, ′q) cdesc ⇒ ′a ⇒ ′a ⇒ bool
where

in-cdesc (Γ, r , l) x y = (∃ q . x = r q ∧ y = l q ∧ Γ q)

primrec mk-rel :: ( ′a, ′q) cdesc list ⇒ ′a ⇒ ′a ⇒ bool
where

mk-rel [] x y = False
| mk-rel (c#cs) x y =

(in-cdesc c x y ∨ mk-rel cs x y)

lemma some-rd :
assumes mk-rel rds x y
shows ∃ rd∈set rds. in-cdesc rd x y
using assms
by (induct rds) (auto simp:in-cdesc-def )

lemma ex-cs:
assumes idseq : idseq (mk-rel rds) s x
shows ∃ cs. ∀ i . cs i ∈ set rds ∧ in-cdesc (cs i) (s (Suc i)) (s i)

proof −
from idseq
have a: ∀ i . ∃ rd ∈ set rds. in-cdesc rd (s (Suc i)) (s i)

by (auto simp:idseq-def intro:some-rd)
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show ?thesis
by (rule choice) (insert a, blast)

qed

types ′a measures = nat ⇒ ′a ⇒ nat

fun stepP :: ( ′a, ′q) cdesc ⇒ ( ′a, ′q) cdesc ⇒
( ′a ⇒ nat) ⇒ ( ′a ⇒ nat) ⇒ (nat ⇒ nat ⇒ bool) ⇒ bool

where
stepP (Γ1 ,r1 ,l1 ) (Γ2 ,r2 ,l2 ) m1 m2 R
= (∀ q1 q2. Γ1 q1 ∧ Γ2 q2 ∧ r1 q1 = l2 q2

−→ R (m2 (l2 q2)) ((m1 (l1 q1))))

definition
decr :: ( ′a, ′q) cdesc ⇒ ( ′a, ′q) cdesc ⇒
( ′a ⇒ nat) ⇒ ( ′a ⇒ nat) ⇒ bool

where
decr c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op <)

definition
decreq :: ( ′a, ′q) cdesc ⇒ ( ′a, ′q) cdesc ⇒
( ′a ⇒ nat) ⇒ ( ′a ⇒ nat) ⇒ bool

where
decreq c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op ≤)

definition
no-step :: ( ′a, ′q) cdesc ⇒ ( ′a, ′q) cdesc ⇒ bool

where
no-step c1 c2 = stepP c1 c2 (λx . 0 ) (λx . 0 ) (λx y . False)

lemma decr-in-cdesc:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
assumes decr RD1 RD2 m1 m2
shows m2 y < m1 x
using assms
by (cases RD1 , cases RD2 , auto simp:decr-def )

lemma decreq-in-cdesc:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
assumes decreq RD1 RD2 m1 m2
shows m2 y ≤ m1 x
using assms
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by (cases RD1 , cases RD2 , auto simp:decreq-def )

lemma no-inf-desc-nat-sequence:
fixes s :: nat ⇒ nat
assumes leq :

∧
i . n ≤ i =⇒ s (Suc i) ≤ s i

assumes less: ∃∞i . s (Suc i) < s i
shows False

proof −
{

fix i j :: nat
assume n ≤ i
assume i ≤ j
{

fix k
have s (i + k) ≤ s i
proof (induct k)

case 0 thus ?case by simp
next

case (Suc k)
with leq [of i + k ] 〈n ≤ i 〉
show ?case by simp

qed
}
from this[of j − i ] 〈n ≤ i 〉 〈i ≤ j 〉

have s j ≤ s i by auto
}
note decr = this

let ?min = LEAST x . x ∈ range (λi . s (n + i))
have ?min ∈ range (λi . s (n + i))

by (rule LeastI ) auto
then obtain k where min: ?min = s (n + k) by auto

from less
obtain k ′ where n + k < k ′

and s (Suc k ′) < s k ′

unfolding INFM-nat by auto

with decr [of n + k k ′] min
have s (Suc k ′) < ?min by auto
moreover from 〈n + k < k ′〉
have s (Suc k ′) = s (n + (Suc k ′ − n)) by simp
ultimately
show False using not-less-Least by blast

qed
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definition
approx :: nat scg ⇒ ( ′a, ′q) cdesc ⇒ ( ′a, ′q) cdesc
⇒ ′a measures ⇒ ′a measures ⇒ bool
where
approx G C C ′ M M ′

= (∀ i j . (dsc G i j −→ decr C C ′ (M i) (M ′ j ))
∧(eqp G i j −→ decreq C C ′ (M i) (M ′ j )))

lemma approx-empty :
approx (Graph {}) c1 c2 ms1 ms2
unfolding approx-def has-edge-def dest-graph.simps by simp

lemma approx-less:
assumes stepP c1 c2 (ms1 i) (ms2 j ) (op <)
assumes approx (Graph Es) c1 c2 ms1 ms2
shows approx (Graph (insert (i , ↓, j ) Es)) c1 c2 ms1 ms2
using assms
unfolding approx-def has-edge-def dest-graph.simps decr-def
by auto

lemma approx-leq :
assumes stepP c1 c2 (ms1 i) (ms2 j ) (op ≤)
assumes approx (Graph Es) c1 c2 ms1 ms2
shows approx (Graph (insert (i , ⇓, j ) Es)) c1 c2 ms1 ms2
using assms
unfolding approx-def has-edge-def dest-graph.simps decreq-def
by auto

lemma approx (Graph {(1 , ↓, 2 ),(2 , ⇓, 3 )}) c1 c2 ms1 ms2
apply (intro approx-less approx-leq approx-empty)
oops

lemma no-stepI :
stepP c1 c2 m1 m2 (λx y . False)
=⇒ no-step c1 c2

by (cases c1 , cases c2 ) (auto simp: no-step-def )

definition
sound-int :: nat acg ⇒ ( ′a, ′q) cdesc list
⇒ ′a measures list ⇒ bool
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where
sound-int A RDs M =
(∀n<length RDs. ∀m<length RDs.
no-step (RDs ! n) (RDs ! m) ∨
(∃G . (A ` n ;G m) ∧ approx G (RDs ! n) (RDs ! m) (M ! n) (M ! m)))

lemma length-simps: length [] = 0 length (x#xs) = Suc (length xs)
by auto

lemma all-less-zero: ∀n<(0 ::nat). P n
by simp

lemma all-less-Suc:
assumes Pk : P k
assumes Pn: ∀n<k . P n
shows ∀n<Suc k . P n

proof (intro allI impI )
fix n assume n < Suc k
show P n
proof (cases n < k)

case True with Pn show ?thesis by simp
next

case False with 〈n < Suc k 〉 have n = k by simp
with Pk show ?thesis by simp

qed
qed

lemma step-witness:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
shows ¬ no-step RD1 RD2
using assms
by (cases RD1 , cases RD2 ) (auto simp:no-step-def )

theorem SCT-on-relations:
assumes R: R = mk-rel RDs
assumes sound : sound-int A RDs M
assumes SCT A
shows ∀ x . accp R x

proof (rule, rule classical)
fix x
assume ¬ accp R x
with non-acc-has-idseq
have ∃ s. idseq R s x .
then obtain s where idseq R s x ..
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hence ∃ cs. ∀ i . cs i ∈ set RDs ∧
in-cdesc (cs i) (s (Suc i)) (s i)
unfolding R by (rule ex-cs)

then obtain cs where
[simp]:

∧
i . cs i ∈ set RDs

and ird [simp]:
∧

i . in-cdesc (cs i) (s (Suc i)) (s i)
by blast

let ?cis = λi . index-of RDs (cs i)
have ∀ i . ∃G . (A ` ?cis i ;G (?cis (Suc i)))

∧ approx G (RDs ! ?cis i) (RDs ! ?cis (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i)) (is ∀ i . ∃G . ?P i G)

proof
fix i
let ?n = ?cis i and ?n ′ = ?cis (Suc i)

have in-cdesc (RDs ! ?n) (s (Suc i)) (s i)
in-cdesc (RDs ! ?n ′) (s (Suc (Suc i))) (s (Suc i))
by (simp-all add :index-of-member)

with step-witness
have ¬ no-step (RDs ! ?n) (RDs ! ?n ′) .
moreover have

?n < length RDs
?n ′ < length RDs
by (simp-all add :index-of-length[symmetric])

ultimately
obtain G

where A ` ?n ;G ?n ′

and approx G (RDs ! ?n) (RDs ! ?n ′) (M ! ?n) (M ! ?n ′)
using sound
unfolding sound-int-def by auto

thus ∃G . ?P i G by blast
qed
with choice
have ∃Gs. ∀ i . ?P i (Gs i) .
then obtain Gs where

A:
∧

i . A ` ?cis i ;(Gs i) (?cis (Suc i))
and B :

∧
i . approx (Gs i) (RDs ! ?cis i) (RDs ! ?cis (Suc i))

(M ! ?cis i) (M ! ?cis (Suc i))
by blast

let ?p = λi . (?cis i , Gs i)

from A have has-ipath A ?p
unfolding has-ipath-def
by auto

with 〈SCT A〉 SCT-def
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obtain th where is-desc-thread th ?p
by auto

then obtain n
where fr : ∀ i≥n. eqlat ?p th i
and inf : ∃∞i . descat ?p th i
unfolding is-desc-thread-def by auto

from B
have approx :∧

i . approx (Gs i) (cs i) (cs (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i))
by (simp add :index-of-member)

let ?seq = λi . (M ! ?cis i) (th i) (s i)

have
∧

i . n < i =⇒ ?seq (Suc i) ≤ ?seq i
proof −

fix i
let ?q1 = th i and ?q2 = th (Suc i)
assume n < i

with fr have eqlat ?p th i by simp
hence dsc (Gs i) ?q1 ?q2 ∨ eqp (Gs i) ?q1 ?q2

by simp
thus ?seq (Suc i) ≤ ?seq i
proof

assume dsc (Gs i) ?q1 ?q2

with approx
have a:decr (cs i) (cs (Suc i))

((M ! ?cis i) ?q1 ) ((M ! ?cis (Suc i)) ?q2 )
unfolding approx-def by auto

show ?thesis
apply (rule less-imp-le)
apply (rule decr-in-cdesc[of - s (Suc i) s i ])
by (rule ird a)+

next
assume eqp (Gs i) ?q1 ?q2

with approx
have a:decreq (cs i) (cs (Suc i))

((M ! ?cis i) ?q1 ) ((M ! ?cis (Suc i)) ?q2 )
unfolding approx-def by auto

show ?thesis
apply (rule decreq-in-cdesc[of - s (Suc i) s i ])
by (rule ird a)+
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qed
qed
moreover have ∃∞i . ?seq (Suc i) < ?seq i unfolding INFM-nat
proof

fix i
from inf obtain j where i < j and d : descat ?p th j

unfolding INFM-nat by auto
let ?q1 = th j and ?q2 = th (Suc j )
from d have dsc (Gs j ) ?q1 ?q2 by auto

with approx
have a:decr (cs j ) (cs (Suc j ))

((M ! ?cis j ) ?q1 ) ((M ! ?cis (Suc j )) ?q2 )
unfolding approx-def by auto

have ?seq (Suc j ) < ?seq j
apply (rule decr-in-cdesc[of - s (Suc j ) s j ])
by (rule ird a)+

with 〈i < j 〉

show ∃ j . i < j ∧ ?seq (Suc j ) < ?seq j by auto
qed
ultimately have False

by (rule no-inf-desc-nat-sequence[of Suc n]) simp
thus accp R x ..

qed

end

7 Implemtation of the SCT criterion

theory Implementation
imports Correctness
begin

fun edges-match :: ( ′n × ′e × ′n) × ( ′n × ′e × ′n) ⇒ bool
where

edges-match ((n, e, m), (n ′,e ′,m ′)) = (m = n ′)

fun connect-edges ::
( ′n × ( ′e::times) × ′n) × ( ′n × ′e × ′n)
⇒ ( ′n × ′e × ′n)

where
connect-edges ((n,e,m), (n ′, e ′, m ′)) = (n, e ∗ e ′, m ′)

lemma grcomp-code [code]:
grcomp (Graph G) (Graph H ) = Graph (connect-edges ‘ { x ∈ G×H . edges-match

x })
by (rule graph-ext) (auto simp:graph-mult-def has-edge-def image-def )
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lemma mk-tcl-finite-terminates:
fixes A :: ′a acg
assumes fA: finite-acg A
shows mk-tcl-dom (A, A)

proof −
from fA have fin-tcl : finite-acg (tcl A)

by (simp add :finite-tcl)

hence finite (dest-graph (tcl A))
unfolding finite-acg-def finite-graph-def ..

let ?count = λG . card (dest-graph G)
let ?N = ?count (tcl A)
let ?m = λX . ?N − (?count X )

let ?P = λX . mk-tcl-dom (A, X )

{
fix X
assume X ≤ tcl A
then
have mk-tcl-dom (A, X )
proof (induct X rule:measure-induct-rule[of ?m])

case (less X )
show ?case
proof (cases X ∗ A ≤ X )

case True
with mk-tcl .domintros show ?thesis by auto

next
case False
then have l : X < X + X ∗ A

unfolding graph-less-def graph-leq-def graph-plus-def
by auto

from 〈X ≤ tcl A〉

have X ∗ A ≤ tcl A ∗ A by (simp add :mult-mono)
also have . . . ≤ A + tcl A ∗ A by simp
also have . . . = tcl A by (simp add :tcl-unfold-right [symmetric])
finally have X ∗ A ≤ tcl A .
with 〈X ≤ tcl A〉

have X + X ∗ A ≤ tcl A + tcl A
by (rule add-mono)

hence less-tcl : X + X ∗ A ≤ tcl A by simp
hence X < tcl A

using l 〈X ≤ tcl A〉 by auto

from less-tcl fin-tcl
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have finite-acg (X + X ∗ A) by (rule finite-acg-subset)
hence finite (dest-graph (X + X ∗ A))

unfolding finite-acg-def finite-graph-def ..

hence X : ?count X < ?count (X + X ∗ A)
using l [simplified graph-less-def graph-leq-def ]
by (rule psubset-card-mono)

have ?count X < ?N
apply (rule psubset-card-mono)
by fact (rule 〈X < tcl A〉[simplified graph-less-def ])

with X have ?m (X + X ∗ A) < ?m X by arith

from less.hyps this less-tcl
have mk-tcl-dom (A, X + X ∗ A) .
with mk-tcl .domintros show ?thesis .

qed
qed

}
from this less-tcl show ?thesis .

qed

lemma mk-tcl-finite-tcl :
fixes A :: ′a acg
assumes fA: finite-acg A
shows mk-tcl A A = tcl A
using mk-tcl-finite-terminates[OF fA]
by (simp only : tcl-def mk-tcl-correctness star-commute)

definition test-SCT :: nat acg ⇒ bool
where

test-SCT A =
(let T = mk-tcl A A

in (∀ (n,G ,m)∈dest-graph T .
n 6= m ∨ G ∗ G 6= G ∨

(∃ (p::nat ,e,q)∈dest-graph G . p = q ∧ e = LESS )))

lemma SCT ′-exec:
assumes fin: finite-acg A
shows SCT ′ A = test-SCT A
using mk-tcl-finite-tcl [OF fin]
unfolding test-SCT-def Let-def
unfolding SCT ′-def no-bad-graphs-def has-edge-def
by force

code-modulename SML
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Implementation Graphs

lemma [code]:
(G ::( ′a::eq , ′b::eq) graph) ≤ H ←→ dest-graph G ⊆ dest-graph H
(G ::( ′a::eq , ′b::eq) graph) < H ←→ dest-graph G ⊂ dest-graph H
unfolding graph-leq-def graph-less-def by rule+

lemma [code]:
(G ::( ′a::eq , ′b::eq) graph) + H = Graph (dest-graph G ∪ dest-graph H )
unfolding graph-plus-def ..

lemma [code]:
(G ::( ′a::eq , ′b::{eq , times}) graph) ∗ H = grcomp G H
unfolding graph-mult-def ..

lemma SCT ′-empty : SCT ′ (Graph {})
unfolding SCT ′-def no-bad-graphs-def graph-zero-def [symmetric]
tcl-zero
by (simp add :in-grzero)

7.1 Witness checking

definition test-SCT-witness :: nat acg ⇒ nat acg ⇒ bool
where

test-SCT-witness A T =
(A ≤ T ∧ A ∗ T ≤ T ∧

(∀ (n,G ,m)∈dest-graph T .
n 6= m ∨ G ∗ G 6= G ∨

(∃ (p::nat ,e,q)∈dest-graph G . p = q ∧ e = LESS )))

lemma no-bad-graphs-ucl :
assumes A ≤ B
assumes no-bad-graphs B
shows no-bad-graphs A
using assms
unfolding no-bad-graphs-def has-edge-def graph-leq-def
by blast

lemma SCT ′-witness:
assumes a: test-SCT-witness A T
shows SCT ′ A

proof −
from a have A ≤ T A ∗ T ≤ T by (auto simp:test-SCT-witness-def )
hence A + A ∗ T ≤ T

by (subst add-idem[of T , symmetric], rule add-mono)
with star3 ′ have tcl A ≤ T unfolding tcl-def .
moreover
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from a have no-bad-graphs T
unfolding no-bad-graphs-def test-SCT-witness-def has-edge-def
by auto

ultimately
show ?thesis

unfolding SCT ′-def
by (rule no-bad-graphs-ucl)

qed

end

8 Size-Change Termination

theory Size-Change-Termination
imports Correctness Interpretation Implementation
uses sct .ML
begin

8.1 Simplifier setup

This is needed to run the SCT algorithm in the simplifier:

lemma setbcomp-simps:
{x∈{}. P x} = {}
{x∈insert y ys. P x} = (if P y then insert y {x∈ys. P x} else {x∈ys. P x})
by auto

lemma setbcomp-cong :
A = B =⇒ (

∧
x . P x = Q x ) =⇒ {x∈A. P x} = {x∈B . Q x}

by auto

lemma cartprod-simps:
{} × A = {}
insert a A × B = Pair a ‘ B ∪ (A × B)
by (auto simp:image-def )

lemma image-simps:
fu ‘ {} = {}
fu ‘ insert a A = insert (fu a) (fu ‘ A)
by (auto simp:image-def )

lemmas union-simps =
Un-empty-left Un-empty-right Un-insert-left

lemma subset-simps:
{} ⊆ B
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insert a A ⊆ B ≡ a ∈ B ∧ A ⊆ B
by auto

lemma element-simps:
x ∈ {} ≡ False
x ∈ insert a A ≡ x = a ∨ x ∈ A
by auto

lemma set-eq-simp:
A = B ←→ A ⊆ B ∧ B ⊆ A by auto

lemma ball-simps:
∀ x∈{}. P x ≡ True
(∀ x∈insert a A. P x ) ≡ P a ∧ (∀ x∈A. P x )

by auto

lemma bex-simps:
∃ x∈{}. P x ≡ False
(∃ x∈insert a A. P x ) ≡ P a ∨ (∃ x∈A. P x )

by auto

lemmas set-simps =
setbcomp-simps
cartprod-simps image-simps union-simps subset-simps
element-simps set-eq-simp
ball-simps bex-simps

lemma sedge-simps:
↓ ∗ x = ↓
⇓ ∗ x = x
by (auto simp:mult-sedge-def )

lemmas sctTest-simps =
simp-thms
if-True
if-False
nat .inject
nat .distinct
Pair-eq

grcomp-code
edges-match.simps
connect-edges.simps

sedge-simps
sedge.distinct
set-simps

graph-mult-def
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graph-leq-def
dest-graph.simps
graph-plus-def
graph.inject
graph-zero-def

test-SCT-def
mk-tcl-code

Let-def
split-conv

lemmas sctTest-congs =
if-weak-cong let-weak-cong setbcomp-cong

lemma SCT-Main:
finite-acg A =⇒ test-SCT A =⇒ SCT A
using LJA-Theorem4 SCT ′-exec
by auto

end

9 Examples for Size-Change Termination

theory Examples
imports Size-Change-Termination
begin

function f :: nat ⇒ nat ⇒ nat
where

f n 0 = n
| f 0 (Suc m) = f (Suc m) m
| f (Suc n) (Suc m) = f m n
by pat-completeness auto

termination
unfolding f-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)
apply (simp add :finite-acg-simps)
oops

function p :: nat ⇒ nat ⇒ nat ⇒ nat
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where
p m n r = (if r>0 then p m (r − 1 ) n else

if n>0 then p r (n − 1 ) m
else m)

by pat-completeness auto

termination
unfolding p-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)
apply (simp add :finite-acg-ins finite-acg-empty finite-graph-def )
oops

function foo :: bool ⇒ nat ⇒ nat ⇒ nat
where

foo True (Suc n) m = foo True n (Suc m)
| foo True 0 m = foo False 0 m
| foo False n (Suc m) = foo False (Suc n) m
| foo False n 0 = n
by pat-completeness auto

termination
unfolding foo-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)
apply (simp add :finite-acg-ins finite-acg-empty finite-graph-def )
oops

function (sequential)
bar :: nat ⇒ nat ⇒ nat ⇒ nat

where
bar 0 (Suc n) m = bar m m m
| bar k n m = 0
by pat-completeness auto

termination
unfolding bar-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)

76



apply (simp add :finite-acg-ins finite-acg-empty finite-graph-def )
by (simp only :sctTest-simps cong : sctTest-congs)

end
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