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1 Auxiliary lemmas used in program extraction
examples

theory Util
imports Main
begin

Decidability of equality on natural numbers.

lemma nat-eq-dec: An:nat. m =n VvV m #n
apply (induct m)
apply (case-tac n)
apply (case-tac [3] n)
apply (simp only: nat.simps, iprover?)+
done

Well-founded induction on natural numbers, derived using the standard
structural induction rule.

lemma nat-wf-ind:
assumes R: Az:nat. (A\y. y <z = Py) = Pux
shows P z
proof (rule R)
show A\y. y<z= Py
proof (induct z)
case (
thus ?case by simp
next
case (Suc n y)
from nat-eq-dec show ?Zcase
proof
assume ny: n =y
have P n
by (rule R) (rule Suc)
with ny show ?case by simp
next
assume n # y
with Suc have y < n by simp
thus ?case by (rule Suc)
qed
qed
qed

Bounded search for a natural number satisfying a decidable predicate.

lemma search:
assumes dec: Az:nat. Pz V - Px
shows (Jz<y. Pz) VvV = (Jz<y. P 1)
proof (induct y)
case () show ?case by simp
next



case (Suc z)
thus ?case
proof
assume Jx<z. Pz
then obtain z where le: x < z and P: P z by iprover
from le have z < Suc z by simp
with P show ?case by iprover
next
assume nez: - (Jz<z. P x)
from dec show ?case
proof
assume P: P z
have z < Suc z by simp
with P show #?thesis by iprover
next
assume nP: - Pz
have = (3z<Suc z. P )
proof
assume Jz<Suc z. P x
then obtain x where le: x < Suc z and P: P z by iprover
have z < z
proof (cases © = 2)
case True
with nP and P show ?thesis by simp
next
case Fulse
with le show ?thesis by simp
qged
with P have Jx2<z. P z by iprover
with nexr show Fulse ..
qed
thus ?case by iprover
qed
qed
qed

end

2 Quotient and remainder

theory QuotRem
imports Util
begin

Derivation of quotient and remainder using program extraction.

theorem division: 3rq. a = Sucbx g+ r Ar <b
proof (induct a)
case ()



have 0 = Suc b *x 0 + 0 AN 0 < b by simp
thus ?case by iprover
next
case (Suc a)
then obtain r ¢ where I: ¢« = Suc b x ¢ + r and r < b by iprover
from nat-eq-dec show ?case
proof
assume r = b
with I have Suc a = Suc b * (Suc q) + 0 A 0 < b by simp
thus ?case by iprover
next
assume r # b
with (- < b have r < b by (simp add: order-less-le)
with I have Suc a = Suc b x ¢ + (Suc r) A (Suc r) < b by simp
thus ?case by iprover
qged
qed

extract division

The program extracted from the above proof looks as follows

division =
AT za.
nat-induct-P z (0, 0)
(Aa H. let (z,y) = H
in case nat-eq-dec x za of Left = (0, Suc y)
| Right = (Suc z, y))

The corresponding correctness theorem is

a = Suc b x snd (diwvision a b) + fst (division a b) A fst (division a b) < b

lemma division 9 2 = (0, 3) by evaluation
lemma division 9 2 = (0, 3) by eval

end

3 Greatest common divisor

theory Greatest-Common-Divisor
imports QuotRem
begin

theorem greatest-common-divisor:
An:nat. Suem < n = Fkniml. kxnl =nAkxml=SucmA
(VIlti2. 1+l =n—1%12=Sucm—1<k)
proof (induct m rule: nat-wf-ind)



case (I m n)
from division obtain r ¢ where hl1: n = Suc m *x ¢ + r and h2: r < m
by iprover
show ?Zcase
proof (cases r)
case (
with hl have Suc m x ¢ = n by simp
moreover have Suc m * 1 = Suc m by simp
moreover {
fix 2 have Nl l1. 1«1l =n=1%12 =Sucm = 1< Sucm
by (cases 12) simp-all }
ultimately show ?thesis by iprover
next
case (Suc nat)
with h2 have h: nat < m by simp
moreover from h have Suc nat < Suc m by simp
ultimately have 3k m1 r1. k * mI = Suc m A k * r1 = Suc nat A
(VIl1i2. 1%l = Sucm — 1 %12 = Suc nat — 1 < k)
by (rule 1)
then obtain k£ mI r1 where
h1’ k * ml = Sucm
and h2" k * r1 = Suc nat
and h3" Al1112. 1 %11 = Sucm = 1 %12 = Suc nat =1 <k
by iprover
have mn: Suc m < n by (rule 1)
from Al h1’ h2' Suc have k x (ml * ¢ + r1) =n
by (simp add: add-mult-distrib2 nat-mult-assoc [symmetric])
moreover have Al 11 12. [ xll =n=1%x12=8Sucm = 1<k
proof —
fix [ 1112
assume llin: [ x 1 =n
assume [I2m: [ % [2 = Suc m
moreover have [ x (I1 — 2 % q) = Suc nat
by (simp add: diff-mult-distrib2 h1 Suc [symmetric] mn ll1n [12m [symmetric])
ultimately show [ < k by (rule h3’)
qed
ultimately show ?thesis using hi’ by iprover
qed
qed

extract greatest-common-divisor
The extracted program for computing the greatest common divisor is

greatest-common-divisor =
Az. nat-wf-ind-P z
(A\z H2 za.
let (za, y) = division za
in case za of 0 = (Suc z, y, 1)
| Suc nat =



let (z, ya) = H2 nat (Suc z); (za, ya) = ya
in (z, Ta * y + ya, za))

instantiation nat :: default
begin

definition default = (0::nat)
instance ..
end

instantiation x :: (default, default) default
begin

definition default = (default, default)
instance ..
end

instantiation fun :: (type, default) default
begin

definition default = (Az. default)
instance ..
end

consts-code
default ((error default))

lemma greatest-common-divisor 7 12 = (4, 3, 2) by evaluation
lemma greatest-common-divisor 7 12 = (4, 3, 2) by eval

end

4 Warshall’s algorithm

theory Warshall
imports Main
begin

Derivation of Warshall’s algorithm using program extraction, based on Berger,
Schwichtenberg and Seisenberger [1].

datatype b = T | F



primrec
is-path’ :: ('a = 'a = b) = 'a = 'a list = 'a = bool
where
isspath’ rx || z=(rzz=T)
| is-path’ rx (y # ys) 2z =(rxzy =T A is-path’ r y ys z)

definition
is-path :: (nat = nat = b) = (nat * nat list * nat) =
nat = nat = nat = bool
where
is-path rpijk «— fstp =37 A snd (snd p) =k A
list-all (A\x. x < i) (fst (snd p)) A
is-path’ v (fst p) (fst (snd p)) (snd (snd p))

definition

conc :: (‘a x 'a list * 'a) = ('a * 'a list x 'a) = ('a * 'a list * 'a)
where

conc p q = (fst p, fst (snd p) Q fst ¢ # fst (snd q), snd (snd q))

theorem is-path’-snoc [simp]:
Nz. is-path’ rz (ys Q [y]) 2 = (is-path’ rxysy ANryz=1T)
by (induct ys) simp+

theorem list-all-scoc [simp]: list-all P (xs Q [z]) = (P z A list-all P zs)
by (induct zs, simp+, iprover)

theorem list-all-lemma:

list-all P zs = (\z. Pz = Q x) = list-all Q) xs
proof —

assume PQ: A\z. Pz = Qx

show list-all P xs — list-all Q zs

proof (induct xs)

case Nil
show ?case by simp
next

case (Cons y ys)
hence Py: P y by simp
from Cons have Pys: list-all P ys by simp
show ?case
by simp (rule conjI PQ Py Cons Pys)+
qed
qged

theorem lemmal: A\p. is-path r p i j k = is-path r p (Suc i) j k
apply (unfold is-path-def)
apply (simp cong add: cong-cong add: split-paired-all)
apply (erule conjE)+
apply (erule list-all-lemma)



apply simp
done

theorem lemma2: \p. is-pathrp 0jk = rjk =T
apply (unfold is-path-def)
apply (simp cong add: conj-cong add: split-paired-all)
apply (case-tac aa)
apply simp+
done

theorem is-path’-conc: is-path’ r j xs i = is-path’ r i ys k —
is-path’ rj (zs Q i # ys) k
proof —
assume pys: is-path’ r i ys k
show Aj. is-path’ r j xs i = is-path’ rj (zs Q i # ys) k
proof (induct zs)
case (Nil j)
hence rj i = T by simp
with pys show ?Zcase by simp
next
case (Cons z zs j)
hence jzr: rjz = T by simp
from Cons have pzs: is-path’ r z zs i by simp
show ?case
by simp (rule congl jzr Cons pzs)+
qged
qged

theorem lemma3:
Ap q. is-path rpiji = is-pathrqiik =
is-path r (conc p q) (Suc i) jk
apply (unfold is-path-def conc-def)
apply (simp cong add: conj-cong add: split-paired-all)
apply (erule conjE)+
apply (rule congl)
apply (erule list-all-lemma)
apply simp
apply (rule conjI)
apply (erule list-all-lemma)
apply simp
apply (rule is-path’-conc)
apply assumption+
done

theorem lemmad:
Ap. is-path r p (Suc i) jk = ~ is-pathrpijk =
(3q. is-path r qiji) N (3q’ is-pathr q’ i i k)

proof (simp cong add: conj-cong add: split-paired-all is-path-def, (erule conjE)+)
fix zs



assume asms:
list-all (A\x. < Suc i) zs
is-path’ v j zs k
= list-all (A\z. z < 1) s
show (Jys. list-all (A\zx. x < i) ys A is-path’ rjys i) A
(Fys. list-all (Ax. x < i) ys A is-path’ r i ys k)
proof
show Aj. list-all (A\z. < Suc i) s = is-path’ r j zs k =
= list-all (M\z. z < i) s =
Jys. list-all (A\z. © < i) ys A is-path’ v j ys i (is PROP ?ih zs)
proof (induct zs)
case Nil
thus ?case by simp
next
case (Cons a as j)
show ?Zcase
proof (cases a=i)
case True
show ?thesis
proof
from True and Cons have rji = T by simp
thus list-all (Az. z < i) [] A is-path’ v j [] © by simp
qged
next
case Fulse
have PROP ?ih as by (rule Cons)
then obtain ys where ys: list-all (Ax. z < i) ys A is-path’ r a ys i
proof
from Cons show list-all (A\zx. z < Suc i) as by simp
from Cons show is-path’ r a as k by simp
from Cons and False show — list-all (Az. z < i) as by (simp)
qged
show ?thesis
proof
from Cons False ys
show list-all (Az. z<i) (a#ys) A is-path’ rj (a#ys) i by simp
qged
qed
qed
show Ak. list-all (A\z. z < Suc i) s = is-path’ r j zs k =
- list-all (Az. z < 1) s =
Jys. list-all (A\z. z < i) ys A is-path’ r i ys k (is PROP ?%ih xs)
proof (induct xs rule: rev-induct)
case Nil
thus ?case by simp
next
case (snoc a as k)
show ?Zcase
proof (cases a=1)



case True
show ?thesis
proof
from True and snoc have r i k = T by simp
thus list-all (Az. z < i) [| A is-path’ v i [| k by simp
qged
next
case Fulse
have PROP ?ih as by (rule snoc)
then obtain ys where ys: list-all (Az. © < i) ys A is-path’ r i ys a
proof
from snoc show list-all (Az. x < Suc i) as by simp
from snoc show is-path’ r j as a by simp
from snoc and False show — list-all (Az. © < i) as by simp
qed
show ?thesis
proof
from snoc False ys
show list-all (A\z. z < i) (ys Q [a]) A is-path’ v i (ys Q [a]) &
by simp
qged
qed
qed
qed (rule asms)+
qed

theorem lemmad":
Ap. is-path rp (Suc i) jk = — is-pathrpijk =
- (Vq. —is-pathrqiji) A= (Vq' —is-pathr q' i1 k)
by (iprover dest: lemma5)

theorem warshall:
Nik.— (3p.is-pathrpijk)V (Ip. is-path rp ijk)
proof (induct i)
case (0j k)
show ?Zcase
proof (cases rj k)
assume rjk =T
hence is-path v (5, [], k) 0j k
by (simp add: is-path-def)
hence dp. is-path rp 05k ..
thus ?thesis ..
next
assume rjk = F
hence rj k ~“= T by simp
hence - (I p. is-path rp 05 k)
by (iprover dest: lemmaZ2)
thus ?thesis ..
qed
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next
case (Sucijk)
thus ?case
proof
assume hi: - (I p. is-path rp i j k)
from Suc show ?case
proof
assume — (I p. is-path r p i j 1)
with Al have — (3 p. is-path r p (Suc i) j k)
by (iprover dest: lemma5”)
thus ?case ..
next
assume I p. is-path v p i j i
then obtain p where h2: is-path rp i 71 ..
from Suc show ?case
proof
assume — (I p. is-path v p i i k)
with hl have — (3 p. is-path r p (Suc i) j k)
by (iprover dest: lemmas’)
thus ?case ..
next
assume 1 q. is-path r ¢ i i k
then obtain ¢ where is-path r qi ik ..
with h2 have is-path r (conc p q) (Suc i) j k
by (rule lemma3)
hence 3 pq. is-path r pq (Suc i) j k ..
thus ?case ..
qed
qed
next
assume dp. is-path rp 1 j k
hence dp. is-path r p (Suc i) j k
by (iprover intro: lemmal)
thus ?case ..
qed
qed

extract warshall
The program extracted from the above proof looks as follows

warshall =
Az za xb zc.
nat-induct-P za
(Aza zb. case x za zb of T = Some (za, [], zb) | F = None)
(Ax H2 za xb.
case H2 xa zb of
None =
case H2 za z of None = None
| Some ¢ =

11



case H2 x xb of None = None | Some ga = Some (conc q ga)
| Some g = Some q)
xb xc

The corresponding correctness theorem is

case warshall v i j k of None = Vx. = is-path r z i j k
| Some q = is-path r qijk

ML Q{code warshall}

end

5 Combinator syntax for generic, open state mon-
ads (single threaded monads)
theory State-Monad

imports Main
begin

5.1 Motivation

The logic HOL has no notion of constructor classes, so it is not possible to
model monads the Haskell way in full genericity in Isabelle/HOL.

However, this theory provides substantial support for a very common class
of monads: state monads (or single-threaded monads, since a state is trans-
formed single-threaded).

To enter from the Haskell world, http://www.engr.mun.ca/~theo/Misc/haskell
and_monads.htm makes a good motivating start. Here we just sketch briefly
how those monads enter the game of Isabelle/HOL.

5.2 State transformations and combinators

We classify functions operating on states into two categories:

transformations with type signature ¢ = ¢/, transforming a state.

“yielding” transformations with type signature o = a x ¢/, “yielding”
a side result while transforming a state.

queries with type signature ¢ = «, computing a result dependent on a
state.

12
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By convention we write o for types representing states and «, 3, v, ... for
types representing side results. Type changes due to transformations are
not excluded in our scenario.

We aim to assert that values of any state type o are used in a single-threaded
way: after application of a transformation on a value of type o, the former
value should not be used again. To achieve this, we use a set of monad
combinators:

notation fcomp (infixl o> 60)

notation (zsymbols) fcomp (infixl o> 60)
notation scomp (infixl o—> 60)
notation (zsymbols) scomp (infixl o— 60)

abbreviation (input)
return = Pair

Given two transformations f and g, they may be directly composed using
the op 0> combinator, forming a forward composition: (f 0> g) s = f (g
s).

After any yielding transformation, we bind the side result immediately using
a lambda abstraction. This is the purpose of the op 0— combinator: (f o—
(Az. g)) s = (let (z, s’) = fsings).

For queries, the existing Let is appropriate.

Naturally, a computation may yield a side result by pairing it to the state
from the left; we introduce the suggestive abbreviation Pair for this purpose.
The most crucial distinction to Haskell is that we do not need to introduce
distinguished type constructors for different kinds of state. This has two
consequences:

e The monad model does not state anything about the kind of state;
the model for the state is completely orthogonal and may be specified
completely independently.

e There is no distinguished type constructor encapsulating away the
state transformation, i.e. transformations may be applied directly with-
out using any lifting or providing and dropping units (“open monad”).

e The type of states may change due to a transformation.

5.3 Monad laws

The common monadic laws hold and may also be used as normalization rules
for monadic expressions:

lemmas monad-simp = Pair-scomp scomp-Pair id-fcomp fcomp-id
scomp-scomp scomp-fcomp fcomp-scomp fecomp-assoc
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Evaluation of monadic expressions by force:

lemmas monad-collapse = monad-simp fcomp-apply scomp-apply split-beta

5.4 Syntax

We provide a convenient do-notation for monadic expressions well-known
from Haskell. Let is printed specially in do-expressions.

nonterminals do-expr

syntax

-do :: do-expr = 'a
(do - done [12] 12)

-scomp :: pttrn = 'a = do-expr = do-expr
(- <—~// -[1000, 13, 12] 12)

-fcomp :: 'a = do-expr = do-expr
(+// - [13, 12] 12)

-let :: pttrn = 'a = do-expr = do-expr

(let - = =// - [1000, 13, 12] 12)
-done :: 'a = do-expr
(-[12] 12)

syntax (zsymbols)
-scomp :: pttrn = 'a = do-expr = do-expr
(- =//-[1000, 153, 12] 12)

translations
-do f =>f
-scomp x f g => fo— (Az. g)
~feomp f g => fo> g
slet x t f => CONST Let t (M\x. f)
-done f => f

print-translation
let
fun dest-abs-eta (Abs (abs as (-, ty, -))) =
let
val (v, t) = Syntaz.variant-abs abs;
in (Free (v, ty), t) end
| dest-abs-eta t =
let
val (v, t) = Syntaz.variant-abs (, dummyT, t $ Bound 0);
in (Free (v, dummyT), t) end;
fun unfold-monad (Const (Qf const-syntax scomp}, -) $ f 8 g) =
let
val (v, g') = dest-abs-eta g;
in Const (-scomp, dummyT) $ v $ f $ unfold-monad g’ end
| unfold-monad (Const (Q{ const-syntax fcomp}, -) $ f 8 g) =
Const (-fcomp, dummyT) $ f $ unfold-monad g

14



| unfold-monad (Const (Q{const-syntax Let}, -) $ f $ g) =
let
val (v, g’) = dest-abs-eta g;
in Const (-let, dummyT) $ v $ f $ unfold-monad g’ end
| unfold-monad (Const (Q{const-syntax Pair}, -) $ f) =
Const (return, dummyT) $ f
| unfold-monad f = f;
fun contains-scomp (Const (Q{const-syntax scomp}, -) $ - $ -) = true
| contains-scomp (Const (@Q{ const-syntax fcomp}, -) $ - $ ¢) =
contains-scomp t
| contains-scomp (Const (Q{ const-syntax Let}, -) $ - $ Abs (-, -, t)) =
contains-scomp t;
fun scomp-monad-tr’ (f::g::ts) = list-comb
(Const (-do, dummyT) $ unfold-monad (Const (Q{ const-syntax scomp}, dum-
myT) $ f § g), ts);
fun fcomp-monad-tr' (f::g::ts) = if contains-scomp g then list-comb
(Const (-do, dummyT) $ unfold-monad (Const (Q{const-syntax fcomp},
dummyT) $ f § g), ts)
else raise Match;
fun Let-monad-tr’ (f :: (g as Abs (-, -, g')) :: ts) = if contains-scomp g’ then
list-comb
(Const (-do, dummyT) $ unfold-monad (Const (Qfconst-syntax Let}, dum-
myT) $ f $ g), ts)
else raise Match;
(Q{ const-syntaz scomp}, scomp-monad-tr’),
(Q{ const-syntazx fcomp}, fecomp-monad-tr’),
(@{ const-syntax Let}, Let-monad-tr’)
| end;
»

For an example, see HOL/ex/Random.thy.

end

6 A HOL random engine

theory Random
imports Code-Index
begin

notation fcomp (infixl o> 60)
notation scomp (infixl o— 60)

6.1 Auxiliary functions

definition inc-shift :: index = index = inder where
inc-shift vk = (if v ="k then 1 else k + 1)
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definition minus-shift :: index = index = inder = inder where
minus-shift r k1l = (ifk < lthenr + k — lelse k — 1)

fun log :: index = inder = index where
logbi=(if b < 1Vi<bthen 1else 1+ logb (i divbd))

6.2 Random seeds

types seed = inder X index

primrec next :: seed = indexr X seed where
next (v, w) = (let
= v div 53668;

v’ = minus-shift 2147483563 (40014 * (v mod 53668)) (k = 12211);
l= wdiv 52774;
w' = minus-shift 2147483399 (40692 = (w mod 52774)) (I x 3791);
z = minus-shift 2147483562 v’ (w' + 1) + 1

in (z, (v'; "))

lemma next-not-0:
fst (nexts) # 0
by (cases s) (auto simp add: minus-shift-def Let-def)

primrec seed-invariant :: seed = bool where
seed-invariant (v, w) «—— 0 < v A v < 9438322952 N 0 < w A True

lemma if-same: (if b then fz else fy) = f (if b then z else y)
by (cases b) simp-all

definition split-seed :: seed = seed X seed where
split-seed s = (let
(v, w) = s;
(v, w’) = snd (next s);
v' = inc-shift 2147483562 v,
87 = (0", w):
w'' = inc-shift 2147483398 w;
122 — (,U/’ w//)
Zn (S//7 s///))

6.3 Base selectors
fun iterate :: index = ('b = 'a = 'b x 'a) = 'b = 'a = 'b x 'a where
iterate k f x = (if k = 0 then Pair z else f x o— iterate (k — 1) f)

definition range :: index = seed = index X seed where
range k = iterate (log 2147483561 k)
(Al next o— (Av. Pair (v + 1 % 2147483561))) 1
o— (Av. Pair (v mod k))

lemma range:

16



k>0 = fst (range k s) < k
by (simp add: range-def scomp-apply split-def del: log.simps iterate.simps)

definition select :: ‘a list = seed = 'a X seed where
select s = range (Code-Indez.of-nat (length xs))
0— (Ak. Pair (nth zs (Code-Index.nat-of k)))

lemma select:
assumes s # [|
shows fst (select zs s) € set s
proof —
from assms have Code-Index.of-nat (length xs) > 0 by simp
with range have
fst (range (Code-Index.of-nat (length xs)) s) < Code-Index.of-nat (length xs)
by best
then have
Code-Index.nat-of (fst (range (Code-Index.of-nat (length xs)) s)) < length s
by simp
then show ?thesis
by (simp add: scomp-apply split-beta select-def)
qed

definition select-default :: index = 'a = 'a = seed = 'a X seed where
[code del]: select-default k © y = range k
o— (M. Pair (if | + 1 < k then z else y))

lemma select-default-zero:
fst (select-default 0z y s) =y
by (simp add: scomp-apply split-beta select-default-def)

lemma select-default-code [code]:
select-default k zy = (if k = 0
then range 1 o— (A-. Pair y)
else range k o— (Al. Pair (if | + 1 < k then z else y)))
proof
fix s
have snd (range (Code-Index.of-nat 0) s) = snd (range (Code-Index.of-nat 1)

s)
by (simp add: range-def scomp-Pair scomp-apply split-beta)
then show select-default kzy s = (if k = 0
then range 1 o— (\-. Pair y)
else range k o— (Al. Pair (if | + 1 < k then x else y))) s
by (cases k = 0) (simp-all add: select-default-def scomp-apply split-beta)
qed

6.4 ML interface

ML (
structure Random-Engine =
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struct
type seed = int * int;
local

val seed = ref
(let
val now = Time.toMilliseconds (Time.now ());
val (q, s1) = IntInf.divMod (now, 21474/83562);
val $2 = q mod 2147/83398;
in (s1 + 1,52 + 1) end);

mn

fun run f =
let
val (z, seed”) = f (! seed);
val - = seed := seed’
n x end;

end;

end;

)

no-notation fcomp (infixl o> 60)
no-notation scomp (infixl o— 60)

end

7 Higman’s lemma

theory Higman
imports Main State-Monad Random
begin

Formalization by Stefan Berghofer and Monika Seisenberger, based on Co-
quand and Fridlender [2].

datatype letter = A | B

inductive emb :: letter list = letter list = bool
where
emb0 [Pure.intro]: emb || bs
| embl [Pure.intro]: emb as bs = emb as (b # bs)
| emb2 [Pure.intro]: emb as bs => emb (a # as) (a # bs)
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inductive L :: letter list = letter list list = bool
for v :: letter list

where
L0 [Pure.intro]: emb w v = L v (w # ws)

| L1 [Pure.intro]: L v ws => L v (w # ws)

inductive good :: letter list list = bool
where
good0 [Pure.intro]: L w ws = good (w # ws)
| good! [Pure.intro]: good ws = good (w # ws)

inductive R :: letter = letter list list = letter list list = bool
for a :: letter
where
RO [Pure.intro]: R a || |]
| R1 [Pure.intro]: R a vs ws = R a (w # vs) ((a # w) # ws)

inductive T :: letter = letter list list = letter list list = bool
for a :: letter
where
TO [Pure.intro]: a 2 b = Rbwszs = T a (w # z3) ((a # w) # zs)
| T1 [Pure.intro]: T a ws zs = T a (w # ws) ((a # w) # 28)
| T2 [Pure.intro]: a # b = T a ws zs = T a ws ((b # w) # zs)

inductive bar :: letter list list = bool
where
bar1 [Pure.intro]: good ws = bar ws
| bar2 [Pure.intro]: (Aw. bar (w # ws)) = bar ws

theorem propl: bar ([] # ws) by iprover

theorem lemmal: L as ws = L (a # as) ws
by (erule L.induct, iprover+)

lemma lemma2” R a vs ws = L as vs = L (a # as) ws
apply (induct set: R)
apply (erule L.cases)
apply simp+
apply (erule L.cases)
apply simp-all
apply (rule LO)
apply (erule emb2)
apply (erule L1)
done

lemma lemma2: R a vs ws = good vs = good ws
apply (induct set: R)
apply iprover
apply (erule good.cases)
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apply simp-all

apply (rule good0)
apply (erule lemma2’)
apply assumption
apply (erule goodl)
done

lemma lemma3” T a vs ws = L as vs = L (a # as) ws
apply (induct set: T)
apply (erule L.cases)
apply simp-all
apply (rule LO)
apply (erule emb2)
apply (rule L1)
apply (erule lemmal)
apply (erule L.cases)
apply simp-all
apply iprover+
done

lemma lemma3: T a ws zs = good ws = good zs
apply (induct set: T)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemmal)
apply (erule goodl)
apply (erule good.cases)
apply simp-all
apply (rule good0)
apply (erule lemma3”)
apply iprover+
done

lemma lemma4: R a ws zs = ws # [| = T a ws zs
apply (induct set: R)
apply iprover
apply (case-tac vs)
apply (erule R.cases)
apply simp
apply (case-tac a)
apply (rule-tac b=B in T0)
apply simp
apply (rule RO)
apply (rule-tac b=A in T0)
apply simp
apply (rule RO)
apply simp
apply (rule T1)
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apply simp
done

lemma letter-neq: (a:letter) b — c#a = c=>
apply (case-tac a)
apply (case-tac b)
apply (case-tac ¢, simp, simp)
apply (case-tac ¢, simp, simp)
apply (case-tac b)
apply (case-tac ¢, simp, simp)
apply (case-tac ¢, simp, simp)
done

lemma letter-eq-dec: (a::letter) = bV a # b

apply (case-tac a)

apply (case-tac b)

apply simp

apply simp

apply (case-tac b)

apply simp

apply simp

done

theorem prop2:
assumes ab: ¢ # b and bar: bar xs
shows Ays zs. bar ys = T a xs zs = T b ys zs = bar zs using bar
proof induct
fix zs zs assume T a xs zs and good xs
hence good zs by (rule lemma3)
then show bar zs by (rule barl)
next
fix xs ys
assume I: Aw ys zs. bar ys = T a (w # zs) zs = T b ys zs = bar zs
assume bar ys
thus Azs. T a zs zs = T b ys zs = bar zs
proof induct
fix ys zs assume T b ys zs and good ys
then have good zs by (rule lemmad)
then show bar zs by (rule barl)
next
fix ys zs assume I Aw zs. Taxs zs = T b (w # ys) zs = bar zs
and ys: Aw. bar (w # ys) and Ta: T a zs zs and Tb: T b ys zs
show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (cases w)
case Nil
thus ?thesis by simp (rule propl1)
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next
case (Cons c cs)
from letter-eq-dec show ?thesis
proof
assume ca: ¢ = a
from ab have bar ((a # cs) # zs) by (iprover intro: I ys Ta Tb)
thus ?thesis by (simp add: Cons ca)
next
assume c # q
with ab have cb: ¢ = b by (rule letter-neq)
from ab have bar ((b # cs) # zs) by (iprover intro: 1’ Ta Tb)
thus ?thesis by (simp add: Cons cb)
qed
qed
qed
qged
qed

theorem prop3:
assumes bar: bar xs
shows Azs. zs # [| = R a xs zs = bar zs using bar
proof induct
fix zs zs
assume R a zs zs and good zs
then have good zs by (rule lemma2)
then show bar zs by (rule barl)
next
fix zs zs
assume [: N\w zs. w # xs # [| = R a (w # xs) zs = bar zs
and xsb: Aw. bar (w # zs) and zsn: zs # || and R: R a zs zs
show bar zs
proof (rule bar2)
fix w
show bar (w # zs)
proof (induct w)

case Nil
show ?case by (rule propl)
next

case (Cons c cs)
from letter-eq-dec show ?case
proof
assume ¢ = q
thus ?thesis by (iprover intro: I [simplified] R)
next
from R xzsn have T: T a xs zs by (rule lemmad)
assume ¢ # a
thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
qed
qed
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qed
qed

theorem higman: bar ||
proof (rule bar2)
fix w
show bar [w]
proof (induct w)
show bar [[|] by (rule propl)
next
fix ¢ cs assume bar [cs]
thus bar [¢ # cs] by (rule prop3) (simp, iprover)
qed
qed

primrec
is-prefix :: 'a list = (nat = 'a) = bool
where
is-prefiv [| f = True
| is-prefix (z # xs) f = (z = f (length xs) A is-prefix s f)

theorem L-idz:
assumes L: L w ws
shows is-prefiz ws f = Ji. emb (fi) w A ¢ < length ws using L
proof induct
case (L0 v ws)
hence emb (f (length ws)) w by simp
moreover have length ws < length (v # ws) by simp
ultimately show ?case by iprover
next
case (L1 ws v)
then obtain i where emb: emb (f i) w and i < length ws
by simp iprover
hence i < length (v # ws) by simp
with emb show ?case by iprover
qed

theorem good-idz:
assumes good: good ws
shows is-prefic ws f = Jij. emb (fi) (fj) A i < j using good
proof induct
case (good0 w ws)
hence w = f (length ws) and is-prefix ws f by simp-all
with good0 show ?case by (iprover dest: L-idx)
next
case (goodl ws w)
thus “case by simp
qed
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theorem bar-idz:
assumes bar: bar ws
shows is-prefic ws f = i j. emb (fi) (fj) A i < j using bar
proof induct
case (barl ws)
thus ?case by (rule good-idz)
next
case (bar2 ws)
hence is-prefiz (f (length ws) # ws) f by simp
thus ?case by (rule bar2)
qed

Strong version: yields indices of words that can be embedded into each
other.

theorem higman-idz: 3 (i::nat) j. emb (fi) (fj) Ni <}y
proof (rule bar-idzx)

show bar [| by (rule higman)

show is-prefix [| f by simp
qed

Weak version: only yield sequence containing words that can be embedded
into each other.

theorem good-prefiz-lemma:
assumes bar: bar ws
shows is-prefiz ws f = Jwvs. is-prefiz vs f N\ good vs using bar
proof induct
case barl
thus ?case by iprover
next
case (bar2 ws)
from bar2.prems have is-prefiz (f (length ws) # ws) f by simp
thus ?case by (iprover intro: bar2)
qed

theorem good-prefix: Jvs. is-prefix vs f A good vs
using higman
by (rule good-prefiz-lemma) simp+

7.1 Extracting the program

declare R.induct [ind-realizer]
declare T.induct [ind-realizer]
declare L.induct [ind-realizer]
declare good.induct [ind-realizer]
declare bar.induct [ind-realizer)

extract higman-idx

Program extracted from the proof of higman-idx:
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higman-ide = Ax. bar-idx x higman
Corresponding correctness theorem:

emb (f (fst (higman-idz f))) (f (snd (higman-idz f))) A
fst (higman-idx ) < snd (higman-idz f)

Program extracted from the proof of higman:

higman =
bar2 || (list-rec (propl []) (Aa w H. prop3 a [a # w] H (R1 [] [| w R0)))

Program extracted from the proof of prop1:

propl =
Az. bar2 ([| # ) (Aw. barl (w # [] # z) (good0 w ([] # z) (L0 ]| z)))

Program extracted from the proof of prop2:

prop2 =
Az za xb zc H.
barT-rec (Aws za xb xc H Ha Hb. barl zc (lemma3 x Ha za))
(Aws b r zc xd H.
barT-rec (Aws x xb H Ha. barl zb (lemma3 za Ha x))
(Awsa zb ra zc H Ha.
bar2 xc
(list-case (propl zc)
(Aa list.
case letter-eq-dec a = of
Left =
r list wsa ((x # list) # zc) (bar2 wsa xzb)
(T1 ws zc list H) (T2 x wsa zc list Ha)
| Right =
ra list ((za # list) # xzc) (T2 za ws xc list H)
(T1 wsa zc list Ha))))
H zd)
H zb zc

Program extracted from the proof of prop3:

prop3 =
Az za H.
barT-rec (Aws za zb H. barl zb (lemma2 x H za))
(Aws za r zb H.
bar2 xb
(list-rec (propl zb)
(Aa w Ha.
case letter-eq-dec a = of
Left = rw ((z # w) # zb) (R1 ws zb w H)
| Right =
prop2 a x ws ((a # w) # zb) Ha (bar2 ws za)
(TO0 x ws b w H) (T2 a ws zb w (lemma4d z H)))))
H za
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7.2 Some examples

instantiation LT and TT :: default
begin

definition default = L0 ] |]

definition default

ToA[[] RO
instance ..
end

function mk-word-auz :: nat = seed = letter list x seed where
mk-word-auz k = (do
1 «— range 10;
(if i > 7Nk > 2V k> 1000 then return ||
else do
let I = (if i mod 2 = 0 then A else B);
ls — mk-word-auz (Suc k);
return (I # 1s)
done)
done)
by pat-completeness auto
termination by (relation measure ((op —) 1001)) auto

definition mk-word :: seed = letter list x seed where
mk-word = mk-word-auz 0

primrec mk-word-s :: nat = seed = letter list X seed where
mk-word-s 0 = mk-word
| mk-word-s (Suc n) = (do
- «— mk-word,
mk-word-s n
done)

definition g1 :: nat = letter list where
gl s = fst (mk-word-s s (20000, 1))

definition ¢2 :: nat = letter list where
92 s = fst (mk-word-s s (50000, 1))

fun f1 :: nat = letter list where

10 =14, A

| /1 (Suc 0) = [B]

| fI (Suc (Suc 0)) = [A, B
[ f1-=1

fun f2 :: nat = letter list where
20 = [A, 4]
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| 2 (Suc 0) = [B]
| 2 (Suc (Suc 0)) = [B, 4]
| f2-=1]

ML

local

val higman-ide = @{code higman-idz};
val g1 = @Q{code g1};
val g2 = @Q{code ¢2};
val f1 = @{code f1};
val f2 = @{code f2};

n
val (i1, j1) = higman-idz g1;
val (v1, wl) = (g1 il, g1 j1);
val (i2, j2) = higman-idz ¢2;
val (v2, w2) = (g2 12, g2 j2);
val (18, j8) = higman-idx f1;
val (v8, w3) = (f1 i3, f1 j3);
val (14, j4) = higman-idz f2;
val (vf, wh) = (f2 i4, 2 j4);

end;

»

code-module Higman

contains

higman = higman-idx

ML (
local open Higman in

val a = 16807.0;
val m = 2147483647.0;

fun nextRand seed =
let val t = axseed
in t — m x real (Real.floor(t/m)) end;

fun mk-word seed | =
let
val r = nextRand seed;
val i = Real.round (r / m * 10.0);
in if i > 7 andalso 1 > 2 then (r, []) else
apsnd (cons (if i mod 2 = 0 then A else B)) (mk-word v (14+1))
end;

fun f s zero = mk-word s 0
| fs (Sucn) =f (fst (mk-word s 0)) n

val g1 = snd o (f 20000.0);
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val g2 = snd o (f 50000.0);

fun f1 zero = [A,A]
| f1 (Suc zero) = [B]
| f1 (Suc (Suc zero)) = [A,B]
| f1-=1;

fun f2 zero = [A,A]
| f2 (Suc zero) = [B]
| f2 (Suc (Suc zero)) = [B,A]

| f2-=1
val (i1, j1) = higman g1;
val (v, wl) = (g1 i1, g1 j1);
val (i2, j2) = hzgman 92;
val (v2, w2) = (g2 2, g2 j2);
val (18, j8) = higman fI;
val (v3, w3) = (f1 i3, f1 j3);
val (i4, j4) = higman f2;
val (v4, wy) = (f2i4, f2 j4);
end;
»
end

8 The pigeonhole principle

theory Pigeonhole
imports Util Efficient-Nat
begin

We formalize two proofs of the pigeonhole principle, which lead to extracted
programs of quite different complexity. The original formalization of these
proofs in NUPRL is due to Aleksey Nogin [3].

This proof yields a polynomial program.

theorem pigeonhole:

AN-(Ni.i<Sucn= fi<n)=3Fij.i<SucnAj<iANfi=Ffj
proof (induct n)

case (

hence Suc 0 < Suc 0 A 0 < Suc 0 A f (Suc 0) = f 0 by simp

thus ?case by iprover
next

case (Suc n)

{
fix k
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have
k < Suc (Suc n) =
(Nij. Suck <i= i< Suc (Sucn) =j<i=fi#fj) =
Qij.i<kANj<iAfi=Ffj)
proof (induct k)
case (
let 2f = Ni. if fi = Suc n then f (Suc (Suc n)) else fi
have = (Fij. i < Sucn Aj<iA ?i= 2j)
proof
assume 3ij. i < Sucn ANj<iA?fi=79j
then obtain i j where i: ¢ < Suc n and j: j < 4
and f: ?fi = ?fj by iprover
from j have i-nz: Suc 0 < i by simp
from ¢ have iSSn: i < Suc (Suc n) by simp
have 50SSn: Suc 0 < Suc (Suc n) by simp
show Fulse
proof cases
assume fi: fi = Sucn
show Fulse
proof cases
assume fj: fj = Sucn
from i-nz and iSSn and j have fi # fj by (rule 0)
moreover from fi have fi = fj
by (simp add: fj [symmetric])
ultimately show ?thesis ..
next
from i and j have j < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) # fj
by (rule 0)
moreover assume fj # Suc n
with fi and f have f (Suc (Suc n)) = fj by simp
ultimately show Fulse ..
qed
next
assume fi: fi # Sucn
show Fulse
proof cases
from i have i < Suc (Suc n) by simp
with S0SSn and le-refl have f (Suc (Suc n)) # fi
by (rule 0)
moreover assume fj = Suc n
with fi and f have f (Suc (Suc n)) = fi by simp
ultimately show Fulse ..
next
from i-nz and iSSn and j
have fi # fj by (rule 0)
moreover assume fj # Suc n
with fi and f have fi = fj by simp
ultimately show Fulse ..
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qed
qged
qed
moreover have A\i. i < Sucn = ?fi < n
proof —
fix 7 assume ¢ < Suc n
hence i: i < Suc (Suc n) by simp
have f (Suc (Suc n)) # fi
by (rule 0) (simp-all add: i)
moreover have f (Suc (Suc n)) < Suc n
by (rule Suc) simp
moreover from ¢ have i < Suc (Suc n) by simp
hence fi < Suc n by (rule Suc)
ultimately show ?thesis i
by simp
qed
hence 3ij. i < Sucn Aj<iNA%i=9j
by (rule Suc)
ultimately show ?case ..

next

case (Suc k)
from search [OF nat-eq-dec] show ?case
proof
assume 3j<Suc k. f (Suck) =fj
thus ?case by (iprover intro: le-refl)
next
assume nex: - (3j<Suc k. f (Suc k) = fj)
have dij. i <k Aj<iNANfi=fj
proof (rule Suc)
from Suc show k < Suc (Suc n) by simp
fix i j assume k: Suc k < i and i: i < Suc (Suc n)
and j: j < i
show fi #£ fj
proof cases
assume eq: i = Suc k
show ?thesis
proof
assume fi = fj
hence [ (Suc k) = fj by (simp add: eq)
with ner and j and eq show False by iprover
qed
next
assume i # Suc k
with k£ have Suc (Suc k) < i by simp
thus ?thesis using i and j by (rule Suc)
qed
qed
thus ?thesis by (iprover intro: le-Sucl)
qed
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qed
}
note r = this
show ?case by (rule ) simp-all
qed

The following proof, although quite elegant from a mathematical point of
view, leads to an exponential program:

theorem pigeonhole-slow:
AN-(Ni.i < Suen=fi<n)=3ij.i<SuenAj<iANfi=f]
proof (induct n)
case (
have Suc 0 < Suc 0 ..
moreover have 0 < Suc 0 ..
moreover from 0 have f (Suc 0) = f 0 by simp
ultimately show ?case by iprover
next
case (Suc n)
from search [OF nat-eq-dec] show ?case
proof
assume 35 < Suc (Suc n). f (Suc (Sucn)) =fj
thus ?case by (iprover intro: le-refl)
next
assume - (35 < Suc (Suc n). f (Suc (Suc n)) = fj)
hence nex: Vj < Suc (Suc n). f (Suc (Suc n)) # fj by iprover
let ?f = Xi. if fi = Suc n then f (Suc (Suc n)) else fi
have A\i. i < Sucn = i <n
proof —
fix ¢ assume i: i < Sucn
show ?thesis i
proof (cases f i = Suc n)
case True
from ¢ and nezx have f (Suc (Suc n)) # fi by simp
with True have f (Suc (Suc n)) # Suc n by simp
moreover from Suc have f (Suc (Suc n)) < Suc n by simp
ultimately have f (Suc (Suc n)) < n by simp
with True show ?thesis by simp
next
case Fulse
from Suc and i have fi < Suc n by simp
with False show ?thesis by simp
qed
qed
hence dij. i < Sucn Aj < i A ?fi= 2] by (rule Suc)
then obtain i j where i: i < Sucn and ji: j < i and f: 2fi = 9fj
by iprover
have fi = fj
proof (cases f i = Suc n)
case True
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show ?thesis
proof (cases fj = Suc n)
assume fj = Suc n
with True show ?thesis by simp
next
assume fj # Suc n
moreover from i ji nex have f (Suc (Suc n)) # fj by simp
ultimately show ?thesis using True f by simp
qed
next
case Fulse
show ?thesis
proof (cases fj = Suc n)
assume fj = Suc n
moreover from i nex have f (Suc (Suc n)) # fi by simp
ultimately show ?thesis using False f by simp
next
assume fj # Suc n
with Fulse f show ?thesis by simp
qed
qed
moreover from i have i < Suc (Suc n) by simp
ultimately show ?thesis using ji by iprover
qed
qed

extract pigeonhole pigeonhole-slow
The programs extracted from the above proofs look as follows:

pigeonhole =
Az. nat-induct-P x (Az. (Suc 0, 0))
(Ax H2 za.
nat-induct-P (Suc (Suc ) default
(\z H2.
case search (Suc x) (Azb. nat-eq-dec (za (Suc z)) (za zb)) of
None = let (z, y) = H2 in (z, y) | Some p = (Suc z, p)))

pigeonhole-slow =
Az. nat-induct-P x (Az. (Suc 0, 0))
(A\z H2 za.
case search (Suc (Suc x))
(Azb. nat-eq-dec (za (Suc (Suc z))) (za zb)) of
None =
let (z, y) =
H2 (Ai. if za i = Suc x then za (Suc (Suc x)) else za i)
in (z, y)
| Some p = (Suc (Suc ), p))

The program for searching for an element in an array is
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search =
Az H. nat-induct-P x None
(\y Ha.
case Ha of None = case H y of Left = Some y | Right = None
| Some p = Some p)

The correctness statement for pigeonhole is
(Ni. i < Sucn = fi<n) =
fst (pigeonhole n f) < Suc n A

snd (pigeonhole n f) < fst (pigeonhole n f) A
I (fst (pigeonhole n f)) = f (snd (pigeonhole n f))

In order to analyze the speed of the above programs, we generate ML code
from them.

instantiation nat :: default
begin

definition default = (0::nat)
instance ..
end

instantiation x :: (default, default) default
begin

definition default = (default, default)
instance ..

end

consts-code

default :: nat ({* 0:nat x})
default :: nat x nat ({* (0::nat, 0::nat) x})

definition

test n u = pigeonhole n (Am. m — 1)
definition

test’ n u = pigeonhole-slow n (Am. m — 1)
definition

test’ uw = pigeonhole 8 (op ! [0, 1, 2, 8, 4,5, 6, 3,7, 8])

code-module PH
contains
test = test
test’ = test’
test’ = test'’
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ML timeit (PH.test 10)
ML timeit (Q{code test} 10)

ML timeit (PH .test’ 10)
ML timeit (Qfcode test'} 10)

ML timeit (PH .test 20)
ML timeit (@Q{code test} 20)

ML timeit (PH .test’ 20)
ML timeit (Q{code test'} 20)

ML timeit (PH .test 25)
ML timeit (Q{code test} 25)

ML timeit (PH.test’ 25)
ML timeit (Q{code test'} 25)

ML timeit (PH .test 500)
ML timeit (Q{code test} 500)

ML timeit PH .test"
ML timeit @{code test'}

end

9 Euclid’s theorem

theory Fuclid
imports ~~ /src/ HOL/ NumberTheory / Factorization Util Efficient-Nat
begin

A constructive version of the proof of Euclid’s theorem by Markus Wenzel
and Freek Wiedijk [4].

lemma prime-eq: primep = (1 <p A (¥Y¥m. mdvdp — 1 < m — m = p))
apply (simp add: prime-def)
apply (rule iffT)
apply blast
apply (erule conjE)
apply (rule congl)
apply assumption
apply (rule alll impI)+
apply (erule allE)
apply (erule impE)
apply assumption
apply (case-tac m=0)
apply simp
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apply (case-tac m=Suc 0)
apply simp

apply simp

done

lemma prime-eq”: primep = (1 <p A(¥mk.p=mxk —1<m-—m=

p))
by (simp add: prime-eq dvd-def all-simps [symmetric| del: all-simps)

lemma factor-greater-onel: n =mx k= m <n =k <n = Suc 0 <m
by (induct m) auto

lemma factor-greater-one2: n = mx k= m<n=—k<n = Suc 0 <k
by (induct k) auto

lemma not-prime-ex-mk:
assumes n: Suc 0 < n
shows (3m k. Suc 0 < m A Suc 0 <kAm<nAk<nAn=msxk)V
prime n
proof —
{
fix k
from nat-eq-dec
have (Im<n.n=m *x k) V- (Im<n. n =m x k)
by (rule search)

hence (Fk<n. Am<n.n=m = k) V - (FTk<n. Im<n. n = m * k)
by (rule search)
thus ?thesis
proof
assume Jk<n. Im<n.n =m x k
then obtain k£ m where k: k<n and m: m<n and nmk: n = m x k
by iprover
from nmk m k have Suc 0 < m by (rule factor-greater-onel)
moreover from nmk m k have Suc 0 < k by (rule factor-greater-one2)
ultimately show ?thesis using k m nmk by iprover
next
assume - (k<n. Im<n.n =m x k)
hence A: Vk<n.Vm<n. n # m % k by iprover
haveVmk. n=mxk — Suc0 <m — m=n
proof (intro alll impl)
fix m k
assume nmk: n = m x k
assume m: Suc 0 < m
from n m nmk have k: 0 < k
by (cases k) auto
moreover from n have n: 0 < n by simp
moreover note m
moreover from nmk have m x k = n by simp
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ultimately have kn: k < n by (rule prod-mn-less-k)
show m = n
proof (cases k = Suc 0)
case True
with nmk show %thesis by (simp only: mult-Suc-right)
next
case Fulse
from m have 0 < m by simp
moreover note n
moreover from Fualse n nmk k have Suc 0 < k by auto
moreover from nmk have k x m = n by (simp only: mult-ac)
ultimately have mn: m < n by (rule prod-mn-less-k)
with kn A nmk show ?thesis by iprover
qed
qed
with n have prime n
by (simp only: prime-eq’ One-nat-def simp-thms)
thus ?thesis ..
qed
qed

lemma factor-exists: Suc 0 < n = (31. primel I A\ prod | = n)
proof (induct n rule: nat-wf-ind)
case (I n)
from «Suc 0 < m
have (3m k. Suc 0 < m A SucO0 <kAm<nAk<nAn=mxk)V prime
n
by (rule not-prime-ex-mk)
then show ?case
proof
assume I3m k. Suc 0 < m A Suc 0 <kAm<nAk<nAn=mxk
then obtain m k where m: Suc 0 < m and k: Suc 0 < k and mn: m < n
and kn: k < n and nmk: n = m x k by iprover
from mn and m have 3. primel | A prod | = m by (rule 1)
then obtain /1 where primel-l1: primel 1 and prod-l1-m: prod l1 = m
by iprover
from kn and k have 1. primel | A prod | = k by (rule 1)
then obtain [2 where primel-12: primel [2 and prod-12-k: prod 12 = k
by iprover
from primel-11 primel-12
have 3. primel | A prod | = prod l1 * prod 2
by (rule split-primel)
with prod-11-m prod-12-k nmk show ?thesis by simp
next
assume prime n
hence primel [n] A prod [n] = n by (rule prime-primel)
thus ?thesis ..
qed
qed
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lemma dvd-prod [iff]: n dvd prod (n # ns)
by simp

primrec fact :: nat = nat  ((-!) [1000] 999)
where
0l =1
| (Suc n)! = n! * Sucn

lemma fact-greater-0 [iff]: 0 < n!
by (induct n) simp-all

lemma dvd-factorial: 0 < m = m < n = m dvd n!
proof (induct n)
case (
then show ?case by simp
next
case (Suc n)
from (m < Suc n) show ?case
proof (rule le-SucE)
assume m < n
with (0 < m) have m dvd n! by (rule Suc)
then have m dvd (n! * Suc n) by (rule dvd-mult2)
then show ?thesis by simp
next
assume m = Suc n
then have m dvd (n! * Suc n)
by (auto intro: dvdl simp: mult-ac)
then show ?thesis by simp
qed
qed

lemma prime-factor-ezists:
assumes N: (1:nat) < n
shows 3 p. prime p A p dvd n
proof —
from N obtain [ where primel-I: primel |
and prod-l: n = prod | using factor-ezists
by simp iprover
from prems have [ # |]
by (auto simp add: primel-nempty-g-one)
then obtain z zs where I: | = z # s
by (cases ) simp
from primel-l | have prime x by (simp add: primel-hd-tl)
moreover from primel-I | prod-l
have z dvd n by (simp only: dvd-prod)
ultimately show ?thesis by iprover
qed

Euclid’s theorem: there are infinitely many primes.
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lemma Fuclid: Ap. prime p A n < p
proof —
let 2k = n! + 1
have 1 < n! + 1 by simp
then obtain p where prime: prime p and dvd: p dvd ?k using prime-factor-exists
by iprover
have n < p
proof —
have - p < n
proof
assume pn: p < n
from (prime p» have 0 < p by (rule prime-g-zero)
then have p dvd n! using pn by (rule dvd-factorial)
with dvd have p dvd %k — n! by (rule nat-dvd-diff)
then have p dvd 1 by simp
with prime show Fulse using prime-nd-one by auto
qed
then show ?thesis by simp
qed
with prime show ?thesis by iprover
qed

extract Fuclid
The program extracted from the proof of Euclid’s theorem looks as follows.
Euclid = Ax. prime-factor-exists (z! + 1)
The program corresponding to the proof of the factorization theorem is
factor-exists =
Az. nat-wf-ind-P z

(A\x H2.

case not-prime-ez-mk x of None = (]

| Some p = let (z, y) = p in split-primel (H2 z) (H2 y))

instantiation nat :: default
begin

definition default = (0::nat)
instance ..
end

instantiation list :: (type) default
begin

definition default = []
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instance ..
end

consts-code
default ((error default))

lemma factor-exists 1007 = [53, 19] by evaluation
lemma factor-exists 1007 = [53, 19] by eval

lemma factor-exists 567 = [7, 3, 3, 3, 8] by evaluation
lemma factor-exists 567 = [7, 3, 3, 3, 3] by eval

lemma factor-exists 345 = [23, 5, 3] by evaluation
lemma factor-exists 345 = [23, 5, 3] by eval

lemma factor-exists 999 = [37, 3, 3, 3] by evaluation
lemma factor-exists 999 = [37, 3, 3, 3] by eval

lemma factor-exists 876 = [73, 3, 2, 2] by evaluation
lemma factor-exists 876 = [73, 3, 2, 2] by eval

primrec iterate :: nat = (‘a = 'a) = 'a = 'a list where
iterate 0 fx = |
| iterate (Suc n) fz = (let y = fxz iny # iterate n fy)

lemma iterate 4 Fuclid 0 = [2, 3, 7, 71] by evaluation
lemma iterate 4 Euclid 0 = [2, 8, 7, 71] by eval

end
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