
Size-Change Termination

Alexander Krauss

April 19, 2009

1 Miscellaneous Tools for Size-Change Termina-
tion

theory Misc-Tools
imports Main
begin

1.1 Searching in lists

fun index-of :: ′a list ⇒ ′a ⇒ nat
where

index-of [] c = 0
| index-of (x#xs) c = (if x = c then 0 else Suc (index-of xs c))

lemma index-of-member :
(x ∈ set l) =⇒ (l ! index-of l x = x)
by (induct l) auto

lemma index-of-length:
(x ∈ set l) = (index-of l x < length l)
by (induct l) auto

1.2 Some reasoning tools

lemma three-cases:
assumes a1 =⇒ thesis
assumes a2 =⇒ thesis
assumes a3 =⇒ thesis
assumes

∧
R. [[a1 =⇒ R; a2 =⇒ R; a3 =⇒ R]] =⇒ R

shows thesis
using assms
by auto

1.3 Sequences

types
′a sequence = nat ⇒ ′a

1

1.3.1 Increasing sequences

definition
increasing :: (nat ⇒ nat) ⇒ bool where
increasing s = (∀ i j . i < j −→ s i < s j)

lemma increasing-strict :
assumes increasing s
assumes i < j
shows s i < s j
using assms
unfolding increasing-def by simp

lemma increasing-weak :
assumes increasing s
assumes i ≤ j
shows s i ≤ s j
using assms increasing-strict [of s i j]
by (cases i < j) auto

lemma increasing-inc:
assumes increasing s
shows n ≤ s n

proof (induct n)
case 0 then show ?case by simp

next
case (Suc n)
with increasing-strict [OF 〈increasing s〉, of n Suc n]
show ?case by auto

qed

lemma increasing-bij :
assumes [simp]: increasing s
shows (s i < s j) = (i < j)

proof
assume s i < s j
show i < j
proof (rule classical)

assume ¬ ?thesis
hence j ≤ i by arith
with increasing-weak have s j ≤ s i by simp
with 〈s i < s j 〉 show ?thesis by simp

qed
qed (simp add :increasing-strict)

1.3.2 Sections induced by an increasing sequence

abbreviation
section s i == {s i ..< s (Suc i)}

2

definition
section-of s n = (LEAST i . n < s (Suc i))

lemma section-help:
assumes increasing s
shows ∃ i . n < s (Suc i)

proof −
have n ≤ s n

using 〈increasing s〉 by (rule increasing-inc)
also have . . . < s (Suc n)

using 〈increasing s〉 increasing-strict by simp
finally show ?thesis ..

qed

lemma section-of2 :
assumes increasing s
shows n < s (Suc (section-of s n))
unfolding section-of-def
by (rule LeastI-ex) (rule section-help [OF 〈increasing s〉])

lemma section-of1 :
assumes [simp, intro]: increasing s
assumes s i ≤ n
shows s (section-of s n) ≤ n

proof (rule classical)
let ?m = section-of s n

assume ¬ ?thesis
hence a: n < s ?m by simp

have nonzero: ?m 6= 0
proof

assume ?m = 0
from increasing-weak have s 0 ≤ s i by simp
also note 〈. . . ≤ n〉

finally show False using 〈?m = 0 〉 〈n < s ?m〉 by simp
qed
with a have n < s (Suc (?m − 1)) by simp
with Least-le have ?m ≤ ?m − 1

unfolding section-of-def .
with nonzero show ?thesis by simp

qed

lemma section-of-known:
assumes [simp]: increasing s
assumes in-sect : k ∈ section s i
shows section-of s k = i (is ?s = i)

proof (rule classical)
assume ¬ ?thesis

3

hence ?s < i ∨ ?s > i by arith
thus ?thesis
proof

assume ?s < i
hence Suc ?s ≤ i by simp
with increasing-weak have s (Suc ?s) ≤ s i by simp
moreover have k < s (Suc ?s) using section-of2 by simp
moreover from in-sect have s i ≤ k by simp
ultimately show ?thesis by simp

next
assume i < ?s hence Suc i ≤ ?s by simp
with increasing-weak have s (Suc i) ≤ s ?s by simp
moreover
from in-sect have s i ≤ k by simp
with section-of1 have s ?s ≤ k by simp
moreover from in-sect have k < s (Suc i) by simp
ultimately show ?thesis by simp

qed
qed

lemma in-section-of :
assumes increasing s
assumes s i ≤ k
shows k ∈ section s (section-of s k)
using assms
by (auto intro:section-of1 section-of2)

end

2 Kleene Algebras

theory Kleene-Algebras
imports Main
begin

A type class of kleene algebras

class star =
fixes star :: ′a ⇒ ′a

class idem-add = ab-semigroup-add +
assumes add-idem [simp]: x + x = x

lemma add-idem2 [simp]: (x :: ′a::idem-add) + (x + y) = x + y
unfolding add-assoc[symmetric]
by simp

class order-by-add = idem-add + ord +

4

assumes order-def : a ≤ b ←→ a + b = b
assumes strict-order-def : a < b ←→ a ≤ b ∧ ¬ b ≤ a

begin

lemma ord-simp1 [simp]: x ≤ y =⇒ x + y = y
unfolding order-def .

lemma ord-simp2 [simp]: x ≤ y =⇒ y + x = y
unfolding order-def add-commute .

lemma ord-intro: x + y = y =⇒ x ≤ y
unfolding order-def .

subclass order proof
fix x y z :: ′a
show x ≤ x unfolding order-def by simp
show x ≤ y =⇒ y ≤ z =⇒ x ≤ z
proof (rule ord-intro)

assume x ≤ y y ≤ z
have x + z = x + y + z by (simp add :〈y ≤ z 〉 add-assoc)
also have . . . = y + z by (simp add :〈x ≤ y〉)
also have . . . = z by (simp add :〈y ≤ z 〉)
finally show x + z = z .

qed
show x ≤ y =⇒ y ≤ x =⇒ x = y unfolding order-def

by (simp add : add-commute)
show x < y ←→ x ≤ y ∧ ¬ y ≤ x by (fact strict-order-def)

qed

lemma plus-leI :
x ≤ z =⇒ y ≤ z =⇒ x + y ≤ z
unfolding order-def by (simp add : add-assoc)

end

class pre-kleene = semiring-1 + order-by-add
begin

subclass pordered-semiring proof
fix x y z :: ′a

assume x ≤ y

show z + x ≤ z + y
proof (rule ord-intro)

have z + x + (z + y) = x + y + z by (simp add :add-ac)
also have . . . = z + y by (simp add :〈x ≤ y〉 add-ac)
finally show z + x + (z + y) = z + y .

qed

5

show z ∗ x ≤ z ∗ y
proof (rule ord-intro)

from 〈x ≤ y〉 have z ∗ (x + y) = z ∗ y by simp
thus z ∗ x + z ∗ y = z ∗ y by (simp add :right-distrib)

qed

show x ∗ z ≤ y ∗ z
proof (rule ord-intro)

from 〈x ≤ y〉 have (x + y) ∗ z = y ∗ z by simp
thus x ∗ z + y ∗ z = y ∗ z by (simp add :left-distrib)

qed
qed

lemma zero-minimum [simp]: 0 ≤ x
unfolding order-def by simp

end

class kleene = pre-kleene + star +
assumes star1 : 1 + a ∗ star a ≤ star a
and star2 : 1 + star a ∗ a ≤ star a
and star3 : a ∗ x ≤ x =⇒ star a ∗ x ≤ x
and star4 : x ∗ a ≤ x =⇒ x ∗ star a ≤ x

class kleene-by-complete-lattice = pre-kleene
+ complete-lattice + recpower + star +
assumes star-cont : a ∗ star b ∗ c = SUPR UNIV (λn. a ∗ b ˆ n ∗ c)

begin

lemma (in complete-lattice) le-SUPI ′:
assumes l ≤ M i
shows l ≤ (SUP i . M i)
using assms by (rule order-trans) (rule le-SUPI [OF UNIV-I])

end

instance kleene-by-complete-lattice < kleene
proof

fix a x :: ′a

have [simp]: 1 ≤ star a
unfolding star-cont [of 1 a 1 , simplified]
by (subst power-0 [symmetric]) (rule le-SUPI [OF UNIV-I])

show 1 + a ∗ star a ≤ star a
apply (rule plus-leI , simp)
apply (simp add :star-cont [of a a 1 , simplified])

6

apply (simp add :star-cont [of 1 a 1 , simplified])
apply (subst power-Suc[symmetric])
by (intro SUP-leI le-SUPI UNIV-I)

show 1 + star a ∗ a ≤ star a
apply (rule plus-leI , simp)
apply (simp add :star-cont [of 1 a a, simplified])
apply (simp add :star-cont [of 1 a 1 , simplified])

by (auto intro: SUP-leI le-SUPI simp add : power-Suc[symmetric] power-commutes
simp del : power-Suc)

show a ∗ x ≤ x =⇒ star a ∗ x ≤ x
proof −

assume a: a ∗ x ≤ x

{
fix n
have a ˆ (Suc n) ∗ x ≤ a ˆ n ∗ x
proof (induct n)

case 0 thus ?case by (simp add : a)
next

case (Suc n)
hence a ∗ (a ˆ Suc n ∗ x) ≤ a ∗ (a ˆ n ∗ x)

by (auto intro: mult-mono)
thus ?case

by (simp add : mult-assoc)
qed

}
note a = this

{
fix n have a ˆ n ∗ x ≤ x
proof (induct n)

case 0 show ?case by simp
next

case (Suc n) with a[of n]
show ?case by simp

qed
}
note b = this

show star a ∗ x ≤ x
unfolding star-cont [of 1 a x , simplified]
by (rule SUP-leI) (rule b)

qed

show x ∗ a ≤ x =⇒ x ∗ star a ≤ x
proof −

assume a: x ∗ a ≤ x

7

{
fix n
have x ∗ a ˆ (Suc n) ≤ x ∗ a ˆ n
proof (induct n)

case 0 thus ?case by (simp add : a)
next

case (Suc n)
hence (x ∗ a ˆ Suc n) ∗ a ≤ (x ∗ a ˆ n) ∗ a

by (auto intro: mult-mono)
thus ?case

by (simp add : power-commutes mult-assoc)
qed

}
note a = this

{
fix n have x ∗ a ˆ n ≤ x
proof (induct n)

case 0 show ?case by simp
next

case (Suc n) with a[of n]
show ?case by simp

qed
}
note b = this

show x ∗ star a ≤ x
unfolding star-cont [of x a 1 , simplified]
by (rule SUP-leI) (rule b)

qed
qed

lemma less-add [simp]:
fixes a b :: ′a :: order-by-add
shows a ≤ a + b
and b ≤ a + b
unfolding order-def
by (auto simp:add-ac)

lemma add-est1 :
fixes a b c :: ′a :: order-by-add
assumes a: a + b ≤ c
shows a ≤ c
using less-add(1) a
by (rule order-trans)

lemma add-est2 :
fixes a b c :: ′a :: order-by-add

8

assumes a: a + b ≤ c
shows b ≤ c
using less-add(2) a
by (rule order-trans)

lemma star3 ′:
fixes a b x :: ′a :: kleene
assumes a: b + a ∗ x ≤ x
shows star a ∗ b ≤ x

proof (rule order-trans)
from a have b ≤ x by (rule add-est1)
show star a ∗ b ≤ star a ∗ x

by (rule mult-mono) (auto simp:〈b ≤ x 〉)

from a have a ∗ x ≤ x by (rule add-est2)
with star3 show star a ∗ x ≤ x .

qed

lemma star4 ′:
fixes a b x :: ′a :: kleene
assumes a: b + x ∗ a ≤ x
shows b ∗ star a ≤ x

proof (rule order-trans)
from a have b ≤ x by (rule add-est1)
show b ∗ star a ≤ x ∗ star a

by (rule mult-mono) (auto simp:〈b ≤ x 〉)

from a have x ∗ a ≤ x by (rule add-est2)
with star4 show x ∗ star a ≤ x .

qed

lemma star-idemp:
fixes x :: ′a :: kleene
shows star (star x) = star x
oops

lemma star-unfold-left :
fixes a :: ′a :: kleene
shows 1 + a ∗ star a = star a

proof (rule order-antisym, rule star1)

have 1 + a ∗ (1 + a ∗ star a) ≤ 1 + a ∗ star a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule star1)
done

9

with star3 ′ have star a ∗ 1 ≤ 1 + a ∗ star a .
thus star a ≤ 1 + a ∗ star a by simp

qed

lemma star-unfold-right :
fixes a :: ′a :: kleene
shows 1 + star a ∗ a = star a

proof (rule order-antisym, rule star2)

have 1 + (1 + star a ∗ a) ∗ a ≤ 1 + star a ∗ a
apply (rule add-mono, rule)
apply (rule mult-mono, auto)
apply (rule star2)
done

with star4 ′ have 1 ∗ star a ≤ 1 + star a ∗ a .
thus star a ≤ 1 + star a ∗ a by simp

qed

lemma star-zero[simp]:
shows star (0 :: ′a::kleene) = 1
by (rule star-unfold-left [of 0 , simplified])

lemma star-commute:
fixes a b x :: ′a :: kleene
assumes a: a ∗ x = x ∗ b
shows star a ∗ x = x ∗ star b

proof (rule order-antisym)

show star a ∗ x ≤ x ∗ star b
proof (rule star3 ′, rule order-trans)

from a have a ∗ x ≤ x ∗ b by simp
hence a ∗ x ∗ star b ≤ x ∗ b ∗ star b

by (rule mult-mono) auto
thus x + a ∗ (x ∗ star b) ≤ x + x ∗ b ∗ star b

using add-mono by (auto simp: mult-assoc)

show . . . ≤ x ∗ star b
proof −

have x ∗ (1 + b ∗ star b) ≤ x ∗ star b
by (rule mult-mono[OF - star1]) auto

thus ?thesis
by (simp add :right-distrib mult-assoc)

qed
qed

10

show x ∗ star b ≤ star a ∗ x
proof (rule star4 ′, rule order-trans)

from a have b: x ∗ b ≤ a ∗ x by simp
have star a ∗ x ∗ b ≤ star a ∗ a ∗ x

unfolding mult-assoc
by (rule mult-mono[OF - b]) auto

thus x + star a ∗ x ∗ b ≤ x + star a ∗ a ∗ x
using add-mono by auto

show . . . ≤ star a ∗ x
proof −

have (1 + star a ∗ a) ∗ x ≤ star a ∗ x
by (rule mult-mono[OF star2]) auto

thus ?thesis
by (simp add :left-distrib mult-assoc)

qed
qed

qed

lemma star-assoc:
fixes c d :: ′a :: kleene
shows star (c ∗ d) ∗ c = c ∗ star (d ∗ c)
by (auto simp:mult-assoc star-commute)

lemma star-dist :
fixes a b :: ′a :: kleene
shows star (a + b) = star a ∗ star (b ∗ star a)
oops

lemma star-one:
fixes a p p ′ :: ′a :: kleene
assumes p ∗ p ′ = 1 and p ′ ∗ p = 1
shows p ′ ∗ star a ∗ p = star (p ′ ∗ a ∗ p)

proof −
from assms
have p ′ ∗ star a ∗ p = p ′ ∗ star (p ∗ p ′ ∗ a) ∗ p

by simp
also have . . . = p ′ ∗ p ∗ star (p ′ ∗ a ∗ p)

by (simp add : mult-assoc star-assoc)
also have . . . = star (p ′ ∗ a ∗ p)

by (simp add : assms)
finally show ?thesis .

qed

lemma star-mono:
fixes x y :: ′a :: kleene
assumes x ≤ y
shows star x ≤ star y

11

oops

lemma x-less-star [simp]:
fixes x :: ′a :: kleene
shows x ≤ x ∗ star a

proof −
have x ≤ x ∗ (1 + a ∗ star a) by (simp add :right-distrib)
also have . . . = x ∗ star a by (simp only : star-unfold-left)
finally show ?thesis .

qed

2.1 Transitive Closure

definition
tcl (x :: ′a::kleene) = star x ∗ x

lemma tcl-zero:
tcl (0 :: ′a::kleene) = 0
unfolding tcl-def by simp

lemma tcl-unfold-right : tcl a = a + tcl a ∗ a
proof −

from star-unfold-right [of a]
have a ∗ (1 + star a ∗ a) = a ∗ star a by simp
from this[simplified right-distrib, simplified]
show ?thesis

by (simp add :tcl-def star-commute mult-ac)
qed

lemma less-tcl : a ≤ tcl a
proof −

have a ≤ a + tcl a ∗ a by simp
also have . . . = tcl a by (rule tcl-unfold-right [symmetric])
finally show ?thesis .

qed

2.2 Naive Algorithm to generate the transitive closure

function (default λx . 0 , tailrec, domintros)
mk-tcl :: (′a::{plus,times,ord ,zero}) ⇒ ′a ⇒ ′a

where
mk-tcl A X = (if X ∗ A ≤ X then X else mk-tcl A (X + X ∗ A))
by pat-completeness simp

declare mk-tcl .simps[simp del]

12

lemma mk-tcl-code[code]:
mk-tcl A X =
(let XA = X ∗ A
in if XA ≤ X then X else mk-tcl A (X + XA))
unfolding mk-tcl .simps[of A X] Let-def ..

lemma mk-tcl-lemma1 :
fixes X :: ′a :: kleene
shows (X + X ∗ A) ∗ star A = X ∗ star A

proof −
have A ∗ star A ≤ 1 + A ∗ star A by simp
also have . . . = star A by (simp add :star-unfold-left)
finally have star A + A ∗ star A = star A by simp
hence X ∗ (star A + A ∗ star A) = X ∗ star A by simp
thus ?thesis by (simp add :left-distrib right-distrib mult-ac)

qed

lemma mk-tcl-lemma2 :
fixes X :: ′a :: kleene
shows X ∗ A ≤ X =⇒ X ∗ star A = X
by (rule order-antisym) (auto simp:star4)

lemma mk-tcl-correctness:
fixes A X :: ′a :: {kleene}
assumes mk-tcl-dom (A, X)
shows mk-tcl A X = X ∗ star A
using assms
by induct (auto simp:mk-tcl-lemma1 mk-tcl-lemma2)

lemma graph-implies-dom: mk-tcl-graph x y =⇒ mk-tcl-dom x
by (rule mk-tcl-graph.induct) (auto intro:accp.accI elim:mk-tcl-rel .cases)

lemma mk-tcl-default : ¬ mk-tcl-dom (a,x) =⇒ mk-tcl a x = 0
unfolding mk-tcl-def
by (rule fundef-default-value[OF mk-tcl-sumC-def graph-implies-dom])

We can replace the dom-Condition of the correctness theorem with some-
thing executable

lemma mk-tcl-correctness2 :
fixes A X :: ′a :: {kleene}
assumes mk-tcl A A 6= 0
shows mk-tcl A A = tcl A
using assms mk-tcl-default mk-tcl-correctness
unfolding tcl-def
by (auto simp:star-commute)

13

end

3 General Graphs as Sets

theory Graphs
imports Main Misc-Tools Kleene-Algebras
begin

3.1 Basic types, Size Change Graphs

datatype (′a, ′b) graph =
Graph (′a × ′b × ′a) set

primrec dest-graph :: (′a, ′b) graph ⇒ (′a × ′b × ′a) set
where dest-graph (Graph G) = G

lemma graph-dest-graph[simp]:
Graph (dest-graph G) = G
by (cases G) simp

lemma split-graph-all :
(
∧

gr . PROP P gr) ≡ (
∧

set . PROP P (Graph set))
proof

fix set
assume

∧
gr . PROP P gr

then show PROP P (Graph set) .
next

fix gr
assume

∧
set . PROP P (Graph set)

then have PROP P (Graph (dest-graph gr)) .
then show PROP P gr by simp

qed

definition
has-edge :: (′n, ′e) graph ⇒ ′n ⇒ ′e ⇒ ′n ⇒ bool

(- ` - ;- -)
where

has-edge G n e n ′ = ((n, e, n ′) ∈ dest-graph G)

3.2 Graph composition

fun grcomp :: (′n, ′e::times) graph ⇒ (′n, ′e) graph ⇒ (′n, ′e) graph
where

grcomp (Graph G) (Graph H) =
Graph {(p,b,q) | p b q .
(∃ k e e ′. (p,e,k)∈G ∧ (k ,e ′,q)∈H ∧ b = e ∗ e ′)}

14

declare grcomp.simps[code del]

lemma graph-ext :
assumes

∧
n e n ′. has-edge G n e n ′ = has-edge H n e n ′

shows G = H
using assms
by (cases G , cases H) (auto simp:split-paired-all has-edge-def)

instantiation graph :: (type, type) comm-monoid-add
begin

definition
graph-zero-def : 0 = Graph {}

definition
graph-plus-def [code del]: G + H = Graph (dest-graph G ∪ dest-graph H)

instance proof
fix x y z :: (′a, ′b) graph
show x + y + z = x + (y + z)
and x + y = y + x
and 0 + x = x

unfolding graph-plus-def graph-zero-def by auto
qed

end

instantiation graph :: (type, type) {distrib-lattice, complete-lattice}
begin

definition
graph-leq-def [code del]: G ≤ H ←→ dest-graph G ⊆ dest-graph H

definition
graph-less-def [code del]: G < H ←→ dest-graph G ⊂ dest-graph H

definition
[code del]: bot = Graph {}

definition
[code del]: top = Graph UNIV

definition
[code del]: inf G H = Graph (dest-graph G ∩ dest-graph H)

definition

15

[code del]: sup (G :: (′a, ′b) graph) H = G + H

definition
Inf-graph-def [code del]: Inf = (λGs. Graph (

⋂
(dest-graph ‘ Gs)))

definition
Sup-graph-def [code del]: Sup = (λGs. Graph (

⋃
(dest-graph ‘ Gs)))

instance proof
fix x y z :: (′a, ′b) graph
fix A :: (′a, ′b) graph set

show (x < y) = (x ≤ y ∧ ¬ y ≤ x)
unfolding graph-leq-def graph-less-def
by (cases x , cases y) auto

show x ≤ x unfolding graph-leq-def ..

{ assume x ≤ y y ≤ z
with order-trans show x ≤ z

unfolding graph-leq-def . }

{ assume x ≤ y y ≤ x thus x = y
unfolding graph-leq-def
by (cases x , cases y) simp }

show inf x y ≤ x inf x y ≤ y
unfolding inf-graph-def graph-leq-def
by auto

{ assume x ≤ y x ≤ z thus x ≤ inf y z
unfolding inf-graph-def graph-leq-def
by auto }

show x ≤ sup x y y ≤ sup x y
unfolding sup-graph-def graph-leq-def graph-plus-def by auto

{ assume y ≤ x z ≤ x thus sup y z ≤ x
unfolding sup-graph-def graph-leq-def graph-plus-def by auto }

show bot ≤ x unfolding graph-leq-def bot-graph-def by simp

show x ≤ top unfolding graph-leq-def top-graph-def by simp

show sup x (inf y z) = inf (sup x y) (sup x z)
unfolding inf-graph-def sup-graph-def graph-leq-def graph-plus-def by auto

{ assume x ∈ A thus Inf A ≤ x
unfolding Inf-graph-def graph-leq-def by auto }

16

{ assume
∧

x . x ∈ A =⇒ z ≤ x thus z ≤ Inf A
unfolding Inf-graph-def graph-leq-def by auto }

{ assume x ∈ A thus x ≤ Sup A
unfolding Sup-graph-def graph-leq-def by auto }

{ assume
∧

x . x ∈ A =⇒ x ≤ z thus Sup A ≤ z
unfolding Sup-graph-def graph-leq-def by auto }

qed

end

lemma in-grplus:
has-edge (G + H) p b q = (has-edge G p b q ∨ has-edge H p b q)
by (cases G , cases H , auto simp:has-edge-def graph-plus-def)

lemma in-grzero:
has-edge 0 p b q = False
by (simp add :graph-zero-def has-edge-def)

3.2.1 Multiplicative Structure

instantiation graph :: (type, times) mult-zero
begin

definition
graph-mult-def [code del]: G ∗ H = grcomp G H

instance proof
fix a :: (′a, ′b) graph

show 0 ∗ a = 0
unfolding graph-mult-def graph-zero-def
by (cases a) (simp add :grcomp.simps)

show a ∗ 0 = 0
unfolding graph-mult-def graph-zero-def
by (cases a) (simp add :grcomp.simps)

qed

end

instantiation graph :: (type, one) one
begin

definition
graph-one-def : 1 = Graph { (x , 1 , x) |x . True}

instance ..

17

end

lemma in-grcomp:
has-edge (G ∗ H) p b q
= (∃ k e e ′. has-edge G p e k ∧ has-edge H k e ′ q ∧ b = e ∗ e ′)
by (cases G , cases H) (auto simp:graph-mult-def has-edge-def image-def)

lemma in-grunit :
has-edge 1 p b q = (p = q ∧ b = 1)
by (auto simp:graph-one-def has-edge-def)

instance graph :: (type, semigroup-mult) semigroup-mult
proof

fix G1 G2 G3 :: (′a, ′b) graph

show G1 ∗ G2 ∗ G3 = G1 ∗ (G2 ∗ G3)
proof (rule graph-ext , rule trans)

fix p J q
show has-edge ((G1 ∗ G2) ∗ G3) p J q =

(∃G i H j I .
has-edge G1 p G i
∧ has-edge G2 i H j
∧ has-edge G3 j I q
∧ J = (G ∗ H) ∗ I)
by (simp only :in-grcomp) blast

show . . . = has-edge (G1 ∗ (G2 ∗ G3)) p J q
by (simp only :in-grcomp mult-assoc) blast

qed
qed

instantiation graph :: (type, monoid-mult) {semiring-1 , idem-add , recpower , star}
begin

primrec power-graph :: (′a::type, ′b::monoid-mult) graph ⇒ nat => (′a, ′b) graph
where

(A :: (′a, ′b) graph) ˆ 0 = 1
| (A :: (′a, ′b) graph) ˆ Suc n = A ∗ (A ˆ n)

definition
graph-star-def : star (G :: (′a, ′b) graph) = (SUP n. G ˆ n)

instance proof
fix a b c :: (′a, ′b) graph

show 1 ∗ a = a
by (rule graph-ext) (auto simp:in-grcomp in-grunit)

show a ∗ 1 = a
by (rule graph-ext) (auto simp:in-grcomp in-grunit)

18

show (a + b) ∗ c = a ∗ c + b ∗ c
by (rule graph-ext , simp add :in-grcomp in-grplus) blast

show a ∗ (b + c) = a ∗ b + a ∗ c
by (rule graph-ext , simp add :in-grcomp in-grplus) blast

show (0 ::(′a, ′b) graph) 6= 1 unfolding graph-zero-def graph-one-def
by simp

show a + a = a unfolding graph-plus-def by simp

show a ˆ 0 = 1
∧

n. a ˆ (Suc n) = a ∗ a ˆ n
by simp-all

qed

end

lemma graph-leqI :
assumes

∧
n e n ′. has-edge G n e n ′ =⇒ has-edge H n e n ′

shows G ≤ H
using assms
unfolding graph-leq-def has-edge-def
by auto

lemma in-graph-plusE :
assumes has-edge (G + H) n e n ′

assumes has-edge G n e n ′ =⇒ P
assumes has-edge H n e n ′ =⇒ P
shows P
using assms
by (auto simp: in-grplus)

lemma in-graph-compE :
assumes GH : has-edge (G ∗ H) n e n ′

obtains e1 k e2
where has-edge G n e1 k has-edge H k e2 n ′ e = e1 ∗ e2
using GH
by (auto simp: in-grcomp)

lemma
assumes x ∈ S k
shows x ∈ (

⋃
k . S k)

using assms by blast

lemma graph-union-least :
assumes

∧
n. Graph (G n) ≤ C

shows Graph (
⋃

n. G n) ≤ C
using assms unfolding graph-leq-def

19

by auto

lemma Sup-graph-eq :
(SUP n. Graph (G n)) = Graph (

⋃
n. G n)

proof (rule order-antisym)
show (SUP n. Graph (G n)) ≤ Graph (

⋃
n. G n)

by (rule SUP-leI) (auto simp add : graph-leq-def)

show Graph (
⋃

n. G n) ≤ (SUP n. Graph (G n))
by (rule graph-union-least , rule le-SUPI ′, rule)

qed

lemma has-edge-leq : has-edge G p b q = (Graph {(p,b,q)} ≤ G)
unfolding has-edge-def graph-leq-def
by (cases G) simp

lemma Sup-graph-eq2 :
(SUP n. G n) = Graph (

⋃
n. dest-graph (G n))

using Sup-graph-eq [of λn. dest-graph (G n), simplified]
by simp

lemma in-SUP :
has-edge (SUP x . Gs x) p b q = (∃ x . has-edge (Gs x) p b q)
unfolding Sup-graph-eq2 has-edge-leq graph-leq-def
by simp

instance graph :: (type, monoid-mult) kleene-by-complete-lattice
proof

fix a b c :: (′a, ′b) graph

show a ≤ b ←→ a + b = b unfolding graph-leq-def graph-plus-def
by (cases a, cases b) auto

from less-le-not-le show a < b ←→ a ≤ b ∧ ¬ b ≤ a .

show a ∗ star b ∗ c = (SUP n. a ∗ b ˆ n ∗ c)
unfolding graph-star-def
by (rule graph-ext) (force simp:in-SUP in-grcomp)

qed

lemma in-star :
has-edge (star G) a x b = (∃n. has-edge (G ˆ n) a x b)
by (auto simp:graph-star-def in-SUP)

lemma tcl-is-SUP :
tcl (G ::(′a::type, ′b::monoid-mult) graph) =
(SUP n. G ˆ (Suc n))

20

unfolding tcl-def
using star-cont [of 1 G G]
by (simp add :power-Suc power-commutes)

lemma in-tcl :
has-edge (tcl G) a x b = (∃n>0 . has-edge (G ˆ n) a x b)
apply (auto simp: tcl-is-SUP in-SUP simp del : power-graph.simps power-Suc)
apply (rule-tac x = n − 1 in exI , auto)
done

3.3 Infinite Paths

types (′n, ′e) ipath = (′n × ′e) sequence

definition has-ipath :: (′n, ′e) graph ⇒ (′n, ′e) ipath ⇒ bool
where

has-ipath G p =
(∀ i . has-edge G (fst (p i)) (snd (p i)) (fst (p (Suc i))))

3.4 Finite Paths

types (′n, ′e) fpath = (′n × (′e × ′n) list)

inductive has-fpath :: (′n, ′e) graph ⇒ (′n, ′e) fpath ⇒ bool
for G :: (′n, ′e) graph

where
has-fpath-empty : has-fpath G (n, [])
| has-fpath-join: [[G ` n ;e n ′; has-fpath G (n ′, es)]] =⇒ has-fpath G (n, (e,
n ′)#es)

definition
end-node p =
(if snd p = [] then fst p else snd (snd p ! (length (snd p) − 1)))

definition path-nth :: (′n, ′e) fpath ⇒ nat ⇒ (′n × ′e × ′n)
where

path-nth p k = (if k = 0 then fst p else snd (snd p ! (k − 1)), snd p ! k)

lemma endnode-nth:
assumes length (snd p) = Suc k
shows end-node p = snd (snd (path-nth p k))
using assms unfolding end-node-def path-nth-def
by auto

lemma path-nth-graph:
assumes k < length (snd p)
assumes has-fpath G p
shows (λ(n,e,n ′). has-edge G n e n ′) (path-nth p k)

using assms

21

proof (induct k arbitrary : p)
case 0 thus ?case

unfolding path-nth-def by (auto elim:has-fpath.cases)
next

case (Suc k p)

from 〈has-fpath G p〉 show ?case
proof (rule has-fpath.cases)

case goal1 with Suc show ?case by simp
next

fix n e n ′ es
assume st : p = (n, (e, n ′) # es)

G ` n ;e n ′

has-fpath G (n ′, es)
with Suc
have (λ(n, b, a). G ` n ;b a) (path-nth (n ′, es) k) by simp
with st show ?thesis by (cases k , auto simp:path-nth-def)

qed
qed

lemma path-nth-connected :
assumes Suc k < length (snd p)
shows fst (path-nth p (Suc k)) = snd (snd (path-nth p k))
using assms
unfolding path-nth-def
by auto

definition path-loop :: (′n, ′e) fpath ⇒ (′n, ′e) ipath (omega)
where

omega p ≡ (λi . (λ(n,e,n ′). (n,e)) (path-nth p (i mod (length (snd p)))))

lemma fst-p0 : fst (path-nth p 0) = fst p
unfolding path-nth-def by simp

lemma path-loop-connect :
assumes fst p = end-node p
and 0 < length (snd p) (is 0 < ?l)
shows fst (path-nth p (Suc i mod (length (snd p))))
= snd (snd (path-nth p (i mod length (snd p))))
(is . . . = snd (snd (path-nth p ?k)))

proof −
from 〈0 < ?l 〉 have i mod ?l < ?l (is ?k < ?l)

by simp

show ?thesis
proof (cases Suc ?k < ?l)

case True
hence Suc ?k 6= ?l by simp
with path-nth-connected [OF True]

22

show ?thesis
by (simp add :mod-Suc)

next
case False
with 〈?k < ?l 〉 have wrap: Suc ?k = ?l by simp

hence fst (path-nth p (Suc i mod ?l)) = fst (path-nth p 0)
by (simp add : mod-Suc)

also from fst-p0 have . . . = fst p .
also have . . . = end-node p by fact
also have . . . = snd (snd (path-nth p ?k))

by (auto simp: endnode-nth wrap)
finally show ?thesis .

qed
qed

lemma path-loop-graph:
assumes has-fpath G p
and loop: fst p = end-node p
and nonempty : 0 < length (snd p) (is 0 < ?l)
shows has-ipath G (omega p)

proof −
{

fix i
from 〈0 < ?l 〉 have i mod ?l < ?l (is ?k < ?l)

by simp
from this and 〈has-fpath G p〉

have pk-G : (λ(n,e,n ′). has-edge G n e n ′) (path-nth p ?k)
by (rule path-nth-graph)

from path-loop-connect [OF loop nonempty] pk-G
have has-edge G (fst (omega p i)) (snd (omega p i)) (fst (omega p (Suc i)))

unfolding path-loop-def has-edge-def split-def
by simp

}
then show ?thesis by (auto simp:has-ipath-def)

qed

definition prod :: (′n, ′e::monoid-mult) fpath ⇒ ′e
where

prod p = foldr (op ∗) (map fst (snd p)) 1

lemma prod-simps[simp]:
prod (n, []) = 1
prod (n, (e,n ′)#es) = e ∗ (prod (n ′,es))

unfolding prod-def
by simp-all

lemma power-induces-path:

23

assumes a: has-edge (A ˆ k) n G m
obtains p

where has-fpath A p
and n = fst p m = end-node p
and G = prod p
and k = length (snd p)

using a
proof (induct k arbitrary :m n G thesis)

case (0 m n G)
let ?p = (n, [])
from 0 have has-fpath A ?p m = end-node ?p G = prod ?p

by (auto simp:in-grunit end-node-def intro:has-fpath.intros)
thus ?case using 0 by (auto simp:end-node-def)

next
case (Suc k m n G)
hence has-edge (A ∗ A ˆ k) n G m

by (simp add :power-Suc power-commutes)
then obtain G ′ H j where

a-A: has-edge A n G ′ j
and H-pow : has-edge (A ˆ k) j H m
and [simp]: G = G ′ ∗ H
by (auto simp:in-grcomp)

from H-pow and Suc
obtain p

where p-path: has-fpath A p
and [simp]: j = fst p m = end-node p H = prod p
k = length (snd p)
by blast

let ?p ′ = (n, (G ′, j)#snd p)
from a-A and p-path
have has-fpath A ?p ′ m = end-node ?p ′ G = prod ?p ′

by (auto simp:end-node-def nth.simps intro:has-fpath.intros split :nat .split)
thus ?case using Suc by auto

qed

3.5 Sub-Paths

definition sub-path :: (′n, ′e) ipath ⇒ nat ⇒ nat ⇒ (′n, ′e) fpath
((-〈-,-〉))
where

p〈i ,j 〉 =
(fst (p i), map (λk . (snd (p k), fst (p (Suc k)))) [i ..< j])

lemma sub-path-is-path:
assumes ipath: has-ipath G p
assumes l : i ≤ j

24

shows has-fpath G (p〈i ,j 〉)
using l

proof (induct i rule:inc-induct)
case base show ?case by (auto simp:sub-path-def intro:has-fpath.intros)

next
case (step i)
with ipath upt-rec[of i j]
show ?case

by (auto simp:sub-path-def has-ipath-def intro:has-fpath.intros)
qed

lemma sub-path-start [simp]:
fst (p〈i ,j 〉) = fst (p i)
by (simp add :sub-path-def)

lemma nth-upto[simp]: k < j − i =⇒ [i ..< j] ! k = i + k
by (induct k) auto

lemma sub-path-end [simp]:
i < j =⇒ end-node (p〈i ,j 〉) = fst (p j)
by (auto simp:sub-path-def end-node-def)

lemma foldr-map: foldr f (map g xs) = foldr (f o g) xs
by (induct xs) auto

lemma upto-append [simp]:
assumes i ≤ j j ≤ k
shows [i ..< j] @ [j ..< k] = [i ..< k]
using assms and upt-add-eq-append [of i j k − j]
by simp

lemma foldr-monoid : foldr (op ∗) xs 1 ∗ foldr (op ∗) ys 1
= foldr (op ∗) (xs @ ys) (1 :: ′a::monoid-mult)
by (induct xs) (auto simp:mult-assoc)

lemma sub-path-prod :
assumes i < j
assumes j < k
shows prod (p〈i ,k〉) = prod (p〈i ,j 〉) ∗ prod (p〈j ,k〉)
using assms
unfolding prod-def sub-path-def
by (simp add :map-compose[symmetric] comp-def)
(simp only :foldr-monoid map-append [symmetric] upto-append)

lemma path-acgpow-aux :
assumes length es = l
assumes has-fpath G (n,es)

25

shows has-edge (G ˆ l) n (prod (n,es)) (end-node (n,es))
using assms
proof (induct l arbitrary :n es)

case 0 thus ?case
by (simp add :in-grunit end-node-def)

next
case (Suc l n es)
hence es 6= [] by auto
let ?n ′ = snd (hd es)
let ?es ′ = tl es
let ?e = fst (hd es)

from Suc have len: length ?es ′ = l by auto

from Suc
have [simp]: end-node (n, es) = end-node (?n ′, ?es ′)

by (cases es) (auto simp:end-node-def nth.simps split :nat .split)

from 〈has-fpath G (n,es)〉
have has-fpath G (?n ′, ?es ′)

by (rule has-fpath.cases) (auto intro:has-fpath.intros)
with Suc len
have has-edge (G ˆ l) ?n ′ (prod (?n ′, ?es ′)) (end-node (?n ′, ?es ′))

by auto
moreover
from 〈es 6= []〉
have prod (n, es) = ?e ∗ (prod (?n ′, ?es ′))

by (cases es) auto
moreover
from 〈has-fpath G (n,es)〉 have c:has-edge G n ?e ?n ′

by (rule has-fpath.cases) (insert 〈es 6= []〉, auto)

ultimately
show ?case

unfolding power-Suc
by (auto simp:in-grcomp)

qed

lemma path-acgpow :
has-fpath G p

=⇒ has-edge (G ˆ length (snd p)) (fst p) (prod p) (end-node p)
by (cases p)

(rule path-acgpow-aux [of snd p length (snd p) - fst p, simplified])

lemma star-paths:
has-edge (star G) a x b =
(∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p)

26

proof
assume has-edge (star G) a x b
then obtain n where pow : has-edge (G ˆ n) a x b

by (auto simp:in-star)

then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
by (rule power-induces-path)

thus ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p
by blast

next
assume ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p
then obtain p where

has-fpath G p a = fst p b = end-node p x = prod p
by blast

hence has-edge (G ˆ length (snd p)) a x b
by (auto intro:path-acgpow)

thus has-edge (star G) a x b
by (auto simp:in-star)

qed

lemma plus-paths:
has-edge (tcl G) a x b =
(∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p ∧ 0 < length

(snd p))
proof

assume has-edge (tcl G) a x b

then obtain n where pow : has-edge (G ˆ n) a x b and 0 < n
by (auto simp:in-tcl)

from pow obtain p where
has-fpath G p a = fst p b = end-node p x = prod p
n = length (snd p)
by (rule power-induces-path)

with 〈0 < n〉

show ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p ∧ 0 <
length (snd p)

by blast
next

assume ∃ p. has-fpath G p ∧ a = fst p ∧ b = end-node p ∧ x = prod p
∧ 0 < length (snd p)

then obtain p where
has-fpath G p a = fst p b = end-node p x = prod p

27

0 < length (snd p)
by blast

hence has-edge (G ˆ length (snd p)) a x b
by (auto intro:path-acgpow)

with 〈0 < length (snd p)〉
show has-edge (tcl G) a x b

by (auto simp:in-tcl)
qed

definition
contract s p =
(λi . (fst (p (s i)), prod (p〈s i ,s (Suc i)〉)))

lemma ipath-contract :
assumes [simp]: increasing s
assumes ipath: has-ipath G p
shows has-ipath (tcl G) (contract s p)
unfolding has-ipath-def

proof
fix i
let ?p = p〈s i ,s (Suc i)〉

from increasing-strict
have fst (p (s (Suc i))) = end-node ?p by simp

moreover
from increasing-strict [of s i Suc i] have snd ?p 6= []

by (simp add :sub-path-def)
moreover
from ipath increasing-weak [of s] have has-fpath G ?p

by (rule sub-path-is-path) auto
ultimately
show has-edge (tcl G)

(fst (contract s p i)) (snd (contract s p i)) (fst (contract s p (Suc i)))
unfolding contract-def plus-paths
by (intro exI) auto

qed

lemma prod-unfold :
i < j =⇒ prod (p〈i ,j 〉)
= snd (p i) ∗ prod (p〈Suc i , j 〉)
unfolding prod-def
by (simp add :sub-path-def upt-rec[of i j])

lemma sub-path-loop:
assumes 0 < k

28

assumes k : k = length (snd loop)
assumes loop: fst loop = end-node loop
shows (omega loop)〈k ∗ i ,k ∗ Suc i〉 = loop (is ?ω = loop)

proof (rule prod-eqI)
show fst ?ω = fst loop

by (auto simp:path-loop-def path-nth-def split-def k)

show snd ?ω = snd loop
proof (rule nth-equalityI [rule-format])

show leneq : length (snd ?ω) = length (snd loop)
unfolding sub-path-def k by simp

fix j assume j < length (snd (?ω))
with leneq and k have j < k by simp

have a:
∧

i . fst (path-nth loop (Suc i mod k))
= snd (snd (path-nth loop (i mod k)))
unfolding k
apply (rule path-loop-connect [OF loop])
using 〈0 < k 〉 and k
apply auto
done

from 〈j < k 〉

show snd ?ω ! j = snd loop ! j
unfolding sub-path-def
apply (simp add :path-loop-def split-def add-ac)
apply (simp add :a k [symmetric])
apply (simp add :path-nth-def)
done

qed
qed

end

4 The Size-Change Principle (Definition)

theory Criterion
imports Graphs Infinite-Set
begin

4.1 Size-Change Graphs

datatype sedge =
LESS (↓)
| LEQ (⇓)

instantiation sedge :: comm-monoid-mult

29

begin

definition
one-sedge-def : 1 = ⇓

definition
mult-sedge-def : a ∗ b = (if a = ↓ then ↓ else b)

instance proof
fix a b c :: sedge
show a ∗ b ∗ c = a ∗ (b ∗ c) by (simp add :mult-sedge-def)
show 1 ∗ a = a by (simp add :mult-sedge-def one-sedge-def)
show a ∗ b = b ∗ a unfolding mult-sedge-def

by (cases a, simp) (cases b, auto)
qed

end

lemma sedge-UNIV :
UNIV = { LESS , LEQ }

proof (intro equalityI subsetI)
fix x show x ∈ { LESS , LEQ }

by (cases x) auto
qed auto

instance sedge :: finite
proof

show finite (UNIV ::sedge set)
by (simp add : sedge-UNIV)

qed

types ′a scg = (′a, sedge) graph
types ′a acg = (′a, ′a scg) graph

4.2 Size-Change Termination

abbreviation (input)
desc P Q == ((∃n.∀ i≥n. P i) ∧ (∃∞i . Q i))

abbreviation (input)
dsc G i j ≡ has-edge G i LESS j

abbreviation (input)
eqp G i j ≡ has-edge G i LEQ j

abbreviation
eql :: ′a scg ⇒ ′a ⇒ ′a ⇒ bool

30

(- ` - ; -)
where

eql G i j ≡ has-edge G i LESS j ∨ has-edge G i LEQ j

abbreviation (input) descat :: (′a, ′a scg) ipath ⇒ ′a sequence ⇒ nat ⇒ bool
where

descat p ϑ i ≡ has-edge (snd (p i)) (ϑ i) LESS (ϑ (Suc i))

abbreviation (input) eqat :: (′a, ′a scg) ipath ⇒ ′a sequence ⇒ nat ⇒ bool
where

eqat p ϑ i ≡ has-edge (snd (p i)) (ϑ i) LEQ (ϑ (Suc i))

abbreviation (input) eqlat :: (′a, ′a scg) ipath ⇒ ′a sequence ⇒ nat ⇒ bool
where

eqlat p ϑ i ≡ (has-edge (snd (p i)) (ϑ i) LESS (ϑ (Suc i))
∨ has-edge (snd (p i)) (ϑ i) LEQ (ϑ (Suc i)))

definition is-desc-thread :: ′a sequence ⇒ (′a, ′a scg) ipath ⇒ bool
where

is-desc-thread ϑ p = ((∃n.∀ i≥n. eqlat p ϑ i) ∧ (∃∞i . descat p ϑ i))

definition SCT :: ′a acg ⇒ bool
where

SCT A =
(∀ p. has-ipath A p −→ (∃ϑ. is-desc-thread ϑ p))

definition no-bad-graphs :: ′a acg ⇒ bool
where

no-bad-graphs A =
(∀n G . has-edge A n G n ∧ G ∗ G = G
−→ (∃ p. has-edge G p LESS p))

definition SCT ′ :: ′a acg ⇒ bool
where

SCT ′ A = no-bad-graphs (tcl A)

end

5 Proof of the Size-Change Principle

theory Correctness
imports Main Ramsey Misc-Tools Criterion

31

begin

5.1 Auxiliary definitions

definition is-thread :: nat ⇒ ′a sequence ⇒ (′a, ′a scg) ipath ⇒ bool
where

is-thread n ϑ p = (∀ i≥n. eqlat p ϑ i)

definition is-fthread ::
′a sequence ⇒ (′a, ′a scg) ipath ⇒ nat ⇒ nat ⇒ bool

where
is-fthread ϑ mp i j = (∀ k∈{i ..<j}. eqlat mp ϑ k)

definition is-desc-fthread ::
′a sequence ⇒ (′a, ′a scg) ipath ⇒ nat ⇒ nat ⇒ bool

where
is-desc-fthread ϑ mp i j =
(is-fthread ϑ mp i j ∧
(∃ k∈{i ..<j}. descat mp ϑ k))

definition
has-fth p i j n m =
(∃ϑ. is-fthread ϑ p i j ∧ ϑ i = n ∧ ϑ j = m)

definition
has-desc-fth p i j n m =
(∃ϑ. is-desc-fthread ϑ p i j ∧ ϑ i = n ∧ ϑ j = m)

5.2 Everything is finite

lemma finite-range:
fixes f :: nat ⇒ ′a
assumes fin: finite (range f)
shows ∃ x . ∃∞i . f i = x

proof (rule classical)
assume ¬(∃ x . ∃∞i . f i = x)
hence ∀ x . ∃ j . ∀ i>j . f i 6= x

unfolding INFM-nat by blast
with choice
have ∃ j . ∀ x . ∀ i>(j x). f i 6= x .
then obtain j where

neq :
∧

x i . j x < i =⇒ f i 6= x by blast

from fin have finite (range (j o f))
by (auto simp:comp-def range-composition)

with finite-nat-bounded
obtain m where range (j o f) ⊆ {..<m} by blast
hence j (f m) < m unfolding comp-def by auto

with neq [of f m m] show ?thesis by blast

32

qed

lemma finite-range-ignore-prefix :
fixes f :: nat ⇒ ′a
assumes fA: finite A
assumes inA: ∀ x≥n. f x ∈ A
shows finite (range f)

proof −
have a: UNIV = {0 ..< (n::nat)} ∪ { x . n ≤ x } by auto
have b: range f = f ‘ {0 ..< n} ∪ f ‘ { x . n ≤ x }

(is . . . = ?A ∪ ?B)
by (unfold a) (simp add :image-Un)

have finite ?A by (rule finite-imageI) simp
moreover
from inA have ?B ⊆ A by auto
from this fA have finite ?B by (rule finite-subset)
ultimately show ?thesis using b by simp

qed

definition
finite-graph G = finite (dest-graph G)

definition
all-finite G = (∀n H m. has-edge G n H m −→ finite-graph H)

definition
finite-acg A = (finite-graph A ∧ all-finite A)

definition
nodes G = fst ‘ dest-graph G ∪ snd ‘ snd ‘ dest-graph G

definition
edges G = fst ‘ snd ‘ dest-graph G

definition
smallnodes G =

⋃
(nodes ‘ edges G)

lemma thread-image-nodes:
assumes th: is-thread n ϑ p
shows ∀ i≥n. ϑ i ∈ nodes (snd (p i))

using prems
unfolding is-thread-def has-edge-def nodes-def
by force

lemma finite-nodes: finite-graph G =⇒ finite (nodes G)
unfolding finite-graph-def nodes-def
by auto

lemma nodes-subgraph: A ≤ B =⇒ nodes A ⊆ nodes B
unfolding graph-leq-def nodes-def

33

by auto

lemma finite-edges: finite-graph G =⇒ finite (edges G)
unfolding finite-graph-def edges-def
by auto

lemma edges-sum[simp]: edges (A + B) = edges A ∪ edges B
unfolding edges-def graph-plus-def
by auto

lemma nodes-sum[simp]: nodes (A + B) = nodes A ∪ nodes B
unfolding nodes-def graph-plus-def
by auto

lemma finite-acg-subset :
A ≤ B =⇒ finite-acg B =⇒ finite-acg A
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def graph-leq-def
by (auto elim:finite-subset)

lemma scg-finite:
fixes G :: ′a scg
assumes fin: finite (nodes G)
shows finite-graph G
unfolding finite-graph-def

proof (rule finite-subset)
show dest-graph G ⊆ nodes G × UNIV × nodes G (is - ⊆ ?P)

unfolding nodes-def
by force

show finite ?P
by (intro finite-cartesian-product fin finite)

qed

lemma smallnodes-sum[simp]:
smallnodes (A + B) = smallnodes A ∪ smallnodes B
unfolding smallnodes-def
by auto

lemma in-smallnodes:
fixes A :: ′a acg
assumes e: has-edge A x G y
shows nodes G ⊆ smallnodes A

proof −
have fst (snd (x , G , y)) ∈ fst ‘ snd ‘ dest-graph A

unfolding has-edge-def
by (rule imageI)+ (rule e[unfolded has-edge-def])

then have G ∈ edges A
unfolding edges-def by simp

thus ?thesis

34

unfolding smallnodes-def
by blast

qed

lemma finite-smallnodes:
assumes fA: finite-acg A
shows finite (smallnodes A)
unfolding smallnodes-def edges-def

proof
from fA
show finite (nodes ‘ fst ‘ snd ‘ dest-graph A)

unfolding finite-acg-def finite-graph-def
by simp

fix M assume M ∈ nodes ‘ fst ‘ snd ‘ dest-graph A
then obtain n G m

where M : M = nodes G and nGm: (n,G ,m) ∈ dest-graph A
by auto

from fA
have all-finite A unfolding finite-acg-def by simp
with nGm have finite-graph G

unfolding all-finite-def has-edge-def by auto
with finite-nodes
show finite M

unfolding finite-graph-def M .
qed

lemma nodes-tcl :
nodes (tcl A) = nodes A

proof
show nodes A ⊆ nodes (tcl A)

apply (rule nodes-subgraph)
by (subst tcl-unfold-right) simp

show nodes (tcl A) ⊆ nodes A
proof

fix x assume x ∈ nodes (tcl A)
then obtain z G y

where z : z ∈ dest-graph (tcl A)
and dis: z = (x , G , y) ∨ z = (y , G , x)
unfolding nodes-def
by auto force+

from dis
show x ∈ nodes A
proof

assume z = (x , G , y)
with z have has-edge (tcl A) x G y unfolding has-edge-def by simp

35

then obtain n where n > 0 and An: has-edge (A ˆ n) x G y
unfolding in-tcl by auto

then obtain n ′ where n = Suc n ′ by (cases n, auto)
hence A ˆ n = A ∗ A ˆ n ′ by (simp add :power-Suc)
with An obtain e k

where has-edge A x e k by (auto simp:in-grcomp)
thus x ∈ nodes A unfolding has-edge-def nodes-def

by force
next

assume z = (y , G , x)
with z have has-edge (tcl A) y G x unfolding has-edge-def by simp
then obtain n where n > 0 and An: has-edge (A ˆ n) y G x

unfolding in-tcl by auto
then obtain n ′ where n = Suc n ′ by (cases n, auto)
hence A ˆ n = A ˆ n ′ ∗ A by (simp add :power-Suc power-commutes)
with An obtain e k

where has-edge A k e x by (auto simp:in-grcomp)
thus x ∈ nodes A unfolding has-edge-def nodes-def

by force
qed

qed
qed

lemma smallnodes-tcl :
fixes A :: ′a acg
shows smallnodes (tcl A) = smallnodes A

proof (intro equalityI subsetI)
fix n assume n ∈ smallnodes (tcl A)
then obtain x G y where edge: has-edge (tcl A) x G y

and n ∈ nodes G
unfolding smallnodes-def edges-def has-edge-def
by auto

from 〈n ∈ nodes G〉

have n ∈ fst ‘ dest-graph G ∨ n ∈ snd ‘ snd ‘ dest-graph G
(is ?A ∨ ?B)
unfolding nodes-def by blast

thus n ∈ smallnodes A
proof

assume ?A
then obtain m e where A: has-edge G n e m

unfolding has-edge-def by auto

have tcl A = A ∗ star A
unfolding tcl-def
by (simp add : star-commute[of A A A, simplified])

with edge
have has-edge (A ∗ star A) x G y by simp

36

then obtain H H ′ z
where AH : has-edge A x H z and G : G = H ∗ H ′

by (auto simp:in-grcomp)
from A
obtain m ′ e ′ where has-edge H n e ′ m ′

by (auto simp:G in-grcomp)
hence n ∈ nodes H unfolding nodes-def has-edge-def

by force
with in-smallnodes[OF AH] show n ∈ smallnodes A ..

next
assume ?B
then obtain m e where B : has-edge G m e n

unfolding has-edge-def by auto

with edge
have has-edge (star A ∗ A) x G y by (simp add :tcl-def)
then obtain H H ′ z

where AH ′: has-edge A z H ′ y and G : G = H ∗ H ′

by (auto simp:in-grcomp)
from B
obtain m ′ e ′ where has-edge H ′ m ′ e ′ n

by (auto simp:G in-grcomp)
hence n ∈ nodes H ′ unfolding nodes-def has-edge-def

by force
with in-smallnodes[OF AH ′] show n ∈ smallnodes A ..

qed
next

fix x assume x ∈ smallnodes A
then show x ∈ smallnodes (tcl A)

by (subst tcl-unfold-right) simp
qed

lemma finite-nodegraphs:
assumes F : finite F
shows finite { G :: ′a scg . nodes G ⊆ F } (is finite ?P)

proof (rule finite-subset)
show ?P ⊆ Graph ‘ (Pow (F × UNIV × F)) (is ?P ⊆ ?Q)
proof

fix x assume xP : x ∈ ?P
obtain S where x [simp]: x = Graph S

by (cases x) auto
from xP
show x ∈ ?Q

apply (simp add :nodes-def)
apply (rule imageI)
apply (rule PowI)
apply force
done

qed

37

show finite ?Q
by (auto intro:finite-imageI finite-cartesian-product F finite)

qed

lemma finite-graphI :
fixes A :: ′a acg
assumes fin: finite (nodes A) finite (smallnodes A)
shows finite-graph A

proof −
obtain S where A[simp]: A = Graph S

by (cases A) auto

have finite S
proof (rule finite-subset)

show S ⊆ nodes A × { G :: ′a scg . nodes G ⊆ smallnodes A } × nodes A
(is S ⊆ ?T)

proof
fix x assume xS : x ∈ S
obtain a b c where x [simp]: x = (a, b, c)

by (cases x) auto

then have edg : has-edge A a b c
unfolding has-edge-def using xS
by simp

hence a ∈ nodes A c ∈ nodes A
unfolding nodes-def has-edge-def by force+

moreover
from edg have nodes b ⊆ smallnodes A by (rule in-smallnodes)
hence b ∈ { G :: ′a scg . nodes G ⊆ smallnodes A } by simp
ultimately show x ∈ ?T by simp

qed

show finite ?T
by (intro finite-cartesian-product fin finite-nodegraphs)

qed
thus ?thesis

unfolding finite-graph-def by simp
qed

lemma smallnodes-allfinite:
fixes A :: ′a acg
assumes fin: finite (smallnodes A)
shows all-finite A
unfolding all-finite-def

proof (intro allI impI)
fix n H m assume has-edge A n H m
then have nodes H ⊆ smallnodes A

38

by (rule in-smallnodes)
then have finite (nodes H)

by (rule finite-subset) (rule fin)
thus finite-graph H by (rule scg-finite)

qed

lemma finite-tcl :
fixes A :: ′a acg
shows finite-acg (tcl A) ←→ finite-acg A

proof
assume f : finite-acg A
from f have g : finite-graph A and all-finite A

unfolding finite-acg-def by auto

from g have finite (nodes A) by (rule finite-nodes)
then have finite (nodes (tcl A)) unfolding nodes-tcl .
moreover
from f have finite (smallnodes A) by (rule finite-smallnodes)
then have fs: finite (smallnodes (tcl A)) unfolding smallnodes-tcl .
ultimately
have finite-graph (tcl A) by (rule finite-graphI)

moreover from fs have all-finite (tcl A)
by (rule smallnodes-allfinite)

ultimately show finite-acg (tcl A) unfolding finite-acg-def ..
next

assume a: finite-acg (tcl A)
have A ≤ tcl A by (rule less-tcl)
thus finite-acg A using a

by (rule finite-acg-subset)
qed

lemma finite-acg-empty : finite-acg (Graph {})
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by simp

lemma finite-acg-ins:
assumes fA: finite-acg (Graph A)
assumes fG : finite G
shows finite-acg (Graph (insert (a, Graph G , b) A))
using fA fG
unfolding finite-acg-def finite-graph-def all-finite-def
has-edge-def
by auto

lemmas finite-acg-simps = finite-acg-empty finite-acg-ins finite-graph-def

39

5.3 Contraction and more

abbreviation
pdesc P == (fst P , prod P , end-node P)

lemma pdesc-acgplus:
assumes has-ipath A p
and i < j
shows has-edge (tcl A) (fst (p〈i ,j 〉)) (prod (p〈i ,j 〉)) (end-node (p〈i ,j 〉))
unfolding plus-paths
apply (rule exI)
apply (insert prems)
by (auto intro:sub-path-is-path[of A p i j] simp:sub-path-def)

lemma combine-fthreads:
assumes range: i < j j ≤ k
shows
has-fth p i k m r =
(∃n. has-fth p i j m n ∧ has-fth p j k n r) (is ?L = ?R)

proof (intro iffI)
assume ?L
then obtain ϑ

where is-fthread ϑ p i k
and [simp]: ϑ i = m ϑ k = r
by (auto simp:has-fth-def)

with range
have is-fthread ϑ p i j and is-fthread ϑ p j k

by (auto simp:is-fthread-def)
hence has-fth p i j m (ϑ j) and has-fth p j k (ϑ j) r

by (auto simp:has-fth-def)
thus ?R by auto

next
assume ?R
then obtain n ϑ1 ϑ2

where ths: is-fthread ϑ1 p i j is-fthread ϑ2 p j k
and [simp]: ϑ1 i = m ϑ1 j = n ϑ2 j = n ϑ2 k = r
by (auto simp:has-fth-def)

let ?ϑ = (λi . if i < j then ϑ1 i else ϑ2 i)
have is-fthread ?ϑ p i k

unfolding is-fthread-def
proof

fix l assume range: l ∈ {i ..<k}

show eqlat p ?ϑ l
proof (cases rule:three-cases)

assume Suc l < j
with ths range show ?thesis

40

unfolding is-fthread-def Ball-def
by simp

next
assume Suc l = j
hence l < j ϑ2 (Suc l) = ϑ1 (Suc l) by auto
with ths range show ?thesis

unfolding is-fthread-def Ball-def
by simp

next
assume j ≤ l
with ths range show ?thesis

unfolding is-fthread-def Ball-def
by simp

qed arith
qed
moreover
have ?ϑ i = m ?ϑ k = r using range by auto
ultimately show has-fth p i k m r

by (auto simp:has-fth-def)
qed

lemma desc-is-fthread :
is-desc-fthread ϑ p i k =⇒ is-fthread ϑ p i k
unfolding is-desc-fthread-def
by simp

lemma combine-dfthreads:
assumes range: i < j j ≤ k
shows
has-desc-fth p i k m r =
(∃n. (has-desc-fth p i j m n ∧ has-fth p j k n r)
∨ (has-fth p i j m n ∧ has-desc-fth p j k n r)) (is ?L = ?R)

proof
assume ?L
then obtain ϑ

where desc: is-desc-fthread ϑ p i k
and [simp]: ϑ i = m ϑ k = r
by (auto simp:has-desc-fth-def)

hence is-fthread ϑ p i k
by (simp add : desc-is-fthread)

with range have fths: is-fthread ϑ p i j is-fthread ϑ p j k
unfolding is-fthread-def
by auto

hence hfths: has-fth p i j m (ϑ j) has-fth p j k (ϑ j) r
by (auto simp:has-fth-def)

41

from desc obtain l
where i ≤ l l < k
and descat p ϑ l
by (auto simp:is-desc-fthread-def)

with fths
have is-desc-fthread ϑ p i j ∨ is-desc-fthread ϑ p j k

unfolding is-desc-fthread-def
by (cases l < j) auto

hence has-desc-fth p i j m (ϑ j) ∨ has-desc-fth p j k (ϑ j) r
by (auto simp:has-desc-fth-def)

with hfths show ?R
by auto

next
assume ?R
then obtain n ϑ1 ϑ2

where (is-desc-fthread ϑ1 p i j ∧ is-fthread ϑ2 p j k)
∨ (is-fthread ϑ1 p i j ∧ is-desc-fthread ϑ2 p j k)
and [simp]: ϑ1 i = m ϑ1 j = n ϑ2 j = n ϑ2 k = r
by (auto simp:has-fth-def has-desc-fth-def)

hence ths2 : is-fthread ϑ1 p i j is-fthread ϑ2 p j k
and dths: is-desc-fthread ϑ1 p i j ∨ is-desc-fthread ϑ2 p j k
by (auto simp:desc-is-fthread)

let ?ϑ = (λi . if i < j then ϑ1 i else ϑ2 i)
have is-fthread ?ϑ p i k

unfolding is-fthread-def
proof

fix l assume range: l ∈ {i ..<k}

show eqlat p ?ϑ l
proof (cases rule:three-cases)

assume Suc l < j
with ths2 range show ?thesis

unfolding is-fthread-def Ball-def
by simp

next
assume Suc l = j
hence l < j ϑ2 (Suc l) = ϑ1 (Suc l) by auto
with ths2 range show ?thesis

unfolding is-fthread-def Ball-def
by simp

next
assume j ≤ l
with ths2 range show ?thesis

unfolding is-fthread-def Ball-def
by simp

qed arith

42

qed
moreover
from dths
have ∃ l . i ≤ l ∧ l < k ∧ descat p ?ϑ l
proof

assume is-desc-fthread ϑ1 p i j

then obtain l where range: i ≤ l l < j and descat p ϑ1 l
unfolding is-desc-fthread-def Bex-def by auto

hence descat p ?ϑ l
by (cases Suc l = j , auto)

with 〈j ≤ k 〉 and range show ?thesis
by (rule-tac x=l in exI , auto)

next
assume is-desc-fthread ϑ2 p j k
then obtain l where range: j ≤ l l < k and descat p ϑ2 l

unfolding is-desc-fthread-def Bex-def by auto
with 〈i < j 〉 have descat p ?ϑ l i ≤ l

by auto
with range show ?thesis

by (rule-tac x=l in exI , auto)
qed
ultimately have is-desc-fthread ?ϑ p i k

by (simp add : is-desc-fthread-def Bex-def)

moreover
have ?ϑ i = m ?ϑ k = r using range by auto

ultimately show has-desc-fth p i k m r
by (auto simp:has-desc-fth-def)

qed

lemma fth-single:
has-fth p i (Suc i) m n = eql (snd (p i)) m n (is ?L = ?R)

proof
assume ?L thus ?R

unfolding is-fthread-def Ball-def has-fth-def
by auto

next
let ?ϑ = λk . if k = i then m else n
assume edge: ?R
hence is-fthread ?ϑ p i (Suc i) ∧ ?ϑ i = m ∧ ?ϑ (Suc i) = n

unfolding is-fthread-def Ball-def
by auto

thus ?L
unfolding has-fth-def

43

by auto
qed

lemma desc-fth-single:
has-desc-fth p i (Suc i) m n =
dsc (snd (p i)) m n (is ?L = ?R)

proof
assume ?L thus ?R

unfolding is-desc-fthread-def has-desc-fth-def is-fthread-def
Bex-def
by (elim exE conjE) (case-tac k = i , auto)

next
let ?ϑ = λk . if k = i then m else n
assume edge: ?R
hence is-desc-fthread ?ϑ p i (Suc i) ∧ ?ϑ i = m ∧ ?ϑ (Suc i) = n

unfolding is-desc-fthread-def is-fthread-def Ball-def Bex-def
by auto

thus ?L
unfolding has-desc-fth-def
by auto

qed

lemma mk-eql : (G ` m ;e n) =⇒ eql G m n
by (cases e, auto)

lemma eql-scgcomp:
eql (G ∗ H) m r =
(∃n. eql G m n ∧ eql H n r) (is ?L = ?R)

proof
show ?L =⇒ ?R

by (auto simp:in-grcomp intro!:mk-eql)

assume ?R
then obtain n where l : eql G m n and r :eql H n r by auto
thus ?L

by (cases dsc G m n) (auto simp:in-grcomp mult-sedge-def)
qed

lemma desc-scgcomp:
dsc (G ∗ H) m r =
(∃n. (dsc G m n ∧ eql H n r) ∨ (eqp G m n ∧ dsc H n r)) (is ?L = ?R)

proof
show ?R =⇒ ?L by (auto simp:in-grcomp mult-sedge-def)

assume ?L
thus ?R

by (auto simp:in-grcomp mult-sedge-def)
(case-tac e, auto, case-tac e ′, auto)

qed

44

lemma has-fth-unfold :
assumes i < j
shows has-fth p i j m n =

(∃ r . has-fth p i (Suc i) m r ∧ has-fth p (Suc i) j r n)
by (rule combine-fthreads) (insert 〈i < j 〉, auto)

lemma has-dfth-unfold :
assumes range: i < j
shows
has-desc-fth p i j m r =
(∃n. (has-desc-fth p i (Suc i) m n ∧ has-fth p (Suc i) j n r)
∨ (has-fth p i (Suc i) m n ∧ has-desc-fth p (Suc i) j n r))
by (rule combine-dfthreads) (insert 〈i < j 〉, auto)

lemma Lemma7a:
i ≤ j =⇒ has-fth p i j m n = eql (prod (p〈i ,j 〉)) m n

proof (induct i arbitrary : m rule:inc-induct)
case base show ?case

unfolding has-fth-def is-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def)

next
case (step i)
note IH = 〈

∧
m. has-fth p (Suc i) j m n =

eql (prod (p〈Suc i ,j 〉)) m n〉

have has-fth p i j m n
= (∃ r . has-fth p i (Suc i) m r ∧ has-fth p (Suc i) j r n)
by (rule has-fth-unfold [OF 〈i < j 〉])

also have . . . = (∃ r . has-fth p i (Suc i) m r
∧ eql (prod (p〈Suc i ,j 〉)) r n)
by (simp only :IH)

also have . . . = (∃ r . eql (snd (p i)) m r
∧ eql (prod (p〈Suc i ,j 〉)) r n)
by (simp only :fth-single)

also have . . . = eql (snd (p i) ∗ prod (p〈Suc i ,j 〉)) m n
by (simp only :eql-scgcomp)

also have . . . = eql (prod (p〈i ,j 〉)) m n
by (simp only :prod-unfold [OF 〈i < j 〉])

finally show ?case .
qed

lemma Lemma7b:
assumes i ≤ j
shows

has-desc-fth p i j m n =

45

dsc (prod (p〈i ,j 〉)) m n
using prems
proof (induct i arbitrary : m rule:inc-induct)

case base show ?case
unfolding has-desc-fth-def is-desc-fthread-def sub-path-def
by (auto simp:in-grunit one-sedge-def)

next
case (step i)
thus ?case

by (simp only :prod-unfold desc-scgcomp desc-fth-single
has-dfth-unfold fth-single Lemma7a) auto

qed

lemma descat-contract :
assumes [simp]: increasing s
shows
descat (contract s p) ϑ i =
has-desc-fth p (s i) (s (Suc i)) (ϑ i) (ϑ (Suc i))
by (simp add :Lemma7b increasing-weak contract-def)

lemma eqlat-contract :
assumes [simp]: increasing s
shows
eqlat (contract s p) ϑ i =
has-fth p (s i) (s (Suc i)) (ϑ i) (ϑ (Suc i))
by (auto simp:Lemma7a increasing-weak contract-def)

5.3.1 Connecting threads

definition
connect s ϑs = (λk . ϑs (section-of s k) k)

lemma next-in-range:
assumes [simp]: increasing s
assumes a: k ∈ section s i
shows (Suc k ∈ section s i) ∨ (Suc k ∈ section s (Suc i))

proof −
from a have k < s (Suc i) by simp

hence Suc k < s (Suc i) ∨ Suc k = s (Suc i) by arith
thus ?thesis
proof

assume Suc k < s (Suc i)
with a have Suc k ∈ section s i by simp
thus ?thesis ..

next
assume eq : Suc k = s (Suc i)

46

with increasing-strict have Suc k < s (Suc (Suc i)) by simp
with eq have Suc k ∈ section s (Suc i) by simp
thus ?thesis ..

qed
qed

lemma connect-threads:
assumes [simp]: increasing s
assumes connected : ϑs i (s (Suc i)) = ϑs (Suc i) (s (Suc i))
assumes fth: is-fthread (ϑs i) p (s i) (s (Suc i))

shows
is-fthread (connect s ϑs) p (s i) (s (Suc i))
unfolding is-fthread-def

proof
fix k assume krng : k ∈ section s i

with fth have eqlat : eqlat p (ϑs i) k
unfolding is-fthread-def by simp

from krng and next-in-range
have (Suc k ∈ section s i) ∨ (Suc k ∈ section s (Suc i))

by simp
thus eqlat p (connect s ϑs) k
proof

assume Suc k ∈ section s i
with krng eqlat show ?thesis

unfolding connect-def
by (simp only :section-of-known 〈increasing s〉)

next
assume skrng : Suc k ∈ section s (Suc i)
with krng have Suc k = s (Suc i) by auto

with krng skrng eqlat show ?thesis
unfolding connect-def
by (simp only :section-of-known connected [symmetric] 〈increasing s〉)

qed
qed

lemma connect-dthreads:
assumes inc[simp]: increasing s
assumes connected : ϑs i (s (Suc i)) = ϑs (Suc i) (s (Suc i))
assumes fth: is-desc-fthread (ϑs i) p (s i) (s (Suc i))

shows
is-desc-fthread (connect s ϑs) p (s i) (s (Suc i))
unfolding is-desc-fthread-def

47

proof
show is-fthread (connect s ϑs) p (s i) (s (Suc i))

apply (rule connect-threads)
apply (insert fth)
by (auto simp:connected is-desc-fthread-def)

from fth
obtain k where dsc: descat p (ϑs i) k and krng : k ∈ section s i

unfolding is-desc-fthread-def by blast

from krng and next-in-range
have (Suc k ∈ section s i) ∨ (Suc k ∈ section s (Suc i))

by simp
hence descat p (connect s ϑs) k
proof

assume Suc k ∈ section s i
with krng dsc show ?thesis unfolding connect-def

by (simp only :section-of-known inc)
next

assume skrng : Suc k ∈ section s (Suc i)
with krng have Suc k = s (Suc i) by auto

with krng skrng dsc show ?thesis unfolding connect-def
by (simp only :section-of-known connected [symmetric] inc)

qed
with krng show ∃ k∈section s i . descat p (connect s ϑs) k ..

qed

lemma mk-inf-thread :
assumes [simp]: increasing s
assumes fths:

∧
i . i > n =⇒ is-fthread ϑ p (s i) (s (Suc i))

shows is-thread (s (Suc n)) ϑ p
unfolding is-thread-def

proof (intro allI impI)
fix j assume st : s (Suc n) ≤ j

let ?k = section-of s j
from in-section-of st
have rs: j ∈ section s ?k by simp

with st have s (Suc n) < s (Suc ?k) by simp
with increasing-bij have n < ?k by simp
with rs and fths[of ?k]
show eqlat p ϑ j by (simp add :is-fthread-def)

qed

lemma mk-inf-desc-thread :
assumes [simp]: increasing s

48

assumes fths:
∧

i . i > n =⇒ is-fthread ϑ p (s i) (s (Suc i))
assumes fdths: ∃∞i . is-desc-fthread ϑ p (s i) (s (Suc i))
shows is-desc-thread ϑ p
unfolding is-desc-thread-def

proof (intro exI conjI)

from mk-inf-thread [of s n ϑ p] fths
show ∀ i≥s (Suc n). eqlat p ϑ i

by (fold is-thread-def) simp

show ∃∞l . descat p ϑ l
unfolding INFM-nat

proof
fix i

let ?k = section-of s i
from fdths obtain j

where ?k < j is-desc-fthread ϑ p (s j) (s (Suc j))
unfolding INFM-nat by auto

then obtain l where s j ≤ l and desc: descat p ϑ l
unfolding is-desc-fthread-def
by auto

have i < s (Suc ?k) by (rule section-of2) simp
also have . . . ≤ s j

by (rule increasing-weak [OF 〈increasing s〉]) (insert 〈?k < j 〉, arith)
also note 〈. . . ≤ l 〉
finally have i < l .
with desc
show ∃ l . i < l ∧ descat p ϑ l by blast

qed
qed

lemma desc-ex-choice:
assumes A: ((∃n.∀ i≥n. ∃ x . P x i) ∧ (∃∞i . ∃ x . Q x i))
and imp:

∧
x i . Q x i =⇒ P x i

shows ∃ xs. ((∃n.∀ i≥n. P (xs i) i) ∧ (∃∞i . Q (xs i) i))
(is ∃ xs. ?Ps xs ∧ ?Qs xs)

proof
let ?w = λi . (if (∃ x . Q x i) then (SOME x . Q x i)

else (SOME x . P x i))

from A
obtain n where P :

∧
i . n ≤ i =⇒ ∃ x . P x i

by auto
{

fix i :: ′a assume n ≤ i

49

have P (?w i) i
proof (cases ∃ x . Q x i)

case True
hence Q (?w i) i by (auto intro:someI)
with imp show P (?w i) i .

next
case False
with P [OF 〈n ≤ i 〉] show P (?w i) i

by (auto intro:someI)
qed

}

hence ?Ps ?w by (rule-tac x=n in exI) auto

moreover
from A have ∃∞i . (∃ x . Q x i) ..
hence ?Qs ?w by (rule INFM-mono) (auto intro:someI)
ultimately
show ?Ps ?w ∧ ?Qs ?w ..

qed

lemma dthreads-join:
assumes [simp]: increasing s
assumes dthread : is-desc-thread ϑ (contract s p)
shows ∃ϑs. desc (λi . is-fthread (ϑs i) p (s i) (s (Suc i))

∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

(λi . is-desc-fthread (ϑs i) p (s i) (s (Suc i))
∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

apply (rule desc-ex-choice)
apply (insert dthread)
apply (simp only :is-desc-thread-def)
apply (simp add :eqlat-contract)
apply (simp add :descat-contract)
apply (simp only :has-fth-def has-desc-fth-def)
by (auto simp:is-desc-fthread-def)

lemma INFM-drop-prefix :
(∃∞i ::nat . i > n ∧ P i) = (∃∞i . P i)
apply (auto simp:INFM-nat)
apply (drule-tac x = max m n in spec)
apply (elim exE conjE)
apply (rule-tac x = na in exI)
by auto

50

lemma contract-keeps-threads:
assumes inc[simp]: increasing s
shows (∃ϑ. is-desc-thread ϑ p)
←→ (∃ϑ. is-desc-thread ϑ (contract s p))
(is ?A ←→ ?B)

proof
assume ?A
then obtain ϑ n

where fr : ∀ i≥n. eqlat p ϑ i
and ds: ∃∞i . descat p ϑ i

unfolding is-desc-thread-def
by auto

let ?cϑ = λi . ϑ (s i)

have is-desc-thread ?cϑ (contract s p)
unfolding is-desc-thread-def

proof (intro exI conjI)

show ∀ i≥n. eqlat (contract s p) ?cϑ i
proof (intro allI impI)

fix i assume n ≤ i
also have i ≤ s i

using increasing-inc by auto
finally have n ≤ s i .

with fr have is-fthread ϑ p (s i) (s (Suc i))
unfolding is-fthread-def by auto

hence has-fth p (s i) (s (Suc i)) (ϑ (s i)) (ϑ (s (Suc i)))
unfolding has-fth-def by auto

with less-imp-le[OF increasing-strict]
have eql (prod (p〈s i ,s (Suc i)〉)) (ϑ (s i)) (ϑ (s (Suc i)))

by (simp add :Lemma7a)
thus eqlat (contract s p) ?cϑ i unfolding contract-def

by auto
qed

show ∃∞i . descat (contract s p) ?cϑ i
unfolding INFM-nat

proof
fix i

let ?K = section-of s (max (s (Suc i)) n)
from 〈∃∞i . descat p ϑ i 〉 obtain j

where s (Suc ?K) < j descat p ϑ j
unfolding INFM-nat by blast

51

let ?L = section-of s j
{

fix x assume r : x ∈ section s ?L

have e1 : max (s (Suc i)) n < s (Suc ?K) by (rule section-of2) simp
note 〈s (Suc ?K) < j 〉

also have j < s (Suc ?L)
by (rule section-of2) simp

finally have Suc ?K ≤ ?L
by (simp add :increasing-bij)

with increasing-weak have s (Suc ?K) ≤ s ?L by simp
with e1 r have max (s (Suc i)) n < x by simp

hence (s (Suc i)) < x n < x by auto
}
note range-est = this

have is-desc-fthread ϑ p (s ?L) (s (Suc ?L))
unfolding is-desc-fthread-def is-fthread-def

proof
show ∀m∈section s ?L. eqlat p ϑ m
proof

fix m assume m∈section s ?L
with range-est(2) have n < m .
with fr show eqlat p ϑ m by simp

qed

from in-section-of inc less-imp-le[OF 〈s (Suc ?K) < j 〉]
have j ∈ section s ?L .

with 〈descat p ϑ j 〉

show ∃m∈section s ?L. descat p ϑ m ..
qed

with less-imp-le[OF increasing-strict]
have a: descat (contract s p) ?cϑ ?L

unfolding contract-def Lemma7b[symmetric]
by (auto simp:Lemma7b[symmetric] has-desc-fth-def)

have i < ?L
proof (rule classical)

assume ¬ i < ?L
hence s ?L < s (Suc i)

by (simp add :increasing-bij)
also have . . . < s ?L

by (rule range-est(1)) (simp add :increasing-strict)
finally show ?thesis .

qed

52

with a show ∃ l . i < l ∧ descat (contract s p) ?cϑ l
by blast

qed
qed
with exI show ?B .

next
assume ?B
then obtain ϑ

where dthread : is-desc-thread ϑ (contract s p) ..

with dthreads-join inc
obtain ϑs where ths-spec:

desc (λi . is-fthread (ϑs i) p (s i) (s (Suc i))
∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

(λi . is-desc-fthread (ϑs i) p (s i) (s (Suc i))
∧ ϑs i (s i) = ϑ i
∧ ϑs i (s (Suc i)) = ϑ (Suc i))

(is desc ?alw ?inf)
by blast

then obtain n where fr : ∀ i≥n. ?alw i by blast
hence connected :

∧
i . n < i =⇒ ϑs i (s (Suc i)) = ϑs (Suc i) (s (Suc i))

by auto

let ?jϑ = connect s ϑs

from fr ths-spec have ths-spec2 :∧
i . i > n =⇒ is-fthread (ϑs i) p (s i) (s (Suc i))
∃∞i . is-desc-fthread (ϑs i) p (s i) (s (Suc i))

by (auto intro:INFM-mono)

have p1 :
∧

i . i > n =⇒ is-fthread ?jϑ p (s i) (s (Suc i))
by (rule connect-threads) (auto simp:connected ths-spec2)

from ths-spec2 (2)
have ∃∞i . n < i ∧ is-desc-fthread (ϑs i) p (s i) (s (Suc i))

unfolding INFM-drop-prefix .

hence p2 : ∃∞i . is-desc-fthread ?jϑ p (s i) (s (Suc i))
apply (rule INFM-mono)
apply (rule connect-dthreads)
by (auto simp:connected)

with 〈increasing s〉 p1
have is-desc-thread ?jϑ p

by (rule mk-inf-desc-thread)
with exI show ?A .

qed

53

lemma repeated-edge:
assumes

∧
i . i > n =⇒ dsc (snd (p i)) k k

shows is-desc-thread (λi . k) p
proof−

have th: ∀ m. ∃na>m. n < na by arith
show ?thesis using prems
unfolding is-desc-thread-def
apply (auto)
apply (rule-tac x=Suc n in exI , auto)
apply (rule INFM-mono[where P=λi . n < i])
apply (simp only :INFM-nat)
by (auto simp add : th)

qed

lemma fin-from-inf :
assumes is-thread n ϑ p
assumes n < i
assumes i < j
shows is-fthread ϑ p i j
using prems
unfolding is-thread-def is-fthread-def
by auto

5.4 Ramsey’s Theorem

definition
set2pair S = (THE (x ,y). x < y ∧ S = {x ,y})

lemma set2pair-conv :
fixes x y :: nat
assumes x < y
shows set2pair {x , y} = (x , y)
unfolding set2pair-def

proof (rule the-equality , simp-all only :split-conv split-paired-all)
from 〈x < y〉 show x < y ∧ {x ,y}={x ,y} by simp

next
fix a b
assume a: a < b ∧ {x , y} = {a, b}
hence {a, b} = {x , y} by simp-all
hence (a, b) = (x , y) ∨ (a, b) = (y , x)

by (cases x = y) auto
thus (a, b) = (x , y)
proof

assume (a, b) = (y , x)
with a and 〈x < y〉

show ?thesis by auto
qed

54

qed

definition
set2list = inv set

lemma finite-set2list :
assumes finite S
shows set (set2list S) = S
unfolding set2list-def

proof (rule f-inv-f)
from 〈finite S 〉 have ∃ l . set l = S

by (rule finite-list)
thus S ∈ range set

unfolding image-def
by auto

qed

corollary RamseyNatpairs:
fixes S :: ′a set

and f :: nat × nat ⇒ ′a

assumes finite S
and inS :

∧
x y . x < y =⇒ f (x , y) ∈ S

obtains T :: nat set and s :: ′a
where infinite T

and s ∈ S
and

∧
x y . [[x ∈ T ; y ∈ T ; x < y]] =⇒ f (x , y) = s

proof −
from 〈finite S 〉

have set (set2list S) = S by (rule finite-set2list)
then
obtain l where S : S = set l by auto
also from set-conv-nth have . . . = {l ! i |i . i < length l} .
finally have S = {l ! i |i . i < length l} .

let ?s = length l

from inS
have index-less:

∧
x y . x 6= y =⇒ index-of l (f (set2pair {x , y})) < ?s

proof −
fix x y :: nat
assume neq : x 6= y
have f (set2pair {x , y}) ∈ S
proof (cases x < y)

case True hence set2pair {x , y} = (x , y)
by (rule set2pair-conv)

with True inS

55

show ?thesis by simp
next

case False
with neq have y-less: y < x by simp
have x :{x ,y} = {y ,x} by auto
with y-less have set2pair {x , y} = (y , x)

by (simp add :set2pair-conv)
with y-less inS
show ?thesis by simp

qed

thus index-of l (f (set2pair {x , y})) < length l
by (simp add : S index-of-length)

qed

have ∃Y . infinite Y ∧
(∃ t . t < ?s ∧

(∀ x∈Y . ∀ y∈Y . x 6= y −→
index-of l (f (set2pair {x , y})) = t))

by (rule Ramsey2 [of UNIV ::nat set , simplified])
(auto simp:index-less)

then obtain T i
where inf : infinite T
and i : i < length l
and d :

∧
x y . [[x ∈ T ; y∈T ; x 6= y]]

=⇒ index-of l (f (set2pair {x , y})) = i
by auto

have l ! i ∈ S unfolding S using i
by (rule nth-mem)

moreover
have

∧
x y . x ∈ T =⇒ y∈T =⇒ x < y

=⇒ f (x , y) = l ! i
proof −

fix x y assume x ∈ T y ∈ T x < y
with d have

index-of l (f (set2pair {x , y})) = i by auto
with 〈x < y〉

have i = index-of l (f (x , y))
by (simp add :set2pair-conv)

with 〈i < length l 〉
show f (x , y) = l ! i

by (auto intro:index-of-member [symmetric] iff :index-of-length)
qed
moreover note inf
ultimately
show ?thesis using prems

by blast
qed

56

5.5 Main Result

theorem LJA-Theorem4 :
assumes finite-acg A
shows SCT A ←→ SCT ′ A

proof
assume SCT A

show SCT ′ A
proof (rule classical)

assume ¬ SCT ′ A

then obtain n G
where in-closure: (tcl A) ` n ;G n
and idemp: G ∗ G = G
and no-strict-arc: ∀ p. ¬(G ` p ;↓ p)
unfolding SCT ′-def no-bad-graphs-def by auto

from in-closure obtain k
where k-pow : A ˆ k ` n ;G n
and 0 < k
unfolding in-tcl by auto

from power-induces-path k-pow
obtain loop where loop-props:

has-fpath A loop
n = fst loop n = end-node loop
G = prod loop k = length (snd loop) .

with 〈0 < k 〉 and path-loop-graph
have has-ipath A (omega loop) by blast
with 〈SCT A〉

have thread : ∃ϑ. is-desc-thread ϑ (omega loop) by (auto simp:SCT-def)

let ?s = λi . k ∗ i
let ?cp = λi ::nat . (n, G)

from loop-props have fst loop = end-node loop by auto
with 〈0 < k 〉 〈k = length (snd loop)〉
have

∧
i . (omega loop)〈?s i ,?s (Suc i)〉 = loop

by (rule sub-path-loop)

with 〈n = fst loop〉 〈G = prod loop〉 〈k = length (snd loop)〉
have a: contract ?s (omega loop) = ?cp

unfolding contract-def
by (simp add :path-loop-def split-def fst-p0)

from 〈0 < k 〉 have increasing ?s
by (auto simp:increasing-def)

with thread have ∃ϑ. is-desc-thread ϑ ?cp

57

unfolding a[symmetric]
by (unfold contract-keeps-threads[symmetric])

then obtain ϑ where desc: is-desc-thread ϑ ?cp by auto

then obtain n where thr : is-thread n ϑ ?cp
unfolding is-desc-thread-def is-thread-def
by auto

have finite (range ϑ)
proof (rule finite-range-ignore-prefix)

from 〈finite-acg A〉

have finite-acg (tcl A) by (simp add :finite-tcl)
with in-closure have finite-graph G

unfolding finite-acg-def all-finite-def by blast
thus finite (nodes G) by (rule finite-nodes)

from thread-image-nodes[OF thr]
show ∀ i≥n. ϑ i ∈ nodes G by simp

qed
with finite-range
obtain p where inf-visit : ∃∞i . ϑ i = p by auto

then obtain i where n < i ϑ i = p
by (auto simp:INFM-nat)

from desc
have ∃∞i . descat ?cp ϑ i

unfolding is-desc-thread-def by auto
then obtain j

where i < j and descat ?cp ϑ j
unfolding INFM-nat by auto

from inf-visit obtain k where j < k ϑ k = p
by (auto simp:INFM-nat)

from 〈i < j 〉 〈j < k 〉 〈n < i 〉 thr
fin-from-inf [of n ϑ ?cp]
〈descat ?cp ϑ j 〉

have is-desc-fthread ϑ ?cp i k
unfolding is-desc-fthread-def
by auto

with 〈ϑ k = p〉 〈ϑ i = p〉

have dfth: has-desc-fth ?cp i k p p
unfolding has-desc-fth-def
by auto

from 〈i < j 〉 〈j < k 〉 have i < k by auto

58

hence prod (?cp〈i , k〉) = G
proof (induct i rule:strict-inc-induct)

case base thus ?case by (simp add :sub-path-def)
next

case (step i) thus ?case
by (simp add :sub-path-def upt-rec[of i k] idemp)

qed

with 〈i < j 〉 〈j < k 〉 dfth Lemma7b[of i k ?cp p p]
have dsc G p p by auto
with no-strict-arc have False by auto
thus ?thesis ..

qed
next

assume SCT ′ A

show SCT A
proof (rule classical)

assume ¬ SCT A

with SCT-def
obtain p

where ipath: has-ipath A p
and no-desc-th: ¬ (∃ϑ. is-desc-thread ϑ p)
by blast

from 〈finite-acg A〉

have finite-acg (tcl A) by (simp add : finite-tcl)
hence finite (dest-graph (tcl A)) (is finite ?AG)

by (simp add : finite-acg-def finite-graph-def)

from pdesc-acgplus[OF ipath]
have a:

∧
x y . x<y =⇒ pdesc p〈x ,y〉 ∈ dest-graph (tcl A)

unfolding has-edge-def .

obtain S G
where infinite S G ∈ dest-graph (tcl A)
and all-G :

∧
x y . [[x ∈ S ; y ∈ S ; x < y]] =⇒

pdesc (p〈x ,y〉) = G
apply (rule RamseyNatpairs[of ?AG λ(x ,y). pdesc p〈x , y〉])
apply (rule 〈finite ?AG〉)
by (simp only :split-conv , rule a, auto)

obtain n H m where
G-struct : G = (n, H , m) by (cases G)

let ?s = enumerate S
let ?q = contract ?s p

59

note all-in-S [simp] = enumerate-in-set [OF 〈infinite S 〉]
from 〈infinite S 〉

have inc[simp]: increasing ?s
unfolding increasing-def by (simp add :enumerate-mono)

note increasing-bij [OF this, simp]

from ipath-contract inc ipath
have has-ipath (tcl A) ?q .

from all-G G-struct
have all-H :

∧
i . (snd (?q i)) = H

unfolding contract-def
by simp

have loop: (tcl A) ` n ;H n
and idemp: H ∗ H = H

proof −
let ?i = ?s 0 and ?j = ?s (Suc 0) and ?k = ?s (Suc (Suc 0))

have pdesc (p〈?i ,?j 〉) = G
and pdesc (p〈?j ,?k〉) = G
and pdesc (p〈?i ,?k〉) = G
using all-G
by auto

with G-struct
have m = end-node (p〈?i ,?j 〉)

n = fst (p〈?j ,?k〉)
and Hs: prod (p〈?i ,?j 〉) = H
prod (p〈?j ,?k〉) = H
prod (p〈?i ,?k〉) = H

by auto

hence m = n by simp
thus tcl A ` n ;H n

using G-struct 〈G ∈ dest-graph (tcl A)〉
by (simp add :has-edge-def)

from sub-path-prod [of ?i ?j ?k p]
show H ∗ H = H

unfolding Hs by simp
qed
moreover have

∧
k . ¬dsc H k k

proof
fix k :: ′a assume dsc H k k

with all-H repeated-edge
have ∃ϑ. is-desc-thread ϑ ?q by fast

with inc have ∃ϑ. is-desc-thread ϑ p

60

by (subst contract-keeps-threads)
with no-desc-th
show False ..

qed
ultimately
have False

using 〈SCT ′ A〉[unfolded SCT ′-def no-bad-graphs-def]
by blast

thus ?thesis ..
qed

qed

end

6 Applying SCT to function definitions

theory Interpretation
imports Main Misc-Tools Criterion
begin

definition
idseq R s x = (s 0 = x ∧ (∀ i . R (s (Suc i)) (s i)))

lemma not-acc-smaller :
assumes notacc: ¬ accp R x
shows ∃ y . R y x ∧ ¬ accp R y

proof (rule classical)
assume ¬ ?thesis
hence

∧
y . R y x =⇒ accp R y by blast

with accp.accI have accp R x .
with notacc show ?thesis by contradiction

qed

lemma non-acc-has-idseq :
assumes ¬ accp R x
shows ∃ s. idseq R s x

proof −

have ∃ f . ∀ x . ¬accp R x −→ R (f x) x ∧ ¬accp R (f x)
by (rule choice, auto simp:not-acc-smaller)

then obtain f where
in-R:

∧
x . ¬accp R x =⇒ R (f x) x

and nia:
∧

x . ¬accp R x =⇒ ¬accp R (f x)
by blast

let ?s = λi . (f ˆ i) x

61

{
fix i
have ¬accp R (?s i)

by (induct i) (auto simp:nia 〈¬accp R x 〉)
hence R (f (?s i)) (?s i)

by (rule in-R)
}

hence idseq R ?s x
unfolding idseq-def
by auto

thus ?thesis by auto
qed

types (′a, ′q) cdesc =
(′q ⇒ bool) × (′q ⇒ ′a) ×(′q ⇒ ′a)

fun in-cdesc :: (′a, ′q) cdesc ⇒ ′a ⇒ ′a ⇒ bool
where

in-cdesc (Γ, r , l) x y = (∃ q . x = r q ∧ y = l q ∧ Γ q)

primrec mk-rel :: (′a, ′q) cdesc list ⇒ ′a ⇒ ′a ⇒ bool
where

mk-rel [] x y = False
| mk-rel (c#cs) x y =

(in-cdesc c x y ∨ mk-rel cs x y)

lemma some-rd :
assumes mk-rel rds x y
shows ∃ rd∈set rds. in-cdesc rd x y
using assms
by (induct rds) (auto simp:in-cdesc-def)

lemma ex-cs:
assumes idseq : idseq (mk-rel rds) s x
shows ∃ cs. ∀ i . cs i ∈ set rds ∧ in-cdesc (cs i) (s (Suc i)) (s i)

proof −
from idseq
have a: ∀ i . ∃ rd ∈ set rds. in-cdesc rd (s (Suc i)) (s i)

by (auto simp:idseq-def intro:some-rd)

62

show ?thesis
by (rule choice) (insert a, blast)

qed

types ′a measures = nat ⇒ ′a ⇒ nat

fun stepP :: (′a, ′q) cdesc ⇒ (′a, ′q) cdesc ⇒
(′a ⇒ nat) ⇒ (′a ⇒ nat) ⇒ (nat ⇒ nat ⇒ bool) ⇒ bool

where
stepP (Γ1 ,r1 ,l1) (Γ2 ,r2 ,l2) m1 m2 R
= (∀ q1 q2. Γ1 q1 ∧ Γ2 q2 ∧ r1 q1 = l2 q2

−→ R (m2 (l2 q2)) ((m1 (l1 q1))))

definition
decr :: (′a, ′q) cdesc ⇒ (′a, ′q) cdesc ⇒
(′a ⇒ nat) ⇒ (′a ⇒ nat) ⇒ bool

where
decr c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op <)

definition
decreq :: (′a, ′q) cdesc ⇒ (′a, ′q) cdesc ⇒
(′a ⇒ nat) ⇒ (′a ⇒ nat) ⇒ bool

where
decreq c1 c2 m1 m2 = stepP c1 c2 m1 m2 (op ≤)

definition
no-step :: (′a, ′q) cdesc ⇒ (′a, ′q) cdesc ⇒ bool

where
no-step c1 c2 = stepP c1 c2 (λx . 0) (λx . 0) (λx y . False)

lemma decr-in-cdesc:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
assumes decr RD1 RD2 m1 m2
shows m2 y < m1 x
using assms
by (cases RD1 , cases RD2 , auto simp:decr-def)

lemma decreq-in-cdesc:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
assumes decreq RD1 RD2 m1 m2
shows m2 y ≤ m1 x
using assms

63

by (cases RD1 , cases RD2 , auto simp:decreq-def)

lemma no-inf-desc-nat-sequence:
fixes s :: nat ⇒ nat
assumes leq :

∧
i . n ≤ i =⇒ s (Suc i) ≤ s i

assumes less: ∃∞i . s (Suc i) < s i
shows False

proof −
{

fix i j :: nat
assume n ≤ i
assume i ≤ j
{

fix k
have s (i + k) ≤ s i
proof (induct k)

case 0 thus ?case by simp
next

case (Suc k)
with leq [of i + k] 〈n ≤ i 〉
show ?case by simp

qed
}
from this[of j − i] 〈n ≤ i 〉 〈i ≤ j 〉

have s j ≤ s i by auto
}
note decr = this

let ?min = LEAST x . x ∈ range (λi . s (n + i))
have ?min ∈ range (λi . s (n + i))

by (rule LeastI) auto
then obtain k where min: ?min = s (n + k) by auto

from less
obtain k ′ where n + k < k ′

and s (Suc k ′) < s k ′

unfolding INFM-nat by auto

with decr [of n + k k ′] min
have s (Suc k ′) < ?min by auto
moreover from 〈n + k < k ′〉
have s (Suc k ′) = s (n + (Suc k ′ − n)) by simp
ultimately
show False using not-less-Least by blast

qed

64

definition
approx :: nat scg ⇒ (′a, ′q) cdesc ⇒ (′a, ′q) cdesc
⇒ ′a measures ⇒ ′a measures ⇒ bool
where
approx G C C ′ M M ′

= (∀ i j . (dsc G i j −→ decr C C ′ (M i) (M ′ j))
∧(eqp G i j −→ decreq C C ′ (M i) (M ′ j)))

lemma approx-empty :
approx (Graph {}) c1 c2 ms1 ms2
unfolding approx-def has-edge-def dest-graph.simps by simp

lemma approx-less:
assumes stepP c1 c2 (ms1 i) (ms2 j) (op <)
assumes approx (Graph Es) c1 c2 ms1 ms2
shows approx (Graph (insert (i , ↓, j) Es)) c1 c2 ms1 ms2
using assms
unfolding approx-def has-edge-def dest-graph.simps decr-def
by auto

lemma approx-leq :
assumes stepP c1 c2 (ms1 i) (ms2 j) (op ≤)
assumes approx (Graph Es) c1 c2 ms1 ms2
shows approx (Graph (insert (i , ⇓, j) Es)) c1 c2 ms1 ms2
using assms
unfolding approx-def has-edge-def dest-graph.simps decreq-def
by auto

lemma approx (Graph {(1 , ↓, 2),(2 , ⇓, 3)}) c1 c2 ms1 ms2
apply (intro approx-less approx-leq approx-empty)
oops

lemma no-stepI :
stepP c1 c2 m1 m2 (λx y . False)
=⇒ no-step c1 c2

by (cases c1 , cases c2) (auto simp: no-step-def)

definition
sound-int :: nat acg ⇒ (′a, ′q) cdesc list
⇒ ′a measures list ⇒ bool

65

where
sound-int A RDs M =
(∀n<length RDs. ∀m<length RDs.
no-step (RDs ! n) (RDs ! m) ∨
(∃G . (A ` n ;G m) ∧ approx G (RDs ! n) (RDs ! m) (M ! n) (M ! m)))

lemma length-simps: length [] = 0 length (x#xs) = Suc (length xs)
by auto

lemma all-less-zero: ∀n<(0 ::nat). P n
by simp

lemma all-less-Suc:
assumes Pk : P k
assumes Pn: ∀n<k . P n
shows ∀n<Suc k . P n

proof (intro allI impI)
fix n assume n < Suc k
show P n
proof (cases n < k)

case True with Pn show ?thesis by simp
next

case False with 〈n < Suc k 〉 have n = k by simp
with Pk show ?thesis by simp

qed
qed

lemma step-witness:
assumes in-cdesc RD1 y x
assumes in-cdesc RD2 z y
shows ¬ no-step RD1 RD2
using assms
by (cases RD1 , cases RD2) (auto simp:no-step-def)

theorem SCT-on-relations:
assumes R: R = mk-rel RDs
assumes sound : sound-int A RDs M
assumes SCT A
shows ∀ x . accp R x

proof (rule, rule classical)
fix x
assume ¬ accp R x
with non-acc-has-idseq
have ∃ s. idseq R s x .
then obtain s where idseq R s x ..

66

hence ∃ cs. ∀ i . cs i ∈ set RDs ∧
in-cdesc (cs i) (s (Suc i)) (s i)
unfolding R by (rule ex-cs)

then obtain cs where
[simp]:

∧
i . cs i ∈ set RDs

and ird [simp]:
∧

i . in-cdesc (cs i) (s (Suc i)) (s i)
by blast

let ?cis = λi . index-of RDs (cs i)
have ∀ i . ∃G . (A ` ?cis i ;G (?cis (Suc i)))

∧ approx G (RDs ! ?cis i) (RDs ! ?cis (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i)) (is ∀ i . ∃G . ?P i G)

proof
fix i
let ?n = ?cis i and ?n ′ = ?cis (Suc i)

have in-cdesc (RDs ! ?n) (s (Suc i)) (s i)
in-cdesc (RDs ! ?n ′) (s (Suc (Suc i))) (s (Suc i))
by (simp-all add :index-of-member)

with step-witness
have ¬ no-step (RDs ! ?n) (RDs ! ?n ′) .
moreover have

?n < length RDs
?n ′ < length RDs
by (simp-all add :index-of-length[symmetric])

ultimately
obtain G

where A ` ?n ;G ?n ′

and approx G (RDs ! ?n) (RDs ! ?n ′) (M ! ?n) (M ! ?n ′)
using sound
unfolding sound-int-def by auto

thus ∃G . ?P i G by blast
qed
with choice
have ∃Gs. ∀ i . ?P i (Gs i) .
then obtain Gs where

A:
∧

i . A ` ?cis i ;(Gs i) (?cis (Suc i))
and B :

∧
i . approx (Gs i) (RDs ! ?cis i) (RDs ! ?cis (Suc i))

(M ! ?cis i) (M ! ?cis (Suc i))
by blast

let ?p = λi . (?cis i , Gs i)

from A have has-ipath A ?p
unfolding has-ipath-def
by auto

with 〈SCT A〉 SCT-def

67

obtain th where is-desc-thread th ?p
by auto

then obtain n
where fr : ∀ i≥n. eqlat ?p th i
and inf : ∃∞i . descat ?p th i
unfolding is-desc-thread-def by auto

from B
have approx :∧

i . approx (Gs i) (cs i) (cs (Suc i))
(M ! ?cis i) (M ! ?cis (Suc i))
by (simp add :index-of-member)

let ?seq = λi . (M ! ?cis i) (th i) (s i)

have
∧

i . n < i =⇒ ?seq (Suc i) ≤ ?seq i
proof −

fix i
let ?q1 = th i and ?q2 = th (Suc i)
assume n < i

with fr have eqlat ?p th i by simp
hence dsc (Gs i) ?q1 ?q2 ∨ eqp (Gs i) ?q1 ?q2

by simp
thus ?seq (Suc i) ≤ ?seq i
proof

assume dsc (Gs i) ?q1 ?q2

with approx
have a:decr (cs i) (cs (Suc i))

((M ! ?cis i) ?q1) ((M ! ?cis (Suc i)) ?q2)
unfolding approx-def by auto

show ?thesis
apply (rule less-imp-le)
apply (rule decr-in-cdesc[of - s (Suc i) s i])
by (rule ird a)+

next
assume eqp (Gs i) ?q1 ?q2

with approx
have a:decreq (cs i) (cs (Suc i))

((M ! ?cis i) ?q1) ((M ! ?cis (Suc i)) ?q2)
unfolding approx-def by auto

show ?thesis
apply (rule decreq-in-cdesc[of - s (Suc i) s i])
by (rule ird a)+

68

qed
qed
moreover have ∃∞i . ?seq (Suc i) < ?seq i unfolding INFM-nat
proof

fix i
from inf obtain j where i < j and d : descat ?p th j

unfolding INFM-nat by auto
let ?q1 = th j and ?q2 = th (Suc j)
from d have dsc (Gs j) ?q1 ?q2 by auto

with approx
have a:decr (cs j) (cs (Suc j))

((M ! ?cis j) ?q1) ((M ! ?cis (Suc j)) ?q2)
unfolding approx-def by auto

have ?seq (Suc j) < ?seq j
apply (rule decr-in-cdesc[of - s (Suc j) s j])
by (rule ird a)+

with 〈i < j 〉

show ∃ j . i < j ∧ ?seq (Suc j) < ?seq j by auto
qed
ultimately have False

by (rule no-inf-desc-nat-sequence[of Suc n]) simp
thus accp R x ..

qed

end

7 Implemtation of the SCT criterion

theory Implementation
imports Correctness
begin

fun edges-match :: (′n × ′e × ′n) × (′n × ′e × ′n) ⇒ bool
where

edges-match ((n, e, m), (n ′,e ′,m ′)) = (m = n ′)

fun connect-edges ::
(′n × (′e::times) × ′n) × (′n × ′e × ′n)
⇒ (′n × ′e × ′n)

where
connect-edges ((n,e,m), (n ′, e ′, m ′)) = (n, e ∗ e ′, m ′)

lemma grcomp-code [code]:
grcomp (Graph G) (Graph H) = Graph (connect-edges ‘ { x ∈ G×H . edges-match

x })
by (rule graph-ext) (auto simp:graph-mult-def has-edge-def image-def)

69

lemma mk-tcl-finite-terminates:
fixes A :: ′a acg
assumes fA: finite-acg A
shows mk-tcl-dom (A, A)

proof −
from fA have fin-tcl : finite-acg (tcl A)

by (simp add :finite-tcl)

hence finite (dest-graph (tcl A))
unfolding finite-acg-def finite-graph-def ..

let ?count = λG . card (dest-graph G)
let ?N = ?count (tcl A)
let ?m = λX . ?N − (?count X)

let ?P = λX . mk-tcl-dom (A, X)

{
fix X
assume X ≤ tcl A
then
have mk-tcl-dom (A, X)
proof (induct X rule:measure-induct-rule[of ?m])

case (less X)
show ?case
proof (cases X ∗ A ≤ X)

case True
with mk-tcl .domintros show ?thesis by auto

next
case False
then have l : X < X + X ∗ A

unfolding graph-less-def graph-leq-def graph-plus-def
by auto

from 〈X ≤ tcl A〉

have X ∗ A ≤ tcl A ∗ A by (simp add :mult-mono)
also have . . . ≤ A + tcl A ∗ A by simp
also have . . . = tcl A by (simp add :tcl-unfold-right [symmetric])
finally have X ∗ A ≤ tcl A .
with 〈X ≤ tcl A〉

have X + X ∗ A ≤ tcl A + tcl A
by (rule add-mono)

hence less-tcl : X + X ∗ A ≤ tcl A by simp
hence X < tcl A

using l 〈X ≤ tcl A〉 by auto

from less-tcl fin-tcl

70

have finite-acg (X + X ∗ A) by (rule finite-acg-subset)
hence finite (dest-graph (X + X ∗ A))

unfolding finite-acg-def finite-graph-def ..

hence X : ?count X < ?count (X + X ∗ A)
using l [simplified graph-less-def graph-leq-def]
by (rule psubset-card-mono)

have ?count X < ?N
apply (rule psubset-card-mono)
by fact (rule 〈X < tcl A〉[simplified graph-less-def])

with X have ?m (X + X ∗ A) < ?m X by arith

from less.hyps this less-tcl
have mk-tcl-dom (A, X + X ∗ A) .
with mk-tcl .domintros show ?thesis .

qed
qed

}
from this less-tcl show ?thesis .

qed

lemma mk-tcl-finite-tcl :
fixes A :: ′a acg
assumes fA: finite-acg A
shows mk-tcl A A = tcl A
using mk-tcl-finite-terminates[OF fA]
by (simp only : tcl-def mk-tcl-correctness star-commute)

definition test-SCT :: nat acg ⇒ bool
where

test-SCT A =
(let T = mk-tcl A A

in (∀ (n,G ,m)∈dest-graph T .
n 6= m ∨ G ∗ G 6= G ∨

(∃ (p::nat ,e,q)∈dest-graph G . p = q ∧ e = LESS)))

lemma SCT ′-exec:
assumes fin: finite-acg A
shows SCT ′ A = test-SCT A
using mk-tcl-finite-tcl [OF fin]
unfolding test-SCT-def Let-def
unfolding SCT ′-def no-bad-graphs-def has-edge-def
by force

code-modulename SML

71

Implementation Graphs

lemma [code]:
(G ::(′a::eq , ′b::eq) graph) ≤ H ←→ dest-graph G ⊆ dest-graph H
(G ::(′a::eq , ′b::eq) graph) < H ←→ dest-graph G ⊂ dest-graph H
unfolding graph-leq-def graph-less-def by rule+

lemma [code]:
(G ::(′a::eq , ′b::eq) graph) + H = Graph (dest-graph G ∪ dest-graph H)
unfolding graph-plus-def ..

lemma [code]:
(G ::(′a::eq , ′b::{eq , times}) graph) ∗ H = grcomp G H
unfolding graph-mult-def ..

lemma SCT ′-empty : SCT ′ (Graph {})
unfolding SCT ′-def no-bad-graphs-def graph-zero-def [symmetric]
tcl-zero
by (simp add :in-grzero)

7.1 Witness checking

definition test-SCT-witness :: nat acg ⇒ nat acg ⇒ bool
where

test-SCT-witness A T =
(A ≤ T ∧ A ∗ T ≤ T ∧

(∀ (n,G ,m)∈dest-graph T .
n 6= m ∨ G ∗ G 6= G ∨

(∃ (p::nat ,e,q)∈dest-graph G . p = q ∧ e = LESS)))

lemma no-bad-graphs-ucl :
assumes A ≤ B
assumes no-bad-graphs B
shows no-bad-graphs A
using assms
unfolding no-bad-graphs-def has-edge-def graph-leq-def
by blast

lemma SCT ′-witness:
assumes a: test-SCT-witness A T
shows SCT ′ A

proof −
from a have A ≤ T A ∗ T ≤ T by (auto simp:test-SCT-witness-def)
hence A + A ∗ T ≤ T

by (subst add-idem[of T , symmetric], rule add-mono)
with star3 ′ have tcl A ≤ T unfolding tcl-def .
moreover

72

from a have no-bad-graphs T
unfolding no-bad-graphs-def test-SCT-witness-def has-edge-def
by auto

ultimately
show ?thesis

unfolding SCT ′-def
by (rule no-bad-graphs-ucl)

qed

end

8 Size-Change Termination

theory Size-Change-Termination
imports Correctness Interpretation Implementation
uses sct .ML
begin

8.1 Simplifier setup

This is needed to run the SCT algorithm in the simplifier:

lemma setbcomp-simps:
{x∈{}. P x} = {}
{x∈insert y ys. P x} = (if P y then insert y {x∈ys. P x} else {x∈ys. P x})
by auto

lemma setbcomp-cong :
A = B =⇒ (

∧
x . P x = Q x) =⇒ {x∈A. P x} = {x∈B . Q x}

by auto

lemma cartprod-simps:
{} × A = {}
insert a A × B = Pair a ‘ B ∪ (A × B)
by (auto simp:image-def)

lemma image-simps:
fu ‘ {} = {}
fu ‘ insert a A = insert (fu a) (fu ‘ A)
by (auto simp:image-def)

lemmas union-simps =
Un-empty-left Un-empty-right Un-insert-left

lemma subset-simps:
{} ⊆ B

73

insert a A ⊆ B ≡ a ∈ B ∧ A ⊆ B
by auto

lemma element-simps:
x ∈ {} ≡ False
x ∈ insert a A ≡ x = a ∨ x ∈ A
by auto

lemma set-eq-simp:
A = B ←→ A ⊆ B ∧ B ⊆ A by auto

lemma ball-simps:
∀ x∈{}. P x ≡ True
(∀ x∈insert a A. P x) ≡ P a ∧ (∀ x∈A. P x)

by auto

lemma bex-simps:
∃ x∈{}. P x ≡ False
(∃ x∈insert a A. P x) ≡ P a ∨ (∃ x∈A. P x)

by auto

lemmas set-simps =
setbcomp-simps
cartprod-simps image-simps union-simps subset-simps
element-simps set-eq-simp
ball-simps bex-simps

lemma sedge-simps:
↓ ∗ x = ↓
⇓ ∗ x = x
by (auto simp:mult-sedge-def)

lemmas sctTest-simps =
simp-thms
if-True
if-False
nat .inject
nat .distinct
Pair-eq

grcomp-code
edges-match.simps
connect-edges.simps

sedge-simps
sedge.distinct
set-simps

graph-mult-def

74

graph-leq-def
dest-graph.simps
graph-plus-def
graph.inject
graph-zero-def

test-SCT-def
mk-tcl-code

Let-def
split-conv

lemmas sctTest-congs =
if-weak-cong let-weak-cong setbcomp-cong

lemma SCT-Main:
finite-acg A =⇒ test-SCT A =⇒ SCT A
using LJA-Theorem4 SCT ′-exec
by auto

end

9 Examples for Size-Change Termination

theory Examples
imports Size-Change-Termination
begin

function f :: nat ⇒ nat ⇒ nat
where

f n 0 = n
| f 0 (Suc m) = f (Suc m) m
| f (Suc n) (Suc m) = f m n
by pat-completeness auto

termination
unfolding f-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)
apply (simp add :finite-acg-simps)
oops

function p :: nat ⇒ nat ⇒ nat ⇒ nat

75

where
p m n r = (if r>0 then p m (r − 1) n else

if n>0 then p r (n − 1) m
else m)

by pat-completeness auto

termination
unfolding p-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)
apply (simp add :finite-acg-ins finite-acg-empty finite-graph-def)
oops

function foo :: bool ⇒ nat ⇒ nat ⇒ nat
where

foo True (Suc n) m = foo True n (Suc m)
| foo True 0 m = foo False 0 m
| foo False n (Suc m) = foo False (Suc n) m
| foo False n 0 = n
by pat-completeness auto

termination
unfolding foo-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)
apply (simp add :finite-acg-ins finite-acg-empty finite-graph-def)
oops

function (sequential)
bar :: nat ⇒ nat ⇒ nat ⇒ nat

where
bar 0 (Suc n) m = bar m m m
| bar k n m = 0
by pat-completeness auto

termination
unfolding bar-rel-def lfp-const
apply (rule SCT-on-relations)
apply (tactic Sct .abs-rel-tac)
apply (rule ext , rule ext , simp)
apply (tactic Sct .mk-call-graph @{context})
apply (rule SCT-Main)

76

apply (simp add :finite-acg-ins finite-acg-empty finite-graph-def)
by (simp only :sctTest-simps cong : sctTest-congs)

end

77

	Miscellaneous Tools for Size-Change Termination
	Searching in lists
	Some reasoning tools
	Sequences
	Increasing sequences
	Sections induced by an increasing sequence

	Kleene Algebras
	Transitive Closure
	Naive Algorithm to generate the transitive closure

	General Graphs as Sets
	Basic types, Size Change Graphs
	Graph composition
	Multiplicative Structure

	Infinite Paths
	Finite Paths
	Sub-Paths

	The Size-Change Principle (Definition)
	Size-Change Graphs
	Size-Change Termination

	Proof of the Size-Change Principle
	Auxiliary definitions
	Everything is finite
	Contraction and more
	Connecting threads

	Ramsey's Theorem
	Main Result

	Applying SCT to function definitions
	Implemtation of the SCT criterion
	Witness checking

	Size-Change Termination
	Simplifier setup

	Examples for Size-Change Termination

