Theory Cooper

Up to index of Isabelle/HOL/Decision_Procs

theory Cooper
imports Complex_Main Efficient_Nat
uses (cooper_tac.ML)

(*  Title:      HOL/Decision_Procs/Cooper.thy
    Author:     Amine Chaieb
*)

theory Cooper
imports Complex_Main Efficient_Nat
uses ("cooper_tac.ML")
begin

function iupt :: "int => int => int list" where
  "iupt i j = (if j < i then [] else i # iupt (i+1) j)"
by pat_completeness auto
termination by (relation "measure (λ (i, j). nat (j-i+1))") auto

lemma iupt_set: "set (iupt i j) = {i..j}"
  by (induct rule: iupt.induct) (simp add: simp_from_to)

(* Periodicity of dvd *)

  (*********************************************************************************)
  (****                            SHADOW SYNTAX AND SEMANTICS                  ****)
  (*********************************************************************************)

datatype num = C int | Bound nat | CN nat int num | Neg num | Add num num| Sub num num 
  | Mul int num

  (* A size for num to make inductive proofs simpler*)
primrec num_size :: "num => nat" where
  "num_size (C c) = 1"
| "num_size (Bound n) = 1"
| "num_size (Neg a) = 1 + num_size a"
| "num_size (Add a b) = 1 + num_size a + num_size b"
| "num_size (Sub a b) = 3 + num_size a + num_size b"
| "num_size (CN n c a) = 4 + num_size a"
| "num_size (Mul c a) = 1 + num_size a"

primrec Inum :: "int list => num => int" where
  "Inum bs (C c) = c"
| "Inum bs (Bound n) = bs!n"
| "Inum bs (CN n c a) = c * (bs!n) + (Inum bs a)"
| "Inum bs (Neg a) = -(Inum bs a)"
| "Inum bs (Add a b) = Inum bs a + Inum bs b"
| "Inum bs (Sub a b) = Inum bs a - Inum bs b"
| "Inum bs (Mul c a) = c* Inum bs a"

datatype fm  = 
  T| F| Lt num| Le num| Gt num| Ge num| Eq num| NEq num| Dvd int num| NDvd int num|
  NOT fm| And fm fm|  Or fm fm| Imp fm fm| Iff fm fm| E fm| A fm 
  | Closed nat | NClosed nat


  (* A size for fm *)
consts fmsize :: "fm => nat"
recdef fmsize "measure size"
  "fmsize (NOT p) = 1 + fmsize p"
  "fmsize (And p q) = 1 + fmsize p + fmsize q"
  "fmsize (Or p q) = 1 + fmsize p + fmsize q"
  "fmsize (Imp p q) = 3 + fmsize p + fmsize q"
  "fmsize (Iff p q) = 3 + 2*(fmsize p + fmsize q)"
  "fmsize (E p) = 1 + fmsize p"
  "fmsize (A p) = 4+ fmsize p"
  "fmsize (Dvd i t) = 2"
  "fmsize (NDvd i t) = 2"
  "fmsize p = 1"
  (* several lemmas about fmsize *)
lemma fmsize_pos: "fmsize p > 0"        
by (induct p rule: fmsize.induct) simp_all

  (* Semantics of formulae (fm) *)
consts Ifm ::"bool list => int list => fm => bool"
primrec
  "Ifm bbs bs T = True"
  "Ifm bbs bs F = False"
  "Ifm bbs bs (Lt a) = (Inum bs a < 0)"
  "Ifm bbs bs (Gt a) = (Inum bs a > 0)"
  "Ifm bbs bs (Le a) = (Inum bs a ≤ 0)"
  "Ifm bbs bs (Ge a) = (Inum bs a ≥ 0)"
  "Ifm bbs bs (Eq a) = (Inum bs a = 0)"
  "Ifm bbs bs (NEq a) = (Inum bs a ≠ 0)"
  "Ifm bbs bs (Dvd i b) = (i dvd Inum bs b)"
  "Ifm bbs bs (NDvd i b) = (¬(i dvd Inum bs b))"
  "Ifm bbs bs (NOT p) = (¬ (Ifm bbs bs p))"
  "Ifm bbs bs (And p q) = (Ifm bbs bs p ∧ Ifm bbs bs q)"
  "Ifm bbs bs (Or p q) = (Ifm bbs bs p ∨ Ifm bbs bs q)"
  "Ifm bbs bs (Imp p q) = ((Ifm bbs bs p) --> (Ifm bbs bs q))"
  "Ifm bbs bs (Iff p q) = (Ifm bbs bs p = Ifm bbs bs q)"
  "Ifm bbs bs (E p) = (∃ x. Ifm bbs (x#bs) p)"
  "Ifm bbs bs (A p) = (∀ x. Ifm bbs (x#bs) p)"
  "Ifm bbs bs (Closed n) = bbs!n"
  "Ifm bbs bs (NClosed n) = (¬ bbs!n)"

consts prep :: "fm => fm"
recdef prep "measure fmsize"
  "prep (E T) = T"
  "prep (E F) = F"
  "prep (E (Or p q)) = Or (prep (E p)) (prep (E q))"
  "prep (E (Imp p q)) = Or (prep (E (NOT p))) (prep (E q))"
  "prep (E (Iff p q)) = Or (prep (E (And p q))) (prep (E (And (NOT p) (NOT q))))" 
  "prep (E (NOT (And p q))) = Or (prep (E (NOT p))) (prep (E(NOT q)))"
  "prep (E (NOT (Imp p q))) = prep (E (And p (NOT q)))"
  "prep (E (NOT (Iff p q))) = Or (prep (E (And p (NOT q)))) (prep (E(And (NOT p) q)))"
  "prep (E p) = E (prep p)"
  "prep (A (And p q)) = And (prep (A p)) (prep (A q))"
  "prep (A p) = prep (NOT (E (NOT p)))"
  "prep (NOT (NOT p)) = prep p"
  "prep (NOT (And p q)) = Or (prep (NOT p)) (prep (NOT q))"
  "prep (NOT (A p)) = prep (E (NOT p))"
  "prep (NOT (Or p q)) = And (prep (NOT p)) (prep (NOT q))"
  "prep (NOT (Imp p q)) = And (prep p) (prep (NOT q))"
  "prep (NOT (Iff p q)) = Or (prep (And p (NOT q))) (prep (And (NOT p) q))"
  "prep (NOT p) = NOT (prep p)"
  "prep (Or p q) = Or (prep p) (prep q)"
  "prep (And p q) = And (prep p) (prep q)"
  "prep (Imp p q) = prep (Or (NOT p) q)"
  "prep (Iff p q) = Or (prep (And p q)) (prep (And (NOT p) (NOT q)))"
  "prep p = p"
(hints simp add: fmsize_pos)
lemma prep: "Ifm bbs bs (prep p) = Ifm bbs bs p"
by (induct p arbitrary: bs rule: prep.induct, auto)


  (* Quantifier freeness *)
consts qfree:: "fm => bool"
recdef qfree "measure size"
  "qfree (E p) = False"
  "qfree (A p) = False"
  "qfree (NOT p) = qfree p" 
  "qfree (And p q) = (qfree p ∧ qfree q)" 
  "qfree (Or  p q) = (qfree p ∧ qfree q)" 
  "qfree (Imp p q) = (qfree p ∧ qfree q)" 
  "qfree (Iff p q) = (qfree p ∧ qfree q)"
  "qfree p = True"

  (* Boundedness and substitution *)
consts 
  numbound0:: "num => bool" (* a num is INDEPENDENT of Bound 0 *)
  bound0:: "fm => bool" (* A Formula is independent of Bound 0 *)
  subst0:: "num => fm => fm" (* substitue a num into a formula for Bound 0 *)
primrec
  "numbound0 (C c) = True"
  "numbound0 (Bound n) = (n>0)"
  "numbound0 (CN n i a) = (n >0 ∧ numbound0 a)"
  "numbound0 (Neg a) = numbound0 a"
  "numbound0 (Add a b) = (numbound0 a ∧ numbound0 b)"
  "numbound0 (Sub a b) = (numbound0 a ∧ numbound0 b)" 
  "numbound0 (Mul i a) = numbound0 a"

lemma numbound0_I:
  assumes nb: "numbound0 a"
  shows "Inum (b#bs) a = Inum (b'#bs) a"
using nb
by (induct a rule: numbound0.induct) (auto simp add: gr0_conv_Suc)

primrec
  "bound0 T = True"
  "bound0 F = True"
  "bound0 (Lt a) = numbound0 a"
  "bound0 (Le a) = numbound0 a"
  "bound0 (Gt a) = numbound0 a"
  "bound0 (Ge a) = numbound0 a"
  "bound0 (Eq a) = numbound0 a"
  "bound0 (NEq a) = numbound0 a"
  "bound0 (Dvd i a) = numbound0 a"
  "bound0 (NDvd i a) = numbound0 a"
  "bound0 (NOT p) = bound0 p"
  "bound0 (And p q) = (bound0 p ∧ bound0 q)"
  "bound0 (Or p q) = (bound0 p ∧ bound0 q)"
  "bound0 (Imp p q) = ((bound0 p) ∧ (bound0 q))"
  "bound0 (Iff p q) = (bound0 p ∧ bound0 q)"
  "bound0 (E p) = False"
  "bound0 (A p) = False"
  "bound0 (Closed P) = True"
  "bound0 (NClosed P) = True"
lemma bound0_I:
  assumes bp: "bound0 p"
  shows "Ifm bbs (b#bs) p = Ifm bbs (b'#bs) p"
using bp numbound0_I[where b="b" and bs="bs" and b'="b'"]
by (induct p rule: bound0.induct) (auto simp add: gr0_conv_Suc)

fun numsubst0:: "num => num => num" where
  "numsubst0 t (C c) = (C c)"
| "numsubst0 t (Bound n) = (if n=0 then t else Bound n)"
| "numsubst0 t (CN 0 i a) = Add (Mul i t) (numsubst0 t a)"
| "numsubst0 t (CN n i a) = CN n i (numsubst0 t a)"
| "numsubst0 t (Neg a) = Neg (numsubst0 t a)"
| "numsubst0 t (Add a b) = Add (numsubst0 t a) (numsubst0 t b)"
| "numsubst0 t (Sub a b) = Sub (numsubst0 t a) (numsubst0 t b)" 
| "numsubst0 t (Mul i a) = Mul i (numsubst0 t a)"

lemma numsubst0_I:
  "Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b#bs) a)#bs) t"
by (induct t rule: numsubst0.induct,auto simp:nth_Cons')

lemma numsubst0_I':
  "numbound0 a ==> Inum (b#bs) (numsubst0 a t) = Inum ((Inum (b'#bs) a)#bs) t"
by (induct t rule: numsubst0.induct, auto simp: nth_Cons' numbound0_I[where b="b" and b'="b'"])

primrec
  "subst0 t T = T"
  "subst0 t F = F"
  "subst0 t (Lt a) = Lt (numsubst0 t a)"
  "subst0 t (Le a) = Le (numsubst0 t a)"
  "subst0 t (Gt a) = Gt (numsubst0 t a)"
  "subst0 t (Ge a) = Ge (numsubst0 t a)"
  "subst0 t (Eq a) = Eq (numsubst0 t a)"
  "subst0 t (NEq a) = NEq (numsubst0 t a)"
  "subst0 t (Dvd i a) = Dvd i (numsubst0 t a)"
  "subst0 t (NDvd i a) = NDvd i (numsubst0 t a)"
  "subst0 t (NOT p) = NOT (subst0 t p)"
  "subst0 t (And p q) = And (subst0 t p) (subst0 t q)"
  "subst0 t (Or p q) = Or (subst0 t p) (subst0 t q)"
  "subst0 t (Imp p q) = Imp (subst0 t p) (subst0 t q)"
  "subst0 t (Iff p q) = Iff (subst0 t p) (subst0 t q)"
  "subst0 t (Closed P) = (Closed P)"
  "subst0 t (NClosed P) = (NClosed P)"

lemma subst0_I: assumes qfp: "qfree p"
  shows "Ifm bbs (b#bs) (subst0 a p) = Ifm bbs ((Inum (b#bs) a)#bs) p"
  using qfp numsubst0_I[where b="b" and bs="bs" and a="a"]
  by (induct p) (simp_all add: gr0_conv_Suc)


consts 
  decrnum:: "num => num" 
  decr :: "fm => fm"

recdef decrnum "measure size"
  "decrnum (Bound n) = Bound (n - 1)"
  "decrnum (Neg a) = Neg (decrnum a)"
  "decrnum (Add a b) = Add (decrnum a) (decrnum b)"
  "decrnum (Sub a b) = Sub (decrnum a) (decrnum b)"
  "decrnum (Mul c a) = Mul c (decrnum a)"
  "decrnum (CN n i a) = (CN (n - 1) i (decrnum a))"
  "decrnum a = a"

recdef decr "measure size"
  "decr (Lt a) = Lt (decrnum a)"
  "decr (Le a) = Le (decrnum a)"
  "decr (Gt a) = Gt (decrnum a)"
  "decr (Ge a) = Ge (decrnum a)"
  "decr (Eq a) = Eq (decrnum a)"
  "decr (NEq a) = NEq (decrnum a)"
  "decr (Dvd i a) = Dvd i (decrnum a)"
  "decr (NDvd i a) = NDvd i (decrnum a)"
  "decr (NOT p) = NOT (decr p)" 
  "decr (And p q) = And (decr p) (decr q)"
  "decr (Or p q) = Or (decr p) (decr q)"
  "decr (Imp p q) = Imp (decr p) (decr q)"
  "decr (Iff p q) = Iff (decr p) (decr q)"
  "decr p = p"

lemma decrnum: assumes nb: "numbound0 t"
  shows "Inum (x#bs) t = Inum bs (decrnum t)"
  using nb by (induct t rule: decrnum.induct, auto simp add: gr0_conv_Suc)

lemma decr: assumes nb: "bound0 p"
  shows "Ifm bbs (x#bs) p = Ifm bbs bs (decr p)"
  using nb 
  by (induct p rule: decr.induct, simp_all add: gr0_conv_Suc decrnum)

lemma decr_qf: "bound0 p ==> qfree (decr p)"
by (induct p, simp_all)

consts 
  isatom :: "fm => bool" (* test for atomicity *)
recdef isatom "measure size"
  "isatom T = True"
  "isatom F = True"
  "isatom (Lt a) = True"
  "isatom (Le a) = True"
  "isatom (Gt a) = True"
  "isatom (Ge a) = True"
  "isatom (Eq a) = True"
  "isatom (NEq a) = True"
  "isatom (Dvd i b) = True"
  "isatom (NDvd i b) = True"
  "isatom (Closed P) = True"
  "isatom (NClosed P) = True"
  "isatom p = False"

lemma numsubst0_numbound0: assumes nb: "numbound0 t"
  shows "numbound0 (numsubst0 t a)"
using nb apply (induct a rule: numbound0.induct)
apply simp_all
apply (case_tac n, simp_all)
done

lemma subst0_bound0: assumes qf: "qfree p" and nb: "numbound0 t"
  shows "bound0 (subst0 t p)"
using qf numsubst0_numbound0[OF nb] by (induct p  rule: subst0.induct, auto)

lemma bound0_qf: "bound0 p ==> qfree p"
by (induct p, simp_all)


constdefs djf:: "('a => fm) => 'a => fm => fm"
  "djf f p q ≡ (if q=T then T else if q=F then f p else 
  (let fp = f p in case fp of T => T | F => q | _ => Or (f p) q))"
constdefs evaldjf:: "('a => fm) => 'a list => fm"
  "evaldjf f ps ≡ foldr (djf f) ps F"

lemma djf_Or: "Ifm bbs bs (djf f p q) = Ifm bbs bs (Or (f p) q)"
by (cases "q=T", simp add: djf_def,cases "q=F",simp add: djf_def) 
(cases "f p", simp_all add: Let_def djf_def) 

lemma evaldjf_ex: "Ifm bbs bs (evaldjf f ps) = (∃ p ∈ set ps. Ifm bbs bs (f p))"
  by(induct ps, simp_all add: evaldjf_def djf_Or)

lemma evaldjf_bound0: 
  assumes nb: "∀ x∈ set xs. bound0 (f x)"
  shows "bound0 (evaldjf f xs)"
  using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) 

lemma evaldjf_qf: 
  assumes nb: "∀ x∈ set xs. qfree (f x)"
  shows "qfree (evaldjf f xs)"
  using nb by (induct xs, auto simp add: evaldjf_def djf_def Let_def) (case_tac "f a", auto) 

consts disjuncts :: "fm => fm list"
recdef disjuncts "measure size"
  "disjuncts (Or p q) = (disjuncts p) @ (disjuncts q)"
  "disjuncts F = []"
  "disjuncts p = [p]"

lemma disjuncts: "(∃ q∈ set (disjuncts p). Ifm bbs bs q) = Ifm bbs bs p"
by(induct p rule: disjuncts.induct, auto)

lemma disjuncts_nb: "bound0 p ==> ∀ q∈ set (disjuncts p). bound0 q"
proof-
  assume nb: "bound0 p"
  hence "list_all bound0 (disjuncts p)" by (induct p rule:disjuncts.induct,auto)
  thus ?thesis by (simp only: list_all_iff)
qed

lemma disjuncts_qf: "qfree p ==> ∀ q∈ set (disjuncts p). qfree q"
proof-
  assume qf: "qfree p"
  hence "list_all qfree (disjuncts p)"
    by (induct p rule: disjuncts.induct, auto)
  thus ?thesis by (simp only: list_all_iff)
qed

constdefs DJ :: "(fm => fm) => fm => fm"
  "DJ f p ≡ evaldjf f (disjuncts p)"

lemma DJ: assumes fdj: "∀ p q. f (Or p q) = Or (f p) (f q)"
  and fF: "f F = F"
  shows "Ifm bbs bs (DJ f p) = Ifm bbs bs (f p)"
proof-
  have "Ifm bbs bs (DJ f p) = (∃ q ∈ set (disjuncts p). Ifm bbs bs (f q))"
    by (simp add: DJ_def evaldjf_ex) 
  also have "… = Ifm bbs bs (f p)" using fdj fF by (induct p rule: disjuncts.induct, auto)
  finally show ?thesis .
qed

lemma DJ_qf: assumes 
  fqf: "∀ p. qfree p --> qfree (f p)"
  shows "∀p. qfree p --> qfree (DJ f p) "
proof(clarify)
  fix  p assume qf: "qfree p"
  have th: "DJ f p = evaldjf f (disjuncts p)" by (simp add: DJ_def)
  from disjuncts_qf[OF qf] have "∀ q∈ set (disjuncts p). qfree q" .
  with fqf have th':"∀ q∈ set (disjuncts p). qfree (f q)" by blast
  
  from evaldjf_qf[OF th'] th show "qfree (DJ f p)" by simp
qed

lemma DJ_qe: assumes qe: "∀ bs p. qfree p --> qfree (qe p) ∧ (Ifm bbs bs (qe p) = Ifm bbs bs (E p))"
  shows "∀ bs p. qfree p --> qfree (DJ qe p) ∧ (Ifm bbs bs ((DJ qe p)) = Ifm bbs bs (E p))"
proof(clarify)
  fix p::fm and bs
  assume qf: "qfree p"
  from qe have qth: "∀ p. qfree p --> qfree (qe p)" by blast
  from DJ_qf[OF qth] qf have qfth:"qfree (DJ qe p)" by auto
  have "Ifm bbs bs (DJ qe p) = (∃ q∈ set (disjuncts p). Ifm bbs bs (qe q))"
    by (simp add: DJ_def evaldjf_ex)
  also have "… = (∃ q ∈ set(disjuncts p). Ifm bbs bs (E q))" using qe disjuncts_qf[OF qf] by auto
  also have "… = Ifm bbs bs (E p)" by (induct p rule: disjuncts.induct, auto)
  finally show "qfree (DJ qe p) ∧ Ifm bbs bs (DJ qe p) = Ifm bbs bs (E p)" using qfth by blast
qed
  (* Simplification *)

  (* Algebraic simplifications for nums *)
consts bnds:: "num => nat list"
  lex_ns:: "nat list × nat list => bool"
recdef bnds "measure size"
  "bnds (Bound n) = [n]"
  "bnds (CN n c a) = n#(bnds a)"
  "bnds (Neg a) = bnds a"
  "bnds (Add a b) = (bnds a)@(bnds b)"
  "bnds (Sub a b) = (bnds a)@(bnds b)"
  "bnds (Mul i a) = bnds a"
  "bnds a = []"
recdef lex_ns "measure (λ (xs,ys). length xs + length ys)"
  "lex_ns ([], ms) = True"
  "lex_ns (ns, []) = False"
  "lex_ns (n#ns, m#ms) = (n<m ∨ ((n = m) ∧ lex_ns (ns,ms))) "
constdefs lex_bnd :: "num => num => bool"
  "lex_bnd t s ≡ lex_ns (bnds t, bnds s)"

consts
  numadd:: "num × num => num"
recdef numadd "measure (λ (t,s). num_size t + num_size s)"
  "numadd (CN n1 c1 r1 ,CN n2 c2 r2) =
  (if n1=n2 then 
  (let c = c1 + c2
  in (if c=0 then numadd(r1,r2) else CN n1 c (numadd (r1,r2))))
  else if n1 ≤ n2 then CN n1 c1 (numadd (r1,Add (Mul c2 (Bound n2)) r2))
  else CN n2 c2 (numadd (Add (Mul c1 (Bound n1)) r1,r2)))"
  "numadd (CN n1 c1 r1, t) = CN n1 c1 (numadd (r1, t))"  
  "numadd (t,CN n2 c2 r2) = CN n2 c2 (numadd (t,r2))" 
  "numadd (C b1, C b2) = C (b1+b2)"
  "numadd (a,b) = Add a b"

(*function (sequential)
  numadd :: "num => num => num"
where
  "numadd (Add (Mul c1 (Bound n1)) r1) (Add (Mul c2 (Bound n2)) r2) =
      (if n1 = n2 then (let c = c1 + c2
      in (if c = 0 then numadd r1 r2 else
        Add (Mul c (Bound n1)) (numadd r1 r2)))
      else if n1 ≤ n2 then
        Add (Mul c1 (Bound n1)) (numadd r1 (Add (Mul c2 (Bound n2)) r2))
      else
        Add (Mul c2 (Bound n2)) (numadd (Add (Mul c1 (Bound n1)) r1) r2))"
  | "numadd (Add (Mul c1 (Bound n1)) r1) t =
      Add (Mul c1 (Bound n1)) (numadd r1 t)"  
  | "numadd t (Add (Mul c2 (Bound n2)) r2) =
      Add (Mul c2 (Bound n2)) (numadd t r2)" 
  | "numadd (C b1) (C b2) = C (b1 + b2)"
  | "numadd a b = Add a b"
apply pat_completeness apply auto*)
  
lemma numadd: "Inum bs (numadd (t,s)) = Inum bs (Add t s)"
apply (induct t s rule: numadd.induct, simp_all add: Let_def)
apply (case_tac "c1+c2 = 0",case_tac "n1 ≤ n2", simp_all)
 apply (case_tac "n1 = n2")
  apply(simp_all add: algebra_simps)
apply(simp add: left_distrib[symmetric])
done

lemma numadd_nb: "[| numbound0 t ; numbound0 s|] ==> numbound0 (numadd (t,s))"
by (induct t s rule: numadd.induct, auto simp add: Let_def)

fun
  nummul :: "int => num => num"
where
  "nummul i (C j) = C (i * j)"
  | "nummul i (CN n c t) = CN n (c*i) (nummul i t)"
  | "nummul i t = Mul i t"

lemma nummul: "!! i. Inum bs (nummul i t) = Inum bs (Mul i t)"
by (induct t rule: nummul.induct, auto simp add: algebra_simps numadd)

lemma nummul_nb: "!! i. numbound0 t ==> numbound0 (nummul i t)"
by (induct t rule: nummul.induct, auto simp add: numadd_nb)

constdefs numneg :: "num => num"
  "numneg t ≡ nummul (- 1) t"

constdefs numsub :: "num => num => num"
  "numsub s t ≡ (if s = t then C 0 else numadd (s, numneg t))"

lemma numneg: "Inum bs (numneg t) = Inum bs (Neg t)"
using numneg_def nummul by simp

lemma numneg_nb: "numbound0 t ==> numbound0 (numneg t)"
using numneg_def nummul_nb by simp

lemma numsub: "Inum bs (numsub a b) = Inum bs (Sub a b)"
using numneg numadd numsub_def by simp

lemma numsub_nb: "[| numbound0 t ; numbound0 s|] ==> numbound0 (numsub t s)"
using numsub_def numadd_nb numneg_nb by simp

fun
  simpnum :: "num => num"
where
  "simpnum (C j) = C j"
  | "simpnum (Bound n) = CN n 1 (C 0)"
  | "simpnum (Neg t) = numneg (simpnum t)"
  | "simpnum (Add t s) = numadd (simpnum t, simpnum s)"
  | "simpnum (Sub t s) = numsub (simpnum t) (simpnum s)"
  | "simpnum (Mul i t) = (if i = 0 then C 0 else nummul i (simpnum t))"
  | "simpnum t = t"

lemma simpnum_ci: "Inum bs (simpnum t) = Inum bs t"
by (induct t rule: simpnum.induct, auto simp add: numneg numadd numsub nummul)

lemma simpnum_numbound0: 
  "numbound0 t ==> numbound0 (simpnum t)"
by (induct t rule: simpnum.induct, auto simp add: numadd_nb numsub_nb nummul_nb numneg_nb)

fun
  not :: "fm => fm"
where
  "not (NOT p) = p"
  | "not T = F"
  | "not F = T"
  | "not p = NOT p"
lemma not: "Ifm bbs bs (not p) = Ifm bbs bs (NOT p)"
by (cases p) auto
lemma not_qf: "qfree p ==> qfree (not p)"
by (cases p, auto)
lemma not_bn: "bound0 p ==> bound0 (not p)"
by (cases p, auto)

constdefs conj :: "fm => fm => fm"
  "conj p q ≡ (if (p = F ∨ q=F) then F else if p=T then q else if q=T then p else And p q)"
lemma conj: "Ifm bbs bs (conj p q) = Ifm bbs bs (And p q)"
by (cases "p=F ∨ q=F",simp_all add: conj_def) (cases p,simp_all)

lemma conj_qf: "[|qfree p ; qfree q|] ==> qfree (conj p q)"
using conj_def by auto 
lemma conj_nb: "[|bound0 p ; bound0 q|] ==> bound0 (conj p q)"
using conj_def by auto 

constdefs disj :: "fm => fm => fm"
  "disj p q ≡ (if (p = T ∨ q=T) then T else if p=F then q else if q=F then p else Or p q)"

lemma disj: "Ifm bbs bs (disj p q) = Ifm bbs bs (Or p q)"
by (cases "p=T ∨ q=T",simp_all add: disj_def) (cases p,simp_all)
lemma disj_qf: "[|qfree p ; qfree q|] ==> qfree (disj p q)"
using disj_def by auto 
lemma disj_nb: "[|bound0 p ; bound0 q|] ==> bound0 (disj p q)"
using disj_def by auto 

constdefs   imp :: "fm => fm => fm"
  "imp p q ≡ (if (p = F ∨ q=T) then T else if p=T then q else if q=F then not p else Imp p q)"
lemma imp: "Ifm bbs bs (imp p q) = Ifm bbs bs (Imp p q)"
by (cases "p=F ∨ q=T",simp_all add: imp_def,cases p) (simp_all add: not)
lemma imp_qf: "[|qfree p ; qfree q|] ==> qfree (imp p q)"
using imp_def by (cases "p=F ∨ q=T",simp_all add: imp_def,cases p) (simp_all add: not_qf) 
lemma imp_nb: "[|bound0 p ; bound0 q|] ==> bound0 (imp p q)"
using imp_def by (cases "p=F ∨ q=T",simp_all add: imp_def,cases p) simp_all

constdefs   iff :: "fm => fm => fm"
  "iff p q ≡ (if (p = q) then T else if (p = not q ∨ not p = q) then F else 
       if p=F then not q else if q=F then not p else if p=T then q else if q=T then p else 
  Iff p q)"
lemma iff: "Ifm bbs bs (iff p q) = Ifm bbs bs (Iff p q)"
  by (unfold iff_def,cases "p=q", simp,cases "p=not q", simp add:not) 
(cases "not p= q", auto simp add:not)
lemma iff_qf: "[|qfree p ; qfree q|] ==> qfree (iff p q)"
  by (unfold iff_def,cases "p=q", auto simp add: not_qf)
lemma iff_nb: "[|bound0 p ; bound0 q|] ==> bound0 (iff p q)"
using iff_def by (unfold iff_def,cases "p=q", auto simp add: not_bn)

function (sequential)
  simpfm :: "fm => fm"
where
  "simpfm (And p q) = conj (simpfm p) (simpfm q)"
  | "simpfm (Or p q) = disj (simpfm p) (simpfm q)"
  | "simpfm (Imp p q) = imp (simpfm p) (simpfm q)"
  | "simpfm (Iff p q) = iff (simpfm p) (simpfm q)"
  | "simpfm (NOT p) = not (simpfm p)"
  | "simpfm (Lt a) = (let a' = simpnum a in case a' of C v => if (v < 0) then T else F 
      | _ => Lt a')"
  | "simpfm (Le a) = (let a' = simpnum a in case a' of C v => if (v ≤ 0)  then T else F | _ => Le a')"
  | "simpfm (Gt a) = (let a' = simpnum a in case a' of C v => if (v > 0)  then T else F | _ => Gt a')"
  | "simpfm (Ge a) = (let a' = simpnum a in case a' of C v => if (v ≥ 0)  then T else F | _ => Ge a')"
  | "simpfm (Eq a) = (let a' = simpnum a in case a' of C v => if (v = 0)  then T else F | _ => Eq a')"
  | "simpfm (NEq a) = (let a' = simpnum a in case a' of C v => if (v ≠ 0)  then T else F | _ => NEq a')"
  | "simpfm (Dvd i a) = (if i=0 then simpfm (Eq a)
             else if (abs i = 1) then T
             else let a' = simpnum a in case a' of C v => if (i dvd v)  then T else F | _ => Dvd i a')"
  | "simpfm (NDvd i a) = (if i=0 then simpfm (NEq a) 
             else if (abs i = 1) then F
             else let a' = simpnum a in case a' of C v => if (¬(i dvd v)) then T else F | _ => NDvd i a')"
  | "simpfm p = p"
by pat_completeness auto
termination by (relation "measure fmsize") auto

lemma simpfm: "Ifm bbs bs (simpfm p) = Ifm bbs bs p"
proof(induct p rule: simpfm.induct)
  case (6 a) let ?sa = "simpnum a" from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
  {fix v assume "?sa = C v" hence ?case using sa by simp }
  moreover {assume "¬ (∃ v. ?sa = C v)" hence ?case using sa 
      by (cases ?sa, simp_all add: Let_def)}
  ultimately show ?case by blast
next
  case (7 a)  let ?sa = "simpnum a" 
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
  {fix v assume "?sa = C v" hence ?case using sa by simp }
  moreover {assume "¬ (∃ v. ?sa = C v)" hence ?case using sa 
      by (cases ?sa, simp_all add: Let_def)}
  ultimately show ?case by blast
next
  case (8 a)  let ?sa = "simpnum a" 
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
  {fix v assume "?sa = C v" hence ?case using sa by simp }
  moreover {assume "¬ (∃ v. ?sa = C v)" hence ?case using sa 
      by (cases ?sa, simp_all add: Let_def)}
  ultimately show ?case by blast
next
  case (9 a)  let ?sa = "simpnum a" 
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
  {fix v assume "?sa = C v" hence ?case using sa by simp }
  moreover {assume "¬ (∃ v. ?sa = C v)" hence ?case using sa 
      by (cases ?sa, simp_all add: Let_def)}
  ultimately show ?case by blast
next
  case (10 a)  let ?sa = "simpnum a" 
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
  {fix v assume "?sa = C v" hence ?case using sa by simp }
  moreover {assume "¬ (∃ v. ?sa = C v)" hence ?case using sa 
      by (cases ?sa, simp_all add: Let_def)}
  ultimately show ?case by blast
next
  case (11 a)  let ?sa = "simpnum a" 
  from simpnum_ci have sa: "Inum bs ?sa = Inum bs a" by simp
  {fix v assume "?sa = C v" hence ?case using sa by simp }
  moreover {assume "¬ (∃ v. ?sa = C v)" hence ?case using sa 
      by (cases ?sa, simp_all add: Let_def)}
  ultimately show ?case by blast
next
  case (12 i a)  let ?sa = "simpnum a" from simpnum_ci 
  have sa: "Inum bs ?sa = Inum bs a" by simp
  have "i=0 ∨ abs i = 1 ∨ (i≠0 ∧ (abs i ≠ 1))" by auto
  {assume "i=0" hence ?case using "12.hyps" by (simp add: dvd_def Let_def)}
  moreover 
  {assume i1: "abs i = 1"
      from one_dvd[of "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"]
      have ?case using i1 apply (cases "i=0", simp_all add: Let_def) 
        by (cases "i > 0", simp_all)}
  moreover   
  {assume inz: "i≠0" and cond: "abs i ≠ 1"
    {fix v assume "?sa = C v" hence ?case using sa[symmetric] inz cond
        by (cases "abs i = 1", auto) }
    moreover {assume "¬ (∃ v. ?sa = C v)" 
      hence "simpfm (Dvd i a) = Dvd i ?sa" using inz cond 
        by (cases ?sa, auto simp add: Let_def)
      hence ?case using sa by simp}
    ultimately have ?case by blast}
  ultimately show ?case by blast
next
  case (13 i a)  let ?sa = "simpnum a" from simpnum_ci 
  have sa: "Inum bs ?sa = Inum bs a" by simp
  have "i=0 ∨ abs i = 1 ∨ (i≠0 ∧ (abs i ≠ 1))" by auto
  {assume "i=0" hence ?case using "13.hyps" by (simp add: dvd_def Let_def)}
  moreover 
  {assume i1: "abs i = 1"
      from one_dvd[of "Inum bs a"] uminus_dvd_conv[where d="1" and t="Inum bs a"]
      have ?case using i1 apply (cases "i=0", simp_all add: Let_def)
      apply (cases "i > 0", simp_all) done}
  moreover   
  {assume inz: "i≠0" and cond: "abs i ≠ 1"
    {fix v assume "?sa = C v" hence ?case using sa[symmetric] inz cond
        by (cases "abs i = 1", auto) }
    moreover {assume "¬ (∃ v. ?sa = C v)" 
      hence "simpfm (NDvd i a) = NDvd i ?sa" using inz cond 
        by (cases ?sa, auto simp add: Let_def)
      hence ?case using sa by simp}
    ultimately have ?case by blast}
  ultimately show ?case by blast
qed (induct p rule: simpfm.induct, simp_all add: conj disj imp iff not)

lemma simpfm_bound0: "bound0 p ==> bound0 (simpfm p)"
proof(induct p rule: simpfm.induct)
  case (6 a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (7 a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (8 a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (9 a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (10 a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (11 a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (12 i a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
next
  case (13 i a) hence nb: "numbound0 a" by simp
  hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb])
  thus ?case by (cases "simpnum a", auto simp add: Let_def)
qed(auto simp add: disj_def imp_def iff_def conj_def not_bn)

lemma simpfm_qf: "qfree p ==> qfree (simpfm p)"
by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def)
 (case_tac "simpnum a",auto)+

  (* Generic quantifier elimination *)
consts qelim :: "fm => (fm => fm) => fm"
recdef qelim "measure fmsize"
  "qelim (E p) = (λ qe. DJ qe (qelim p qe))"
  "qelim (A p) = (λ qe. not (qe ((qelim (NOT p) qe))))"
  "qelim (NOT p) = (λ qe. not (qelim p qe))"
  "qelim (And p q) = (λ qe. conj (qelim p qe) (qelim q qe))" 
  "qelim (Or  p q) = (λ qe. disj (qelim p qe) (qelim q qe))" 
  "qelim (Imp p q) = (λ qe. imp (qelim p qe) (qelim q qe))"
  "qelim (Iff p q) = (λ qe. iff (qelim p qe) (qelim q qe))"
  "qelim p = (λ y. simpfm p)"

(*function (sequential)
  qelim :: "(fm => fm) => fm => fm"
where
  "qelim qe (E p) = DJ qe (qelim qe p)"
  | "qelim qe (A p) = not (qe ((qelim qe (NOT p))))"
  | "qelim qe (NOT p) = not (qelim qe p)"
  | "qelim qe (And p q) = conj (qelim qe p) (qelim qe q)" 
  | "qelim qe (Or  p q) = disj (qelim qe p) (qelim qe q)" 
  | "qelim qe (Imp p q) = imp (qelim qe p) (qelim qe q)"
  | "qelim qe (Iff p q) = iff (qelim qe p) (qelim qe q)"
  | "qelim qe p = simpfm p"
by pat_completeness auto
termination by (relation "measure (fmsize o snd)") auto*)

lemma qelim_ci:
  assumes qe_inv: "∀ bs p. qfree p --> qfree (qe p) ∧ (Ifm bbs bs (qe p) = Ifm bbs bs (E p))"
  shows "!! bs. qfree (qelim p qe) ∧ (Ifm bbs bs (qelim p qe) = Ifm bbs bs p)"
using qe_inv DJ_qe[OF qe_inv] 
by(induct p rule: qelim.induct) 
(auto simp add: not disj conj iff imp not_qf disj_qf conj_qf imp_qf iff_qf 
  simpfm simpfm_qf simp del: simpfm.simps)
  (* Linearity for fm where Bound 0 ranges over \<int> *)

fun
  zsplit0 :: "num => int × num" (* splits the bounded from the unbounded part*)
where
  "zsplit0 (C c) = (0,C c)"
  | "zsplit0 (Bound n) = (if n=0 then (1, C 0) else (0,Bound n))"
  | "zsplit0 (CN n i a) = 
      (let (i',a') =  zsplit0 a 
       in if n=0 then (i+i', a') else (i',CN n i a'))"
  | "zsplit0 (Neg a) = (let (i',a') =  zsplit0 a in (-i', Neg a'))"
  | "zsplit0 (Add a b) = (let (ia,a') =  zsplit0 a ; 
                            (ib,b') =  zsplit0 b 
                            in (ia+ib, Add a' b'))"
  | "zsplit0 (Sub a b) = (let (ia,a') =  zsplit0 a ; 
                            (ib,b') =  zsplit0 b 
                            in (ia-ib, Sub a' b'))"
  | "zsplit0 (Mul i a) = (let (i',a') =  zsplit0 a in (i*i', Mul i a'))"

lemma zsplit0_I:
  shows "!! n a. zsplit0 t = (n,a) ==> (Inum ((x::int) #bs) (CN 0 n a) = Inum (x #bs) t) ∧ numbound0 a"
  (is "!! n a. ?S t = (n,a) ==> (?I x (CN 0 n a) = ?I x t) ∧ ?N a")
proof(induct t rule: zsplit0.induct)
  case (1 c n a) thus ?case by auto 
next
  case (2 m n a) thus ?case by (cases "m=0") auto
next
  case (3 m i a n a')
  let ?j = "fst (zsplit0 a)"
  let ?b = "snd (zsplit0 a)"
  have abj: "zsplit0 a = (?j,?b)" by simp 
  {assume "m≠0" 
    with prems(1)[OF abj] prems(2) have ?case by (auto simp add: Let_def split_def)}
  moreover
  {assume m0: "m =0"
    from abj have th: "a'=?b ∧ n=i+?j" using prems 
      by (simp add: Let_def split_def)
    from abj prems  have th2: "(?I x (CN 0 ?j ?b) = ?I x a) ∧ ?N ?b" by blast
    from th have "?I x (CN 0 n a') = ?I x (CN 0 (i+?j) ?b)" by simp
    also from th2 have "… = ?I x (CN 0 i (CN 0 ?j ?b))" by (simp add: left_distrib)
  finally have "?I x (CN 0 n a') = ?I  x (CN 0 i a)" using th2 by simp
  with th2 th have ?case using m0 by blast} 
ultimately show ?case by blast
next
  case (4 t n a)
  let ?nt = "fst (zsplit0 t)"
  let ?at = "snd (zsplit0 t)"
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Neg ?at ∧ n=-?nt" using prems 
    by (simp add: Let_def split_def)
  from abj prems  have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at" by blast
  from th2[simplified] th[simplified] show ?case by simp
next
  case (5 s t n a)
  let ?ns = "fst (zsplit0 s)"
  let ?as = "snd (zsplit0 s)"
  let ?nt = "fst (zsplit0 t)"
  let ?at = "snd (zsplit0 t)"
  have abjs: "zsplit0 s = (?ns,?as)" by simp 
  moreover have abjt:  "zsplit0 t = (?nt,?at)" by simp 
  ultimately have th: "a=Add ?as ?at ∧ n=?ns + ?nt" using prems 
    by (simp add: Let_def split_def)
  from abjs[symmetric] have bluddy: "∃ x y. (x,y) = zsplit0 s" by blast
  from prems have "(∃ x y. (x,y) = zsplit0 s) --> (∀xa xb. zsplit0 t = (xa, xb) --> Inum (x # bs) (CN 0 xa xb) = Inum (x # bs) t ∧ numbound0 xb)" by auto
  with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at" by blast
  from abjs prems  have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) ∧ ?N ?as" by blast
  from th3[simplified] th2[simplified] th[simplified] show ?case 
    by (simp add: left_distrib)
next
  case (6 s t n a)
  let ?ns = "fst (zsplit0 s)"
  let ?as = "snd (zsplit0 s)"
  let ?nt = "fst (zsplit0 t)"
  let ?at = "snd (zsplit0 t)"
  have abjs: "zsplit0 s = (?ns,?as)" by simp 
  moreover have abjt:  "zsplit0 t = (?nt,?at)" by simp 
  ultimately have th: "a=Sub ?as ?at ∧ n=?ns - ?nt" using prems 
    by (simp add: Let_def split_def)
  from abjs[symmetric] have bluddy: "∃ x y. (x,y) = zsplit0 s" by blast
  from prems have "(∃ x y. (x,y) = zsplit0 s) --> (∀xa xb. zsplit0 t = (xa, xb) --> Inum (x # bs) (CN 0 xa xb) = Inum (x # bs) t ∧ numbound0 xb)" by auto
  with bluddy abjt have th3: "(?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at" by blast
  from abjs prems  have th2: "(?I x (CN 0 ?ns ?as) = ?I x s) ∧ ?N ?as" by blast
  from th3[simplified] th2[simplified] th[simplified] show ?case 
    by (simp add: left_diff_distrib)
next
  case (7 i t n a)
  let ?nt = "fst (zsplit0 t)"
  let ?at = "snd (zsplit0 t)"
  have abj: "zsplit0 t = (?nt,?at)" by simp hence th: "a=Mul i ?at ∧ n=i*?nt" using prems 
    by (simp add: Let_def split_def)
  from abj prems  have th2: "(?I x (CN 0 ?nt ?at) = ?I x t) ∧ ?N ?at" by blast
  hence " ?I x (Mul i t) = i * ?I x (CN 0 ?nt ?at)" by simp
  also have "… = ?I x (CN 0 (i*?nt) (Mul i ?at))" by (simp add: right_distrib)
  finally show ?case using th th2 by simp
qed

consts
  iszlfm :: "fm => bool"   (* Linearity test for fm *)
recdef iszlfm "measure size"
  "iszlfm (And p q) = (iszlfm p ∧ iszlfm q)" 
  "iszlfm (Or p q) = (iszlfm p ∧ iszlfm q)" 
  "iszlfm (Eq  (CN 0 c e)) = (c>0 ∧ numbound0 e)"
  "iszlfm (NEq (CN 0 c e)) = (c>0 ∧ numbound0 e)"
  "iszlfm (Lt  (CN 0 c e)) = (c>0 ∧ numbound0 e)"
  "iszlfm (Le  (CN 0 c e)) = (c>0 ∧ numbound0 e)"
  "iszlfm (Gt  (CN 0 c e)) = (c>0 ∧ numbound0 e)"
  "iszlfm (Ge  (CN 0 c e)) = ( c>0 ∧ numbound0 e)"
  "iszlfm (Dvd i (CN 0 c e)) = 
                 (c>0 ∧ i>0 ∧ numbound0 e)"
  "iszlfm (NDvd i (CN 0 c e))= 
                 (c>0 ∧ i>0 ∧ numbound0 e)"
  "iszlfm p = (isatom p ∧ (bound0 p))"

lemma zlin_qfree: "iszlfm p ==> qfree p"
  by (induct p rule: iszlfm.induct) auto

consts
  zlfm :: "fm => fm"       (* Linearity transformation for fm *)
recdef zlfm "measure fmsize"
  "zlfm (And p q) = And (zlfm p) (zlfm q)"
  "zlfm (Or p q) = Or (zlfm p) (zlfm q)"
  "zlfm (Imp p q) = Or (zlfm (NOT p)) (zlfm q)"
  "zlfm (Iff p q) = Or (And (zlfm p) (zlfm q)) (And (zlfm (NOT p)) (zlfm (NOT q)))"
  "zlfm (Lt a) = (let (c,r) = zsplit0 a in 
     if c=0 then Lt r else 
     if c>0 then (Lt (CN 0 c r)) else (Gt (CN 0 (- c) (Neg r))))"
  "zlfm (Le a) = (let (c,r) = zsplit0 a in 
     if c=0 then Le r else 
     if c>0 then (Le (CN 0 c r)) else (Ge (CN 0 (- c) (Neg r))))"
  "zlfm (Gt a) = (let (c,r) = zsplit0 a in 
     if c=0 then Gt r else 
     if c>0 then (Gt (CN 0 c r)) else (Lt (CN 0 (- c) (Neg r))))"
  "zlfm (Ge a) = (let (c,r) = zsplit0 a in 
     if c=0 then Ge r else 
     if c>0 then (Ge (CN 0 c r)) else (Le (CN 0 (- c) (Neg r))))"
  "zlfm (Eq a) = (let (c,r) = zsplit0 a in 
     if c=0 then Eq r else 
     if c>0 then (Eq (CN 0 c r)) else (Eq (CN 0 (- c) (Neg r))))"
  "zlfm (NEq a) = (let (c,r) = zsplit0 a in 
     if c=0 then NEq r else 
     if c>0 then (NEq (CN 0 c r)) else (NEq (CN 0 (- c) (Neg r))))"
  "zlfm (Dvd i a) = (if i=0 then zlfm (Eq a) 
        else (let (c,r) = zsplit0 a in 
              if c=0 then (Dvd (abs i) r) else 
      if c>0 then (Dvd (abs i) (CN 0 c r))
      else (Dvd (abs i) (CN 0 (- c) (Neg r)))))"
  "zlfm (NDvd i a) = (if i=0 then zlfm (NEq a) 
        else (let (c,r) = zsplit0 a in 
              if c=0 then (NDvd (abs i) r) else 
      if c>0 then (NDvd (abs i) (CN 0 c r))
      else (NDvd (abs i) (CN 0 (- c) (Neg r)))))"
  "zlfm (NOT (And p q)) = Or (zlfm (NOT p)) (zlfm (NOT q))"
  "zlfm (NOT (Or p q)) = And (zlfm (NOT p)) (zlfm (NOT q))"
  "zlfm (NOT (Imp p q)) = And (zlfm p) (zlfm (NOT q))"
  "zlfm (NOT (Iff p q)) = Or (And(zlfm p) (zlfm(NOT q))) (And (zlfm(NOT p)) (zlfm q))"
  "zlfm (NOT (NOT p)) = zlfm p"
  "zlfm (NOT T) = F"
  "zlfm (NOT F) = T"
  "zlfm (NOT (Lt a)) = zlfm (Ge a)"
  "zlfm (NOT (Le a)) = zlfm (Gt a)"
  "zlfm (NOT (Gt a)) = zlfm (Le a)"
  "zlfm (NOT (Ge a)) = zlfm (Lt a)"
  "zlfm (NOT (Eq a)) = zlfm (NEq a)"
  "zlfm (NOT (NEq a)) = zlfm (Eq a)"
  "zlfm (NOT (Dvd i a)) = zlfm (NDvd i a)"
  "zlfm (NOT (NDvd i a)) = zlfm (Dvd i a)"
  "zlfm (NOT (Closed P)) = NClosed P"
  "zlfm (NOT (NClosed P)) = Closed P"
  "zlfm p = p" (hints simp add: fmsize_pos)

lemma zlfm_I:
  assumes qfp: "qfree p"
  shows "(Ifm bbs (i#bs) (zlfm p) = Ifm bbs (i# bs) p) ∧ iszlfm (zlfm p)"
  (is "(?I (?l p) = ?I p) ∧ ?L (?l p)")
using qfp
proof(induct p rule: zlfm.induct)
  case (5 a) 
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  from prems Ia nb  show ?case 
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done
next
  case (6 a)  
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  from prems Ia nb  show ?case 
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done
next
  case (7 a)  
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  from prems Ia nb  show ?case 
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done
next
  case (8 a)  
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  from prems Ia nb  show ?case 
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done
next
  case (9 a)  
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  from prems Ia nb  show ?case 
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done
next
  case (10 a)  
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  from prems Ia nb  show ?case 
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done
next
  case (11 j a)  
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  have "j=0 ∨ (j≠0 ∧ ?c = 0) ∨ (j≠0 ∧ ?c >0) ∨ (j≠ 0 ∧ ?c<0)" by arith
  moreover
  {assume "j=0" hence z: "zlfm (Dvd j a) = (zlfm (Eq a))" by (simp add: Let_def) 
    hence ?case using prems by (simp del: zlfm.simps)}
  moreover
  {assume "?c=0" and "j≠0" hence ?case 
      using zsplit0_I[OF spl, where x="i" and bs="bs"]
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done}
  moreover
  {assume cp: "?c > 0" and jnz: "j≠0" hence l: "?L (?l (Dvd j a))" 
      by (simp add: nb Let_def split_def)
    hence ?case using Ia cp jnz by (simp add: Let_def split_def)}
  moreover
  {assume cn: "?c < 0" and jnz: "j≠0" hence l: "?L (?l (Dvd j a))" 
      by (simp add: nb Let_def split_def)
    hence ?case using Ia cn jnz dvd_minus_iff[of "abs j" "?c*i + ?N ?r" ]
      by (simp add: Let_def split_def) }
  ultimately show ?case by blast
next
  case (12 j a) 
  let ?c = "fst (zsplit0 a)"
  let ?r = "snd (zsplit0 a)"
  have spl: "zsplit0 a = (?c,?r)" by simp
  from zsplit0_I[OF spl, where x="i" and bs="bs"] 
  have Ia:"Inum (i # bs) a = Inum (i #bs) (CN 0 ?c ?r)" and nb: "numbound0 ?r" by auto 
  let ?N = "λ t. Inum (i#bs) t"
  have "j=0 ∨ (j≠0 ∧ ?c = 0) ∨ (j≠0 ∧ ?c >0) ∨ (j≠ 0 ∧ ?c<0)" by arith
  moreover
  {assume "j=0" hence z: "zlfm (NDvd j a) = (zlfm (NEq a))" by (simp add: Let_def) 
    hence ?case using prems by (simp del: zlfm.simps)}
  moreover
  {assume "?c=0" and "j≠0" hence ?case 
      using zsplit0_I[OF spl, where x="i" and bs="bs"]
    apply (auto simp add: Let_def split_def algebra_simps) 
    apply (cases "?r",auto)
    apply (case_tac nat, auto)
    done}
  moreover
  {assume cp: "?c > 0" and jnz: "j≠0" hence l: "?L (?l (Dvd j a))" 
      by (simp add: nb Let_def split_def)
    hence ?case using Ia cp jnz by (simp add: Let_def split_def) }
  moreover
  {assume cn: "?c < 0" and jnz: "j≠0" hence l: "?L (?l (Dvd j a))" 
      by (simp add: nb Let_def split_def)
    hence ?case using Ia cn jnz dvd_minus_iff[of "abs j" "?c*i + ?N ?r"]
      by (simp add: Let_def split_def)}
  ultimately show ?case by blast
qed auto

consts 
  plusinf:: "fm => fm" (* Virtual substitution of +∞*)
  minusinf:: "fm => fm" (* Virtual substitution of -∞*)
  δ :: "fm => int" (* Compute lcm {d| N? Dvd c*x+t ∈ p}*)
   :: "fm => int => bool" (* checks if a given l divides all the ds above*)

recdef minusinf "measure size"
  "minusinf (And p q) = And (minusinf p) (minusinf q)" 
  "minusinf (Or p q) = Or (minusinf p) (minusinf q)" 
  "minusinf (Eq  (CN 0 c e)) = F"
  "minusinf (NEq (CN 0 c e)) = T"
  "minusinf (Lt  (CN 0 c e)) = T"
  "minusinf (Le  (CN 0 c e)) = T"
  "minusinf (Gt  (CN 0 c e)) = F"
  "minusinf (Ge  (CN 0 c e)) = F"
  "minusinf p = p"

lemma minusinf_qfree: "qfree p ==> qfree (minusinf p)"
  by (induct p rule: minusinf.induct, auto)

recdef plusinf "measure size"
  "plusinf (And p q) = And (plusinf p) (plusinf q)" 
  "plusinf (Or p q) = Or (plusinf p) (plusinf q)" 
  "plusinf (Eq  (CN 0 c e)) = F"
  "plusinf (NEq (CN 0 c e)) = T"
  "plusinf (Lt  (CN 0 c e)) = F"
  "plusinf (Le  (CN 0 c e)) = F"
  "plusinf (Gt  (CN 0 c e)) = T"
  "plusinf (Ge  (CN 0 c e)) = T"
  "plusinf p = p"

recdef δ "measure size"
  "δ (And p q) = zlcm (δ p) (δ q)" 
  "δ (Or p q) = zlcm (δ p) (δ q)" 
  "δ (Dvd i (CN 0 c e)) = i"
  "δ (NDvd i (CN 0 c e)) = i"
  "δ p = 1"

recdef  "measure size"
  "dδ (And p q) = (λ d. dδ p d ∧ dδ q d)" 
  "dδ (Or p q) = (λ d. dδ p d ∧ dδ q d)" 
  "dδ (Dvd i (CN 0 c e)) = (λ d. i dvd d)"
  "dδ (NDvd i (CN 0 c e)) = (λ d. i dvd d)"
  "dδ p = (λ d. True)"

lemma delta_mono: 
  assumes lin: "iszlfm p"
  and d: "d dvd d'"
  and ad: "dδ p d"
  shows "dδ p d'"
  using lin ad d
proof(induct p rule: iszlfm.induct)
  case (9 i c e)  thus ?case using d
    by (simp add: dvd_trans[of "i" "d" "d'"])
next
  case (10 i c e) thus ?case using d
    by (simp add: dvd_trans[of "i" "d" "d'"])
qed simp_all

lemma δ : assumes lin:"iszlfm p"
  shows "dδ p (δ p) ∧ δ p >0"
using lin
proof (induct p rule: iszlfm.induct)
  case (1 p q) 
  let ?d = "δ (And p q)"
  from prems zlcm_pos have dp: "?d >0" by simp
  have d1: "δ p dvd δ (And p q)" using prems by simp
  hence th: "dδ p ?d" using delta_mono prems(3-4) by(simp del:dvd_zlcm_self1)
  have "δ q dvd δ (And p q)" using prems by simp
  hence th': "dδ q ?d" using delta_mono prems by(simp del:dvd_zlcm_self2)
  from th th' dp show ?case by simp
next
  case (2 p q)  
  let ?d = "δ (And p q)"
  from prems zlcm_pos have dp: "?d >0" by simp
  have "δ p dvd δ (And p q)" using prems by simp
  hence th: "dδ p ?d" using delta_mono prems by(simp del:dvd_zlcm_self1)
  have "δ q dvd δ (And p q)" using prems by simp
  hence th': "dδ q ?d" using delta_mono prems by(simp del:dvd_zlcm_self2)
  from th th' dp show ?case by simp
qed simp_all


consts 
   :: "fm => int => fm" (* adjusts the coeffitients of a formula *)
   :: "fm => int => bool" (* tests if all coeffs c of c divide a given l*)
  ζ  :: "fm => int" (* computes the lcm of all coefficients of x*)
  β :: "fm => num list"
  α :: "fm => num list"

recdef  "measure size"
  "aβ (And p q) = (λ k. And (aβ p k) (aβ q k))" 
  "aβ (Or p q) = (λ k. Or (aβ p k) (aβ q k))" 
  "aβ (Eq  (CN 0 c e)) = (λ k. Eq (CN 0 1 (Mul (k div c) e)))"
  "aβ (NEq (CN 0 c e)) = (λ k. NEq (CN 0 1 (Mul (k div c) e)))"
  "aβ (Lt  (CN 0 c e)) = (λ k. Lt (CN 0 1 (Mul (k div c) e)))"
  "aβ (Le  (CN 0 c e)) = (λ k. Le (CN 0 1 (Mul (k div c) e)))"
  "aβ (Gt  (CN 0 c e)) = (λ k. Gt (CN 0 1 (Mul (k div c) e)))"
  "aβ (Ge  (CN 0 c e)) = (λ k. Ge (CN 0 1 (Mul (k div c) e)))"
  "aβ (Dvd i (CN 0 c e)) =(λ k. Dvd ((k div c)*i) (CN 0 1 (Mul (k div c) e)))"
  "aβ (NDvd i (CN 0 c e))=(λ k. NDvd ((k div c)*i) (CN 0 1 (Mul (k div c) e)))"
  "aβ p = (λ k. p)"

recdef  "measure size"
  "dβ (And p q) = (λ k. (dβ p k) ∧ (dβ q k))" 
  "dβ (Or p q) = (λ k. (dβ p k) ∧ (dβ q k))" 
  "dβ (Eq  (CN 0 c e)) = (λ k. c dvd k)"
  "dβ (NEq (CN 0 c e)) = (λ k. c dvd k)"
  "dβ (Lt  (CN 0 c e)) = (λ k. c dvd k)"
  "dβ (Le  (CN 0 c e)) = (λ k. c dvd k)"
  "dβ (Gt  (CN 0 c e)) = (λ k. c dvd k)"
  "dβ (Ge  (CN 0 c e)) = (λ k. c dvd k)"
  "dβ (Dvd i (CN 0 c e)) =(λ k. c dvd k)"
  "dβ (NDvd i (CN 0 c e))=(λ k. c dvd k)"
  "dβ p = (λ k. True)"

recdef ζ "measure size"
  "ζ (And p q) = zlcm (ζ p) (ζ q)" 
  "ζ (Or p q) = zlcm (ζ p) (ζ q)" 
  "ζ (Eq  (CN 0 c e)) = c"
  "ζ (NEq (CN 0 c e)) = c"
  "ζ (Lt  (CN 0 c e)) = c"
  "ζ (Le  (CN 0 c e)) = c"
  "ζ (Gt  (CN 0 c e)) = c"
  "ζ (Ge  (CN 0 c e)) = c"
  "ζ (Dvd i (CN 0 c e)) = c"
  "ζ (NDvd i (CN 0 c e))= c"
  "ζ p = 1"

recdef β "measure size"
  "β (And p q) = (β p @ β q)" 
  "β (Or p q) = (β p @ β q)" 
  "β (Eq  (CN 0 c e)) = [Sub (C -1) e]"
  "β (NEq (CN 0 c e)) = [Neg e]"
  "β (Lt  (CN 0 c e)) = []"
  "β (Le  (CN 0 c e)) = []"
  "β (Gt  (CN 0 c e)) = [Neg e]"
  "β (Ge  (CN 0 c e)) = [Sub (C -1) e]"
  "β p = []"

recdef α "measure size"
  "α (And p q) = (α p @ α q)" 
  "α (Or p q) = (α p @ α q)" 
  "α (Eq  (CN 0 c e)) = [Add (C -1) e]"
  "α (NEq (CN 0 c e)) = [e]"
  "α (Lt  (CN 0 c e)) = [e]"
  "α (Le  (CN 0 c e)) = [Add (C -1) e]"
  "α (Gt  (CN 0 c e)) = []"
  "α (Ge  (CN 0 c e)) = []"
  "α p = []"
consts mirror :: "fm => fm"
recdef mirror "measure size"
  "mirror (And p q) = And (mirror p) (mirror q)" 
  "mirror (Or p q) = Or (mirror p) (mirror q)" 
  "mirror (Eq  (CN 0 c e)) = Eq (CN 0 c (Neg e))"
  "mirror (NEq (CN 0 c e)) = NEq (CN 0 c (Neg e))"
  "mirror (Lt  (CN 0 c e)) = Gt (CN 0 c (Neg e))"
  "mirror (Le  (CN 0 c e)) = Ge (CN 0 c (Neg e))"
  "mirror (Gt  (CN 0 c e)) = Lt (CN 0 c (Neg e))"
  "mirror (Ge  (CN 0 c e)) = Le (CN 0 c (Neg e))"
  "mirror (Dvd i (CN 0 c e)) = Dvd i (CN 0 c (Neg e))"
  "mirror (NDvd i (CN 0 c e)) = NDvd i (CN 0 c (Neg e))"
  "mirror p = p"
    (* Lemmas for the correctness of σρ *)
lemma dvd1_eq1: "x >0 ==> (x::int) dvd 1 = (x = 1)"
by simp

lemma minusinf_inf:
  assumes linp: "iszlfm p"
  and u: "dβ p 1"
  shows "∃ (z::int). ∀ x < z. Ifm bbs (x#bs) (minusinf p) = Ifm bbs (x#bs) p"
  (is "?P p" is "∃ (z::int). ∀ x < z. ?I x (?M p) = ?I x p")
using linp u
proof (induct p rule: minusinf.induct)
  case (1 p q) thus ?case 
    by auto (rule_tac x="min z za" in exI,simp)
next
  case (2 p q) thus ?case 
    by auto (rule_tac x="min z za" in exI,simp)
next
  case (3 c e) hence c1: "c=1" and nb: "numbound0 e" by simp+
  fix a
  from 3 have "∀ x<(- Inum (a#bs) e). c*x + Inum (x#bs) e ≠ 0"
  proof(clarsimp)
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e = 0"
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
    show "False" by simp
  qed
  thus ?case by auto
next
  case (4 c e) hence c1: "c=1" and nb: "numbound0 e" by simp+
  fix a
  from 4 have "∀ x<(- Inum (a#bs) e). c*x + Inum (x#bs) e ≠ 0"
  proof(clarsimp)
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e = 0"
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
    show "False" by simp
  qed
  thus ?case by auto
next
  case (5 c e) hence c1: "c=1" and nb: "numbound0 e" by simp+
  fix a
  from 5 have "∀ x<(- Inum (a#bs) e). c*x + Inum (x#bs) e < 0"
  proof(clarsimp)
    fix x assume "x < (- Inum (a#bs) e)" 
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
    show "x + Inum (x#bs) e < 0" by simp
  qed
  thus ?case by auto
next
  case (6 c e) hence c1: "c=1" and nb: "numbound0 e" by simp+
  fix a
  from 6 have "∀ x<(- Inum (a#bs) e). c*x + Inum (x#bs) e ≤ 0"
  proof(clarsimp)
    fix x assume "x < (- Inum (a#bs) e)" 
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
    show "x + Inum (x#bs) e ≤ 0" by simp
  qed
  thus ?case by auto
next
  case (7 c e) hence c1: "c=1" and nb: "numbound0 e" by simp+
  fix a
  from 7 have "∀ x<(- Inum (a#bs) e). ¬ (c*x + Inum (x#bs) e > 0)"
  proof(clarsimp)
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e > 0"
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
    show "False" by simp
  qed
  thus ?case by auto
next
  case (8 c e) hence c1: "c=1" and nb: "numbound0 e" by simp+
  fix a
  from 8 have "∀ x<(- Inum (a#bs) e). ¬ (c*x + Inum (x#bs) e ≥ 0)"
  proof(clarsimp)
    fix x assume "x < (- Inum (a#bs) e)" and"x + Inum (x#bs) e ≥ 0"
    with numbound0_I[OF nb, where bs="bs" and b="a" and b'="x"]
    show "False" by simp
  qed
  thus ?case by auto
qed auto

lemma minusinf_repeats:
  assumes d: "dδ p d" and linp: "iszlfm p"
  shows "Ifm bbs ((x - k*d)#bs) (minusinf p) = Ifm bbs (x #bs) (minusinf p)"
using linp d
proof(induct p rule: iszlfm.induct) 
  case (9 i c e) hence nbe: "numbound0 e"  and id: "i dvd d" by simp+
    hence "∃ k. d=i*k" by (simp add: dvd_def)
    then obtain "di" where di_def: "d=i*di" by blast
    show ?case 
    proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, rule iffI)
      assume 
        "i dvd c * x - c*(k*d) + Inum (x # bs) e"
      (is "?ri dvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri dvd ?rt")
      hence "∃ (l::int). ?rt = i * l" by (simp add: dvd_def)
      hence "∃ (l::int). c*x+ ?I x e = i*l+c*(k * i*di)" 
        by (simp add: algebra_simps di_def)
      hence "∃ (l::int). c*x+ ?I x e = i*(l + c*k*di)"
        by (simp add: algebra_simps)
      hence "∃ (l::int). c*x+ ?I x e = i*l" by blast
      thus "i dvd c*x + Inum (x # bs) e" by (simp add: dvd_def) 
    next
      assume 
        "i dvd c*x + Inum (x # bs) e" (is "?ri dvd ?rc*?rx+?e")
      hence "∃ (l::int). c*x+?e = i*l" by (simp add: dvd_def)
      hence "∃ (l::int). c*x - c*(k*d) +?e = i*l - c*(k*d)" by simp
      hence "∃ (l::int). c*x - c*(k*d) +?e = i*l - c*(k*i*di)" by (simp add: di_def)
      hence "∃ (l::int). c*x - c*(k*d) +?e = i*((l - c*k*di))" by (simp add: algebra_simps)
      hence "∃ (l::int). c*x - c * (k*d) +?e = i*l"
        by blast
      thus "i dvd c*x - c*(k*d) + Inum (x # bs) e" by (simp add: dvd_def)
    qed
next
  case (10 i c e)  hence nbe: "numbound0 e"  and id: "i dvd d" by simp+
    hence "∃ k. d=i*k" by (simp add: dvd_def)
    then obtain "di" where di_def: "d=i*di" by blast
    show ?case 
    proof(simp add: numbound0_I[OF nbe,where bs="bs" and b="x - k * d" and b'="x"] right_diff_distrib, rule iffI)
      assume 
        "i dvd c * x - c*(k*d) + Inum (x # bs) e"
      (is "?ri dvd ?rc*?rx - ?rc*(?rk*?rd) + ?I x e" is "?ri dvd ?rt")
      hence "∃ (l::int). ?rt = i * l" by (simp add: dvd_def)
      hence "∃ (l::int). c*x+ ?I x e = i*l+c*(k * i*di)" 
        by (simp add: algebra_simps di_def)
      hence "∃ (l::int). c*x+ ?I x e = i*(l + c*k*di)"
        by (simp add: algebra_simps)
      hence "∃ (l::int). c*x+ ?I x e = i*l" by blast
      thus "i dvd c*x + Inum (x # bs) e" by (simp add: dvd_def) 
    next
      assume 
        "i dvd c*x + Inum (x # bs) e" (is "?ri dvd ?rc*?rx+?e")
      hence "∃ (l::int). c*x+?e = i*l" by (simp add: dvd_def)
      hence "∃ (l::int). c*x - c*(k*d) +?e = i*l - c*(k*d)" by simp
      hence "∃ (l::int). c*x - c*(k*d) +?e = i*l - c*(k*i*di)" by (simp add: di_def)
      hence "∃ (l::int). c*x - c*(k*d) +?e = i*((l - c*k*di))" by (simp add: algebra_simps)
      hence "∃ (l::int). c*x - c * (k*d) +?e = i*l"
        by blast
      thus "i dvd c*x - c*(k*d) + Inum (x # bs) e" by (simp add: dvd_def)
    qed
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="x - k*d" and b'="x"])

lemma mirrorαβ:
  assumes lp: "iszlfm p"
  shows "(Inum (i#bs)) ` set (α p) = (Inum (i#bs)) ` set (β (mirror p))"
using lp
by (induct p rule: mirror.induct, auto)

lemma mirror: 
  assumes lp: "iszlfm p"
  shows "Ifm bbs (x#bs) (mirror p) = Ifm bbs ((- x)#bs) p" 
using lp
proof(induct p rule: iszlfm.induct)
  case (9 j c e) hence nb: "numbound0 e" by simp
  have "Ifm bbs (x#bs) (mirror (Dvd j (CN 0 c e))) = (j dvd c*x - Inum (x#bs) e)" (is "_ = (j dvd c*x - ?e)") by simp
    also have "… = (j dvd (- (c*x - ?e)))"
    by (simp only: dvd_minus_iff)
  also have "… = (j dvd (c* (- x)) + ?e)"
    apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_def zadd_ac zminus_zadd_distrib)
    by (simp add: algebra_simps)
  also have "… = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))"
    using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"]
    by simp
  finally show ?case .
next
    case (10 j c e) hence nb: "numbound0 e" by simp
  have "Ifm bbs (x#bs) (mirror (Dvd j (CN 0 c e))) = (j dvd c*x - Inum (x#bs) e)" (is "_ = (j dvd c*x - ?e)") by simp
    also have "… = (j dvd (- (c*x - ?e)))"
    by (simp only: dvd_minus_iff)
  also have "… = (j dvd (c* (- x)) + ?e)"
    apply (simp only: minus_mult_right[symmetric] minus_mult_left[symmetric] diff_def zadd_ac zminus_zadd_distrib)
    by (simp add: algebra_simps)
  also have "… = Ifm bbs ((- x)#bs) (Dvd j (CN 0 c e))"
    using numbound0_I[OF nb, where bs="bs" and b="x" and b'="- x"]
    by simp
  finally show ?case by simp
qed (auto simp add: numbound0_I[where bs="bs" and b="x" and b'="- x"] gr0_conv_Suc)

lemma mirror_l: "iszlfm p ∧ dβ p 1 
  ==> iszlfm (mirror p) ∧ dβ (mirror p) 1"
by (induct p rule: mirror.induct, auto)

lemma mirror_δ: "iszlfm p ==> δ (mirror p) = δ p"
by (induct p rule: mirror.induct,auto)

lemma β_numbound0: assumes lp: "iszlfm p"
  shows "∀ b∈ set (β p). numbound0 b"
  using lp by (induct p rule: β.induct,auto)

lemma dβ_mono: 
  assumes linp: "iszlfm p"
  and dr: "dβ p l"
  and d: "l dvd l'"
  shows "dβ p l'"
using dr linp dvd_trans[of _ "l" "l'", simplified d]
by (induct p rule: iszlfm.induct) simp_all

lemma α_l: assumes lp: "iszlfm p"
  shows "∀ b∈ set (α p). numbound0 b"
using lp
by(induct p rule: α.induct, auto)

lemma ζ: 
  assumes linp: "iszlfm p"
  shows "ζ p > 0 ∧ dβ p (ζ p)"
using linp
proof(induct p rule: iszlfm.induct)
  case (1 p q)
  from prems have dl1: "ζ p dvd zlcm (ζ p) (ζ q)" by simp
  from prems have dl2: "ζ q dvd zlcm (ζ p) (ζ q)"  by simp
  from prems dβ_mono[where p = "p" and l="ζ p" and l'="zlcm (ζ p) (ζ q)"] 
    dβ_mono[where p = "q" and l="ζ q" and l'="zlcm (ζ p) (ζ q)"] 
    dl1 dl2 show ?case by (auto simp add: zlcm_pos)
next
  case (2 p q)
  from prems have dl1: "ζ p dvd zlcm (ζ p) (ζ q)" by simp
  from prems have dl2: "ζ q dvd zlcm (ζ p) (ζ q)" by simp
  from prems dβ_mono[where p = "p" and l="ζ p" and l'="zlcm (ζ p) (ζ q)"] 
    dβ_mono[where p = "q" and l="ζ q" and l'="zlcm (ζ p) (ζ q)"] 
    dl1 dl2 show ?case by (auto simp add: zlcm_pos)
qed (auto simp add: zlcm_pos)

lemma : assumes linp: "iszlfm p" and d: "dβ p l" and lp: "l > 0"
  shows "iszlfm (aβ p l) ∧ dβ (aβ p l) 1 ∧ (Ifm bbs (l*x #bs) (aβ p l) = Ifm bbs (x#bs) p)"
using linp d
proof (induct p rule: iszlfm.induct)
  case (5 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(l*x + (l div c) * Inum (x # bs) e < 0) =
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e < 0)"
      by simp
    also have "… = ((l div c) * (c*x + Inum (x # bs) e) < (l div c) * 0)" by (simp add: algebra_simps)
    also have "… = (c*x + Inum (x # bs) e < 0)"
    using mult_less_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp
  finally show ?case using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"] be  by simp
next
  case (6 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(l*x + (l div c) * Inum (x# bs) e ≤ 0) =
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e ≤ 0)"
      by simp
    also have "… = ((l div c) * (c * x + Inum (x # bs) e) ≤ ((l div c)) * 0)" by (simp add: algebra_simps)
    also have "… = (c*x + Inum (x # bs) e ≤ 0)"
    using mult_le_0_iff [where a="(l div c)" and b="c*x + Inum (x # bs) e"] ldcp by simp
  finally show ?case using numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"]  be by simp
next
  case (7 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(l*x + (l div c)* Inum (x # bs) e > 0) =
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e > 0)"
      by simp
    also have "… = ((l div c) * (c * x + Inum (x # bs) e) > ((l div c)) * 0)" by (simp add: algebra_simps)
    also have "… = (c * x + Inum (x # bs) e > 0)"
    using zero_less_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"]  be  by simp
next
  case (8 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(l*x + (l div c)* Inum (x # bs) e ≥ 0) =
          ((c*(l div c))*x + (l div c)* Inum (x # bs) e ≥ 0)"
      by simp
    also have "… = ((l div c)*(c*x + Inum (x # bs) e) ≥ ((l div c)) * 0)" 
      by (simp add: algebra_simps)
    also have "… = (c*x + Inum (x # bs) e ≥ 0)" using ldcp 
      zero_le_mult_iff [where a="l div c" and b="c*x + Inum (x # bs) e"] by simp
  finally show ?case using be numbound0_I[OF be,where b="l*x" and b'="x" and bs="bs"]  
    by simp
next
  case (3 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(l * x + (l div c) * Inum (x # bs) e = 0) =
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e = 0)"
      by simp
    also have "… = ((l div c) * (c * x + Inum (x # bs) e) = ((l div c)) * 0)" by (simp add: algebra_simps)
    also have "… = (c * x + Inum (x # bs) e = 0)"
    using mult_eq_0_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"]  be  by simp
next
  case (4 c e) hence cp: "c>0" and be: "numbound0 e" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(l * x + (l div c) * Inum (x # bs) e ≠ 0) =
          ((c * (l div c)) * x + (l div c) * Inum (x # bs) e ≠ 0)"
      by simp
    also have "… = ((l div c) * (c * x + Inum (x # bs) e) ≠ ((l div c)) * 0)" by (simp add: algebra_simps)
    also have "… = (c * x + Inum (x # bs) e ≠ 0)"
    using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e"] ldcp by simp
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"]  be  by simp
next
  case (9 j c e) hence cp: "c>0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(∃ (k::int). l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) = (∃ (k::int). (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)"  by simp
    also have "… = (∃ (k::int). (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c)*0)" by (simp add: algebra_simps)
    also fix k have "… = (∃ (k::int). c * x + Inum (x # bs) e - j * k = 0)"
    using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k"] ldcp by simp
  also have "… = (∃ (k::int). c * x + Inum (x # bs) e = j * k)" by simp
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be  mult_strict_mono[OF ldcp jp ldcp ] by (simp add: dvd_def)
next
  case (10 j c e) hence cp: "c>0" and be: "numbound0 e" and jp: "j > 0" and d': "c dvd l" by simp+
    from lp cp have clel: "c≤l" by (simp add: zdvd_imp_le [OF d' lp])
    from cp have cnz: "c ≠ 0" by simp
    have "c div c≤ l div c"
      by (simp add: zdiv_mono1[OF clel cp])
    then have ldcp:"0 < l div c" 
      by (simp add: zdiv_self[OF cnz])
    have "c * (l div c) = c* (l div c) + l mod c" using d' dvd_eq_mod_eq_0[of "c" "l"] by simp
    hence cl:"c * (l div c) =l" using zmod_zdiv_equality[where a="l" and b="c", symmetric] 
      by simp
    hence "(∃ (k::int). l * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k) = (∃ (k::int). (c * (l div c)) * x + (l div c) * Inum (x # bs) e = ((l div c) * j) * k)"  by simp
    also have "… = (∃ (k::int). (l div c) * (c * x + Inum (x # bs) e - j * k) = (l div c)*0)" by (simp add: algebra_simps)
    also fix k have "… = (∃ (k::int). c * x + Inum (x # bs) e - j * k = 0)"
    using zero_le_mult_iff [where a="(l div c)" and b="c * x + Inum (x # bs) e - j * k"] ldcp by simp
  also have "… = (∃ (k::int). c * x + Inum (x # bs) e = j * k)" by simp
  finally show ?case using numbound0_I[OF be,where b="(l * x)" and b'="x" and bs="bs"] be  mult_strict_mono[OF ldcp jp ldcp ] by (simp add: dvd_def)
qed (auto simp add: gr0_conv_Suc numbound0_I[where bs="bs" and b="(l * x)" and b'="x"])

lemma aβ_ex: assumes linp: "iszlfm p" and d: "dβ p l" and lp: "l>0"
  shows "(∃ x. l dvd x ∧ Ifm bbs (x #bs) (aβ p l)) = (∃ (x::int). Ifm bbs (x#bs) p)"
  (is "(∃ x. l dvd x ∧ ?P x) = (∃ x. ?P' x)")
proof-
  have "(∃ x. l dvd x ∧ ?P x) = (∃ (x::int). ?P (l*x))"
    using unity_coeff_ex[where l="l" and P="?P", simplified] by simp
  also have "… = (∃ (x::int). ?P' x)" using [OF linp d lp] by simp
  finally show ?thesis  . 
qed

lemma β:
  assumes lp: "iszlfm p"
  and u: "dβ p 1"
  and d: "dδ p d"
  and dp: "d > 0"
  and nob: "¬(∃(j::int) ∈ {1 .. d}. ∃ b∈ (Inum (a#bs)) ` set(β p). x = b + j)"
  and p: "Ifm bbs (x#bs) p" (is "?P x")
  shows "?P (x - d)"
using lp u d dp nob p
proof(induct p rule: iszlfm.induct)
  case (5 c e) hence c1: "c=1" and  bn:"numbound0 e" by simp+
    with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] prems
    show ?case by simp
next
  case (6 c e)  hence c1: "c=1" and  bn:"numbound0 e" by simp+
    with dp p c1 numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] prems
    show ?case by simp
next
  case (7 c e) hence p: "Ifm bbs (x #bs) (Gt (CN 0 c e))" and c1: "c=1" and bn:"numbound0 e" by simp+
    let ?e = "Inum (x # bs) e"
    {assume "(x-d) +?e > 0" hence ?case using c1 
      numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] by simp}
    moreover
    {assume H: "¬ (x-d) + ?e > 0" 
      let ?v="Neg e"
      have vb: "?v ∈ set (β (Gt (CN 0 c e)))" by simp
      from prems(11)[simplified simp_thms Inum.simps β.simps set.simps bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]] 
      have nob: "¬ (∃ j∈ {1 ..d}. x =  - ?e + j)" by auto 
      from H p have "x + ?e > 0 ∧ x + ?e ≤ d" by (simp add: c1)
      hence "x + ?e ≥ 1 ∧ x + ?e ≤ d"  by simp
      hence "∃ (j::int) ∈ {1 .. d}. j = x + ?e" by simp
      hence "∃ (j::int) ∈ {1 .. d}. x = (- ?e + j)" 
        by (simp add: algebra_simps)
      with nob have ?case by auto}
    ultimately show ?case by blast
next
  case (8 c e) hence p: "Ifm bbs (x #bs) (Ge (CN 0 c e))" and c1: "c=1" and bn:"numbound0 e" 
    by simp+
    let ?e = "Inum (x # bs) e"
    {assume "(x-d) +?e ≥ 0" hence ?case using  c1 
      numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"]
        by simp}
    moreover
    {assume H: "¬ (x-d) + ?e ≥ 0" 
      let ?v="Sub (C -1) e"
      have vb: "?v ∈ set (β (Ge (CN 0 c e)))" by simp
      from prems(11)[simplified simp_thms Inum.simps β.simps set.simps bex_simps numbound0_I[OF bn,where b="a" and b'="x" and bs="bs"]] 
      have nob: "¬ (∃ j∈ {1 ..d}. x =  - ?e - 1 + j)" by auto 
      from H p have "x + ?e ≥ 0 ∧ x + ?e < d" by (simp add: c1)
      hence "x + ?e +1 ≥ 1 ∧ x + ?e + 1 ≤ d"  by simp
      hence "∃ (j::int) ∈ {1 .. d}. j = x + ?e + 1" by simp
      hence "∃ (j::int) ∈ {1 .. d}. x= - ?e - 1 + j" by (simp add: algebra_simps)
      with nob have ?case by simp }
    ultimately show ?case by blast
next
  case (3 c e) hence p: "Ifm bbs (x #bs) (Eq (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp+
    let ?e = "Inum (x # bs) e"
    let ?v="(Sub (C -1) e)"
    have vb: "?v ∈ set (β (Eq (CN 0 c e)))" by simp
    from p have "x= - ?e" by (simp add: c1) with prems(11) show ?case using dp
      by simp (erule ballE[where x="1"],
        simp_all add:algebra_simps numbound0_I[OF bn,where b="x"and b'="a"and bs="bs"])
next
  case (4 c e)hence p: "Ifm bbs (x #bs) (NEq (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp+
    let ?e = "Inum (x # bs) e"
    let ?v="Neg e"
    have vb: "?v ∈ set (β (NEq (CN 0 c e)))" by simp
    {assume "x - d + Inum (((x -d)) # bs) e ≠ 0" 
      hence ?case by (simp add: c1)}
    moreover
    {assume H: "x - d + Inum (((x -d)) # bs) e = 0"
      hence "x = - Inum (((x -d)) # bs) e + d" by simp
      hence "x = - Inum (a # bs) e + d"
        by (simp add: numbound0_I[OF bn,where b="x - d"and b'="a"and bs="bs"])
       with prems(11) have ?case using dp by simp}
  ultimately show ?case by blast
next 
  case (9 j c e) hence p: "Ifm bbs (x #bs) (Dvd j (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp+
    let ?e = "Inum (x # bs) e"
    from prems have id: "j dvd d" by simp
    from c1 have "?p x = (j dvd (x+ ?e))" by simp
    also have "… = (j dvd x - d + ?e)" 
      using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] by simp
    finally show ?case 
      using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p by simp
next
  case (10 j c e) hence p: "Ifm bbs (x #bs) (NDvd j (CN 0 c e))" (is "?p x") and c1: "c=1" and bn:"numbound0 e" by simp+
    let ?e = "Inum (x # bs) e"
    from prems have id: "j dvd d" by simp
    from c1 have "?p x = (¬ j dvd (x+ ?e))" by simp
    also have "… = (¬ j dvd x - d + ?e)" 
      using zdvd_period[OF id, where x="x" and c="-1" and t="?e"] by simp
    finally show ?case using numbound0_I[OF bn,where b="(x-d)" and b'="x" and bs="bs"] c1 p by simp
qed (auto simp add: numbound0_I[where bs="bs" and b="(x - d)" and b'="x"] gr0_conv_Suc)

lemma β':   
  assumes lp: "iszlfm p"
  and u: "dβ p 1"
  and d: "dδ p d"
  and dp: "d > 0"
  shows "∀ x. ¬(∃(j::int) ∈ {1 .. d}. ∃ b∈ set(β p). Ifm bbs ((Inum (a#bs) b + j) #bs) p) --> Ifm bbs (x#bs) p --> Ifm bbs ((x - d)#bs) p" (is "∀ x. ?b --> ?P x --> ?P (x - d)")
proof(clarify)
  fix x 
  assume nb:"?b" and px: "?P x" 
  hence nb2: "¬(∃(j::int) ∈ {1 .. d}. ∃ b∈ (Inum (a#bs)) ` set(β p). x = b + j)"
    by auto
  from  β[OF lp u d dp nb2 px] show "?P (x -d )" .
qed
lemma cpmi_eq: "0 < D ==> (EX z::int. ALL x. x < z --> (P x = P1 x))
==> ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D) 
==> (ALL (x::int). ALL (k::int). ((P1 x)= (P1 (x-k*D))))
==> (EX (x::int). P(x)) = ((EX (j::int) : {1..D} . (P1(j))) | (EX (j::int) : {1..D}. EX (b::int) : B. P (b+j)))"
apply(rule iffI)
prefer 2
apply(drule minusinfinity)
apply assumption+
apply(fastsimp)
apply clarsimp
apply(subgoal_tac "!!k. 0<=k ==> !x. P x --> P (x - k*D)")
apply(frule_tac x = x and z=z in decr_lemma)
apply(subgoal_tac "P1(x - (¦x - z¦ + 1) * D)")
prefer 2
apply(subgoal_tac "0 <= (¦x - z¦ + 1)")
prefer 2 apply arith
 apply fastsimp
apply(drule (1)  periodic_finite_ex)
apply blast
apply(blast dest:decr_mult_lemma)
done

theorem cp_thm:
  assumes lp: "iszlfm p"
  and u: "dβ p 1"
  and d: "dδ p d"
  and dp: "d > 0"
  shows "(∃ (x::int). Ifm bbs (x #bs) p) = (∃ j∈ {1.. d}. Ifm bbs (j #bs) (minusinf p) ∨ (∃ b ∈ set (β p). Ifm bbs ((Inum (i#bs) b + j) #bs) p))"
  (is "(∃ (x::int). ?P (x)) = (∃ j∈ ?D. ?M j ∨ (∃ b∈ ?B. ?P (?I b + j)))")
proof-
  from minusinf_inf[OF lp u] 
  have th: "∃(z::int). ∀x<z. ?P (x) = ?M x" by blast
  let ?B' = "{?I b | b. b∈ ?B}"
  have BB': "(∃j∈?D. ∃b∈ ?B. ?P (?I b +j)) = (∃ j ∈ ?D. ∃ b ∈ ?B'. ?P (b + j))" by auto
  hence th2: "∀ x. ¬ (∃ j ∈ ?D. ∃ b ∈ ?B'. ?P ((b + j))) --> ?P (x) --> ?P ((x - d))" 
    using β'[OF lp u d dp, where a="i" and bbs = "bbs"] by blast
  from minusinf_repeats[OF d lp]
  have th3: "∀ x k. ?M x = ?M (x-k*d)" by simp
  from cpmi_eq[OF dp th th2 th3] BB' show ?thesis by blast
qed

    (* Implement the right hand sides of Cooper's theorem and Ferrante and Rackoff. *)
lemma mirror_ex: 
  assumes lp: "iszlfm p"
  shows "(∃ x. Ifm bbs (x#bs) (mirror p)) = (∃ x. Ifm bbs (x#bs) p)"
  (is "(∃ x. ?I x ?mp) = (∃ x. ?I x p)")
proof(auto)
  fix x assume "?I x ?mp" hence "?I (- x) p" using mirror[OF lp] by blast
  thus "∃ x. ?I x p" by blast
next
  fix x assume "?I x p" hence "?I (- x) ?mp" 
    using mirror[OF lp, where x="- x", symmetric] by auto
  thus "∃ x. ?I x ?mp" by blast
qed


lemma cp_thm': 
  assumes lp: "iszlfm p"
  and up: "dβ p 1" and dd: "dδ p d" and dp: "d > 0"
  shows "(∃ x. Ifm bbs (x#bs) p) = ((∃ j∈ {1 .. d}. Ifm bbs (j#bs) (minusinf p)) ∨ (∃ j∈ {1.. d}. ∃ b∈ (Inum (i#bs)) ` set (β p). Ifm bbs ((b+j)#bs) p))"
  using cp_thm[OF lp up dd dp,where i="i"] by auto

constdefs unit:: "fm => fm × num list × int"
  "unit p ≡ (let p' = zlfm p ; l = ζ p' ; q = And (Dvd l (CN 0 1 (C 0))) (aβ p' l); d = δ q;
             B = remdups (map simpnum (β q)) ; a = remdups (map simpnum (α q))
             in if length B ≤ length a then (q,B,d) else (mirror q, a,d))"

lemma unit: assumes qf: "qfree p"
  shows "!! q B d. unit p = (q,B,d) ==> ((∃ x. Ifm bbs (x#bs) p) = (∃ x. Ifm bbs (x#bs) q)) ∧ (Inum (i#bs)) ` set B = (Inum (i#bs)) ` set (β q) ∧ dβ q 1 ∧ dδ q d ∧ d >0 ∧ iszlfm q ∧ (∀ b∈ set B. numbound0 b)"
proof-
  fix q B d 
  assume qBd: "unit p = (q,B,d)"
  let ?thes = "((∃ x. Ifm bbs (x#bs) p) = (∃ x. Ifm bbs (x#bs) q)) ∧
    Inum (i#bs) ` set B = Inum (i#bs) ` set (β q) ∧
    dβ q 1 ∧ dδ q d ∧ 0 < d ∧ iszlfm q ∧ (∀ b∈ set B. numbound0 b)"
  let ?I = "λ x p. Ifm bbs (x#bs) p"
  let ?p' = "zlfm p"
  let ?l = "ζ ?p'"
  let ?q = "And (Dvd ?l (CN 0 1 (C 0))) (aβ ?p' ?l)"
  let ?d = "δ ?q"
  let ?B = "set (β ?q)"
  let ?B'= "remdups (map simpnum (β ?q))"
  let ?A = "set (α ?q)"
  let ?A'= "remdups (map simpnum (α ?q))"
  from conjunct1[OF zlfm_I[OF qf, where bs="bs"]] 
  have pp': "∀ i. ?I i ?p' = ?I i p" by auto
  from conjunct2[OF zlfm_I[OF qf, where bs="bs" and i="i"]]
  have lp': "iszlfm ?p'" . 
  from lp' ζ[where p="?p'"] have lp: "?l >0" and dl: "dβ ?p' ?l" by auto
  from aβ_ex[where p="?p'" and l="?l" and bs="bs", OF lp' dl lp] pp'
  have pq_ex:"(∃ (x::int). ?I x p) = (∃ x. ?I x ?q)" by simp 
  from lp' lp [OF lp' dl lp] have lq:"iszlfm ?q" and uq: "dβ ?q 1"  by auto
  from δ[OF lq] have dp:"?d >0" and dd: "dδ ?q ?d" by blast+
  let ?N = "λ t. Inum (i#bs) t"
  have "?N ` set ?B' = ((?N o simpnum) ` ?B)" by auto 
  also have "… = ?N ` ?B" using simpnum_ci[where bs="i#bs"] by auto
  finally have BB': "?N ` set ?B' = ?N ` ?B" .
  have "?N ` set ?A' = ((?N o simpnum) ` ?A)" by auto 
  also have "… = ?N ` ?A" using simpnum_ci[where bs="i#bs"] by auto
  finally have AA': "?N ` set ?A' = ?N ` ?A" .
  from β_numbound0[OF lq] have B_nb:"∀ b∈ set ?B'. numbound0 b"
    by (simp add: simpnum_numbound0)
  from α_l[OF lq] have A_nb: "∀ b∈ set ?A'. numbound0 b"
    by (simp add: simpnum_numbound0)
    {assume "length ?B' ≤ length ?A'"
    hence q:"q=?q" and "B = ?B'" and d:"d = ?d"
      using qBd by (auto simp add: Let_def unit_def)
    with BB' B_nb have b: "?N ` (set B) = ?N ` set (β q)" 
      and bn: "∀b∈ set B. numbound0 b" by simp+ 
  with pq_ex dp uq dd lq q d have ?thes by simp}
  moreover 
  {assume "¬ (length ?B' ≤ length ?A')"
    hence q:"q=mirror ?q" and "B = ?A'" and d:"d = ?d"
      using qBd by (auto simp add: Let_def unit_def)
    with AA' mirrorαβ[OF lq] A_nb have b:"?N ` (set B) = ?N ` set (β q)" 
      and bn: "∀b∈ set B. numbound0 b" by simp+
    from mirror_ex[OF lq] pq_ex q 
    have pqm_eq:"(∃ (x::int). ?I x p) = (∃ (x::int). ?I x q)" by simp
    from lq uq q mirror_l[where p="?q"]
    have lq': "iszlfm q" and uq: "dβ q 1" by auto
    from δ[OF lq'] mirror_δ[OF lq] q d have dq:"dδ q d " by auto
    from pqm_eq b bn uq lq' dp dq q dp d have ?thes by simp
  }
  ultimately show ?thes by blast
qed
    (* Cooper's Algorithm *)

constdefs cooper :: "fm => fm"
  "cooper p ≡ 
  (let (q,B,d) = unit p; js = iupt 1 d;
       mq = simpfm (minusinf q);
       md = evaldjf (λ j. simpfm (subst0 (C j) mq)) js
   in if md = T then T else
    (let qd = evaldjf (λ (b,j). simpfm (subst0 (Add b (C j)) q)) 
                               [(b,j). b\<leftarrow>B,j\<leftarrow>js]
     in decr (disj md qd)))"
lemma cooper: assumes qf: "qfree p"
  shows "((∃ x. Ifm bbs (x#bs) p) = (Ifm bbs bs (cooper p))) ∧ qfree (cooper p)" 
  (is "(?lhs = ?rhs) ∧ _")
proof-
  let ?I = "λ x p. Ifm bbs (x#bs) p"
  let ?q = "fst (unit p)"
  let ?B = "fst (snd(unit p))"
  let ?d = "snd (snd (unit p))"
  let ?js = "iupt 1 ?d"
  let ?mq = "minusinf ?q"
  let ?smq = "simpfm ?mq"
  let ?md = "evaldjf (λ j. simpfm (subst0 (C j) ?smq)) ?js"
  fix i
  let ?N = "λ t. Inum (i#bs) t"
  let ?Bjs = "[(b,j). b\<leftarrow>?B,j\<leftarrow>?js]"
  let ?qd = "evaldjf (λ (b,j). simpfm (subst0 (Add b (C j)) ?q)) ?Bjs"
  have qbf:"unit p = (?q,?B,?d)" by simp
  from unit[OF qf qbf] have pq_ex: "(∃(x::int). ?I x p) = (∃ (x::int). ?I x ?q)" and 
    B:"?N ` set ?B = ?N ` set (β ?q)" and 
    uq:"dβ ?q 1" and dd: "dδ ?q ?d" and dp: "?d > 0" and 
    lq: "iszlfm ?q" and 
    Bn: "∀ b∈ set ?B. numbound0 b" by auto
  from zlin_qfree[OF lq] have qfq: "qfree ?q" .
  from simpfm_qf[OF minusinf_qfree[OF qfq]] have qfmq: "qfree ?smq".
  have jsnb: "∀ j ∈ set ?js. numbound0 (C j)" by simp
  hence "∀ j∈ set ?js. bound0 (subst0 (C j) ?smq)" 
    by (auto simp only: subst0_bound0[OF qfmq])
  hence th: "∀ j∈ set ?js. bound0 (simpfm (subst0 (C j) ?smq))"
    by (auto simp add: simpfm_bound0)
  from evaldjf_bound0[OF th] have mdb: "bound0 ?md" by simp 
  from Bn jsnb have "∀ (b,j) ∈ set ?Bjs. numbound0 (Add b (C j))"
    by simp
  hence "∀ (b,j) ∈ set ?Bjs. bound0 (subst0 (Add b (C j)) ?q)"
    using subst0_bound0[OF qfq] by blast
  hence "∀ (b,j) ∈ set ?Bjs. bound0 (simpfm (subst0 (Add b (C j)) ?q))"
    using simpfm_bound0  by blast
  hence th': "∀ x ∈ set ?Bjs. bound0 ((λ (b,j). simpfm (subst0 (Add b (C j)) ?q)) x)"
    by auto 
  from evaldjf_bound0 [OF th'] have qdb: "bound0 ?qd" by simp
  from mdb qdb 
  have mdqdb: "bound0 (disj ?md ?qd)" by (simp only: disj_def, cases "?md=T ∨ ?qd=T", simp_all)
  from trans [OF pq_ex cp_thm'[OF lq uq dd dp,where i="i"]] B
  have "?lhs = (∃ j∈ {1.. ?d}. ?I j ?mq ∨ (∃ b∈ ?N ` set ?B. Ifm bbs ((b+ j)#bs) ?q))" by auto
  also have "… = (∃ j∈ {1.. ?d}. ?I j ?mq ∨ (∃ b∈ set ?B. Ifm bbs ((?N b+ j)#bs) ?q))" by simp
  also have "… = ((∃ j∈ {1.. ?d}. ?I j ?mq ) ∨ (∃ j∈ {1.. ?d}. ∃ b∈ set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))" by (simp only: Inum.simps) blast
  also have "… = ((∃ j∈ {1.. ?d}. ?I j ?smq ) ∨ (∃ j∈ {1.. ?d}. ∃ b∈ set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))" by (simp add: simpfm) 
  also have "… = ((∃ j∈ set ?js. (λ j. ?I i (simpfm (subst0 (C j) ?smq))) j) ∨ (∃ j∈ set ?js. ∃ b∈ set ?B. Ifm bbs ((?N (Add b (C j)))#bs) ?q))"
    by (simp only: simpfm subst0_I[OF qfmq] iupt_set) auto
  also have "… = (?I i (evaldjf (λ j. simpfm (subst0 (C j) ?smq)) ?js) ∨ (∃ j∈ set ?js. ∃ b∈ set ?B. ?I i (subst0 (Add b (C j)) ?q)))" 
   by (simp only: evaldjf_ex subst0_I[OF qfq])
 also have "…= (?I i ?md ∨ (∃ (b,j) ∈ set ?Bjs. (λ (b,j). ?I i (simpfm (subst0 (Add b (C j)) ?q))) (b,j)))"
   by (simp only: simpfm set_concat set_map concat_map_singleton UN_simps) blast
 also have "… = (?I i ?md ∨ (?I i (evaldjf (λ (b,j). simpfm (subst0 (Add b (C j)) ?q)) ?Bjs)))"
   by (simp only: evaldjf_ex[where bs="i#bs" and f="λ (b,j). simpfm (subst0 (Add b (C j)) ?q)" and ps="?Bjs"]) (auto simp add: split_def)
 finally have mdqd: "?lhs = (?I i ?md ∨ ?I i ?qd)" by simp  
  also have "… = (?I i (disj ?md ?qd))" by (simp add: disj)
  also have "… = (Ifm bbs bs (decr (disj ?md ?qd)))" by (simp only: decr [OF mdqdb]) 
  finally have mdqd2: "?lhs = (Ifm bbs bs (decr (disj ?md ?qd)))" . 
  {assume mdT: "?md = T"
    hence cT:"cooper p = T" 
      by (simp only: cooper_def unit_def split_def Let_def if_True) simp
    from mdT have lhs:"?lhs" using mdqd by simp 
    from mdT have "?rhs" by (simp add: cooper_def unit_def split_def)
    with lhs cT have ?thesis by simp }
  moreover
  {assume mdT: "?md ≠ T" hence "cooper p = decr (disj ?md ?qd)" 
      by (simp only: cooper_def unit_def split_def Let_def if_False) 
    with mdqd2 decr_qf[OF mdqdb] have ?thesis by simp }
  ultimately show ?thesis by blast
qed

definition pa :: "fm => fm" where
  "pa p = qelim (prep p) cooper"

theorem mirqe: "(Ifm bbs bs (pa p) = Ifm bbs bs p) ∧ qfree (pa p)"
  using qelim_ci cooper prep by (auto simp add: pa_def)

definition
  cooper_test :: "unit => fm"
where
  "cooper_test u = pa (E (A (Imp (Ge (Sub (Bound 0) (Bound 1)))
    (E (E (Eq (Sub (Add (Mul 3 (Bound 1)) (Mul 5 (Bound 0)))
      (Bound 2))))))))"

ML {* @{code cooper_test} () *}

(*
code_reserved SML oo
export_code pa in SML module_name GeneratedCooper file "~~/src/HOL/Tools/Qelim/raw_generated_cooper.ML"
*)

oracle linzqe_oracle = {*
let

fun num_of_term vs (t as Free (xn, xT)) = (case AList.lookup (op =) vs t
     of NONE => error "Variable not found in the list!"
      | SOME n => @{code Bound} n)
  | num_of_term vs @{term "0::int"} = @{code C} 0
  | num_of_term vs @{term "1::int"} = @{code C} 1
  | num_of_term vs (@{term "number_of :: int => int"} $ t) = @{code C} (HOLogic.dest_numeral t)
  | num_of_term vs (Bound i) = @{code Bound} i
  | num_of_term vs (@{term "uminus :: int => int"} $ t') = @{code Neg} (num_of_term vs t')
  | num_of_term vs (@{term "op + :: int => int => int"} $ t1 $ t2) =
      @{code Add} (num_of_term vs t1, num_of_term vs t2)
  | num_of_term vs (@{term "op - :: int => int => int"} $ t1 $ t2) =
      @{code Sub} (num_of_term vs t1, num_of_term vs t2)
  | num_of_term vs (@{term "op * :: int => int => int"} $ t1 $ t2) =
      (case try HOLogic.dest_number t1
       of SOME (_, i) => @{code Mul} (i, num_of_term vs t2)
        | NONE => (case try HOLogic.dest_number t2
                of SOME (_, i) => @{code Mul} (i, num_of_term vs t1)
                 | NONE => error "num_of_term: unsupported multiplication"))
  | num_of_term vs t = error ("num_of_term: unknown term " ^ Syntax.string_of_term @{context} t);

fun fm_of_term ps vs @{term True} = @{code T}
  | fm_of_term ps vs @{term False} = @{code F}
  | fm_of_term ps vs (@{term "op < :: int => int => bool"} $ t1 $ t2) =
      @{code Lt} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
  | fm_of_term ps vs (@{term "op ≤ :: int => int => bool"} $ t1 $ t2) =
      @{code Le} (@{code Sub} (num_of_term vs t1, num_of_term vs t2))
  | fm_of_term ps vs (@{term "op = :: int => int => bool"} $ t1 $ t2) =
      @{code Eq} (@{code Sub} (num_of_term vs t1, num_of_term vs t2)) 
  | fm_of_term ps vs (@{term "op dvd :: int => int => bool"} $ t1 $ t2) =
      (case try HOLogic.dest_number t1
       of SOME (_, i) => @{code Dvd} (i, num_of_term vs t2)
        | NONE => error "num_of_term: unsupported dvd")
  | fm_of_term ps vs (@{term "op = :: bool => bool => bool"} $ t1 $ t2) =
      @{code Iff} (fm_of_term ps vs t1, fm_of_term ps vs t2)
  | fm_of_term ps vs (@{term "op &"} $ t1 $ t2) =
      @{code And} (fm_of_term ps vs t1, fm_of_term ps vs t2)
  | fm_of_term ps vs (@{term "op |"} $ t1 $ t2) =
      @{code Or} (fm_of_term ps vs t1, fm_of_term ps vs t2)
  | fm_of_term ps vs (@{term "op -->"} $ t1 $ t2) =
      @{code Imp} (fm_of_term ps vs t1, fm_of_term ps vs t2)
  | fm_of_term ps vs (@{term "Not"} $ t') =
      @{code NOT} (fm_of_term ps vs t')
  | fm_of_term ps vs (Const ("Ex", _) $ Abs (xn, xT, p)) =
      let
        val (xn', p') = variant_abs (xn, xT, p);
        val vs' = (Free (xn', xT), 0) :: map (fn (v, n) => (v, n + 1)) vs;
      in @{code E} (fm_of_term ps vs' p) end
  | fm_of_term ps vs (Const ("All", _) $ Abs (xn, xT, p)) =
      let
        val (xn', p') = variant_abs (xn, xT, p);
        val vs' = (Free (xn', xT), 0) :: map (fn (v, n) => (v, n + 1)) vs;
      in @{code A} (fm_of_term ps vs' p) end
  | fm_of_term ps vs t = error ("fm_of_term : unknown term " ^ Syntax.string_of_term @{context} t);

fun term_of_num vs (@{code C} i) = HOLogic.mk_number HOLogic.intT i
  | term_of_num vs (@{code Bound} n) = fst (the (find_first (fn (_, m) => n = m) vs))
  | term_of_num vs (@{code Neg} t') = @{term "uminus :: int => int"} $ term_of_num vs t'
  | term_of_num vs (@{code Add} (t1, t2)) = @{term "op + :: int => int => int"} $
      term_of_num vs t1 $ term_of_num vs t2
  | term_of_num vs (@{code Sub} (t1, t2)) = @{term "op - :: int => int => int"} $
      term_of_num vs t1 $ term_of_num vs t2
  | term_of_num vs (@{code Mul} (i, t2)) = @{term "op * :: int => int => int"} $
      term_of_num vs (@{code C} i) $ term_of_num vs t2
  | term_of_num vs (@{code CN} (n, i, t)) = term_of_num vs (@{code Add} (@{code Mul} (i, @{code Bound} n), t));

fun term_of_fm ps vs @{code T} = HOLogic.true_const 
  | term_of_fm ps vs @{code F} = HOLogic.false_const
  | term_of_fm ps vs (@{code Lt} t) =
      @{term "op < :: int => int => bool"} $ term_of_num vs t $ @{term "0::int"}
  | term_of_fm ps vs (@{code Le} t) =
      @{term "op ≤ :: int => int => bool"} $ term_of_num vs t $ @{term "0::int"}
  | term_of_fm ps vs (@{code Gt} t) =
      @{term "op < :: int => int => bool"} $ @{term "0::int"} $ term_of_num vs t
  | term_of_fm ps vs (@{code Ge} t) =
      @{term "op ≤ :: int => int => bool"} $ @{term "0::int"} $ term_of_num vs t
  | term_of_fm ps vs (@{code Eq} t) =
      @{term "op = :: int => int => bool"} $ term_of_num vs t $ @{term "0::int"}
  | term_of_fm ps vs (@{code NEq} t) =
      term_of_fm ps vs (@{code NOT} (@{code Eq} t))
  | term_of_fm ps vs (@{code Dvd} (i, t)) =
      @{term "op dvd :: int => int => bool"} $ term_of_num vs (@{code C} i) $ term_of_num vs t
  | term_of_fm ps vs (@{code NDvd} (i, t)) =
      term_of_fm ps vs (@{code NOT} (@{code Dvd} (i, t)))
  | term_of_fm ps vs (@{code NOT} t') =
      HOLogic.Not $ term_of_fm ps vs t'
  | term_of_fm ps vs (@{code And} (t1, t2)) =
      HOLogic.conj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
  | term_of_fm ps vs (@{code Or} (t1, t2)) =
      HOLogic.disj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
  | term_of_fm ps vs (@{code Imp} (t1, t2)) =
      HOLogic.imp $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
  | term_of_fm ps vs (@{code Iff} (t1, t2)) =
      @{term "op = :: bool => bool => bool"} $ term_of_fm ps vs t1 $ term_of_fm ps vs t2
  | term_of_fm ps vs (@{code Closed} n) = (fst o the) (find_first (fn (_, m) => m = n) ps)
  | term_of_fm ps vs (@{code NClosed} n) = term_of_fm ps vs (@{code NOT} (@{code Closed} n));

fun term_bools acc t =
  let
    val is_op = member (op =) [@{term "op &"}, @{term "op |"}, @{term "op -->"}, @{term "op = :: bool => _"},
      @{term "op = :: int => _"}, @{term "op < :: int => _"},
      @{term "op <= :: int => _"}, @{term "Not"}, @{term "All :: (int => _) => _"},
      @{term "Ex :: (int => _) => _"}, @{term "True"}, @{term "False"}]
    fun is_ty t = not (fastype_of t = HOLogic.boolT) 
  in case t
   of (l as f $ a) $ b => if is_ty t orelse is_op t then term_bools (term_bools acc l)b 
        else insert (op aconv) t acc
    | f $ a => if is_ty t orelse is_op t then term_bools (term_bools acc f) a  
        else insert (op aconv) t acc
    | Abs p => term_bools acc (snd (variant_abs p))
    | _ => if is_ty t orelse is_op t then acc else insert (op aconv) t acc
  end;

in fn ct =>
  let
    val thy = Thm.theory_of_cterm ct;
    val t = Thm.term_of ct;
    val fs = OldTerm.term_frees t;
    val bs = term_bools [] t;
    val vs = fs ~~ (0 upto (length fs - 1))
    val ps = bs ~~ (0 upto (length bs - 1))
    val t' = (term_of_fm ps vs o @{code pa} o fm_of_term ps vs) t;
  in (Thm.cterm_of thy o HOLogic.mk_Trueprop o HOLogic.mk_eq) (t, t') end
end;
*}

use "cooper_tac.ML"
setup "Cooper_Tac.setup"

text {* Tests *}

lemma "∃ (j::int). ∀ x≥j. (∃ a b. x = 3*a+5*b)"
  by cooper

lemma "ALL (x::int) >=8. EX i j. 5*i + 3*j = x"
  by cooper

theorem "(∀(y::int). 3 dvd y) ==> ∀(x::int). b < x --> a ≤ x"
  by cooper

theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==>
  (∃(x::int).  2*x =  y) & (∃(k::int). 3*k = z)"
  by cooper

theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==>  3 dvd z ==>
  2 dvd (y::int) ==> (∃(x::int).  2*x =  y) & (∃(k::int). 3*k = z)"
  by cooper

theorem "∀(x::nat). ∃(y::nat). (0::nat) ≤ 5 --> y = 5 + x "
  by cooper

lemma "ALL (x::int) >=8. EX i j. 5*i + 3*j = x"
  by cooper 

lemma "ALL (y::int) (z::int) (n::int). 3 dvd z --> 2 dvd (y::int) --> (EX (x::int).  2*x =  y) & (EX (k::int). 3*k = z)"
  by cooper

lemma "ALL(x::int) y. x < y --> 2 * x + 1 < 2 * y"
  by cooper

lemma "ALL(x::int) y. 2 * x + 1 ~= 2 * y"
  by cooper

lemma "EX(x::int) y. 0 < x  & 0 <= y  & 3 * x - 5 * y = 1"
  by cooper

lemma "~ (EX(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)"
  by cooper

lemma "ALL(x::int). (2 dvd x) --> (EX(y::int). x = 2*y)"
  by cooper

lemma "ALL(x::int). (2 dvd x) = (EX(y::int). x = 2*y)"
  by cooper

lemma "ALL(x::int). ((2 dvd x) = (ALL(y::int). x ~= 2*y + 1))"
  by cooper

lemma "~ (ALL(x::int). ((2 dvd x) = (ALL(y::int). x ~= 2*y+1) | (EX(q::int) (u::int) i. 3*i + 2*q - u < 17) --> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))"
  by cooper

lemma "~ (ALL(i::int). 4 <= i --> (EX x y. 0 <= x & 0 <= y & 3 * x + 5 * y = i))" 
  by cooper

lemma "EX j. ALL (x::int) >= j. EX i j. 5*i + 3*j = x"
  by cooper

theorem "(∀(y::int). 3 dvd y) ==> ∀(x::int). b < x --> a ≤ x"
  by cooper

theorem "!! (y::int) (z::int) (n::int). 3 dvd z ==> 2 dvd (y::int) ==>
  (∃(x::int).  2*x =  y) & (∃(k::int). 3*k = z)"
  by cooper

theorem "!! (y::int) (z::int) n. Suc(n::nat) < 6 ==>  3 dvd z ==>
  2 dvd (y::int) ==> (∃(x::int).  2*x =  y) & (∃(k::int). 3*k = z)"
  by cooper

theorem "∀(x::nat). ∃(y::nat). (0::nat) ≤ 5 --> y = 5 + x "
  by cooper

theorem "∀(x::nat). ∃(y::nat). y = 5 + x | x div 6 + 1= 2"
  by cooper

theorem "∃(x::int). 0 < x"
  by cooper

theorem "∀(x::int) y. x < y --> 2 * x + 1 < 2 * y"
  by cooper
 
theorem "∀(x::int) y. 2 * x + 1 ≠ 2 * y"
  by cooper
 
theorem "∃(x::int) y. 0 < x  & 0 ≤ y  & 3 * x - 5 * y = 1"
  by cooper

theorem "~ (∃(x::int) (y::int) (z::int). 4*x + (-6::int)*y = 1)"
  by cooper

theorem "~ (∃(x::int). False)"
  by cooper

theorem "∀(x::int). (2 dvd x) --> (∃(y::int). x = 2*y)"
  by cooper 

theorem "∀(x::int). (2 dvd x) --> (∃(y::int). x = 2*y)"
  by cooper 

theorem "∀(x::int). (2 dvd x) = (∃(y::int). x = 2*y)"
  by cooper 

theorem "∀(x::int). ((2 dvd x) = (∀(y::int). x ≠ 2*y + 1))"
  by cooper 

theorem "~ (∀(x::int). 
            ((2 dvd x) = (∀(y::int). x ≠ 2*y+1) | 
             (∃(q::int) (u::int) i. 3*i + 2*q - u < 17)
             --> 0 < x | ((~ 3 dvd x) &(x + 8 = 0))))"
  by cooper
 
theorem "~ (∀(i::int). 4 ≤ i --> (∃x y. 0 ≤ x & 0 ≤ y & 3 * x + 5 * y = i))"
  by cooper

theorem "∀(i::int). 8 ≤ i --> (∃x y. 0 ≤ x & 0 ≤ y & 3 * x + 5 * y = i)"
  by cooper

theorem "∃(j::int). ∀i. j ≤ i --> (∃x y. 0 ≤ x & 0 ≤ y & 3 * x + 5 * y = i)"
  by cooper

theorem "~ (∀j (i::int). j ≤ i --> (∃x y. 0 ≤ x & 0 ≤ y & 3 * x + 5 * y = i))"
  by cooper

theorem "(∃m::nat. n = 2 * m) --> (n + 1) div 2 = n div 2"
  by cooper

end