
The Isabelle/HOL Algebra Library

Clemens Ballarin (Editor)

With contributions by Jesús Aransay, Clemens Ballarin, Stephan
Hohe, Florian Kammüller and Lawrence C Paulson

April 19, 2009

Contents

1 Objects 6
1.1 Structure with Carrier Set. 6
1.2 Structure with Carrier and Equivalence Relation eq 6

2 Orders and Lattices 13
2.1 Partial Orders . 13

2.1.1 The order relation . 13
2.1.2 Upper and lower bounds of a set 15
2.1.3 Least and greatest, as predicate 18

2.2 Lattices . 21
2.2.1 Supremum . 22
2.2.2 Infimum . 26

2.3 Total Orders . 31
2.4 Complete Lattices . 33
2.5 Orders and Lattices where eq is the Equality 35
2.6 Examples . 38

2.6.1 The Powerset of a Set is a Complete Lattice 38

3 Monoids and Groups 39
3.1 Definitions . 39
3.2 Groups . 43
3.3 Cancellation Laws and Basic Properties 45
3.4 Subgroups . 47
3.5 Direct Products . 48
3.6 Homomorphisms and Isomorphisms 50
3.7 Commutative Structures . 51
3.8 The Lattice of Subgroups of a Group 53
3.9 Product Operator for Commutative Monoids 55

3.9.1 Inductive Definition of a Relation for Products over Sets 55

1

2

3.9.2 Products over Finite Sets 61

4 Cosets and Quotient Groups 66
4.1 Basic Properties of Cosets . 66
4.2 Normal subgroups . 74
4.3 More Properties of Cosets . 75

4.3.1 Set of Inverses of an r_coset. 76
4.3.2 Theorems for <#> with #> or <#. 77
4.3.3 An Equivalence Relation 78
4.3.4 Two Distinct Right Cosets are Disjoint 79

4.4 Further lemmas for r_congruent 79
4.5 Order of a Group and Lagrange’s Theorem 81
4.6 Quotient Groups: Factorization of a Group 82
4.7 The First Isomorphism Theorem 84

5 Sylow’s Theorem 87
5.1 The Combinatorial Argument Underlying the First Sylow The-

orem . 87
5.2 Main Part of the Proof . 94
5.3 Discharging the Assumptions of sylow_central 95

5.3.1 Introduction and Destruct Rules for H 96
5.4 Equal Cardinalities of M and the Set of Cosets 98

5.4.1 The Opposite Injection 98
5.5 Sylow’s Theorem . 100

6 Bijections of a Set, Permutation and Automorphism Groups101
6.1 Bijections Form a Group . 101
6.2 Automorphisms Form a Group 102

7 Factorial Monoids 103
7.1 Monoids with Cancellation Law 103
7.2 Products of Units in Monoids 105
7.3 Divisibility and Association 107

7.3.1 Function definitions 107
7.3.2 Divisibility . 107
7.3.3 Association . 110
7.3.4 Division and associativity 113
7.3.5 Multiplication and associativity 114
7.3.6 Units . 115
7.3.7 Proper factors . 116

7.4 Irreducible Elements and Primes 120
7.4.1 Irreducible elements 120
7.4.2 Prime elements . 123

7.5 Factorization and Factorial Monoids 125

3

7.5.1 Function definitions 125
7.5.2 Comparing lists of elements 125
7.5.3 Properties of lists of elements 129
7.5.4 Factorization in irreducible elements 130
7.5.5 Essentially equal factorizations 134
7.5.6 Factorial monoids and wfactors 141

7.6 Factorizations as Multisets . 142
7.6.1 Comparing multisets 143
7.6.2 Interpreting multisets as factorizations 147
7.6.3 Multiplication on multisets 149
7.6.4 Divisibility on multisets 150

7.7 Irreducible Elements are Prime 152
7.8 Greatest Common Divisors and Lowest Common Multiples . 158

7.8.1 Definitions . 158
7.8.2 Connections to Lattice.thy 158
7.8.3 Existence of gcd and lcm 160

7.9 Conditions for Factoriality . 164
7.9.1 Gcd condition . 164
7.9.2 Divisor chain condition 172
7.9.3 Primeness condition 174
7.9.4 Application to factorial monoids 180

7.10 Factoriality Theorems . 185

8 The Algebraic Hierarchy of Rings 186
8.1 Abelian Groups . 186
8.2 Basic Properties . 186
8.3 Sums over Finite Sets . 189
8.4 Rings: Basic Definitions . 192
8.5 Rings . 192

8.5.1 Normaliser for Rings 194
8.5.2 Sums over Finite Sets 197

8.6 Integral Domains . 197
8.7 Fields . 198
8.8 Morphisms . 200
8.9 More Lifting from Groups to Abelian Groups 202

8.9.1 Definitions . 202
8.9.2 Cosets . 204
8.9.3 Subgroups . 205
8.9.4 Additive subgroups are normal 206
8.9.5 Congruence Relation 210
8.9.6 Factorization . 211
8.9.7 The First Isomorphism Theorem 212
8.9.8 Homomorphisms . 213
8.9.9 Cosets . 215

4

8.9.10 Addition of Subgroups 217

9 Ideals 217
9.1 Definitions . 217

9.1.1 General definition . 217
9.1.2 Ideals Generated by a Subset of carrier R 218
9.1.3 Principal Ideals . 218
9.1.4 Maximal Ideals . 219
9.1.5 Prime Ideals . 219

9.2 Special Ideals . 220
9.3 General Ideal Properies . 221
9.4 Intersection of Ideals . 221
9.5 Addition of Ideals . 223
9.6 Ideals generated by a subset of carrier R 224
9.7 Union of Ideals . 229
9.8 Properties of Principal Ideals 230
9.9 Prime Ideals . 231
9.10 Maximal Ideals . 233
9.11 Derived Theorems . 235

10 Homomorphisms of Non-Commutative Rings 238
10.1 The Kernel of a Ring Homomorphism 240
10.2 Cosets . 241

11 Quotient Rings 243
11.1 Multiplication on Cosets . 243
11.2 Quotient Ring Definition . 244
11.3 Factorization over General Ideals 245
11.4 Factorization over Prime Ideals 246
11.5 Factorization over Maximal Ideals 247

12 The Ring of Integers 250
12.1 Some properties of int . 250
12.2 Z: The Set of Integers as Algebraic Structure 251
12.3 Interpretations . 251
12.4 Generated Ideals of Z . 255
12.5 Ideals and Divisibility . 256
12.6 Ideals and the Modulus . 257
12.7 Factorization . 259

13 Modules over an Abelian Group 260
13.1 Definitions . 260
13.2 Basic Properties of Algebras 262

5

14 Univariate Polynomials 263
14.1 The Constructor for Univariate Polynomials 263
14.2 Effect of Operations on Coefficients 266
14.3 Polynomials Form a Ring. 268
14.4 Polynomials Form a Commutative Ring. 271
14.5 Polynomials over a commutative ring for a commutative ring 272
14.6 Polynomials Form an Algebra 272
14.7 Further Lemmas Involving Monomials 273
14.8 The Degree Function . 278
14.9 Polynomials over Integral Domains 284
14.10The Evaluation Homomorphism and Universal Property . . . 285
14.11The long division algorithm: some previous facts. 294
14.12The long division proof for commutative rings 296
14.13Sample Application of Evaluation Homomorphism 303

Pure

FuncSet Primes Binomial Multiset

Permutation

Congruence

Lattice

Group

FiniteProduct Coset

Exponent

Sylow

Bij

DivisibilityRing

AbelCoset

Ideal

RingHom

QuotRing

IntRing

Module

UnivPoly

Ring2

RingHomo Factor Ideal2

PID

Field

Abstract

UnivPoly2

PolyHomo

LongDiv

Polynomial

[HOL]

6

theory Congruence imports Main begin

1 Objects

1.1 Structure with Carrier Set.

record ’a partial_object =
carrier :: "’a set"

1.2 Structure with Carrier and Equivalence Relation eq

record ’a eq_object = "’a partial_object" +
eq :: "’a ⇒ ’a ⇒ bool" (infixl ".=ı " 50)

constdefs (structure S)
elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl ".∈ı " 50)
"x .∈ A ≡ (∃ y ∈ A. x .= y)"

set_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.=}ı " 50)
"A {.=} B == ((∀ x ∈ A. x .∈ B) ∧ (∀ x ∈ B. x .∈ A))"

eq_class_of :: "_ ⇒ ’a ⇒ ’a set" ("class’_ofı _")
"class_of x == {y ∈ carrier S. x .= y}"

eq_closure_of :: "_ ⇒ ’a set ⇒ ’a set" ("closure’_ofı _")
"closure_of A == {y ∈ carrier S. y .∈ A}"

eq_is_closed :: "_ ⇒ ’a set ⇒ bool" ("is’_closedı _")
"is_closed A == (A ⊆ carrier S ∧ closure_of A = A)"

syntax
not_eq :: "_ ⇒ ’a ⇒ ’a ⇒ bool" (infixl ".6=ı " 50)
not_elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl "./∈ı " 50)
set_not_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.6=}ı " 50)

translations
"x .6=ı y" == "~(x .=ı y)"
"x ./∈ı A" == "~(x .∈ı A)"
"A {. 6=}ı B" == "~(A {.=}ı B)"

locale equivalence =
fixes S (structure)
assumes refl [simp, intro]: "x ∈ carrier S =⇒ x .= x"

and sym [sym]: "[[x .= y; x ∈ carrier S; y ∈ carrier S]] =⇒ y .=
x"

and trans [trans]: "[[x .= y; y .= z; x ∈ carrier S; y ∈ carrier
S; z ∈ carrier S]] =⇒ x .= z"

7

lemma elemI:
fixes R (structure)
assumes "a’ ∈ A" and "a .= a’"
shows "a .∈ A"

unfolding elem_def
using assms
by fast

lemma (in equivalence) elem_exact:
assumes "a ∈ carrier S" and "a ∈ A"
shows "a .∈ A"

using assms
by (fast intro: elemI)

lemma elemE:
fixes S (structure)
assumes "a .∈ A"

and "
∧
a’. [[a’ ∈ A; a .= a’]] =⇒ P"

shows "P"
using assms
unfolding elem_def
by fast

lemma (in equivalence) elem_cong_l [trans]:
assumes cong: "a’ .= a"

and a: "a .∈ A"
and carr: "a ∈ carrier S" "a’ ∈ carrier S"
and Acarr: "A ⊆ carrier S"

shows "a’ .∈ A"
using a
apply (elim elemE, intro elemI)
proof assumption

fix b
assume bA: "b ∈ A"
note [simp] = carr bA[THEN subsetD[OF Acarr]]
note cong
also assume "a .= b"
finally show "a’ .= b" by simp

qed

lemma (in equivalence) elem_subsetD:
assumes "A ⊆ B"

and aA: "a .∈ A"
shows "a .∈ B"

using assms
by (fast intro: elemI elim: elemE dest: subsetD)

8

lemma (in equivalence) mem_imp_elem [simp, intro]:
"[| x ∈ A; x ∈ carrier S |] ==> x .∈ A"
unfolding elem_def by blast

lemma set_eqI:
fixes R (structure)
assumes ltr: "

∧
a. a ∈ A =⇒ a .∈ B"

and rtl: "
∧
b. b ∈ B =⇒ b .∈ A"

shows "A {.=} B"
unfolding set_eq_def
by (fast intro: ltr rtl)

lemma set_eqI2:
fixes R (structure)
assumes ltr: "

∧
a b. a ∈ A =⇒ ∃ b∈B. a .= b"

and rtl: "
∧
b. b ∈ B =⇒ ∃ a∈A. b .= a"

shows "A {.=} B"
by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+

lemma set_eqD1:
fixes R (structure)
assumes AA’: "A {.=} A’"

and "a ∈ A"
shows "∃ a’∈A’. a .= a’"

using assms
unfolding set_eq_def elem_def
by fast

lemma set_eqD2:
fixes R (structure)
assumes AA’: "A {.=} A’"

and "a’ ∈ A’"
shows "∃ a∈A. a’ .= a"

using assms
unfolding set_eq_def elem_def
by fast

lemma set_eqE:
fixes R (structure)
assumes AB: "A {.=} B"

and r: "[[∀ a∈A. a .∈ B; ∀ b∈B. b .∈ A]] =⇒ P"
shows "P"

using AB
unfolding set_eq_def
by (blast dest: r)

lemma set_eqE2:
fixes R (structure)

9

assumes AB: "A {.=} B"
and r: "[[∀ a∈A. (∃ b∈B. a .= b); ∀ b∈B. (∃ a∈A. b .= a)]] =⇒ P"

shows "P"
using AB
unfolding set_eq_def elem_def
by (blast dest: r)

lemma set_eqE’:
fixes R (structure)
assumes AB: "A {.=} B"

and aA: "a ∈ A" and bB: "b ∈ B"
and r: "

∧
a’ b’. [[a’ ∈ A; b .= a’; b’ ∈ B; a .= b’]] =⇒ P"

shows "P"
proof -

from AB aA
have "∃ b’∈B. a .= b’" by (rule set_eqD1)

from this obtain b’
where b’: "b’ ∈ B" "a .= b’" by auto

from AB bB
have "∃ a’∈A. b .= a’" by (rule set_eqD2)

from this obtain a’
where a’: "a’ ∈ A" "b .= a’" by auto

from a’ b’
show "P" by (rule r)

qed

lemma (in equivalence) eq_elem_cong_r [trans]:
assumes a: "a .∈ A"

and cong: "A {.=} A’"
and carr: "a ∈ carrier S"
and Carr: "A ⊆ carrier S" "A’ ⊆ carrier S"

shows "a .∈ A’"
using a cong
proof (elim elemE set_eqE)

fix b
assume bA: "b ∈ A"

and inA’: "∀ b∈A. b .∈ A’"
note [simp] = carr Carr Carr[THEN subsetD] bA
assume "a .= b"
also from bA inA’

have "b .∈ A’" by fast
finally

show "a .∈ A’" by simp
qed

lemma (in equivalence) set_eq_sym [sym]:
assumes "A {.=} B"

10

and "A ⊆ carrier S" "B ⊆ carrier S"
shows "B {.=} A"

using assms
unfolding set_eq_def elem_def
by fast

lemma (in equivalence) equal_set_eq_trans [trans]:
assumes AB: "A = B" and BC: "B {.=} C"
shows "A {.=} C"
using AB BC by simp

lemma (in equivalence) set_eq_equal_trans [trans]:
assumes AB: "A {.=} B" and BC: "B = C"
shows "A {.=} C"
using AB BC by simp

lemma (in equivalence) set_eq_trans [trans]:
assumes AB: "A {.=} B" and BC: "B {.=} C"

and carr: "A ⊆ carrier S" "B ⊆ carrier S" "C ⊆ carrier S"
shows "A {.=} C"

proof (intro set_eqI)
fix a
assume aA: "a ∈ A"
with carr have "a ∈ carrier S" by fast
note [simp] = carr this

from aA
have "a .∈ A" by (simp add: elem_exact)

also note AB
also note BC
finally

show "a .∈ C" by simp
next

fix c
assume cC: "c ∈ C"
with carr have "c ∈ carrier S" by fast
note [simp] = carr this

from cC
have "c .∈ C" by (simp add: elem_exact)

also note BC[symmetric]
also note AB[symmetric]
finally

show "c .∈ A" by simp
qed

11

lemma (in equivalence) set_eq_pairI:
assumes xx’: "x .= x’"

and carr: "x ∈ carrier S" "x’ ∈ carrier S" "y ∈ carrier S"
shows "{x, y} {.=} {x’, y}"

unfolding set_eq_def elem_def
proof safe

have "x’ ∈ {x’, y}" by fast
with xx’ show "∃ b∈{x’, y}. x .= b" by fast

next
have "y ∈ {x’, y}" by fast
with carr show "∃ b∈{x’, y}. y .= b" by fast

next
have "x ∈ {x, y}" by fast
with xx’[symmetric] carr
show "∃ a∈{x, y}. x’ .= a" by fast

next
have "y ∈ {x, y}" by fast
with carr show "∃ a∈{x, y}. y .= a" by fast

qed

lemma (in equivalence) is_closedI:
assumes closed: "!!x y. [| x .= y; x ∈ A; y ∈ carrier S |] ==> y ∈

A"
and S: "A ⊆ carrier S"

shows "is_closed A"
unfolding eq_is_closed_def eq_closure_of_def elem_def
using S
by (blast dest: closed sym)

lemma (in equivalence) closure_of_eq:
"[| x .= x’; A ⊆ carrier S; x ∈ closure_of A; x ∈ carrier S; x’ ∈ carrier

S |] ==> x’ ∈ closure_of A"
unfolding eq_closure_of_def elem_def
by (blast intro: trans sym)

lemma (in equivalence) is_closed_eq [dest]:
"[| x .= x’; x ∈ A; is_closed A; x ∈ carrier S; x’ ∈ carrier S |] ==>

x’ ∈ A"
unfolding eq_is_closed_def
using closure_of_eq [where A = A]
by simp

lemma (in equivalence) is_closed_eq_rev [dest]:
"[| x .= x’; x’ ∈ A; is_closed A; x ∈ carrier S; x’ ∈ carrier S |]

12

==> x ∈ A"
by (drule sym) (simp_all add: is_closed_eq)

lemma closure_of_closed [simp, intro]:
fixes S (structure)
shows "closure_of A ⊆ carrier S"

unfolding eq_closure_of_def
by fast

lemma closure_of_memI:
fixes S (structure)
assumes "a .∈ A"

and "a ∈ carrier S"
shows "a ∈ closure_of A"

unfolding eq_closure_of_def
using assms
by fast

lemma closure_ofI2:
fixes S (structure)
assumes "a .= a’"

and "a’ ∈ A"
and "a ∈ carrier S"

shows "a ∈ closure_of A"
unfolding eq_closure_of_def elem_def
using assms
by fast

lemma closure_of_memE:
fixes S (structure)
assumes p: "a ∈ closure_of A"

and r: "[[a ∈ carrier S; a .∈ A]] =⇒ P"
shows "P"

proof -
from p

have acarr: "a ∈ carrier S"
and "a .∈ A"
by (simp add: eq_closure_of_def)+

thus "P" by (rule r)
qed

lemma closure_ofE2:
fixes S (structure)
assumes p: "a ∈ closure_of A"

and r: "
∧
a’. [[a ∈ carrier S; a’ ∈ A; a .= a’]] =⇒ P"

shows "P"
proof -

from p have acarr: "a ∈ carrier S" by (simp add: eq_closure_of_def)

13

from p have "∃ a’∈A. a .= a’" by (simp add: eq_closure_of_def elem_def)
from this obtain a’

where "a’ ∈ A" and "a .= a’" by auto

from acarr and this
show "P" by (rule r)

qed

end

theory Lattice imports Congruence begin

2 Orders and Lattices

2.1 Partial Orders

record ’a gorder = "’a eq_object" +
le :: "[’a, ’a] => bool" (infixl "vı " 50)

locale weak_partial_order = equivalence L for L (structure) +
assumes le_refl [intro, simp]:

"x ∈ carrier L ==> x v x"
and weak_le_anti_sym [intro]:
"[| x v y; y v x; x ∈ carrier L; y ∈ carrier L |] ==> x .= y"

and le_trans [trans]:
"[| x v y; y v z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L

|] ==> x v z"
and le_cong:
"[[x .= y; z .= w; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L;

w ∈ carrier L]] =⇒ x v z ←→ y v w"

constdefs (structure L)
lless :: "[_, ’a, ’a] => bool" (infixl "@ı " 50)
"x @ y == x v y & x . 6= y"

2.1.1 The order relation

context weak_partial_order begin

lemma le_cong_l [intro, trans]:
"[[x .= y; y v z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L]] =⇒

x v z"
by (auto intro: le_cong [THEN iffD2])

14

lemma le_cong_r [intro, trans]:
"[[x v y; y .= z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L]] =⇒

x v z"
by (auto intro: le_cong [THEN iffD1])

lemma weak_refl [intro, simp]: "[[x .= y; x ∈ carrier L; y ∈ carrier
L]] =⇒ x v y"

by (simp add: le_cong_l)

end

lemma weak_llessI:
fixes R (structure)
assumes "x v y" and "~(x .= y)"
shows "x @ y"
using assms unfolding lless_def by simp

lemma lless_imp_le:
fixes R (structure)
assumes "x @ y"
shows "x v y"
using assms unfolding lless_def by simp

lemma weak_lless_imp_not_eq:
fixes R (structure)
assumes "x @ y"
shows "¬ (x .= y)"
using assms unfolding lless_def by simp

lemma weak_llessE:
fixes R (structure)
assumes p: "x @ y" and e: "[[x v y; ¬ (x .= y)]] =⇒ P"
shows "P"
using p by (blast dest: lless_imp_le weak_lless_imp_not_eq e)

lemma (in weak_partial_order) lless_cong_l [trans]:
assumes xx’: "x .= x’"

and xy: "x’ @ y"
and carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

shows "x @ y"
using assms unfolding lless_def by (auto intro: trans sym)

lemma (in weak_partial_order) lless_cong_r [trans]:
assumes xy: "x @ y"

and yy’: "y .= y’"
and carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

shows "x @ y’"
using assms unfolding lless_def by (auto intro: trans sym)

15

lemma (in weak_partial_order) lless_antisym:
assumes "a ∈ carrier L" "b ∈ carrier L"

and "a @ b" "b @ a"
shows "P"
using assms
by (elim weak_llessE) auto

lemma (in weak_partial_order) lless_trans [trans]:
assumes "a @ b" "b @ c"

and carr[simp]: "a ∈ carrier L" "b ∈ carrier L" "c ∈ carrier L"
shows "a @ c"
using assms unfolding lless_def by (blast dest: le_trans intro: sym)

2.1.2 Upper and lower bounds of a set

constdefs (structure L)
Upper :: "[_, ’a set] => ’a set"
"Upper L A == {u. (ALL x. x ∈ A ∩ carrier L --> x v u)} ∩ carrier L"

Lower :: "[_, ’a set] => ’a set"
"Lower L A == {l. (ALL x. x ∈ A ∩ carrier L --> l v x)} ∩ carrier L"

lemma Upper_closed [intro!, simp]:
"Upper L A ⊆ carrier L"
by (unfold Upper_def) clarify

lemma Upper_memD [dest]:
fixes L (structure)
shows "[| u ∈ Upper L A; x ∈ A; A ⊆ carrier L |] ==> x v u ∧ u ∈

carrier L"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemD [dest]:
"[| u .∈ Upper L A; u ∈ carrier L; x ∈ A; A ⊆ carrier L |] ==> x v

u"
unfolding Upper_def elem_def
by (blast dest: sym)

lemma Upper_memI:
fixes L (structure)
shows "[| !! y. y ∈ A ==> y v x; x ∈ carrier L |] ==> x ∈ Upper L

A"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemI:
"[| !! y. y ∈ A ==> y v x; x ∈ carrier L |] ==> x .∈ Upper L A"
unfolding Upper_def by blast

16

lemma Upper_antimono:
"A ⊆ B ==> Upper L B ⊆ Upper L A"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_is_closed [simp]:
"A ⊆ carrier L ==> is_closed (Upper L A)"
by (rule is_closedI) (blast intro: Upper_memI)+

lemma (in weak_partial_order) Upper_mem_cong:
assumes a’carr: "a’ ∈ carrier L" and Acarr: "A ⊆ carrier L"

and aa’: "a .= a’"
and aelem: "a ∈ Upper L A"

shows "a’ ∈ Upper L A"
proof (rule Upper_memI[OF _ a’carr])

fix y
assume yA: "y ∈ A"
hence "y v a" by (intro Upper_memD[OF aelem, THEN conjunct1] Acarr)
also note aa’
finally

show "y v a’"
by (simp add: a’carr subsetD[OF Acarr yA] subsetD[OF Upper_closed

aelem])
qed

lemma (in weak_partial_order) Upper_cong:
assumes Acarr: "A ⊆ carrier L" and A’carr: "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "Upper L A = Upper L A’"

unfolding Upper_def
apply rule
apply (rule, clarsimp) defer 1
apply (rule, clarsimp) defer 1

proof -
fix x a’
assume carr: "x ∈ carrier L" "a’ ∈ carrier L"

and a’A’: "a’ ∈ A’"
assume aLxCond[rule_format]: "∀ a. a ∈ A ∧ a ∈ carrier L −→ a v x"

from AA’ and a’A’ have "∃ a∈A. a’ .= a" by (rule set_eqD2)
from this obtain a

where aA: "a ∈ A"
and a’a: "a’ .= a"
by auto

note [simp] = subsetD[OF Acarr aA] carr

note a’a
also have "a v x" by (simp add: aLxCond aA)
finally show "a’ v x" by simp

next

17

fix x a
assume carr: "x ∈ carrier L" "a ∈ carrier L"

and aA: "a ∈ A"
assume a’LxCond[rule_format]: "∀ a’. a’ ∈ A’ ∧ a’ ∈ carrier L −→ a’

v x"

from AA’ and aA have "∃ a’∈A’. a .= a’" by (rule set_eqD1)
from this obtain a’

where a’A’: "a’ ∈ A’"
and aa’: "a .= a’"
by auto

note [simp] = subsetD[OF A’carr a’A’] carr

note aa’
also have "a’ v x" by (simp add: a’LxCond a’A’)
finally show "a v x" by simp

qed

lemma Lower_closed [intro!, simp]:
"Lower L A ⊆ carrier L"
by (unfold Lower_def) clarify

lemma Lower_memD [dest]:
fixes L (structure)
shows "[| l ∈ Lower L A; x ∈ A; A ⊆ carrier L |] ==> l v x ∧ l ∈

carrier L"
by (unfold Lower_def) blast

lemma Lower_memI:
fixes L (structure)
shows "[| !! y. y ∈ A ==> x v y; x ∈ carrier L |] ==> x ∈ Lower L

A"
by (unfold Lower_def) blast

lemma Lower_antimono:
"A ⊆ B ==> Lower L B ⊆ Lower L A"
by (unfold Lower_def) blast

lemma (in weak_partial_order) Lower_is_closed [simp]:
"A ⊆ carrier L =⇒ is_closed (Lower L A)"
by (rule is_closedI) (blast intro: Lower_memI dest: sym)+

lemma (in weak_partial_order) Lower_mem_cong:
assumes a’carr: "a’ ∈ carrier L" and Acarr: "A ⊆ carrier L"

and aa’: "a .= a’"
and aelem: "a ∈ Lower L A"

shows "a’ ∈ Lower L A"
using assms Lower_closed[of L A]
by (intro Lower_memI) (blast intro: le_cong_l[OF aa’[symmetric]])

18

lemma (in weak_partial_order) Lower_cong:
assumes Acarr: "A ⊆ carrier L" and A’carr: "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "Lower L A = Lower L A’"

using Lower_memD[of y]
unfolding Lower_def
apply safe
apply clarsimp defer 1
apply clarsimp defer 1

proof -
fix x a’
assume carr: "x ∈ carrier L" "a’ ∈ carrier L"

and a’A’: "a’ ∈ A’"
assume "∀ a. a ∈ A ∧ a ∈ carrier L −→ x v a"
hence aLxCond: "

∧
a. [[a ∈ A; a ∈ carrier L]] =⇒ x v a" by fast

from AA’ and a’A’ have "∃ a∈A. a’ .= a" by (rule set_eqD2)
from this obtain a

where aA: "a ∈ A"
and a’a: "a’ .= a"
by auto

from aA and subsetD[OF Acarr aA]
have "x v a" by (rule aLxCond)

also note a’a[symmetric]
finally

show "x v a’" by (simp add: carr subsetD[OF Acarr aA])
next

fix x a
assume carr: "x ∈ carrier L" "a ∈ carrier L"

and aA: "a ∈ A"
assume "∀ a’. a’ ∈ A’ ∧ a’ ∈ carrier L −→ x v a’"
hence a’LxCond: "

∧
a’. [[a’ ∈ A’; a’ ∈ carrier L]] =⇒ x v a’" by fast+

from AA’ and aA have "∃ a’∈A’. a .= a’" by (rule set_eqD1)
from this obtain a’

where a’A’: "a’ ∈ A’"
and aa’: "a .= a’"
by auto

from a’A’ and subsetD[OF A’carr a’A’]
have "x v a’" by (rule a’LxCond)

also note aa’[symmetric]
finally show "x v a" by (simp add: carr subsetD[OF A’carr a’A’])

qed

2.1.3 Least and greatest, as predicate

constdefs (structure L)

19

least :: "[_, ’a, ’a set] => bool"
"least L l A == A ⊆ carrier L & l ∈ A & (ALL x : A. l v x)"

greatest :: "[_, ’a, ’a set] => bool"
"greatest L g A == A ⊆ carrier L & g ∈ A & (ALL x : A. x v g)"

Could weaken these to l ∈ carrier L ∧ l .∈ A and g ∈ carrier L ∧ g .∈
A.

lemma least_closed [intro, simp]:
"least L l A ==> l ∈ carrier L"
by (unfold least_def) fast

lemma least_mem:
"least L l A ==> l ∈ A"
by (unfold least_def) fast

lemma (in weak_partial_order) weak_least_unique:
"[| least L x A; least L y A |] ==> x .= y"
by (unfold least_def) blast

lemma least_le:
fixes L (structure)
shows "[| least L x A; a ∈ A |] ==> x v a"
by (unfold least_def) fast

lemma (in weak_partial_order) least_cong:
"[| x .= x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==> least

L x A = least L x’ A"
by (unfold least_def) (auto dest: sym)

least is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) least_Upper_cong_l:
assumes "x .= x’"

and "x ∈ carrier L" "x’ ∈ carrier L"
and "A ⊆ carrier L"

shows "least L x (Upper L A) = least L x’ (Upper L A)"
apply (rule least_cong) using assms by auto

lemma (in weak_partial_order) least_Upper_cong_r:
assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "least L x (Upper L A) = least L x (Upper L A’)"

apply (subgoal_tac "Upper L A = Upper L A’", simp)
by (rule Upper_cong) fact+

lemma least_UpperI:
fixes L (structure)
assumes above: "!! x. x ∈ A ==> x v s"

and below: "!! y. y ∈ Upper L A ==> s v y"

20

and L: "A ⊆ carrier L" "s ∈ carrier L"
shows "least L s (Upper L A)"

proof -
have "Upper L A ⊆ carrier L" by simp
moreover from above L have "s ∈ Upper L A" by (simp add: Upper_def)
moreover from below have "ALL x : Upper L A. s v x" by fast
ultimately show ?thesis by (simp add: least_def)

qed

lemma least_Upper_above:
fixes L (structure)
shows "[| least L s (Upper L A); x ∈ A; A ⊆ carrier L |] ==> x v s"
by (unfold least_def) blast

lemma greatest_closed [intro, simp]:
"greatest L l A ==> l ∈ carrier L"
by (unfold greatest_def) fast

lemma greatest_mem:
"greatest L l A ==> l ∈ A"
by (unfold greatest_def) fast

lemma (in weak_partial_order) weak_greatest_unique:
"[| greatest L x A; greatest L y A |] ==> x .= y"
by (unfold greatest_def) blast

lemma greatest_le:
fixes L (structure)
shows "[| greatest L x A; a ∈ A |] ==> a v x"
by (unfold greatest_def) fast

lemma (in weak_partial_order) greatest_cong:
"[| x .= x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==>
greatest L x A = greatest L x’ A"
by (unfold greatest_def) (auto dest: sym)

greatest is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) greatest_Lower_cong_l:
assumes "x .= x’"

and "x ∈ carrier L" "x’ ∈ carrier L"
and "A ⊆ carrier L"

shows "greatest L x (Lower L A) = greatest L x’ (Lower L A)"
apply (rule greatest_cong) using assms by auto

lemma (in weak_partial_order) greatest_Lower_cong_r:
assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "greatest L x (Lower L A) = greatest L x (Lower L A’)"

apply (subgoal_tac "Lower L A = Lower L A’", simp)

21

by (rule Lower_cong) fact+

lemma greatest_LowerI:
fixes L (structure)
assumes below: "!! x. x ∈ A ==> i v x"

and above: "!! y. y ∈ Lower L A ==> y v i"
and L: "A ⊆ carrier L" "i ∈ carrier L"

shows "greatest L i (Lower L A)"
proof -

have "Lower L A ⊆ carrier L" by simp
moreover from below L have "i ∈ Lower L A" by (simp add: Lower_def)
moreover from above have "ALL x : Lower L A. x v i" by fast
ultimately show ?thesis by (simp add: greatest_def)

qed

lemma greatest_Lower_below:
fixes L (structure)
shows "[| greatest L i (Lower L A); x ∈ A; A ⊆ carrier L |] ==> i v

x"
by (unfold greatest_def) blast

Supremum and infimum

constdefs (structure L)
sup :: "[_, ’a set] => ’a" ("

⊔
ı _" [90] 90)

"
⊔
A == SOME x. least L x (Upper L A)"

inf :: "[_, ’a set] => ’a" ("
d
ı _" [90] 90)

"
d
A == SOME x. greatest L x (Lower L A)"

join :: "[_, ’a, ’a] => ’a" (infixl "tı " 65)
"x t y ==

⊔
{x, y}"

meet :: "[_, ’a, ’a] => ’a" (infixl "uı " 70)
"x u y ==

d
{x, y}"

2.2 Lattices

locale weak_upper_semilattice = weak_partial_order +
assumes sup_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. least L s (Upper L {x,

y})"

locale weak_lower_semilattice = weak_partial_order +
assumes inf_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. greatest L s (Lower

L {x, y})"

locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice

22

2.2.1 Supremum

lemma (in weak_upper_semilattice) joinI:
"[| !!l. least L l (Upper L {x, y}) ==> P l; x ∈ carrier L; y ∈ carrier

L |]
==> P (x t y)"

proof (unfold join_def sup_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"

and P: "!!l. least L l (Upper L {x, y}) ==> P l"
with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"

by fast
with L show "P (SOME l. least L l (Upper L {x, y}))"

by (fast intro: someI2 P)
qed

lemma (in weak_upper_semilattice) join_closed [simp]:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x t y ∈ carrier L"
by (rule joinI) (rule least_closed)

lemma (in weak_upper_semilattice) join_cong_l:
assumes carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

and xx’: "x .= x’"
shows "x t y .= x’ t y"

proof (rule joinI, rule joinI)
fix a b
from xx’ carr

have seq: "{x, y} {.=} {x’, y}" by (rule set_eq_pairI)

assume leasta: "least L a (Upper L {x, y})"
assume "least L b (Upper L {x’, y})"
with carr

have leastb: "least L b (Upper L {x, y})"
by (simp add: least_Upper_cong_r[OF _ _ seq])

from leasta leastb
show "a .= b" by (rule weak_least_unique)

qed (rule carr)+

lemma (in weak_upper_semilattice) join_cong_r:
assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

and yy’: "y .= y’"
shows "x t y .= x t y’"

proof (rule joinI, rule joinI)
fix a b
have "{x, y} = {y, x}" by fast
also from carr yy’

have "{y, x} {.=} {y’, x}" by (intro set_eq_pairI)
also have "{y’, x} = {x, y’}" by fast
finally

have seq: "{x, y} {.=} {x, y’}" .

23

assume leasta: "least L a (Upper L {x, y})"
assume "least L b (Upper L {x, y’})"
with carr

have leastb: "least L b (Upper L {x, y})"
by (simp add: least_Upper_cong_r[OF _ _ seq])

from leasta leastb
show "a .= b" by (rule weak_least_unique)

qed (rule carr)+

lemma (in weak_partial_order) sup_of_singletonI:
"x ∈ carrier L ==> least L x (Upper L {x})"
by (rule least_UpperI) auto

lemma (in weak_partial_order) weak_sup_of_singleton [simp]:
"x ∈ carrier L ==>

⊔
{x} .= x"

unfolding sup_def
by (rule someI2) (auto intro: weak_least_unique sup_of_singletonI)

lemma (in weak_partial_order) sup_of_singleton_closed [simp]:
"x ∈ carrier L =⇒

⊔
{x} ∈ carrier L"

unfolding sup_def
by (rule someI2) (auto intro: sup_of_singletonI)

Condition on A: supremum exists.

lemma (in weak_upper_semilattice) sup_insertI:
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
least L a (Upper L A); x ∈ carrier L; A ⊆ carrier L |]
==> P (

⊔
(insert x A))"

proof (unfold sup_def)
assume L: "x ∈ carrier L" "A ⊆ carrier L"

and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
and least_a: "least L a (Upper L A)"

from L least_a have La: "a ∈ carrier L" by simp
from L sup_of_two_exists least_a
obtain s where least_s: "least L s (Upper L {a, x})" by blast
show "P (SOME l. least L l (Upper L (insert x A)))"
proof (rule someI2)

show "least L s (Upper L (insert x A))"
proof (rule least_UpperI)

fix z
assume "z ∈ insert x A"
then show "z v s"
proof

assume "z = x" then show ?thesis
by (simp add: least_Upper_above [OF least_s] L La)

next
assume "z ∈ A"

24

with L least_s least_a show ?thesis
by (rule_tac le_trans [where y = a]) (auto dest: least_Upper_above)

qed
next

fix y
assume y: "y ∈ Upper L (insert x A)"
show "s v y"
proof (rule least_le [OF least_s], rule Upper_memI)

fix z
assume z: "z ∈ {a, x}"
then show "z v y"
proof

have y’: "y ∈ Upper L A"
apply (rule subsetD [where A = "Upper L (insert x A)"])
apply (rule Upper_antimono)
apply blast

apply (rule y)
done

assume "z = a"
with y’ least_a show ?thesis by (fast dest: least_le)

next
assume "z ∈ {x}"
with y L show ?thesis by blast

qed
qed (rule Upper_closed [THEN subsetD, OF y])

next
from L show "insert x A ⊆ carrier L" by simp
from least_s show "s ∈ carrier L" by simp

qed
qed (rule P)

qed

lemma (in weak_upper_semilattice) finite_sup_least:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==> least L (

⊔
A) (Upper L A)"

proof (induct set: finite)
case empty
then show ?case by simp

next
case (insert x A)
show ?case
proof (cases "A = {}")

case True
with insert show ?thesis

by simp (simp add: least_cong [OF weak_sup_of_singleton]
sup_of_singleton_closed sup_of_singletonI)

next
case False
with insert have "least L (

⊔
A) (Upper L A)" by simp

25

with _ show ?thesis
by (rule sup_insertI) (simp_all add: insert [simplified])

qed
qed

lemma (in weak_upper_semilattice) finite_sup_insertI:
assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"
shows "P (

⊔
(insert x A))"

proof (cases "A = {}")
case True with P and xA show ?thesis

by (simp add: finite_sup_least)
next

case False with P and xA show ?thesis
by (simp add: sup_insertI finite_sup_least)

qed

lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==>

⊔
A ∈ carrier L"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case

by - (rule finite_sup_insertI, simp_all)
qed

lemma (in weak_upper_semilattice) join_left:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x v x t y"
by (rule joinI [folded join_def]) (blast dest: least_mem)

lemma (in weak_upper_semilattice) join_right:
"[| x ∈ carrier L; y ∈ carrier L |] ==> y v x t y"
by (rule joinI [folded join_def]) (blast dest: least_mem)

lemma (in weak_upper_semilattice) sup_of_two_least:
"[| x ∈ carrier L; y ∈ carrier L |] ==> least L (

⊔
{x, y}) (Upper L

{x, y})"
proof (unfold sup_def)

assume L: "x ∈ carrier L" "y ∈ carrier L"
with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"

by fast
with L show "least L (SOME z. least L z (Upper L {x, y})) (Upper L

{x, y})"
by (fast intro: someI2 weak_least_unique)

qed

lemma (in weak_upper_semilattice) join_le:
assumes sub: "x v z" "y v z"

and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier

26

L"
shows "x t y v z"

proof (rule joinI [OF _ x y])
fix s
assume "least L s (Upper L {x, y})"
with sub z show "s v z" by (fast elim: least_le intro: Upper_memI)

qed

lemma (in weak_upper_semilattice) weak_join_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "x t (y t z) .=

⊔
{x, y, z}"

proof (rule finite_sup_insertI)
— The textbook argument in Jacobson I, p 457
fix s
assume sup: "least L s (Upper L {x, y, z})"
show "x t (y t z) .= s"
proof (rule weak_le_anti_sym)

from sup L show "x t (y t z) v s"
by (fastsimp intro!: join_le elim: least_Upper_above)

next
from sup L show "s v x t (y t z)"
by (erule_tac least_le)
(blast intro!: Upper_memI intro: le_trans join_left join_right join_closed)

qed (simp_all add: L least_closed [OF sup])
qed (simp_all add: L)

Commutativity holds for =.

lemma join_comm:
fixes L (structure)
shows "x t y = y t x"
by (unfold join_def) (simp add: insert_commute)

lemma (in weak_upper_semilattice) weak_join_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x t y) t z .= x t (y t z)"

proof -

have "(x t y) t z = z t (x t y)" by (simp only: join_comm)
also from L have "... .=

⊔
{z, x, y}" by (simp add: weak_join_assoc_lemma)

also from L have "... =
⊔
{x, y, z}" by (simp add: insert_commute)

also from L have "... .= x t (y t z)" by (simp add: weak_join_assoc_lemma
[symmetric])

finally show ?thesis by (simp add: L)
qed

2.2.2 Infimum

lemma (in weak_lower_semilattice) meetI:
"[| !!i. greatest L i (Lower L {x, y}) ==> P i;

27

x ∈ carrier L; y ∈ carrier L |]
==> P (x u y)"

proof (unfold meet_def inf_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"

and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})"

by fast
with L show "P (SOME g. greatest L g (Lower L {x, y}))"
by (fast intro: someI2 weak_greatest_unique P)

qed

lemma (in weak_lower_semilattice) meet_closed [simp]:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y ∈ carrier L"
by (rule meetI) (rule greatest_closed)

lemma (in weak_lower_semilattice) meet_cong_l:
assumes carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

and xx’: "x .= x’"
shows "x u y .= x’ u y"

proof (rule meetI, rule meetI)
fix a b
from xx’ carr

have seq: "{x, y} {.=} {x’, y}" by (rule set_eq_pairI)

assume greatesta: "greatest L a (Lower L {x, y})"
assume "greatest L b (Lower L {x’, y})"
with carr

have greatestb: "greatest L b (Lower L {x, y})"
by (simp add: greatest_Lower_cong_r[OF _ _ seq])

from greatesta greatestb
show "a .= b" by (rule weak_greatest_unique)

qed (rule carr)+

lemma (in weak_lower_semilattice) meet_cong_r:
assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

and yy’: "y .= y’"
shows "x u y .= x u y’"

proof (rule meetI, rule meetI)
fix a b
have "{x, y} = {y, x}" by fast
also from carr yy’

have "{y, x} {.=} {y’, x}" by (intro set_eq_pairI)
also have "{y’, x} = {x, y’}" by fast
finally

have seq: "{x, y} {.=} {x, y’}" .

assume greatesta: "greatest L a (Lower L {x, y})"
assume "greatest L b (Lower L {x, y’})"

28

with carr
have greatestb: "greatest L b (Lower L {x, y})"
by (simp add: greatest_Lower_cong_r[OF _ _ seq])

from greatesta greatestb
show "a .= b" by (rule weak_greatest_unique)

qed (rule carr)+

lemma (in weak_partial_order) inf_of_singletonI:
"x ∈ carrier L ==> greatest L x (Lower L {x})"
by (rule greatest_LowerI) auto

lemma (in weak_partial_order) weak_inf_of_singleton [simp]:
"x ∈ carrier L ==>

d
{x} .= x"

unfolding inf_def
by (rule someI2) (auto intro: weak_greatest_unique inf_of_singletonI)

lemma (in weak_partial_order) inf_of_singleton_closed:
"x ∈ carrier L ==>

d
{x} ∈ carrier L"

unfolding inf_def
by (rule someI2) (auto intro: inf_of_singletonI)

Condition on A: infimum exists.

lemma (in weak_lower_semilattice) inf_insertI:
"[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
greatest L a (Lower L A); x ∈ carrier L; A ⊆ carrier L |]
==> P (

d
(insert x A))"

proof (unfold inf_def)
assume L: "x ∈ carrier L" "A ⊆ carrier L"

and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
and greatest_a: "greatest L a (Lower L A)"

from L greatest_a have La: "a ∈ carrier L" by simp
from L inf_of_two_exists greatest_a
obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
show "P (SOME g. greatest L g (Lower L (insert x A)))"
proof (rule someI2)

show "greatest L i (Lower L (insert x A))"
proof (rule greatest_LowerI)

fix z
assume "z ∈ insert x A"
then show "i v z"
proof

assume "z = x" then show ?thesis
by (simp add: greatest_Lower_below [OF greatest_i] L La)

next
assume "z ∈ A"
with L greatest_i greatest_a show ?thesis

by (rule_tac le_trans [where y = a]) (auto dest: greatest_Lower_below)
qed

29

next
fix y
assume y: "y ∈ Lower L (insert x A)"
show "y v i"
proof (rule greatest_le [OF greatest_i], rule Lower_memI)

fix z
assume z: "z ∈ {a, x}"
then show "y v z"
proof

have y’: "y ∈ Lower L A"
apply (rule subsetD [where A = "Lower L (insert x A)"])
apply (rule Lower_antimono)
apply blast

apply (rule y)
done

assume "z = a"
with y’ greatest_a show ?thesis by (fast dest: greatest_le)

next
assume "z ∈ {x}"
with y L show ?thesis by blast

qed
qed (rule Lower_closed [THEN subsetD, OF y])

next
from L show "insert x A ⊆ carrier L" by simp
from greatest_i show "i ∈ carrier L" by simp

qed
qed (rule P)

qed

lemma (in weak_lower_semilattice) finite_inf_greatest:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==> greatest L (

d
A) (Lower

L A)"
proof (induct set: finite)

case empty then show ?case by simp
next

case (insert x A)
show ?case
proof (cases "A = {}")

case True
with insert show ?thesis

by simp (simp add: greatest_cong [OF weak_inf_of_singleton]
inf_of_singleton_closed inf_of_singletonI)

next
case False
from insert show ?thesis
proof (rule_tac inf_insertI)

from False insert show "greatest L (
d
A) (Lower L A)" by simp

qed simp_all
qed

30

qed

lemma (in weak_lower_semilattice) finite_inf_insertI:
assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"
shows "P (

d
(insert x A))"

proof (cases "A = {}")
case True with P and xA show ?thesis

by (simp add: finite_inf_greatest)
next

case False with P and xA show ?thesis
by (simp add: inf_insertI finite_inf_greatest)

qed

lemma (in weak_lower_semilattice) finite_inf_closed [simp]:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==>

d
A ∈ carrier L"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case

by (rule_tac finite_inf_insertI) (simp_all)
qed

lemma (in weak_lower_semilattice) meet_left:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y v x"
by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) meet_right:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y v y"
by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) inf_of_two_greatest:
"[| x ∈ carrier L; y ∈ carrier L |] ==>
greatest L (

d
{x, y}) (Lower L {x, y})"

proof (unfold inf_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"
with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})"

by fast
with L
show "greatest L (SOME z. greatest L z (Lower L {x, y})) (Lower L {x,

y})"
by (fast intro: someI2 weak_greatest_unique)

qed

lemma (in weak_lower_semilattice) meet_le:
assumes sub: "z v x" "z v y"

and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier
L"

shows "z v x u y"

31

proof (rule meetI [OF _ x y])
fix i
assume "greatest L i (Lower L {x, y})"
with sub z show "z v i" by (fast elim: greatest_le intro: Lower_memI)

qed

lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "x u (y u z) .=

d
{x, y, z}"

proof (rule finite_inf_insertI)

The textbook argument in Jacobson I, p 457

fix i
assume inf: "greatest L i (Lower L {x, y, z})"
show "x u (y u z) .= i"
proof (rule weak_le_anti_sym)

from inf L show "i v x u (y u z)"
by (fastsimp intro!: meet_le elim: greatest_Lower_below)

next
from inf L show "x u (y u z) v i"
by (erule_tac greatest_le)
(blast intro!: Lower_memI intro: le_trans meet_left meet_right meet_closed)

qed (simp_all add: L greatest_closed [OF inf])
qed (simp_all add: L)

lemma meet_comm:
fixes L (structure)
shows "x u y = y u x"
by (unfold meet_def) (simp add: insert_commute)

lemma (in weak_lower_semilattice) weak_meet_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x u y) u z .= x u (y u z)"

proof -

have "(x u y) u z = z u (x u y)" by (simp only: meet_comm)
also from L have "... .=

d
{z, x, y}" by (simp add: weak_meet_assoc_lemma)

also from L have "... =
d

{x, y, z}" by (simp add: insert_commute)
also from L have "... .= x u (y u z)" by (simp add: weak_meet_assoc_lemma

[symmetric])
finally show ?thesis by (simp add: L)

qed

2.3 Total Orders

locale weak_total_order = weak_partial_order +
assumes total: "[| x ∈ carrier L; y ∈ carrier L |] ==> x v y | y v

x"

Introduction rule: the usual definition of total order

32

lemma (in weak_partial_order) weak_total_orderI:
assumes total: "!!x y. [| x ∈ carrier L; y ∈ carrier L |] ==> x v

y | y v x"
shows "weak_total_order L"
proof qed (rule total)

Total orders are lattices.

sublocale weak_total_order < weak: weak_lattice
proof

fix x y
assume L: "x ∈ carrier L" "y ∈ carrier L"
show "EX s. least L s (Upper L {x, y})"
proof -

note total L
moreover
{

assume "x v y"
with L have "least L y (Upper L {x, y})"

by (rule_tac least_UpperI) auto
}
moreover
{

assume "y v x"
with L have "least L x (Upper L {x, y})"

by (rule_tac least_UpperI) auto
}
ultimately show ?thesis by blast

qed
next

fix x y
assume L: "x ∈ carrier L" "y ∈ carrier L"
show "EX i. greatest L i (Lower L {x, y})"
proof -

note total L
moreover
{

assume "y v x"
with L have "greatest L y (Lower L {x, y})"

by (rule_tac greatest_LowerI) auto
}
moreover
{

assume "x v y"
with L have "greatest L x (Lower L {x, y})"

by (rule_tac greatest_LowerI) auto
}
ultimately show ?thesis by blast

qed
qed

33

2.4 Complete Lattices

locale weak_complete_lattice = weak_lattice +
assumes sup_exists:
"[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

Introduction rule: the usual definition of complete lattice

lemma (in weak_partial_order) weak_complete_latticeI:
assumes sup_exists:
"!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

shows "weak_complete_lattice L"
proof qed (auto intro: sup_exists inf_exists)

constdefs (structure L)
top :: "_ => ’a" (">ı ")
"> == sup L (carrier L)"

bottom :: "_ => ’a" ("⊥ı ")
"⊥ == inf L (carrier L)"

lemma (in weak_complete_lattice) supI:
"[| !!l. least L l (Upper L A) ==> P l; A ⊆ carrier L |]
==> P (

⊔
A)"

proof (unfold sup_def)
assume L: "A ⊆ carrier L"

and P: "!!l. least L l (Upper L A) ==> P l"
with sup_exists obtain s where "least L s (Upper L A)" by blast
with L show "P (SOME l. least L l (Upper L A))"
by (fast intro: someI2 weak_least_unique P)

qed

lemma (in weak_complete_lattice) sup_closed [simp]:
"A ⊆ carrier L ==>

⊔
A ∈ carrier L"

by (rule supI) simp_all

lemma (in weak_complete_lattice) top_closed [simp, intro]:
"> ∈ carrier L"
by (unfold top_def) simp

lemma (in weak_complete_lattice) infI:
"[| !!i. greatest L i (Lower L A) ==> P i; A ⊆ carrier L |]
==> P (

d
A)"

proof (unfold inf_def)
assume L: "A ⊆ carrier L"

and P: "!!l. greatest L l (Lower L A) ==> P l"

34

with inf_exists obtain s where "greatest L s (Lower L A)" by blast
with L show "P (SOME l. greatest L l (Lower L A))"
by (fast intro: someI2 weak_greatest_unique P)

qed

lemma (in weak_complete_lattice) inf_closed [simp]:
"A ⊆ carrier L ==>

d
A ∈ carrier L"

by (rule infI) simp_all

lemma (in weak_complete_lattice) bottom_closed [simp, intro]:
"⊥ ∈ carrier L"
by (unfold bottom_def) simp

Jacobson: Theorem 8.1

lemma Lower_empty [simp]:
"Lower L {} = carrier L"
by (unfold Lower_def) simp

lemma Upper_empty [simp]:
"Upper L {} = carrier L"
by (unfold Upper_def) simp

theorem (in weak_partial_order) weak_complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"

and inf_exists:
"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower

L A)"
shows "weak_complete_lattice L"

proof (rule weak_complete_latticeI)
from top_exists obtain top where top: "greatest L top (carrier L)"

..
fix A
assume L: "A ⊆ carrier L"
let ?B = "Upper L A"
from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)
then have B_non_empty: "?B ~= {}" by fast
have B_L: "?B ⊆ carrier L" by simp
from inf_exists [OF B_L B_non_empty]
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
have "least L b (Upper L A)"

apply (rule least_UpperI)
apply (rule greatest_le [where A = "Lower L ?B"])
apply (rule b_inf_B)

apply (rule Lower_memI)
apply (erule Upper_memD [THEN conjunct1])
apply assumption

apply (rule L)
apply (fast intro: L [THEN subsetD])

apply (erule greatest_Lower_below [OF b_inf_B])

35

apply simp
apply (rule L)

apply (rule greatest_closed [OF b_inf_B])
done

then show "EX s. least L s (Upper L A)" ..
next

fix A
assume L: "A ⊆ carrier L"
show "EX i. greatest L i (Lower L A)"
proof (cases "A = {}")

case True then show ?thesis
by (simp add: top_exists)

next
case False with L show ?thesis

by (rule inf_exists)
qed

qed

2.5 Orders and Lattices where eq is the Equality

locale partial_order = weak_partial_order +
assumes eq_is_equal: "op .= = op ="

begin

declare weak_le_anti_sym [rule del]

lemma le_anti_sym [intro]:
"[| x v y; y v x; x ∈ carrier L; y ∈ carrier L |] ==> x = y"
using weak_le_anti_sym unfolding eq_is_equal .

lemma lless_eq:
"x @ y ←→ x v y & x 6= y"
unfolding lless_def by (simp add: eq_is_equal)

lemma lless_asym:
assumes "a ∈ carrier L" "b ∈ carrier L"

and "a @ b" "b @ a"
shows "P"
using assms unfolding lless_eq by auto

end

Least and greatest, as predicate

lemma (in partial_order) least_unique:
"[| least L x A; least L y A |] ==> x = y"
using weak_least_unique unfolding eq_is_equal .

lemma (in partial_order) greatest_unique:
"[| greatest L x A; greatest L y A |] ==> x = y"

36

using weak_greatest_unique unfolding eq_is_equal .

Lattices

locale upper_semilattice = partial_order +
assumes sup_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. least L s (Upper L {x,

y})"

sublocale upper_semilattice < weak: weak_upper_semilattice
proof qed (rule sup_of_two_exists)

locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. greatest L s (Lower

L {x, y})"

sublocale lower_semilattice < weak: weak_lower_semilattice
proof qed (rule inf_of_two_exists)

locale lattice = upper_semilattice + lower_semilattice

Supremum

declare (in partial_order) weak_sup_of_singleton [simp del]

lemma (in partial_order) sup_of_singleton [simp]:
"x ∈ carrier L ==>

⊔
{x} = x"

using weak_sup_of_singleton unfolding eq_is_equal .

lemma (in upper_semilattice) join_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "x t (y t z) =

⊔
{x, y, z}"

using weak_join_assoc_lemma L unfolding eq_is_equal .

lemma (in upper_semilattice) join_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x t y) t z = x t (y t z)"
using weak_join_assoc L unfolding eq_is_equal .

Infimum

declare (in partial_order) weak_inf_of_singleton [simp del]

lemma (in partial_order) inf_of_singleton [simp]:
"x ∈ carrier L ==>

d
{x} = x"

using weak_inf_of_singleton unfolding eq_is_equal .

Condition on A: infimum exists.

lemma (in lower_semilattice) meet_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"

37

shows "x u (y u z) =
d
{x, y, z}"

using weak_meet_assoc_lemma L unfolding eq_is_equal .

lemma (in lower_semilattice) meet_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x u y) u z = x u (y u z)"
using weak_meet_assoc L unfolding eq_is_equal .

Total Orders

locale total_order = partial_order +
assumes total_order_total: "[| x ∈ carrier L; y ∈ carrier L |] ==>

x v y | y v x"

sublocale total_order < weak: weak_total_order
proof qed (rule total_order_total)

Introduction rule: the usual definition of total order

lemma (in partial_order) total_orderI:
assumes total: "!!x y. [| x ∈ carrier L; y ∈ carrier L |] ==> x v

y | y v x"
shows "total_order L"
proof qed (rule total)

Total orders are lattices.

sublocale total_order < weak: lattice
proof qed (auto intro: sup_of_two_exists inf_of_two_exists)

Complete lattices

locale complete_lattice = lattice +
assumes sup_exists:
"[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

sublocale complete_lattice < weak: weak_complete_lattice
proof qed (auto intro: sup_exists inf_exists)

Introduction rule: the usual definition of complete lattice

lemma (in partial_order) complete_latticeI:
assumes sup_exists:
"!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

shows "complete_lattice L"
proof qed (auto intro: sup_exists inf_exists)

theorem (in partial_order) complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"

38

and inf_exists:
"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower

L A)"
shows "complete_lattice L"

proof (rule complete_latticeI)
from top_exists obtain top where top: "greatest L top (carrier L)"

..
fix A
assume L: "A ⊆ carrier L"
let ?B = "Upper L A"
from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)
then have B_non_empty: "?B ~= {}" by fast
have B_L: "?B ⊆ carrier L" by simp
from inf_exists [OF B_L B_non_empty]
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
have "least L b (Upper L A)"

apply (rule least_UpperI)
apply (rule greatest_le [where A = "Lower L ?B"])
apply (rule b_inf_B)

apply (rule Lower_memI)
apply (erule Upper_memD [THEN conjunct1])
apply assumption

apply (rule L)
apply (fast intro: L [THEN subsetD])

apply (erule greatest_Lower_below [OF b_inf_B])
apply simp

apply (rule L)
apply (rule greatest_closed [OF b_inf_B])
done

then show "EX s. least L s (Upper L A)" ..
next

fix A
assume L: "A ⊆ carrier L"
show "EX i. greatest L i (Lower L A)"
proof (cases "A = {}")

case True then show ?thesis
by (simp add: top_exists)

next
case False with L show ?thesis

by (rule inf_exists)
qed

qed

2.6 Examples

2.6.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:
"complete_lattice (| carrier = Pow A, eq = op =, le = op ⊆ |)"
(is "complete_lattice ?L")

39

proof (rule partial_order.complete_latticeI)
show "partial_order ?L"

proof qed auto
next

fix B
assume B: "B ⊆ carrier ?L"
show "EX s. least ?L s (Upper ?L B)"
proof

from B show "least ?L (
⋃

B) (Upper ?L B)"
by (fastsimp intro!: least_UpperI simp: Upper_def)

qed
next

fix B
assume B: "B ⊆ carrier ?L"
show "EX i. greatest ?L i (Lower ?L B)"
proof

from B show "greatest ?L (
⋂

B ∩ A) (Lower ?L B)"⋂
B is not the infimum of B:

⋂
{} = UNIV which is in general bigger than A!

by (fastsimp intro!: greatest_LowerI simp: Lower_def)
qed

qed

An other example, that of the lattice of subgroups of a group, can be found
in Group theory (Section 3.8).

end

theory Group
imports Lattice FuncSet
begin

3 Monoids and Groups

3.1 Definitions

Definitions follow [2].

record ’a monoid = "’a partial_object" +
mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı " 70)
one :: ’a ("1ı ")

constdefs (structure G)
m_inv :: "(’a, ’b) monoid_scheme => ’a => ’a" ("invı _" [81] 80)
"inv x == (THE y. y ∈ carrier G & x ⊗ y = 1 & y ⊗ x = 1)"

Units :: "_ => ’a set"
— The set of invertible elements

40

"Units G == {y. y ∈ carrier G & (∃ x ∈ carrier G. x ⊗ y = 1 & y ⊗ x
= 1)}"

consts
pow :: "[(’a, ’m) monoid_scheme, ’a, ’b::number] => ’a" (infixr "’(^’)ı "

75)

defs (overloaded)
nat_pow_def: "pow G a n == nat_rec 1G (%u b. b ⊗G a) n"
int_pow_def: "pow G a z ==
let p = nat_rec 1G (%u b. b ⊗G a)
in if neg z then invG (p (nat (-z))) else p (nat z)"

locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:

"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"
and m_assoc:

"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

lemma monoidI:
fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and r_one: "!!x. x ∈ carrier G ==> x ⊗ 1 = x"

shows "monoid G"
by (fast intro!: monoid.intro intro: assms)

lemma (in monoid) Units_closed [dest]:
"x ∈ Units G ==> x ∈ carrier G"
by (unfold Units_def) fast

lemma (in monoid) inv_unique:
assumes eq: "y ⊗ x = 1" "x ⊗ y’ = 1"

and G: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"
shows "y = y’"

proof -
from G eq have "y = y ⊗ (x ⊗ y’)" by simp
also from G have "... = (y ⊗ x) ⊗ y’" by (simp add: m_assoc)

41

also from G eq have "... = y’" by simp
finally show ?thesis .

qed

lemma (in monoid) Units_m_closed [intro, simp]:
assumes x: "x ∈ Units G" and y: "y ∈ Units G"
shows "x ⊗ y ∈ Units G"

proof -
from x obtain x’ where x: "x ∈ carrier G" "x’ ∈ carrier G" and xinv:

"x ⊗ x’ = 1" "x’ ⊗ x = 1"
unfolding Units_def by fast

from y obtain y’ where y: "y ∈ carrier G" "y’ ∈ carrier G" and yinv:
"y ⊗ y’ = 1" "y’ ⊗ y = 1"

unfolding Units_def by fast
from x y xinv yinv have "y’ ⊗ (x’ ⊗ x) ⊗ y = 1" by simp
moreover from x y xinv yinv have "x ⊗ (y ⊗ y’) ⊗ x’ = 1" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def

— Must avoid premature use of hyp_subst_tac.
apply (rule_tac CollectI)
apply (rule)
apply (fast)
apply (rule bexI [where x = "y’ ⊗ x’"])
apply (auto simp: m_assoc)
done

qed

lemma (in monoid) Units_one_closed [intro, simp]:
"1 ∈ Units G"
by (unfold Units_def) auto

lemma (in monoid) Units_inv_closed [intro, simp]:
"x ∈ Units G ==> inv x ∈ carrier G"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_l_inv_ex:
"x ∈ Units G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_r_inv_ex:
"x ∈ Units G ==> ∃ y ∈ carrier G. x ⊗ y = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_l_inv [simp]:
"x ∈ Units G ==> inv x ⊗ x = 1"
apply (unfold Units_def m_inv_def, auto)

42

apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_r_inv [simp]:
"x ∈ Units G ==> x ⊗ inv x = 1"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_inv_Units [intro, simp]:
"x ∈ Units G ==> inv x ∈ Units G"

proof -
assume x: "x ∈ Units G"
show "inv x ∈ Units G"

by (auto simp add: Units_def
intro: Units_l_inv Units_r_inv x Units_closed [OF x])

qed

lemma (in monoid) Units_l_cancel [simp]:
"[| x ∈ Units G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"

proof
assume eq: "x ⊗ y = x ⊗ z"

and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
then have "(inv x ⊗ x) ⊗ y = (inv x ⊗ x) ⊗ z"

by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by (simp add: Units_l_inv)

next
assume eq: "y = z"

and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
then show "x ⊗ y = x ⊗ z" by simp

qed

lemma (in monoid) Units_inv_inv [simp]:
"x ∈ Units G ==> inv (inv x) = x"

proof -
assume x: "x ∈ Units G"
then have "inv x ⊗ inv (inv x) = inv x ⊗ x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)

qed

lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"

proof (rule inj_onI)
fix x y
assume G: "x ∈ Units G" "y ∈ Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp

43

with G show "x = y" by simp
qed

lemma (in monoid) Units_inv_comm:
assumes inv: "x ⊗ y = 1"

and G: "x ∈ Units G" "y ∈ Units G"
shows "y ⊗ x = 1"

proof -
from G have "x ⊗ y ⊗ x = x ⊗ 1" by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)

qed

Power

lemma (in monoid) nat_pow_closed [intro, simp]:
"x ∈ carrier G ==> x (^) (n::nat) ∈ carrier G"
by (induct n) (simp_all add: nat_pow_def)

lemma (in monoid) nat_pow_0 [simp]:
"x (^) (0::nat) = 1"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_Suc [simp]:
"x (^) (Suc n) = x (^) n ⊗ x"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_one [simp]:
"1 (^) (n::nat) = 1"
by (induct n) simp_all

lemma (in monoid) nat_pow_mult:
"x ∈ carrier G ==> x (^) (n::nat) ⊗ x (^) m = x (^) (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])

lemma (in monoid) nat_pow_pow:
"x ∈ carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
by (induct m) (simp, simp add: nat_pow_mult add_commute)

3.2 Groups

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes Units: "carrier G <= Units G"

lemma (in group) is_group: "group G" by (rule group_axioms)

theorem groupI:
fixes G (structure)
assumes m_closed [simp]:

44

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed [simp]: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one [simp]: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"

shows "group G"
proof -

have l_cancel [simp]:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"

proof
fix x y z
assume eq: "x ⊗ y = x ⊗ z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"

and l_inv: "x_inv ⊗ x = 1" by fast
from G eq xG have "(x_inv ⊗ x) ⊗ y = (x_inv ⊗ x) ⊗ z"

by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)

next
fix x y z
assume eq: "y = z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then show "x ⊗ y = x ⊗ z" by simp

qed
have r_one:
"!!x. x ∈ carrier G ==> x ⊗ 1 = x"

proof -
fix x
assume x: "x ∈ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"

and l_inv: "x_inv ⊗ x = 1" by fast
from x xG have "x_inv ⊗ (x ⊗ 1) = x_inv ⊗ x"

by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x ⊗ 1 = x" by simp

qed
have inv_ex:
"!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

proof -
fix x
assume x: "x ∈ carrier G"
with l_inv_ex obtain y where y: "y ∈ carrier G"

and l_inv: "y ⊗ x = 1" by fast
from x y have "y ⊗ (x ⊗ y) = y ⊗ 1"

by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x ⊗ y = 1"

45

by simp
from x y show "∃ y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

by (fast intro: l_inv r_inv)
qed
then have carrier_subset_Units: "carrier G <= Units G"

by (unfold Units_def) fast
show ?thesis proof qed (auto simp: r_one m_assoc carrier_subset_Units)

qed

lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"

shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)

lemma (in group) Units_eq [simp]:
"Units G = carrier G"

proof
show "Units G <= carrier G" by fast

next
show "carrier G <= Units G" by (rule Units)

qed

lemma (in group) inv_closed [intro, simp]:
"x ∈ carrier G ==> inv x ∈ carrier G"
using Units_inv_closed by simp

lemma (in group) l_inv_ex [simp]:
"x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
using Units_l_inv_ex by simp

lemma (in group) r_inv_ex [simp]:
"x ∈ carrier G ==> ∃ y ∈ carrier G. x ⊗ y = 1"
using Units_r_inv_ex by simp

lemma (in group) l_inv [simp]:
"x ∈ carrier G ==> inv x ⊗ x = 1"
using Units_l_inv by simp

3.3 Cancellation Laws and Basic Properties

lemma (in group) l_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"

using Units_l_inv by simp

lemma (in group) r_inv [simp]:
"x ∈ carrier G ==> x ⊗ inv x = 1"

proof -

46

assume x: "x ∈ carrier G"
then have "inv x ⊗ (x ⊗ inv x) = inv x ⊗ 1"

by (simp add: m_assoc [symmetric] l_inv)
with x show ?thesis by (simp del: r_one)

qed

lemma (in group) r_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(y ⊗ x = z ⊗ x) = (y = z)"

proof
assume eq: "y ⊗ x = z ⊗ x"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then have "y ⊗ (x ⊗ inv x) = z ⊗ (x ⊗ inv x)"

by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)
with G show "y = z" by simp

next
assume eq: "y = z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then show "y ⊗ x = z ⊗ x" by simp

qed

lemma (in group) inv_one [simp]:
"inv 1 = 1"

proof -
have "inv 1 = 1 ⊗ (inv 1)" by (simp del: r_inv Units_r_inv)
moreover have "... = 1" by simp
finally show ?thesis .

qed

lemma (in group) inv_inv [simp]:
"x ∈ carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp

lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp

lemma (in group) inv_mult_group:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv y ⊗ inv x"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"

by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric])
with G show ?thesis by (simp del: l_inv Units_l_inv)

qed

lemma (in group) inv_comm:
"[| x ⊗ y = 1; x ∈ carrier G; y ∈ carrier G |] ==> y ⊗ x = 1"
by (rule Units_inv_comm) auto

47

lemma (in group) inv_equality:
"[|y ⊗ x = 1; x ∈ carrier G; y ∈ carrier G|] ==> inv x = y"

apply (simp add: m_inv_def)
apply (rule the_equality)
apply (simp add: inv_comm [of y x])

apply (rule r_cancel [THEN iffD1], auto)
done

Power

lemma (in group) int_pow_def2:
"a (^) (z::int) = (if neg z then inv (a (^) (nat (-z))) else a (^) (nat

z))"
by (simp add: int_pow_def nat_pow_def Let_def)

lemma (in group) int_pow_0 [simp]:
"x (^) (0::int) = 1"
by (simp add: int_pow_def2)

lemma (in group) int_pow_one [simp]:
"1 (^) (z::int) = 1"
by (simp add: int_pow_def2)

3.4 Subgroups

locale subgroup =
fixes H and G (structure)
assumes subset: "H ⊆ carrier G"

and m_closed [intro, simp]: "[[x ∈ H; y ∈ H]] =⇒ x ⊗ y ∈ H"
and one_closed [simp]: "1 ∈ H"
and m_inv_closed [intro,simp]: "x ∈ H =⇒ inv x ∈ H"

lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:
"x ∈ H =⇒ x ∈ carrier G"
using subset by blast

lemma subgroup_imp_subset:
"subgroup H G =⇒ H ⊆ carrier G"
by (rule subgroup.subset)

lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G(|carrier := H|))"

proof -

48

interpret group G by fact
show ?thesis

apply (rule monoid.group_l_invI)
apply (unfold_locales) [1]
apply (auto intro: m_assoc l_inv mem_carrier)
done

qed

Since H is nonempty, it contains some element x. Since it is closed under
inverse, it contains inv x. Since it is closed under product, it contains x ⊗
inv x = 1.

lemma (in group) one_in_subset:
"[| H ⊆ carrier G; H 6= {}; ∀ a ∈ H. inv a ∈ H; ∀ a∈H. ∀ b∈H. a ⊗ b

∈ H |]
==> 1 ∈ H"

by (force simp add: l_inv)

A characterization of subgroups: closed, non-empty subset.

lemma (in group) subgroupI:
assumes subset: "H ⊆ carrier G" and non_empty: "H 6= {}"

and inv: "!!a. a ∈ H =⇒ inv a ∈ H"
and mult: "!!a b. [[a ∈ H; b ∈ H]] =⇒ a ⊗ b ∈ H"

shows "subgroup H G"
proof (simp add: subgroup_def assms)

show "1 ∈ H" by (rule one_in_subset) (auto simp only: assms)
qed

declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
"~ subgroup {} G"
by (blast dest: subgroup.one_closed)

lemma (in subgroup) finite_imp_card_positive:
"finite (carrier G) ==> 0 < card H"

proof (rule classical)
assume "finite (carrier G)" "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with prems have "subgroup {} G" by simp
with subgroup_nonempty show ?thesis by contradiction

qed

3.5 Direct Products

constdefs
DirProd :: "_ ⇒ _ ⇒ (’a × ’b) monoid" (infixr "××" 80)
"G ×× H ≡ (|carrier = carrier G × carrier H,

mult = (λ(g, h) (g’, h’). (g ⊗G g’, h ⊗H h’)),

49

one = (1G, 1H)|)"

lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G ×× H)"

proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)

qed

Does not use the previous result because it’s easier just to use auto.

lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G ×× H)"

proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)

(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)

qed

lemma carrier_DirProd [simp]:
"carrier (G ×× H) = carrier G × carrier H"

by (simp add: DirProd_def)

lemma one_DirProd [simp]:
"1G ×× H = (1G, 1H)"

by (simp add: DirProd_def)

lemma mult_DirProd [simp]:
"(g, h) ⊗(G ×× H) (g’, h’) = (g ⊗G g’, h ⊗H h’)"

by (simp add: DirProd_def)

lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g ∈ carrier G"

and h: "h ∈ carrier H"
shows "m_inv (G ×× H) (g, h) = (invG g, invH h)"

proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G ×× H"

by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)

qed

50

3.6 Homomorphisms and Isomorphisms

constdefs (structure G and H)
hom :: "_ => _ => (’a => ’b) set"
"hom G H ==
{h. h ∈ carrier G -> carrier H &
(∀ x ∈ carrier G. ∀ y ∈ carrier G. h (x ⊗G y) = h x ⊗H h y)}"

lemma (in group) hom_compose:
"[|h ∈ hom G H; i ∈ hom H I|] ==> compose (carrier G) i h ∈ hom

G I"
apply (auto simp add: hom_def funcset_compose)
apply (simp add: compose_def funcset_mem)
done

constdefs
iso :: "_ => _ => (’a => ’b) set" (infixr "∼=" 60)
"G ∼= H == {h. h ∈ hom G H & bij_betw h (carrier G) (carrier H)}"

lemma iso_refl: "(%x. x) ∈ G ∼= G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma (in group) iso_sym:
"h ∈ G ∼= H =⇒ Inv (carrier G) h ∈ H ∼= G"

apply (simp add: iso_def bij_betw_Inv)
apply (subgoal_tac "Inv (carrier G) h ∈ carrier H → carrier G")
prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_Inv])

apply (simp add: hom_def bij_betw_def Inv_f_eq funcset_mem f_Inv_f)
done

lemma (in group) iso_trans:
"[|h ∈ G ∼= H; i ∈ H ∼= I|] ==> (compose (carrier G) i h) ∈ G ∼= I"

by (auto simp add: iso_def hom_compose bij_betw_compose)

lemma DirProd_commute_iso:
shows "(λ(x,y). (y,x)) ∈ (G ×× H) ∼= (H ×× G)"

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma DirProd_assoc_iso:
shows "(λ(x,y,z). (x,(y,z))) ∈ (G ×× H ×× I) ∼= (G ×× (H ×× I))"

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

Basis for homomorphism proofs: we assume two groups G and H, with a
homomorphism h between them
locale group_hom = G: group G + H: group H for G (structure) and H (struc-
ture) +

fixes h
assumes homh: "h ∈ hom G H"

lemma (in group_hom) hom_mult [simp]:

51

"[| x ∈ carrier G; y ∈ carrier G |] ==> h (x ⊗G y) = h x ⊗H h y"
proof -

assume "x ∈ carrier G" "y ∈ carrier G"
with homh [unfolded hom_def] show ?thesis by simp

qed

lemma (in group_hom) hom_closed [simp]:
"x ∈ carrier G ==> h x ∈ carrier H"

proof -
assume "x ∈ carrier G"
with homh [unfolded hom_def] show ?thesis by (auto simp add: funcset_mem)

qed

lemma (in group_hom) one_closed [simp]:
"h 1 ∈ carrier H"
by simp

lemma (in group_hom) hom_one [simp]:
"h 1 = 1H"

proof -
have "h 1 ⊗H 1H = h 1 ⊗H h 1"

by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis by (simp del: r_one)

qed

lemma (in group_hom) inv_closed [simp]:
"x ∈ carrier G ==> h (inv x) ∈ carrier H"
by simp

lemma (in group_hom) hom_inv [simp]:
"x ∈ carrier G ==> h (inv x) = invH (h x)"

proof -
assume x: "x ∈ carrier G"
then have "h x ⊗H h (inv x) = 1H"

by (simp add: hom_mult [symmetric] del: hom_mult)
also from x have "... = h x ⊗H invH (h x)"

by (simp add: hom_mult [symmetric] del: hom_mult)
finally have "h x ⊗H h (inv x) = h x ⊗H invH (h x)" .
with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)

qed

3.7 Commutative Structures

Naming convention: multiplicative structures that are commutative are
called commutative, additive structures are called Abelian.

locale comm_monoid = monoid +
assumes m_comm: "[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y = y ⊗ x"

lemma (in comm_monoid) m_lcomm:

52

"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
x ⊗ (y ⊗ z) = y ⊗ (x ⊗ z)"

proof -
assume xyz: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
from xyz have "x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z" by (simp add: m_assoc)
also from xyz have "... = (y ⊗ x) ⊗ z" by (simp add: m_comm)
also from xyz have "... = y ⊗ (x ⊗ z)" by (simp add: m_assoc)
finally show ?thesis .

qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

lemma comm_monoidI:
fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and m_comm:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

shows "comm_monoid G"
using l_one

by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro

intro: assms simp: m_closed one_closed m_comm)

lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)

lemma (in comm_monoid) nat_pow_distr:
"[| x ∈ carrier G; y ∈ carrier G |] ==>
(x ⊗ y) (^) (n::nat) = x (^) n ⊗ y (^) n"
by (induct n) (simp, simp add: m_ac)

locale comm_group = comm_monoid + group

lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==>

x ⊗ y = y ⊗ x"
shows "comm_group G"

53

proof qed (simp_all add: m_comm)

lemma comm_groupI:
fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and m_comm:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"

shows "comm_group G"
by (fast intro: group.group_comm_groupI groupI assms)

lemma (in comm_group) inv_mult:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv x ⊗ inv y"
by (simp add: m_ac inv_mult_group)

3.8 The Lattice of Subgroups of a Group

theorem (in group) subgroups_partial_order:
"partial_order (| carrier = {H. subgroup H G}, eq = op =, le = op ⊆

|)"
proof qed simp_all

lemma (in group) subgroup_self:
"subgroup (carrier G) G"
by (rule subgroupI) auto

lemma (in group) subgroup_imp_group:
"subgroup H G ==> group (G(| carrier := H |))"
by (erule subgroup.subgroup_is_group) (rule group_axioms)

lemma (in group) is_monoid [intro, simp]:
"monoid G"
by (auto intro: monoid.intro m_assoc)

lemma (in group) subgroup_inv_equality:
"[| subgroup H G; x ∈ H |] ==> m_inv (G (| carrier := H |)) x = inv

x"
apply (rule_tac inv_equality [THEN sym])

apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
apply (rule subsetD [OF subgroup.subset], assumption+)

apply (rule subsetD [OF subgroup.subset], assumption)
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified],

54

assumption+)
done

theorem (in group) subgroups_Inter:
assumes subgr: "(!!H. H ∈ A ==> subgroup H G)"

and not_empty: "A ~= {}"
shows "subgroup (

⋂
A) G"

proof (rule subgroupI)
from subgr [THEN subgroup.subset] and not_empty
show "

⋂
A ⊆ carrier G" by blast

next
from subgr [THEN subgroup.one_closed]
show "

⋂
A ~= {}" by blast

next
fix x assume "x ∈

⋂
A"

with subgr [THEN subgroup.m_inv_closed]
show "inv x ∈

⋂
A" by blast

next
fix x y assume "x ∈

⋂
A" "y ∈

⋂
A"

with subgr [THEN subgroup.m_closed]
show "x ⊗ y ∈

⋂
A" by blast

qed

theorem (in group) subgroups_complete_lattice:
"complete_lattice (| carrier = {H. subgroup H G}, eq = op =, le = op

⊆ |)"
(is "complete_lattice ?L")

proof (rule partial_order.complete_lattice_criterion1)
show "partial_order ?L" by (rule subgroups_partial_order)

next
show "∃ G. greatest ?L G (carrier ?L)"
proof

show "greatest ?L (carrier G) (carrier ?L)"
by (unfold greatest_def)
(simp add: subgroup.subset subgroup_self)

qed
next

fix A
assume L: "A ⊆ carrier ?L" and non_empty: "A ~= {}"
then have Int_subgroup: "subgroup (

⋂
A) G"

by (fastsimp intro: subgroups_Inter)
show "∃ I. greatest ?L I (Lower ?L A)"
proof

show "greatest ?L (
⋂
A) (Lower ?L A)"

(is "greatest _ ?Int _")
proof (rule greatest_LowerI)

fix H
assume H: "H ∈ A"
with L have subgroupH: "subgroup H G" by auto

55

from subgroupH have groupH: "group (G (| carrier := H |))" (is "group
?H")

by (rule subgroup_imp_group)
from groupH have monoidH: "monoid ?H"

by (rule group.is_monoid)
from H have Int_subset: "?Int ⊆ H" by fastsimp
then show "le ?L ?Int H" by simp

next
fix H
assume H: "H ∈ Lower ?L A"
with L Int_subgroup show "le ?L H ?Int"

by (fastsimp simp: Lower_def intro: Inter_greatest)
next

show "A ⊆ carrier ?L" by (rule L)
next

show "?Int ∈ carrier ?L" by simp (rule Int_subgroup)
qed

qed
qed

end

theory FiniteProduct imports Group begin

3.9 Product Operator for Commutative Monoids

3.9.1 Inductive Definition of a Relation for Products over Sets

Instantiation of locale LC of theory Finite_Set is not possible, because here
we have explicit typing rules like x ∈ carrier G. We introduce an explicit
argument for the domain D.

inductive set
foldSetD :: "[’a set, ’b => ’a => ’a, ’a] => (’b set * ’a) set"
for D :: "’a set" and f :: "’b => ’a => ’a" and e :: ’a
where
emptyI [intro]: "e ∈ D ==> ({}, e) ∈ foldSetD D f e"

| insertI [intro]: "[| x ~: A; f x y ∈ D; (A, y) ∈ foldSetD D f e |]
==>

(insert x A, f x y) ∈ foldSetD D f e"

inductive cases empty_foldSetDE [elim!]: "({}, x) ∈ foldSetD D f e"

constdefs
foldD :: "[’a set, ’b => ’a => ’a, ’a, ’b set] => ’a"
"foldD D f e A == THE x. (A, x) ∈ foldSetD D f e"

lemma foldSetD_closed:

56

"[| (A, z) ∈ foldSetD D f e ; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==>
f x y ∈ D

|] ==> z ∈ D"
by (erule foldSetD.cases) auto

lemma Diff1_foldSetD:
"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; f x y ∈ D |] ==>
(A, f x y) ∈ foldSetD D f e"

apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
apply auto

done

lemma foldSetD_imp_finite [simp]: "(A, x) ∈ foldSetD D f e ==> finite
A"

by (induct set: foldSetD) auto

lemma finite_imp_foldSetD:
"[| finite A; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==> f x y ∈ D |] ==>
EX x. (A, x) ∈ foldSetD D f e"

proof (induct set: finite)
case empty then show ?case by auto

next
case (insert x F)
then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto
with insert have "y ∈ D" by (auto dest: foldSetD_closed)
with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"

by (intro foldSetD.intros) auto
then show ?case ..

qed

Left-Commutative Operations

locale LCD =
fixes B :: "’b set"
and D :: "’a set"
and f :: "’b => ’a => ’a" (infixl "·" 70)
assumes left_commute:
"[| x ∈ B; y ∈ B; z ∈ D |] ==> x · (y · z) = y · (x · z)"

and f_closed [simp, intro!]: "!!x y. [| x ∈ B; y ∈ D |] ==> f x y ∈
D"

lemma (in LCD) foldSetD_closed [dest]:
"(A, z) ∈ foldSetD D f e ==> z ∈ D"
by (erule foldSetD.cases) auto

lemma (in LCD) Diff1_foldSetD:
"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; A ⊆ B |] ==>
(A, f x y) ∈ foldSetD D f e"
apply (subgoal_tac "x ∈ B")
prefer 2 apply fast

57

apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
apply auto

done

lemma (in LCD) foldSetD_imp_finite [simp]:
"(A, x) ∈ foldSetD D f e ==> finite A"
by (induct set: foldSetD) auto

lemma (in LCD) finite_imp_foldSetD:
"[| finite A; A ⊆ B; e ∈ D |] ==> EX x. (A, x) ∈ foldSetD D f e"

proof (induct set: finite)
case empty then show ?case by auto

next
case (insert x F)
then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto
with insert have "y ∈ D" by auto
with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"

by (intro foldSetD.intros) auto
then show ?case ..

qed

lemma (in LCD) foldSetD_determ_aux:
"e ∈ D ==> ∀ A x. A ⊆ B & card A < n --> (A, x) ∈ foldSetD D f e -->

(∀ y. (A, y) ∈ foldSetD D f e --> y = x)"
apply (induct n)
apply (auto simp add: less_Suc_eq)

apply (erule foldSetD.cases)
apply blast

apply (erule foldSetD.cases)
apply blast

apply clarify

force simplification of card A < card (insert ...).

apply (erule rev_mp)
apply (simp add: less_Suc_eq_le)
apply (rule impI)
apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb")
apply (subgoal_tac "Aa = Ab")
prefer 2 apply (blast elim!: equalityE)

apply blast

case xa /∈ xb.

apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb ∈ Aa & xa ∈ Ab")
prefer 2 apply (blast elim!: equalityE)

apply clarify
apply (subgoal_tac "Aa = insert xb Ab - {xa}")
prefer 2 apply blast

apply (subgoal_tac "card Aa ≤ card Ab")
prefer 2

58

apply (rule Suc_le_mono [THEN subst])
apply (simp add: card_Suc_Diff1)

apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
apply (blast intro: foldSetD_imp_finite finite_Diff)

apply best
apply assumption

apply (frule (1) Diff1_foldSetD)
apply best

apply (subgoal_tac "ya = f xb x")
prefer 2
apply (subgoal_tac "Aa ⊆ B")
prefer 2 apply best

apply (blast del: equalityCE)
apply (subgoal_tac "(Ab - {xa}, x) ∈ foldSetD D f e")
prefer 2 apply simp

apply (subgoal_tac "yb = f xa x")
prefer 2
apply (blast del: equalityCE dest: Diff1_foldSetD)

apply (simp (no_asm_simp))
apply (rule left_commute)

apply assumption
apply best

apply best
done

lemma (in LCD) foldSetD_determ:
"[| (A, x) ∈ foldSetD D f e; (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B

|]
==> y = x"
by (blast intro: foldSetD_determ_aux [rule_format])

lemma (in LCD) foldD_equality:
"[| (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B |] ==> foldD D f e A = y"
by (unfold foldD_def) (blast intro: foldSetD_determ)

lemma foldD_empty [simp]:
"e ∈ D ==> foldD D f e {} = e"
by (unfold foldD_def) blast

lemma (in LCD) foldD_insert_aux:
"[| x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==>
((insert x A, v) ∈ foldSetD D f e) =
(EX y. (A, y) ∈ foldSetD D f e & v = f x y)"

apply auto
apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE])

apply (fastsimp dest: foldSetD_imp_finite)
apply assumption

apply assumption
apply (blast intro: foldSetD_determ)

59

done

lemma (in LCD) foldD_insert:
"[| finite A; x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==>
foldD D f e (insert x A) = f x (foldD D f e A)"

apply (unfold foldD_def)
apply (simp add: foldD_insert_aux)
apply (rule the_equality)
apply (auto intro: finite_imp_foldSetD
cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality)

done

lemma (in LCD) foldD_closed [simp]:
"[| finite A; e ∈ D; A ⊆ B |] ==> foldD D f e A ∈ D"

proof (induct set: finite)
case empty then show ?case by (simp add: foldD_empty)

next
case insert then show ?case by (simp add: foldD_insert)

qed

lemma (in LCD) foldD_commute:
"[| finite A; x ∈ B; e ∈ D; A ⊆ B |] ==>
f x (foldD D f e A) = foldD D f (f x e) A"

apply (induct set: finite)
apply simp

apply (auto simp add: left_commute foldD_insert)
done

lemma Int_mono2:
"[| A ⊆ C; B ⊆ C |] ==> A Int B ⊆ C"
by blast

lemma (in LCD) foldD_nest_Un_Int:
"[| finite A; finite C; e ∈ D; A ⊆ B; C ⊆ B |] ==>
foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A

Un C)"
apply (induct set: finite)
apply simp

apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb
Int_mono2 Un_subset_iff)

done

lemma (in LCD) foldD_nest_Un_disjoint:
"[| finite A; finite B; A Int B = {}; e ∈ D; A ⊆ B; C ⊆ B |]

==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
by (simp add: foldD_nest_Un_Int)

— Delete rules to do with foldSetD relation.

60

declare foldSetD_imp_finite [simp del]
empty_foldSetDE [rule del]
foldSetD.intros [rule del]

declare (in LCD)
foldSetD_closed [rule del]

Commutative Monoids

We enter a more restrictive context, with f :: ’a => ’a => ’a instead of ’b
=> ’a => ’a.

locale ACeD =
fixes D :: "’a set"

and f :: "’a => ’a => ’a" (infixl "·" 70)
and e :: ’a

assumes ident [simp]: "x ∈ D ==> x · e = x"
and commute: "[| x ∈ D; y ∈ D |] ==> x · y = y · x"
and assoc: "[| x ∈ D; y ∈ D; z ∈ D |] ==> (x · y) · z = x · (y · z)"
and e_closed [simp]: "e ∈ D"
and f_closed [simp]: "[| x ∈ D; y ∈ D |] ==> x · y ∈ D"

lemma (in ACeD) left_commute:
"[| x ∈ D; y ∈ D; z ∈ D |] ==> x · (y · z) = y · (x · z)"

proof -
assume D: "x ∈ D" "y ∈ D" "z ∈ D"
then have "x · (y · z) = (y · z) · x" by (simp add: commute)
also from D have "... = y · (z · x)" by (simp add: assoc)
also from D have "z · x = x · z" by (simp add: commute)
finally show ?thesis .

qed

lemmas (in ACeD) AC = assoc commute left_commute

lemma (in ACeD) left_ident [simp]: "x ∈ D ==> e · x = x"
proof -

assume "x ∈ D"
then have "x · e = x" by (rule ident)
with ‘x ∈ D‘ show ?thesis by (simp add: commute)

qed

lemma (in ACeD) foldD_Un_Int:
"[| finite A; finite B; A ⊆ D; B ⊆ D |] ==>
foldD D f e A · foldD D f e B =
foldD D f e (A Un B) · foldD D f e (A Int B)"

apply (induct set: finite)
apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])

apply (simp add: AC insert_absorb Int_insert_left
LCD.foldD_insert [OF LCD.intro [of D]]
LCD.foldD_closed [OF LCD.intro [of D]]
Int_mono2 Un_subset_iff)

61

done

lemma (in ACeD) foldD_Un_disjoint:
"[| finite A; finite B; A Int B = {}; A ⊆ D; B ⊆ D |] ==>
foldD D f e (A Un B) = foldD D f e A · foldD D f e B"

by (simp add: foldD_Un_Int
left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff)

3.9.2 Products over Finite Sets

constdefs (structure G)
finprod :: "[(’b, ’m) monoid_scheme, ’a => ’b, ’a set] => ’b"
"finprod G f A == if finite A

then foldD (carrier G) (mult G o f) 1 A
else undefined"

syntax
"_finprod" :: "index => idt => ’a set => ’b => ’b"

("(3
⊗

__:_. _)" [1000, 0, 51, 10] 10)
syntax (xsymbols)

"_finprod" :: "index => idt => ’a set => ’b => ’b"
("(3

⊗
__∈_. _)" [1000, 0, 51, 10] 10)

syntax (HTML output)
"_finprod" :: "index => idt => ’a set => ’b => ’b"

("(3
⊗

__∈_. _)" [1000, 0, 51, 10] 10)
translations
"
⊗

ı i:A. b" == "finprod �ı (%i. b) A"
— Beware of argument permutation!

lemma (in comm_monoid) finprod_empty [simp]:
"finprod G f {} = 1"
by (simp add: finprod_def)

declare funcsetI [intro]
funcset_mem [dest]

context comm_monoid begin

lemma finprod_insert [simp]:
"[| finite F; a /∈ F; f ∈ F -> carrier G; f a ∈ carrier G |] ==>
finprod G f (insert a F) = f a ⊗ finprod G f F"

apply (rule trans)
apply (simp add: finprod_def)

apply (rule trans)
apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])

apply simp
apply (rule m_lcomm)

apply fast
apply fast

62

apply assumption
apply (fastsimp intro: m_closed)

apply simp+
apply fast

apply (auto simp add: finprod_def)
done

lemma finprod_one [simp]:
"finite A ==> (

⊗
i:A. 1) = 1"

proof (induct set: finite)
case empty show ?case by simp

next
case (insert a A)
have "(%i. 1) ∈ A -> carrier G" by auto
with insert show ?case by simp

qed

lemma finprod_closed [simp]:
fixes A
assumes fin: "finite A" and f: "f ∈ A -> carrier G"
shows "finprod G f A ∈ carrier G"

using fin f
proof induct

case empty show ?case by simp
next

case (insert a A)
then have a: "f a ∈ carrier G" by fast
from insert have A: "f ∈ A -> carrier G" by fast
from insert A a show ?case by simp

qed

lemma funcset_Int_left [simp, intro]:
"[| f ∈ A -> C; f ∈ B -> C |] ==> f ∈ A Int B -> C"
by fast

lemma funcset_Un_left [iff]:
"(f ∈ A Un B -> C) = (f ∈ A -> C & f ∈ B -> C)"
by fast

lemma finprod_Un_Int:
"[| finite A; finite B; g ∈ A -> carrier G; g ∈ B -> carrier G |] ==>

finprod G g (A Un B) ⊗ finprod G g (A Int B) =
finprod G g A ⊗ finprod G g B"

— The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)

case empty then show ?case by (simp add: finprod_closed)
next

case (insert a A)
then have a: "g a ∈ carrier G" by fast

63

from insert have A: "g ∈ A -> carrier G" by fast
from insert A a show ?case

by (simp add: m_ac Int_insert_left insert_absorb finprod_closed
Int_mono2 Un_subset_iff)

qed

lemma finprod_Un_disjoint:
"[| finite A; finite B; A Int B = {};

g ∈ A -> carrier G; g ∈ B -> carrier G |]
==> finprod G g (A Un B) = finprod G g A ⊗ finprod G g B"

apply (subst finprod_Un_Int [symmetric])
apply (auto simp add: finprod_closed)

done

lemma finprod_multf:
"[| finite A; f ∈ A -> carrier G; g ∈ A -> carrier G |] ==>
finprod G (%x. f x ⊗ g x) A = (finprod G f A ⊗ finprod G g A)"

proof (induct set: finite)
case empty show ?case by simp

next
case (insert a A) then
have fA: "f ∈ A -> carrier G" by fast
from insert have fa: "f a ∈ carrier G" by fast
from insert have gA: "g ∈ A -> carrier G" by fast
from insert have ga: "g a ∈ carrier G" by fast
from insert have fgA: "(%x. f x ⊗ g x) ∈ A -> carrier G"

by (simp add: Pi_def)
show ?case

by (simp add: insert fA fa gA ga fgA m_ac)
qed

lemma finprod_cong’:
"[| A = B; g ∈ B -> carrier G;

!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"
proof -

assume prems: "A = B" "g ∈ B -> carrier G"
"!!i. i ∈ B ==> f i = g i"

show ?thesis
proof (cases "finite B")

case True
then have "!!A. [| A = B; g ∈ B -> carrier G;
!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"

proof induct
case empty thus ?case by simp

next
case (insert x B)
then have "finprod G f A = finprod G f (insert x B)" by simp
also from insert have "... = f x ⊗ finprod G f B"
proof (intro finprod_insert)

64

show "finite B" by fact
next

show "x ~: B" by fact
next

assume "x ~: B" "!!i. i ∈ insert x B =⇒ f i = g i"
"g ∈ insert x B → carrier G"

thus "f ∈ B -> carrier G" by fastsimp
next

assume "x ~: B" "!!i. i ∈ insert x B =⇒ f i = g i"
"g ∈ insert x B → carrier G"

thus "f x ∈ carrier G" by fastsimp
qed
also from insert have "... = g x ⊗ finprod G g B" by fastsimp
also from insert have "... = finprod G g (insert x B)"
by (intro finprod_insert [THEN sym]) auto
finally show ?case .

qed
with prems show ?thesis by simp

next
case False with prems show ?thesis by (simp add: finprod_def)

qed
qed

lemma finprod_cong:
"[| A = B; f ∈ B -> carrier G = True;

!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"

by (rule finprod_cong’) force+

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g ∈ B -> carrier G cannot be shown. Adding Pi_def to the
simpset is often useful. For this reason, comm_monoid.finprod_cong is not
added to the simpset by default.

end

declare funcsetI [rule del]
funcset_mem [rule del]

context comm_monoid begin

lemma finprod_0 [simp]:
"f ∈ {0::nat} -> carrier G ==> finprod G f {..0} = f 0"

by (simp add: Pi_def)

lemma finprod_Suc [simp]:
"f ∈ {..Suc n} -> carrier G ==>
finprod G f {..Suc n} = (f (Suc n) ⊗ finprod G f {..n})"

by (simp add: Pi_def atMost_Suc)

65

lemma finprod_Suc2:
"f ∈ {..Suc n} -> carrier G ==>
finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} ⊗ f 0)"

proof (induct n)
case 0 thus ?case by (simp add: Pi_def)

next
case Suc thus ?case by (simp add: m_assoc Pi_def)

qed

lemma finprod_mult [simp]:
"[| f ∈ {..n} -> carrier G; g ∈ {..n} -> carrier G |] ==>

finprod G (%i. f i ⊗ g i) {..n::nat} =
finprod G f {..n} ⊗ finprod G g {..n}"

by (induct n) (simp_all add: m_ac Pi_def)

lemma finprod_reindex:
assumes fin: "finite A"

shows "f : (h ‘ A) → carrier G =⇒
inj_on h A ==> finprod G f (h ‘ A) = finprod G (%x. f (h x)) A"

using fin apply induct
apply (auto simp add: finprod_insert Pi_def)

done

lemma finprod_const:
assumes fin [simp]: "finite A"

and a [simp]: "a : carrier G"
shows "finprod G (%x. a) A = a (^) card A"

using fin apply induct
apply force
apply (subst finprod_insert)
apply auto
apply (force simp add: Pi_def)
apply (subst m_comm)
apply auto

done

lemma finprod_singleton:
assumes i_in_A: "i ∈ A" and fin_A: "finite A" and f_Pi: "f ∈ A →

carrier G"
shows "(

⊗
j∈A. if i = j then f j else 1) = f i"

using i_in_A finprod_insert [of "A - {i}" i "(λj. if i = j then f j
else 1)"]

fin_A f_Pi finprod_one [of "A - {i}"]
finprod_cong [of "A - {i}" "A - {i}" "(λj. if i = j then f j else

1)" "(λi. 1)"]

66

unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)

end

end

theory Coset imports Group begin

4 Cosets and Quotient Groups

constdefs (structure G)
r_coset :: "[_, ’a set, ’a] ⇒ ’a set" (infixl "#>ı " 60)
"H #> a ≡

⋃
h∈H. {h ⊗ a}"

l_coset :: "[_, ’a, ’a set] ⇒ ’a set" (infixl "<#ı " 60)
"a <# H ≡

⋃
h∈H. {a ⊗ h}"

RCOSETS :: "[_, ’a set] ⇒ (’a set)set" ("rcosetsı _" [81] 80)
"rcosets H ≡

⋃
a∈carrier G. {H #> a}"

set_mult :: "[_, ’a set ,’a set] ⇒ ’a set" (infixl "<#>ı " 60)
"H <#> K ≡

⋃
h∈H.

⋃
k∈K. {h ⊗ k}"

SET_INV :: "[_,’a set] ⇒ ’a set" ("set’_invı _" [81] 80)
"set_inv H ≡

⋃
h∈H. {inv h}"

locale normal = subgroup + group +
assumes coset_eq: "(∀ x ∈ carrier G. H #> x = x <# H)"

abbreviation
normal_rel :: "[’a set, (’a, ’b) monoid_scheme] ⇒ bool" (infixl "C"

60) where
"H C G ≡ normal H G"

4.1 Basic Properties of Cosets

lemma (in group) coset_mult_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> (M #> g) #> h = M #> (g ⊗ h)"

by (force simp add: r_coset_def m_assoc)

lemma (in group) coset_mult_one [simp]: "M ⊆ carrier G ==> M #> 1 =
M"
by (force simp add: r_coset_def)

lemma (in group) coset_mult_inv1:

67

"[| M #> (x ⊗ (inv y)) = M; x ∈ carrier G ; y ∈ carrier G;
M ⊆ carrier G |] ==> M #> x = M #> y"

apply (erule subst [of concl: "%z. M #> x = z #> y"])
apply (simp add: coset_mult_assoc m_assoc)
done

lemma (in group) coset_mult_inv2:
"[| M #> x = M #> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier

G |]
==> M #> (x ⊗ (inv y)) = M "

apply (simp add: coset_mult_assoc [symmetric])
apply (simp add: coset_mult_assoc)
done

lemma (in group) coset_join1:
"[| H #> x = H; x ∈ carrier G; subgroup H G |] ==> x ∈ H"

apply (erule subst)
apply (simp add: r_coset_def)
apply (blast intro: l_one subgroup.one_closed sym)
done

lemma (in group) solve_equation:
"[[subgroup H G; x ∈ H; y ∈ H]] =⇒ ∃ h∈H. y = h ⊗ x"

apply (rule bexI [of _ "y ⊗ (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc

subgroup.subset [THEN subsetD])
done

lemma (in group) repr_independence:
"[[y ∈ H #> x; x ∈ carrier G; subgroup H G]] =⇒ H #> x = H #> y"

by (auto simp add: r_coset_def m_assoc [symmetric]
subgroup.subset [THEN subsetD]
subgroup.m_closed solve_equation)

lemma (in group) coset_join2:
"[[x ∈ carrier G; subgroup H G; x∈H]] =⇒ H #> x = H"

— Alternative proof is to put x = 1 in repr_independence.
by (force simp add: subgroup.m_closed r_coset_def solve_equation)

lemma (in monoid) r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> H #> x ⊆ carrier G"

by (auto simp add: r_coset_def)

lemma (in group) rcosI:
"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊗ x ∈ H #> x"

by (auto simp add: r_coset_def)

lemma (in group) rcosetsI:
"[[H ⊆ carrier G; x ∈ carrier G]] =⇒ H #> x ∈ rcosets H"

68

by (auto simp add: RCOSETS_def)

Really needed?

lemma (in group) transpose_inv:
"[| x ⊗ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]
==> (inv x) ⊗ z = y"

by (force simp add: m_assoc [symmetric])

lemma (in group) rcos_self: "[| x ∈ carrier G; subgroup H G |] ==> x
∈ H #> x"
apply (simp add: r_coset_def)
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]

subgroup.one_closed)
done

Opposite of "repr_independence"

lemma (in group) repr_independenceD:
assumes "subgroup H G"
assumes ycarr: "y ∈ carrier G"

and repr: "H #> x = H #> y"
shows "y ∈ H #> x"

proof -
interpret subgroup H G by fact
show ?thesis apply (subst repr)
apply (intro rcos_self)
apply (rule ycarr)
apply (rule is_subgroup)

done
qed

Elements of a right coset are in the carrier

lemma (in subgroup) elemrcos_carrier:
assumes "group G"
assumes acarr: "a ∈ carrier G"

and a’: "a’ ∈ H #> a"
shows "a’ ∈ carrier G"

proof -
interpret group G by fact
from subset and acarr
have "H #> a ⊆ carrier G" by (rule r_coset_subset_G)
from this and a’
show "a’ ∈ carrier G"

by fast
qed

lemma (in subgroup) rcos_const:
assumes "group G"
assumes hH: "h ∈ H"
shows "H #> h = H"

69

proof -
interpret group G by fact
show ?thesis apply (unfold r_coset_def)

apply rule
apply rule
apply clarsimp
apply (intro subgroup.m_closed)
apply (rule is_subgroup)
apply assumption
apply (rule hH)
apply rule
apply simp

proof -
fix h’
assume h’H: "h’ ∈ H"
note carr = hH[THEN mem_carrier] h’H[THEN mem_carrier]
from carr
have a: "h’ = (h’ ⊗ inv h) ⊗ h" by (simp add: m_assoc)
from h’H hH
have "h’ ⊗ inv h ∈ H" by simp
from this and a
show "∃ x∈H. h’ = x ⊗ h" by fast

qed
qed

Step one for lemma rcos_module

lemma (in subgroup) rcos_module_imp:
assumes "group G"
assumes xcarr: "x ∈ carrier G"

and x’cos: "x’ ∈ H #> x"
shows "(x’ ⊗ inv x) ∈ H"

proof -
interpret group G by fact
from xcarr x’cos

have x’carr: "x’ ∈ carrier G"
by (rule elemrcos_carrier[OF is_group])

from xcarr
have ixcarr: "inv x ∈ carrier G"
by simp

from x’cos
have "∃ h∈H. x’ = h ⊗ x"
unfolding r_coset_def
by fast

from this
obtain h

where hH: "h ∈ H"
and x’: "x’ = h ⊗ x"

by auto
from hH and subset

70

have hcarr: "h ∈ carrier G" by fast
note carr = xcarr x’carr hcarr
from x’ and carr

have "x’ ⊗ (inv x) = (h ⊗ x) ⊗ (inv x)" by fast
also from carr

have ". . . = h ⊗ (x ⊗ inv x)" by (simp add: m_assoc)
also from carr

have ". . . = h ⊗ 1" by simp
also from carr

have ". . . = h" by simp
finally

have "x’ ⊗ (inv x) = h" by simp
from hH this

show "x’ ⊗ (inv x) ∈ H" by simp
qed

Step two for lemma rcos_module

lemma (in subgroup) rcos_module_rev:
assumes "group G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

and xixH: "(x’ ⊗ inv x) ∈ H"
shows "x’ ∈ H #> x"

proof -
interpret group G by fact
from xixH

have "∃ h∈H. x’ ⊗ (inv x) = h" by fast
from this

obtain h
where hH: "h ∈ H"
and hsym: "x’ ⊗ (inv x) = h"

by fast
from hH subset have hcarr: "h ∈ carrier G" by simp
note carr = carr hcarr
from hsym[symmetric] have "h ⊗ x = x’ ⊗ (inv x) ⊗ x" by fast
also from carr

have ". . . = x’ ⊗ ((inv x) ⊗ x)" by (simp add: m_assoc)
also from carr

have ". . . = x’ ⊗ 1" by (simp add: l_inv)
also from carr

have ". . . = x’" by simp
finally

have "h ⊗ x = x’" by simp
from this[symmetric] and hH

show "x’ ∈ H #> x"
unfolding r_coset_def
by fast

qed

Module property of right cosets

71

lemma (in subgroup) rcos_module:
assumes "group G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"
shows "(x’ ∈ H #> x) = (x’ ⊗ inv x ∈ H)"

proof -
interpret group G by fact
show ?thesis proof assume "x’ ∈ H #> x"

from this and carr
show "x’ ⊗ inv x ∈ H"

by (intro rcos_module_imp[OF is_group])
next

assume "x’ ⊗ inv x ∈ H"
from this and carr
show "x’ ∈ H #> x"

by (intro rcos_module_rev[OF is_group])
qed

qed

Right cosets are subsets of the carrier.

lemma (in subgroup) rcosets_carrier:
assumes "group G"
assumes XH: "X ∈ rcosets H"
shows "X ⊆ carrier G"

proof -
interpret group G by fact
from XH have "∃ x∈ carrier G. X = H #> x"

unfolding RCOSETS_def
by fast

from this
obtain x

where xcarr: "x∈ carrier G"
and X: "X = H #> x"

by fast
from subset and xcarr

show "X ⊆ carrier G"
unfolding X
by (rule r_coset_subset_G)

qed

Multiplication of general subsets

lemma (in monoid) set_mult_closed:
assumes Acarr: "A ⊆ carrier G"

and Bcarr: "B ⊆ carrier G"
shows "A <#> B ⊆ carrier G"

apply rule apply (simp add: set_mult_def, clarsimp)
proof -

fix a b
assume "a ∈ A"
from this and Acarr

72

have acarr: "a ∈ carrier G" by fast

assume "b ∈ B"
from this and Bcarr

have bcarr: "b ∈ carrier G" by fast

from acarr bcarr
show "a ⊗ b ∈ carrier G" by (rule m_closed)

qed

lemma (in comm_group) mult_subgroups:
assumes subH: "subgroup H G"

and subK: "subgroup K G"
shows "subgroup (H <#> K) G"

apply (rule subgroup.intro)
apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF

subK])
apply (simp add: set_mult_def) apply clarsimp defer 1
apply (simp add: set_mult_def) defer 1
apply (simp add: set_mult_def, clarsimp) defer 1

proof -
fix ha hb ka kb
assume haH: "ha ∈ H" and hbH: "hb ∈ H" and kaK: "ka ∈ K" and kbK:

"kb ∈ K"
note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF

subH]]
kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF

subK]]
from carr

have "(ha ⊗ ka) ⊗ (hb ⊗ kb) = ha ⊗ (ka ⊗ hb) ⊗ kb" by (simp add:
m_assoc)

also from carr
have ". . . = ha ⊗ (hb ⊗ ka) ⊗ kb" by (simp add: m_comm)

also from carr
have ". . . = (ha ⊗ hb) ⊗ (ka ⊗ kb)" by (simp add: m_assoc)

finally
have eq: "(ha ⊗ ka) ⊗ (hb ⊗ kb) = (ha ⊗ hb) ⊗ (ka ⊗ kb)" .

from haH hbH have hH: "ha ⊗ hb ∈ H" by (simp add: subgroup.m_closed[OF
subH])

from kaK kbK have kK: "ka ⊗ kb ∈ K" by (simp add: subgroup.m_closed[OF
subK])

from hH and kK and eq
show "∃ h’∈H. ∃ k’∈K. (ha ⊗ ka) ⊗ (hb ⊗ kb) = h’ ⊗ k’" by fast

next
have "1 = 1 ⊗ 1" by simp
from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this

show "∃ h∈H. ∃ k∈K. 1 = h ⊗ k" by fast

73

next
fix h k
assume hH: "h ∈ H"

and kK: "k ∈ K"

from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF
subK]]

have "inv (h ⊗ k) = inv h ⊗ inv k" by (simp add: inv_mult_group
m_comm)

from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF
subK kK] and this

show "∃ ha∈H. ∃ ka∈K. inv (h ⊗ k) = ha ⊗ ka" by fast
qed

lemma (in subgroup) lcos_module_rev:
assumes "group G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

and xixH: "(inv x ⊗ x’) ∈ H"
shows "x’ ∈ x <# H"

proof -
interpret group G by fact
from xixH

have "∃ h∈H. (inv x) ⊗ x’ = h" by fast
from this

obtain h
where hH: "h ∈ H"
and hsym: "(inv x) ⊗ x’ = h"

by fast

from hH subset have hcarr: "h ∈ carrier G" by simp
note carr = carr hcarr
from hsym[symmetric] have "x ⊗ h = x ⊗ ((inv x) ⊗ x’)" by fast
also from carr

have ". . . = (x ⊗ (inv x)) ⊗ x’" by (simp add: m_assoc[symmetric])
also from carr

have ". . . = 1 ⊗ x’" by simp
also from carr

have ". . . = x’" by simp
finally

have "x ⊗ h = x’" by simp

from this[symmetric] and hH
show "x’ ∈ x <# H"
unfolding l_coset_def
by fast

qed

74

4.2 Normal subgroups

lemma normal_imp_subgroup: "H C G =⇒ subgroup H G"
by (simp add: normal_def subgroup_def)

lemma (in group) normalI:
"subgroup H G =⇒ (∀ x ∈ carrier G. H #> x = x <# H) =⇒ H C G"
by (simp add: normal_def normal_axioms_def prems)

lemma (in normal) inv_op_closed1:
"[[x ∈ carrier G; h ∈ H]] =⇒ (inv x) ⊗ h ⊗ x ∈ H"

apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done

lemma (in normal) inv_op_closed2:
"[[x ∈ carrier G; h ∈ H]] =⇒ x ⊗ h ⊗ (inv x) ∈ H"

apply (subgoal_tac "inv (inv x) ⊗ h ⊗ (inv x) ∈ H")
apply (simp add:)
apply (blast intro: inv_op_closed1)
done

Alternative characterization of normal subgroups

lemma (in group) normal_inv_iff:
"(N C G) =
(subgroup N G & (∀ x ∈ carrier G. ∀ h ∈ N. x ⊗ h ⊗ (inv x) ∈ N))"
(is "_ = ?rhs")

proof
assume N: "N C G"
show ?rhs

by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next

assume ?rhs
hence sg: "subgroup N G"

and closed: "
∧
x. x∈carrier G =⇒ ∀ h∈N. x ⊗ h ⊗ inv x ∈ N" by auto

hence sb: "N ⊆ carrier G" by (simp add: subgroup.subset)
show "N C G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)

fix x
assume x: "x ∈ carrier G"
show "(

⋃
h∈N. {h ⊗ x}) = (

⋃
h∈N. {x ⊗ h})"

proof
show "(

⋃
h∈N. {h ⊗ x}) ⊆ (

⋃
h∈N. {x ⊗ h})"

proof clarify
fix n
assume n: "n ∈ N"

75

show "n ⊗ x ∈ (
⋃
h∈N. {x ⊗ h})"

proof
from closed [of "inv x"]
show "inv x ⊗ n ⊗ x ∈ N" by (simp add: x n)
show "n ⊗ x ∈ {x ⊗ (inv x ⊗ n ⊗ x)}"

by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
qed

qed
next

show "(
⋃
h∈N. {x ⊗ h}) ⊆ (

⋃
h∈N. {h ⊗ x})"

proof clarify
fix n
assume n: "n ∈ N"
show "x ⊗ n ∈ (

⋃
h∈N. {h ⊗ x})"

proof
show "x ⊗ n ⊗ inv x ∈ N" by (simp add: x n closed)
show "x ⊗ n ∈ {x ⊗ n ⊗ inv x ⊗ x}"

by (simp add: x n m_assoc sb [THEN subsetD])
qed

qed
qed

qed
qed

4.3 More Properties of Cosets

lemma (in group) lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> g <# (h <# M) = (g ⊗ h) <# M"

by (force simp add: l_coset_def m_assoc)

lemma (in group) lcos_mult_one: "M ⊆ carrier G ==> 1 <# M = M"
by (force simp add: l_coset_def)

lemma (in group) l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <# H ⊆ carrier G"

by (auto simp add: l_coset_def subsetD)

lemma (in group) l_coset_swap:
"[[y ∈ x <# H; x ∈ carrier G; subgroup H G]] =⇒ x ∈ y <# H"

proof (simp add: l_coset_def)
assume "∃ h∈H. y = x ⊗ h"

and x: "x ∈ carrier G"
and sb: "subgroup H G"

then obtain h’ where h’: "h’ ∈ H & x ⊗ h’ = y" by blast
show "∃ h∈H. x = y ⊗ h"
proof

show "x = y ⊗ inv h’" using h’ x sb
by (auto simp add: m_assoc subgroup.subset [THEN subsetD])

76

show "inv h’ ∈ H" using h’ sb
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)

qed
qed

lemma (in group) l_coset_carrier:
"[| y ∈ x <# H; x ∈ carrier G; subgroup H G |] ==> y ∈ carrier

G"
by (auto simp add: l_coset_def m_assoc

subgroup.subset [THEN subsetD] subgroup.m_closed)

lemma (in group) l_repr_imp_subset:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H

G"
shows "y <# H ⊆ x <# H"

proof -
from y
obtain h’ where "h’ ∈ H" "x ⊗ h’ = y" by (auto simp add: l_coset_def)
thus ?thesis using x sb

by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)

qed

lemma (in group) l_repr_independence:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H

G"
shows "x <# H = y <# H"

proof
show "x <# H ⊆ y <# H"

by (rule l_repr_imp_subset,
(blast intro: l_coset_swap l_coset_carrier y x sb)+)

show "y <# H ⊆ x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed

lemma (in group) setmult_subset_G:
"[[H ⊆ carrier G; K ⊆ carrier G]] =⇒ H <#> K ⊆ carrier G"

by (auto simp add: set_mult_def subsetD)

lemma (in group) subgroup_mult_id: "subgroup H G =⇒ H <#> H = H"
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "1"])
apply (auto simp add: subgroup.m_closed subgroup.one_closed

r_one subgroup.subset [THEN subsetD])
done

4.3.1 Set of Inverses of an r_coset.

lemma (in normal) rcos_inv:

77

assumes x: "x ∈ carrier G"
shows "set_inv (H #> x) = H #> (inv x)"

proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume "h ∈ H"
show "inv x ⊗ inv h ∈ (

⋃
j∈H. {j ⊗ inv x})"

proof
show "inv x ⊗ inv h ⊗ x ∈ H"

by (simp add: inv_op_closed1 prems)
show "inv x ⊗ inv h ∈ {inv x ⊗ inv h ⊗ x ⊗ inv x}"

by (simp add: prems m_assoc)
qed

next
fix h
assume "h ∈ H"
show "h ⊗ inv x ∈ (

⋃
j∈H. {inv x ⊗ inv j})"

proof
show "x ⊗ inv h ⊗ inv x ∈ H"

by (simp add: inv_op_closed2 prems)
show "h ⊗ inv x ∈ {inv x ⊗ inv (x ⊗ inv h ⊗ inv x)}"

by (simp add: prems m_assoc [symmetric] inv_mult_group)
qed

qed

4.3.2 Theorems for <#> with #> or <#.

lemma (in group) setmult_rcos_assoc:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ H <#> (K #> x) = (H <#> K) #> x"

by (force simp add: r_coset_def set_mult_def m_assoc)

lemma (in group) rcos_assoc_lcos:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ (H #> x) <#> K = H <#> (x <# K)"

by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)

lemma (in normal) rcos_mult_step1:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"

by (simp add: setmult_rcos_assoc subset
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)

lemma (in normal) rcos_mult_step2:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"

by (insert coset_eq, simp add: normal_def)

lemma (in normal) rcos_mult_step3:
"[[x ∈ carrier G; y ∈ carrier G]]

78

=⇒ (H <#> (H #> x)) #> y = H #> (x ⊗ y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc

subgroup_mult_id normal.axioms subset prems)

lemma (in normal) rcos_sum:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H #> x) <#> (H #> y) = H #> (x ⊗ y)"

by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)

lemma (in normal) rcosets_mult_eq: "M ∈ rcosets H =⇒ H <#> M = M"
— generalizes subgroup_mult_id
by (auto simp add: RCOSETS_def subset

setmult_rcos_assoc subgroup_mult_id normal.axioms prems)

4.3.3 An Equivalence Relation

constdefs (structure G)
r_congruent :: "[(’a,’b)monoid_scheme, ’a set] ⇒ (’a*’a)set"

("rcongı _")
"rcong H ≡ {(x,y). x ∈ carrier G & y ∈ carrier G & inv x ⊗ y ∈ H}"

lemma (in subgroup) equiv_rcong:
assumes "group G"
shows "equiv (carrier G) (rcong H)"

proof -
interpret group G by fact
show ?thesis
proof (intro equiv.intro)

show "refl_on (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_on_def)

next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)

fix x y
assume [simp]: "x ∈ carrier G" "y ∈ carrier G"

and "inv x ⊗ y ∈ H"
hence "inv (inv x ⊗ y) ∈ H" by (simp add: m_inv_closed)
thus "inv y ⊗ x ∈ H" by (simp add: inv_mult_group)

qed
next

show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)

fix x y z
assume [simp]: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

and "inv x ⊗ y ∈ H" and "inv y ⊗ z ∈ H"
hence "(inv x ⊗ y) ⊗ (inv y ⊗ z) ∈ H" by simp
hence "inv x ⊗ (y ⊗ inv y) ⊗ z ∈ H"

by (simp add: m_assoc del: r_inv Units_r_inv)

79

thus "inv x ⊗ z ∈ H" by simp
qed

qed
qed

Equivalence classes of rcong correspond to left cosets. Was there a mistake
in the definitions? I’d have expected them to correspond to right cosets.

lemma (in subgroup) l_coset_eq_rcong:
assumes "group G"
assumes a: "a ∈ carrier G"
shows "a <# H = rcong H ‘‘ {a}"

proof -
interpret group G by fact
show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc

[symmetric] a)
qed

4.3.4 Two Distinct Right Cosets are Disjoint

lemma (in group) rcos_equation:
assumes "subgroup H G"
assumes p: "ha ⊗ a = h ⊗ b" "a ∈ carrier G" "b ∈ carrier G" "h ∈ H"

"ha ∈ H" "hb ∈ H"
shows "hb ⊗ a ∈ (

⋃
h∈H. {h ⊗ b})"

proof -
interpret subgroup H G by fact
from p show ?thesis apply (rule_tac UN_I [of "hb ⊗ ((inv ha) ⊗ h)"])

apply (simp add:)
apply (simp add: m_assoc transpose_inv)
done

qed

lemma (in group) rcos_disjoint:
assumes "subgroup H G"
assumes p: "a ∈ rcosets H" "b ∈ rcosets H" "a 6=b"
shows "a ∩ b = {}"

proof -
interpret subgroup H G by fact
from p show ?thesis apply (simp add: RCOSETS_def r_coset_def)

apply (blast intro: rcos_equation prems sym)
done

qed

4.4 Further lemmas for r_congruent

The relation is a congruence

lemma (in normal) congruent_rcong:
shows "congruent2 (rcong H) (rcong H) (λa b. a ⊗ b <# H)"

proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)

80

fix a b c
assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from abrcong
have acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"
and abH: "inv a ⊗ b ∈ H"

unfolding r_congruent_def
by fast+

note carr = acarr bcarr ccarr

from ccarr and abH
have "inv c ⊗ (inv a ⊗ b) ⊗ c ∈ H" by (rule inv_op_closed1)

moreover
from carr and inv_closed
have "inv c ⊗ (inv a ⊗ b) ⊗ c = (inv c ⊗ inv a) ⊗ (b ⊗ c)"
by (force cong: m_assoc)

moreover
from carr and inv_closed
have ". . . = (inv (a ⊗ c)) ⊗ (b ⊗ c)"
by (simp add: inv_mult_group)

ultimately
have "(inv (a ⊗ c)) ⊗ (b ⊗ c) ∈ H" by simp

from carr and this
have "(b ⊗ c) ∈ (a ⊗ c) <# H"
by (simp add: lcos_module_rev[OF is_group])

from carr and this and is_subgroup
show "(a ⊗ c) <# H = (b ⊗ c) <# H" by (intro l_repr_independence,

simp+)
next

fix a b c
assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from ccarr have "c ∈ Units G" by (simp add: Units_eq)
hence cinvc_one: "inv c ⊗ c = 1" by (rule Units_l_inv)

from abrcong
have acarr: "a ∈ carrier G"
and bcarr: "b ∈ carrier G"
and abH: "inv a ⊗ b ∈ H"

by (unfold r_congruent_def, fast+)

note carr = acarr bcarr ccarr

from carr and inv_closed
have "inv a ⊗ b = inv a ⊗ (1 ⊗ b)" by simp

81

also from carr and inv_closed
have ". . . = inv a ⊗ (inv c ⊗ c) ⊗ b" by simp

also from carr and inv_closed
have ". . . = (inv a ⊗ inv c) ⊗ (c ⊗ b)" by (force cong: m_assoc)

also from carr and inv_closed
have ". . . = inv (c ⊗ a) ⊗ (c ⊗ b)" by (simp add: inv_mult_group)

finally
have "inv a ⊗ b = inv (c ⊗ a) ⊗ (c ⊗ b)" .

from abH and this
have "inv (c ⊗ a) ⊗ (c ⊗ b) ∈ H" by simp

from carr and this
have "(c ⊗ b) ∈ (c ⊗ a) <# H"
by (simp add: lcos_module_rev[OF is_group])

from carr and this and is_subgroup
show "(c ⊗ a) <# H = (c ⊗ b) <# H" by (intro l_repr_independence,

simp+)
qed

4.5 Order of a Group and Lagrange’s Theorem

constdefs
order :: "(’a, ’b) monoid_scheme ⇒ nat"
"order S ≡ card (carrier S)"

lemma (in group) rcosets_part_G:
assumes "subgroup H G"
shows "

⋃
(rcosets H) = carrier G"

proof -
interpret subgroup H G by fact
show ?thesis

apply (rule equalityI)
apply (force simp add: RCOSETS_def r_coset_def)
apply (auto simp add: RCOSETS_def intro: rcos_self prems)
done

qed

lemma (in group) cosets_finite:
"[[c ∈ rcosets H; H ⊆ carrier G; finite (carrier G)]] =⇒ finite

c"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN finite_subset])
done

The next two lemmas support the proof of card_cosets_equal.

lemma (in group) inj_on_f:
"[[H ⊆ carrier G; a ∈ carrier G]] =⇒ inj_on (λy. y ⊗ inv a) (H #>

a)"
apply (rule inj_onI)

82

apply (subgoal_tac "x ∈ carrier G & y ∈ carrier G")
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])

apply (simp add: subsetD)
done

lemma (in group) inj_on_g:
"[[H ⊆ carrier G; a ∈ carrier G]] =⇒ inj_on (λy. y ⊗ a) H"

by (force simp add: inj_on_def subsetD)

lemma (in group) card_cosets_equal:
"[[c ∈ rcosets H; H ⊆ carrier G; finite(carrier G)]]
=⇒ card c = card H"

apply (auto simp add: RCOSETS_def)
apply (rule card_bij_eq)

apply (rule inj_on_f, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)

apply (rule inj_on_g, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)

The sets H #> a and H are finite.

apply (simp add: r_coset_subset_G [THEN finite_subset])
apply (blast intro: finite_subset)
done

lemma (in group) rcosets_subset_PowG:
"subgroup H G =⇒ rcosets H ⊆ Pow(carrier G)"

apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done

theorem (in group) lagrange:
"[[finite(carrier G); subgroup H G]]
=⇒ card(rcosets H) * card(H) = order(G)"

apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult_commute)
apply (rule card_partition)

apply (simp add: rcosets_subset_PowG [THEN finite_subset])
apply (simp add: rcosets_part_G)

apply (simp add: card_cosets_equal subgroup.subset)
apply (simp add: rcos_disjoint)
done

4.6 Quotient Groups: Factorization of a Group

constdefs
FactGroup :: "[(’a,’b) monoid_scheme, ’a set] ⇒ (’a set) monoid"

(infixl "Mod" 65)
— Actually defined for groups rather than monoids

"FactGroup G H ≡

83

(|carrier = rcosetsG H, mult = set_mult G, one = H|)"

lemma (in normal) setmult_closed:
"[[K1 ∈ rcosets H; K2 ∈ rcosets H]] =⇒ K1 <#> K2 ∈ rcosets H"

by (auto simp add: rcos_sum RCOSETS_def)

lemma (in normal) setinv_closed:
"K ∈ rcosets H =⇒ set_inv K ∈ rcosets H"

by (auto simp add: rcos_inv RCOSETS_def)

lemma (in normal) rcosets_assoc:
"[[M1 ∈ rcosets H; M2 ∈ rcosets H; M3 ∈ rcosets H]]
=⇒ M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"

by (auto simp add: RCOSETS_def rcos_sum m_assoc)

lemma (in subgroup) subgroup_in_rcosets:
assumes "group G"
shows "H ∈ rcosets H"

proof -
interpret group G by fact
from _ subgroup_axioms have "H #> 1 = H"

by (rule coset_join2) auto
then show ?thesis

by (auto simp add: RCOSETS_def)
qed

lemma (in normal) rcosets_inv_mult_group_eq:
"M ∈ rcosets H =⇒ set_inv M <#> M = H"

by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms
prems)

theorem (in normal) factorgroup_is_group:
"group (G Mod H)"

apply (simp add: FactGroup_def)
apply (rule groupI)

apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])

apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup

subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done

lemma mult_FactGroup [simp]: "X ⊗(G Mod H) X’ = X <#>G X’"
by (simp add: FactGroup_def)

lemma (in normal) inv_FactGroup:
"X ∈ carrier (G Mod H) =⇒ invG Mod H X = set_inv X"

apply (rule group.inv_equality [OF factorgroup_is_group])

84

apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in normal) r_coset_hom_Mod:
"(λa. H #> a) ∈ hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)

4.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

constdefs
kernel :: "(’a, ’m) monoid_scheme ⇒ (’b, ’n) monoid_scheme ⇒

(’a ⇒ ’b) ⇒ ’a set"
— the kernel of a homomorphism

"kernel G H h ≡ {x. x ∈ carrier G & h x = 1H}"

lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro prems)
done

The kernel of a homomorphism is a normal subgroup

lemma (in group_hom) normal_kernel: "(kernel G H h) C G"
apply (simp add: G.normal_inv_iff subgroup_kernel)
apply (simp add: kernel_def)
done

lemma (in group_hom) FactGroup_nonempty:
assumes X: "X ∈ carrier (G Mod kernel G H h)"
shows "X 6= {}"

proof -
from X
obtain g where "g ∈ carrier G"

and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)

thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)

qed

lemma (in group_hom) FactGroup_contents_mem:
assumes X: "X ∈ carrier (G Mod (kernel G H h))"
shows "contents (h‘X) ∈ carrier H"

proof -
from X
obtain g where g: "g ∈ carrier G"

85

and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)

hence "h ‘ X = {h g}" by (auto simp add: kernel_def r_coset_def image_def
g)

thus ?thesis by (auto simp add: g)
qed

lemma (in group_hom) FactGroup_hom:
"(λX. contents (h‘X)) ∈ hom (G Mod (kernel G H h)) H"

apply (simp add: hom_def FactGroup_contents_mem normal.factorgroup_is_group
[OF normal_kernel] group.axioms monoid.m_closed)
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI)

fix X and X’
assume X: "X ∈ carrier (G Mod kernel G H h)"

and X’: "X’ ∈ carrier (G Mod kernel G H h)"
then
obtain g and g’

where "g ∈ carrier G" and "g’ ∈ carrier G"
and "X = kernel G H h #> g" and "X’ = kernel G H h #> g’"

by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀ x∈X. h x = h g" "∀ x∈X’. h x = h g’"

and Xsub: "X ⊆ carrier G" and X’sub: "X’ ⊆ carrier G"
by (force simp add: kernel_def r_coset_def image_def)+

hence "h ‘ (X <#> X’) = {h g ⊗H h g’}" using X X’
by (auto dest!: FactGroup_nonempty

simp add: set_mult_def image_eq_UN
subsetD [OF Xsub] subsetD [OF X’sub])

thus "contents (h ‘ (X <#> X’)) = contents (h ‘ X) ⊗H contents (h ‘
X’)"

by (simp add: all image_eq_UN FactGroup_nonempty X X’)
qed

Lemma for the following injectivity result

lemma (in group_hom) FactGroup_subset:
"[[g ∈ carrier G; g’ ∈ carrier G; h g = h g’]]
=⇒ kernel G H h #> g ⊆ kernel G H h #> g’"

apply (clarsimp simp add: kernel_def r_coset_def image_def)
apply (rename_tac y)
apply (rule_tac x="y ⊗ g ⊗ inv g’" in exI)
apply (simp add: G.m_assoc)
done

lemma (in group_hom) FactGroup_inj_on:
"inj_on (λX. contents (h ‘ X)) (carrier (G Mod kernel G H h))"

proof (simp add: inj_on_def, clarify)
fix X and X’
assume X: "X ∈ carrier (G Mod kernel G H h)"

and X’: "X’ ∈ carrier (G Mod kernel G H h)"

86

then
obtain g and g’

where gX: "g ∈ carrier G" "g’ ∈ carrier G"
"X = kernel G H h #> g" "X’ = kernel G H h #> g’"

by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀ x∈X. h x = h g" "∀ x∈X’. h x = h g’"

by (force simp add: kernel_def r_coset_def image_def)+
assume "contents (h ‘ X) = contents (h ‘ X’)"
hence h: "h g = h g’"

by (simp add: image_eq_UN all FactGroup_nonempty X X’)
show "X=X’" by (rule equalityI) (simp_all add: FactGroup_subset h gX)

qed

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in group_hom) FactGroup_onto:
assumes h: "h ‘ carrier G = carrier H"
shows "(λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G H h) = carrier

H"
proof

show "(λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G H h) ⊆ carrier
H"

by (auto simp add: FactGroup_contents_mem)
show "carrier H ⊆ (λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G

H h)"
proof

fix y
assume y: "y ∈ carrier H"
with h obtain g where g: "g ∈ carrier G" "h g = y"

by (blast elim: equalityE)
hence "(

⋃
x∈kernel G H h #> g. {h x}) = {y}"

by (auto simp add: y kernel_def r_coset_def)
with g show "y ∈ (λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G

H h)"
by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)

qed
qed

If h is a homomorphism from G onto H, then the quotient group G Mod kernel

G H h is isomorphic to H.

theorem (in group_hom) FactGroup_iso:
"h ‘ carrier G = carrier H
=⇒ (λX. contents (h‘X)) ∈ (G Mod (kernel G H h)) ∼= H"

by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
FactGroup_onto)

end

87

theory Exponent
imports Main Primes Binomial
begin

5 Sylow’s Theorem

5.1 The Combinatorial Argument Underlying the First Sy-
low Theorem

definition exponent :: "nat => nat => nat" where
"exponent p s == if prime p then (GREATEST r. p^r dvd s) else 0"

Prime Theorems

lemma prime_imp_one_less: "prime p ==> Suc 0 < p"
by (unfold prime_def, force)

lemma prime_iff:
"(prime p) = (Suc 0 < p & (∀ a b. p dvd a*b --> (p dvd a) | (p dvd b)))"

apply (auto simp add: prime_imp_one_less)
apply (blast dest!: prime_dvd_mult)
apply (auto simp add: prime_def)
apply (erule dvdE)
apply (case_tac "k=0", simp)
apply (drule_tac x = m in spec)
apply (drule_tac x = k in spec)
apply (simp add: dvd_mult_cancel1 dvd_mult_cancel2)
done

lemma zero_less_prime_power: "prime p ==> 0 < p^a"
by (force simp add: prime_iff)

lemma zero_less_card_empty: "[| finite S; S 6= {} |] ==> 0 < card(S)"
by (rule ccontr, simp)

lemma prime_dvd_cases:
"[| p*k dvd m*n; prime p |]
==> (∃ x. k dvd x*n & m = p*x) | (∃ y. k dvd m*y & n = p*y)"

apply (simp add: prime_iff)
apply (frule dvd_mult_left)
apply (subgoal_tac "p dvd m | p dvd n")
prefer 2 apply blast

apply (erule disjE)
apply (rule disjI1)
apply (rule_tac [2] disjI2)

88

apply (auto elim!: dvdE)
done

lemma prime_power_dvd_cases [rule_format (no_asm)]: "prime p
==> ∀ m n. p^c dvd m*n -->

(∀ a b. a+b = Suc c --> p^a dvd m | p^b dvd n)"
apply (induct c)
apply clarify
apply (case_tac "a")
apply simp

apply simp

apply simp
apply clarify
apply (erule prime_dvd_cases [THEN disjE], assumption, auto)

apply (case_tac "a")
apply simp

apply clarify
apply (drule spec, drule spec, erule (1) notE impE)
apply (drule_tac x = nat in spec)
apply (drule_tac x = b in spec)
apply simp

apply (case_tac "b")
apply simp

apply clarify
apply (drule spec, drule spec, erule (1) notE impE)
apply (drule_tac x = a in spec)
apply (drule_tac x = nat in spec, simp)
done

lemma div_combine:
"[| prime p; ~ (p ^ (Suc r) dvd n); p^(a+r) dvd n*k |]
==> p ^ a dvd k"

by (drule_tac a = "Suc r" and b = a in prime_power_dvd_cases, assumption,
auto)

lemma Suc_le_power: "Suc 0 < p ==> Suc n <= p^n"
apply (induct n)
apply (simp (no_asm_simp))
apply simp
apply (subgoal_tac "2 * n + 2 <= p * p^n", simp)
apply (subgoal_tac "2 * p^n <= p * p^n")
apply arith
apply (drule_tac k = 2 in mult_le_mono2, simp)

89

done

lemma power_dvd_bound: "[|p^n dvd a; Suc 0 < p; a > 0|] ==> n < a"
apply (drule dvd_imp_le)
apply (drule_tac [2] n = n in Suc_le_power, auto)
done

Exponent Theorems

lemma exponent_ge [rule_format]:
"[|p^k dvd n; prime p; 0<n|] ==> k <= exponent p n"

apply (simp add: exponent_def)
apply (erule Greatest_le)
apply (blast dest: prime_imp_one_less power_dvd_bound)
done

lemma power_exponent_dvd: "s>0 ==> (p ^ exponent p s) dvd s"
apply (simp add: exponent_def)
apply clarify
apply (rule_tac k = 0 in GreatestI)
prefer 2 apply (blast dest: prime_imp_one_less power_dvd_bound, simp)
done

lemma power_Suc_exponent_Not_dvd:
"[|(p * p ^ exponent p s) dvd s; prime p |] ==> s=0"

apply (subgoal_tac "p ^ Suc (exponent p s) dvd s")
prefer 2 apply simp

apply (rule ccontr)
apply (drule exponent_ge, auto)
done

lemma exponent_power_eq [simp]: "prime p ==> exponent p (p^a) = a"
apply (simp (no_asm_simp) add: exponent_def)
apply (rule Greatest_equality, simp)
apply (simp (no_asm_simp) add: prime_imp_one_less power_dvd_imp_le)
done

lemma exponent_equalityI:
"!r::nat. (p^r dvd a) = (p^r dvd b) ==> exponent p a = exponent p b"

by (simp (no_asm_simp) add: exponent_def)

lemma exponent_eq_0 [simp]: "¬ prime p ==> exponent p s = 0"
by (simp (no_asm_simp) add: exponent_def)

lemma exponent_mult_add1: "[| a > 0; b > 0 |]
==> (exponent p a) + (exponent p b) <= exponent p (a * b)"

apply (case_tac "prime p")

90

apply (rule exponent_ge)
apply (auto simp add: power_add)
apply (blast intro: prime_imp_one_less power_exponent_dvd mult_dvd_mono)
done

lemma exponent_mult_add2: "[| a > 0; b > 0 |]
==> exponent p (a * b) <= (exponent p a) + (exponent p b)"

apply (case_tac "prime p")
apply (rule leI, clarify)
apply (cut_tac p = p and s = "a*b" in power_exponent_dvd, auto)
apply (subgoal_tac "p ^ (Suc (exponent p a + exponent p b)) dvd a * b")
apply (rule_tac [2] le_imp_power_dvd [THEN dvd_trans])

prefer 3 apply assumption
prefer 2 apply simp

apply (frule_tac a = "Suc (exponent p a) " and b = "Suc (exponent p b)
" in prime_power_dvd_cases)
apply (assumption, force, simp)

apply (blast dest: power_Suc_exponent_Not_dvd)
done

lemma exponent_mult_add: "[| a > 0; b > 0 |]
==> exponent p (a * b) = (exponent p a) + (exponent p b)"

by (blast intro: exponent_mult_add1 exponent_mult_add2 order_antisym)

lemma not_divides_exponent_0: "~ (p dvd n) ==> exponent p n = 0"
apply (case_tac "exponent p n", simp)
apply (case_tac "n", simp)
apply (cut_tac s = n and p = p in power_exponent_dvd)
apply (auto dest: dvd_mult_left)
done

lemma exponent_1_eq_0 [simp]: "exponent p (Suc 0) = 0"
apply (case_tac "prime p")
apply (auto simp add: prime_iff not_divides_exponent_0)
done

Main Combinatorial Argument

lemma le_extend_mult: "[| c > 0; a <= b |] ==> a <= b * (c::nat)"
apply (rule_tac P = "%x. x <= b * c" in subst)
apply (rule mult_1_right)
apply (rule mult_le_mono, auto)
done

lemma p_fac_forw_lemma:
"[| (m::nat) > 0; k > 0; k < p^a; (p^r) dvd (p^a)* m - k |] ==> r <=

a"
apply (rule notnotD)

91

apply (rule notI)
apply (drule contrapos_nn [OF _ leI, THEN notnotD], assumption)
apply (drule less_imp_le [of a])
apply (drule le_imp_power_dvd)
apply (drule_tac b = "p ^ r" in dvd_trans, assumption)
apply(metis dvd_diffD1 dvd_triv_right le_extend_mult linorder_linear linorder_not_less
mult_commute nat_dvd_not_less neq0_conv)
done

lemma p_fac_forw: "[| (m::nat) > 0; k>0; k < p^a; (p^r) dvd (p^a)* m
- k |]
==> (p^r) dvd (p^a) - k"

apply (frule p_fac_forw_lemma [THEN le_imp_power_dvd, of _ k p], auto)
apply (subgoal_tac "p^r dvd p^a*m")
prefer 2 apply (blast intro: dvd_mult2)

apply (drule dvd_diffD1)
apply assumption

prefer 2 apply (blast intro: nat_dvd_diff)
apply (drule gr0_implies_Suc, auto)
done

lemma r_le_a_forw:
"[| (k::nat) > 0; k < p^a; p>0; (p^r) dvd (p^a) - k |] ==> r <= a"

by (rule_tac m = "Suc 0" in p_fac_forw_lemma, auto)

lemma p_fac_backw: "[| m>0; k>0; (p::nat)6=0; k < p^a; (p^r) dvd p^a
- k |]
==> (p^r) dvd (p^a)*m - k"

apply (frule_tac k1 = k and p1 = p in r_le_a_forw [THEN le_imp_power_dvd],
auto)
apply (subgoal_tac "p^r dvd p^a*m")
prefer 2 apply (blast intro: dvd_mult2)

apply (drule dvd_diffD1)
apply assumption

prefer 2 apply (blast intro: nat_dvd_diff)
apply (drule less_imp_Suc_add, auto)
done

lemma exponent_p_a_m_k_equation: "[| m>0; k>0; (p::nat)6=0; k < p^a
|]
==> exponent p (p^a * m - k) = exponent p (p^a - k)"

apply (blast intro: exponent_equalityI p_fac_forw p_fac_backw)
done

Suc rules that we have to delete from the simpset

lemmas bad_Sucs = binomial_Suc_Suc mult_Suc mult_Suc_right

92

lemma p_not_div_choose_lemma [rule_format]:
"[| ∀ i. Suc i < K --> exponent p (Suc i) = exponent p (Suc(j+i))|]
==> k<K --> exponent p ((j+k) choose k) = 0"

apply (cases "prime p")
prefer 2 apply simp

apply (induct k)
apply (simp (no_asm))

apply (subgoal_tac "(Suc (j+k) choose Suc k) > 0")
prefer 2 apply (simp add: zero_less_binomial_iff, clarify)

apply (subgoal_tac "exponent p ((Suc (j+k) choose Suc k) * Suc k) =
exponent p (Suc k)")

First, use the assumed equation. We simplify the LHS to exponent p (Suc (j
+ k) choose Suc k) + exponent p (Suc k) the common terms cancel, proving
the conclusion.

apply (simp del: bad_Sucs add: exponent_mult_add)

Establishing the equation requires first applying Suc_times_binomial_eq ...

apply (simp del: bad_Sucs add: Suc_times_binomial_eq [symmetric])

...then exponent_mult_add and the quantified premise.

apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add)
done

lemma p_not_div_choose:
"[| k<K; k<=n;

∀ j. 0<j & j<K --> exponent p (n - k + (K - j)) = exponent p (K -
j)|]

==> exponent p (n choose k) = 0"
apply (cut_tac j = "n-k" and k = k and p = p in p_not_div_choose_lemma)

prefer 3 apply simp
prefer 2 apply assumption

apply (drule_tac x = "K - Suc i" in spec)
apply (simp add: Suc_diff_le)
done

lemma const_p_fac_right:
"m>0 ==> exponent p ((p^a * m - Suc 0) choose (p^a - Suc 0)) = 0"

apply (case_tac "prime p")
prefer 2 apply simp

apply (frule_tac a = a in zero_less_prime_power)
apply (rule_tac K = "p^a" in p_not_div_choose)

apply simp
apply simp

apply (case_tac "m")
apply (case_tac [2] "p^a")

93

apply auto

apply (subgoal_tac "0<p")
prefer 2 apply (force dest!: prime_imp_one_less)

apply (subst exponent_p_a_m_k_equation, auto)
done

lemma const_p_fac:
"m>0 ==> exponent p (((p^a) * m) choose p^a) = exponent p m"

apply (case_tac "prime p")
prefer 2 apply simp

apply (subgoal_tac "0 < p^a * m & p^a <= p^a * m")
prefer 2 apply (force simp add: prime_iff)

A similar trick to the one used in p_not_div_choose_lemma: insert an equation;
use exponent_mult_add on the LHS; on the RHS, first transform the binomial
coefficient, then use exponent_mult_add.

apply (subgoal_tac "exponent p ((((p^a) * m) choose p^a) * p^a) =
a + exponent p m")

apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add
prime_iff)

one subgoal left!

apply (subst times_binomial_minus1_eq, simp, simp)
apply (subst exponent_mult_add, simp)
apply (simp (no_asm_simp) add: zero_less_binomial_iff)
apply arith
apply (simp del: bad_Sucs add: exponent_mult_add const_p_fac_right)
done

end

theory Sylow imports Coset Exponent begin

See also [3].

The combinatorial argument is in theory Exponent

locale sylow = group +
fixes p and a and m and calM and RelM
assumes prime_p: "prime p"

and order_G: "order(G) = (p^a) * m"
and finite_G [iff]: "finite (carrier G)"

defines "calM == {s. s ⊆ carrier(G) & card(s) = p^a}"
and "RelM == {(N1,N2). N1 ∈ calM & N2 ∈ calM &

(∃ g ∈ carrier(G). N1 = (N2 #> g))}"

94

lemma (in sylow) RelM_refl_on: "refl_on calM RelM"
apply (auto simp add: refl_on_def RelM_def calM_def)
apply (blast intro!: coset_mult_one [symmetric])
done

lemma (in sylow) RelM_sym: "sym RelM"
proof (unfold sym_def RelM_def, clarify)

fix y g
assume "y ∈ calM"

and g: "g ∈ carrier G"
hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
thus "∃ g’∈carrier G. y = y #> g #> g’"
by (blast intro: g inv_closed)

qed

lemma (in sylow) RelM_trans: "trans RelM"
by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)

lemma (in sylow) RelM_equiv: "equiv calM RelM"
apply (unfold equiv_def)
apply (blast intro: RelM_refl_on RelM_sym RelM_trans)
done

lemma (in sylow) M_subset_calM_prep: "M’ ∈ calM // RelM ==> M’ ⊆ calM"
apply (unfold RelM_def)
apply (blast elim!: quotientE)
done

5.2 Main Part of the Proof

locale sylow_central = sylow +
fixes H and M1 and M
assumes M_in_quot: "M ∈ calM // RelM"

and not_dvd_M: "~(p ^ Suc(exponent p m) dvd card(M))"
and M1_in_M: "M1 ∈ M"

defines "H == {g. g∈carrier G & M1 #> g = M1}"

lemma (in sylow_central) M_subset_calM: "M ⊆ calM"
by (rule M_in_quot [THEN M_subset_calM_prep])

lemma (in sylow_central) card_M1: "card(M1) = p^a"
apply (cut_tac M_subset_calM M1_in_M)
apply (simp add: calM_def, blast)
done

lemma card_nonempty: "0 < card(S) ==> S 6= {}"
by force

lemma (in sylow_central) exists_x_in_M1: "∃ x. x∈M1"

95

apply (subgoal_tac "0 < card M1")
apply (blast dest: card_nonempty)

apply (cut_tac prime_p [THEN prime_imp_one_less])
apply (simp (no_asm_simp) add: card_M1)
done

lemma (in sylow_central) M1_subset_G [simp]: "M1 ⊆ carrier G"
apply (rule subsetD [THEN PowD])
apply (rule_tac [2] M1_in_M)
apply (rule M_subset_calM [THEN subset_trans])
apply (auto simp add: calM_def)
done

lemma (in sylow_central) M1_inj_H: "∃ f ∈ H→M1. inj_on f H"
proof -

from exists_x_in_M1 obtain m1 where m1M: "m1 ∈ M1"..
have m1G: "m1 ∈ carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
show ?thesis
proof

show "inj_on (λz∈H. m1 ⊗ z) H"
by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def

m1G)
show "restrict (op ⊗ m1) H ∈ H → M1"
proof (rule restrictI)

fix z assume zH: "z ∈ H"
show "m1 ⊗ z ∈ M1"
proof -

from zH
have zG: "z ∈ carrier G" and M1zeq: "M1 #> z = M1"

by (auto simp add: H_def)
show ?thesis

by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
qed

qed
qed

qed

5.3 Discharging the Assumptions of sylow_central

lemma (in sylow) EmptyNotInEquivSet: "{} /∈ calM // RelM"
by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])

lemma (in sylow) existsM1inM: "M ∈ calM // RelM ==> ∃ M1. M1 ∈ M"
apply (subgoal_tac "M 6= {}")
apply blast

apply (cut_tac EmptyNotInEquivSet, blast)
done

lemma (in sylow) zero_less_o_G: "0 < order(G)"

96

apply (unfold order_def)
apply (blast intro: one_closed zero_less_card_empty)
done

lemma (in sylow) zero_less_m: "m > 0"
apply (cut_tac zero_less_o_G)
apply (simp add: order_G)
done

lemma (in sylow) card_calM: "card(calM) = (p^a) * m choose p^a"
by (simp add: calM_def n_subsets order_G [symmetric] order_def)

lemma (in sylow) zero_less_card_calM: "card calM > 0"
by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)

lemma (in sylow) max_p_div_calM:
"~ (p ^ Suc(exponent p m) dvd card(calM))"

apply (subgoal_tac "exponent p m = exponent p (card calM) ")
apply (cut_tac zero_less_card_calM prime_p)
apply (force dest: power_Suc_exponent_Not_dvd)

apply (simp add: card_calM zero_less_m [THEN const_p_fac])
done

lemma (in sylow) finite_calM: "finite calM"
apply (unfold calM_def)
apply (rule_tac B = "Pow (carrier G) " in finite_subset)
apply auto
done

lemma (in sylow) lemma_A1:
"∃ M ∈ calM // RelM. ~ (p ^ Suc(exponent p m) dvd card(M))"

apply (rule max_p_div_calM [THEN contrapos_np])
apply (simp add: finite_calM equiv_imp_dvd_card [OF _ RelM_equiv])
done

5.3.1 Introduction and Destruct Rules for H

lemma (in sylow_central) H_I: "[|g ∈ carrier G; M1 #> g = M1|] ==> g
∈ H"
by (simp add: H_def)

lemma (in sylow_central) H_into_carrier_G: "x ∈ H ==> x ∈ carrier G"
by (simp add: H_def)

lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
by (simp add: H_def)

lemma (in sylow_central) H_m_closed: "[| x∈H; y∈H|] ==> x ⊗ y ∈ H"
apply (unfold H_def)

97

apply (simp add: coset_mult_assoc [symmetric] m_closed)
done

lemma (in sylow_central) H_not_empty: "H 6= {}"
apply (simp add: H_def)
apply (rule exI [of _ 1], simp)
done

lemma (in sylow_central) H_is_subgroup: "subgroup H G"
apply (rule subgroupI)
apply (rule subsetI)
apply (erule H_into_carrier_G)
apply (rule H_not_empty)
apply (simp add: H_def, clarify)
apply (erule_tac P = "%z. ?lhs(z) = M1" in subst)
apply (simp add: coset_mult_assoc)
apply (blast intro: H_m_closed)
done

lemma (in sylow_central) rcosetGM1g_subset_G:
"[| g ∈ carrier G; x ∈ M1 #> g |] ==> x ∈ carrier G"

by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])

lemma (in sylow_central) finite_M1: "finite M1"
by (rule finite_subset [OF M1_subset_G finite_G])

lemma (in sylow_central) finite_rcosetGM1g: "g∈carrier G ==> finite (M1
#> g)"
apply (rule finite_subset)
apply (rule subsetI)
apply (erule rcosetGM1g_subset_G, assumption)
apply (rule finite_G)
done

lemma (in sylow_central) M1_cardeq_rcosetGM1g:
"g ∈ carrier G ==> card(M1 #> g) = card(M1)"

by (simp (no_asm_simp) add: M1_subset_G card_cosets_equal rcosetsI)

lemma (in sylow_central) M1_RelM_rcosetGM1g:
"g ∈ carrier G ==> (M1, M1 #> g) ∈ RelM"

apply (simp (no_asm) add: RelM_def calM_def card_M1 M1_subset_G)
apply (rule conjI)
apply (blast intro: rcosetGM1g_subset_G)

apply (simp (no_asm_simp) add: card_M1 M1_cardeq_rcosetGM1g)
apply (rule bexI [of _ "inv g"])
apply (simp_all add: coset_mult_assoc M1_subset_G)
done

98

5.4 Equal Cardinalities of M and the Set of Cosets

Injections between M and rcosetsG H show that their cardinalities are equal.

lemma ElemClassEquiv:
"[| equiv A r; C ∈ A // r |] ==> ∀ x ∈ C. ∀ y ∈ C. (x,y)∈r"

by (unfold equiv_def quotient_def sym_def trans_def, blast)

lemma (in sylow_central) M_elem_map:
"M2 ∈ M ==> ∃ g. g ∈ carrier G & M1 #> g = M2"

apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]])
apply (simp add: RelM_def)
apply (blast dest!: bspec)
done

lemmas (in sylow_central) M_elem_map_carrier =
M_elem_map [THEN someI_ex, THEN conjunct1]

lemmas (in sylow_central) M_elem_map_eq =
M_elem_map [THEN someI_ex, THEN conjunct2]

lemma (in sylow_central) M_funcset_rcosets_H:
"(%x:M. H #> (SOME g. g ∈ carrier G & M1 #> g = x)) ∈ M → rcosets

H"
apply (rule rcosetsI [THEN restrictI])
apply (rule H_is_subgroup [THEN subgroup.subset])
apply (erule M_elem_map_carrier)
done

lemma (in sylow_central) inj_M_GmodH: "∃ f ∈ M→rcosets H. inj_on f M"
apply (rule bexI)
apply (rule_tac [2] M_funcset_rcosets_H)
apply (rule inj_onI, simp)
apply (rule trans [OF _ M_elem_map_eq])
prefer 2 apply assumption
apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
apply (rule coset_mult_inv1)
apply (erule_tac [2] M_elem_map_carrier)+
apply (rule_tac [2] M1_subset_G)
apply (rule coset_join1 [THEN in_H_imp_eq])
apply (rule_tac [3] H_is_subgroup)
prefer 2 apply (blast intro: m_closed M_elem_map_carrier inv_closed)
apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
done

5.4.1 The Opposite Injection

lemma (in sylow_central) H_elem_map:
"H1 ∈ rcosets H ==> ∃ g. g ∈ carrier G & H #> g = H1"

by (auto simp add: RCOSETS_def)

99

lemmas (in sylow_central) H_elem_map_carrier =
H_elem_map [THEN someI_ex, THEN conjunct1]

lemmas (in sylow_central) H_elem_map_eq =
H_elem_map [THEN someI_ex, THEN conjunct2]

lemma EquivElemClass:
"[|equiv A r; M ∈ A//r; M1∈M; (M1,M2) ∈ r |] ==> M2 ∈ M"

by (unfold equiv_def quotient_def sym_def trans_def, blast)

lemma (in sylow_central) rcosets_H_funcset_M:
"(λC ∈ rcosets H. M1 #> (@g. g ∈ carrier G ∧ H #> g = C)) ∈ rcosets

H → M"
apply (simp add: RCOSETS_def)
apply (fast intro: someI2

intro!: restrictI M1_in_M
EquivElemClass [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g])

done

close to a duplicate of inj_M_GmodH

lemma (in sylow_central) inj_GmodH_M:
"∃ g ∈ rcosets H→M. inj_on g (rcosets H)"

apply (rule bexI)
apply (rule_tac [2] rcosets_H_funcset_M)
apply (rule inj_onI)
apply (simp)
apply (rule trans [OF _ H_elem_map_eq])
prefer 2 apply assumption
apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
apply (rule coset_mult_inv1)
apply (erule_tac [2] H_elem_map_carrier)+
apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
apply (rule coset_join2)
apply (blast intro: m_closed inv_closed H_elem_map_carrier)
apply (rule H_is_subgroup)
apply (simp add: H_I coset_mult_inv2 M1_subset_G H_elem_map_carrier)
done

lemma (in sylow_central) calM_subset_PowG: "calM ⊆ Pow(carrier G)"
by (auto simp add: calM_def)

lemma (in sylow_central) finite_M: "finite M"
apply (rule finite_subset)
apply (rule M_subset_calM [THEN subset_trans])
apply (rule calM_subset_PowG, blast)

100

done

lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets H)"
apply (insert inj_M_GmodH inj_GmodH_M)
apply (blast intro: card_bij finite_M H_is_subgroup

rcosets_subset_PowG [THEN finite_subset]
finite_Pow_iff [THEN iffD2])

done

lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)"
by (simp add: cardMeqIndexH lagrange H_is_subgroup)

lemma (in sylow_central) lemma_leq1: "p^a ≤ card(H)"
apply (rule dvd_imp_le)
apply (rule div_combine [OF prime_p not_dvd_M])
prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)

apply (simp add: index_lem order_G power_add mult_dvd_mono power_exponent_dvd
zero_less_m)

done

lemma (in sylow_central) lemma_leq2: "card(H) ≤ p^a"
apply (subst card_M1 [symmetric])
apply (cut_tac M1_inj_H)
apply (blast intro!: M1_subset_G intro:

card_inj H_into_carrier_G finite_subset [OF _ finite_G])
done

lemma (in sylow_central) card_H_eq: "card(H) = p^a"
by (blast intro: le_anti_sym lemma_leq1 lemma_leq2)

lemma (in sylow) sylow_thm: "∃ H. subgroup H G & card(H) = p^a"
apply (cut_tac lemma_A1, clarify)
apply (frule existsM1inM, clarify)
apply (subgoal_tac "sylow_central G p a m M1 M")
apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)

apply (simp add: sylow_central_def sylow_central_axioms_def prems)
done

Needed because the locale’s automatic definition refers to semigroup G and
group_axioms G rather than simply to group G.

lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)"
by (simp add: sylow_def group_def)

5.5 Sylow’s Theorem

theorem sylow_thm:
"[| prime p; group(G); order(G) = (p^a) * m; finite (carrier G)|]
==> ∃ H. subgroup H G & card(H) = p^a"

apply (rule sylow.sylow_thm [of G p a m])

101

apply (simp add: sylow_eq sylow_axioms_def)
done

end

theory Bij imports Group begin

6 Bijections of a Set, Permutation and Automor-
phism Groups

constdefs
Bij :: "’a set ⇒ (’a ⇒ ’a) set"

— Only extensional functions, since otherwise we get too many.
"Bij S ≡ extensional S ∩ {f. bij_betw f S S}"

BijGroup :: "’a set ⇒ (’a ⇒ ’a) monoid"
"BijGroup S ≡

(|carrier = Bij S,
mult = λg ∈ Bij S. λf ∈ Bij S. compose S g f,
one = λx ∈ S. x|)"

declare Id_compose [simp] compose_Id [simp]

lemma Bij_imp_extensional: "f ∈ Bij S =⇒ f ∈ extensional S"
by (simp add: Bij_def)

lemma Bij_imp_funcset: "f ∈ Bij S =⇒ f ∈ S → S"
by (auto simp add: Bij_def bij_betw_imp_funcset)

6.1 Bijections Form a Group

lemma restrict_Inv_Bij: "f ∈ Bij S =⇒ (λx ∈ S. (Inv S f) x) ∈ Bij S"
by (simp add: Bij_def bij_betw_Inv)

lemma id_Bij: "(λx∈S. x) ∈ Bij S "
by (auto simp add: Bij_def bij_betw_def inj_on_def)

lemma compose_Bij: "[[x ∈ Bij S; y ∈ Bij S]] =⇒ compose S x y ∈ Bij S"
by (auto simp add: Bij_def bij_betw_compose)

lemma Bij_compose_restrict_eq:
"f ∈ Bij S =⇒ compose S (restrict (Inv S f) S) f = (λx∈S. x)"

by (simp add: Bij_def compose_Inv_id)

102

theorem group_BijGroup: "group (BijGroup S)"
apply (simp add: BijGroup_def)
apply (rule groupI)

apply (simp add: compose_Bij)
apply (simp add: id_Bij)

apply (simp add: compose_Bij)
apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset)

apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
apply (blast intro: Bij_compose_restrict_eq restrict_Inv_Bij)
done

6.2 Automorphisms Form a Group

lemma Bij_Inv_mem: "[[f ∈ Bij S; x ∈ S]] =⇒ Inv S f x ∈ S"
by (simp add: Bij_def bij_betw_def Inv_mem)

lemma Bij_Inv_lemma:
assumes eq: "

∧
x y. [[x ∈ S; y ∈ S]] =⇒ h(g x y) = g (h x) (h y)"

shows "[[h ∈ Bij S; g ∈ S → S → S; x ∈ S; y ∈ S]]
=⇒ Inv S h (g x y) = g (Inv S h x) (Inv S h y)"

apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac "∃ x’∈S. ∃ y’∈S. x = h x’ & y = h y’", clarify)
apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem],
blast)
done

constdefs
auto :: "(’a, ’b) monoid_scheme ⇒ (’a ⇒ ’a) set"
"auto G ≡ hom G G ∩ Bij (carrier G)"

AutoGroup :: "(’a, ’c) monoid_scheme ⇒ (’a ⇒ ’a) monoid"
"AutoGroup G ≡ BijGroup (carrier G) (|carrier := auto G|)"

lemma (in group) id_in_auto: "(λx ∈ carrier G. x) ∈ auto G"
by (simp add: auto_def hom_def restrictI group.axioms id_Bij)

lemma (in group) mult_funcset: "mult G ∈ carrier G → carrier G → carrier
G"

by (simp add: Pi_I group.axioms)

lemma (in group) restrict_Inv_hom:
"[[h ∈ hom G G; h ∈ Bij (carrier G)]]
=⇒ restrict (Inv (carrier G) h) (carrier G) ∈ hom G G"

by (simp add: hom_def Bij_Inv_mem restrictI mult_funcset
group.axioms Bij_Inv_lemma)

lemma inv_BijGroup:
"f ∈ Bij S =⇒ m_inv (BijGroup S) f = (λx ∈ S. (Inv S f) x)"

103

apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add: BijGroup_def restrict_Inv_Bij Bij_compose_restrict_eq)
done

lemma (in group) subgroup_auto:
"subgroup (auto G) (BijGroup (carrier G))"

proof (rule subgroup.intro)
show "auto G ⊆ carrier (BijGroup (carrier G))"

by (force simp add: auto_def BijGroup_def)
next

fix x y
assume "x ∈ auto G" "y ∈ auto G"
thus "x ⊗BijGroup (carrier G) y ∈ auto G"

by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset

group.hom_compose compose_Bij)
next

show "1BijGroup (carrier G) ∈ auto G" by (simp add: BijGroup_def id_in_auto)
next

fix x
assume "x ∈ auto G"
thus "invBijGroup (carrier G) x ∈ auto G"

by (simp del: restrict_apply
add: inv_BijGroup auto_def restrict_Inv_Bij restrict_Inv_hom)

qed

theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto

group_BijGroup)

end

theory Divisibility
imports Permutation Coset Group
begin

7 Factorial Monoids

7.1 Monoids with Cancellation Law

locale monoid_cancel = monoid +
assumes l_cancel:

"[[c ⊗ a = c ⊗ b; a ∈ carrier G; b ∈ carrier G; c ∈ carrier
G]] =⇒ a = b"

and r_cancel:
"[[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈ carrier

104

G]] =⇒ a = b"

lemma (in monoid) monoid_cancelI:
assumes l_cancel:

"
∧
a b c. [[c ⊗ a = c ⊗ b; a ∈ carrier G; b ∈ carrier G; c ∈

carrier G]] =⇒ a = b"
and r_cancel:

"
∧
a b c. [[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈

carrier G]] =⇒ a = b"
shows "monoid_cancel G"
proof qed fact+

lemma (in monoid_cancel) is_monoid_cancel:
"monoid_cancel G"
..

sublocale group ⊆ monoid_cancel
proof qed simp+

locale comm_monoid_cancel = monoid_cancel + comm_monoid

lemma comm_monoid_cancelI:
fixes G (structure)
assumes "comm_monoid G"
assumes cancel:

"
∧
a b c. [[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈

carrier G]] =⇒ a = b"
shows "comm_monoid_cancel G"

proof -
interpret comm_monoid G by fact
show "comm_monoid_cancel G"

apply unfold_locales
apply (subgoal_tac "a ⊗ c = b ⊗ c")
apply (iprover intro: cancel)
apply (simp add: m_comm)
apply (iprover intro: cancel)
done

qed

lemma (in comm_monoid_cancel) is_comm_monoid_cancel:
"comm_monoid_cancel G"
by intro_locales

sublocale comm_group ⊆ comm_monoid_cancel
..

105

7.2 Products of Units in Monoids

lemma (in monoid) Units_m_closed[simp, intro]:
assumes h1unit: "h1 ∈ Units G" and h2unit: "h2 ∈ Units G"
shows "h1 ⊗ h2 ∈ Units G"

unfolding Units_def
using assms
apply safe
apply fast
apply (intro bexI[of _ "inv h2 ⊗ inv h1"], safe)

apply (simp add: m_assoc Units_closed)
apply (simp add: m_assoc[symmetric] Units_closed Units_l_inv)

apply (simp add: m_assoc Units_closed)
apply (simp add: m_assoc[symmetric] Units_closed Units_r_inv)

apply fast
done

lemma (in monoid) prod_unit_l:
assumes abunit[simp]: "a ⊗ b ∈ Units G" and aunit[simp]: "a ∈ Units

G"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "b ∈ Units G"
proof -

have c: "inv (a ⊗ b) ⊗ a ∈ carrier G" by simp

have "(inv (a ⊗ b) ⊗ a) ⊗ b = inv (a ⊗ b) ⊗ (a ⊗ b)" by (simp add:
m_assoc)

also have ". . . = 1" by (simp add: Units_l_inv)
finally have li: "(inv (a ⊗ b) ⊗ a) ⊗ b = 1" .

have "1 = inv a ⊗ a" by (simp add: Units_l_inv[symmetric])
also have ". . . = inv a ⊗ 1 ⊗ a" by simp
also have ". . . = inv a ⊗ ((a ⊗ b) ⊗ inv (a ⊗ b)) ⊗ a"

by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)
also have ". . . = ((inv a ⊗ a) ⊗ b) ⊗ inv (a ⊗ b) ⊗ a"

by (simp add: m_assoc del: Units_l_inv)
also have ". . . = b ⊗ inv (a ⊗ b) ⊗ a" by (simp add: Units_l_inv)
also have ". . . = b ⊗ (inv (a ⊗ b) ⊗ a)" by (simp add: m_assoc)
finally have ri: "b ⊗ (inv (a ⊗ b) ⊗ a) = 1 " by simp

from c li ri
show "b ∈ Units G" by (simp add: Units_def, fast)

qed

lemma (in monoid) prod_unit_r:
assumes abunit[simp]: "a ⊗ b ∈ Units G" and bunit[simp]: "b ∈ Units

G"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "a ∈ Units G"
proof -

106

have c: "b ⊗ inv (a ⊗ b) ∈ carrier G" by simp

have "a ⊗ (b ⊗ inv (a ⊗ b)) = (a ⊗ b) ⊗ inv (a ⊗ b)"
by (simp add: m_assoc del: Units_r_inv)

also have ". . . = 1" by simp
finally have li: "a ⊗ (b ⊗ inv (a ⊗ b)) = 1" .

have "1 = b ⊗ inv b" by (simp add: Units_r_inv[symmetric])
also have ". . . = b ⊗ 1 ⊗ inv b" by simp
also have ". . . = b ⊗ (inv (a ⊗ b) ⊗ (a ⊗ b)) ⊗ inv b"

by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)
also have ". . . = (b ⊗ inv (a ⊗ b) ⊗ a) ⊗ (b ⊗ inv b)"

by (simp add: m_assoc del: Units_l_inv)
also have ". . . = b ⊗ inv (a ⊗ b) ⊗ a" by simp
finally have ri: "(b ⊗ inv (a ⊗ b)) ⊗ a = 1 " by simp

from c li ri
show "a ∈ Units G" by (simp add: Units_def, fast)

qed

lemma (in comm_monoid) unit_factor:
assumes abunit: "a ⊗ b ∈ Units G"

and [simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "a ∈ Units G"

using abunit[simplified Units_def]
proof clarsimp

fix i
assume [simp]: "i ∈ carrier G"

and li: "i ⊗ (a ⊗ b) = 1"
and ri: "a ⊗ b ⊗ i = 1"

have carr’: "b ⊗ i ∈ carrier G" by simp

have "(b ⊗ i) ⊗ a = (i ⊗ b) ⊗ a" by (simp add: m_comm)
also have ". . . = i ⊗ (b ⊗ a)" by (simp add: m_assoc)
also have ". . . = i ⊗ (a ⊗ b)" by (simp add: m_comm)
also note li
finally have li’: "(b ⊗ i) ⊗ a = 1" .

have "a ⊗ (b ⊗ i) = a ⊗ b ⊗ i" by (simp add: m_assoc)
also note ri
finally have ri’: "a ⊗ (b ⊗ i) = 1" .

from carr’ li’ ri’
show "a ∈ Units G" by (simp add: Units_def, fast)

qed

107

7.3 Divisibility and Association

7.3.1 Function definitions

constdefs (structure G)
factor :: "[_, ’a, ’a] ⇒ bool" (infix "dividesı " 65)
"a divides b == ∃ c∈carrier G. b = a ⊗ c"

constdefs (structure G)
associated :: "[_, ’a, ’a] => bool" (infix "∼ı " 55)
"a ∼ b == a divides b ∧ b divides a"

abbreviation
"division_rel G == (|carrier = carrier G, eq = op ∼G, le = op dividesG|)"

constdefs (structure G)
properfactor :: "[_, ’a, ’a] ⇒ bool"
"properfactor G a b == a divides b ∧ ¬(b divides a)"

constdefs (structure G)
irreducible :: "[_, ’a] ⇒ bool"
"irreducible G a == a /∈ Units G ∧ (∀ b∈carrier G. properfactor G b a

−→ b ∈ Units G)"

constdefs (structure G)
prime :: "[_, ’a] ⇒ bool"
"prime G p == p /∈ Units G ∧

(∀ a∈carrier G. ∀ b∈carrier G. p divides (a ⊗ b) −→ p
divides a ∨ p divides b)"

7.3.2 Divisibility

lemma dividesI:
fixes G (structure)
assumes carr: "c ∈ carrier G"

and p: "b = a ⊗ c"
shows "a divides b"

unfolding factor_def
using assms by fast

lemma dividesI’ [intro]:
fixes G (structure)

assumes p: "b = a ⊗ c"
and carr: "c ∈ carrier G"

shows "a divides b"
using assms
by (fast intro: dividesI)

lemma dividesD:
fixes G (structure)

108

assumes "a divides b"
shows "∃ c∈carrier G. b = a ⊗ c"

using assms
unfolding factor_def
by fast

lemma dividesE [elim]:
fixes G (structure)
assumes d: "a divides b"

and elim: "
∧
c. [[b = a ⊗ c; c ∈ carrier G]] =⇒ P"

shows "P"
proof -

from dividesD[OF d]
obtain c
where "c∈carrier G"
and "b = a ⊗ c"
by auto

thus "P" by (elim elim)
qed

lemma (in monoid) divides_refl[simp, intro!]:
assumes carr: "a ∈ carrier G"
shows "a divides a"

apply (intro dividesI[of "1"])
apply (simp, simp add: carr)
done

lemma (in monoid) divides_trans [trans]:
assumes dvds: "a divides b" "b divides c"

and acarr: "a ∈ carrier G"
shows "a divides c"

using dvds[THEN dividesD]
by (blast intro: dividesI m_assoc acarr)

lemma (in monoid) divides_mult_lI [intro]:
assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(c ⊗ a) divides (c ⊗ b)"

using ab
apply (elim dividesE, simp add: m_assoc[symmetric] carr)
apply (fast intro: dividesI)
done

lemma (in monoid_cancel) divides_mult_l [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(c ⊗ a) divides (c ⊗ b) = a divides b"

apply safe
apply (elim dividesE, intro dividesI, assumption)
apply (rule l_cancel[of c])

109

apply (simp add: m_assoc carr)+
apply (fast intro: divides_mult_lI carr)
done

lemma (in comm_monoid) divides_mult_rI [intro]:
assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(a ⊗ c) divides (b ⊗ c)"

using carr ab
apply (simp add: m_comm[of a c] m_comm[of b c])
apply (rule divides_mult_lI, assumption+)
done

lemma (in comm_monoid_cancel) divides_mult_r [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(a ⊗ c) divides (b ⊗ c) = a divides b"

using carr
by (simp add: m_comm[of a c] m_comm[of b c])

lemma (in monoid) divides_prod_r:
assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "a divides (b ⊗ c)"

using ab carr
by (fast intro: m_assoc)

lemma (in comm_monoid) divides_prod_l:
assumes carr[intro]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier

G"
and ab: "a divides b"

shows "a divides (c ⊗ b)"
using ab carr
apply (simp add: m_comm[of c b])
apply (fast intro: divides_prod_r)
done

lemma (in monoid) unit_divides:
assumes uunit: "u ∈ Units G"

and acarr: "a ∈ carrier G"
shows "u divides a"

proof (intro dividesI[of "(inv u) ⊗ a"], fast intro: uunit acarr)
from uunit acarr

have xcarr: "inv u ⊗ a ∈ carrier G" by fast

from uunit acarr
have "u ⊗ (inv u ⊗ a) = (u ⊗ inv u) ⊗ a" by (fast intro: m_assoc[symmetric])

also have ". . . = 1 ⊗ a" by (simp add: Units_r_inv[OF uunit])
also from acarr

have ". . . = a" by simp

110

finally
show "a = u ⊗ (inv u ⊗ a)" ..

qed

lemma (in comm_monoid) divides_unit:
assumes udvd: "a divides u"

and carr: "a ∈ carrier G" "u ∈ Units G"
shows "a ∈ Units G"

using udvd carr
by (blast intro: unit_factor)

lemma (in comm_monoid) Unit_eq_dividesone:
assumes ucarr: "u ∈ carrier G"
shows "u ∈ Units G = u divides 1"

using ucarr
by (fast dest: divides_unit intro: unit_divides)

7.3.3 Association

lemma associatedI:
fixes G (structure)
assumes "a divides b" "b divides a"
shows "a ∼ b"

using assms
by (simp add: associated_def)

lemma (in monoid) associatedI2:
assumes uunit[simp]: "u ∈ Units G"

and a: "a = b ⊗ u"
and bcarr[simp]: "b ∈ carrier G"

shows "a ∼ b"
using uunit bcarr
unfolding a
apply (intro associatedI)
apply (rule dividesI[of "inv u"], simp)
apply (simp add: m_assoc Units_closed Units_r_inv)

apply fast
done

lemma (in monoid) associatedI2’:
assumes a: "a = b ⊗ u"

and uunit: "u ∈ Units G"
and bcarr: "b ∈ carrier G"

shows "a ∼ b"
using assms by (intro associatedI2)

lemma associatedD:
fixes G (structure)
assumes "a ∼ b"

111

shows "a divides b"
using assms by (simp add: associated_def)

lemma (in monoid_cancel) associatedD2:
assumes assoc: "a ∼ b"

and carr: "a ∈ carrier G" "b ∈ carrier G"
shows "∃ u∈Units G. a = b ⊗ u"

using assoc
unfolding associated_def
proof clarify

assume "b divides a"
hence "∃ u∈carrier G. a = b ⊗ u" by (rule dividesD)
from this obtain u

where ucarr: "u ∈ carrier G" and a: "a = b ⊗ u"
by auto

assume "a divides b"
hence "∃ u’∈carrier G. b = a ⊗ u’" by (rule dividesD)
from this obtain u’

where u’carr: "u’ ∈ carrier G" and b: "b = a ⊗ u’"
by auto

note carr = carr ucarr u’carr

from carr
have "a ⊗ 1 = a" by simp

also have ". . . = b ⊗ u" by (simp add: a)
also have ". . . = a ⊗ u’ ⊗ u" by (simp add: b)
also from carr

have ". . . = a ⊗ (u’ ⊗ u)" by (simp add: m_assoc)
finally

have "a ⊗ 1 = a ⊗ (u’ ⊗ u)" .
with carr

have u1: "1 = u’ ⊗ u" by (fast dest: l_cancel)

from carr
have "b ⊗ 1 = b" by simp

also have ". . . = a ⊗ u’" by (simp add: b)
also have ". . . = b ⊗ u ⊗ u’" by (simp add: a)
also from carr

have ". . . = b ⊗ (u ⊗ u’)" by (simp add: m_assoc)
finally

have "b ⊗ 1 = b ⊗ (u ⊗ u’)" .
with carr

have u2: "1 = u ⊗ u’" by (fast dest: l_cancel)

from u’carr u1[symmetric] u2[symmetric]
have "∃ u’∈carrier G. u’ ⊗ u = 1 ∧ u ⊗ u’ = 1" by fast

hence "u ∈ Units G" by (simp add: Units_def ucarr)

112

from ucarr this a
show "∃ u∈Units G. a = b ⊗ u" by fast

qed

lemma associatedE:
fixes G (structure)
assumes assoc: "a ∼ b"

and e: "[[a divides b; b divides a]] =⇒ P"
shows "P"

proof -
from assoc

have "a divides b" "b divides a"
by (simp add: associated_def)+

thus "P" by (elim e)
qed

lemma (in monoid_cancel) associatedE2:
assumes assoc: "a ∼ b"

and e: "
∧
u. [[a = b ⊗ u; u ∈ Units G]] =⇒ P"

and carr: "a ∈ carrier G" "b ∈ carrier G"
shows "P"

proof -
from assoc and carr

have "∃ u∈Units G. a = b ⊗ u" by (rule associatedD2)
from this obtain u

where "u ∈ Units G" "a = b ⊗ u"
by auto

thus "P" by (elim e)
qed

lemma (in monoid) associated_refl [simp, intro!]:
assumes "a ∈ carrier G"
shows "a ∼ a"

using assms
by (fast intro: associatedI)

lemma (in monoid) associated_sym [sym]:
assumes "a ∼ b"

and "a ∈ carrier G" "b ∈ carrier G"
shows "b ∼ a"

using assms
by (iprover intro: associatedI elim: associatedE)

lemma (in monoid) associated_trans [trans]:
assumes "a ∼ b" "b ∼ c"

and "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "a ∼ c"

using assms
by (iprover intro: associatedI divides_trans elim: associatedE)

113

lemma (in monoid) division_equiv [intro, simp]:
"equivalence (division_rel G)"
apply unfold_locales
apply simp_all
apply (rule associated_sym, assumption+)
apply (iprover intro: associated_trans)
done

7.3.4 Division and associativity

lemma divides_antisym:
fixes G (structure)
assumes "a divides b" "b divides a"

and "a ∈ carrier G" "b ∈ carrier G"
shows "a ∼ b"

using assms
by (fast intro: associatedI)

lemma (in monoid) divides_cong_l [trans]:
assumes xx’: "x ∼ x’"

and xdvdy: "x’ divides y"
and carr [simp]: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier

G"
shows "x divides y"

proof -
from xx’

have "x divides x’" by (simp add: associatedD)
also note xdvdy
finally

show "x divides y" by simp
qed

lemma (in monoid) divides_cong_r [trans]:
assumes xdvdy: "x divides y"

and yy’: "y ∼ y’"
and carr[simp]: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "x divides y’"
proof -

note xdvdy
also from yy’

have "y divides y’" by (simp add: associatedD)
finally

show "x divides y’" by simp
qed

lemma (in monoid) division_weak_partial_order [simp, intro!]:
"weak_partial_order (division_rel G)"
apply unfold_locales

114

apply simp_all
apply (simp add: associated_sym)
apply (blast intro: associated_trans)
apply (simp add: divides_antisym)
apply (blast intro: divides_trans)
apply (blast intro: divides_cong_l divides_cong_r associated_sym)
done

7.3.5 Multiplication and associativity

lemma (in monoid_cancel) mult_cong_r:
assumes "b ∼ b’"

and carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"
shows "a ⊗ b ∼ a ⊗ b’"

using assms
apply (elim associatedE2, intro associatedI2)
apply (auto intro: m_assoc[symmetric])
done

lemma (in comm_monoid_cancel) mult_cong_l:
assumes "a ∼ a’"

and carr: "a ∈ carrier G" "a’ ∈ carrier G" "b ∈ carrier G"
shows "a ⊗ b ∼ a’ ⊗ b"

using assms
apply (elim associatedE2, intro associatedI2)

apply assumption
apply (simp add: m_assoc Units_closed)
apply (simp add: m_comm Units_closed)

apply simp+
done

lemma (in monoid_cancel) assoc_l_cancel:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"

and "a ⊗ b ∼ a ⊗ b’"
shows "b ∼ b’"

using assms
apply (elim associatedE2, intro associatedI2)

apply assumption
apply (rule l_cancel[of a])

apply (simp add: m_assoc Units_closed)
apply fast+

done

lemma (in comm_monoid_cancel) assoc_r_cancel:
assumes "a ⊗ b ∼ a’ ⊗ b"

and carr: "a ∈ carrier G" "a’ ∈ carrier G" "b ∈ carrier G"
shows "a ∼ a’"

using assms
apply (elim associatedE2, intro associatedI2)

115

apply assumption
apply (rule r_cancel[of a b])

apply (simp add: m_assoc Units_closed)
apply (simp add: m_comm Units_closed)

apply fast+
done

7.3.6 Units

lemma (in monoid_cancel) assoc_unit_l [trans]:
assumes asc: "a ∼ b" and bunit: "b ∈ Units G"

and carr: "a ∈ carrier G"
shows "a ∈ Units G"

using assms
by (fast elim: associatedE2)

lemma (in monoid_cancel) assoc_unit_r [trans]:
assumes aunit: "a ∈ Units G" and asc: "a ∼ b"

and bcarr: "b ∈ carrier G"
shows "b ∈ Units G"

using aunit bcarr associated_sym[OF asc]
by (blast intro: assoc_unit_l)

lemma (in comm_monoid) Units_cong:
assumes aunit: "a ∈ Units G" and asc: "a ∼ b"

and bcarr: "b ∈ carrier G"
shows "b ∈ Units G"

using assms
by (blast intro: divides_unit elim: associatedE)

lemma (in monoid) Units_assoc:
assumes units: "a ∈ Units G" "b ∈ Units G"
shows "a ∼ b"

using units
by (fast intro: associatedI unit_divides)

lemma (in monoid) Units_are_ones:
"Units G {.=}(division_rel G) {1}"

apply (simp add: set_eq_def elem_def, rule, simp_all)
proof clarsimp

fix a
assume aunit: "a ∈ Units G"
show "a ∼ 1"
apply (rule associatedI)
apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric])

apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[OF
aunit])

done
next

116

have "1 ∈ Units G" by simp
moreover have "1 ∼ 1" by simp
ultimately show "∃ a ∈ Units G. 1 ∼ a" by fast

qed

lemma (in comm_monoid) Units_Lower:
"Units G = Lower (division_rel G) (carrier G)"

apply (simp add: Units_def Lower_def)
apply (rule, rule)
apply clarsimp
apply (rule unit_divides)
apply (unfold Units_def, fast)

apply assumption
apply clarsimp
proof -

fix x
assume xcarr: "x ∈ carrier G"
assume r[rule_format]: "∀ y. y ∈ carrier G −→ x divides y"
have "1 ∈ carrier G" by simp
hence "x divides 1" by (rule r)
hence "∃ x’∈carrier G. 1 = x ⊗ x’" by (rule dividesE, fast)
from this obtain x’

where x’carr: "x’ ∈ carrier G"
and xx’: "1 = x ⊗ x’"
by auto

note xx’
also with xcarr x’carr

have ". . . = x’ ⊗ x" by (simp add: m_comm)
finally

have "1 = x’ ⊗ x" .

from x’carr xx’[symmetric] this[symmetric]
show "∃ y∈carrier G. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast

qed

7.3.7 Proper factors

lemma properfactorI:
fixes G (structure)
assumes "a divides b"

and "¬(b divides a)"
shows "properfactor G a b"

using assms
unfolding properfactor_def
by simp

lemma properfactorI2:
fixes G (structure)

117

assumes advdb: "a divides b"
and neq: "¬(a ∼ b)"

shows "properfactor G a b"
apply (rule properfactorI, rule advdb)
proof (rule ccontr, simp)

assume "b divides a"
with advdb have "a ∼ b" by (rule associatedI)
with neq show "False" by fast

qed

lemma (in comm_monoid_cancel) properfactorI3:
assumes p: "p = a ⊗ b"

and nunit: "b /∈ Units G"
and carr: "a ∈ carrier G" "b ∈ carrier G" "p ∈ carrier G"

shows "properfactor G a p"
unfolding p
using carr
apply (intro properfactorI, fast)
proof (clarsimp, elim dividesE)

fix c
assume ccarr: "c ∈ carrier G"
note [simp] = carr ccarr

have "a ⊗ 1 = a" by simp
also assume "a = a ⊗ b ⊗ c"
also have ". . . = a ⊗ (b ⊗ c)" by (simp add: m_assoc)
finally have "a ⊗ 1 = a ⊗ (b ⊗ c)" .

hence rinv: "1 = b ⊗ c" by (intro l_cancel[of "a" "1" "b ⊗ c"], simp+)
also have ". . . = c ⊗ b" by (simp add: m_comm)
finally have linv: "1 = c ⊗ b" .

from ccarr linv[symmetric] rinv[symmetric]
have "b ∈ Units G" unfolding Units_def by fastsimp
with nunit

show "False" ..
qed

lemma properfactorE:
fixes G (structure)
assumes pf: "properfactor G a b"

and r: "[[a divides b; ¬(b divides a)]] =⇒ P"
shows "P"

using pf
unfolding properfactor_def
by (fast intro: r)

lemma properfactorE2:
fixes G (structure)

118

assumes pf: "properfactor G a b"
and elim: "[[a divides b; ¬(a ∼ b)]] =⇒ P"

shows "P"
using pf
unfolding properfactor_def
by (fast elim: elim associatedE)

lemma (in monoid) properfactor_unitE:
assumes uunit: "u ∈ Units G"

and pf: "properfactor G a u"
and acarr: "a ∈ carrier G"

shows "P"
using pf unit_divides[OF uunit acarr]
by (fast elim: properfactorE)

lemma (in monoid) properfactor_divides:
assumes pf: "properfactor G a b"
shows "a divides b"

using pf
by (elim properfactorE)

lemma (in monoid) properfactor_trans1 [trans]:
assumes dvds: "a divides b" "properfactor G b c"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a c"

using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+

done

lemma (in monoid) properfactor_trans2 [trans]:
assumes dvds: "properfactor G a b" "b divides c"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a c"

using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+

done

lemma properfactor_lless:
fixes G (structure)
shows "properfactor G = lless (division_rel G)"

apply (rule ext) apply (rule ext) apply rule
apply (fastsimp elim: properfactorE2 intro: weak_llessI)

apply (fastsimp elim: weak_llessE intro: properfactorI2)
done

lemma (in monoid) properfactor_cong_l [trans]:

119

assumes x’x: "x’ ∼ x"
and pf: "properfactor G x y"
and carr: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"

shows "properfactor G x’ y"
using pf
unfolding properfactor_lless
proof -

interpret weak_partial_order "division_rel G" ..
from x’x

have "x’ .=division_rel G x" by simp
also assume "x @division_rel G y"
finally

show "x’ @division_rel G y" by (simp add: carr)
qed

lemma (in monoid) properfactor_cong_r [trans]:
assumes pf: "properfactor G x y"

and yy’: "y ∼ y’"
and carr: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "properfactor G x y’"
using pf
unfolding properfactor_lless
proof -

interpret weak_partial_order "division_rel G" ..
assume "x @division_rel G y"
also from yy’

have "y .=division_rel G y’" by simp
finally

show "x @division_rel G y’" by (simp add: carr)
qed

lemma (in monoid_cancel) properfactor_mult_lI [intro]:
assumes ab: "properfactor G a b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (c ⊗ a) (c ⊗ b)"

using ab carr
by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in monoid_cancel) properfactor_mult_l [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (c ⊗ a) (c ⊗ b) = properfactor G a b"

using carr
by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
assumes ab: "properfactor G a b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (a ⊗ c) (b ⊗ c)"

using ab carr

120

by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (a ⊗ c) (b ⊗ c) = properfactor G a b"

using carr
by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in monoid) properfactor_prod_r:
assumes ab: "properfactor G a b"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a (b ⊗ c)"

by (intro properfactor_trans2[OF ab] divides_prod_r, simp+)

lemma (in comm_monoid) properfactor_prod_l:
assumes ab: "properfactor G a b"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a (c ⊗ b)"

by (intro properfactor_trans2[OF ab] divides_prod_l, simp+)

7.4 Irreducible Elements and Primes

7.4.1 Irreducible elements

lemma irreducibleI:
fixes G (structure)
assumes "a /∈ Units G"

and "
∧
b. [[b ∈ carrier G; properfactor G b a]] =⇒ b ∈ Units G"

shows "irreducible G a"
using assms
unfolding irreducible_def
by blast

lemma irreducibleE:
fixes G (structure)
assumes irr: "irreducible G a"

and elim: "[[a /∈ Units G; ∀ b. b ∈ carrier G ∧ properfactor G b a
−→ b ∈ Units G]] =⇒ P"

shows "P"
using assms
unfolding irreducible_def
by blast

lemma irreducibleD:
fixes G (structure)
assumes irr: "irreducible G a"

and pf: "properfactor G b a"
and bcarr: "b ∈ carrier G"

shows "b ∈ Units G"
using assms

121

by (fast elim: irreducibleE)

lemma (in monoid_cancel) irreducible_cong [trans]:
assumes irred: "irreducible G a"

and aa’: "a ∼ a’"
and carr[simp]: "a ∈ carrier G" "a’ ∈ carrier G"

shows "irreducible G a’"
using assms
apply (elim irreducibleE, intro irreducibleI)
apply simp_all
proof clarify

assume "a’ ∈ Units G"
also note aa’[symmetric]
finally have aunit: "a ∈ Units G" by simp

assume "a /∈ Units G"
with aunit

show "False" by fast
next

fix b
assume r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b a −→

b ∈ Units G"
and bcarr[simp]: "b ∈ carrier G"

assume "properfactor G b a’"
also note aa’[symmetric]
finally

have "properfactor G b a" by simp

with bcarr
show "b ∈ Units G" by (fast intro: r)

qed

lemma (in monoid) irreducible_prod_rI:
assumes airr: "irreducible G a"

and bunit: "b ∈ Units G"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "irreducible G (a ⊗ b)"
using airr carr bunit
apply (elim irreducibleE, intro irreducibleI, clarify)
apply (subgoal_tac "a ∈ Units G", simp)
apply (intro prod_unit_r[of a b] carr bunit, assumption)

proof -
fix c
assume [simp]: "c ∈ carrier G"

and r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b a −→ b
∈ Units G"

assume "properfactor G c (a ⊗ b)"
also have "a ⊗ b ∼ a" by (intro associatedI2[OF bunit], simp+)

122

finally
have pfa: "properfactor G c a" by simp

show "c ∈ Units G" by (rule r, simp add: pfa)
qed

lemma (in comm_monoid) irreducible_prod_lI:
assumes birr: "irreducible G b"

and aunit: "a ∈ Units G"
and carr [simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "irreducible G (a ⊗ b)"
apply (subst m_comm, simp+)
apply (intro irreducible_prod_rI assms)
done

lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
assumes irr: "irreducible G (a ⊗ b)"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
and e1: "[[irreducible G a; b ∈ Units G]] =⇒ P"
and e2: "[[a ∈ Units G; irreducible G b]] =⇒ P"

shows "P"
using irr
proof (elim irreducibleE)

assume abnunit: "a ⊗ b /∈ Units G"
and isunit[rule_format]: "∀ ba. ba ∈ carrier G ∧ properfactor G ba

(a ⊗ b) −→ ba ∈ Units G"

show "P"
proof (cases "a ∈ Units G")

assume aunit: "a ∈ Units G"

have "irreducible G b"
apply (rule irreducibleI)
proof (rule ccontr, simp)

assume "b ∈ Units G"
with aunit have "(a ⊗ b) ∈ Units G" by fast
with abnunit show "False" ..

next
fix c
assume ccarr: "c ∈ carrier G"

and "properfactor G c b"
hence "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_l[of

c b a])
from ccarr this show "c ∈ Units G" by (fast intro: isunit)

qed

from aunit this show "P" by (rule e2)
next

assume anunit: "a /∈ Units G"
with carr have "properfactor G b (b ⊗ a)" by (fast intro: properfactorI3)

123

hence bf: "properfactor G b (a ⊗ b)" by (subst m_comm[of a b], simp+)
hence bunit: "b ∈ Units G" by (intro isunit, simp)

have "irreducible G a"
apply (rule irreducibleI)
proof (rule ccontr, simp)

assume "a ∈ Units G"
with bunit have "(a ⊗ b) ∈ Units G" by fast
with abnunit show "False" ..

next
fix c
assume ccarr: "c ∈ carrier G"

and "properfactor G c a"
hence "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_r[of

c a b])
from ccarr this show "c ∈ Units G" by (fast intro: isunit)

qed

from this bunit show "P" by (rule e1)
qed

qed

7.4.2 Prime elements

lemma primeI:
fixes G (structure)
assumes "p /∈ Units G"

and "
∧
a b. [[a ∈ carrier G; b ∈ carrier G; p divides (a ⊗ b)]] =⇒

p divides a ∨ p divides b"
shows "prime G p"

using assms
unfolding prime_def
by blast

lemma primeE:
fixes G (structure)
assumes pprime: "prime G p"

and e: "[[p /∈ Units G; ∀ a∈carrier G. ∀ b∈carrier G.
p divides a ⊗ b −→ p divides a ∨ p divides

b]] =⇒ P"
shows "P"

using pprime
unfolding prime_def
by (blast dest: e)

lemma (in comm_monoid_cancel) prime_divides:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"

and pprime: "prime G p"
and pdvd: "p divides a ⊗ b"

124

shows "p divides a ∨ p divides b"
using assms
by (blast elim: primeE)

lemma (in monoid_cancel) prime_cong [trans]:
assumes pprime: "prime G p"

and pp’: "p ∼ p’"
and carr[simp]: "p ∈ carrier G" "p’ ∈ carrier G"

shows "prime G p’"
using pprime
apply (elim primeE, intro primeI)
proof clarify

assume pnunit: "p /∈ Units G"
assume "p’ ∈ Units G"
also note pp’[symmetric]
finally

have "p ∈ Units G" by simp
with pnunit

show False ..
next

fix a b
assume r[rule_format]:

"∀ a∈carrier G. ∀ b∈carrier G. p divides a ⊗ b −→ p divides
a ∨ p divides b"

assume p’dvd: "p’ divides a ⊗ b"
and carr’[simp]: "a ∈ carrier G" "b ∈ carrier G"

note pp’
also note p’dvd
finally

have "p divides a ⊗ b" by simp
hence "p divides a ∨ p divides b" by (intro r, simp+)
moreover {

note pp’[symmetric]
also assume "p divides a"
finally

have "p’ divides a" by simp
hence "p’ divides a ∨ p’ divides b" by simp

}
moreover {

note pp’[symmetric]
also assume "p divides b"
finally

have "p’ divides b" by simp
hence "p’ divides a ∨ p’ divides b" by simp

}
ultimately

show "p’ divides a ∨ p’ divides b" by fast
qed

125

7.5 Factorization and Factorial Monoids

7.5.1 Function definitions

constdefs (structure G)
factors :: "[_, ’a list, ’a] ⇒ bool"
"factors G fs a == (∀ x ∈ (set fs). irreducible G x) ∧ foldr (op ⊗)

fs 1 = a"

wfactors ::"[_, ’a list, ’a] ⇒ bool"
"wfactors G fs a == (∀ x ∈ (set fs). irreducible G x) ∧ foldr (op ⊗)

fs 1 ∼ a"

abbreviation
list_assoc :: "(’a,_) monoid_scheme ⇒ ’a list ⇒ ’a list ⇒ bool" (in-

fix "[∼]ı " 44) where
"list_assoc G == list_all2 (op ∼G)"

constdefs (structure G)
essentially_equal :: "[_, ’a list, ’a list] ⇒ bool"
"essentially_equal G fs1 fs2 == (∃ fs1’. fs1 <~~> fs1’ ∧ fs1’ [∼] fs2)"

locale factorial_monoid = comm_monoid_cancel +
assumes factors_exist:

"[[a ∈ carrier G; a /∈ Units G]] =⇒ ∃ fs. set fs ⊆ carrier G ∧
factors G fs a"

and factors_unique:
"[[factors G fs a; factors G fs’ a; a ∈ carrier G; a /∈ Units

G;
set fs ⊆ carrier G; set fs’ ⊆ carrier G]] =⇒ essentially_equal

G fs fs’"

7.5.2 Comparing lists of elements

Association on lists

lemma (in monoid) listassoc_refl [simp, intro]:
assumes "set as ⊆ carrier G"
shows "as [∼] as"

using assms
by (induct as) simp+

lemma (in monoid) listassoc_sym [sym]:
assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "bs [∼] as"

using assms
proof (induct as arbitrary: bs, simp)

case Cons
thus ?case

126

apply (induct bs, simp)
apply clarsimp
apply (iprover intro: associated_sym)

done
qed

lemma (in monoid) listassoc_trans [trans]:
assumes "as [∼] bs" and "bs [∼] cs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G" and "set cs ⊆
carrier G"

shows "as [∼] cs"
using assms
apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)
apply (rule associated_trans)

apply (subgoal_tac "as ! i ∼ bs ! i", assumption)
apply (simp, simp)

apply blast+
done

lemma (in monoid_cancel) irrlist_listassoc_cong:
assumes "∀ a∈set as. irreducible G a"

and "as [∼] bs"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "∀ a∈set bs. irreducible G a"
using assms
apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)
apply (blast intro: irreducible_cong)
done

Permutations

lemma perm_map [intro]:
assumes p: "a <~~> b"
shows "map f a <~~> map f b"

using p
by induct auto

lemma perm_map_switch:
assumes m: "map f a = map f b" and p: "b <~~> c"
shows "∃ d. a <~~> d ∧ map f d = map f c"

using p m
by (induct arbitrary: a) (simp, force, force, blast)

lemma (in monoid) perm_assoc_switch:
assumes a:"as [∼] bs" and p: "bs <~~> cs"
shows "∃ bs’. as <~~> bs’ ∧ bs’ [∼] cs"

using p a
apply (induct bs cs arbitrary: as, simp)

apply (clarsimp simp add: list_all2_Cons2, blast)
apply (clarsimp simp add: list_all2_Cons2)

127

apply blast
apply blast
done

lemma (in monoid) perm_assoc_switch_r:
assumes p: "as <~~> bs" and a:"bs [∼] cs"
shows "∃ bs’. as [∼] bs’ ∧ bs’ <~~> cs"

using p a
apply (induct as bs arbitrary: cs, simp)

apply (clarsimp simp add: list_all2_Cons1, blast)
apply (clarsimp simp add: list_all2_Cons1)
apply blast

apply blast
done

declare perm_sym [sym]

lemma perm_setP:
assumes perm: "as <~~> bs"

and as: "P (set as)"
shows "P (set bs)"

proof -
from perm

have "multiset_of as = multiset_of bs"
by (simp add: multiset_of_eq_perm)

hence "set as = set bs" by (rule multiset_of_eq_setD)
with as

show "P (set bs)" by simp
qed

lemmas (in monoid) perm_closed =
perm_setP[of _ _ "λas. as ⊆ carrier G"]

lemmas (in monoid) irrlist_perm_cong =
perm_setP[of _ _ "λas. ∀ a∈as. irreducible G a"]

Essentially equal factorizations

lemma (in monoid) essentially_equalI:
assumes ex: "fs1 <~~> fs1’" "fs1’ [∼] fs2"
shows "essentially_equal G fs1 fs2"

using ex
unfolding essentially_equal_def
by fast

lemma (in monoid) essentially_equalE:
assumes ee: "essentially_equal G fs1 fs2"

and e: "
∧
fs1’. [[fs1 <~~> fs1’; fs1’ [∼] fs2]] =⇒ P"

shows "P"
using ee

128

unfolding essentially_equal_def
by (fast intro: e)

lemma (in monoid) ee_refl [simp,intro]:
assumes carr: "set as ⊆ carrier G"
shows "essentially_equal G as as"

using carr
by (fast intro: essentially_equalI)

lemma (in monoid) ee_sym [sym]:
assumes ee: "essentially_equal G as bs"

and carr: "set as ⊆ carrier G" "set bs ⊆ carrier G"
shows "essentially_equal G bs as"

using ee
proof (elim essentially_equalE)

fix fs
assume "as <~~> fs" "fs [∼] bs"
hence "∃ fs’. as [∼] fs’ ∧ fs’ <~~> bs" by (rule perm_assoc_switch_r)
from this obtain fs’

where a: "as [∼] fs’" and p: "fs’ <~~> bs"
by auto

from p have "bs <~~> fs’" by (rule perm_sym)
with a[symmetric] carr

show ?thesis
by (iprover intro: essentially_equalI perm_closed)

qed

lemma (in monoid) ee_trans [trans]:
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal

G bs cs"
and ascarr: "set as ⊆ carrier G"
and bscarr: "set bs ⊆ carrier G"
and cscarr: "set cs ⊆ carrier G"

shows "essentially_equal G as cs"
using ab bc
proof (elim essentially_equalE)

fix abs bcs
assume "abs [∼] bs" and pb: "bs <~~> bcs"
hence "∃ bs’. abs <~~> bs’ ∧ bs’ [∼] bcs" by (rule perm_assoc_switch)
from this obtain bs’

where p: "abs <~~> bs’" and a: "bs’ [∼] bcs"
by auto

assume "as <~~> abs"
with p

have pp: "as <~~> bs’" by fast

from pp ascarr have c1: "set bs’ ⊆ carrier G" by (rule perm_closed)
from pb bscarr have c2: "set bcs ⊆ carrier G" by (rule perm_closed)

129

note a
also assume "bcs [∼] cs"
finally (listassoc_trans) have"bs’ [∼] cs" by (simp add: c1 c2 cscarr)

with pp
show ?thesis
by (rule essentially_equalI)

qed

7.5.3 Properties of lists of elements

Multiplication of factors in a list

lemma (in monoid) multlist_closed [simp, intro]:
assumes ascarr: "set fs ⊆ carrier G"
shows "foldr (op ⊗) fs 1 ∈ carrier G"

by (insert ascarr, induct fs, simp+)

lemma (in comm_monoid) multlist_dividesI :
assumes "f ∈ set fs" and "f ∈ carrier G" and "set fs ⊆ carrier G"
shows "f divides (foldr (op ⊗) fs 1)"

using assms
apply (induct fs)
apply simp

apply (case_tac "f = a", simp)
apply (fast intro: dividesI)

apply clarsimp
apply (elim dividesE, intro dividesI)
defer 1
apply (simp add: m_comm)
apply (simp add: m_assoc[symmetric])
apply (simp add: m_comm)

apply simp
done

lemma (in comm_monoid_cancel) multlist_listassoc_cong:
assumes "fs [∼] fs’"

and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"
shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"

using assms
proof (induct fs arbitrary: fs’, simp)

case (Cons a as fs’)
thus ?case
apply (induct fs’, simp)
proof clarsimp

fix b bs
assume "a ∼ b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G"

hence p: "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ as 1"

130

by (fast intro: mult_cong_l)
also

assume "as [∼] bs"
and bscarr: "set bs ⊆ carrier G"
and "

∧
fs’. [[as [∼] fs’; set fs’ ⊆ carrier G]] =⇒ foldr op ⊗

as 1 ∼ foldr op ⊗ fs’ 1"
hence "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by simp
with ascarr bscarr bcarr

have "b ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"
by (fast intro: mult_cong_r)

finally
show "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"
by (simp add: ascarr bscarr acarr bcarr)

qed
qed

lemma (in comm_monoid) multlist_perm_cong:
assumes prm: "as <~~> bs"

and ascarr: "set as ⊆ carrier G"
shows "foldr (op ⊗) as 1 = foldr (op ⊗) bs 1"

using prm ascarr
apply (induct, simp, clarsimp simp add: m_ac, clarsimp)
proof clarsimp

fix xs ys zs
assume "xs <~~> ys" "set xs ⊆ carrier G"
hence "set ys ⊆ carrier G" by (rule perm_closed)
moreover assume "set ys ⊆ carrier G =⇒ foldr op ⊗ ys 1 = foldr op

⊗ zs 1"
ultimately show "foldr op ⊗ ys 1 = foldr op ⊗ zs 1" by simp

qed

lemma (in comm_monoid_cancel) multlist_ee_cong:
assumes "essentially_equal G fs fs’"

and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"
shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"

using assms
apply (elim essentially_equalE)
apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)
done

7.5.4 Factorization in irreducible elements

lemma wfactorsI:
fixes G (structure)
assumes "∀ f∈set fs. irreducible G f"

and "foldr (op ⊗) fs 1 ∼ a"
shows "wfactors G fs a"

using assms
unfolding wfactors_def

131

by simp

lemma wfactorsE:
fixes G (structure)
assumes wf: "wfactors G fs a"

and e: "[[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 ∼ a]] =⇒
P"

shows "P"
using wf
unfolding wfactors_def
by (fast dest: e)

lemma (in monoid) factorsI:
assumes "∀ f∈set fs. irreducible G f"

and "foldr (op ⊗) fs 1 = a"
shows "factors G fs a"

using assms
unfolding factors_def
by simp

lemma factorsE:
fixes G (structure)
assumes f: "factors G fs a"

and e: "[[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 = a]] =⇒ P"
shows "P"

using f
unfolding factors_def
by (simp add: e)

lemma (in monoid) factors_wfactors:
assumes "factors G as a" and "set as ⊆ carrier G"
shows "wfactors G as a"

using assms
by (blast elim: factorsE intro: wfactorsI)

lemma (in monoid) wfactors_factors:
assumes "wfactors G as a" and "set as ⊆ carrier G"
shows "∃ a’. factors G as a’ ∧ a’ ∼ a"

using assms
by (blast elim: wfactorsE intro: factorsI)

lemma (in monoid) factors_closed [dest]:
assumes "factors G fs a" and "set fs ⊆ carrier G"
shows "a ∈ carrier G"

using assms
by (elim factorsE, clarsimp)

lemma (in monoid) nunit_factors:
assumes anunit: "a /∈ Units G"

132

and fs: "factors G as a"
shows "length as > 0"

apply (insert fs, elim factorsE)
proof (cases "length as = 0")

assume "length as = 0"
hence fold: "foldr op ⊗ as 1 = 1" by force

assume "foldr op ⊗ as 1 = a"
with fold

have "a = 1" by simp
then have "a ∈ Units G" by fast
with anunit

have "False" by simp
thus ?thesis ..

qed simp

lemma (in monoid) unit_wfactors [simp]:
assumes aunit: "a ∈ Units G"
shows "wfactors G [] a"

using aunit
by (intro wfactorsI) (simp, simp add: Units_assoc)

lemma (in comm_monoid_cancel) unit_wfactors_empty:
assumes aunit: "a ∈ Units G"

and wf: "wfactors G fs a"
and carr[simp]: "set fs ⊆ carrier G"

shows "fs = []"
proof (rule ccontr, cases fs, simp)

fix f fs’
assume fs: "fs = f # fs’"

from carr
have fcarr[simp]: "f ∈ carrier G"
and carr’[simp]: "set fs’ ⊆ carrier G"
by (simp add: fs)+

from fs wf
have "irreducible G f" by (simp add: wfactors_def)

hence fnunit: "f /∈ Units G" by (fast elim: irreducibleE)

from fs wf
have a: "f ⊗ foldr (op ⊗) fs’ 1 ∼ a" by (simp add: wfactors_def)

note aunit
also from fs wf

have a: "f ⊗ foldr (op ⊗) fs’ 1 ∼ a" by (simp add: wfactors_def)
have "a ∼ f ⊗ foldr (op ⊗) fs’ 1"
by (simp add: Units_closed[OF aunit] a[symmetric])

finally

133

have "f ⊗ foldr (op ⊗) fs’ 1 ∈ Units G" by simp
hence "f ∈ Units G" by (intro unit_factor[of f], simp+)

with fnunit show "False" by simp
qed

Comparing wfactors

lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:
assumes fact: "wfactors G fs a"

and asc: "fs [∼] fs’"
and carr: "a ∈ carrier G" "set fs ⊆ carrier G" "set fs’ ⊆ carrier

G"
shows "wfactors G fs’ a"

using fact
apply (elim wfactorsE, intro wfactorsI)
proof -

assume "∀ f∈set fs. irreducible G f"
also note asc
finally (irrlist_listassoc_cong)

show "∀ f∈set fs’. irreducible G f" by (simp add: carr)
next

from asc[symmetric]
have "foldr op ⊗ fs’ 1 ∼ foldr op ⊗ fs 1"
by (simp add: multlist_listassoc_cong carr)

also assume "foldr op ⊗ fs 1 ∼ a"
finally

show "foldr op ⊗ fs’ 1 ∼ a" by (simp add: carr)
qed

lemma (in comm_monoid) wfactors_perm_cong_l:
assumes "wfactors G fs a"

and "fs <~~> fs’"
and "set fs ⊆ carrier G"

shows "wfactors G fs’ a"
using assms
apply (elim wfactorsE, intro wfactorsI)
apply (rule irrlist_perm_cong, assumption+)

apply (simp add: multlist_perm_cong[symmetric])
done

lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:
assumes ee: "essentially_equal G as bs"

and bfs: "wfactors G bs b"
and carr: "b ∈ carrier G" "set as ⊆ carrier G" "set bs ⊆ carrier

G"
shows "wfactors G as b"

using ee
proof (elim essentially_equalE)

fix fs

134

assume prm: "as <~~> fs"
with carr

have fscarr: "set fs ⊆ carrier G" by (simp add: perm_closed)

note bfs
also assume [symmetric]: "fs [∼] bs"
also (wfactors_listassoc_cong_l)

note prm[symmetric]
finally (wfactors_perm_cong_l)

show "wfactors G as b" by (simp add: carr fscarr)
qed

lemma (in monoid) wfactors_cong_r [trans]:
assumes fac: "wfactors G fs a" and aa’: "a ∼ a’"

and carr[simp]: "a ∈ carrier G" "a’ ∈ carrier G" "set fs ⊆ carrier
G"

shows "wfactors G fs a’"
using fac
proof (elim wfactorsE, intro wfactorsI)

assume "foldr op ⊗ fs 1 ∼ a" also note aa’
finally show "foldr op ⊗ fs 1 ∼ a’" by simp

qed

7.5.5 Essentially equal factorizations

lemma (in comm_monoid_cancel) unitfactor_ee:
assumes uunit: "u ∈ Units G"

and carr: "set as ⊆ carrier G"
shows "essentially_equal G (as[0 := (as!0 ⊗ u)]) as" (is "essentially_equal

G ?as’ as")
using assms
apply (intro essentially_equalI[of _ ?as’], simp)
apply (cases as, simp)
apply (clarsimp, fast intro: associatedI2[of u])
done

lemma (in comm_monoid_cancel) factors_cong_unit:
assumes uunit: "u ∈ Units G" and anunit: "a /∈ Units G"

and afs: "factors G as a"
and ascarr: "set as ⊆ carrier G"

shows "factors G (as[0 := (as!0 ⊗ u)]) (a ⊗ u)" (is "factors G ?as’
?a’")
using assms
apply (elim factorsE, clarify)
apply (cases as)
apply (simp add: nunit_factors)

apply clarsimp
apply (elim factorsE, intro factorsI)
apply (clarsimp, fast intro: irreducible_prod_rI)

135

apply (simp add: m_ac Units_closed)
done

lemma (in comm_monoid) perm_wfactorsD:
assumes prm: "as <~~> bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and ascarr[simp]: "set as ⊆ carrier G"

shows "a ∼ b"
using afs bfs
proof (elim wfactorsE)

from prm have [simp]: "set bs ⊆ carrier G" by (simp add: perm_closed)
assume "foldr op ⊗ as 1 ∼ a"
hence "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
also from prm

have "foldr op ⊗ as 1 = foldr op ⊗ bs 1" by (rule multlist_perm_cong,
simp)

also assume "foldr op ⊗ bs 1 ∼ b"
finally

show "a ∼ b" by simp
qed

lemma (in comm_monoid_cancel) listassoc_wfactorsD:
assumes assoc: "as [∼] bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and [simp]: "set as ⊆ carrier G" "set bs ⊆ carrier G"

shows "a ∼ b"
using afs bfs
proof (elim wfactorsE)

assume "foldr op ⊗ as 1 ∼ a"
hence "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
also from assoc

have "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by (rule multlist_listassoc_cong,
simp+)

also assume "foldr op ⊗ bs 1 ∼ b"
finally

show "a ∼ b" by simp
qed

lemma (in comm_monoid_cancel) ee_wfactorsD:
assumes ee: "essentially_equal G as bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs

⊆ carrier G"
shows "a ∼ b"

using ee
proof (elim essentially_equalE)

136

fix fs
assume prm: "as <~~> fs"
hence as’carr[simp]: "set fs ⊆ carrier G" by (simp add: perm_closed)
from afs prm

have afs’: "wfactors G fs a" by (rule wfactors_perm_cong_l, simp)
assume "fs [∼] bs"
from this afs’ bfs

show "a ∼ b" by (rule listassoc_wfactorsD, simp+)
qed

lemma (in comm_monoid_cancel) ee_factorsD:
assumes ee: "essentially_equal G as bs"

and afs: "factors G as a" and bfs:"factors G bs b"
and "set as ⊆ carrier G" "set bs ⊆ carrier G"

shows "a ∼ b"
using assms
by (blast intro: factors_wfactors dest: ee_wfactorsD)

lemma (in factorial_monoid) ee_factorsI:
assumes ab: "a ∼ b"

and afs: "factors G as a" and anunit: "a /∈ Units G"
and bfs: "factors G bs b" and bnunit: "b /∈ Units G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "essentially_equal G as bs"
proof -

note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]
factors_closed[OF bfs bscarr] bscarr[THEN subsetD]

from ab carr
have "∃ u∈Units G. a = b ⊗ u" by (fast elim: associatedE2)

from this obtain u
where uunit: "u ∈ Units G"
and a: "a = b ⊗ u" by auto

from uunit bscarr
have ee: "essentially_equal G (bs[0 := (bs!0 ⊗ u)]) bs"

(is "essentially_equal G ?bs’ bs")
by (rule unitfactor_ee)

from bscarr uunit
have bs’carr: "set ?bs’ ⊆ carrier G"
by (cases bs) (simp add: Units_closed)+

from uunit bnunit bfs bscarr
have fac: "factors G ?bs’ (b ⊗ u)"
by (rule factors_cong_unit)

from afs fac[simplified a[symmetric]] ascarr bs’carr anunit
have "essentially_equal G as ?bs’"

137

by (blast intro: factors_unique)
also note ee
finally

show "essentially_equal G as bs" by (simp add: ascarr bscarr bs’carr)
qed

lemma (in factorial_monoid) ee_wfactorsI:
assumes asc: "a ∼ b"

and asf: "wfactors G as a" and bsf: "wfactors G bs b"
and acarr[simp]: "a ∈ carrier G" and bcarr[simp]: "b ∈ carrier G"
and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs

⊆ carrier G"
shows "essentially_equal G as bs"

using assms
proof (cases "a ∈ Units G")

assume aunit: "a ∈ Units G"
also note asc
finally have bunit: "b ∈ Units G" by simp

from aunit asf ascarr
have e: "as = []" by (rule unit_wfactors_empty)

from bunit bsf bscarr
have e’: "bs = []" by (rule unit_wfactors_empty)

have "essentially_equal G [] []"
by (fast intro: essentially_equalI)

thus ?thesis by (simp add: e e’)
next

assume anunit: "a /∈ Units G"
have bnunit: "b /∈ Units G"
proof clarify

assume "b ∈ Units G"
also note asc[symmetric]
finally have "a ∈ Units G" by simp
with anunit

show "False" ..
qed

have "∃ a’. factors G as a’ ∧ a’ ∼ a" by (rule wfactors_factors[OF
asf ascarr])

from this obtain a’
where fa’: "factors G as a’"
and a’: "a’ ∼ a"
by auto

from fa’ ascarr
have a’carr[simp]: "a’ ∈ carrier G" by fast

have a’nunit: "a’ /∈ Units G"
proof (clarify)

138

assume "a’ ∈ Units G"
also note a’
finally have "a ∈ Units G" by simp
with anunit

show "False" ..
qed

have "∃ b’. factors G bs b’ ∧ b’ ∼ b" by (rule wfactors_factors[OF
bsf bscarr])

from this obtain b’
where fb’: "factors G bs b’"
and b’: "b’ ∼ b"
by auto

from fb’ bscarr
have b’carr[simp]: "b’ ∈ carrier G" by fast

have b’nunit: "b’ /∈ Units G"
proof (clarify)

assume "b’ ∈ Units G"
also note b’
finally have "b ∈ Units G" by simp
with bnunit

show "False" ..
qed

note a’
also note asc
also note b’[symmetric]
finally

have "a’ ∼ b’" by simp

from this fa’ a’nunit fb’ b’nunit ascarr bscarr
show "essentially_equal G as bs"

by (rule ee_factorsI)
qed

lemma (in factorial_monoid) ee_wfactors:
assumes asf: "wfactors G as a"

and bsf: "wfactors G bs b"
and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows asc: "a ∼ b = essentially_equal G as bs"
using assms
by (fast intro: ee_wfactorsI ee_wfactorsD)

lemma (in factorial_monoid) wfactors_exist [intro, simp]:
assumes acarr[simp]: "a ∈ carrier G"
shows "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs a"

proof (cases "a ∈ Units G")

139

assume "a ∈ Units G"
hence "wfactors G [] a" by (rule unit_wfactors)
thus ?thesis by (intro exI) force

next
assume "a /∈ Units G"
hence "∃ fs. set fs ⊆ carrier G ∧ factors G fs a" by (intro factors_exist

acarr)
from this obtain fs

where fscarr: "set fs ⊆ carrier G"
and f: "factors G fs a"
by auto

from f have "wfactors G fs a" by (rule factors_wfactors) fact
from fscarr this

show ?thesis by fast
qed

lemma (in monoid) wfactors_prod_exists [intro, simp]:
assumes "∀ a ∈ set as. irreducible G a" and "set as ⊆ carrier G"
shows "∃ a. a ∈ carrier G ∧ wfactors G as a"

unfolding wfactors_def
using assms
by blast

lemma (in factorial_monoid) wfactors_unique:
assumes "wfactors G fs a" and "wfactors G fs’ a"

and "a ∈ carrier G"
and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"

shows "essentially_equal G fs fs’"
using assms
by (fast intro: ee_wfactorsI[of a a])

lemma (in monoid) factors_mult_single:
assumes "irreducible G a" and "factors G fb b" and "a ∈ carrier G"
shows "factors G (a # fb) (a ⊗ b)"

using assms
unfolding factors_def
by simp

lemma (in monoid_cancel) wfactors_mult_single:
assumes f: "irreducible G a" "wfactors G fb b"

"a ∈ carrier G" "b ∈ carrier G" "set fb ⊆ carrier G"
shows "wfactors G (a # fb) (a ⊗ b)"

using assms
unfolding wfactors_def
by (simp add: mult_cong_r)

lemma (in monoid) factors_mult:
assumes factors: "factors G fa a" "factors G fb b"

and ascarr: "set fa ⊆ carrier G" and bscarr:"set fb ⊆ carrier G"

140

shows "factors G (fa @ fb) (a ⊗ b)"
using assms
unfolding factors_def
apply (safe, force)
apply (induct fa)
apply simp

apply (simp add: m_assoc)
done

lemma (in comm_monoid_cancel) wfactors_mult [intro]:
assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr:"set bs ⊆ carrier G"

shows "wfactors G (as @ bs) (a ⊗ b)"
apply (insert wfactors_factors[OF asf ascarr])
apply (insert wfactors_factors[OF bsf bscarr])
proof (clarsimp)

fix a’ b’
assume asf’: "factors G as a’" and a’a: "a’ ∼ a"

and bsf’: "factors G bs b’" and b’b: "b’ ∼ b"
from asf’ have a’carr: "a’ ∈ carrier G" by (rule factors_closed) fact
from bsf’ have b’carr: "b’ ∈ carrier G" by (rule factors_closed) fact

note carr = acarr bcarr a’carr b’carr ascarr bscarr

from asf’ bsf’
have "factors G (as @ bs) (a’ ⊗ b’)" by (rule factors_mult) fact+

with carr
have abf’: "wfactors G (as @ bs) (a’ ⊗ b’)" by (intro factors_wfactors)

simp+
also from b’b carr

have trb: "a’ ⊗ b’ ∼ a’ ⊗ b" by (intro mult_cong_r)
also from a’a carr

have tra: "a’ ⊗ b ∼ a ⊗ b" by (intro mult_cong_l)
finally

show "wfactors G (as @ bs) (a ⊗ b)"
by (simp add: carr)

qed

lemma (in comm_monoid) factors_dividesI:
assumes "factors G fs a" and "f ∈ set fs"

and "set fs ⊆ carrier G"
shows "f divides a"

using assms
by (fast elim: factorsE intro: multlist_dividesI)

lemma (in comm_monoid) wfactors_dividesI:
assumes p: "wfactors G fs a"

141

and fscarr: "set fs ⊆ carrier G" and acarr: "a ∈ carrier G"
and f: "f ∈ set fs"

shows "f divides a"
apply (insert wfactors_factors[OF p fscarr], clarsimp)
proof -

fix a’
assume fsa’: "factors G fs a’"

and a’a: "a’ ∼ a"
with fscarr

have a’carr: "a’ ∈ carrier G" by (simp add: factors_closed)

from fsa’ fscarr f
have "f divides a’" by (fast intro: factors_dividesI)

also note a’a
finally

show "f divides a" by (simp add: f fscarr[THEN subsetD] acarr
a’carr)
qed

7.5.6 Factorial monoids and wfactors

lemma (in comm_monoid_cancel) factorial_monoidI:
assumes wfactors_exists:

"
∧
a. a ∈ carrier G =⇒ ∃ fs. set fs ⊆ carrier G ∧ wfactors

G fs a"
and wfactors_unique:

"
∧
a fs fs’. [[a ∈ carrier G; set fs ⊆ carrier G; set fs’ ⊆ carrier

G;
wfactors G fs a; wfactors G fs’ a]] =⇒ essentially_equal

G fs fs’"
shows "factorial_monoid G"

proof
fix a
assume acarr: "a ∈ carrier G" and anunit: "a /∈ Units G"

from wfactors_exists[OF acarr]
obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

from afs ascarr
have "∃ a’. factors G as a’ ∧ a’ ∼ a" by (rule wfactors_factors)

from this obtain a’
where afs’: "factors G as a’"
and a’a: "a’ ∼ a"
by auto

from afs’ ascarr
have a’carr: "a’ ∈ carrier G" by fast

have a’nunit: "a’ /∈ Units G"

142

proof clarify
assume "a’ ∈ Units G"
also note a’a
finally have "a ∈ Units G" by (simp add: acarr)
with anunit

show "False" ..
qed

from a’carr acarr a’a
have "∃ u. u ∈ Units G ∧ a’ = a ⊗ u" by (blast elim: associatedE2)

from this obtain u
where uunit: "u ∈ Units G"
and a’: "a’ = a ⊗ u"
by auto

note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]

have "a = a ⊗ 1" by simp
also have ". . . = a ⊗ (u ⊗ inv u)" by (simp add: Units_r_inv uunit)
also have ". . . = a’ ⊗ inv u" by (simp add: m_assoc[symmetric] a’[symmetric])
finally

have a: "a = a’ ⊗ inv u" .

from ascarr uunit
have cr: "set (as[0:=(as!0 ⊗ inv u)]) ⊆ carrier G"
by (cases as, clarsimp+)

from afs’ uunit a’nunit acarr ascarr
have "factors G (as[0:=(as!0 ⊗ inv u)]) a"
by (simp add: a factors_cong_unit)

with cr
show "∃ fs. set fs ⊆ carrier G ∧ factors G fs a" by fast

qed (blast intro: factors_wfactors wfactors_unique)

7.6 Factorizations as Multisets

Gives useful operations like intersection

abbreviation
"assocs G x == eq_closure_of (division_rel G) {x}"

constdefs (structure G)
"fmset G as ≡ multiset_of (map (λa. assocs G a) as)"

Helper lemmas

lemma (in monoid) assocs_repr_independence:
assumes "y ∈ assocs G x"

and "x ∈ carrier G"
shows "assocs G x = assocs G y"

143

using assms
apply safe
apply (elim closure_ofE2, intro closure_ofI2[of _ _ y])

apply (clarsimp, iprover intro: associated_trans associated_sym, simp+)
apply (elim closure_ofE2, intro closure_ofI2[of _ _ x])

apply (clarsimp, iprover intro: associated_trans, simp+)
done

lemma (in monoid) assocs_self:
assumes "x ∈ carrier G"
shows "x ∈ assocs G x"

using assms
by (fastsimp intro: closure_ofI2)

lemma (in monoid) assocs_repr_independenceD:
assumes repr: "assocs G x = assocs G y"

and ycarr: "y ∈ carrier G"
shows "y ∈ assocs G x"

unfolding repr
using ycarr
by (intro assocs_self)

lemma (in comm_monoid) assocs_assoc:
assumes "a ∈ assocs G b"

and "b ∈ carrier G"
shows "a ∼ b"

using assms
by (elim closure_ofE2, simp)

lemmas (in comm_monoid) assocs_eqD =
assocs_repr_independenceD[THEN assocs_assoc]

7.6.1 Comparing multisets

lemma (in monoid) fmset_perm_cong:
assumes prm: "as <~~> bs"
shows "fmset G as = fmset G bs"

using perm_map[OF prm]
by (simp add: multiset_of_eq_perm fmset_def)

lemma (in comm_monoid_cancel) eqc_listassoc_cong:
assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "map (assocs G) as = map (assocs G) bs"

using assms
apply (induct as arbitrary: bs, simp)
apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe)
apply (clarsimp elim!: closure_ofE2) defer 1
apply (clarsimp elim!: closure_ofE2) defer 1

144

proof -
fix a x z
assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier

G"
assume "x ∼ a"
also assume "a ∼ z"
finally have "x ∼ z" by simp
with carr

show "x ∈ assocs G z"
by (intro closure_ofI2) simp+

next
fix a x z
assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier

G"
assume "x ∼ z"
also assume [symmetric]: "a ∼ z"
finally have "x ∼ a" by simp
with carr

show "x ∈ assocs G a"
by (intro closure_ofI2) simp+

qed

lemma (in comm_monoid_cancel) fmset_listassoc_cong:
assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "fmset G as = fmset G bs"

using assms
unfolding fmset_def
by (simp add: eqc_listassoc_cong)

lemma (in comm_monoid_cancel) ee_fmset:
assumes ee: "essentially_equal G as bs"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
shows "fmset G as = fmset G bs"

using ee
proof (elim essentially_equalE)

fix as’
assume prm: "as <~~> as’"
from prm ascarr

have as’carr: "set as’ ⊆ carrier G" by (rule perm_closed)

from prm
have "fmset G as = fmset G as’" by (rule fmset_perm_cong)

also assume "as’ [∼] bs"
with as’carr bscarr
have "fmset G as’ = fmset G bs" by (simp add: fmset_listassoc_cong)

finally
show "fmset G as = fmset G bs" .

qed

145

lemma (in monoid_cancel) fmset_ee__hlp_induct:
assumes prm: "cas <~~> cbs"

and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs"
shows "∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧

cbs = map (assocs G) bs) −→ (∃ as’. as <~~> as’ ∧ map
(assocs G) as’ = cbs)"
apply (rule perm.induct[of cas cbs], rule prm)
apply safe apply simp_all

apply (simp add: map_eq_Cons_conv, blast)
apply force

proof -
fix ys as bs
assume p1: "map (assocs G) as <~~> ys"

and r1[rule_format]:
"∀ asa bs. map (assocs G) as = map (assocs G) asa ∧

ys = map (assocs G) bs
−→ (∃ as’. asa <~~> as’ ∧ map (assocs G) as’ = map

(assocs G) bs)"
and p2: "ys <~~> map (assocs G) bs"
and r2[rule_format]:

"∀ as bsa. ys = map (assocs G) as ∧
map (assocs G) bs = map (assocs G) bsa
−→ (∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs

G) bsa)"
and p3: "map (assocs G) as <~~> map (assocs G) bs"

from p1
have "multiset_of (map (assocs G) as) = multiset_of ys"
by (simp add: multiset_of_eq_perm)

hence setys: "set (map (assocs G) as) = set ys" by (rule multiset_of_eq_setD)

have "set (map (assocs G) as) = { assocs G x | x. x ∈ set as}" by clarsimp
fast

with setys have "set ys ⊆ { assocs G x | x. x ∈ set as}" by simp
hence "∃ yy. ys = map (assocs G) yy"

apply (induct ys, simp, clarsimp)
proof -

fix yy x
show "∃ yya. (assocs G x) # map (assocs G) yy =

map (assocs G) yya"
by (rule exI[of _ "x#yy"], simp)

qed
from this obtain yy

where ys: "ys = map (assocs G) yy"
by auto

from p1 ys
have "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) yy"

146

by (intro r1, simp)
from this obtain as’

where asas’: "as <~~> as’"
and as’yy: "map (assocs G) as’ = map (assocs G) yy"
by auto

from p2 ys
have "∃ as’. yy <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bs"
by (intro r2, simp)

from this obtain as’’
where yyas’’: "yy <~~> as’’"
and as’’bs: "map (assocs G) as’’ = map (assocs G) bs"
by auto

from as’yy and yyas’’
have "∃ cs. as’ <~~> cs ∧ map (assocs G) cs = map (assocs G) as’’"
by (rule perm_map_switch)

from this obtain cs
where as’cs: "as’ <~~> cs"
and csas’’: "map (assocs G) cs = map (assocs G) as’’"
by auto

from asas’ and as’cs
have ascs: "as <~~> cs" by fast

from csas’’ and as’’bs
have "map (assocs G) cs = map (assocs G) bs" by simp

from ascs and this
show "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bs" by

fast
qed

lemma (in comm_monoid_cancel) fmset_ee:
assumes mset: "fmset G as = fmset G bs"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
shows "essentially_equal G as bs"

proof -
from mset

have mpp: "map (assocs G) as <~~> map (assocs G) bs"
by (simp add: fmset_def multiset_of_eq_perm)

have "∃ cas. cas = map (assocs G) as" by simp
from this obtain cas where cas: "cas = map (assocs G) as" by simp

have "∃ cbs. cbs = map (assocs G) bs" by simp
from this obtain cbs where cbs: "cbs = map (assocs G) bs" by simp

from cas cbs mpp
have [rule_format]:

"∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧

147

cbs = map (assocs G) bs)
−→ (∃ as’. as <~~> as’ ∧ map (assocs G) as’ = cbs)"

by (intro fmset_ee__hlp_induct, simp+)
with mpp cas cbs

have "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bs"
by simp

from this obtain as’
where tp: "as <~~> as’"
and tm: "map (assocs G) as’ = map (assocs G) bs"
by auto

from tm have lene: "length as’ = length bs" by (rule map_eq_imp_length_eq)
from tp have "set as = set as’" by (simp add: multiset_of_eq_perm multiset_of_eq_setD)
with ascarr

have as’carr: "set as’ ⊆ carrier G" by simp

from tm as’carr[THEN subsetD] bscarr[THEN subsetD]
have "as’ [∼] bs"

by (induct as’ arbitrary: bs) (simp, fastsimp dest: assocs_eqD[THEN
associated_sym])

from tp and this
show "essentially_equal G as bs" by (fast intro: essentially_equalI)

qed

lemma (in comm_monoid_cancel) ee_is_fmset:
assumes "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "essentially_equal G as bs = (fmset G as = fmset G bs)"

using assms
by (fast intro: ee_fmset fmset_ee)

7.6.2 Interpreting multisets as factorizations

lemma (in monoid) mset_fmsetEx:
assumes elems: "

∧
X. X ∈ set_of Cs =⇒ ∃ x. P x ∧ X = assocs G x"

shows "∃ cs. (∀ c ∈ set cs. P c) ∧ fmset G cs = Cs"
proof -

have "∃ Cs’. Cs = multiset_of Cs’"
by (rule surjE[OF surj_multiset_of], fast)

from this obtain Cs’
where Cs: "Cs = multiset_of Cs’"
by auto

have "∃ cs. (∀ c ∈ set cs. P c) ∧ multiset_of (map (assocs G) cs) =
Cs"

using elems
unfolding Cs

apply (induct Cs’, simp)
apply clarsimp

148

apply (subgoal_tac "∃ cs. (∀ x∈set cs. P x) ∧
multiset_of (map (assocs G) cs) = multiset_of

Cs’")
proof clarsimp

fix a Cs’ cs
assume ih: "

∧
X. X = a ∨ X ∈ set Cs’ =⇒ ∃ x. P x ∧ X = assocs G

x"
and csP: "∀ x∈set cs. P x"
and mset: "multiset_of (map (assocs G) cs) = multiset_of Cs’"

from ih
have "∃ x. P x ∧ a = assocs G x" by fast

from this obtain c
where cP: "P c"
and a: "a = assocs G c"
by auto

from cP csP
have tP: "∀ x∈set (c#cs). P x" by simp

from mset a
have "multiset_of (map (assocs G) (c#cs)) = multiset_of Cs’ + {#a#}"

by simp
from tP this
show "∃ cs. (∀ x∈set cs. P x) ∧

multiset_of (map (assocs G) cs) =
multiset_of Cs’ + {#a#}" by fast

qed simp
thus ?thesis by (simp add: fmset_def)

qed

lemma (in monoid) mset_wfactorsEx:
assumes elems: "

∧
X. X ∈ set_of Cs

=⇒ ∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X =
assocs G x"

shows "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧ fmset G cs = Cs"
proof -

have "∃ cs. (∀ c∈set cs. c ∈ carrier G ∧ irreducible G c) ∧ fmset G
cs = Cs"

by (intro mset_fmsetEx, rule elems)
from this obtain cs

where p[rule_format]: "∀ c∈set cs. c ∈ carrier G ∧ irreducible
G c"

and Cs[symmetric]: "fmset G cs = Cs"
by auto

from p
have cscarr: "set cs ⊆ carrier G" by fast

from p
have "∃ c. c ∈ carrier G ∧ wfactors G cs c"

149

by (intro wfactors_prod_exists) fast+
from this obtain c

where ccarr: "c ∈ carrier G"
and cfs: "wfactors G cs c"
by auto

with cscarr Cs
show ?thesis by fast

qed

7.6.3 Multiplication on multisets

lemma (in factorial_monoid) mult_wfactors_fmset:
assumes afs: "wfactors G as a" and bfs: "wfactors G bs b" and cfs:

"wfactors G cs (a ⊗ b)"
and carr: "a ∈ carrier G" "b ∈ carrier G"

"set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier
G"

shows "fmset G cs = fmset G as + fmset G bs"
proof -

from assms
have "wfactors G (as @ bs) (a ⊗ b)" by (intro wfactors_mult)

with carr cfs
have "essentially_equal G cs (as@bs)" by (intro ee_wfactorsI[of

"a⊗b" "a⊗b"], simp+)
with carr

have "fmset G cs = fmset G (as@bs)" by (intro ee_fmset, simp+)
also have "fmset G (as@bs) = fmset G as + fmset G bs" by (simp add:

fmset_def)
finally show "fmset G cs = fmset G as + fmset G bs" .

qed

lemma (in factorial_monoid) mult_factors_fmset:
assumes afs: "factors G as a" and bfs: "factors G bs b" and cfs: "factors

G cs (a ⊗ b)"
and "set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier

G"
shows "fmset G cs = fmset G as + fmset G bs"

using assms
by (blast intro: factors_wfactors mult_wfactors_fmset)

lemma (in comm_monoid_cancel) fmset_wfactors_mult:
assumes mset: "fmset G cs = fmset G as + fmset G bs"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
"set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier

G"
and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"

shows "c ∼ a ⊗ b"
proof -

150

from carr fs
have m: "wfactors G (as @ bs) (a ⊗ b)" by (intro wfactors_mult)

from mset
have "fmset G cs = fmset G (as@bs)" by (simp add: fmset_def)

then have "essentially_equal G cs (as@bs)" by (rule fmset_ee) (simp
add: carr)+

then show "c ∼ a ⊗ b" by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp
add: assms m)+
qed

7.6.4 Divisibility on multisets

lemma (in factorial_monoid) divides_fmsubset:
assumes ab: "a divides b"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and carr: "a ∈ carrier G" "b ∈ carrier G" "set as ⊆ carrier G"

"set bs ⊆ carrier G"
shows "fmset G as ≤# fmset G bs"

using ab
proof (elim dividesE)

fix c
assume ccarr: "c ∈ carrier G"
hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by (rule wfactors_exist)
from this obtain cs

where cscarr: "set cs ⊆ carrier G"
and cfs: "wfactors G cs c" by auto

note carr = carr ccarr cscarr

assume "b = a ⊗ c"
with afs bfs cfs carr

have "fmset G bs = fmset G as + fmset G cs"
by (intro mult_wfactors_fmset[OF afs cfs]) simp+

thus ?thesis by simp
qed

lemma (in comm_monoid_cancel) fmsubset_divides:
assumes msubset: "fmset G as ≤# fmset G bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "a divides b"
proof -

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:
wfactorsE)

from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:
wfactorsE)

151

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧ fmset G cs = fmset G bs - fmset G as"

proof (intro mset_wfactorsEx, simp)
fix X
assume "count (fmset G as) X < count (fmset G bs) X"
hence "0 < count (fmset G bs) X" by simp
hence "X ∈ set_of (fmset G bs)" by simp
hence "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)
hence "∃ x. x ∈ set bs ∧ X = assocs G x" by (induct bs) auto
from this obtain x

where xbs: "x ∈ set bs"
and X: "X = assocs G x"
by auto

with bscarr have xcarr: "x ∈ carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
show "∃ x. x ∈ carrier G ∧ irreducible G x ∧ X = assocs G x"

by fast
qed
from this obtain c cs

where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csf: "wfactors G cs c"
and csmset: "fmset G cs = fmset G bs - fmset G as" by auto

from csmset msubset
have "fmset G bs = fmset G as + fmset G cs"
by (simp add: multiset_eq_conv_count_eq mset_le_def)

hence basc: "b ∼ a ⊗ c"
by (rule fmset_wfactors_mult) fact+

thus ?thesis
proof (elim associatedE2)

fix u
assume "u ∈ Units G" "b = a ⊗ c ⊗ u"
with acarr ccarr

show "a divides b" by (fast intro: dividesI[of "c ⊗ u"] m_assoc)
qed (simp add: acarr bcarr ccarr)+

qed

lemma (in factorial_monoid) divides_as_fmsubset:
assumes "wfactors G as a" and "wfactors G bs b"

and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "a divides b = (fmset G as ≤# fmset G bs)"
using assms
by (blast intro: divides_fmsubset fmsubset_divides)

152

Proper factors on multisets

lemma (in factorial_monoid) fmset_properfactor:
assumes asubb: "fmset G as ≤# fmset G bs"

and anb: "fmset G as 6= fmset G bs"
and "wfactors G as a" and "wfactors G bs b"
and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "properfactor G a b"
apply (rule properfactorI)
apply (rule fmsubset_divides[of as bs], fact+)
proof

assume "b divides a"
hence "fmset G bs ≤# fmset G as"

by (rule divides_fmsubset) fact+
with asubb

have "fmset G as = fmset G bs" by (simp add: mset_le_antisym)
with anb

show "False" ..
qed

lemma (in factorial_monoid) properfactor_fmset:
assumes pf: "properfactor G a b"

and "wfactors G as a" and "wfactors G bs b"
and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "fmset G as ≤# fmset G bs ∧ fmset G as 6= fmset G bs"
using pf
apply (elim properfactorE)
apply rule
apply (intro divides_fmsubset, assumption)
apply (rule assms)+

proof
assume bna: "¬ b divides a"
assume "fmset G as = fmset G bs"
then have "essentially_equal G as bs" by (rule fmset_ee) fact+
hence "a ∼ b" by (rule ee_wfactorsD[of as bs]) fact+
hence "b divides a" by (elim associatedE)
with bna

show "False" ..
qed

7.7 Irreducible Elements are Prime

lemma (in factorial_monoid) irreducible_is_prime:
assumes pirr: "irreducible G p"

and pcarr: "p ∈ carrier G"
shows "prime G p"

using pirr
proof (elim irreducibleE, intro primeI)

153

fix a b
assume acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"

and pdvdab: "p divides (a ⊗ b)"
and pnunit: "p /∈ Units G"

assume irreduc[rule_format]:
"∀ b. b ∈ carrier G ∧ properfactor G b p −→ b ∈ Units G"

from pdvdab
have "∃ c∈carrier G. a ⊗ b = p ⊗ c" by (rule dividesD)

from this obtain c
where ccarr: "c ∈ carrier G"
and abpc: "a ⊗ b = p ⊗ c"
by auto

from acarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs a" by (rule
wfactors_exist)

from this obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors
G as a" by auto

from bcarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs b" by (rule
wfactors_exist)

from this obtain bs where bscarr: "set bs ⊆ carrier G" and bfs: "wfactors
G bs b" by auto

from ccarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs c" by (rule
wfactors_exist)

from this obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors
G cs c" by auto

note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr

from afs and bfs
have abfs: "wfactors G (as @ bs) (a ⊗ b)" by (rule wfactors_mult)

fact+

from pirr cfs
have pcfs: "wfactors G (p # cs) (p ⊗ c)" by (rule wfactors_mult_single)

fact+
with abpc

have abfs’: "wfactors G (p # cs) (a ⊗ b)" by simp

from abfs’ abfs
have "essentially_equal G (p # cs) (as @ bs)"
by (rule wfactors_unique) simp+

hence "∃ ds. p # cs <~~> ds ∧ ds [∼] (as @ bs)"
by (fast elim: essentially_equalE)

from this obtain ds
where "p # cs <~~> ds"
and dsassoc: "ds [∼] (as @ bs)"

154

by auto

then have "p ∈ set ds"
by (simp add: perm_set_eq[symmetric])

with dsassoc
have "∃ p’. p’ ∈ set (as@bs) ∧ p ∼ p’"
unfolding list_all2_conv_all_nth set_conv_nth
by force

from this obtain p’
where "p’ ∈ set (as@bs)"
and pp’: "p ∼ p’"
by auto

hence "p’ ∈ set as ∨ p’ ∈ set bs" by simp
moreover
{

assume p’elem: "p’ ∈ set as"
with ascarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from afs

have "p’ divides a" by (rule wfactors_dividesI) fact+
finally

have "p divides a" by simp
}
moreover
{

assume p’elem: "p’ ∈ set bs"
with bscarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from bfs

have "p’ divides b" by (rule wfactors_dividesI) fact+
finally

have "p divides b" by simp
}
ultimately

show "p divides a ∨ p divides b" by fast
qed

— A version using factors, more complicated
lemma (in factorial_monoid) factors_irreducible_is_prime:

assumes pirr: "irreducible G p"
and pcarr: "p ∈ carrier G"

shows "prime G p"
using pirr
apply (elim irreducibleE, intro primeI)

155

apply assumption
proof -

fix a b
assume acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"
and pdvdab: "p divides (a ⊗ b)"

assume irreduc[rule_format]:
"∀ b. b ∈ carrier G ∧ properfactor G b p −→ b ∈ Units G"

from pdvdab
have "∃ c∈carrier G. a ⊗ b = p ⊗ c" by (rule dividesD)

from this obtain c
where ccarr: "c ∈ carrier G"
and abpc: "a ⊗ b = p ⊗ c"
by auto

note [simp] = pcarr acarr bcarr ccarr

show "p divides a ∨ p divides b"
proof (cases "a ∈ Units G")

assume aunit: "a ∈ Units G"

note pdvdab
also have "a ⊗ b = b ⊗ a" by (simp add: m_comm)
also from aunit

have bab: "b ⊗ a ∼ b"
by (intro associatedI2[of "a"], simp+)

finally
have "p divides b" by simp

thus "p divides a ∨ p divides b" ..
next

assume anunit: "a /∈ Units G"

show "p divides a ∨ p divides b"
proof (cases "b ∈ Units G")

assume bunit: "b ∈ Units G"

note pdvdab
also from bunit

have baa: "a ⊗ b ∼ a"
by (intro associatedI2[of "b"], simp+)

finally
have "p divides a" by simp

thus "p divides a ∨ p divides b" ..
next

assume bnunit: "b /∈ Units G"

have cnunit: "c /∈ Units G"
proof (rule ccontr, simp)

assume cunit: "c ∈ Units G"
from bnunit

156

have "properfactor G a (a ⊗ b)"
by (intro properfactorI3[of _ _ b], simp+)

also note abpc
also from cunit

have "p ⊗ c ∼ p"
by (intro associatedI2[of c], simp+)

finally
have "properfactor G a p" by simp

with acarr
have "a ∈ Units G" by (fast intro: irreduc)

with anunit
show "False" ..

qed

have abnunit: "a ⊗ b /∈ Units G"
proof clarsimp

assume abunit: "a ⊗ b ∈ Units G"
hence "a ∈ Units G" by (rule unit_factor) fact+
with anunit

show "False" ..
qed

from acarr anunit have "∃ fs. set fs ⊆ carrier G ∧ factors G fs
a" by (rule factors_exist)

then obtain as where ascarr: "set as ⊆ carrier G" and afac: "factors
G as a" by auto

from bcarr bnunit have "∃ fs. set fs ⊆ carrier G ∧ factors G fs
b" by (rule factors_exist)

then obtain bs where bscarr: "set bs ⊆ carrier G" and bfac: "factors
G bs b" by auto

from ccarr cnunit have "∃ fs. set fs ⊆ carrier G ∧ factors G fs
c" by (rule factors_exist)

then obtain cs where cscarr: "set cs ⊆ carrier G" and cfac: "factors
G cs c" by auto

note [simp] = ascarr bscarr cscarr

from afac and bfac
have abfac: "factors G (as @ bs) (a ⊗ b)" by (rule factors_mult)

fact+

from pirr cfac
have pcfac: "factors G (p # cs) (p ⊗ c)" by (rule factors_mult_single)

fact+
with abpc

have abfac’: "factors G (p # cs) (a ⊗ b)" by simp

157

from abfac’ abfac
have "essentially_equal G (p # cs) (as @ bs)"
by (rule factors_unique) (fact | simp)+

hence "∃ ds. p # cs <~~> ds ∧ ds [∼] (as @ bs)"
by (fast elim: essentially_equalE)

from this obtain ds
where "p # cs <~~> ds"
and dsassoc: "ds [∼] (as @ bs)"
by auto

then have "p ∈ set ds"
by (simp add: perm_set_eq[symmetric])

with dsassoc
have "∃ p’. p’ ∈ set (as@bs) ∧ p ∼ p’"
unfolding list_all2_conv_all_nth set_conv_nth
by force

from this obtain p’
where "p’ ∈ set (as@bs)"
and pp’: "p ∼ p’" by auto

hence "p’ ∈ set as ∨ p’ ∈ set bs" by simp
moreover
{

assume p’elem: "p’ ∈ set as"
with ascarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from afac p’elem

have "p’ divides a" by (rule factors_dividesI) fact+
finally

have "p divides a" by simp
}
moreover
{

assume p’elem: "p’ ∈ set bs"
with bscarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from bfac

have "p’ divides b" by (rule factors_dividesI) fact+
finally have "p divides b" by simp

}
ultimately

show "p divides a ∨ p divides b" by fast
qed

qed

158

qed

7.8 Greatest Common Divisors and Lowest Common Multi-
ples

7.8.1 Definitions

constdefs (structure G)
isgcd :: "[(’a,_) monoid_scheme, ’a, ’a, ’a] ⇒ bool" ("(_ gcdofı _

_)" [81,81,81] 80)
"x gcdof a b ≡ x divides a ∧ x divides b ∧

(∀ y∈carrier G. (y divides a ∧ y divides b −→ y divides
x))"

islcm :: "[_, ’a, ’a, ’a] ⇒ bool" ("(_ lcmofı _ _)" [81,81,81] 80)
"x lcmof a b ≡ a divides x ∧ b divides x ∧

(∀ y∈carrier G. (a divides y ∧ b divides y −→ x divides
y))"

constdefs (structure G)
somegcd :: "(’a,_) monoid_scheme ⇒ ’a ⇒ ’a ⇒ ’a"
"somegcd G a b == SOME x. x ∈ carrier G ∧ x gcdof a b"

somelcm :: "(’a,_) monoid_scheme ⇒ ’a ⇒ ’a ⇒ ’a"
"somelcm G a b == SOME x. x ∈ carrier G ∧ x lcmof a b"

constdefs (structure G)
"SomeGcd G A == inf (division_rel G) A"

locale gcd_condition_monoid = comm_monoid_cancel +
assumes gcdof_exists:

"[[a ∈ carrier G; b ∈ carrier G]] =⇒ ∃ c. c ∈ carrier G ∧ c gcdof
a b"

locale primeness_condition_monoid = comm_monoid_cancel +
assumes irreducible_prime:

"[[a ∈ carrier G; irreducible G a]] =⇒ prime G a"

locale divisor_chain_condition_monoid = comm_monoid_cancel +
assumes division_wellfounded:

"wf {(x, y). x ∈ carrier G ∧ y ∈ carrier G ∧ properfactor G
x y}"

7.8.2 Connections to Lattice.thy

lemma gcdof_greatestLower:
fixes G (structure)
assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "(x ∈ carrier G ∧ x gcdof a b) =

159

greatest (division_rel G) x (Lower (division_rel G) {a, b})"
unfolding isgcd_def greatest_def Lower_def elem_def
proof (simp, safe)

fix xa
assume r1[rule_format]: "∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ xa

divides x"
assume r2[rule_format]: "∀ y∈carrier G. y divides a ∧ y divides b −→

y divides x"

assume "xa ∈ carrier G" "x divides a" "x divides b"
with carr
show "xa divides x"

by (fast intro: r1 r2)
next

fix a’ y
assume r1[rule_format]:

"∀ xa∈{l. ∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ l divides
x} ∩ carrier G.

xa divides x"
assume "y ∈ carrier G" "y divides a" "y divides b"
with carr

show "y divides x"
by (fast intro: r1)

qed (simp, simp)

lemma lcmof_leastUpper:
fixes G (structure)
assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "(x ∈ carrier G ∧ x lcmof a b) =

least (division_rel G) x (Upper (division_rel G) {a, b})"
unfolding islcm_def least_def Upper_def elem_def
proof (simp, safe)

fix xa
assume r1[rule_format]: "∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ x

divides xa"
assume r2[rule_format]: "∀ y∈carrier G. a divides y ∧ b divides y −→

x divides y"

assume "xa ∈ carrier G" "a divides x" "b divides x"
with carr
show "x divides xa"

by (fast intro: r1 r2)
next

fix a’ y
assume r1[rule_format]:

"∀ xa∈{l. ∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ x divides
l} ∩ carrier G.

x divides xa"
assume "y ∈ carrier G" "a divides y" "b divides y"

160

with carr
show "x divides y"
by (fast intro: r1)

qed (simp, simp)

lemma somegcd_meet:
fixes G (structure)
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "somegcd G a b = meet (division_rel G) a b"

unfolding somegcd_def meet_def inf_def
by (simp add: gcdof_greatestLower[OF carr])

lemma (in monoid) isgcd_divides_l:
assumes "a divides b"

and "a ∈ carrier G" "b ∈ carrier G"
shows "a gcdof a b"

using assms
unfolding isgcd_def
by fast

lemma (in monoid) isgcd_divides_r:
assumes "b divides a"

and "a ∈ carrier G" "b ∈ carrier G"
shows "b gcdof a b"

using assms
unfolding isgcd_def
by fast

7.8.3 Existence of gcd and lcm

lemma (in factorial_monoid) gcdof_exists:
assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
shows "∃ c. c ∈ carrier G ∧ c gcdof a b"

proof -
from acarr have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (rule

wfactors_exist)
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:
wfactorsE)

from bcarr have "∃ bs. set bs ⊆ carrier G ∧ wfactors G bs b" by (rule
wfactors_exist)

from this obtain bs
where bscarr: "set bs ⊆ carrier G"
and bfs: "wfactors G bs b"
by auto

161

from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:
wfactorsE)

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧

fmset G cs = fmset G as #∩ fmset G bs"
proof (intro mset_wfactorsEx)

fix X
assume "X ∈ set_of (fmset G as #∩ fmset G bs)"
hence "X ∈ set_of (fmset G as)" by (simp add: multiset_inter_def)
hence "X ∈ set (map (assocs G) as)" by (simp add: fmset_def)
hence "∃ x. X = assocs G x ∧ x ∈ set as" by (induct as) auto
from this obtain x

where X: "X = assocs G x"
and xas: "x ∈ set as"
by auto

with ascarr have xcarr: "x ∈ carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
show "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x"

by fast
qed

from this obtain c cs
where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as #∩ fmset G bs" by auto

have "c gcdof a b"
proof (simp add: isgcd_def, safe)

from csmset
have "fmset G cs ≤# fmset G as"
by (simp add: multiset_inter_def mset_le_def)

thus "c divides a" by (rule fmsubset_divides) fact+
next

from csmset
have "fmset G cs ≤# fmset G bs"
by (simp add: multiset_inter_def mset_le_def, force)

thus "c divides b" by (rule fmsubset_divides) fact+
next

fix y
assume ycarr: "y ∈ carrier G"
hence "∃ ys. set ys ⊆ carrier G ∧ wfactors G ys y" by (rule wfactors_exist)
from this obtain ys

where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto

162

assume "y divides a"
hence ya: "fmset G ys ≤# fmset G as" by (rule divides_fmsubset) fact+

assume "y divides b"
hence yb: "fmset G ys ≤# fmset G bs" by (rule divides_fmsubset) fact+

from ya yb csmset
have "fmset G ys ≤# fmset G cs" by (simp add: mset_le_def multiset_inter_count)
thus "y divides c" by (rule fmsubset_divides) fact+

qed

with ccarr
show "∃ c. c ∈ carrier G ∧ c gcdof a b" by fast

qed

lemma (in factorial_monoid) lcmof_exists:
assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
shows "∃ c. c ∈ carrier G ∧ c lcmof a b"

proof -
from acarr have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (rule

wfactors_exist)
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:
wfactorsE)

from bcarr have "∃ bs. set bs ⊆ carrier G ∧ wfactors G bs b" by (rule
wfactors_exist)

from this obtain bs
where bscarr: "set bs ⊆ carrier G"
and bfs: "wfactors G bs b"
by auto

from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:
wfactorsE)

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧

fmset G cs = (fmset G as - fmset G bs) + fmset G bs"
proof (intro mset_wfactorsEx)

fix X
assume "X ∈ set_of ((fmset G as - fmset G bs) + fmset G bs)"
hence "X ∈ set_of (fmset G as) ∨ X ∈ set_of (fmset G bs)"

by (cases "X :# fmset G bs", simp, simp)
moreover
{

assume "X ∈ set_of (fmset G as)"

163

hence "X ∈ set (map (assocs G) as)" by (simp add: fmset_def)
hence "∃ x. x ∈ set as ∧ X = assocs G x" by (induct as) auto
from this obtain x

where xas: "x ∈ set as"
and X: "X = assocs G x" by auto

with ascarr have xcarr: "x ∈ carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
have "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G

x" by fast
}
moreover
{

assume "X ∈ set_of (fmset G bs)"
hence "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)
hence "∃ x. x ∈ set bs ∧ X = assocs G x" by (induct as) auto
from this obtain x

where xbs: "x ∈ set bs"
and X: "X = assocs G x" by auto

with bscarr have xcarr: "x ∈ carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
have "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G

x" by fast
}
ultimately
show "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x" by

fast
qed

from this obtain c cs
where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as - fmset G bs + fmset G bs"

by auto

have "c lcmof a b"
proof (simp add: islcm_def, safe)

from csmset have "fmset G as ≤# fmset G cs" by (simp add: mset_le_def,
force)

thus "a divides c" by (rule fmsubset_divides) fact+
next

from csmset have "fmset G bs ≤# fmset G cs" by (simp add: mset_le_def)
thus "b divides c" by (rule fmsubset_divides) fact+

164

next
fix y
assume ycarr: "y ∈ carrier G"
hence "∃ ys. set ys ⊆ carrier G ∧ wfactors G ys y" by (rule wfactors_exist)
from this obtain ys

where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto

assume "a divides y"
hence ya: "fmset G as ≤# fmset G ys" by (rule divides_fmsubset) fact+

assume "b divides y"
hence yb: "fmset G bs ≤# fmset G ys" by (rule divides_fmsubset) fact+

from ya yb csmset
have "fmset G cs ≤# fmset G ys"

apply (simp add: mset_le_def, clarify)
apply (case_tac "count (fmset G as) a < count (fmset G bs) a")
apply simp

apply simp
done
thus "c divides y" by (rule fmsubset_divides) fact+

qed

with ccarr
show "∃ c. c ∈ carrier G ∧ c lcmof a b" by fast

qed

7.9 Conditions for Factoriality

7.9.1 Gcd condition

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:
shows "weak_lower_semilattice (division_rel G)"

proof -
interpret weak_partial_order "division_rel G" ..
show ?thesis
apply (unfold_locales, simp_all)
proof -

fix x y
assume carr: "x ∈ carrier G" "y ∈ carrier G"
hence "∃ z. z ∈ carrier G ∧ z gcdof x y" by (rule gcdof_exists)
from this obtain z

where zcarr: "z ∈ carrier G"
and isgcd: "z gcdof x y"
by auto

with carr
have "greatest (division_rel G) z (Lower (division_rel G) {x, y})"

by (subst gcdof_greatestLower[symmetric], simp+)

165

thus "∃ z. greatest (division_rel G) z (Lower (division_rel G) {x,
y})" by fast

qed
qed

lemma (in gcd_condition_monoid) gcdof_cong_l:
assumes a’a: "a’ ∼ a"

and agcd: "a gcdof b c"
and a’carr: "a’ ∈ carrier G" and carr’: "a ∈ carrier G" "b ∈ carrier

G" "c ∈ carrier G"
shows "a’ gcdof b c"

proof -
note carr = a’carr carr’
interpret weak_lower_semilattice "division_rel G" by simp
have "a’ ∈ carrier G ∧ a’ gcdof b c"

apply (simp add: gcdof_greatestLower carr’)
apply (subst greatest_Lower_cong_l[of _ a])

apply (simp add: a’a)
apply (simp add: carr)

apply (simp add: carr)
apply (simp add: carr)
apply (simp add: gcdof_greatestLower[symmetric] agcd carr)

done
thus ?thesis ..

qed

lemma (in gcd_condition_monoid) gcd_closed [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "somegcd G a b ∈ carrier G"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_isgcd:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) gcdof a b"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
from carr
have "somegcd G a b ∈ carrier G ∧ (somegcd G a b) gcdof a b"

apply (subst gcdof_greatestLower, simp, simp)
apply (simp add: somegcd_meet[OF carr] meet_def)
apply (rule inf_of_two_greatest[simplified], assumption+)

done
thus "(somegcd G a b) gcdof a b" by simp

166

qed

lemma (in gcd_condition_monoid) gcd_exists:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "∃ x∈carrier G. x = somegcd G a b"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_divides_l:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) divides a"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_left[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_divides_r:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) divides b"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_right[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_divides:
assumes sub: "z divides x" "z divides y"

and L: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
shows "z divides (somegcd G x y)"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet L)
apply (rule meet_le[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_cong_l:
assumes xx’: "x ∼ x’"

167

and carr: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"
shows "somegcd G x y ∼ somegcd G x’ y"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet carr)
apply (rule meet_cong_l[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_cong_r:
assumes carr: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

and yy’: "y ∼ y’"
shows "somegcd G x y ∼ somegcd G x y’"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet carr)
apply (rule meet_cong_r[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcdI:
assumes dvd: "a divides b" "a divides c"

and others: "∀ y∈carrier G. y divides b ∧ y divides c −→ y divides
a"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr:
"c ∈ carrier G"

shows "a ∼ somegcd G b c"
apply (simp add: somegcd_def)
apply (rule someI2_ex)
apply (rule exI[of _ a], simp add: isgcd_def)
apply (simp add: assms)

apply (simp add: isgcd_def assms, clarify)
apply (insert assms, blast intro: associatedI)
done

lemma (in gcd_condition_monoid) gcdI2:
assumes "a gcdof b c"

and "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr: "c ∈ carrier
G"

shows "a ∼ somegcd G b c"
using assms
unfolding isgcd_def
by (blast intro: gcdI)

lemma (in gcd_condition_monoid) SomeGcd_ex:

168

assumes "finite A" "A ⊆ carrier G" "A 6= {}"
shows "∃ x∈ carrier G. x = SomeGcd G A"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: SomeGcd_def)
apply (rule finite_inf_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_assoc:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "somegcd G (somegcd G a b) c ∼ somegcd G a (somegcd G b c)"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (subst (2 3) somegcd_meet, (simp add: carr)+)
apply (simp add: somegcd_meet carr)
apply (rule weak_meet_assoc[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_mult:
assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr:

"c ∈ carrier G"
shows "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a) (c ⊗ b)"

proof -
let ?d = "somegcd G a b"
let ?e = "somegcd G (c ⊗ a) (c ⊗ b)"
note carr[simp] = acarr bcarr ccarr
have dcarr: "?d ∈ carrier G" by simp
have ecarr: "?e ∈ carrier G" by simp
note carr = carr dcarr ecarr

have "?d divides a" by (simp add: gcd_divides_l)
hence cd’ca: "c ⊗ ?d divides (c ⊗ a)" by (simp add: divides_mult_lI)

have "?d divides b" by (simp add: gcd_divides_r)
hence cd’cb: "c ⊗ ?d divides (c ⊗ b)" by (simp add: divides_mult_lI)

from cd’ca cd’cb
have cd’e: "c ⊗ ?d divides ?e"
by (rule gcd_divides) simp+

hence "∃ u. u ∈ carrier G ∧ ?e = c ⊗ ?d ⊗ u"
by (elim dividesE, fast)

from this obtain u
where ucarr[simp]: "u ∈ carrier G"
and e_cdu: "?e = c ⊗ ?d ⊗ u"

169

by auto

note carr = carr ucarr

have "?e divides c ⊗ a" by (rule gcd_divides_l) simp+
hence "∃ x. x ∈ carrier G ∧ c ⊗ a = ?e ⊗ x"

by (elim dividesE, fast)
from this obtain x

where xcarr: "x ∈ carrier G"
and ca_ex: "c ⊗ a = ?e ⊗ x"
by auto

with e_cdu
have ca_cdux: "c ⊗ a = c ⊗ ?d ⊗ u ⊗ x" by simp

from ca_cdux xcarr
have "c ⊗ a = c ⊗ (?d ⊗ u ⊗ x)" by (simp add: m_assoc)

then have "a = ?d ⊗ u ⊗ x" by (rule l_cancel[of c a]) (simp add: xcarr)+
hence du’a: "?d ⊗ u divides a" by (rule dividesI[OF xcarr])

have "?e divides c ⊗ b" by (intro gcd_divides_r, simp+)
hence "∃ x. x ∈ carrier G ∧ c ⊗ b = ?e ⊗ x"

by (elim dividesE, fast)
from this obtain x

where xcarr: "x ∈ carrier G"
and cb_ex: "c ⊗ b = ?e ⊗ x"
by auto

with e_cdu
have cb_cdux: "c ⊗ b = c ⊗ ?d ⊗ u ⊗ x" by simp

from cb_cdux xcarr
have "c ⊗ b = c ⊗ (?d ⊗ u ⊗ x)" by (simp add: m_assoc)

with xcarr
have "b = ?d ⊗ u ⊗ x" by (intro l_cancel[of c b], simp+)

hence du’b: "?d ⊗ u divides b" by (intro dividesI[OF xcarr])

from du’a du’b carr
have du’d: "?d ⊗ u divides ?d"
by (intro gcd_divides, simp+)

hence uunit: "u ∈ Units G"
proof (elim dividesE)

fix v
assume vcarr[simp]: "v ∈ carrier G"
assume d: "?d = ?d ⊗ u ⊗ v"
have "?d ⊗ 1 = ?d ⊗ u ⊗ v" by simp fact
also have "?d ⊗ u ⊗ v = ?d ⊗ (u ⊗ v)" by (simp add: m_assoc)
finally have "?d ⊗ 1 = ?d ⊗ (u ⊗ v)" .
hence i2: "1 = u ⊗ v" by (rule l_cancel) simp+
hence i1: "1 = v ⊗ u" by (simp add: m_comm)
from vcarr i1[symmetric] i2[symmetric]

170

show "u ∈ Units G"
by (unfold Units_def, simp, fast)

qed

from e_cdu uunit
have "somegcd G (c ⊗ a) (c ⊗ b) ∼ c ⊗ somegcd G a b"
by (intro associatedI2[of u], simp+)

from this[symmetric]
show "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a) (c ⊗ b)" by simp

qed

lemma (in monoid) assoc_subst:
assumes ab: "a ∼ b"

and cP: "ALL a b. a : carrier G & b : carrier G & a ∼ b
--> f a : carrier G & f b : carrier G & f a ∼ f b"

and carr: "a ∈ carrier G" "b ∈ carrier G"
shows "f a ∼ f b"
using assms by auto

lemma (in gcd_condition_monoid) relprime_mult:
assumes abrelprime: "somegcd G a b ∼ 1" and acrelprime: "somegcd G

a c ∼ 1"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "somegcd G a (b ⊗ c) ∼ 1"
proof -

have "c = c ⊗ 1" by simp
also from abrelprime[symmetric]

have ". . . ∼ c ⊗ somegcd G a b"
by (rule assoc_subst) (simp add: mult_cong_r)+

also have ". . . ∼ somegcd G (c ⊗ a) (c ⊗ b)" by (rule gcd_mult) fact+
finally

have c: "c ∼ somegcd G (c ⊗ a) (c ⊗ b)" by simp

from carr
have a: "a ∼ somegcd G a (c ⊗ a)"
by (fast intro: gcdI divides_prod_l)

have "somegcd G a (b ⊗ c) ∼ somegcd G a (c ⊗ b)" by (simp add: m_comm)
also from a

have ". . . ∼ somegcd G (somegcd G a (c ⊗ a)) (c ⊗ b)"
by (rule assoc_subst) (simp add: gcd_cong_l)+

also from gcd_assoc
have ". . . ∼ somegcd G a (somegcd G (c ⊗ a) (c ⊗ b))"
by (rule assoc_subst) simp+

also from c[symmetric]
have ". . . ∼ somegcd G a c"

by (rule assoc_subst) (simp add: gcd_cong_r)+
also note acrelprime
finally

171

show "somegcd G a (b ⊗ c) ∼ 1" by simp
qed

lemma (in gcd_condition_monoid) primeness_condition:
"primeness_condition_monoid G"

apply unfold_locales
apply (rule primeI)
apply (elim irreducibleE, assumption)

proof -
fix p a b
assume pcarr: "p ∈ carrier G" and acarr: "a ∈ carrier G" and bcarr:

"b ∈ carrier G"
and pirr: "irreducible G p"
and pdvdab: "p divides a ⊗ b"

from pirr
have pnunit: "p /∈ Units G"
and r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b p −→

b ∈ Units G"
by - (fast elim: irreducibleE)+

show "p divides a ∨ p divides b"
proof (rule ccontr, clarsimp)

assume npdvda: "¬ p divides a"
with pcarr acarr
have "1 ∼ somegcd G p a"
apply (intro gcdI, simp, simp, simp)

apply (fast intro: unit_divides)
apply (fast intro: unit_divides)

apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof (rule ccontr, simp)

fix y
assume ycarr: "y ∈ carrier G"
assume "p divides y"
also assume "y divides a"
finally

have "p divides a" by (simp add: pcarr ycarr acarr)
with npdvda

show "False" ..
qed simp+
with pcarr acarr

have pa: "somegcd G p a ∼ 1" by (fast intro: associated_sym[of
"1"] gcd_closed)

assume npdvdb: "¬ p divides b"
with pcarr bcarr
have "1 ∼ somegcd G p b"
apply (intro gcdI, simp, simp, simp)

172

apply (fast intro: unit_divides)
apply (fast intro: unit_divides)

apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof (rule ccontr, simp)

fix y
assume ycarr: "y ∈ carrier G"
assume "p divides y"
also assume "y divides b"
finally have "p divides b" by (simp add: pcarr ycarr bcarr)
with npdvdb

show "False" ..
qed simp+
with pcarr bcarr

have pb: "somegcd G p b ∼ 1" by (fast intro: associated_sym[of
"1"] gcd_closed)

from pcarr acarr bcarr pdvdab
have "p gcdof p (a ⊗ b)" by (fast intro: isgcd_divides_l)

with pcarr acarr bcarr
have "p ∼ somegcd G p (a ⊗ b)" by (fast intro: gcdI2)

also from pa pb pcarr acarr bcarr
have "somegcd G p (a ⊗ b) ∼ 1" by (rule relprime_mult)

finally have "p ∼ 1" by (simp add: pcarr acarr bcarr)

with pcarr
have "p ∈ Units G" by (fast intro: assoc_unit_l)

with pnunit
show "False" ..

qed
qed

sublocale gcd_condition_monoid ⊆ primeness_condition_monoid
by (rule primeness_condition)

7.9.2 Divisor chain condition

lemma (in divisor_chain_condition_monoid) wfactors_exist:
assumes acarr: "a ∈ carrier G"
shows "∃ as. set as ⊆ carrier G ∧ wfactors G as a"

proof -
have r[rule_format]: "a ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧

wfactors G as a)"
apply (rule wf_induct[OF division_wellfounded])

proof -
fix x
assume ih: "∀ y. (y, x) ∈ {(x, y). x ∈ carrier G ∧ y ∈ carrier G

173

∧ properfactor G x y}
−→ y ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧

wfactors G as y)"

show "x ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧ wfactors G as
x)"

apply clarify
apply (cases "x ∈ Units G")
apply (rule exI[of _ "[]"], simp)

apply (cases "irreducible G x")
apply (rule exI[of _ "[x]"], simp add: wfactors_def)

proof -
assume xcarr: "x ∈ carrier G"

and xnunit: "x /∈ Units G"
and xnirr: "¬ irreducible G x"

hence "∃ y. y ∈ carrier G ∧ properfactor G y x ∧ y /∈ Units G"
apply - apply (rule ccontr, simp)
apply (subgoal_tac "irreducible G x", simp)
apply (rule irreducibleI, simp, simp)

done
from this obtain y

where ycarr: "y ∈ carrier G"
and ynunit: "y /∈ Units G"
and pfyx: "properfactor G y x"
by auto

have ih’:
"
∧
y. [[y ∈ carrier G; properfactor G y x]]

=⇒ ∃ as. set as ⊆ carrier G ∧ wfactors G as y"
by (rule ih[rule_format, simplified]) (simp add: xcarr)+

from ycarr pfyx
have "∃ as. set as ⊆ carrier G ∧ wfactors G as y"
by (rule ih’)

from this obtain ys
where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto

from pfyx
have "y divides x"
and nyx: "¬ y ∼ x"
by - (fast elim: properfactorE2)+

hence "∃ z. z ∈ carrier G ∧ x = y ⊗ z"
by (fast elim: dividesE)

from this obtain z
where zcarr: "z ∈ carrier G"
and x: "x = y ⊗ z"

174

by auto

from zcarr ycarr
have "properfactor G z x"

apply (subst x)
apply (intro properfactorI3[of _ _ y])
apply (simp add: m_comm)

apply (simp add: ynunit)+
done
with zcarr

have "∃ as. set as ⊆ carrier G ∧ wfactors G as z"
by (rule ih’)

from this obtain zs
where zscarr: "set zs ⊆ carrier G"
and zfs: "wfactors G zs z"
by auto

from yscarr zscarr
have xscarr: "set (ys@zs) ⊆ carrier G" by simp

from yfs zfs ycarr zcarr yscarr zscarr
have "wfactors G (ys@zs) (y⊗z)" by (rule wfactors_mult)

hence "wfactors G (ys@zs) x" by (simp add: x)

from xscarr this
show "∃ xs. set xs ⊆ carrier G ∧ wfactors G xs x" by fast

qed
qed

from acarr
show ?thesis by (rule r)

qed

7.9.3 Primeness condition

lemma (in comm_monoid_cancel) multlist_prime_pos:
assumes carr: "a ∈ carrier G" "set as ⊆ carrier G"

and aprime: "prime G a"
and "a divides (foldr (op ⊗) as 1)"

shows "∃ i<length as. a divides (as!i)"
proof -

have r[rule_format]:
"set as ⊆ carrier G ∧ a divides (foldr (op ⊗) as 1)
−→ (∃ i. i < length as ∧ a divides (as!i))"

apply (induct as)
apply clarsimp defer 1
apply clarsimp defer 1

proof -
assume "a divides 1"
with carr

175

have "a ∈ Units G"
by (fast intro: divides_unit[of a 1])

with aprime
show "False" by (elim primeE, simp)

next
fix aa as
assume ih[rule_format]: "a divides foldr op ⊗ as 1 −→ (∃ i<length

as. a divides as ! i)"
and carr’: "aa ∈ carrier G" "set as ⊆ carrier G"
and "a divides aa ⊗ foldr op ⊗ as 1"

with carr aprime
have "a divides aa ∨ a divides foldr op ⊗ as 1"
by (intro prime_divides) simp+

moreover {
assume "a divides aa"
hence p1: "a divides (aa#as)!0" by simp
have "0 < Suc (length as)" by simp
with p1 have "∃ i<Suc (length as). a divides (aa # as) ! i" by fast

}
moreover {

assume "a divides foldr op ⊗ as 1"
hence "∃ i. i < length as ∧ a divides as ! i" by (rule ih)
from this obtain i where "a divides as ! i" and len: "i < length

as" by auto
hence p1: "a divides (aa#as) ! (Suc i)" by simp
from len have "Suc i < Suc (length as)" by simp
with p1 have "∃ i<Suc (length as). a divides (aa # as) ! i" by force

}
ultimately

show "∃ i<Suc (length as). a divides (aa # as) ! i" by fast
qed

from assms
show ?thesis
by (intro r, safe)

qed

lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct:
"∀ a as’. a ∈ carrier G ∧ set as ⊆ carrier G ∧ set as’ ⊆ carrier G

∧
wfactors G as a ∧ wfactors G as’ a −→ essentially_equal G

as as’"
apply (induct as)
apply clarsimp defer 1
apply clarsimp defer 1
proof -

fix a as’
assume acarr: "a ∈ carrier G"

and "wfactors G [] a"

176

hence aunit: "a ∈ Units G"
apply (elim wfactorsE)
apply (simp, rule assoc_unit_r[of "1"], simp+)

done

assume "set as’ ⊆ carrier G" "wfactors G as’ a"
with aunit

have "as’ = []"
by (intro unit_wfactors_empty[of a])

thus "essentially_equal G [] as’" by simp
next

fix a as ah as’
assume ih[rule_format]:

"∀ a as’. a ∈ carrier G ∧ set as’ ⊆ carrier G ∧
wfactors G as a ∧ wfactors G as’ a −→ essentially_equal

G as as’"
and acarr: "a ∈ carrier G" and ahcarr: "ah ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and as’carr: "set as’ ⊆ carrier

G"
and afs: "wfactors G (ah # as) a"
and afs’: "wfactors G as’ a"

hence ahdvda: "ah divides a"
by (intro wfactors_dividesI[of "ah#as" "a"], simp+)

hence "∃ a’∈ carrier G. a = ah ⊗ a’" by (fast elim: dividesE)
from this obtain a’

where a’carr: "a’ ∈ carrier G"
and a: "a = ah ⊗ a’"
by auto

have a’fs: "wfactors G as a’"
apply (rule wfactorsE[OF afs], rule wfactorsI, simp)
apply (simp add: a, insert ascarr a’carr)
apply (intro assoc_l_cancel[of ah _ a’] multlist_closed ahcarr, assumption+)

done

from afs have ahirr: "irreducible G ah" by (elim wfactorsE, simp)
with ascarr have ahprime: "prime G ah" by (intro irreducible_prime

ahcarr)

note carr [simp] = acarr ahcarr ascarr as’carr a’carr

note ahdvda
also from afs’

have "a divides (foldr (op ⊗) as’ 1)"
by (elim wfactorsE associatedE, simp)

finally have "ah divides (foldr (op ⊗) as’ 1)" by simp

with ahprime
have "∃ i<length as’. ah divides as’!i"
by (intro multlist_prime_pos, simp+)

177

from this obtain i
where len: "i<length as’" and ahdvd: "ah divides as’!i"
by auto

from afs’ carr have irrasi: "irreducible G (as’!i)"
by (fast intro: nth_mem[OF len] elim: wfactorsE)

from len carr
have asicarr[simp]: "as’!i ∈ carrier G" by (unfold set_conv_nth,

force)
note carr = carr asicarr

from ahdvd have "∃ x ∈ carrier G. as’!i = ah ⊗ x" by (fast elim: dividesE)
from this obtain x where "x ∈ carrier G" and asi: "as’!i = ah ⊗ x"

by auto

with carr irrasi[simplified asi]
have asiah: "as’!i ∼ ah" apply -

apply (elim irreducible_prodE[of "ah" "x"], assumption+)
apply (rule associatedI2[of x], assumption+)

apply (rule irreducibleE[OF ahirr], simp)
done

note setparts = set_take_subset[of i as’] set_drop_subset[of "Suc i"
as’]

note partscarr [simp] = setparts[THEN subset_trans[OF _ as’carr]]
note carr = carr partscarr

have "∃ aa_1. aa_1 ∈ carrier G ∧ wfactors G (take i as’) aa_1"
apply (intro wfactors_prod_exists)
using setparts afs’ by (fast elim: wfactorsE, simp)

from this obtain aa_1
where aa1carr: "aa_1 ∈ carrier G"
and aa1fs: "wfactors G (take i as’) aa_1"
by auto

have "∃ aa_2. aa_2 ∈ carrier G ∧ wfactors G (drop (Suc i) as’) aa_2"
apply (intro wfactors_prod_exists)
using setparts afs’ by (fast elim: wfactorsE, simp)

from this obtain aa_2
where aa2carr: "aa_2 ∈ carrier G"
and aa2fs: "wfactors G (drop (Suc i) as’) aa_2"
by auto

note carr = carr aa1carr[simp] aa2carr[simp]

from aa1fs aa2fs
have v1: "wfactors G (take i as’ @ drop (Suc i) as’) (aa_1 ⊗ aa_2)"
by (intro wfactors_mult, simp+)

hence v1’: "wfactors G (as’!i # take i as’ @ drop (Suc i) as’) (as’!i
⊗ (aa_1 ⊗ aa_2))"

178

apply (intro wfactors_mult_single)
using setparts afs’
by (fast intro: nth_mem[OF len] elim: wfactorsE, simp+)

from aa2carr carr aa1fs aa2fs
have "wfactors G (as’!i # drop (Suc i) as’) (as’!i ⊗ aa_2)"

apply (intro wfactors_mult_single)
apply (rule wfactorsE[OF afs’], fast intro: nth_mem[OF len])

apply (fast intro: nth_mem[OF len])
apply fast

apply fast
apply assumption

done
with len carr aa1carr aa2carr aa1fs

have v2: "wfactors G (take i as’ @ as’!i # drop (Suc i) as’) (aa_1
⊗ (as’!i ⊗ aa_2))"

apply (intro wfactors_mult)
apply fast

apply (simp, (fast intro: nth_mem[OF len])?)+
done

from len
have as’: "as’ = (take i as’ @ as’!i # drop (Suc i) as’)"
by (simp add: drop_Suc_conv_tl)

with carr
have eer: "essentially_equal G (take i as’ @ as’!i # drop (Suc i)

as’) as’"
by simp

with v2 afs’ carr aa1carr aa2carr nth_mem[OF len]
have "aa_1 ⊗ (as’!i ⊗ aa_2) ∼ a"

apply (intro ee_wfactorsD[of "take i as’ @ as’!i # drop (Suc i) as’"
"as’"])

apply fast+
apply (simp, fast)

done
then
have t1: "as’!i ⊗ (aa_1 ⊗ aa_2) ∼ a"

apply (simp add: m_assoc[symmetric])
apply (simp add: m_comm)

done
from carr asiah
have "ah ⊗ (aa_1 ⊗ aa_2) ∼ as’!i ⊗ (aa_1 ⊗ aa_2)"

apply (intro mult_cong_l)
apply (fast intro: associated_sym, simp+)

done
also note t1
finally

have "ah ⊗ (aa_1 ⊗ aa_2) ∼ a" by simp

179

with carr aa1carr aa2carr a’carr nth_mem[OF len]
have a’: "aa_1 ⊗ aa_2 ∼ a’"
by (simp add: a, fast intro: assoc_l_cancel[of ah _ a’])

note v1
also note a’
finally have "wfactors G (take i as’ @ drop (Suc i) as’) a’" by simp

from a’fs this carr
have "essentially_equal G as (take i as’ @ drop (Suc i) as’)"
by (intro ih[of a’]) simp

hence ee1: "essentially_equal G (ah # as) (ah # take i as’ @ drop (Suc
i) as’)"

apply (elim essentially_equalE) apply (fastsimp intro: essentially_equalI)
done

from carr
have ee2: "essentially_equal G (ah # take i as’ @ drop (Suc i) as’)

(as’ ! i # take i as’ @ drop (Suc i)
as’)"

proof (intro essentially_equalI)
show "ah # take i as’ @ drop (Suc i) as’ <~~> ah # take i as’ @ drop

(Suc i) as’"
by simp

next show "ah # take i as’ @ drop (Suc i) as’ [∼]
as’ ! i # take i as’ @ drop (Suc i) as’"

apply (simp add: list_all2_append)
apply (simp add: asiah[symmetric] ahcarr asicarr)
done

qed

note ee1
also note ee2
also have "essentially_equal G (as’ ! i # take i as’ @ drop (Suc i)

as’)
(take i as’ @ as’ ! i # drop (Suc i)

as’)"
apply (intro essentially_equalI)
apply (subgoal_tac "as’ ! i # take i as’ @ drop (Suc i) as’ <~~>

take i as’ @ as’ ! i # drop (Suc i) as’")
apply simp

apply (rule perm_append_Cons)
apply simp

done
finally

have "essentially_equal G (ah # as)
(take i as’ @ as’ ! i # drop (Suc i) as’)"

180

by simp

thus "essentially_equal G (ah # as) as’" by (subst as’, assumption)
qed

lemma (in primeness_condition_monoid) wfactors_unique:
assumes "wfactors G as a" "wfactors G as’ a"

and "a ∈ carrier G" "set as ⊆ carrier G" "set as’ ⊆ carrier G"
shows "essentially_equal G as as’"

apply (rule wfactors_unique__hlp_induct[rule_format, of a])
apply (simp add: assms)
done

7.9.4 Application to factorial monoids

Number of factors for wellfoundedness

constdefs
factorcount :: "_ ⇒ ’a ⇒ nat"
"factorcount G a == THE c. (ALL as. set as ⊆ carrier G ∧

wfactors G as a −→ c = length as)"

lemma (in monoid) ee_length:
assumes ee: "essentially_equal G as bs"
shows "length as = length bs"

apply (rule essentially_equalE[OF ee])
apply (subgoal_tac "length as = length fs1’")
apply (simp add: list_all2_lengthD)

apply (simp add: perm_length)
done

lemma (in factorial_monoid) factorcount_exists:
assumes carr[simp]: "a ∈ carrier G"
shows "EX c. ALL as. set as ⊆ carrier G ∧ wfactors G as a −→ c = length

as"
proof -

have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (intro wfactors_exist,
simp)

from this obtain as
where ascarr[simp]: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by (auto simp del: carr)

have "ALL as’. set as’ ⊆ carrier G ∧ wfactors G as’ a −→ length as
= length as’"

proof clarify
fix as’
assume [simp]: "set as’ ⊆ carrier G"

and bfs: "wfactors G as’ a"
from afs bfs

181

have "essentially_equal G as as’"
by (intro ee_wfactorsI[of a a as as’], simp+)

thus "length as = length as’" by (rule ee_length)
qed
thus "EX c. ALL as’. set as’ ⊆ carrier G ∧ wfactors G as’ a −→ c =

length as’" ..
qed

lemma (in factorial_monoid) factorcount_unique:
assumes afs: "wfactors G as a"

and acarr[simp]: "a ∈ carrier G" and ascarr[simp]: "set as ⊆ carrier
G"

shows "factorcount G a = length as"
proof -

have "EX ac. ALL as. set as ⊆ carrier G ∧ wfactors G as a −→ ac =
length as" by (rule factorcount_exists, simp)

from this obtain ac where
alen: "ALL as. set as ⊆ carrier G ∧ wfactors G as a −→ ac = length

as"
by auto

have ac: "ac = factorcount G a"
apply (simp add: factorcount_def)
apply (rule theI2)

apply (rule alen)
apply (elim allE[of _ "as"], rule allE[OF alen, of "as"], simp add:

ascarr afs)
apply (elim allE[of _ "as"], rule allE[OF alen, of "as"], simp add:

ascarr afs)
done

from ascarr afs have "ac = length as" by (iprover intro: alen[rule_format])
with ac show ?thesis by simp

qed

lemma (in factorial_monoid) divides_fcount:
assumes dvd: "a divides b"

and acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"
shows "factorcount G a <= factorcount G b"

apply (rule dividesE[OF dvd])
proof -

fix c
from assms

have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by fast
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique)

182

assume ccarr: "c ∈ carrier G"
hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by fast
from this obtain cs

where cscarr: "set cs ⊆ carrier G"
and cfs: "wfactors G cs c"
by auto

note [simp] = acarr bcarr ccarr ascarr cscarr

assume b: "b = a ⊗ c"
from afs cfs

have "wfactors G (as@cs) (a ⊗ c)" by (intro wfactors_mult, simp+)
with b have "wfactors G (as@cs) b" by simp
hence "factorcount G b = length (as@cs)" by (intro factorcount_unique,

simp+)
hence "factorcount G b = length as + length cs" by simp
with fca show ?thesis by simp

qed

lemma (in factorial_monoid) associated_fcount:
assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"

and asc: "a ∼ b"
shows "factorcount G a = factorcount G b"

apply (rule associatedE[OF asc])
apply (drule divides_fcount[OF _ acarr bcarr])
apply (drule divides_fcount[OF _ bcarr acarr])
apply simp
done

lemma (in factorial_monoid) properfactor_fcount:
assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"

and pf: "properfactor G a b"
shows "factorcount G a < factorcount G b"

apply (rule properfactorE[OF pf], elim dividesE)
proof -

fix c
from assms
have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by fast
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique)

assume ccarr: "c ∈ carrier G"
hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by fast
from this obtain cs

where cscarr: "set cs ⊆ carrier G"
and cfs: "wfactors G cs c"

183

by auto

assume b: "b = a ⊗ c"

have "wfactors G (as@cs) (a ⊗ c)" by (rule wfactors_mult) fact+
with b

have "wfactors G (as@cs) b" by simp
with ascarr cscarr bcarr

have "factorcount G b = length (as@cs)" by (simp add: factorcount_unique)
hence fcb: "factorcount G b = length as + length cs" by simp

assume nbdvda: "¬ b divides a"
have "c /∈ Units G"
proof (rule ccontr, simp)

assume cunit:"c ∈ Units G"

have "b ⊗ inv c = a ⊗ c ⊗ inv c" by (simp add: b)
also with ccarr acarr cunit

have ". . . = a ⊗ (c ⊗ inv c)" by (fast intro: m_assoc)
also with ccarr cunit

have ". . . = a ⊗ 1" by (simp add: Units_r_inv)
also with acarr

have ". . . = a" by simp
finally have "a = b ⊗ inv c" by simp
with ccarr cunit
have "b divides a" by (fast intro: dividesI[of "inv c"])
with nbdvda show False by simp

qed

with cfs have "length cs > 0"
apply -
apply (rule ccontr, simp)
proof -

assume "wfactors G [] c"
hence "1 ∼ c" by (elim wfactorsE, simp)
with ccarr

have cunit: "c ∈ Units G" by (intro assoc_unit_r[of "1" "c"],
simp+)

assume "c /∈ Units G"
with cunit show "False" by simp

qed

with fca fcb show ?thesis by simp
qed

sublocale factorial_monoid ⊆ divisor_chain_condition_monoid
apply unfold_locales
apply (rule wfUNIVI)
apply (rule measure_induct[of "factorcount G"])

184

apply simp
proof -

fix P x
assume r1[rule_format]:

"∀ y. (∀ z. z ∈ carrier G ∧ y ∈ carrier G ∧ properfactor G z
y −→ P z) −→ P y"

and r2[rule_format]: "∀ y. factorcount G y < factorcount G x −→ P
y"

show "P x"
apply (rule r1)
apply (rule r2)
apply (rule properfactor_fcount, simp+)

done
qed

sublocale factorial_monoid ⊆ primeness_condition_monoid
proof qed (rule irreducible_is_prime)

lemma (in factorial_monoid) primeness_condition:
shows "primeness_condition_monoid G"
..

lemma (in factorial_monoid) gcd_condition [simp]:
shows "gcd_condition_monoid G"
proof qed (rule gcdof_exists)

sublocale factorial_monoid ⊆ gcd_condition_monoid
proof qed (rule gcdof_exists)

lemma (in factorial_monoid) division_weak_lattice [simp]:
shows "weak_lattice (division_rel G)"

proof -
interpret weak_lower_semilattice "division_rel G" by simp

show "weak_lattice (division_rel G)"
apply (unfold_locales, simp_all)
proof -

fix x y
assume carr: "x ∈ carrier G" "y ∈ carrier G"

hence "∃ z. z ∈ carrier G ∧ z lcmof x y" by (rule lcmof_exists)
from this obtain z

where zcarr: "z ∈ carrier G"
and isgcd: "z lcmof x y"
by auto

with carr
have "least (division_rel G) z (Upper (division_rel G) {x, y})"

by (simp add: lcmof_leastUpper[symmetric])

185

thus "∃ z. least (division_rel G) z (Upper (division_rel G) {x, y})"
by fast

qed
qed

7.10 Factoriality Theorems

theorem factorial_condition_one:
shows "(divisor_chain_condition_monoid G ∧ primeness_condition_monoid

G) =
factorial_monoid G"

apply rule
proof clarify

assume dcc: "divisor_chain_condition_monoid G"
and pc: "primeness_condition_monoid G"

interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret primeness_condition_monoid "G" by (rule pc)

show "factorial_monoid G"
by (fast intro: factorial_monoidI wfactors_exist wfactors_unique)

next
assume fm: "factorial_monoid G"
interpret factorial_monoid "G" by (rule fm)
show "divisor_chain_condition_monoid G ∧ primeness_condition_monoid

G"
by rule unfold_locales

qed

theorem factorial_condition_two:
shows "(divisor_chain_condition_monoid G ∧ gcd_condition_monoid G)

= factorial_monoid G"
apply rule
proof clarify

assume dcc: "divisor_chain_condition_monoid G"
and gc: "gcd_condition_monoid G"

interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret gcd_condition_monoid "G" by (rule gc)
show "factorial_monoid G"

by (simp add: factorial_condition_one[symmetric], rule, unfold_locales)
next

assume fm: "factorial_monoid G"
interpret factorial_monoid "G" by (rule fm)
show "divisor_chain_condition_monoid G ∧ gcd_condition_monoid G"

by rule unfold_locales
qed

end

186

theory Ring
imports FiniteProduct
uses ("ringsimp.ML") begin

8 The Algebraic Hierarchy of Rings

8.1 Abelian Groups

record ’a ring = "’a monoid" +
zero :: ’a ("0ı ")
add :: "[’a, ’a] => ’a" (infixl "⊕ı " 65)

Derived operations.

constdefs (structure R)
a_inv :: "[(’a, ’m) ring_scheme, ’a] => ’a" ("	ı _" [81] 80)
"a_inv R == m_inv (| carrier = carrier R, mult = add R, one = zero R

|)"

a_minus :: "[(’a, ’m) ring_scheme, ’a, ’a] => ’a" (infixl "	ı " 65)
"[| x ∈ carrier R; y ∈ carrier R |] ==> x 	 y == x ⊕ (y)"

locale abelian_monoid =
fixes G (structure)
assumes a_comm_monoid:

"comm_monoid (| carrier = carrier G, mult = add G, one = zero G |)"

The following definition is redundant but simple to use.

locale abelian_group = abelian_monoid +
assumes a_comm_group:

"comm_group (| carrier = carrier G, mult = add G, one = zero G |)"

8.2 Basic Properties

lemma abelian_monoidI:
fixes R (structure)
assumes a_closed:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier
R"

and zero_closed: "0 ∈ carrier R"
and a_assoc:
"!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"

and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"
and a_comm:
"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"

shows "abelian_monoid R"
by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)

187

lemma abelian_groupI:
fixes R (structure)
assumes a_closed:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier
R"

and zero_closed: "zero R ∈ carrier R"
and a_assoc:
"!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"

and a_comm:
"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"

and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"
and l_inv_ex: "!!x. x ∈ carrier R ==> EX y : carrier R. y ⊕ x = 0"

shows "abelian_group R"
by (auto intro!: abelian_group.intro abelian_monoidI

abelian_group_axioms.intro comm_monoidI comm_groupI
intro: assms)

lemma (in abelian_monoid) a_monoid:
"monoid (| carrier = carrier G, mult = add G, one = zero G |)"

by (rule comm_monoid.axioms, rule a_comm_monoid)

lemma (in abelian_group) a_group:
"group (| carrier = carrier G, mult = add G, one = zero G |)"
by (simp add: group_def a_monoid)
(simp add: comm_group.axioms group.axioms a_comm_group)

lemmas monoid_record_simps = partial_object.simps monoid.simps

lemma (in abelian_monoid) a_closed [intro, simp]:
"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊕ y ∈ carrier G"
by (rule monoid.m_closed [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_monoid) zero_closed [intro, simp]:
"0 ∈ carrier G"
by (rule monoid.one_closed [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) a_inv_closed [intro, simp]:
"x ∈ carrier G ==> 	 x ∈ carrier G"
by (simp add: a_inv_def
group.inv_closed [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) minus_closed [intro, simp]:
"[| x ∈ carrier G; y ∈ carrier G |] ==> x 	 y ∈ carrier G"
by (simp add: a_minus_def)

lemma (in abelian_group) a_l_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>

188

(x ⊕ y = x ⊕ z) = (y = z)"
by (rule group.l_cancel [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) a_r_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(y ⊕ x = z ⊕ x) = (y = z)"

by (rule group.r_cancel [OF a_group, simplified monoid_record_simps])

lemma (in abelian_monoid) a_assoc:
"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
by (rule monoid.m_assoc [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_monoid) l_zero [simp]:
"x ∈ carrier G ==> 0 ⊕ x = x"
by (rule monoid.l_one [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) l_neg:
"x ∈ carrier G ==> 	 x ⊕ x = 0"
by (simp add: a_inv_def
group.l_inv [OF a_group, simplified monoid_record_simps])

lemma (in abelian_monoid) a_comm:
"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊕ y = y ⊕ x"
by (rule comm_monoid.m_comm [OF a_comm_monoid,
simplified monoid_record_simps])

lemma (in abelian_monoid) a_lcomm:
"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
x ⊕ (y ⊕ z) = y ⊕ (x ⊕ z)"

by (rule comm_monoid.m_lcomm [OF a_comm_monoid,
simplified monoid_record_simps])

lemma (in abelian_monoid) r_zero [simp]:
"x ∈ carrier G ==> x ⊕ 0 = x"
using monoid.r_one [OF a_monoid]
by simp

lemma (in abelian_group) r_neg:
"x ∈ carrier G ==> x ⊕ (x) = 0"
using group.r_inv [OF a_group]
by (simp add: a_inv_def)

lemma (in abelian_group) minus_zero [simp]:
"	 0 = 0"
by (simp add: a_inv_def
group.inv_one [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) minus_minus [simp]:

189

"x ∈ carrier G ==> 	 (x) = x"
using group.inv_inv [OF a_group, simplified monoid_record_simps]
by (simp add: a_inv_def)

lemma (in abelian_group) a_inv_inj:
"inj_on (a_inv G) (carrier G)"
using group.inv_inj [OF a_group, simplified monoid_record_simps]
by (simp add: a_inv_def)

lemma (in abelian_group) minus_add:
"[| x ∈ carrier G; y ∈ carrier G |] ==> 	 (x ⊕ y) = 	 x ⊕ 	 y"
using comm_group.inv_mult [OF a_comm_group]
by (simp add: a_inv_def)

lemma (in abelian_group) minus_equality:
"[| x ∈ carrier G; y ∈ carrier G; y ⊕ x = 0 |] ==> 	 x = y"
using group.inv_equality [OF a_group]
by (auto simp add: a_inv_def)

lemma (in abelian_monoid) minus_unique:
"[| x ∈ carrier G; y ∈ carrier G; y’ ∈ carrier G;

y ⊕ x = 0; x ⊕ y’ = 0 |] ==> y = y’"
using monoid.inv_unique [OF a_monoid]
by (simp add: a_inv_def)

lemmas (in abelian_monoid) a_ac = a_assoc a_comm a_lcomm

Derive an abelian_group from a comm_group

lemma comm_group_abelian_groupI:
fixes G (structure)
assumes cg: "comm_group (|carrier = carrier G, mult = add G, one = zero

G|)"
shows "abelian_group G"

proof -
interpret comm_group "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule cg)

show "abelian_group G" ..
qed

8.3 Sums over Finite Sets

This definition makes it easy to lift lemmas from finprod.

constdefs
finsum :: "[(’b, ’m) ring_scheme, ’a => ’b, ’a set] => ’b"
"finsum G f A == finprod (| carrier = carrier G,

mult = add G, one = zero G |) f A"

syntax

190

"_finsum" :: "index => idt => ’a set => ’b => ’b"
("(3

⊕
__:_. _)" [1000, 0, 51, 10] 10)

syntax (xsymbols)
"_finsum" :: "index => idt => ’a set => ’b => ’b"

("(3
⊕

__∈_. _)" [1000, 0, 51, 10] 10)
syntax (HTML output)
"_finsum" :: "index => idt => ’a set => ’b => ’b"

("(3
⊕

__∈_. _)" [1000, 0, 51, 10] 10)
translations
"
⊕

ı i:A. b" == "finsum �ı (%i. b) A"
— Beware of argument permutation!

context abelian_monoid begin

lemma finsum_empty [simp]:
"finsum G f {} = 0"
by (rule comm_monoid.finprod_empty [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_insert [simp]:
"[| finite F; a /∈ F; f ∈ F -> carrier G; f a ∈ carrier G |]
==> finsum G f (insert a F) = f a ⊕ finsum G f F"
by (rule comm_monoid.finprod_insert [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_zero [simp]:
"finite A ==> (

⊕
i∈A. 0) = 0"

by (rule comm_monoid.finprod_one [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_closed [simp]:
fixes A
assumes fin: "finite A" and f: "f ∈ A -> carrier G"
shows "finsum G f A ∈ carrier G"
apply (rule comm_monoid.finprod_closed [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

apply (rule fin)
apply (rule f)
done

lemma finsum_Un_Int:
"[| finite A; finite B; g ∈ A -> carrier G; g ∈ B -> carrier G |] ==>

finsum G g (A Un B) ⊕ finsum G g (A Int B) =
finsum G g A ⊕ finsum G g B"

by (rule comm_monoid.finprod_Un_Int [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

191

lemma finsum_Un_disjoint:
"[| finite A; finite B; A Int B = {};

g ∈ A -> carrier G; g ∈ B -> carrier G |]
==> finsum G g (A Un B) = finsum G g A ⊕ finsum G g B"

by (rule comm_monoid.finprod_Un_disjoint [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_addf:
"[| finite A; f ∈ A -> carrier G; g ∈ A -> carrier G |] ==>
finsum G (%x. f x ⊕ g x) A = (finsum G f A ⊕ finsum G g A)"

by (rule comm_monoid.finprod_multf [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_cong’:
"[| A = B; g : B -> carrier G;

!!i. i : B ==> f i = g i |] ==> finsum G f A = finsum G g B"
by (rule comm_monoid.finprod_cong’ [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps]) auto

lemma finsum_0 [simp]:
"f : {0::nat} -> carrier G ==> finsum G f {..0} = f 0"
by (rule comm_monoid.finprod_0 [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_Suc [simp]:
"f : {..Suc n} -> carrier G ==>
finsum G f {..Suc n} = (f (Suc n) ⊕ finsum G f {..n})"

by (rule comm_monoid.finprod_Suc [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_Suc2:
"f : {..Suc n} -> carrier G ==>
finsum G f {..Suc n} = (finsum G (%i. f (Suc i)) {..n} ⊕ f 0)"

by (rule comm_monoid.finprod_Suc2 [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_add [simp]:
"[| f : {..n} -> carrier G; g : {..n} -> carrier G |] ==>

finsum G (%i. f i ⊕ g i) {..n::nat} =
finsum G f {..n} ⊕ finsum G g {..n}"

by (rule comm_monoid.finprod_mult [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_cong:
"[| A = B; f : B -> carrier G;

!!i. i : B =simp=> f i = g i |] ==> finsum G f A = finsum G g B"
by (rule comm_monoid.finprod_cong [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps]) (auto simp add: simp_implies_def)

Usually, if this rule causes a failed congruence proof error, the reason is that

192

the premise g ∈ B -> carrier G cannot be shown. Adding Pi_def to the
simpset is often useful.

lemma finsum_reindex:
assumes fin: "finite A"

shows "f : (h ‘ A) → carrier G =⇒
inj_on h A ==> finsum G f (h ‘ A) = finsum G (%x. f (h x)) A"

using fin apply induct
apply (auto simp add: finsum_insert Pi_def)

done

lemma finsum_singleton:
assumes i_in_A: "i ∈ A" and fin_A: "finite A" and f_Pi: "f ∈ A →

carrier G"
shows "(

⊕
j∈A. if i = j then f j else 0) = f i"

using i_in_A finsum_insert [of "A - {i}" i "(λj. if i = j then f j else
0)"]

fin_A f_Pi finsum_zero [of "A - {i}"]
finsum_cong [of "A - {i}" "A - {i}" "(λj. if i = j then f j else 0)"

"(λi. 0)"]
unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)

end

8.4 Rings: Basic Definitions

locale ring = abelian_group R + monoid R for R (structure) +
assumes l_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]

==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
and r_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

locale cring = ring + comm_monoid R

locale "domain" = cring +
assumes one_not_zero [simp]: "1 ~= 0"

and integral: "[| a ⊗ b = 0; a ∈ carrier R; b ∈ carrier R |] ==>
a = 0 | b = 0"

locale field = "domain" +
assumes field_Units: "Units R = carrier R - {0}"

8.5 Rings

lemma ringI:
fixes R (structure)

193

assumes abelian_group: "abelian_group R"
and monoid: "monoid R"
and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]
==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

and r_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier
R |]

==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"
shows "ring R"
by (auto intro: ring.intro
abelian_group.axioms ring_axioms.intro assms)

lemma (in ring) is_abelian_group:
"abelian_group R"
..

lemma (in ring) is_monoid:
"monoid R"
by (auto intro!: monoidI m_assoc)

lemma (in ring) is_ring:
"ring R"
by (rule ring_axioms)

lemmas ring_record_simps = monoid_record_simps ring.simps

lemma cringI:
fixes R (structure)
assumes abelian_group: "abelian_group R"

and comm_monoid: "comm_monoid R"
and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]
==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

shows "cring R"
proof (intro cring.intro ring.intro)

show "ring_axioms R"
— Right-distributivity follows from left-distributivity and commutativity.

proof (rule ring_axioms.intro)
fix x y z
assume R: "x ∈ carrier R" "y ∈ carrier R" "z ∈ carrier R"
note [simp] = comm_monoid.axioms [OF comm_monoid]
abelian_group.axioms [OF abelian_group]
abelian_monoid.a_closed

from R have "z ⊗ (x ⊕ y) = (x ⊕ y) ⊗ z"
by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

also from R have "... = x ⊗ z ⊕ y ⊗ z" by (simp add: l_distr)
also from R have "... = z ⊗ x ⊕ z ⊗ y"

by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

194

finally show "z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y" .
qed (rule l_distr)

qed (auto intro: cring.intro
abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)

lemma (in cring) is_cring:
"cring R" by (rule cring_axioms)

8.5.1 Normaliser for Rings

lemma (in abelian_group) r_neg2:
"[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ (x ⊕ y) = y"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "(x ⊕ 	 x) ⊕ y = y"

by (simp only: r_neg l_zero)
with G show ?thesis

by (simp add: a_ac)
qed

lemma (in abelian_group) r_neg1:
"[| x ∈ carrier G; y ∈ carrier G |] ==> 	 x ⊕ (x ⊕ y) = y"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "(x ⊕ x) ⊕ y = y"

by (simp only: l_neg l_zero)
with G show ?thesis by (simp add: a_ac)

qed

The following proofs are from Jacobson, Basic Algebra I, pp. 88–89

lemma (in ring) l_null [simp]:
"x ∈ carrier R ==> 0 ⊗ x = 0"

proof -
assume R: "x ∈ carrier R"
then have "0 ⊗ x ⊕ 0 ⊗ x = (0 ⊕ 0) ⊗ x"

by (simp add: l_distr del: l_zero r_zero)
also from R have "... = 0 ⊗ x ⊕ 0" by simp
finally have "0 ⊗ x ⊕ 0 ⊗ x = 0 ⊗ x ⊕ 0" .
with R show ?thesis by (simp del: r_zero)

qed

lemma (in ring) r_null [simp]:
"x ∈ carrier R ==> x ⊗ 0 = 0"

proof -
assume R: "x ∈ carrier R"
then have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ (0 ⊕ 0)"

by (simp add: r_distr del: l_zero r_zero)

195

also from R have "... = x ⊗ 0 ⊕ 0" by simp
finally have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ 0 ⊕ 0" .
with R show ?thesis by (simp del: r_zero)

qed

lemma (in ring) l_minus:
"[| x ∈ carrier R; y ∈ carrier R |] ==> 	 x ⊗ y = 	 (x ⊗ y)"

proof -
assume R: "x ∈ carrier R" "y ∈ carrier R"
then have "(x) ⊗ y ⊕ x ⊗ y = (x ⊕ x) ⊗ y" by (simp add: l_distr)
also from R have "... = 0" by (simp add: l_neg l_null)
finally have "(x) ⊗ y ⊕ x ⊗ y = 0" .
with R have "(x) ⊗ y ⊕ x ⊗ y ⊕ 	 (x ⊗ y) = 0 ⊕ 	 (x ⊗ y)" by

simp
with R show ?thesis by (simp add: a_assoc r_neg)

qed

lemma (in ring) r_minus:
"[| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ 	 y = 	 (x ⊗ y)"

proof -
assume R: "x ∈ carrier R" "y ∈ carrier R"
then have "x ⊗ (y) ⊕ x ⊗ y = x ⊗ (y ⊕ y)" by (simp add: r_distr)
also from R have "... = 0" by (simp add: l_neg r_null)
finally have "x ⊗ (y) ⊕ x ⊗ y = 0" .
with R have "x ⊗ (y) ⊕ x ⊗ y ⊕ 	 (x ⊗ y) = 0 ⊕ 	 (x ⊗ y)" by

simp
with R show ?thesis by (simp add: a_assoc r_neg)

qed

lemma (in abelian_group) minus_eq:
"[| x ∈ carrier G; y ∈ carrier G |] ==> x 	 y = x ⊕ 	 y"
by (simp only: a_minus_def)

Setup algebra method: compute distributive normal form in locale contexts

use "ringsimp.ML"

setup Algebra.setup

lemmas (in ring) ring_simprules
[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]

=
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
a_lcomm r_distr l_null r_null l_minus r_minus

lemmas (in cring)
[algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult

R"] =

196

_

lemmas (in cring) cring_simprules
[algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult

R"] =
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus

lemma (in cring) nat_pow_zero:
"(n::nat) ~= 0 ==> 0 (^) n = 0"
by (induct n) simp_all

lemma (in ring) one_zeroD:
assumes onezero: "1 = 0"
shows "carrier R = {0}"

proof (rule, rule)
fix x
assume xcarr: "x ∈ carrier R"
from xcarr

have "x = x ⊗ 1" by simp
from this and onezero

have "x = x ⊗ 0" by simp
from this and xcarr

have "x = 0" by simp
thus "x ∈ {0}" by fast

qed fast

lemma (in ring) one_zeroI:
assumes carrzero: "carrier R = {0}"
shows "1 = 0"

proof -
from one_closed and carrzero

show "1 = 0" by simp
qed

lemma (in ring) carrier_one_zero:
shows "(carrier R = {0}) = (1 = 0)"
by (rule, erule one_zeroI, erule one_zeroD)

lemma (in ring) carrier_one_not_zero:
shows "(carrier R 6= {0}) = (1 6= 0)"
by (simp add: carrier_one_zero)

Two examples for use of method algebra

lemma
fixes R (structure) and S (structure)

197

assumes "ring R" "cring S"
assumes RS: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier S" "d ∈ carrier

S"
shows "a ⊕ 	 (a ⊕ 	 b) = b & c ⊗S d = d ⊗S c"

proof -
interpret ring R by fact
interpret cring S by fact

ML val {* Algebra.print_structures @{context} *}
from RS show ?thesis by algebra

qed

lemma
fixes R (structure)
assumes "ring R"
assumes R: "a ∈ carrier R" "b ∈ carrier R"
shows "a 	 (a 	 b) = b"

proof -
interpret ring R by fact
from R show ?thesis by algebra

qed

8.5.2 Sums over Finite Sets

lemma (in ring) finsum_ldistr:
"[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
finsum R f A ⊗ a = finsum R (%i. f i ⊗ a) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case (insert x F) then show ?case by (simp add: Pi_def l_distr)

qed

lemma (in ring) finsum_rdistr:
"[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
a ⊗ finsum R f A = finsum R (%i. a ⊗ f i) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case (insert x F) then show ?case by (simp add: Pi_def r_distr)

qed

8.6 Integral Domains

lemma (in "domain") zero_not_one [simp]:
"0 ~= 1"
by (rule not_sym) simp

lemma (in "domain") integral_iff:
"[| a ∈ carrier R; b ∈ carrier R |] ==> (a ⊗ b = 0) = (a = 0 | b =

0)"

198

proof
assume "a ∈ carrier R" "b ∈ carrier R" "a ⊗ b = 0"
then show "a = 0 | b = 0" by (simp add: integral)

next
assume "a ∈ carrier R" "b ∈ carrier R" "a = 0 | b = 0"
then show "a ⊗ b = 0" by auto

qed

lemma (in "domain") m_lcancel:
assumes prem: "a ~= 0"

and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
shows "(a ⊗ b = a ⊗ c) = (b = c)"

proof
assume eq: "a ⊗ b = a ⊗ c"
with R have "a ⊗ (b 	 c) = 0" by algebra
with R have "a = 0 | (b 	 c) = 0" by (simp add: integral_iff)
with prem and R have "b 	 c = 0" by auto
with R have "b = b 	 (b 	 c)" by algebra
also from R have "b 	 (b 	 c) = c" by algebra
finally show "b = c" .

next
assume "b = c" then show "a ⊗ b = a ⊗ c" by simp

qed

lemma (in "domain") m_rcancel:
assumes prem: "a ~= 0"

and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
shows conc: "(b ⊗ a = c ⊗ a) = (b = c)"

proof -
from prem and R have "(a ⊗ b = a ⊗ c) = (b = c)" by (rule m_lcancel)
with R show ?thesis by algebra

qed

8.7 Fields

Field would not need to be derived from domain, the properties for domain
follow from the assumptions of field

lemma (in cring) cring_fieldI:
assumes field_Units: "Units R = carrier R - {0}"
shows "field R"

proof
from field_Units
have a: "0 /∈ Units R" by fast
have "1 ∈ Units R" by fast
from this and a
show "1 6= 0" by force

next
fix a b
assume acarr: "a ∈ carrier R"

199

and bcarr: "b ∈ carrier R"
and ab: "a ⊗ b = 0"

show "a = 0 ∨ b = 0"
proof (cases "a = 0", simp)

assume "a 6= 0"
from this and field_Units and acarr
have aUnit: "a ∈ Units R" by fast
from bcarr
have "b = 1 ⊗ b" by algebra
also from aUnit acarr
have "... = (inv a ⊗ a) ⊗ b" by (simp add: Units_l_inv)
also from acarr bcarr aUnit[THEN Units_inv_closed]
have "... = (inv a) ⊗ (a ⊗ b)" by algebra
also from ab and acarr bcarr aUnit
have "... = (inv a) ⊗ 0" by simp
also from aUnit[THEN Units_inv_closed]
have "... = 0" by algebra
finally
have "b = 0" .
thus "a = 0 ∨ b = 0" by simp

qed
qed (rule field_Units)

Another variant to show that something is a field

lemma (in cring) cring_fieldI2:
assumes notzero: "0 6= 1"
and invex: "

∧
a. [[a ∈ carrier R; a 6= 0]] =⇒ ∃ b∈carrier R. a ⊗ b =

1"
shows "field R"
apply (rule cring_fieldI, simp add: Units_def)
apply (rule, clarsimp)
apply (simp add: notzero)

proof (clarsimp)
fix x
assume xcarr: "x ∈ carrier R"

and "x 6= 0"
from this
have "∃ y∈carrier R. x ⊗ y = 1" by (rule invex)
from this
obtain y

where ycarr: "y ∈ carrier R"
and xy: "x ⊗ y = 1"
by fast

from xy xcarr ycarr have "y ⊗ x = 1" by (simp add: m_comm)
from ycarr and this and xy
show "∃ y∈carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast

qed

200

8.8 Morphisms

constdefs (structure R S)
ring_hom :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme] => (’a =>

’b) set"
"ring_hom R S == {h. h ∈ carrier R -> carrier S &

(ALL x y. x ∈ carrier R & y ∈ carrier R -->
h (x ⊗ y) = h x ⊗S h y & h (x ⊕ y) = h x ⊕S h y) &

h 1 = 1S}"

lemma ring_hom_memI:
fixes R (structure) and S (structure)
assumes hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"

and hom_mult: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊗ y) = h x ⊗S h y"

and hom_add: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊕ y) = h x ⊕S h y"

and hom_one: "h 1 = 1S"
shows "h ∈ ring_hom R S"
by (auto simp add: ring_hom_def assms Pi_def)

lemma ring_hom_closed:
"[| h ∈ ring_hom R S; x ∈ carrier R |] ==> h x ∈ carrier S"
by (auto simp add: ring_hom_def funcset_mem)

lemma ring_hom_mult:
fixes R (structure) and S (structure)
shows
"[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊗ y) = h x ⊗S h y"
by (simp add: ring_hom_def)

lemma ring_hom_add:
fixes R (structure) and S (structure)
shows
"[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊕ y) = h x ⊕S h y"
by (simp add: ring_hom_def)

lemma ring_hom_one:
fixes R (structure) and S (structure)
shows "h ∈ ring_hom R S ==> h 1 = 1S"
by (simp add: ring_hom_def)

locale ring_hom_cring = R: cring R + S: cring S
for R (structure) and S (structure) +

fixes h
assumes homh [simp, intro]: "h ∈ ring_hom R S"
notes hom_closed [simp, intro] = ring_hom_closed [OF homh]

and hom_mult [simp] = ring_hom_mult [OF homh]

201

and hom_add [simp] = ring_hom_add [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]:
"h 0 = 0S"

proof -
have "h 0 ⊕S h 0 = h 0 ⊕S 0S"

by (simp add: hom_add [symmetric] del: hom_add)
then show ?thesis by (simp del: S.r_zero)

qed

lemma (in ring_hom_cring) hom_a_inv [simp]:
"x ∈ carrier R ==> h (x) = 	S h x"

proof -
assume R: "x ∈ carrier R"
then have "h x ⊕S h (x) = h x ⊕S (S h x)"

by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
with R show ?thesis by simp

qed

lemma (in ring_hom_cring) hom_finsum [simp]:
"[| finite A; f ∈ A -> carrier R |] ==>
h (finsum R f A) = finsum S (h o f) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case by (simp add: Pi_def)

qed

lemma (in ring_hom_cring) hom_finprod:
"[| finite A; f ∈ A -> carrier R |] ==>
h (finprod R f A) = finprod S (h o f) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case by (simp add: Pi_def)

qed

declare ring_hom_cring.hom_finprod [simp]

lemma id_ring_hom [simp]:
"id ∈ ring_hom R R"
by (auto intro!: ring_hom_memI)

end

theory AbelCoset

202

imports Coset Ring
begin

8.9 More Lifting from Groups to Abelian Groups

8.9.1 Definitions

Hiding <+> from Sum_Type until I come up with better syntax here

no notation Plus (infixr "<+>" 65)

constdefs (structure G)
a_r_coset :: "[_, ’a set, ’a] ⇒ ’a set" (infixl "+>ı " 60)
"a_r_coset G ≡ r_coset (|carrier = carrier G, mult = add G, one = zero

G|)"

a_l_coset :: "[_, ’a, ’a set] ⇒ ’a set" (infixl "<+ı " 60)
"a_l_coset G ≡ l_coset (|carrier = carrier G, mult = add G, one = zero

G|)"

A_RCOSETS :: "[_, ’a set] ⇒ (’a set)set" ("a’_rcosetsı _" [81] 80)
"A_RCOSETS G H ≡ RCOSETS (|carrier = carrier G, mult = add G, one = zero

G|) H"

set_add :: "[_, ’a set ,’a set] ⇒ ’a set" (infixl "<+>ı " 60)
"set_add G ≡ set_mult (|carrier = carrier G, mult = add G, one = zero

G|)"

A_SET_INV :: "[_,’a set] ⇒ ’a set" ("a’_set’_invı _" [81] 80)
"A_SET_INV G H ≡ SET_INV (|carrier = carrier G, mult = add G, one = zero

G|) H"

constdefs (structure G)
a_r_congruent :: "[(’a,’b)ring_scheme, ’a set] ⇒ (’a*’a)set"

("racongı _")
"a_r_congruent G ≡ r_congruent (|carrier = carrier G, mult = add G,

one = zero G|)"

constdefs
A_FactGroup :: "[(’a,’b) ring_scheme, ’a set] ⇒ (’a set) monoid"

(infixl "A’_Mod" 65)
— Actually defined for groups rather than monoids

"A_FactGroup G H ≡ FactGroup (|carrier = carrier G, mult = add G, one
= zero G|) H"

constdefs
a_kernel :: "(’a, ’m) ring_scheme ⇒ (’b, ’n) ring_scheme ⇒

(’a ⇒ ’b) ⇒ ’a set"
— the kernel of a homomorphism (additive)

"a_kernel G H h ≡ kernel (|carrier = carrier G, mult = add G, one = zero

203

G|)
(|carrier = carrier H, mult = add H, one

= zero H|) h"

locale abelian_group_hom = G: abelian_group G + H: abelian_group H
for G (structure) and H (structure) +

fixes h
assumes a_group_hom: "group_hom (| carrier = carrier G, mult = add

G, one = zero G |)
(| carrier = carrier H, mult = add H,

one = zero H |) h"

lemmas a_r_coset_defs =
a_r_coset_def r_coset_def

lemma a_r_coset_def’:
fixes G (structure)
shows "H +> a ≡

⋃
h∈H. {h ⊕ a}"

unfolding a_r_coset_defs
by simp

lemmas a_l_coset_defs =
a_l_coset_def l_coset_def

lemma a_l_coset_def’:
fixes G (structure)
shows "a <+ H ≡

⋃
h∈H. {a ⊕ h}"

unfolding a_l_coset_defs
by simp

lemmas A_RCOSETS_defs =
A_RCOSETS_def RCOSETS_def

lemma A_RCOSETS_def’:
fixes G (structure)
shows "a_rcosets H ≡

⋃
a∈carrier G. {H +> a}"

unfolding A_RCOSETS_defs
by (fold a_r_coset_def, simp)

lemmas set_add_defs =
set_add_def set_mult_def

lemma set_add_def’:
fixes G (structure)
shows "H <+> K ≡

⋃
h∈H.

⋃
k∈K. {h ⊕ k}"

unfolding set_add_defs
by simp

lemmas A_SET_INV_defs =

204

A_SET_INV_def SET_INV_def

lemma A_SET_INV_def’:
fixes G (structure)
shows "a_set_inv H ≡

⋃
h∈H. {	 h}"

unfolding A_SET_INV_defs
by (fold a_inv_def)

8.9.2 Cosets

lemma (in abelian_group) a_coset_add_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> (M +> g) +> h = M +> (g ⊕ h)"

by (rule group.coset_mult_assoc [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_zero [simp]:
"M ⊆ carrier G ==> M +> 0 = M"

by (rule group.coset_mult_one [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv1:
"[| M +> (x ⊕ (y)) = M; x ∈ carrier G ; y ∈ carrier G;

M ⊆ carrier G |] ==> M +> x = M +> y"
by (rule group.coset_mult_inv1 [OF a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv2:
"[| M +> x = M +> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier

G |]
==> M +> (x ⊕ (y)) = M"

by (rule group.coset_mult_inv2 [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join1:
"[| H +> x = H; x ∈ carrier G; subgroup H (|carrier = carrier G,

mult = add G, one = zero G|) |] ==> x ∈ H"
by (rule group.coset_join1 [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_solve_equation:
"[[subgroup H (|carrier = carrier G, mult = add G, one = zero G|);

x ∈ H; y ∈ H]] =⇒ ∃ h∈H. y = h ⊕ x"
by (rule group.solve_equation [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_repr_independence:
"[[y ∈ H +> x; x ∈ carrier G; subgroup H (|carrier = carrier G, mult

= add G, one = zero G|)]] =⇒ H +> x = H +> y"

205

by (rule group.repr_independence [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join2:
"[[x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G,

one = zero G|); x∈H]] =⇒ H +> x = H"
by (rule group.coset_join2 [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_monoid) a_r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> H +> x ⊆ carrier G"

by (rule monoid.r_coset_subset_G [OF a_monoid,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosI:
"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊕ x ∈ H +> x"

by (rule group.rcosI [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosetsI:
"[[H ⊆ carrier G; x ∈ carrier G]] =⇒ H +> x ∈ a_rcosets H"

by (rule group.rcosetsI [OF a_group,
folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

Really needed?

lemma (in abelian_group) a_transpose_inv:
"[| x ⊕ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]
==> (x) ⊕ z = y"

by (rule group.transpose_inv [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

8.9.3 Subgroups

locale additive_subgroup =
fixes H and G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"

lemma (in additive_subgroup) is_additive_subgroup:
shows "additive_subgroup H G"

by (rule additive_subgroup_axioms)

lemma additive_subgroupI:
fixes G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"
shows "additive_subgroup H G"

by (rule additive_subgroup.intro) (rule a_subgroup)

206

lemma (in additive_subgroup) a_subset:
"H ⊆ carrier G"

by (rule subgroup.subset[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) a_closed [intro, simp]:
"[[x ∈ H; y ∈ H]] =⇒ x ⊕ y ∈ H"

by (rule subgroup.m_closed[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) zero_closed [simp]:
"0 ∈ H"

by (rule subgroup.one_closed[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) a_inv_closed [intro,simp]:
"x ∈ H =⇒ 	 x ∈ H"

by (rule subgroup.m_inv_closed[OF a_subgroup,
folded a_inv_def, simplified monoid_record_simps])

8.9.4 Additive subgroups are normal

Every subgroup of an abelian_group is normal

locale abelian_subgroup = additive_subgroup + abelian_group G +
assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one

= zero G|)"

lemma (in abelian_subgroup) is_abelian_subgroup:
shows "abelian_subgroup H G"

by (rule abelian_subgroup_axioms)

lemma abelian_subgroupI:
assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one

= zero G|)"
and a_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕G

y = y ⊕G x"
shows "abelian_subgroup H G"

proof -
interpret normal "H" "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_normal)

show "abelian_subgroup H G"
proof qed (simp add: a_comm)

qed

lemma abelian_subgroupI2:
fixes G (structure)
assumes a_comm_group: "comm_group (|carrier = carrier G, mult = add

207

G, one = zero G|)"
and a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"
shows "abelian_subgroup H G"

proof -
interpret comm_group "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_comm_group)
interpret subgroup "H" "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_subgroup)

show "abelian_subgroup H G"
apply unfold_locales
proof (simp add: r_coset_def l_coset_def, clarsimp)

fix x
assume xcarr: "x ∈ carrier G"
from a_subgroup

have Hcarr: "H ⊆ carrier G" by (unfold subgroup_def, simp)
from xcarr Hcarr

show "(
⋃
h∈H. {h ⊕G x}) = (

⋃
h∈H. {x ⊕G h})"

using m_comm[simplified]
by fast

qed
qed

lemma abelian_subgroupI3:
fixes G (structure)
assumes asg: "additive_subgroup H G"

and ag: "abelian_group G"
shows "abelian_subgroup H G"

apply (rule abelian_subgroupI2)
apply (rule abelian_group.a_comm_group[OF ag])

apply (rule additive_subgroup.a_subgroup[OF asg])
done

lemma (in abelian_subgroup) a_coset_eq:
"(∀ x ∈ carrier G. H +> x = x <+ H)"

by (rule normal.coset_eq[OF a_normal,
folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed1:
shows "[[x ∈ carrier G; h ∈ H]] =⇒ (x) ⊕ h ⊕ x ∈ H"

by (rule normal.inv_op_closed1 [OF a_normal,
folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed2:
shows "[[x ∈ carrier G; h ∈ H]] =⇒ x ⊕ h ⊕ (x) ∈ H"

by (rule normal.inv_op_closed2 [OF a_normal,

208

folded a_inv_def, simplified monoid_record_simps])

Alternative characterization of normal subgroups

lemma (in abelian_group) a_normal_inv_iff:
"(N C (|carrier = carrier G, mult = add G, one = zero G|)) =
(subgroup N (|carrier = carrier G, mult = add G, one = zero G|) &

(∀ x ∈ carrier G. ∀ h ∈ N. x ⊕ h ⊕ (x) ∈ N))"
(is "_ = ?rhs")

by (rule group.normal_inv_iff [OF a_group,
folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> g <+ (h <+ M) = (g ⊕ h) <+ M"

by (rule group.lcos_m_assoc [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_mult_one:
"M ⊆ carrier G ==> 0 <+ M = M"

by (rule group.lcos_mult_one [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <+ H ⊆ carrier G"

by (rule group.l_coset_subset_G [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_swap:
"[[y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G, mult

= add G, one = zero G|)]] =⇒ x ∈ y <+ H"
by (rule group.l_coset_swap [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_carrier:
"[| y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G,

mult = add G, one = zero G|) |] ==> y ∈ carrier G"
by (rule group.l_coset_carrier [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_repr_imp_subset:
assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H

(|carrier = carrier G, mult = add G, one = zero G|)"
shows "y <+ H ⊆ x <+ H"

apply (rule group.l_repr_imp_subset [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

apply (rule y)
apply (rule x)

209

apply (rule sb)
done

lemma (in abelian_group) a_l_repr_independence:
assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H

(|carrier = carrier G, mult = add G, one = zero G|)"
shows "x <+ H = y <+ H"

apply (rule group.l_repr_independence [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

apply (rule y)
apply (rule x)
apply (rule sb)
done

lemma (in abelian_group) setadd_subset_G:
"[[H ⊆ carrier G; K ⊆ carrier G]] =⇒ H <+> K ⊆ carrier G"

by (rule group.setmult_subset_G [OF a_group,
folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_group) subgroup_add_id: "subgroup H (|carrier = carrier
G, mult = add G, one = zero G|) =⇒ H <+> H = H"
by (rule group.subgroup_mult_id [OF a_group,

folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_inv:
assumes x: "x ∈ carrier G"
shows "a_set_inv (H +> x) = H +> (x)"

by (rule normal.rcos_inv [OF a_normal,
folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps])

(rule x)

lemma (in abelian_group) a_setmult_rcos_assoc:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ H <+> (K +> x) = (H <+> K) +> x"

by (rule group.setmult_rcos_assoc [OF a_group,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcos_assoc_lcos:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ (H +> x) <+> K = H <+> (x <+ K)"

by (rule group.rcos_assoc_lcos [OF a_group,
folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_sum:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H +> x) <+> (H +> y) = H +> (x ⊕ y)"

by (rule normal.rcos_sum [OF a_normal,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])

210

lemma (in abelian_subgroup) rcosets_add_eq:
"M ∈ a_rcosets H =⇒ H <+> M = M"
— generalizes subgroup_mult_id

by (rule normal.rcosets_mult_eq [OF a_normal,
folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])

8.9.5 Congruence Relation

lemma (in abelian_subgroup) a_equiv_rcong:
shows "equiv (carrier G) (racong H)"

by (rule subgroup.equiv_rcong [OF a_subgroup a_group,
folded a_r_congruent_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_l_coset_eq_rcong:
assumes a: "a ∈ carrier G"
shows "a <+ H = racong H ‘‘ {a}"

by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

(rule a)

lemma (in abelian_subgroup) a_rcos_equation:
shows

"[[ha ⊕ a = h ⊕ b; a ∈ carrier G; b ∈ carrier G;
h ∈ H; ha ∈ H; hb ∈ H]]

=⇒ hb ⊕ a ∈ (
⋃
h∈H. {h ⊕ b})"

by (rule group.rcos_equation [OF a_group a_subgroup,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_disjoint:
shows "[[a ∈ a_rcosets H; b ∈ a_rcosets H; a6=b]] =⇒ a ∩ b = {}"

by (rule group.rcos_disjoint [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_self:
shows "x ∈ carrier G =⇒ x ∈ H +> x"

by (rule group.rcos_self [OF a_group _ a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_part_G:
shows "

⋃
(a_rcosets H) = carrier G"

by (rule group.rcosets_part_G [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_cosets_finite:
"[[c ∈ a_rcosets H; H ⊆ carrier G; finite (carrier G)]] =⇒ finite

c"
by (rule group.cosets_finite [OF a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

211

lemma (in abelian_group) a_card_cosets_equal:
"[[c ∈ a_rcosets H; H ⊆ carrier G; finite(carrier G)]]
=⇒ card c = card H"

by (rule group.card_cosets_equal [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) rcosets_subset_PowG:
"additive_subgroup H G =⇒ a_rcosets H ⊆ Pow(carrier G)"

by (rule group.rcosets_subset_PowG [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps],
rule additive_subgroup.a_subgroup)

theorem (in abelian_group) a_lagrange:
"[[finite(carrier G); additive_subgroup H G]]
=⇒ card(a_rcosets H) * card(H) = order(G)"

by (rule group.lagrange [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded

order_def])
(fast intro!: additive_subgroup.a_subgroup)+

8.9.6 Factorization

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def

lemma A_FactGroup_def’:
fixes G (structure)
shows "G A_Mod H ≡ (|carrier = a_rcosetsG H, mult = set_add G, one =

H|)"
unfolding A_FactGroup_defs
by (fold A_RCOSETS_def set_add_def)

lemma (in abelian_subgroup) a_setmult_closed:
"[[K1 ∈ a_rcosets H; K2 ∈ a_rcosets H]] =⇒ K1 <+> K2 ∈ a_rcosets H"

by (rule normal.setmult_closed [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_setinv_closed:
"K ∈ a_rcosets H =⇒ a_set_inv K ∈ a_rcosets H"

by (rule normal.setinv_closed [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_assoc:
"[[M1 ∈ a_rcosets H; M2 ∈ a_rcosets H; M3 ∈ a_rcosets H]]
=⇒ M1 <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"

by (rule normal.rcosets_assoc [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_subgroup_in_rcosets:

212

"H ∈ a_rcosets H"
by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:
"M ∈ a_rcosets H =⇒ a_set_inv M <+> M = H"

by (rule normal.rcosets_inv_mult_group_eq [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])

theorem (in abelian_subgroup) a_factorgroup_is_group:
"group (G A_Mod H)"

by (rule normal.factorgroup_is_group [OF a_normal,
folded A_FactGroup_def, simplified monoid_record_simps])

Since the Factorization is based on an abelian subgroup, is results in a
commutative group

theorem (in abelian_subgroup) a_factorgroup_is_comm_group:
"comm_group (G A_Mod H)"

apply (intro comm_group.intro comm_monoid.intro) prefer 3
apply (rule a_factorgroup_is_group)

apply (rule group.axioms[OF a_factorgroup_is_group])
apply (rule comm_monoid_axioms.intro)
apply (unfold A_FactGroup_def FactGroup_def RCOSETS_def, fold set_add_def
a_r_coset_def, clarsimp)
apply (simp add: a_rcos_sum a_comm)
done

lemma add_A_FactGroup [simp]: "X ⊗(G A_Mod H) X’ = X <+>G X’"
by (simp add: A_FactGroup_def set_add_def)

lemma (in abelian_subgroup) a_inv_FactGroup:
"X ∈ carrier (G A_Mod H) =⇒ invG A_Mod H X = a_set_inv X"

by (rule normal.inv_FactGroup [OF a_normal,
folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
"(λa. H +> a) ∈ hom (|carrier = carrier G, mult = add G, one = zero G|)

(G A_Mod H)"
by (rule normal.r_coset_hom_Mod [OF a_normal,

folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])

The isomorphism theorems have been omitted from lifting, at least for now

8.9.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

213

lemmas a_kernel_defs =
a_kernel_def kernel_def

lemma a_kernel_def’:
"a_kernel R S h ≡ {x ∈ carrier R. h x = 0S}"

by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])

8.9.8 Homomorphisms

lemma abelian_group_homI:
assumes "abelian_group G"
assumes "abelian_group H"
assumes a_group_hom: "group_hom (| carrier = carrier G, mult = add

G, one = zero G |)
(| carrier = carrier H, mult = add H,

one = zero H |) h"
shows "abelian_group_hom G H h"

proof -
interpret G: abelian_group G by fact
interpret H: abelian_group H by fact
show ?thesis apply (intro abelian_group_hom.intro abelian_group_hom_axioms.intro)

apply fact
apply fact
apply (rule a_group_hom)
done

qed

lemma (in abelian_group_hom) is_abelian_group_hom:
"abelian_group_hom G H h"
..

lemma (in abelian_group_hom) hom_add [simp]:
"[| x : carrier G; y : carrier G |]

==> h (x ⊕G y) = h x ⊕H h y"
by (rule group_hom.hom_mult[OF a_group_hom,

simplified ring_record_simps])

lemma (in abelian_group_hom) hom_closed [simp]:
"x ∈ carrier G =⇒ h x ∈ carrier H"

by (rule group_hom.hom_closed[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) zero_closed [simp]:
"h 0 ∈ carrier H"

by (rule group_hom.one_closed[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) hom_zero [simp]:
"h 0 = 0H"

214

by (rule group_hom.hom_one[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) a_inv_closed [simp]:
"x ∈ carrier G ==> h (x) ∈ carrier H"

by (rule group_hom.inv_closed[OF a_group_hom,
folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_a_inv [simp]:
"x ∈ carrier G ==> h (x) = 	H (h x)"

by (rule group_hom.hom_inv[OF a_group_hom,
folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) additive_subgroup_a_kernel:
"additive_subgroup (a_kernel G H h) G"

apply (rule additive_subgroup.intro)
apply (rule group_hom.subgroup_kernel[OF a_group_hom,

folded a_kernel_def, simplified ring_record_simps])
done

The kernel of a homomorphism is an abelian subgroup

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"

apply (rule abelian_subgroupI)
apply (rule group_hom.normal_kernel[OF a_group_hom,

folded a_kernel_def, simplified ring_record_simps])
apply (simp add: G.a_comm)
done

lemma (in abelian_group_hom) A_FactGroup_nonempty:
assumes X: "X ∈ carrier (G A_Mod a_kernel G H h)"
shows "X 6= {}"

by (rule group_hom.FactGroup_nonempty[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule X)

lemma (in abelian_group_hom) FactGroup_contents_mem:
assumes X: "X ∈ carrier (G A_Mod (a_kernel G H h))"
shows "contents (h‘X) ∈ carrier H"

by (rule group_hom.FactGroup_contents_mem[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule X)

lemma (in abelian_group_hom) A_FactGroup_hom:
"(λX. contents (h‘X)) ∈ hom (G A_Mod (a_kernel G H h))

(|carrier = carrier H, mult = add H, one = zero H|)"
by (rule group_hom.FactGroup_hom[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

215

lemma (in abelian_group_hom) A_FactGroup_inj_on:
"inj_on (λX. contents (h ‘ X)) (carrier (G A_Mod a_kernel G H h))"

by (rule group_hom.FactGroup_inj_on[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in abelian_group_hom) A_FactGroup_onto:
assumes h: "h ‘ carrier G = carrier H"
shows "(λX. contents (h ‘ X)) ‘ carrier (G A_Mod a_kernel G H h) =

carrier H"
by (rule group_hom.FactGroup_onto[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule h)

If h is a homomorphism from G onto H, then the quotient group G Mod kernel

G H h is isomorphic to H.

theorem (in abelian_group_hom) A_FactGroup_iso:
"h ‘ carrier G = carrier H
=⇒ (λX. contents (h‘X)) ∈ (G A_Mod (a_kernel G H h)) ∼=

(| carrier = carrier H, mult = add H, one = zero H |)"
by (rule group_hom.FactGroup_iso[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

8.9.9 Cosets

Not eveything from CosetExt.thy is lifted here.

lemma (in additive_subgroup) a_Hcarr [simp]:
assumes hH: "h ∈ H"
shows "h ∈ carrier G"

by (rule subgroup.mem_carrier [OF a_subgroup,
simplified monoid_record_simps]) (rule hH)

lemma (in abelian_subgroup) a_elemrcos_carrier:
assumes acarr: "a ∈ carrier G"

and a’: "a’ ∈ H +> a"
shows "a’ ∈ carrier G"

by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr,

rule a’)

lemma (in abelian_subgroup) a_rcos_const:
assumes hH: "h ∈ H"
shows "H +> h = H"

by (rule subgroup.rcos_const [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)

216

lemma (in abelian_subgroup) a_rcos_module_imp:
assumes xcarr: "x ∈ carrier G"

and x’cos: "x’ ∈ H +> x"
shows "(x’ ⊕ 	x) ∈ H"

by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule

xcarr, rule x’cos)

lemma (in abelian_subgroup) a_rcos_module_rev:
assumes "x ∈ carrier G" "x’ ∈ carrier G"

and "(x’ ⊕ 	x) ∈ H"
shows "x’ ∈ H +> x"

using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_module:
assumes "x ∈ carrier G" "x’ ∈ carrier G"
shows "(x’ ∈ H +> x) = (x’ ⊕ 	x ∈ H)"

using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

— variant
lemma (in abelian_subgroup) a_rcos_module_minus:

assumes "ring G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"
shows "(x’ ∈ H +> x) = (x’ 	 x ∈ H)"

proof -
interpret G: ring G by fact
from carr
have "(x’ ∈ H +> x) = (x’ ⊕ 	x ∈ H)" by (rule a_rcos_module)
with carr
show "(x’ ∈ H +> x) = (x’ 	 x ∈ H)"

by (simp add: minus_eq)
qed

lemma (in abelian_subgroup) a_repr_independence’:
assumes y: "y ∈ H +> x"

and xcarr: "x ∈ carrier G"
shows "H +> x = H +> y"
apply (rule a_repr_independence)

apply (rule y)
apply (rule xcarr)

apply (rule a_subgroup)
done

lemma (in abelian_subgroup) a_repr_independenceD:
assumes ycarr: "y ∈ carrier G"

217

and repr: "H +> x = H +> y"
shows "y ∈ H +> x"

by (rule group.repr_independenceD [OF a_group a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps]) (rule ycarr,

rule repr)

lemma (in abelian_subgroup) a_rcosets_carrier:
"X ∈ a_rcosets H =⇒ X ⊆ carrier G"

by (rule subgroup.rcosets_carrier [OF a_subgroup a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

8.9.10 Addition of Subgroups

lemma (in abelian_monoid) set_add_closed:
assumes Acarr: "A ⊆ carrier G"

and Bcarr: "B ⊆ carrier G"
shows "A <+> B ⊆ carrier G"

by (rule monoid.set_mult_closed [OF a_monoid,
folded set_add_def, simplified monoid_record_simps]) (rule Acarr,

rule Bcarr)

lemma (in abelian_group) add_additive_subgroups:
assumes subH: "additive_subgroup H G"

and subK: "additive_subgroup K G"
shows "additive_subgroup (H <+> K) G"

apply (rule additive_subgroup.intro)
apply (unfold set_add_def)
apply (intro comm_group.mult_subgroups)

apply (rule a_comm_group)
apply (rule additive_subgroup.a_subgroup[OF subH])

apply (rule additive_subgroup.a_subgroup[OF subK])
done

end

theory Ideal
imports Ring AbelCoset
begin

9 Ideals

9.1 Definitions

9.1.1 General definition

locale ideal = additive_subgroup I R + ring R for I and R (structure) +
assumes I_l_closed: "[[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

218

and I_r_closed: "[[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

sublocale ideal ⊆ abelian_subgroup I R
apply (intro abelian_subgroupI3 abelian_group.intro)

apply (rule ideal.axioms, rule ideal_axioms)
apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
rule ideal_axioms)
apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
rule ideal_axioms)
done

lemma (in ideal) is_ideal:
"ideal I R"

by (rule ideal_axioms)

lemma idealI:
fixes R (structure)
assumes "ring R"
assumes a_subgroup: "subgroup I (|carrier = carrier R, mult = add R,

one = zero R|)"
and I_l_closed: "

∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

shows "ideal I R"
proof -

interpret ring R by fact
show ?thesis apply (intro ideal.intro ideal_axioms.intro additive_subgroupI)

apply (rule a_subgroup)
apply (rule is_ring)

apply (erule (1) I_l_closed)
apply (erule (1) I_r_closed)
done

qed

9.1.2 Ideals Generated by a Subset of carrier R

constdefs (structure R)
genideal :: "(’a, ’b) ring_scheme ⇒ ’a set ⇒ ’a set" ("Idlı _" [80]

79)
"genideal R S ≡ Inter {I. ideal I R ∧ S ⊆ I}"

9.1.3 Principal Ideals

locale principalideal = ideal +
assumes generate: "∃ i ∈ carrier R. I = Idl {i}"

lemma (in principalideal) is_principalideal:
shows "principalideal I R"

by (rule principalideal_axioms)

lemma principalidealI:

219

fixes R (structure)
assumes "ideal I R"
assumes generate: "∃ i ∈ carrier R. I = Idl {i}"
shows "principalideal I R"

proof -
interpret ideal I R by fact
show ?thesis by (intro principalideal.intro principalideal_axioms.intro)

(rule is_ideal, rule generate)
qed

9.1.4 Maximal Ideals

locale maximalideal = ideal +
assumes I_notcarr: "carrier R 6= I"

and I_maximal: "[[ideal J R; I ⊆ J; J ⊆ carrier R]] =⇒ J = I ∨ J
= carrier R"

lemma (in maximalideal) is_maximalideal:
shows "maximalideal I R"

by (rule maximalideal_axioms)

lemma maximalidealI:
fixes R
assumes "ideal I R"
assumes I_notcarr: "carrier R 6= I"

and I_maximal: "
∧
J. [[ideal J R; I ⊆ J; J ⊆ carrier R]] =⇒ J = I

∨ J = carrier R"
shows "maximalideal I R"

proof -
interpret ideal I R by fact
show ?thesis by (intro maximalideal.intro maximalideal_axioms.intro)

(rule is_ideal, rule I_notcarr, rule I_maximal)
qed

9.1.5 Prime Ideals

locale primeideal = ideal + cring +
assumes I_notcarr: "carrier R 6= I"

and I_prime: "[[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒ a ∈
I ∨ b ∈ I"

lemma (in primeideal) is_primeideal:
shows "primeideal I R"

by (rule primeideal_axioms)

lemma primeidealI:
fixes R (structure)
assumes "ideal I R"
assumes "cring R"
assumes I_notcarr: "carrier R 6= I"

220

and I_prime: "
∧
a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]]

=⇒ a ∈ I ∨ b ∈ I"
shows "primeideal I R"

proof -
interpret ideal I R by fact
interpret cring R by fact
show ?thesis by (intro primeideal.intro primeideal_axioms.intro)
(rule is_ideal, rule is_cring, rule I_notcarr, rule I_prime)

qed

lemma primeidealI2:
fixes R (structure)
assumes "additive_subgroup I R"
assumes "cring R"
assumes I_l_closed: "

∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

and I_notcarr: "carrier R 6= I"
and I_prime: "

∧
a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]]

=⇒ a ∈ I ∨ b ∈ I"
shows "primeideal I R"

proof -
interpret additive_subgroup I R by fact
interpret cring R by fact
show ?thesis apply (intro_locales)

apply (intro ideal_axioms.intro)
apply (erule (1) I_l_closed)
apply (erule (1) I_r_closed)
apply (intro primeideal_axioms.intro)
apply (rule I_notcarr)
apply (erule (2) I_prime)
done

qed

9.2 Special Ideals

lemma (in ring) zeroideal:
shows "ideal {0} R"

apply (intro idealI subgroup.intro)
apply (rule is_ring)

apply simp+
apply (fold a_inv_def, simp)

apply simp+
done

lemma (in ring) oneideal:
shows "ideal (carrier R) R"

apply (intro idealI subgroup.intro)
apply (rule is_ring)

apply simp+

221

apply (fold a_inv_def, simp)
apply simp+

done

lemma (in "domain") zeroprimeideal:
shows "primeideal {0} R"

apply (intro primeidealI)
apply (rule zeroideal)

apply (rule domain.axioms, rule domain_axioms)
defer 1
apply (simp add: integral)

proof (rule ccontr, simp)
assume "carrier R = {0}"
from this have "1 = 0" by (rule one_zeroI)
from this and one_not_zero

show "False" by simp
qed

9.3 General Ideal Properies

lemma (in ideal) one_imp_carrier:
assumes I_one_closed: "1 ∈ I"
shows "I = carrier R"

apply (rule)
apply (rule)
apply (rule a_Hcarr, simp)
proof

fix x
assume xcarr: "x ∈ carrier R"
from I_one_closed and this

have "x ⊗ 1 ∈ I" by (intro I_l_closed)
from this and xcarr

show "x ∈ I" by simp
qed

lemma (in ideal) Icarr:
assumes iI: "i ∈ I"
shows "i ∈ carrier R"

using iI by (rule a_Hcarr)

9.4 Intersection of Ideals

Intersection of two ideals The intersection of any two ideals is again
an ideal in R

lemma (in ring) i_intersect:
assumes "ideal I R"
assumes "ideal J R"
shows "ideal (I ∩ J) R"

proof -

222

interpret ideal I R by fact
interpret ideal J R by fact
show ?thesis

apply (intro idealI subgroup.intro)
apply (rule is_ring)

apply (force simp add: a_subset)
apply (simp add: a_inv_def[symmetric])

apply simp
apply (simp add: a_inv_def[symmetric])

apply (clarsimp, rule)
apply (fast intro: ideal.I_l_closed ideal.intro assms)+

apply (clarsimp, rule)
apply (fast intro: ideal.I_r_closed ideal.intro assms)+

done
qed

The intersection of any Number of Ideals is again an Ideal in R

lemma (in ring) i_Intersect:
assumes Sideals: "

∧
I. I ∈ S =⇒ ideal I R"

and notempty: "S 6= {}"
shows "ideal (Inter S) R"

apply (unfold_locales)
apply (simp_all add: Inter_def INTER_def)

apply (rule, simp) defer 1
apply rule defer 1
apply rule defer 1
apply (fold a_inv_def, rule) defer 1
apply rule defer 1
apply rule defer 1

proof -
fix x
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

from notempty have "∃ I0. I0 ∈ S" by blast
from this obtain I0 where I0S: "I0 ∈ S" by auto

interpret ideal I0 R by (rule Sideals[OF I0S])

from xI[OF I0S] have "x ∈ I0" .
from this and a_subset show "x ∈ carrier R" by fast

next
fix x y
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

assume "∀ I∈S. y ∈ I"
hence yI: "

∧
I. I ∈ S =⇒ y ∈ I" by simp

fix J

223

assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
from xI[OF JS] and yI[OF JS]

show "x ⊕ y ∈ J" by (rule a_closed)
next

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
show "0 ∈ J" by simp

next
fix x
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS]
show "	 x ∈ J" by (rule a_inv_closed)

next
fix x y
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

assume ycarr: "y ∈ carrier R"

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and ycarr
show "y ⊗ x ∈ J" by (rule I_l_closed)

next
fix x y
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

assume ycarr: "y ∈ carrier R"

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and ycarr
show "x ⊗ y ∈ J" by (rule I_r_closed)

qed

9.5 Addition of Ideals

lemma (in ring) add_ideals:

224

assumes idealI: "ideal I R"
and idealJ: "ideal J R"

shows "ideal (I <+> J) R"
apply (rule ideal.intro)

apply (rule add_additive_subgroups)
apply (intro ideal.axioms[OF idealI])

apply (intro ideal.axioms[OF idealJ])
apply (rule is_ring)

apply (rule ideal_axioms.intro)
apply (simp add: set_add_defs, clarsimp) defer 1
apply (simp add: set_add_defs, clarsimp) defer 1

proof -
fix x i j
assume xcarr: "x ∈ carrier R"

and iI: "i ∈ I"
and jJ: "j ∈ J"

from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]
have c: "(i ⊕ j) ⊗ x = (i ⊗ x) ⊕ (j ⊗ x)" by algebra

from xcarr and iI
have a: "i ⊗ x ∈ I" by (simp add: ideal.I_r_closed[OF idealI])

from xcarr and jJ
have b: "j ⊗ x ∈ J" by (simp add: ideal.I_r_closed[OF idealJ])

from a b c
show "∃ ha∈I. ∃ ka∈J. (i ⊕ j) ⊗ x = ha ⊕ ka" by fast

next
fix x i j
assume xcarr: "x ∈ carrier R"

and iI: "i ∈ I"
and jJ: "j ∈ J"

from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]
have c: "x ⊗ (i ⊕ j) = (x ⊗ i) ⊕ (x ⊗ j)" by algebra

from xcarr and iI
have a: "x ⊗ i ∈ I" by (simp add: ideal.I_l_closed[OF idealI])

from xcarr and jJ
have b: "x ⊗ j ∈ J" by (simp add: ideal.I_l_closed[OF idealJ])

from a b c
show "∃ ha∈I. ∃ ka∈J. x ⊗ (i ⊕ j) = ha ⊕ ka" by fast

qed

9.6 Ideals generated by a subset of carrier R

genideal generates an ideal

lemma (in ring) genideal_ideal:
assumes Scarr: "S ⊆ carrier R"
shows "ideal (Idl S) R"

unfolding genideal_def
proof (rule i_Intersect, fast, simp)

from oneideal and Scarr
show "∃ I. ideal I R ∧ S ≤ I" by fast

225

qed

lemma (in ring) genideal_self:
assumes "S ⊆ carrier R"
shows "S ⊆ Idl S"

unfolding genideal_def
by fast

lemma (in ring) genideal_self’:
assumes carr: "i ∈ carrier R"
shows "i ∈ Idl {i}"

proof -
from carr

have "{i} ⊆ Idl {i}" by (fast intro!: genideal_self)
thus "i ∈ Idl {i}" by fast

qed

genideal generates the minimal ideal

lemma (in ring) genideal_minimal:
assumes a: "ideal I R"

and b: "S ⊆ I"
shows "Idl S ⊆ I"

unfolding genideal_def
by (rule, elim InterD, simp add: a b)

Generated ideals and subsets

lemma (in ring) Idl_subset_ideal:
assumes Iideal: "ideal I R"

and Hcarr: "H ⊆ carrier R"
shows "(Idl H ⊆ I) = (H ⊆ I)"

proof
assume a: "Idl H ⊆ I"
from Hcarr have "H ⊆ Idl H" by (rule genideal_self)
from this and a

show "H ⊆ I" by simp
next

fix x
assume HI: "H ⊆ I"

from Iideal and HI
have "I ∈ {I. ideal I R ∧ H ⊆ I}" by fast

from this
show "Idl H ⊆ I"
unfolding genideal_def
by fast

qed

lemma (in ring) subset_Idl_subset:
assumes Icarr: "I ⊆ carrier R"

226

and HI: "H ⊆ I"
shows "Idl H ⊆ Idl I"

proof -
from HI and genideal_self[OF Icarr]

have HIdlI: "H ⊆ Idl I" by fast

from Icarr
have Iideal: "ideal (Idl I) R" by (rule genideal_ideal)

from HI and Icarr
have "H ⊆ carrier R" by fast

from Iideal and this
have "(H ⊆ Idl I) = (Idl H ⊆ Idl I)"
by (rule Idl_subset_ideal[symmetric])

from HIdlI and this
show "Idl H ⊆ Idl I" by simp

qed

lemma (in ring) Idl_subset_ideal’:
assumes acarr: "a ∈ carrier R" and bcarr: "b ∈ carrier R"
shows "(Idl {a} ⊆ Idl {b}) = (a ∈ Idl {b})"

apply (subst Idl_subset_ideal[OF genideal_ideal[of "{b}"], of "{a}"])
apply (fast intro: bcarr, fast intro: acarr)

apply fast
done

lemma (in ring) genideal_zero:
"Idl {0} = {0}"

apply rule
apply (rule genideal_minimal[OF zeroideal], simp)

apply (simp add: genideal_self’)
done

lemma (in ring) genideal_one:
"Idl {1} = carrier R"

proof -
interpret ideal "Idl {1}" "R" by (rule genideal_ideal, fast intro: one_closed)
show "Idl {1} = carrier R"
apply (rule, rule a_subset)
apply (simp add: one_imp_carrier genideal_self’)
done

qed

Generation of Principal Ideals in Commutative Rings
constdefs (structure R)
cgenideal :: "(’a, ’b) monoid_scheme ⇒ ’a ⇒ ’a set" ("PIdlı _" [80]

79)
"cgenideal R a ≡ { x ⊗ a | x. x ∈ carrier R }"

genhideal (?) really generates an ideal

227

lemma (in cring) cgenideal_ideal:
assumes acarr: "a ∈ carrier R"
shows "ideal (PIdl a) R"

apply (unfold cgenideal_def)
apply (rule idealI[OF is_ring])

apply (rule subgroup.intro)
apply (simp_all add: monoid_record_simps)
apply (blast intro: acarr m_closed)
apply clarsimp defer 1
defer 1
apply (fold a_inv_def, clarsimp) defer 1
apply clarsimp defer 1
apply clarsimp defer 1

proof -
fix x y
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
note carr = acarr xcarr ycarr

from carr
have "x ⊗ a ⊕ y ⊗ a = (x ⊕ y) ⊗ a" by (simp add: l_distr)

from this and carr
show "∃ z. x ⊗ a ⊕ y ⊗ a = z ⊗ a ∧ z ∈ carrier R" by fast

next
from l_null[OF acarr, symmetric] and zero_closed

show "∃ x. 0 = x ⊗ a ∧ x ∈ carrier R" by fast
next

fix x
assume xcarr: "x ∈ carrier R"
note carr = acarr xcarr

from carr
have "	 (x ⊗ a) = (x) ⊗ a" by (simp add: l_minus)

from this and carr
show "∃ z. 	 (x ⊗ a) = z ⊗ a ∧ z ∈ carrier R" by fast

next
fix x y
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
note carr = acarr xcarr ycarr

from carr
have "y ⊗ a ⊗ x = (y ⊗ x) ⊗ a" by (simp add: m_assoc, simp add:

m_comm)
from this and carr

show "∃ z. y ⊗ a ⊗ x = z ⊗ a ∧ z ∈ carrier R" by fast
next

fix x y
assume xcarr: "x ∈ carrier R"

228

and ycarr: "y ∈ carrier R"
note carr = acarr xcarr ycarr

from carr
have "x ⊗ (y ⊗ a) = (x ⊗ y) ⊗ a" by (simp add: m_assoc)

from this and carr
show "∃ z. x ⊗ (y ⊗ a) = z ⊗ a ∧ z ∈ carrier R" by fast

qed

lemma (in ring) cgenideal_self:
assumes icarr: "i ∈ carrier R"
shows "i ∈ PIdl i"

unfolding cgenideal_def
proof simp

from icarr
have "i = 1 ⊗ i" by simp

from this and icarr
show "∃ x. i = x ⊗ i ∧ x ∈ carrier R" by fast

qed

cgenideal is minimal

lemma (in ring) cgenideal_minimal:
assumes "ideal J R"
assumes aJ: "a ∈ J"
shows "PIdl a ⊆ J"

proof -
interpret ideal J R by fact
show ?thesis unfolding cgenideal_def

apply rule
apply clarify
using aJ
apply (erule I_l_closed)
done

qed

lemma (in cring) cgenideal_eq_genideal:
assumes icarr: "i ∈ carrier R"
shows "PIdl i = Idl {i}"

apply rule
apply (intro cgenideal_minimal)
apply (rule genideal_ideal, fast intro: icarr)

apply (rule genideal_self’, fast intro: icarr)
apply (intro genideal_minimal)
apply (rule cgenideal_ideal [OF icarr])

apply (simp, rule cgenideal_self [OF icarr])
done

lemma (in cring) cgenideal_eq_rcos:
"PIdl i = carrier R #> i"

229

unfolding cgenideal_def r_coset_def
by fast

lemma (in cring) cgenideal_is_principalideal:
assumes icarr: "i ∈ carrier R"
shows "principalideal (PIdl i) R"

apply (rule principalidealI)
apply (rule cgenideal_ideal [OF icarr])
proof -

from icarr
have "PIdl i = Idl {i}" by (rule cgenideal_eq_genideal)

from icarr and this
show "∃ i’∈carrier R. PIdl i = Idl {i’}" by fast

qed

9.7 Union of Ideals

lemma (in ring) union_genideal:
assumes idealI: "ideal I R"

and idealJ: "ideal J R"
shows "Idl (I ∪ J) = I <+> J"

apply rule
apply (rule ring.genideal_minimal)

apply (rule is_ring)
apply (rule add_ideals[OF idealI idealJ])

apply (rule)
apply (simp add: set_add_defs) apply (elim disjE) defer 1 defer 1
apply (rule) apply (simp add: set_add_defs genideal_def) apply clarsimp

defer 1
proof -

fix x
assume xI: "x ∈ I"
have ZJ: "0 ∈ J"

by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealJ])
from ideal.Icarr[OF idealI xI]

have "x = x ⊕ 0" by algebra
from xI and ZJ and this

show "∃ h∈I. ∃ k∈J. x = h ⊕ k" by fast
next

fix x
assume xJ: "x ∈ J"
have ZI: "0 ∈ I"

by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealI])
from ideal.Icarr[OF idealJ xJ]

have "x = 0 ⊕ x" by algebra
from ZI and xJ and this

show "∃ h∈I. ∃ k∈J. x = h ⊕ k" by fast
next

fix i j K

230

assume iI: "i ∈ I"
and jJ: "j ∈ J"
and idealK: "ideal K R"
and IK: "I ⊆ K"
and JK: "J ⊆ K"

from iI and IK
have iK: "i ∈ K" by fast

from jJ and JK
have jK: "j ∈ K" by fast

from iK and jK
show "i ⊕ j ∈ K" by (intro additive_subgroup.a_closed) (rule ideal.axioms[OF

idealK])
qed

9.8 Properties of Principal Ideals

0 generates the zero ideal

lemma (in ring) zero_genideal:
shows "Idl {0} = {0}"

apply rule
apply (simp add: genideal_minimal zeroideal)
apply (fast intro!: genideal_self)
done

1 generates the unit ideal

lemma (in ring) one_genideal:
shows "Idl {1} = carrier R"

proof -
have "1 ∈ Idl {1}" by (simp add: genideal_self’)
thus "Idl {1} = carrier R" by (intro ideal.one_imp_carrier, fast intro:

genideal_ideal)
qed

The zero ideal is a principal ideal

corollary (in ring) zeropideal:
shows "principalideal {0} R"

apply (rule principalidealI)
apply (rule zeroideal)

apply (blast intro!: zero_closed zero_genideal[symmetric])
done

The unit ideal is a principal ideal

corollary (in ring) onepideal:
shows "principalideal (carrier R) R"

apply (rule principalidealI)
apply (rule oneideal)

apply (blast intro!: one_closed one_genideal[symmetric])
done

231

Every principal ideal is a right coset of the carrier

lemma (in principalideal) rcos_generate:
assumes "cring R"
shows "∃ x∈I. I = carrier R #> x"

proof -
interpret cring R by fact
from generate

obtain i
where icarr: "i ∈ carrier R"
and I1: "I = Idl {i}"

by fast+

from icarr and genideal_self[of "{i}"]
have "i ∈ Idl {i}" by fast

hence iI: "i ∈ I" by (simp add: I1)

from I1 icarr
have I2: "I = PIdl i" by (simp add: cgenideal_eq_genideal)

have "PIdl i = carrier R #> i"
unfolding cgenideal_def r_coset_def
by fast

from I2 and this
have "I = carrier R #> i" by simp

from iI and this
show "∃ x∈I. I = carrier R #> x" by fast

qed

9.9 Prime Ideals

lemma (in ideal) primeidealCD:
assumes "cring R"
assumes notprime: "¬ primeideal I R"
shows "carrier R = I ∨ (∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗

b ∈ I ∧ a /∈ I ∧ b /∈ I)"
proof (rule ccontr, clarsimp)

interpret cring R by fact
assume InR: "carrier R 6= I"

and "∀ a. a ∈ carrier R −→ (∀ b. a ⊗ b ∈ I −→ b ∈ carrier R −→
a ∈ I ∨ b ∈ I)"

hence I_prime: "
∧

a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒
a ∈ I ∨ b ∈ I" by simp

have "primeideal I R"
apply (rule primeideal.intro [OF is_ideal is_cring])
apply (rule primeideal_axioms.intro)
apply (rule InR)

apply (erule (2) I_prime)

232

done
from this and notprime

show "False" by simp
qed

lemma (in ideal) primeidealCE:
assumes "cring R"
assumes notprime: "¬ primeideal I R"
obtains "carrier R = I"
| "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧ b

/∈ I"
proof -

interpret R: cring R by fact
assume "carrier R = I ==> thesis"

and "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧
b /∈ I =⇒ thesis"

then show thesis using primeidealCD [OF R.is_cring notprime] by blast
qed

If {0} is a prime ideal of a commutative ring, the ring is a domain

lemma (in cring) zeroprimeideal_domainI:
assumes pi: "primeideal {0} R"
shows "domain R"

apply (rule domain.intro, rule is_cring)
apply (rule domain_axioms.intro)
proof (rule ccontr, simp)

interpret primeideal "{0}" "R" by (rule pi)
assume "1 = 0"
hence "carrier R = {0}" by (rule one_zeroD)
from this[symmetric] and I_notcarr

show "False" by simp
next

interpret primeideal "{0}" "R" by (rule pi)
fix a b
assume ab: "a ⊗ b = 0"

and carr: "a ∈ carrier R" "b ∈ carrier R"
from ab

have abI: "a ⊗ b ∈ {0}" by fast
from carr and this

have "a ∈ {0} ∨ b ∈ {0}" by (rule I_prime)
thus "a = 0 ∨ b = 0" by simp

qed

corollary (in cring) domain_eq_zeroprimeideal:
shows "domain R = primeideal {0} R"

apply rule
apply (erule domain.zeroprimeideal)

apply (erule zeroprimeideal_domainI)
done

233

9.10 Maximal Ideals

lemma (in ideal) helper_I_closed:
assumes carr: "a ∈ carrier R" "x ∈ carrier R" "y ∈ carrier R"

and axI: "a ⊗ x ∈ I"
shows "a ⊗ (x ⊗ y) ∈ I"

proof -
from axI and carr

have "(a ⊗ x) ⊗ y ∈ I" by (simp add: I_r_closed)
also from carr

have "(a ⊗ x) ⊗ y = a ⊗ (x ⊗ y)" by (simp add: m_assoc)
finally

show "a ⊗ (x ⊗ y) ∈ I" .
qed

lemma (in ideal) helper_max_prime:
assumes "cring R"
assumes acarr: "a ∈ carrier R"
shows "ideal {x∈carrier R. a ⊗ x ∈ I} R"

proof -
interpret cring R by fact
show ?thesis apply (rule idealI)

apply (rule cring.axioms[OF is_cring])
apply (rule subgroup.intro)
apply (simp, fast)
apply clarsimp apply (simp add: r_distr acarr)
apply (simp add: acarr)
apply (simp add: a_inv_def[symmetric], clarify) defer 1
apply clarsimp defer 1
apply (fast intro!: helper_I_closed acarr)

proof -
fix x
assume xcarr: "x ∈ carrier R"

and ax: "a ⊗ x ∈ I"
from ax and acarr xcarr
have "	(a ⊗ x) ∈ I" by simp
also from acarr xcarr
have "	(a ⊗ x) = a ⊗ (x)" by algebra
finally
show "a ⊗ (x) ∈ I" .
from acarr
have "a ⊗ 0 = 0" by simp

next
fix x y
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
and ayI: "a ⊗ y ∈ I"

from ayI and acarr xcarr ycarr
have "a ⊗ (y ⊗ x) ∈ I" by (simp add: helper_I_closed)
moreover from xcarr ycarr

234

have "y ⊗ x = x ⊗ y" by (simp add: m_comm)
ultimately
show "a ⊗ (x ⊗ y) ∈ I" by simp

qed
qed

In a cring every maximal ideal is prime

lemma (in cring) maximalideal_is_prime:
assumes "maximalideal I R"
shows "primeideal I R"

proof -
interpret maximalideal I R by fact
show ?thesis apply (rule ccontr)

apply (rule primeidealCE)
apply (rule is_cring)
apply assumption
apply (simp add: I_notcarr)

proof -
assume "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈

I ∧ b /∈ I"
from this
obtain a b

where acarr: "a ∈ carrier R"
and bcarr: "b ∈ carrier R"
and abI: "a ⊗ b ∈ I"
and anI: "a /∈ I"
and bnI: "b /∈ I"
by fast

def J ≡ "{x∈carrier R. a ⊗ x ∈ I}"

from is_cring and acarr
have idealJ: "ideal J R" unfolding J_def by (rule helper_max_prime)

have IsubJ: "I ⊆ J"
proof

fix x
assume xI: "x ∈ I"
from this and acarr
have "a ⊗ x ∈ I" by (intro I_l_closed)
from xI[THEN a_Hcarr] this
show "x ∈ J" unfolding J_def by fast

qed

from abI and acarr bcarr
have "b ∈ J" unfolding J_def by fast
from bnI and this
have JnI: "J 6= I" by fast
from acarr
have "a = a ⊗ 1" by algebra

235

from this and anI
have "a ⊗ 1 /∈ I" by simp
from one_closed and this
have "1 /∈ J" unfolding J_def by fast
hence Jncarr: "J 6= carrier R" by fast

interpret ideal J R by (rule idealJ)

have "J = I ∨ J = carrier R"
apply (intro I_maximal)
apply (rule idealJ)
apply (rule IsubJ)
apply (rule a_subset)
done

from this and JnI and Jncarr
show "False" by simp

qed
qed

9.11 Derived Theorems

— A non-zero cring that has only the two trivial ideals is a field
lemma (in cring) trivialideals_fieldI:

assumes carrnzero: "carrier R 6= {0}"
and haveideals: "{I. ideal I R} = {{0}, carrier R}"

shows "field R"
apply (rule cring_fieldI)
apply (rule, rule, rule)
apply (erule Units_closed)

defer 1
apply rule

defer 1
proof (rule ccontr, simp)

assume zUnit: "0 ∈ Units R"
hence a: "0 ⊗ inv 0 = 1" by (rule Units_r_inv)
from zUnit

have "0 ⊗ inv 0 = 0" by (intro l_null, rule Units_inv_closed)
from a[symmetric] and this

have "1 = 0" by simp
hence "carrier R = {0}" by (rule one_zeroD)
from this and carrnzero

show "False" by simp
next

fix x
assume xcarr’: "x ∈ carrier R - {0}"
hence xcarr: "x ∈ carrier R" by fast
from xcarr’

have xnZ: "x 6= 0" by fast

236

from xcarr
have xIdl: "ideal (PIdl x) R" by (intro cgenideal_ideal, fast)

from xcarr
have "x ∈ PIdl x" by (intro cgenideal_self, fast)

from this and xnZ
have "PIdl x 6= {0}" by fast

from haveideals and this
have "PIdl x = carrier R"
by (blast intro!: xIdl)

hence "1 ∈ PIdl x" by simp
hence "∃ y. 1 = y ⊗ x ∧ y ∈ carrier R" unfolding cgenideal_def by blast
from this

obtain y
where ycarr: " y ∈ carrier R"
and ylinv: "1 = y ⊗ x"

by fast+
from ylinv and xcarr ycarr

have yrinv: "1 = x ⊗ y" by (simp add: m_comm)
from ycarr and ylinv[symmetric] and yrinv[symmetric]

have "∃ y ∈ carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast
from this and xcarr

show "x ∈ Units R"
unfolding Units_def
by fast

qed

lemma (in field) all_ideals:
shows "{I. ideal I R} = {{0}, carrier R}"

apply (rule, rule)
proof -

fix I
assume a: "I ∈ {I. ideal I R}"
with this

interpret ideal I R by simp

show "I ∈ {{0}, carrier R}"
proof (cases "∃ a. a ∈ I - {0}")

assume "∃ a. a ∈ I - {0}"
from this

obtain a
where aI: "a ∈ I"
and anZ: "a 6= 0"

by fast+
from aI[THEN a_Hcarr] anZ

have aUnit: "a ∈ Units R" by (simp add: field_Units)
hence a: "a ⊗ inv a = 1" by (rule Units_r_inv)
from aI and aUnit

have "a ⊗ inv a ∈ I" by (simp add: I_r_closed del: Units_r_inv)

237

hence oneI: "1 ∈ I" by (simp add: a[symmetric])

have "carrier R ⊆ I"
proof

fix x
assume xcarr: "x ∈ carrier R"
from oneI and this

have "1 ⊗ x ∈ I" by (rule I_r_closed)
from this and xcarr

show "x ∈ I" by simp
qed
from this and a_subset

have "I = carrier R" by fast
thus "I ∈ {{0}, carrier R}" by fast

next
assume "¬ (∃ a. a ∈ I - {0})"
hence IZ: "

∧
a. a ∈ I =⇒ a = 0" by simp

have a: "I ⊆ {0}"
proof

fix x
assume "x ∈ I"
hence "x = 0" by (rule IZ)
thus "x ∈ {0}" by fast

qed

have "0 ∈ I" by simp
hence "{0} ⊆ I" by fast

from this and a
have "I = {0}" by fast

thus "I ∈ {{0}, carrier R}" by fast
qed

qed (simp add: zeroideal oneideal)

— Jacobson Theorem 2.2
lemma (in cring) trivialideals_eq_field:

assumes carrnzero: "carrier R 6= {0}"
shows "({I. ideal I R} = {{0}, carrier R}) = field R"

by (fast intro!: trivialideals_fieldI[OF carrnzero] field.all_ideals)

Like zeroprimeideal for domains

lemma (in field) zeromaximalideal:
"maximalideal {0} R"

apply (rule maximalidealI)
apply (rule zeroideal)

proof-
from one_not_zero

have "1 /∈ {0}" by simp

238

from this and one_closed
show "carrier R 6= {0}" by fast

next
fix J
assume Jideal: "ideal J R"
hence "J ∈ {I. ideal I R}"

by fast

from this and all_ideals
show "J = {0} ∨ J = carrier R" by simp

qed

lemma (in cring) zeromaximalideal_fieldI:
assumes zeromax: "maximalideal {0} R"
shows "field R"

apply (rule trivialideals_fieldI, rule maximalideal.I_notcarr[OF zeromax])
apply rule apply clarsimp defer 1
apply (simp add: zeroideal oneideal)

proof -
fix J
assume Jn0: "J 6= {0}"

and idealJ: "ideal J R"
interpret ideal J R by (rule idealJ)
have "{0} ⊆ J" by (rule ccontr, simp)
from zeromax and idealJ and this and a_subset

have "J = {0} ∨ J = carrier R" by (rule maximalideal.I_maximal)
from this and Jn0

show "J = carrier R" by simp
qed

lemma (in cring) zeromaximalideal_eq_field:
"maximalideal {0} R = field R"

apply rule
apply (erule zeromaximalideal_fieldI)

apply (erule field.zeromaximalideal)
done

end

theory RingHom
imports Ideal
begin

10 Homomorphisms of Non-Commutative Rings

Lifting existing lemmas in a ring_hom_ring locale

239

locale ring_hom_ring = R: ring R + S: ring S
for R (structure) and S (structure) +

fixes h
assumes homh: "h ∈ ring_hom R S"
notes hom_mult [simp] = ring_hom_mult [OF homh]

and hom_one [simp] = ring_hom_one [OF homh]

sublocale ring_hom_cring ⊆ ring: ring_hom_ring
proof qed (rule homh)

sublocale ring_hom_ring ⊆ abelian_group: abelian_group_hom R S
apply (rule abelian_group_homI)

apply (rule R.is_abelian_group)
apply (rule S.is_abelian_group)

apply (intro group_hom.intro group_hom_axioms.intro)
apply (rule R.a_group)

apply (rule S.a_group)
apply (insert homh, unfold hom_def ring_hom_def)
apply simp
done

lemma (in ring_hom_ring) is_ring_hom_ring:
"ring_hom_ring R S h"
by (rule ring_hom_ring_axioms)

lemma ring_hom_ringI:
fixes R (structure) and S (structure)
assumes "ring R" "ring S"
assumes

hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"
and compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]

==> h (x ⊗ y) = h x ⊗S h y"
and compatible_add: "!!x y. [| x : carrier R; y : carrier R |] ==>

h (x ⊕ y) = h x ⊕S h y"
and compatible_one: "h 1 = 1S"

shows "ring_hom_ring R S h"
proof -

interpret ring R by fact
interpret ring S by fact
show ?thesis apply unfold_locales

apply (unfold ring_hom_def, safe)
apply (simp add: hom_closed Pi_def)

apply (erule (1) compatible_mult)
apply (erule (1) compatible_add)

apply (rule compatible_one)
done
qed

lemma ring_hom_ringI2:

240

assumes "ring R" "ring S"
assumes h: "h ∈ ring_hom R S"
shows "ring_hom_ring R S h"

proof -
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)

apply (rule R.is_ring)
apply (rule S.is_ring)
apply (rule h)
done

qed

lemma ring_hom_ringI3:
fixes R (structure) and S (structure)
assumes "abelian_group_hom R S h" "ring R" "ring S"
assumes compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]

==> h (x ⊗ y) = h x ⊗S h y"
and compatible_one: "h 1 = 1S"

shows "ring_hom_ring R S h"
proof -

interpret abelian_group_hom R S h by fact
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro,

rule R.is_ring, rule S.is_ring)
apply (insert group_hom.homh[OF a_group_hom])
apply (unfold hom_def ring_hom_def, simp)
apply safe
apply (erule (1) compatible_mult)
apply (rule compatible_one)
done

qed

lemma ring_hom_cringI:
assumes "ring_hom_ring R S h" "cring R" "cring S"
shows "ring_hom_cring R S h"

proof -
interpret ring_hom_ring R S h by fact
interpret R: cring R by fact
interpret S: cring S by fact
show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)

(rule R.is_cring, rule S.is_cring, rule homh)
qed

10.1 The Kernel of a Ring Homomorphism

— the kernel of a ring homomorphism is an ideal
lemma (in ring_hom_ring) kernel_is_ideal:

241

shows "ideal (a_kernel R S h) R"
apply (rule idealI)

apply (rule R.is_ring)
apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])

apply (unfold a_kernel_def’, simp+)
done

Elements of the kernel are mapped to zero

lemma (in abelian_group_hom) kernel_zero [simp]:
"i ∈ a_kernel R S h =⇒ h i = 0S"

by (simp add: a_kernel_defs)

10.2 Cosets

Cosets of the kernel correspond to the elements of the image of the homo-
morphism

lemma (in ring_hom_ring) rcos_imp_homeq:
assumes acarr: "a ∈ carrier R"

and xrcos: "x ∈ a_kernel R S h +> a"
shows "h x = h a"

proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

from xrcos
have "∃ i ∈ a_kernel R S h. x = i ⊕ a" by (simp add: a_r_coset_defs)

from this obtain i
where iker: "i ∈ a_kernel R S h"

and x: "x = i ⊕ a"
by fast+

note carr = acarr iker[THEN a_Hcarr]

from x
have "h x = h (i ⊕ a)" by simp

also from carr
have ". . . = h i ⊕S h a" by simp

also from iker
have ". . . = 0S ⊕S h a" by simp

also from carr
have ". . . = h a" by simp

finally
show "h x = h a" .

qed

lemma (in ring_hom_ring) homeq_imp_rcos:
assumes acarr: "a ∈ carrier R"

and xcarr: "x ∈ carrier R"
and hx: "h x = h a"

shows "x ∈ a_kernel R S h +> a"

242

proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

note carr = acarr xcarr
note hcarr = acarr[THEN hom_closed] xcarr[THEN hom_closed]

from hx and hcarr
have a: "h x ⊕S 	Sh a = 0S" by algebra

from carr
have "h x ⊕S 	Sh a = h (x ⊕ 	a)" by simp

from a and this
have b: "h (x ⊕ 	a) = 0S" by simp

from carr have "x ⊕ 	a ∈ carrier R" by simp
from this and b

have "x ⊕ 	a ∈ a_kernel R S h"
unfolding a_kernel_def’
by fast

from this and carr
show "x ∈ a_kernel R S h +> a" by (simp add: a_rcos_module_rev)

qed

corollary (in ring_hom_ring) rcos_eq_homeq:
assumes acarr: "a ∈ carrier R"
shows "(a_kernel R S h) +> a = {x ∈ carrier R. h x = h a}"

apply rule defer 1
apply clarsimp defer 1
proof

interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

fix x
assume xrcos: "x ∈ a_kernel R S h +> a"
from acarr and this

have xcarr: "x ∈ carrier R"
by (rule a_elemrcos_carrier)

from xrcos
have "h x = h a" by (rule rcos_imp_homeq[OF acarr])

from xcarr and this
show "x ∈ {x ∈ carrier R. h x = h a}" by fast

next
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

fix x
assume xcarr: "x ∈ carrier R"

and hx: "h x = h a"
from acarr xcarr hx

show "x ∈ a_kernel R S h +> a" by (rule homeq_imp_rcos)

243

qed

end

theory QuotRing
imports RingHom
begin

11 Quotient Rings

11.1 Multiplication on Cosets

constdefs (structure R)
rcoset_mult :: "[(’a, _) ring_scheme, ’a set, ’a set, ’a set] ⇒ ’a

set"
("[mod _:] _

⊗
ı _" [81,81,81] 80)

"rcoset_mult R I A B ≡
⋃
a∈A.

⋃
b∈B. I +> (a ⊗ b)"

rcoset_mult fulfils the properties required by congruences

lemma (in ideal) rcoset_mult_add:
"[[x ∈ carrier R; y ∈ carrier R]] =⇒ [mod I:] (I +> x)

⊗
(I +> y) =

I +> (x ⊗ y)"
apply rule
apply (rule, simp add: rcoset_mult_def, clarsimp)
defer 1
apply (rule, simp add: rcoset_mult_def)
defer 1
proof -

fix z x’ y’
assume carr: "x ∈ carrier R" "y ∈ carrier R"

and x’rcos: "x’ ∈ I +> x"
and y’rcos: "y’ ∈ I +> y"
and zrcos: "z ∈ I +> x’ ⊗ y’"

from x’rcos
have "∃ h∈I. x’ = h ⊕ x" by (simp add: a_r_coset_def r_coset_def)

from this obtain hx
where hxI: "hx ∈ I"
and x’: "x’ = hx ⊕ x"
by fast+

from y’rcos
have "∃ h∈I. y’ = h ⊕ y" by (simp add: a_r_coset_def r_coset_def)

from this
obtain hy
where hyI: "hy ∈ I"
and y’: "y’ = hy ⊕ y"

244

by fast+

from zrcos
have "∃ h∈I. z = h ⊕ (x’ ⊗ y’)" by (simp add: a_r_coset_def r_coset_def)

from this
obtain hz
where hzI: "hz ∈ I"
and z: "z = hz ⊕ (x’ ⊗ y’)"
by fast+

note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]

from z have "z = hz ⊕ (x’ ⊗ y’)" .
also from x’ y’

have ". . . = hz ⊕ ((hx ⊕ x) ⊗ (hy ⊕ y))" by simp
also from carr

have ". . . = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" by algebra
finally

have z2: "z = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" .

from hxI hyI hzI carr
have "hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy ∈ I" by (simp add: I_l_closed

I_r_closed)

from this and z2
have "∃ h∈I. z = h ⊕ x ⊗ y" by fast

thus "z ∈ I +> x ⊗ y" by (simp add: a_r_coset_def r_coset_def)
next

fix z
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
and zrcos: "z ∈ I +> x ⊗ y"

from xcarr
have xself: "x ∈ I +> x" by (intro a_rcos_self)

from ycarr
have yself: "y ∈ I +> y" by (intro a_rcos_self)

from xself and yself and zrcos
show "∃ a∈I +> x. ∃ b∈I +> y. z ∈ I +> a ⊗ b" by fast

qed

11.2 Quotient Ring Definition

constdefs (structure R)
FactRing :: "[(’a,’b) ring_scheme, ’a set] ⇒ (’a set) ring"

(infixl "Quot" 65)
"FactRing R I ≡

(|carrier = a_rcosets I, mult = rcoset_mult R I, one = (I +> 1), zero
= I, add = set_add R|)"

245

11.3 Factorization over General Ideals

The quotient is a ring

lemma (in ideal) quotient_is_ring:
shows "ring (R Quot I)"

apply (rule ringI)
— abelian group
apply (rule comm_group_abelian_groupI)
apply (simp add: FactRing_def)
apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def’])

— mult monoid
apply (rule monoidI)

apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def
a_r_coset_def[symmetric])

— mult closed
apply (clarify)
apply (simp add: rcoset_mult_add, fast)

— mult one_closed
apply (force intro: one_closed)

— mult assoc
apply clarify
apply (simp add: rcoset_mult_add m_assoc)

— mult one
apply clarify
apply (simp add: rcoset_mult_add l_one)

apply clarify
apply (simp add: rcoset_mult_add r_one)

— distr
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum l_distr)

apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum r_distr)
done

This is a ring homomorphism

lemma (in ideal) rcos_ring_hom:
"(op +> I) ∈ ring_hom R (R Quot I)"

apply (rule ring_hom_memI)
apply (simp add: FactRing_def a_rcosetsI[OF a_subset])

apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)

apply (simp add: FactRing_def)
done

lemma (in ideal) rcos_ring_hom_ring:
"ring_hom_ring R (R Quot I) (op +> I)"

apply (rule ring_hom_ringI)
apply (rule is_ring, rule quotient_is_ring)

apply (simp add: FactRing_def a_rcosetsI[OF a_subset])

246

apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)

apply (simp add: FactRing_def)
done

The quotient of a cring is also commutative

lemma (in ideal) quotient_is_cring:
assumes "cring R"
shows "cring (R Quot I)"

proof -
interpret cring R by fact
show ?thesis apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
apply (rule quotient_is_ring)

apply (rule ring.axioms[OF quotient_is_ring])
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
apply clarify
apply (simp add: rcoset_mult_add m_comm)
done
qed

Cosets as a ring homomorphism on crings

lemma (in ideal) rcos_ring_hom_cring:
assumes "cring R"
shows "ring_hom_cring R (R Quot I) (op +> I)"

proof -
interpret cring R by fact
show ?thesis apply (rule ring_hom_cringI)
apply (rule rcos_ring_hom_ring)

apply (rule is_cring)
apply (rule quotient_is_cring)
apply (rule is_cring)
done
qed

11.4 Factorization over Prime Ideals

The quotient ring generated by a prime ideal is a domain

lemma (in primeideal) quotient_is_domain:
shows "domain (R Quot I)"

apply (rule domain.intro)
apply (rule quotient_is_cring, rule is_cring)

apply (rule domain_axioms.intro)
apply (simp add: FactRing_def) defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],

clarify)
apply (simp add: rcoset_mult_add) defer 1

proof (rule ccontr, clarsimp)
assume "I +> 1 = I"

247

hence "1 ∈ I" by (simp only: a_coset_join1 one_closed a_subgroup)
hence "carrier R ⊆ I" by (subst one_imp_carrier, simp, fast)
from this and a_subset

have "I = carrier R" by fast
from this and I_notcarr

show "False" by fast
next

fix x y
assume carr: "x ∈ carrier R" "y ∈ carrier R"

and a: "I +> x ⊗ y = I"
and b: "I +> y 6= I"

have ynI: "y /∈ I"
proof (rule ccontr, simp)

assume "y ∈ I"
hence "I +> y = I" by (rule a_rcos_const)
from this and b

show "False" by simp
qed

from carr
have "x ⊗ y ∈ I +> x ⊗ y" by (simp add: a_rcos_self)

from this
have xyI: "x ⊗ y ∈ I" by (simp add: a)

from xyI and carr
have xI: "x ∈ I ∨ y ∈ I" by (simp add: I_prime)

from this and ynI
have "x ∈ I" by fast

thus "I +> x = I" by (rule a_rcos_const)
qed

Generating right cosets of a prime ideal is a homomorphism on commutative
rings

lemma (in primeideal) rcos_ring_hom_cring:
shows "ring_hom_cring R (R Quot I) (op +> I)"

by (rule rcos_ring_hom_cring, rule is_cring)

11.5 Factorization over Maximal Ideals

In a commutative ring, the quotient ring over a maximal ideal is a field.
The proof follows “W. Adkins, S. Weintraub: Algebra – An Approach via
Module Theory”

lemma (in maximalideal) quotient_is_field:
assumes "cring R"
shows "field (R Quot I)"

proof -
interpret cring R by fact

248

show ?thesis apply (intro cring.cring_fieldI2)
apply (rule quotient_is_cring, rule is_cring)

defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],

clarsimp)
apply (simp add: rcoset_mult_add) defer 1

proof (rule ccontr, simp)
— Quotient is not empty
assume "0R Quot I = 1R Quot I"
hence II1: "I = I +> 1" by (simp add: FactRing_def)
from a_rcos_self[OF one_closed]
have "1 ∈ I" by (simp add: II1[symmetric])
hence "I = carrier R" by (rule one_imp_carrier)
from this and I_notcarr
show "False" by simp

next
— Existence of Inverse
fix a
assume IanI: "I +> a 6= I"

and acarr: "a ∈ carrier R"

— Helper ideal J
def J ≡ "(carrier R #> a) <+> I :: ’a set"
have idealJ: "ideal J R"

apply (unfold J_def, rule add_ideals)
apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal,

rule acarr)
apply (rule is_ideal)
done

— Showing J not smaller than I
have IinJ: "I ⊆ J"
proof (rule, simp add: J_def r_coset_def set_add_defs)

fix x
assume xI: "x ∈ I"
have Zcarr: "0 ∈ carrier R" by fast
from xI[THEN a_Hcarr] acarr
have "x = 0 ⊗ a ⊕ x" by algebra

from Zcarr and xI and this
show "∃ xa∈carrier R. ∃ k∈I. x = xa ⊗ a ⊕ k" by fast

qed

— Showing J 6= I
have anI: "a /∈ I"
proof (rule ccontr, simp)

assume "a ∈ I"
hence "I +> a = I" by (rule a_rcos_const)
from this and IanI

249

show "False" by simp
qed

have aJ: "a ∈ J"
proof (simp add: J_def r_coset_def set_add_defs)

from acarr
have "a = 1 ⊗ a ⊕ 0" by algebra
from one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]

and this
show "∃ x∈carrier R. ∃ k∈I. a = x ⊗ a ⊕ k" by fast

qed

from aJ and anI
have JnI: "J 6= I" by fast

— Deducing J = carrier R because I is maximal
from idealJ and IinJ
have "J = I ∨ J = carrier R"
proof (rule I_maximal, unfold J_def)

have "carrier R #> a ⊆ carrier R"
using subset_refl acarr
by (rule r_coset_subset_G)

from this and a_subset
show "carrier R #> a <+> I ⊆ carrier R" by (rule set_add_closed)

qed

from this and JnI
have Jcarr: "J = carrier R" by simp

— Calculating an inverse for a
from one_closed[folded Jcarr]
have "∃ r∈carrier R. ∃ i∈I. 1 = r ⊗ a ⊕ i"

by (simp add: J_def r_coset_def set_add_defs)
from this
obtain r i

where rcarr: "r ∈ carrier R"
and iI: "i ∈ I"
and one: "1 = r ⊗ a ⊕ i"

by fast
from one and rcarr and acarr and iI[THEN a_Hcarr]
have rai1: "a ⊗ r = 	i ⊕ 1" by algebra

— Lifting to cosets
from iI
have "	i ⊕ 1 ∈ I +> 1"

by (intro a_rcosI, simp, intro a_subset, simp)
from this and rai1
have "a ⊗ r ∈ I +> 1" by simp
from this have "I +> 1 = I +> a ⊗ r"

250

by (rule a_repr_independence, simp) (rule a_subgroup)

from rcarr and this[symmetric]
show "∃ r∈carrier R. I +> a ⊗ r = I +> 1" by fast

qed
qed

end

theory IntRing
imports QuotRing Lattice Int Primes
begin

12 The Ring of Integers

12.1 Some properties of int

lemma dvds_imp_abseq:
"[[l dvd k; k dvd l]] =⇒ abs l = abs (k::int)"

apply (subst abs_split, rule conjI)
apply (clarsimp, subst abs_split, rule conjI)
apply (clarsimp)
apply (cases "k=0", simp)
apply (cases "l=0", simp)
apply (simp add: zdvd_anti_sym)

apply clarsimp
apply (cases "k=0", simp)
apply (simp add: zdvd_anti_sym)

apply (clarsimp, subst abs_split, rule conjI)
apply (clarsimp)
apply (cases "l=0", simp)
apply (simp add: zdvd_anti_sym)

apply (clarsimp)
apply (subgoal_tac "-l = -k", simp)
apply (intro zdvd_anti_sym, simp+)
done

lemma abseq_imp_dvd:
assumes a_lk: "abs l = abs (k::int)"
shows "l dvd k"

proof -
from a_lk

have "nat (abs l) = nat (abs k)" by simp
hence "nat (abs l) dvd nat (abs k)" by simp
hence "int (nat (abs l)) dvd k" by (subst int_dvd_iff)
hence "abs l dvd k" by simp
thus "l dvd k"

251

apply (unfold dvd_def, cases "l<0")
defer 1 apply clarsimp

proof (clarsimp)
fix k
assume l0: "l < 0"
have "- (l * k) = l * (-k)" by simp
thus "∃ ka. - (l * k) = l * ka" by fast

qed
qed

lemma dvds_eq_abseq:
"(l dvd k ∧ k dvd l) = (abs l = abs (k::int))"

apply rule
apply (simp add: dvds_imp_abseq)

apply (rule conjI)
apply (simp add: abseq_imp_dvd)+

done

12.2 Z: The Set of Integers as Algebraic Structure

constdefs
int_ring :: "int ring" ("Z")
"int_ring ≡ (|carrier = UNIV, mult = op *, one = 1, zero = 0, add = op

+|)"

lemma int_Zcarr [intro!, simp]:
"k ∈ carrier Z"
by (simp add: int_ring_def)

lemma int_is_cring:
"cring Z"

unfolding int_ring_def
apply (rule cringI)

apply (rule abelian_groupI, simp_all)
defer 1
apply (rule comm_monoidI, simp_all)

apply (rule zadd_zmult_distrib)
apply (fast intro: zadd_zminus_inverse2)
done

12.3 Interpretations

Since definitions of derived operations are global, their interpretation needs
to be done as early as possible — that is, with as few assumptions as possible.

interpretation int: monoid Z
where "carrier Z = UNIV"

and "mult Z x y = x * y"
and "one Z = 1"
and "pow Z x n = x^n"

252

proof -
— Specification
show "monoid Z" proof qed (auto simp: int_ring_def)
then interpret int: monoid Z .

— Carrier
show "carrier Z = UNIV" by (simp add: int_ring_def)

— Operations
{ fix x y show "mult Z x y = x * y" by (simp add: int_ring_def) }
note mult = this
show one: "one Z = 1" by (simp add: int_ring_def)
show "pow Z x n = x^n" by (induct n) (simp, simp add: int_ring_def)+

qed

interpretation int: comm_monoid Z
where "finprod Z f A = (if finite A then setprod f A else undefined)"

proof -
— Specification
show "comm_monoid Z" proof qed (auto simp: int_ring_def)
then interpret int: comm_monoid Z .

— Operations
{ fix x y have "mult Z x y = x * y" by (simp add: int_ring_def) }
note mult = this
have one: "one Z = 1" by (simp add: int_ring_def)
show "finprod Z f A = (if finite A then setprod f A else undefined)"
proof (cases "finite A")

case True then show ?thesis proof induct
case empty show ?case by (simp add: one)

next
case insert then show ?case by (simp add: Pi_def mult)

qed
next

case False then show ?thesis by (simp add: finprod_def)
qed

qed

interpretation int: abelian_monoid Z
where "zero Z = 0"

and "add Z x y = x + y"
and "finsum Z f A = (if finite A then setsum f A else undefined)"

proof -
— Specification
show "abelian_monoid Z" proof qed (auto simp: int_ring_def)
then interpret int: abelian_monoid Z .

— Operations
{ fix x y show "add Z x y = x + y" by (simp add: int_ring_def) }

253

note add = this
show zero: "zero Z = 0" by (simp add: int_ring_def)
show "finsum Z f A = (if finite A then setsum f A else undefined)"
proof (cases "finite A")

case True then show ?thesis proof induct
case empty show ?case by (simp add: zero)

next
case insert then show ?case by (simp add: Pi_def add)

qed
next

case False then show ?thesis by (simp add: finsum_def finprod_def)
qed

qed

interpretation int: abelian_group Z
where "a_inv Z x = - x"

and "a_minus Z x y = x - y"
proof -

— Specification
show "abelian_group Z"
proof (rule abelian_groupI)

show "!!x. x ∈ carrier Z ==> EX y : carrier Z. y ⊕Z x = 0Z"
by (simp add: int_ring_def) arith

qed (auto simp: int_ring_def)
then interpret int: abelian_group Z .

— Operations
{ fix x y have "add Z x y = x + y" by (simp add: int_ring_def) }
note add = this
have zero: "zero Z = 0" by (simp add: int_ring_def)
{ fix x

have "add Z (-x) x = zero Z" by (simp add: add zero)
then show "a_inv Z x = - x" by (simp add: int.minus_equality) }

note a_inv = this
show "a_minus Z x y = x - y" by (simp add: int.minus_eq add a_inv)

qed

interpretation int: "domain" Z
proof qed (auto simp: int_ring_def left_distrib right_distrib)

Removal of occurrences of UNIV in interpretation result — experimental.

lemma UNIV:
"x ∈ UNIV = True"
"A ⊆ UNIV = True"
"(ALL x : UNIV. P x) = (ALL x. P x)"
"(EX x : UNIV. P x) = (EX x. P x)"
"(True --> Q) = Q"
"(True ==> PROP R) == PROP R"
by simp_all

254

interpretation int :
partial_order "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
where "carrier (| carrier = UNIV::int set, eq = op =, le = op ≤ |)

= UNIV"
and "le (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y =

(x ≤ y)"
and "lless (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x

y = (x < y)"
proof -

show "partial_order (| carrier = UNIV::int set, eq = op =, le = op
≤ |)"

proof qed simp_all
show "carrier (| carrier = UNIV::int set, eq = op =, le = op ≤ |) =

UNIV"
by simp

show "le (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y =
(x ≤ y)"

by simp
show "lless (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y

= (x < y)"
by (simp add: lless_def) auto

qed

interpretation int :
lattice "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
where "join (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y

= max x y"
and "meet (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y

= min x y"
proof -

let ?Z = "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
show "lattice ?Z"

apply unfold_locales
apply (simp add: least_def Upper_def)
apply arith
apply (simp add: greatest_def Lower_def)
apply arith
done

then interpret int: lattice "?Z" .
show "join ?Z x y = max x y"

apply (rule int.joinI)
apply (simp_all add: least_def Upper_def)
apply arith
done

show "meet ?Z x y = min x y"
apply (rule int.meetI)
apply (simp_all add: greatest_def Lower_def)
apply arith

255

done
qed

interpretation int :
total_order "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
proof qed clarsimp

12.4 Generated Ideals of Z

lemma int_Idl:
"IdlZ {a} = {x * a | x. True}"
apply (subst int.cgenideal_eq_genideal[symmetric]) apply (simp add:

int_ring_def)
apply (simp add: cgenideal_def int_ring_def)
done

lemma multiples_principalideal:
"principalideal {x * a | x. True } Z"

apply (subst int_Idl[symmetric], rule principalidealI)
apply (rule int.genideal_ideal, simp)

apply fast
done

lemma prime_primeideal:
assumes prime: "prime (nat p)"
shows "primeideal (IdlZ {p}) Z"

apply (rule primeidealI)
apply (rule int.genideal_ideal, simp)

apply (rule int_is_cring)
apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
apply (simp add: int_ring_def)
apply clarsimp defer 1
apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
apply (simp add: int_ring_def)
apply (elim exE)

proof -
fix a b x

from prime
have ppos: "0 <= p" by (simp add: prime_def)

have unnat: "!!x. nat p dvd nat (abs x) ==> p dvd x"
proof -

fix x
assume "nat p dvd nat (abs x)"
hence "int (nat p) dvd x" by (simp add: int_dvd_iff[symmetric])
thus "p dvd x" by (simp add: ppos)

qed

256

assume "a * b = x * p"
hence "p dvd a * b" by simp
hence "nat p dvd nat (abs (a * b))" using ppos by (simp add: nat_dvd_iff)
hence "nat p dvd (nat (abs a) * nat (abs b))" by (simp add: nat_abs_mult_distrib)
hence "nat p dvd nat (abs a) | nat p dvd nat (abs b)" by (rule prime_dvd_mult[OF

prime])
hence "p dvd a | p dvd b" by (fast intro: unnat)
thus "(EX x. a = x * p) | (EX x. b = x * p)"
proof

assume "p dvd a"
hence "EX x. a = p * x" by (simp add: dvd_def)
from this obtain x

where "a = p * x" by fast
hence "a = x * p" by simp
hence "EX x. a = x * p" by simp
thus "(EX x. a = x * p) | (EX x. b = x * p)" ..

next
assume "p dvd b"
hence "EX x. b = p * x" by (simp add: dvd_def)
from this obtain x

where "b = p * x" by fast
hence "b = x * p" by simp
hence "EX x. b = x * p" by simp
thus "(EX x. a = x * p) | (EX x. b = x * p)" ..

qed
next

assume "UNIV = {uu. EX x. uu = x * p}"
from this obtain x

where "1 = x * p" by best
from this [symmetric]

have "p * x = 1" by (subst zmult_commute)
hence "|p * x| = 1" by simp
hence "|p| = 1" by (rule abs_zmult_eq_1)
from this and prime

show "False" by (simp add: prime_def)
qed

12.5 Ideals and Divisibility

lemma int_Idl_subset_ideal:
"IdlZ {k} ⊆ IdlZ {l} = (k ∈ IdlZ {l})"

by (rule int.Idl_subset_ideal’, simp+)

lemma Idl_subset_eq_dvd:
"(IdlZ {k} ⊆ IdlZ {l}) = (l dvd k)"

apply (subst int_Idl_subset_ideal, subst int_Idl, simp)
apply (rule, clarify)
apply (simp add: dvd_def)

257

apply (simp add: dvd_def mult_ac)
done

lemma dvds_eq_Idl:
"(l dvd k ∧ k dvd l) = (IdlZ {k} = IdlZ {l})"

proof -
have a: "l dvd k = (IdlZ {k} ⊆ IdlZ {l})" by (rule Idl_subset_eq_dvd[symmetric])
have b: "k dvd l = (IdlZ {l} ⊆ IdlZ {k})" by (rule Idl_subset_eq_dvd[symmetric])

have "(l dvd k ∧ k dvd l) = ((IdlZ {k} ⊆ IdlZ {l}) ∧ (IdlZ {l} ⊆
IdlZ {k}))"

by (subst a, subst b, simp)
also have "((IdlZ {k} ⊆ IdlZ {l}) ∧ (IdlZ {l} ⊆ IdlZ {k})) = (IdlZ

{k} = IdlZ {l})" by (rule, fast+)
finally

show ?thesis .
qed

lemma Idl_eq_abs:
"(IdlZ {k} = IdlZ {l}) = (abs l = abs k)"

apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done

12.6 Ideals and the Modulus

constdefs
ZMod :: "int => int => int set"
"ZMod k r == (IdlZ {k}) +>Z r"

lemmas ZMod_defs =
ZMod_def genideal_def

lemma rcos_zfact:
assumes kIl: "k ∈ ZMod l r"
shows "EX x. k = x * l + r"

proof -
from kIl[unfolded ZMod_def]

have "∃ xl∈IdlZ {l}. k = xl + r" by (simp add: a_r_coset_defs int_ring_def)
from this obtain xl

where xl: "xl ∈ IdlZ {l}"
and k: "k = xl + r"
by auto

from xl obtain x
where "xl = x * l"
by (simp add: int_Idl, fast)

from k and this
have "k = x * l + r" by simp

thus "∃ x. k = x * l + r" ..

258

qed

lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"

proof -
interpret ideal "IdlZ {m}" Z by (rule int.genideal_ideal, fast)
from zmods

have "b ∈ ZMod m a"
unfolding ZMod_def
by (simp add: a_repr_independenceD)

from this
have "EX x. b = x * m + a" by (rule rcos_zfact)

from this obtain x
where "b = x * m + a"
by fast

hence "b mod m = (x * m + a) mod m" by simp
also

have ". . . = ((x * m) mod m) + (a mod m)" by (simp add: mod_add_eq)
also

have ". . . = a mod m" by simp
finally

have "b mod m = a mod m" .
thus "a mod m = b mod m" ..

qed

lemma ZMod_mod:
shows "ZMod m a = ZMod m (a mod m)"

proof -
interpret ideal "IdlZ {m}" Z by (rule int.genideal_ideal, fast)
show ?thesis

unfolding ZMod_def
apply (rule a_repr_independence’[symmetric])
apply (simp add: int_Idl a_r_coset_defs)
apply (simp add: int_ring_def)
proof -

have "a = m * (a div m) + (a mod m)" by (simp add: zmod_zdiv_equality)
hence "a = (a div m) * m + (a mod m)" by simp
thus "∃ h. (∃ x. h = x * m) ∧ a = h + a mod m" by fast

qed simp
qed

lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a = ZMod m b"

proof -
have "ZMod m a = ZMod m (a mod m)" by (rule ZMod_mod)
also have ". . . = ZMod m (b mod m)" by (simp add: modeq[symmetric])

259

also have ". . . = ZMod m b" by (rule ZMod_mod[symmetric])
finally show ?thesis .

qed

corollary ZMod_eq_mod:
shows "(ZMod m a = ZMod m b) = (a mod m = b mod m)"

by (rule, erule ZMod_imp_zmod, erule zmod_imp_ZMod)

12.7 Factorization

constdefs
ZFact :: "int ⇒ int set ring"
"ZFact k == Z Quot (IdlZ {k})"

lemmas ZFact_defs = ZFact_def FactRing_def

lemma ZFact_is_cring:
shows "cring (ZFact k)"

apply (unfold ZFact_def)
apply (rule ideal.quotient_is_cring)
apply (intro ring.genideal_ideal)
apply (simp add: cring.axioms[OF int_is_cring] ring.intro)

apply simp
apply (rule int_is_cring)
done

lemma ZFact_zero:
"carrier (ZFact 0) = (

⋃
a. {{a}})"

apply (insert int.genideal_zero)
apply (simp add: ZFact_defs A_RCOSETS_defs r_coset_def int_ring_def ring_record_simps)
done

lemma ZFact_one:
"carrier (ZFact 1) = {UNIV}"

apply (simp only: ZFact_defs A_RCOSETS_defs r_coset_def int_ring_def ring_record_simps)
apply (subst int.genideal_one[unfolded int_ring_def, simplified ring_record_simps])
apply (rule, rule, clarsimp)
apply (rule, rule, clarsimp)
apply (rule, clarsimp, arith)

apply (rule, clarsimp)
apply (rule exI[of _ "0"], clarsimp)
done

lemma ZFact_prime_is_domain:
assumes pprime: "prime (nat p)"
shows "domain (ZFact p)"

apply (unfold ZFact_def)
apply (rule primeideal.quotient_is_domain)
apply (rule prime_primeideal[OF pprime])

260

done

end

theory Module imports Ring begin

13 Modules over an Abelian Group

13.1 Definitions

record (’a, ’b) module = "’b ring" +
smult :: "[’a, ’b] => ’b" (infixl "�ı " 70)

locale module = R: cring + M: abelian_group M for M (structure) +
assumes smult_closed [simp, intro]:

"[| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier M"
and smult_l_distr:
"[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊕ b) �M x = a �M x ⊕M b �M x"

and smult_r_distr:
"[| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
a �M (x ⊕M y) = a �M x ⊕M a �M y"

and smult_assoc1:
"[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊗ b) �M x = a �M (b �M x)"

and smult_one [simp]:
"x ∈ carrier M ==> 1 �M x = x"

locale algebra = module + cring M +
assumes smult_assoc2:

"[| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
(a �M x) ⊗M y = a �M (x ⊗M y)"

lemma moduleI:
fixes R (structure) and M (structure)
assumes cring: "cring R"

and abelian_group: "abelian_group M"
and smult_closed:
"!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier

M"
and smult_l_distr:
"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊕ b) �M x = (a �M x) ⊕M (b �M x)"

and smult_r_distr:
"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
a �M (x ⊕M y) = (a �M x) ⊕M (a �M y)"

and smult_assoc1:

261

"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊗ b) �M x = a �M (b �M x)"

and smult_one:
"!!x. x ∈ carrier M ==> 1 �M x = x"

shows "module R M"
by (auto intro: module.intro cring.axioms abelian_group.axioms
module_axioms.intro assms)

lemma algebraI:
fixes R (structure) and M (structure)
assumes R_cring: "cring R"

and M_cring: "cring M"
and smult_closed:
"!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier

M"
and smult_l_distr:
"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊕ b) �M x = (a �M x) ⊕M (b �M x)"

and smult_r_distr:
"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
a �M (x ⊕M y) = (a �M x) ⊕M (a �M y)"

and smult_assoc1:
"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊗ b) �M x = a �M (b �M x)"

and smult_one:
"!!x. x ∈ carrier M ==> (one R) �M x = x"

and smult_assoc2:
"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
(a �M x) ⊗M y = a �M (x ⊗M y)"

shows "algebra R M"
apply intro_locales
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule module_axioms.intro)
apply (simp add: smult_closed)
apply (simp add: smult_l_distr)
apply (simp add: smult_r_distr)
apply (simp add: smult_assoc1)
apply (simp add: smult_one)

apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule algebra_axioms.intro)
apply (simp add: smult_assoc2)

done

lemma (in algebra) R_cring:
"cring R"
..

262

lemma (in algebra) M_cring:
"cring M"
..

lemma (in algebra) module:
"module R M"
by (auto intro: moduleI R_cring is_abelian_group
smult_l_distr smult_r_distr smult_assoc1)

13.2 Basic Properties of Algebras

lemma (in algebra) smult_l_null [simp]:
"x ∈ carrier M ==> 0 �M x = 0M"

proof -
assume M: "x ∈ carrier M"
note facts = M smult_closed [OF R.zero_closed]
from facts have "0 �M x = (0 �M x ⊕M 0 �M x) ⊕M 	M (0 �M x)" by

algebra
also from M have "... = (0 ⊕ 0) �M x ⊕M 	M (0 �M x)"

by (simp add: smult_l_distr del: R.l_zero R.r_zero)
also from facts have "... = 0M" apply algebra apply algebra done
finally show ?thesis .

qed

lemma (in algebra) smult_r_null [simp]:
"a ∈ carrier R ==> a �M 0M = 0M"

proof -
assume R: "a ∈ carrier R"
note facts = R smult_closed
from facts have "a �M 0M = (a �M 0M ⊕M a �M 0M) ⊕M 	M (a �M 0M)"

by algebra
also from R have "... = a �M (0M ⊕M 0M) ⊕M 	M (a �M 0M)"

by (simp add: smult_r_distr del: M.l_zero M.r_zero)
also from facts have "... = 0M" by algebra
finally show ?thesis .

qed

lemma (in algebra) smult_l_minus:
"[| a ∈ carrier R; x ∈ carrier M |] ==> (a) �M x = 	M (a �M x)"

proof -
assume RM: "a ∈ carrier R" "x ∈ carrier M"
from RM have a_smult: "a �M x ∈ carrier M" by simp
from RM have ma_smult: "	a �M x ∈ carrier M" by simp
note facts = RM a_smult ma_smult
from facts have "(a) �M x = (a �M x ⊕M a �M x) ⊕M 	M(a �M x)"

by algebra
also from RM have "... = (a ⊕ a) �M x ⊕M 	M(a �M x)"

by (simp add: smult_l_distr)
also from facts smult_l_null have "... = 	M(a �M x)"

263

apply algebra apply algebra done
finally show ?thesis .

qed

lemma (in algebra) smult_r_minus:
"[| a ∈ carrier R; x ∈ carrier M |] ==> a �M (Mx) = 	M (a �M x)"

proof -
assume RM: "a ∈ carrier R" "x ∈ carrier M"
note facts = RM smult_closed
from facts have "a �M (Mx) = (a �M 	Mx ⊕M a �M x) ⊕M 	M(a �M x)"

by algebra
also from RM have "... = a �M (Mx ⊕M x) ⊕M 	M(a �M x)"

by (simp add: smult_r_distr)
also from facts smult_r_null have "... = 	M(a �M x)" by algebra
finally show ?thesis .

qed

end

theory UnivPoly
imports Module RingHom
begin

14 Univariate Polynomials

Polynomials are formalised as modules with additional operations for ex-
tracting coefficients from polynomials and for obtaining monomials from co-
efficients and exponents (record up_ring). The carrier set is a set of bounded
functions from Nat to the coefficient domain. Bounded means that these
functions return zero above a certain bound (the degree). There is a chap-
ter on the formalisation of polynomials in the PhD thesis [1], which was
implemented with axiomatic type classes. This was later ported to Locales.

14.1 The Constructor for Univariate Polynomials

Functions with finite support.

locale bound =
fixes z :: ’a

and n :: nat
and f :: "nat => ’a"

assumes bound: "!!m. n < m =⇒ f m = z"

declare bound.intro [intro!]
and bound.bound [dest]

264

lemma bound_below:
assumes bound: "bound z m f" and nonzero: "f n 6= z" shows "n ≤ m"

proof (rule classical)
assume "~ ?thesis"
then have "m < n" by arith
with bound have "f n = z" ..
with nonzero show ?thesis by contradiction

qed

record (’a, ’p) up_ring = "(’a, ’p) module" +
monom :: "[’a, nat] => ’p"
coeff :: "[’p, nat] => ’a"

definition up :: "(’a, ’m) ring_scheme => (nat => ’a) set"
where up_def: "up R == {f. f ∈ UNIV -> carrier R & (EX n. bound 0R

n f)}"

definition UP :: "(’a, ’m) ring_scheme => (’a, nat => ’a) up_ring"
where UP_def: "UP R == (|
carrier = up R,
mult = (%p:up R. %q:up R. %n.

⊕
Ri ∈ {..n}. p i ⊗R q (n-i)),

one = (%i. if i=0 then 1R else 0R),
zero = (%i. 0R),
add = (%p:up R. %q:up R. %i. p i ⊕R q i),
smult = (%a:carrier R. %p:up R. %i. a ⊗R p i),
monom = (%a:carrier R. %n i. if i=n then a else 0R),
coeff = (%p:up R. %n. p n) |)"

Properties of the set of polynomials up.

lemma mem_upI [intro]:
"[| !!n. f n ∈ carrier R; EX n. bound (zero R) n f |] ==> f ∈ up R"
by (simp add: up_def Pi_def)

lemma mem_upD [dest]:
"f ∈ up R ==> f n ∈ carrier R"
by (simp add: up_def Pi_def)

context ring
begin

lemma bound_upD [dest]: "f ∈ up R ==> EX n. bound 0 n f" by (simp add:
up_def)

lemma up_one_closed: "(%n. if n = 0 then 1 else 0) ∈ up R" using up_def
by force

lemma up_smult_closed: "[| a ∈ carrier R; p ∈ up R |] ==> (%i. a ⊗ p
i) ∈ up R" by force

265

lemma up_add_closed:
"[| p ∈ up R; q ∈ up R |] ==> (%i. p i ⊕ q i) ∈ up R"

proof
fix n
assume "p ∈ up R" and "q ∈ up R"
then show "p n ⊕ q n ∈ carrier R"

by auto
next

assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%i. p i ⊕ q i)"
proof -

from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast
have "bound 0 (max n m) (%i. p i ⊕ q i)"
proof

fix i
assume "max n m < i"
with boundn and boundm and UP show "p i ⊕ q i = 0" by fastsimp

qed
then show ?thesis ..

qed
qed

lemma up_a_inv_closed:
"p ∈ up R ==> (%i. 	 (p i)) ∈ up R"

proof
assume R: "p ∈ up R"
then obtain n where "bound 0 n p" by auto
then have "bound 0 n (%i. 	 p i)" by auto
then show "EX n. bound 0 n (%i. 	 p i)" by auto

qed auto

lemma up_minus_closed:
"[| p ∈ up R; q ∈ up R |] ==> (%i. p i 	 q i) ∈ up R"
using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed

a_minus_def [of _ R]
by auto

lemma up_mult_closed:
"[| p ∈ up R; q ∈ up R |] ==>
(%n.

⊕
i ∈ {..n}. p i ⊗ q (n-i)) ∈ up R"

proof
fix n
assume "p ∈ up R" "q ∈ up R"
then show "(

⊕
i ∈ {..n}. p i ⊗ q (n-i)) ∈ carrier R"

by (simp add: mem_upD funcsetI)
next

assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%n.

⊕
i ∈ {..n}. p i ⊗ q (n-i))"

266

proof -
from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast
have "bound 0 (n + m) (%n.

⊕
i ∈ {..n}. p i ⊗ q (n - i))"

proof
fix k assume bound: "n + m < k"
{

fix i
have "p i ⊗ q (k-i) = 0"
proof (cases "n < i")

case True
with boundn have "p i = 0" by auto
moreover from UP have "q (k-i) ∈ carrier R" by auto
ultimately show ?thesis by simp

next
case False
with bound have "m < k-i" by arith
with boundm have "q (k-i) = 0" by auto
moreover from UP have "p i ∈ carrier R" by auto
ultimately show ?thesis by simp

qed
}
then show "(

⊕
i ∈ {..k}. p i ⊗ q (k-i)) = 0"

by (simp add: Pi_def)
qed
then show ?thesis by fast

qed
qed

end

14.2 Effect of Operations on Coefficients

locale UP =
fixes R (structure) and P (structure)
defines P_def: "P == UP R"

locale UP_ring = UP + R: ring R

locale UP_cring = UP + R: cring R

sublocale UP_cring < UP_ring
by intro_locales [1] (rule P_def)

locale UP_domain = UP + R: "domain" R

sublocale UP_domain < UP_cring
by intro_locales [1] (rule P_def)

267

context UP
begin

Temporarily declare P ≡ UP R as simp rule.

declare P_def [simp]

lemma up_eqI:
assumes prem: "!!n. coeff P p n = coeff P q n" and R: "p ∈ carrier

P" "q ∈ carrier P"
shows "p = q"

proof
fix x
from prem and R show "p x = q x" by (simp add: UP_def)

qed

lemma coeff_closed [simp]:
"p ∈ carrier P ==> coeff P p n ∈ carrier R" by (auto simp add: UP_def)

end

context UP_ring
begin

lemma coeff_monom [simp]:
"a ∈ carrier R ==> coeff P (monom P a m) n = (if m=n then a else 0)"

proof -
assume R: "a ∈ carrier R"
then have "(%n. if n = m then a else 0) ∈ up R"

using up_def by force
with R show ?thesis by (simp add: UP_def)

qed

lemma coeff_zero [simp]: "coeff P 0P n = 0" by (auto simp add: UP_def)

lemma coeff_one [simp]: "coeff P 1P n = (if n=0 then 1 else 0)"
using up_one_closed by (simp add: UP_def)

lemma coeff_smult [simp]:
"[| a ∈ carrier R; p ∈ carrier P |] ==> coeff P (a �P p) n = a ⊗ coeff

P p n"
by (simp add: UP_def up_smult_closed)

lemma coeff_add [simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> coeff P (p ⊕P q) n = coeff

P p n ⊕ coeff P q n"
by (simp add: UP_def up_add_closed)

268

lemma coeff_mult [simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> coeff P (p ⊗P q) n = (

⊕
i ∈

{..n}. coeff P p i ⊗ coeff P q (n-i))"
by (simp add: UP_def up_mult_closed)

end

14.3 Polynomials Form a Ring.

context UP_ring
begin

Operations are closed over P.

lemma UP_mult_closed [simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> p ⊗P q ∈ carrier P" by (simp

add: UP_def up_mult_closed)

lemma UP_one_closed [simp]:
"1P ∈ carrier P" by (simp add: UP_def up_one_closed)

lemma UP_zero_closed [intro, simp]:
"0P ∈ carrier P" by (auto simp add: UP_def)

lemma UP_a_closed [intro, simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> p ⊕P q ∈ carrier P" by (simp

add: UP_def up_add_closed)

lemma monom_closed [simp]:
"a ∈ carrier R ==> monom P a n ∈ carrier P" by (auto simp add: UP_def

up_def Pi_def)

lemma UP_smult_closed [simp]:
"[| a ∈ carrier R; p ∈ carrier P |] ==> a �P p ∈ carrier P" by (simp

add: UP_def up_smult_closed)

end

declare (in UP) P_def [simp del]

Algebraic ring properties

context UP_ring
begin

lemma UP_a_assoc:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊕P q) ⊕P r = p ⊕P (q ⊕P r)" by (rule up_eqI, simp add:

a_assoc R, simp_all add: R)

lemma UP_l_zero [simp]:

269

assumes R: "p ∈ carrier P"
shows "0P ⊕P p = p" by (rule up_eqI, simp_all add: R)

lemma UP_l_neg_ex:
assumes R: "p ∈ carrier P"
shows "EX q : carrier P. q ⊕P p = 0P"

proof -
let ?q = "%i. 	 (p i)"
from R have closed: "?q ∈ carrier P"

by (simp add: UP_def P_def up_a_inv_closed)
from R have coeff: "!!n. coeff P ?q n = 	 (coeff P p n)"

by (simp add: UP_def P_def up_a_inv_closed)
show ?thesis
proof

show "?q ⊕P p = 0P"
by (auto intro!: up_eqI simp add: R closed coeff R.l_neg)

qed (rule closed)
qed

lemma UP_a_comm:
assumes R: "p ∈ carrier P" "q ∈ carrier P"
shows "p ⊕P q = q ⊕P p" by (rule up_eqI, simp add: a_comm R, simp_all

add: R)

lemma UP_m_assoc:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊗P q) ⊗P r = p ⊗P (q ⊗P r)"

proof (rule up_eqI)
fix n
{

fix k and a b c :: "nat=>’a"
assume R: "a ∈ UNIV -> carrier R" "b ∈ UNIV -> carrier R"
"c ∈ UNIV -> carrier R"

then have "k <= n ==>
(
⊕

j ∈ {..k}. (
⊕

i ∈ {..j}. a i ⊗ b (j-i)) ⊗ c (n-j)) =
(
⊕

j ∈ {..k}. a j ⊗ (
⊕

i ∈ {..k-j}. b i ⊗ c (n-j-i)))"
(is "_ =⇒ ?eq k")

proof (induct k)
case 0 then show ?case by (simp add: Pi_def m_assoc)

next
case (Suc k)
then have "k <= n" by arith
from this R have "?eq k" by (rule Suc)
with R show ?case

by (simp cong: finsum_cong
add: Suc_diff_le Pi_def l_distr r_distr m_assoc)

(simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc)
qed

}

270

with R show "coeff P ((p ⊗P q) ⊗P r) n = coeff P (p ⊗P (q ⊗P r))
n"

by (simp add: Pi_def)
qed (simp_all add: R)

lemma UP_r_one [simp]:
assumes R: "p ∈ carrier P" shows "p ⊗P 1P = p"

proof (rule up_eqI)
fix n
show "coeff P (p ⊗P 1P) n = coeff P p n"
proof (cases n)

case 0
{

with R show ?thesis by simp
}

next
case Suc
{

fix nn assume Succ: "n = Suc nn"
have "coeff P (p ⊗P 1P) (Suc nn) = coeff P p (Suc nn)"
proof -

have "coeff P (p ⊗P 1P) (Suc nn) = (
⊕

i∈{..Suc nn}. coeff P
p i ⊗ (if Suc nn ≤ i then 1 else 0))" using R by simp

also have ". . . = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then
1 else 0) ⊕ (

⊕
i∈{..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0))"

using finsum_Suc [of "(λi::nat. coeff P p i ⊗ (if Suc nn ≤
i then 1 else 0))" "nn"] unfolding Pi_def using R by simp

also have ". . . = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then
1 else 0)"

proof -
have "(

⊕
i∈{..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else

0)) = (
⊕

i∈{..nn}. 0)"
using finsum_cong [of "{..nn}" "{..nn}" "(λi::nat. coeff P

p i ⊗ (if Suc nn ≤ i then 1 else 0))" "(λi::nat. 0)"] using R
unfolding Pi_def by simp

also have ". . . = 0" by simp
finally show ?thesis using r_zero R by simp

qed
also have ". . . = coeff P p (Suc nn)" using R by simp
finally show ?thesis by simp

qed
then show ?thesis using Succ by simp

}
qed

qed (simp_all add: R)

lemma UP_l_one [simp]:
assumes R: "p ∈ carrier P"

271

shows "1P ⊗P p = p"
proof (rule up_eqI)

fix n
show "coeff P (1P ⊗P p) n = coeff P p n"
proof (cases n)

case 0 with R show ?thesis by simp
next

case Suc with R show ?thesis
by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)

qed
qed (simp_all add: R)

lemma UP_l_distr:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊕P q) ⊗P r = (p ⊗P r) ⊕P (q ⊗P r)"
by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R)

lemma UP_r_distr:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "r ⊗P (p ⊕P q) = (r ⊗P p) ⊕P (r ⊗P q)"
by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R)

theorem UP_ring: "ring P"
by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc)
(auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr)

end

14.4 Polynomials Form a Commutative Ring.

context UP_cring
begin

lemma UP_m_comm:
assumes R1: "p ∈ carrier P" and R2: "q ∈ carrier P" shows "p ⊗P q

= q ⊗P p"
proof (rule up_eqI)

fix n
{

fix k and a b :: "nat=>’a"
assume R: "a ∈ UNIV -> carrier R" "b ∈ UNIV -> carrier R"
then have "k <= n ==>
(
⊕

i ∈ {..k}. a i ⊗ b (n-i)) = (
⊕

i ∈ {..k}. a (k-i) ⊗ b (i+n-k))"
(is "_ =⇒ ?eq k")

proof (induct k)
case 0 then show ?case by (simp add: Pi_def)

next
case (Suc k) then show ?case

by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+

272

qed
}
note l = this
from R1 R2 show "coeff P (p ⊗P q) n = coeff P (q ⊗P p) n"

unfolding coeff_mult [OF R1 R2, of n]
unfolding coeff_mult [OF R2 R1, of n]
using l [of "(λi. coeff P p i)" "(λi. coeff P q i)" "n"] by (simp

add: Pi_def m_comm)
qed (simp_all add: R1 R2)

14.5 Polynomials over a commutative ring for a commutative
ring

theorem UP_cring:
"cring P" using UP_ring unfolding cring_def by (auto intro!: comm_monoidI

UP_m_assoc UP_m_comm)

end

context UP_ring
begin

lemma UP_a_inv_closed [intro, simp]:
"p ∈ carrier P ==> 	P p ∈ carrier P"
by (rule abelian_group.a_inv_closed [OF ring.is_abelian_group [OF UP_ring]])

lemma coeff_a_inv [simp]:
assumes R: "p ∈ carrier P"
shows "coeff P (P p) n = 	 (coeff P p n)"

proof -
from R coeff_closed UP_a_inv_closed have
"coeff P (P p) n = 	 coeff P p n ⊕ (coeff P p n ⊕ coeff P (P p)

n)"
by algebra

also from R have "... = 	 (coeff P p n)"
by (simp del: coeff_add add: coeff_add [THEN sym]
abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]])

finally show ?thesis .
qed

end

sublocale UP_ring < P: ring P using UP_ring .
sublocale UP_cring < P: cring P using UP_cring .

14.6 Polynomials Form an Algebra

context UP_ring
begin

273

lemma UP_smult_l_distr:
"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>
(a ⊕ b) �P p = a �P p ⊕P b �P p"
by (rule up_eqI) (simp_all add: R.l_distr)

lemma UP_smult_r_distr:
"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>
a �P (p ⊕P q) = a �P p ⊕P a �P q"
by (rule up_eqI) (simp_all add: R.r_distr)

lemma UP_smult_assoc1:
"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>
(a ⊗ b) �P p = a �P (b �P p)"

by (rule up_eqI) (simp_all add: R.m_assoc)

lemma UP_smult_zero [simp]:
"p ∈ carrier P ==> 0 �P p = 0P"

by (rule up_eqI) simp_all

lemma UP_smult_one [simp]:
"p ∈ carrier P ==> 1 �P p = p"

by (rule up_eqI) simp_all

lemma UP_smult_assoc2:
"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>
(a �P p) ⊗P q = a �P (p ⊗P q)"
by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def)

end

Interpretation of lemmas from algebra.

lemma (in cring) cring:
"cring R" ..

lemma (in UP_cring) UP_algebra:
"algebra R P" by (auto intro!: algebraI R.cring UP_cring UP_smult_l_distr

UP_smult_r_distr
UP_smult_assoc1 UP_smult_assoc2)

sublocale UP_cring < algebra R P using UP_algebra .

14.7 Further Lemmas Involving Monomials

context UP_ring
begin

lemma monom_zero [simp]:
"monom P 0 n = 0P" by (simp add: UP_def P_def)

274

lemma monom_mult_is_smult:
assumes R: "a ∈ carrier R" "p ∈ carrier P"
shows "monom P a 0 ⊗P p = a �P p"

proof (rule up_eqI)
fix n
show "coeff P (monom P a 0 ⊗P p) n = coeff P (a �P p) n"
proof (cases n)

case 0 with R show ?thesis by simp
next

case Suc with R show ?thesis
using R.finsum_Suc2 by (simp del: R.finsum_Suc add: R.r_null Pi_def)

qed
qed (simp_all add: R)

lemma monom_one [simp]:
"monom P 1 0 = 1P"
by (rule up_eqI) simp_all

lemma monom_add [simp]:
"[| a ∈ carrier R; b ∈ carrier R |] ==>
monom P (a ⊕ b) n = monom P a n ⊕P monom P b n"
by (rule up_eqI) simp_all

lemma monom_one_Suc:
"monom P 1 (Suc n) = monom P 1 n ⊗P monom P 1 1"

proof (rule up_eqI)
fix k
show "coeff P (monom P 1 (Suc n)) k = coeff P (monom P 1 n ⊗P monom

P 1 1) k"
proof (cases "k = Suc n")

case True show ?thesis
proof -

fix m
from True have less_add_diff:
"!!i. [| n < i; i <= n + m |] ==> n + m - i < m" by arith

from True have "coeff P (monom P 1 (Suc n)) k = 1" by simp
also from True
have "... = (

⊕
i ∈ {..<n} ∪ {n}. coeff P (monom P 1 n) i ⊗

coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: Pi_def)

also have "... = (
⊕

i ∈ {..n}. coeff P (monom P 1 n) i ⊗
coeff P (monom P 1 1) (k - i))"
by (simp only: ivl_disj_un_singleton)

also from True
have "... = (

⊕
i ∈ {..n} ∪ {n<..k}. coeff P (monom P 1 n) i ⊗

coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
order_less_imp_not_eq Pi_def)

275

also from True have "... = coeff P (monom P 1 n ⊗P monom P 1 1)
k"

by (simp add: ivl_disj_un_one)
finally show ?thesis .

qed
next

case False
note neq = False
let ?s =
"λi. (if n = i then 1 else 0) ⊗ (if Suc 0 = k - i then 1 else 0)"

from neq have "coeff P (monom P 1 (Suc n)) k = 0" by simp
also have "... = (

⊕
i ∈ {..k}. ?s i)"

proof -
have f1: "(

⊕
i ∈ {..<n}. ?s i) = 0"

by (simp cong: R.finsum_cong add: Pi_def)
from neq have f2: "(

⊕
i ∈ {n}. ?s i) = 0"

by (simp cong: R.finsum_cong add: Pi_def) arith
have f3: "n < k ==> (

⊕
i ∈ {n<..k}. ?s i) = 0"

by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def)
show ?thesis
proof (cases "k < n")

case True then show ?thesis by (simp cong: R.finsum_cong add:
Pi_def)

next
case False then have n_le_k: "n <= k" by arith
show ?thesis
proof (cases "n = k")

case True
then have "0 = (

⊕
i ∈ {..<n} ∪ {n}. ?s i)"

by (simp cong: R.finsum_cong add: ivl_disj_int_singleton Pi_def)
also from True have "... = (

⊕
i ∈ {..k}. ?s i)"

by (simp only: ivl_disj_un_singleton)
finally show ?thesis .

next
case False with n_le_k have n_less_k: "n < k" by arith
with neq have "0 = (

⊕
i ∈ {..<n} ∪ {n}. ?s i)"

by (simp add: R.finsum_Un_disjoint f1 f2
ivl_disj_int_singleton Pi_def del: Un_insert_right)

also have "... = (
⊕

i ∈ {..n}. ?s i)"
by (simp only: ivl_disj_un_singleton)

also from n_less_k neq have "... = (
⊕

i ∈ {..n} ∪ {n<..k}.
?s i)"

by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def)
also from n_less_k have "... = (

⊕
i ∈ {..k}. ?s i)"

by (simp only: ivl_disj_un_one)
finally show ?thesis .

qed
qed

qed

276

also have "... = coeff P (monom P 1 n ⊗P monom P 1 1) k" by simp
finally show ?thesis .

qed
qed (simp_all)

lemma monom_one_Suc2:
"monom P 1 (Suc n) = monom P 1 1 ⊗P monom P 1 n"

proof (induct n)
case 0 show ?case by simp

next
case Suc
{

fix k:: nat
assume hypo: "monom P 1 (Suc k) = monom P 1 1 ⊗P monom P 1 k"
then show "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 (Suc

k)"
proof -

have lhs: "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 k
⊗P monom P 1 1"

unfolding monom_one_Suc [of "Suc k"] unfolding hypo ..
note cl = monom_closed [OF R.one_closed, of 1]
note clk = monom_closed [OF R.one_closed, of k]
have rhs: "monom P 1 1 ⊗P monom P 1 (Suc k) = monom P 1 1 ⊗P monom

P 1 k ⊗P monom P 1 1"
unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF

cl clk cl]] ..
from lhs rhs show ?thesis by simp

qed
}

qed

The following corollary follows from lemmas monom P 1 (Suc ?n) = monom P

1 ?n ⊗P monom P 1 1 and monom P 1 (Suc ?n) = monom P 1 1 ⊗P monom P

1 ?n, and is trivial in UP_cring

corollary monom_one_comm: shows "monom P 1 k ⊗P monom P 1 1 = monom P
1 1 ⊗P monom P 1 k"

unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] ..

lemma monom_mult_smult:
"[| a ∈ carrier R; b ∈ carrier R |] ==> monom P (a ⊗ b) n = a �P monom

P b n"
by (rule up_eqI) simp_all

lemma monom_one_mult:
"monom P 1 (n + m) = monom P 1 n ⊗P monom P 1 m"

proof (induct n)
case 0 show ?case by simp

next
case Suc then show ?case

277

unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps
using m_assoc monom_one_comm [of m] by simp

qed

lemma monom_one_mult_comm: "monom P 1 n ⊗P monom P 1 m = monom P 1 m
⊗P monom P 1 n"

unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all

lemma monom_mult [simp]:
assumes a_in_R: "a ∈ carrier R" and b_in_R: "b ∈ carrier R"
shows "monom P (a ⊗ b) (n + m) = monom P a n ⊗P monom P b m"

proof (rule up_eqI)
fix k
show "coeff P (monom P (a ⊗ b) (n + m)) k = coeff P (monom P a n ⊗P

monom P b m) k"
proof (cases "n + m = k")

case True
{

show ?thesis
unfolding True [symmetric]
coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF

b_in_R, of m], of "n + m"]
coeff_monom [OF a_in_R, of n] coeff_monom [OF b_in_R, of m]

using R.finsum_cong [of "{.. n + m}" "{.. n + m}" "(λi. (if n
= i then a else 0) ⊗ (if m = n + m - i then b else 0))"

"(λi. if n = i then a ⊗ b else 0)"]
a_in_R b_in_R

unfolding simp_implies_def
using R.finsum_singleton [of n "{.. n + m}" "(λi. a ⊗ b)"]
unfolding Pi_def by auto

}
next

case False
{

show ?thesis
unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n

+ m" k] apply (simp add: False)
unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed

[OF b_in_R, of m], of k]
unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom

[OF b_in_R, of m] using False
using R.finsum_cong [of "{..k}" "{..k}" "(λi. (if n = i then a

else 0) ⊗ (if m = k - i then b else 0))" "(λi. 0)"]
unfolding Pi_def simp_implies_def using a_in_R b_in_R by force

}
qed

qed (simp_all add: a_in_R b_in_R)

lemma monom_a_inv [simp]:

278

"a ∈ carrier R ==> monom P (a) n = 	P monom P a n"
by (rule up_eqI) simp_all

lemma monom_inj:
"inj_on (%a. monom P a n) (carrier R)"

proof (rule inj_onI)
fix x y
assume R: "x ∈ carrier R" "y ∈ carrier R" and eq: "monom P x n = monom

P y n"
then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp
with R show "x = y" by simp

qed

end

14.8 The Degree Function

definition deg :: "[(’a, ’m) ring_scheme, nat => ’a] => nat"
where "deg R p == LEAST n. bound 0R n (coeff (UP R) p)"

context UP_ring
begin

lemma deg_aboveI:
"[| (!!m. n < m ==> coeff P p m = 0); p ∈ carrier P |] ==> deg R p <=

n"
by (unfold deg_def P_def) (fast intro: Least_le)

lemma deg_aboveD:
assumes "deg R p < m" and "p ∈ carrier P"
shows "coeff P p m = 0"

proof -
from ‘p ∈ carrier P‘ obtain n where "bound 0 n (coeff P p)"

by (auto simp add: UP_def P_def)
then have "bound 0 (deg R p) (coeff P p)"

by (auto simp: deg_def P_def dest: LeastI)
from this and ‘deg R p < m‘ show ?thesis ..

qed

lemma deg_belowI:
assumes non_zero: "n ~= 0 ==> coeff P p n ~= 0"

and R: "p ∈ carrier P"
shows "n <= deg R p"

— Logically, this is a slightly stronger version of deg_aboveD
proof (cases "n=0")

case True then show ?thesis by simp
next

279

case False then have "coeff P p n ~= 0" by (rule non_zero)
then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R)
then show ?thesis by arith

qed

lemma lcoeff_nonzero_deg:
assumes deg: "deg R p ~= 0" and R: "p ∈ carrier P"
shows "coeff P p (deg R p) ~= 0"

proof -
from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~=

0"
proof -

have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)"
by arith

from deg have "deg R p - 1 < (LEAST n. bound 0 n (coeff P p))"
by (unfold deg_def P_def) simp

then have "~ bound 0 (deg R p - 1) (coeff P p)" by (rule not_less_Least)
then have "EX m. deg R p - 1 < m & coeff P p m ~= 0"

by (unfold bound_def) fast
then have "EX m. deg R p <= m & coeff P p m ~= 0" by (simp add: deg

minus)
then show ?thesis by (auto intro: that)

qed
with deg_belowI R have "deg R p = m" by fastsimp
with m_coeff show ?thesis by simp

qed

lemma lcoeff_nonzero_nonzero:
assumes deg: "deg R p = 0" and nonzero: "p ~= 0P" and R: "p ∈ carrier

P"
shows "coeff P p 0 ~= 0"

proof -
have "EX m. coeff P p m ~= 0"
proof (rule classical)

assume "~ ?thesis"
with R have "p = 0P" by (auto intro: up_eqI)
with nonzero show ?thesis by contradiction

qed
then obtain m where coeff: "coeff P p m ~= 0" ..
from this and R have "m <= deg R p" by (rule deg_belowI)
then have "m = 0" by (simp add: deg)
with coeff show ?thesis by simp

qed

lemma lcoeff_nonzero:
assumes neq: "p ~= 0P" and R: "p ∈ carrier P"
shows "coeff P p (deg R p) ~= 0"

proof (cases "deg R p = 0")
case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero)

280

next
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg)

qed

lemma deg_eqI:
"[| !!m. n < m ==> coeff P p m = 0;

!!n. n ~= 0 ==> coeff P p n ~= 0; p ∈ carrier P |] ==> deg R p =
n"
by (fast intro: le_anti_sym deg_aboveI deg_belowI)

Degree and polynomial operations

lemma deg_add [simp]:
assumes R: "p ∈ carrier P" "q ∈ carrier P"
shows "deg R (p ⊕P q) <= max (deg R p) (deg R q)"

proof (cases "deg R p <= deg R q")
case True show ?thesis

by (rule deg_aboveI) (simp_all add: True R deg_aboveD)
next

case False show ?thesis
by (rule deg_aboveI) (simp_all add: False R deg_aboveD)

qed

lemma deg_monom_le:
"a ∈ carrier R ==> deg R (monom P a n) <= n"
by (intro deg_aboveI) simp_all

lemma deg_monom [simp]:
"[| a ~= 0; a ∈ carrier R |] ==> deg R (monom P a n) = n"
by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI)

lemma deg_const [simp]:
assumes R: "a ∈ carrier R" shows "deg R (monom P a 0) = 0"

proof (rule le_anti_sym)
show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add:

R)
next

show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add:
R)
qed

lemma deg_zero [simp]:
"deg R 0P = 0"

proof (rule le_anti_sym)
show "deg R 0P <= 0" by (rule deg_aboveI) simp_all

next
show "0 <= deg R 0P" by (rule deg_belowI) simp_all

qed

lemma deg_one [simp]:

281

"deg R 1P = 0"
proof (rule le_anti_sym)

show "deg R 1P <= 0" by (rule deg_aboveI) simp_all
next

show "0 <= deg R 1P" by (rule deg_belowI) simp_all
qed

lemma deg_uminus [simp]:
assumes R: "p ∈ carrier P" shows "deg R (P p) = deg R p"

proof (rule le_anti_sym)
show "deg R (P p) <= deg R p" by (simp add: deg_aboveI deg_aboveD

R)
next

show "deg R p <= deg R (P p)"
by (simp add: deg_belowI lcoeff_nonzero_deg
inj_on_iff [OF R.a_inv_inj, of _ "0", simplified] R)

qed

The following lemma is later overwritten by the most specific one for do-
mains, deg_smult.

lemma deg_smult_ring [simp]:
"[| a ∈ carrier R; p ∈ carrier P |] ==>
deg R (a �P p) <= (if a = 0 then 0 else deg R p)"
by (cases "a = 0") (simp add: deg_aboveI deg_aboveD)+

end

context UP_domain
begin

lemma deg_smult [simp]:
assumes R: "a ∈ carrier R" "p ∈ carrier P"
shows "deg R (a �P p) = (if a = 0 then 0 else deg R p)"

proof (rule le_anti_sym)
show "deg R (a �P p) <= (if a = 0 then 0 else deg R p)"

using R by (rule deg_smult_ring)
next

show "(if a = 0 then 0 else deg R p) <= deg R (a �P p)"
proof (cases "a = 0")
qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R)

qed

end

context UP_ring
begin

lemma deg_mult_ring:
assumes R: "p ∈ carrier P" "q ∈ carrier P"

282

shows "deg R (p ⊗P q) <= deg R p + deg R q"
proof (rule deg_aboveI)

fix m
assume boundm: "deg R p + deg R q < m"
{

fix k i
assume boundk: "deg R p + deg R q < k"
then have "coeff P p i ⊗ coeff P q (k - i) = 0"
proof (cases "deg R p < i")

case True then show ?thesis by (simp add: deg_aboveD R)
next

case False with boundk have "deg R q < k - i" by arith
then show ?thesis by (simp add: deg_aboveD R)

qed
}
with boundm R show "coeff P (p ⊗P q) m = 0" by simp

qed (simp add: R)

end

context UP_domain
begin

lemma deg_mult [simp]:
"[| p ~= 0P; q ~= 0P; p ∈ carrier P; q ∈ carrier P |] ==>
deg R (p ⊗P q) = deg R p + deg R q"

proof (rule le_anti_sym)
assume "p ∈ carrier P" " q ∈ carrier P"
then show "deg R (p ⊗P q) <= deg R p + deg R q" by (rule deg_mult_ring)

next
let ?s = "(%i. coeff P p i ⊗ coeff P q (deg R p + deg R q - i))"
assume R: "p ∈ carrier P" "q ∈ carrier P" and nz: "p ~= 0P" "q ~=

0P"
have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith
show "deg R p + deg R q <= deg R (p ⊗P q)"
proof (rule deg_belowI, simp add: R)

have "(
⊕

i ∈ {.. deg R p + deg R q}. ?s i)
= (

⊕
i ∈ {..< deg R p} ∪ {deg R p .. deg R p + deg R q}. ?s i)"

by (simp only: ivl_disj_un_one)
also have "... = (

⊕
i ∈ {deg R p .. deg R p + deg R q}. ?s i)"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD less_add_diff R Pi_def)

also have "...= (
⊕

i ∈ {deg R p} ∪ {deg R p <.. deg R p + deg R q}.
?s i)"

by (simp only: ivl_disj_un_singleton)
also have "... = coeff P p (deg R p) ⊗ coeff P q (deg R q)"

by (simp cong: R.finsum_cong
add: ivl_disj_int_singleton deg_aboveD R Pi_def)

finally have "(
⊕

i ∈ {.. deg R p + deg R q}. ?s i)

283

= coeff P p (deg R p) ⊗ coeff P q (deg R q)" .
with nz show "(

⊕
i ∈ {.. deg R p + deg R q}. ?s i) ~= 0"

by (simp add: integral_iff lcoeff_nonzero R)
qed (simp add: R)

qed

end

The following lemmas also can be lifted to UP_ring.

context UP_ring
begin

lemma coeff_finsum:
assumes fin: "finite A"
shows "p ∈ A -> carrier P ==>
coeff P (finsum P p A) k = (

⊕
i ∈ A. coeff P (p i) k)"

using fin by induct (auto simp: Pi_def)

lemma up_repr:
assumes R: "p ∈ carrier P"
shows "(

⊕
P i ∈ {..deg R p}. monom P (coeff P p i) i) = p"

proof (rule up_eqI)
let ?s = "(%i. monom P (coeff P p i) i)"
fix k
from R have RR: "!!i. (if i = k then coeff P p i else 0) ∈ carrier

R"
by simp

show "coeff P (
⊕

P i ∈ {..deg R p}. ?s i) k = coeff P p k"
proof (cases "k <= deg R p")

case True
hence "coeff P (

⊕
P i ∈ {..deg R p}. ?s i) k =

coeff P (
⊕

P i ∈ {..k} ∪ {k<..deg R p}. ?s i) k"
by (simp only: ivl_disj_un_one)

also from True
have "... = coeff P (

⊕
P i ∈ {..k}. ?s i) k"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint
ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def)

also
have "... = coeff P (

⊕
P i ∈ {..<k} ∪ {k}. ?s i) k"

by (simp only: ivl_disj_un_singleton)
also have "... = coeff P p k"

by (simp cong: R.finsum_cong
add: ivl_disj_int_singleton coeff_finsum deg_aboveD R RR Pi_def)

finally show ?thesis .
next

case False
hence "coeff P (

⊕
P i ∈ {..deg R p}. ?s i) k =

coeff P (
⊕

P i ∈ {..<deg R p} ∪ {deg R p}. ?s i) k"
by (simp only: ivl_disj_un_singleton)

284

also from False have "... = coeff P p k"
by (simp cong: R.finsum_cong
add: ivl_disj_int_singleton coeff_finsum deg_aboveD R Pi_def)

finally show ?thesis .
qed

qed (simp_all add: R Pi_def)

lemma up_repr_le:
"[| deg R p <= n; p ∈ carrier P |] ==>
(
⊕

P i ∈ {..n}. monom P (coeff P p i) i) = p"
proof -

let ?s = "(%i. monom P (coeff P p i) i)"
assume R: "p ∈ carrier P" and "deg R p <= n"
then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} ∪ {deg R p<..n})"

by (simp only: ivl_disj_un_one)
also have "... = finsum P ?s {..deg R p}"

by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD R Pi_def)

also have "... = p" using R by (rule up_repr)
finally show ?thesis .

qed

end

14.9 Polynomials over Integral Domains

lemma domainI:
assumes cring: "cring R"

and one_not_zero: "one R ~= zero R"
and integral: "!!a b. [| mult R a b = zero R; a ∈ carrier R;
b ∈ carrier R |] ==> a = zero R | b = zero R"

shows "domain R"
by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms
del: disjCI)

context UP_domain
begin

lemma UP_one_not_zero:
"1P ~= 0P"

proof
assume "1P = 0P"
hence "coeff P 1P 0 = (coeff P 0P 0)" by simp
hence "1 = 0" by simp
with R.one_not_zero show "False" by contradiction

qed

lemma UP_integral:
"[| p ⊗P q = 0P; p ∈ carrier P; q ∈ carrier P |] ==> p = 0P | q = 0P"

285

proof -
fix p q
assume pq: "p ⊗P q = 0P" and R: "p ∈ carrier P" "q ∈ carrier P"
show "p = 0P | q = 0P"
proof (rule classical)

assume c: "~ (p = 0P | q = 0P)"
with R have "deg R p + deg R q = deg R (p ⊗P q)" by simp
also from pq have "... = 0" by simp
finally have "deg R p + deg R q = 0" .
then have f1: "deg R p = 0 & deg R q = 0" by simp
from f1 R have "p = (

⊕
P i ∈ {..0}. monom P (coeff P p i) i)"

by (simp only: up_repr_le)
also from R have "... = monom P (coeff P p 0) 0" by simp
finally have p: "p = monom P (coeff P p 0) 0" .
from f1 R have "q = (

⊕
P i ∈ {..0}. monom P (coeff P q i) i)"

by (simp only: up_repr_le)
also from R have "... = monom P (coeff P q 0) 0" by simp
finally have q: "q = monom P (coeff P q 0) 0" .
from R have "coeff P p 0 ⊗ coeff P q 0 = coeff P (p ⊗P q) 0" by

simp
also from pq have "... = 0" by simp
finally have "coeff P p 0 ⊗ coeff P q 0 = 0" .
with R have "coeff P p 0 = 0 | coeff P q 0 = 0"

by (simp add: R.integral_iff)
with p q show "p = 0P | q = 0P" by fastsimp

qed
qed

theorem UP_domain:
"domain P"
by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI)

end

Interpretation of theorems from domain.

sublocale UP_domain < "domain" P
by intro_locales (rule domain.axioms UP_domain)+

14.10 The Evaluation Homomorphism and Universal Prop-
erty

lemma (in abelian_monoid) boundD_carrier:
"[| bound 0 n f; n < m |] ==> f m ∈ carrier G"
by auto

context ring
begin

theorem diagonal_sum:

286

"[| f ∈ {..n + m::nat} -> carrier R; g ∈ {..n + m} -> carrier R |] ==>
(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =
(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..n + m - k}. f k ⊗ g i)"
proof -

assume Rf: "f ∈ {..n + m} -> carrier R" and Rg: "g ∈ {..n + m} ->
carrier R"

{
fix j
have "j <= n + m ==>
(
⊕

k ∈ {..j}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =
(
⊕

k ∈ {..j}.
⊕

i ∈ {..j - k}. f k ⊗ g i)"
proof (induct j)

case 0 from Rf Rg show ?case by (simp add: Pi_def)
next

case (Suc j)
have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i ∈ carrier

R"
using Suc by (auto intro!: funcset_mem [OF Rg])

have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) ∈ carrier
R"

using Suc by (auto intro!: funcset_mem [OF Rg])
have R9: "!!i k. [| k <= Suc j |] ==> f k ∈ carrier R"

using Suc by (auto intro!: funcset_mem [OF Rf])
have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i ∈ carrier

R"
using Suc by (auto intro!: funcset_mem [OF Rg])

have R11: "g 0 ∈ carrier R"
using Suc by (auto intro!: funcset_mem [OF Rg])

from Suc show ?case
by (simp cong: finsum_cong add: Suc_diff_le a_ac
Pi_def R6 R8 R9 R10 R11)

qed
}
then show ?thesis by fast

qed

theorem cauchy_product:
assumes bf: "bound 0 n f" and bg: "bound 0 m g"

and Rf: "f ∈ {..n} -> carrier R" and Rg: "g ∈ {..m} -> carrier R"
shows "(

⊕
k ∈ {..n + m}.

⊕
i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

i ∈ {..n}. f i) ⊗ (
⊕

i ∈ {..m}. g i)"
proof -

have f: "!!x. f x ∈ carrier R"
proof -

fix x
show "f x ∈ carrier R"

using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def)
qed
have g: "!!x. g x ∈ carrier R"

287

proof -
fix x
show "g x ∈ carrier R"

using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def)
qed
from f g have "(

⊕
k ∈ {..n + m}.

⊕
i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..n + m - k}. f k ⊗ g i)"
by (simp add: diagonal_sum Pi_def)

also have "... = (
⊕

k ∈ {..n} ∪ {n<..n + m}.
⊕

i ∈ {..n + m - k}.
f k ⊗ g i)"

by (simp only: ivl_disj_un_one)
also from f g have "... = (

⊕
k ∈ {..n}.

⊕
i ∈ {..n + m - k}. f k ⊗

g i)"
by (simp cong: finsum_cong
add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def)

also from f g
have "... = (

⊕
k ∈ {..n}.

⊕
i ∈ {..m} ∪ {m<..n + m - k}. f k ⊗ g i)"

by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def)
also from f g have "... = (

⊕
k ∈ {..n}.

⊕
i ∈ {..m}. f k ⊗ g i)"

by (simp cong: finsum_cong
add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def)

also from f g have "... = (
⊕

i ∈ {..n}. f i) ⊗ (
⊕

i ∈ {..m}. g i)"
by (simp add: finsum_ldistr diagonal_sum Pi_def,
simp cong: finsum_cong add: finsum_rdistr Pi_def)

finally show ?thesis .
qed

end

lemma (in UP_ring) const_ring_hom:
"(%a. monom P a 0) ∈ ring_hom R P"
by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult)

definition
eval :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme,

’a => ’b, ’b, nat => ’a] => ’b"
where "eval R S phi s == λp ∈ carrier (UP R).⊕

Si ∈ {..deg R p}. phi (coeff (UP R) p i) ⊗S s (^)S i"

context UP
begin

lemma eval_on_carrier:
fixes S (structure)
shows "p ∈ carrier P ==>
eval R S phi s p = (

⊕
S i ∈ {..deg R p}. phi (coeff P p i) ⊗S s (^)S

i)"
by (unfold eval_def, fold P_def) simp

288

lemma eval_extensional:
"eval R S phi p ∈ extensional (carrier P)"
by (unfold eval_def, fold P_def) simp

end

The universal property of the polynomial ring

locale UP_pre_univ_prop = ring_hom_cring + UP_cring

locale UP_univ_prop = UP_pre_univ_prop +
fixes s and Eval
assumes indet_img_carrier [simp, intro]: "s ∈ carrier S"
defines Eval_def: "Eval == eval R S h s"

JE: I have moved the following lemma from Ring.thy and lifted then to the
locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not
hold for non commutative rings, so maybe it is not that necessary.

lemma (in ring_hom_ring) hom_finsum [simp]:
"[| finite A; f ∈ A -> carrier R |] ==>
h (finsum R f A) = finsum S (h o f) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case by (simp add: Pi_def)

qed

context UP_pre_univ_prop
begin

theorem eval_ring_hom:
assumes S: "s ∈ carrier S"
shows "eval R S h s ∈ ring_hom P S"

proof (rule ring_hom_memI)
fix p
assume R: "p ∈ carrier P"
then show "eval R S h s p ∈ carrier S"

by (simp only: eval_on_carrier) (simp add: S Pi_def)
next

fix p q
assume R: "p ∈ carrier P" "q ∈ carrier P"
then show "eval R S h s (p ⊕P q) = eval R S h s p ⊕S eval R S h s

q"
proof (simp only: eval_on_carrier P.a_closed)

from S R have

289

"(
⊕

S i∈{..deg R (p ⊕P q)}. h (coeff P (p ⊕P q) i) ⊗S s (^)S i)
=

(
⊕

S i∈{..deg R (p ⊕P q)} ∪ {deg R (p ⊕P q)<..max (deg R p) (deg
R q)}.

h (coeff P (p ⊕P q) i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del:

coeff_add)
also from R have "... =

(
⊕

S i ∈ {..max (deg R p) (deg R q)}.
h (coeff P (p ⊕P q) i) ⊗S s (^)S i)"

by (simp add: ivl_disj_un_one)
also from R S have "... =
(
⊕

Si∈{..max (deg R p) (deg R q)}. h (coeff P p i) ⊗S s (^)S i)
⊕S

(
⊕

Si∈{..max (deg R p) (deg R q)}. h (coeff P q i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def)

also have "... =
(
⊕

S i ∈ {..deg R p} ∪ {deg R p<..max (deg R p) (deg R q)}.
h (coeff P p i) ⊗S s (^)S i) ⊕S

(
⊕

S i ∈ {..deg R q} ∪ {deg R q<..max (deg R p) (deg R q)}.
h (coeff P q i) ⊗S s (^)S i)"

by (simp only: ivl_disj_un_one le_maxI1 le_maxI2)
also from R S have "... =
(
⊕

S i ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

S i ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)

finally show
"(

⊕
Si ∈ {..deg R (p ⊕P q)}. h (coeff P (p ⊕P q) i) ⊗S s (^)S

i) =
(
⊕

Si ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

Si ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)" .
qed

next
show "eval R S h s 1P = 1S"

by (simp only: eval_on_carrier UP_one_closed) simp
next

fix p q
assume R: "p ∈ carrier P" "q ∈ carrier P"
then show "eval R S h s (p ⊗P q) = eval R S h s p ⊗S eval R S h s

q"
proof (simp only: eval_on_carrier UP_mult_closed)

from R S have
"(

⊕
S i ∈ {..deg R (p ⊗P q)}. h (coeff P (p ⊗P q) i) ⊗S s (^)S

i) =
(
⊕

S i ∈ {..deg R (p ⊗P q)} ∪ {deg R (p ⊗P q)<..deg R p + deg
R q}.

290

h (coeff P (p ⊗P q) i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def
del: coeff_mult)

also from R have "... =
(
⊕

S i ∈ {..deg R p + deg R q}. h (coeff P (p ⊗P q) i) ⊗S s (^)S
i)"

by (simp only: ivl_disj_un_one deg_mult_ring)
also from R S have "... =

(
⊕

S i ∈ {..deg R p + deg R q}.⊕
S k ∈ {..i}.
h (coeff P p k) ⊗S h (coeff P q (i - k)) ⊗S
(s (^)S k ⊗S s (^)S (i - k)))"

by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def
S.m_ac S.finsum_rdistr)

also from R S have "... =
(
⊕

S i∈{..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊗S
(
⊕

S i∈{..deg R q}. h (coeff P q i) ⊗S s (^)S i)"
by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD

S.m_ac
Pi_def)

finally show
"(

⊕
S i ∈ {..deg R (p ⊗P q)}. h (coeff P (p ⊗P q) i) ⊗S s (^)S

i) =
(
⊕

S i ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊗S
(
⊕

S i ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)" .
qed

qed

The following lemma could be proved in UP_cring with the additional as-
sumption that h is closed.

lemma (in UP_pre_univ_prop) eval_const:
"[| s ∈ carrier S; r ∈ carrier R |] ==> eval R S h s (monom P r 0) =

h r"
by (simp only: eval_on_carrier monom_closed) simp

Further properties of the evaluation homomorphism.

The following proof is complicated by the fact that in arbitrary rings one
might have 1 = 0.

lemma (in UP_pre_univ_prop) eval_monom1:
assumes S: "s ∈ carrier S"
shows "eval R S h s (monom P 1 1) = s"

proof (simp only: eval_on_carrier monom_closed R.one_closed)
from S have
"(

⊕
S i∈{..deg R (monom P 1 1)}. h (coeff P (monom P 1 1) i) ⊗S s

(^)S i) =
(
⊕

S i∈{..deg R (monom P 1 1)} ∪ {deg R (monom P 1 1)<..1}.
h (coeff P (monom P 1 1) i) ⊗S s (^)S i)"

291

by (simp cong: S.finsum_cong del: coeff_monom
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)

also have "... =
(
⊕

S i ∈ {..1}. h (coeff P (monom P 1 1) i) ⊗S s (^)S i)"
by (simp only: ivl_disj_un_one deg_monom_le R.one_closed)

also have "... = s"
proof (cases "s = 0S")

case True then show ?thesis by (simp add: Pi_def)
next

case False then show ?thesis by (simp add: S Pi_def)
qed
finally show "(

⊕
S i ∈ {..deg R (monom P 1 1)}.

h (coeff P (monom P 1 1) i) ⊗S s (^)S i) = s" .
qed

end

Interpretation of ring homomorphism lemmas.

sublocale UP_univ_prop < ring_hom_cring P S Eval
apply (unfold Eval_def)
apply intro_locales
apply (rule ring_hom_cring.axioms)
apply (rule ring_hom_cring.intro)
apply unfold_locales
apply (rule eval_ring_hom)
apply rule
done

lemma (in UP_cring) monom_pow:
assumes R: "a ∈ carrier R"
shows "(monom P a n) (^)P m = monom P (a (^) m) (n * m)"

proof (induct m)
case 0 from R show ?case by simp

next
case Suc with R show ?case

by (simp del: monom_mult add: monom_mult [THEN sym] add_commute)
qed

lemma (in ring_hom_cring) hom_pow [simp]:
"x ∈ carrier R ==> h (x (^) n) = h x (^)S (n::nat)"
by (induct n) simp_all

lemma (in UP_univ_prop) Eval_monom:
"r ∈ carrier R ==> Eval (monom P r n) = h r ⊗S s (^)S n"

proof -
assume R: "r ∈ carrier R"
from R have "Eval (monom P r n) = Eval (monom P r 0 ⊗P (monom P 1 1)

(^)P n)"
by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow)

292

also
from R eval_monom1 [where s = s, folded Eval_def]
have "... = h r ⊗S s (^)S n"

by (simp add: eval_const [where s = s, folded Eval_def])
finally show ?thesis .

qed

lemma (in UP_pre_univ_prop) eval_monom:
assumes R: "r ∈ carrier R" and S: "s ∈ carrier S"
shows "eval R S h s (monom P r n) = h r ⊗S s (^)S n"

proof -
interpret UP_univ_prop R S h P s "eval R S h s"

using UP_pre_univ_prop_axioms P_def R S
by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro)

from R
show ?thesis by (rule Eval_monom)

qed

lemma (in UP_univ_prop) Eval_smult:
"[| r ∈ carrier R; p ∈ carrier P |] ==> Eval (r �P p) = h r ⊗S Eval

p"
proof -

assume R: "r ∈ carrier R" and P: "p ∈ carrier P"
then show ?thesis

by (simp add: monom_mult_is_smult [THEN sym]
eval_const [where s = s, folded Eval_def])

qed

lemma ring_hom_cringI:
assumes "cring R"

and "cring S"
and "h ∈ ring_hom R S"

shows "ring_hom_cring R S h"
by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro
cring.axioms assms)

context UP_pre_univ_prop
begin

lemma UP_hom_unique:
assumes "ring_hom_cring P S Phi"
assumes Phi: "Phi (monom P 1 (Suc 0)) = s"

"!!r. r ∈ carrier R ==> Phi (monom P r 0) = h r"
assumes "ring_hom_cring P S Psi"
assumes Psi: "Psi (monom P 1 (Suc 0)) = s"

"!!r. r ∈ carrier R ==> Psi (monom P r 0) = h r"
and P: "p ∈ carrier P" and S: "s ∈ carrier S"

shows "Phi p = Psi p"
proof -

293

interpret ring_hom_cring P S Phi by fact
interpret ring_hom_cring P S Psi by fact
have "Phi p =

Phi (
⊕

P i ∈ {..deg R p}. monom P (coeff P p i) 0 ⊗P monom P 1
1 (^)P i)"

by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
also
have "... =

Psi (
⊕

P i∈{..deg R p}. monom P (coeff P p i) 0 ⊗P monom P 1 1
(^)P i)"

by (simp add: Phi Psi P Pi_def comp_def)
also have "... = Psi p"

by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
finally show ?thesis .

qed

lemma ring_homD:
assumes Phi: "Phi ∈ ring_hom P S"
shows "ring_hom_cring P S Phi"

proof (rule ring_hom_cring.intro)
show "ring_hom_cring_axioms P S Phi"
by (rule ring_hom_cring_axioms.intro) (rule Phi)

qed unfold_locales

theorem UP_universal_property:
assumes S: "s ∈ carrier S"
shows "EX! Phi. Phi ∈ ring_hom P S ∩ extensional (carrier P) &
Phi (monom P 1 1) = s &
(ALL r : carrier R. Phi (monom P r 0) = h r)"

using S eval_monom1
apply (auto intro: eval_ring_hom eval_const eval_extensional)
apply (rule extensionalityI)
apply (auto intro: UP_hom_unique ring_homD)
done

end

JE: The following lemma was added by me; it might be even lifted to a
simpler locale

context monoid
begin

lemma nat_pow_eone[simp]: assumes x_in_G: "x ∈ carrier G" shows "x
(^) (1::nat) = x"

using nat_pow_Suc [of x 0] unfolding nat_pow_0 [of x] unfolding l_one
[OF x_in_G] by simp

end

294

context UP_ring
begin

abbreviation lcoeff :: "(nat =>’a) => ’a" where "lcoeff p == coeff P
p (deg R p)"

lemma lcoeff_nonzero2: assumes p_in_R: "p ∈ carrier P" and p_not_zero:
"p 6= 0P" shows "lcoeff p 6= 0"

using lcoeff_nonzero [OF p_not_zero p_in_R] .

14.11 The long division algorithm: some previous facts.

lemma coeff_minus [simp]:
assumes p: "p ∈ carrier P" and q: "q ∈ carrier P" shows "coeff P (p

	P q) n = coeff P p n 	 coeff P q n"
unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed

[OF q]] unfolding coeff_a_inv [OF q]
using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra

lemma lcoeff_closed [simp]: assumes p: "p ∈ carrier P" shows "lcoeff
p ∈ carrier R"

using coeff_closed [OF p, of "deg R p"] by simp

lemma deg_smult_decr: assumes a_in_R: "a ∈ carrier R" and f_in_P: "f
∈ carrier P" shows "deg R (a �P f) ≤ deg R f"

using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = 0", auto)

lemma coeff_monom_mult: assumes R: "c ∈ carrier R" and P: "p ∈ carrier
P"

shows "coeff P (monom P c n ⊗P p) (m + n) = c ⊗ (coeff P p m)"
proof -

have "coeff P (monom P c n ⊗P p) (m + n) = (
⊕

i∈{..m + n}. (if n =
i then c else 0) ⊗ coeff P p (m + n - i))"

unfolding coeff_mult [OF monom_closed [OF R, of n] P, of "m + n"]
unfolding coeff_monom [OF R, of n] by simp

also have "(
⊕

i∈{..m + n}. (if n = i then c else 0) ⊗ coeff P p (m
+ n - i)) =

(
⊕

i∈{..m + n}. (if n = i then c ⊗ coeff P p (m + n - i) else 0))"
using R.finsum_cong [of "{..m + n}" "{..m + n}" "(λi::nat. (if n

= i then c else 0) ⊗ coeff P p (m + n - i))"
"(λi::nat. (if n = i then c ⊗ coeff P p (m + n - i) else 0))"]

using coeff_closed [OF P] unfolding Pi_def simp_implies_def using
R by auto

also have ". . . = c ⊗ coeff P p m" using R.finsum_singleton [of n "{..m
+ n}" "(λi. c ⊗ coeff P p (m + n - i))"]

unfolding Pi_def using coeff_closed [OF P] using P R by auto
finally show ?thesis by simp

qed

295

lemma deg_lcoeff_cancel:
assumes p_in_P: "p ∈ carrier P" and q_in_P: "q ∈ carrier P" and r_in_P:

"r ∈ carrier P"
and deg_r_nonzero: "deg R r 6= 0"
and deg_R_p: "deg R p ≤ deg R r" and deg_R_q: "deg R q ≤ deg R r"

and coeff_R_p_eq_q: "coeff P p (deg R r) = 	R (coeff P q (deg R r))"
shows "deg R (p ⊕P q) < deg R r"

proof -
have deg_le: "deg R (p ⊕P q) ≤ deg R r"
proof (rule deg_aboveI)

fix m
assume deg_r_le: "deg R r < m"
show "coeff P (p ⊕P q) m = 0"
proof -

have slp: "deg R p < m" and "deg R q < m" using deg_R_p deg_R_q
using deg_r_le by auto

then have max_sl: "max (deg R p) (deg R q) < m" by simp
then have "deg R (p ⊕P q) < m" using deg_add [OF p_in_P q_in_P]

by arith
with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P,

of m]
using deg_aboveD [of "p ⊕P q" m] using p_in_P q_in_P by simp

qed
qed (simp add: p_in_P q_in_P)
moreover have deg_ne: "deg R (p ⊕P q) 6= deg R r"
proof (rule ccontr)

assume nz: "¬ deg R (p ⊕P q) 6= deg R r" then have deg_eq: "deg
R (p ⊕P q) = deg R r" by simp

from deg_r_nonzero have r_nonzero: "r 6= 0P" by (cases "r = 0P",
simp_all)

have "coeff P (p ⊕P q) (deg R r) = 0R" using coeff_add [OF p_in_P
q_in_P, of "deg R r"] using coeff_R_p_eq_q

using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P,
of "deg R r"] by algebra

with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False
using lcoeff_nonzero [of "p ⊕P q"] using p_in_P q_in_P

using deg_r_nonzero by (cases "p ⊕P q 6= 0P", auto)
qed
ultimately show ?thesis by simp

qed

lemma monom_deg_mult:
assumes f_in_P: "f ∈ carrier P" and g_in_P: "g ∈ carrier P" and deg_le:

"deg R g ≤ deg R f"
and a_in_R: "a ∈ carrier R"
shows "deg R (g ⊗P monom P a (deg R f - deg R g)) ≤ deg R f"
using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f

296

- deg R g"]]
apply (cases "a = 0") using g_in_P apply simp
using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by

simp

lemma deg_zero_impl_monom:
assumes f_in_P: "f ∈ carrier P" and deg_f: "deg R f = 0"
shows "f = monom P (coeff P f 0) 0"
apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P],

of 0 0]
using f_in_P deg_f using deg_aboveD [of f _] by auto

end

14.12 The long division proof for commutative rings

context UP_cring
begin

lemma exI3: assumes exist: "Pred x y z"
shows "∃ x y z. Pred x y z"
using exist by blast

Jacobson’s Theorem 2.14

lemma long_div_theorem:
assumes g_in_P [simp]: "g ∈ carrier P" and f_in_P [simp]: "f ∈ carrier

P"
and g_not_zero: "g 6= 0P"
shows "∃ q r (k::nat). (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff

g)(^)Rk �P f = g ⊗P q ⊕P r ∧ (r = 0P | deg R r < deg R g)"
proof -

let ?pred = "(λ q r (k::nat).
(q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff g)(^)Rk �P f = g ⊗P

q ⊕P r ∧ (r = 0P | deg R r < deg R g))"
and ?lg = "lcoeff g"

show ?thesis

proof (cases "deg R f < deg R g")
case True

have "?pred 0P f 0" using True by force
then show ?thesis by fast

next
case False then have deg_g_le_deg_f: "deg R g ≤ deg R f" by simp
{

from f_in_P deg_g_le_deg_f show ?thesis
proof (induct n ≡ "deg R f" arbitrary: "f" rule: nat_less_induct)

297

fix n f
assume hypo: "∀ m<n. ∀ x. x ∈ carrier P −→

deg R g ≤ deg R x −→
m = deg R x −→
(∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧ lcoeff g (^)

k �P x = g ⊗P q ⊕P r & (r = 0P | deg R r < deg R g))"
and prem: "n = deg R f" and f_in_P [simp]: "f ∈ carrier P"
and deg_g_le_deg_f: "deg R g ≤ deg R f"

let ?k = "1::nat" and ?r = "(g ⊗P (monom P (lcoeff f) (deg R f
- deg R g))) ⊕P 	P (lcoeff g �P f)"

and ?q = "monom P (lcoeff f) (deg R f - deg R g)"
show "∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧ lcoeff

g (^) k �P f = g ⊗P q ⊕P r & (r = 0P | deg R r < deg R g)"
proof -

have exist: "lcoeff g (^) ?k �P f = g ⊗P ?q ⊕P 	P ?r"
using minus_add
using sym [OF a_assoc [of "g ⊗P ?q" "	P (g ⊗P ?q)" "lcoeff

g �P f"]]
using r_neg by auto

show ?thesis
proof (cases "deg R (P ?r) < deg R g")

case True
{

show ?thesis
proof (rule exI3 [of _ ?q "	P ?r" ?k], intro conjI)
show "lcoeff g (^) ?k �P f = g ⊗P ?q ⊕P 	P ?r" using

exist by simp
show "	P ?r = 0P ∨ deg R (P ?r) < deg R g" using True

by simp
qed (simp_all)

}
next

case False note n_deg_r_l_deg_g = False
{

show ?thesis
proof (cases "deg R f = 0")

case True
{

have deg_g: "deg R g = 0" using True using deg_g_le_deg_f
by simp

have "lcoeff g (^) (1::nat) �P f = g ⊗P f ⊕P 0P"
unfolding deg_g apply simp
unfolding sym [OF monom_mult_is_smult [OF coeff_closed

[OF g_in_P, of 0] f_in_P]]
using deg_zero_impl_monom [OF g_in_P deg_g] by simp

298

then show ?thesis using f_in_P by blast
}

next
case False note deg_f_nzero = False
{

have deg_remainder_l_f: "deg R (P ?r) < n"
proof -

have "deg R (P ?r) = deg R ?r" using deg_uminus [of
?r] by simp

also have ". . . < deg R f"
proof (rule deg_lcoeff_cancel)

show "deg R (P (lcoeff g �P f)) ≤ deg R f"
using deg_smult_ring [of "lcoeff g" f] using prem
using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp
show "deg R (g ⊗P ?q) ≤ deg R f"
using monom_deg_mult [OF _ g_in_P, of f "lcoeff f"]

and deg_g_le_deg_f
by simp
show "coeff P (g ⊗P ?q) (deg R f) = 	 coeff P (P

(lcoeff g �P f)) (deg R f)"
unfolding coeff_mult [OF g_in_P monom_closed [OF

lcoeff_closed [OF f_in_P], of "deg R f - deg R g"], of "deg R f"]
unfolding coeff_monom [OF lcoeff_closed [OF f_in_P],

of "(deg R f - deg R g)"]
using R.finsum_cong’ [of "{..deg R f}" "{..deg R

f}"
"(λi. coeff P g i ⊗ (if deg R f - deg R g = deg

R f - i then lcoeff f else 0))"
"(λi. if deg R g = i then coeff P g i ⊗ lcoeff

f else 0)"]
using R.finsum_singleton [of "deg R g" "{.. deg R

f}" "(λi. coeff P g i ⊗ lcoeff f)"]
unfolding Pi_def using deg_g_le_deg_f by force

qed (simp_all add: deg_f_nzero)
finally show "deg R (P ?r) < n" unfolding prem .

qed
moreover have "	P ?r ∈ carrier P" by simp
moreover obtain m where deg_rem_eq_m: "deg R (P ?r)

= m" by auto
moreover have "deg R g ≤ deg R (P ?r)" using n_deg_r_l_deg_g

by simp

ultimately obtain q’ r’ k’
where rem_desc: "lcoeff g (^) (k’::nat) �P (P ?r)

= g ⊗P q’ ⊕P r’"and rem_deg: "(r’ = 0P ∨ deg R r’ < deg R g)"
and q’_in_carrier: "q’ ∈ carrier P" and r’_in_carrier:

"r’ ∈ carrier P"

299

using hypo by blast

show ?thesis
proof (rule exI3 [of _ "((lcoeff g (^) k’) �P ?q ⊕P

q’)" r’ "Suc k’"], intro conjI)
show "(lcoeff g (^) (Suc k’)) �P f = g ⊗P ((lcoeff

g (^) k’) �P ?q ⊕P q’) ⊕P r’"
proof -

have "(lcoeff g (^) (Suc k’)) �P f = (lcoeff g (^)
k’) �P (g ⊗P ?q ⊕P 	P ?r)"

using smult_assoc1 exist by simp
also have ". . . = (lcoeff g (^) k’) �P (g ⊗P ?q) ⊕P

((lcoeff g (^) k’) �P (P ?r))"
using UP_smult_r_distr by simp
also have ". . . = (lcoeff g (^) k’) �P (g ⊗P ?q) ⊕P

(g ⊗P q’ ⊕P r’)"
using rem_desc by simp
also have ". . . = (lcoeff g (^) k’) �P (g ⊗P ?q) ⊕P

g ⊗P q’ ⊕P r’"
using sym [OF a_assoc [of "lcoeff g (^) k’ �P (g

⊗P ?q)" "g ⊗P q’" "r’"]]
using q’_in_carrier r’_in_carrier by simp
also have ". . . = (lcoeff g (^) k’) �P (?q ⊗P g) ⊕P

q’ ⊗P g ⊕P r’"
using q’_in_carrier by (auto simp add: m_comm)
also have ". . . = (((lcoeff g (^) k’) �P ?q) ⊗P g)

⊕P q’ ⊗P g ⊕P r’"
using smult_assoc2 q’_in_carrier by auto
also have ". . . = ((lcoeff g (^) k’) �P ?q ⊕P q’)

⊗P g ⊕P r’"
using sym [OF l_distr] and q’_in_carrier by auto
finally show ?thesis using m_comm q’_in_carrier by

auto
qed

qed (simp_all add: rem_deg q’_in_carrier r’_in_carrier)
}

qed
}

qed
qed

qed
}

qed
qed

end

The remainder theorem as corollary of the long division theorem.

context UP_cring

300

begin

lemma deg_minus_monom:
assumes a: "a ∈ carrier R"
and R_not_trivial: "(carrier R 6= {0})"
shows "deg R (monom P 1R 1 	P monom P a 0) = 1"
(is "deg R ?g = 1")

proof -
have "deg R ?g ≤ 1"
proof (rule deg_aboveI)

fix m
assume "(1::nat) < m"
then show "coeff P ?g m = 0"

using coeff_minus using a by auto algebra
qed (simp add: a)
moreover have "deg R ?g ≥ 1"
proof (rule deg_belowI)

show "coeff P ?g 1 6= 0"
using a using R.carrier_one_not_zero R_not_trivial by simp algebra

qed (simp add: a)
ultimately show ?thesis by simp

qed

lemma lcoeff_monom:
assumes a: "a ∈ carrier R" and R_not_trivial: "(carrier R 6= {0})"
shows "lcoeff (monom P 1R 1 	P monom P a 0) = 1"
using deg_minus_monom [OF a R_not_trivial]
using coeff_minus a by auto algebra

lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p 6= 0"
shows "p 6= 0P"
using deg_zero deg_p_nzero by auto

lemma deg_monom_minus:
assumes a: "a ∈ carrier R"
and R_not_trivial: "carrier R 6= {0}"
shows "deg R (monom P 1R 1 	P monom P a 0) = 1"
(is "deg R ?g = 1")

proof -
have "deg R ?g ≤ 1"
proof (rule deg_aboveI)

fix m::nat assume "1 < m" then show "coeff P ?g m = 0"
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed

[OF a, of 0], of m]
using coeff_monom [OF R.one_closed, of 1 m] using coeff_monom [OF

a, of 0 m] by auto algebra
qed (simp add: a)
moreover have "1 ≤ deg R ?g"

301

proof (rule deg_belowI)
show "coeff P ?g 1 6= 0"

using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed
[OF a, of 0], of 1]

using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF
a, of 0 1]

using R_not_trivial using R.carrier_one_not_zero
by auto algebra

qed (simp add: a)
ultimately show ?thesis by simp

qed

lemma eval_monom_expr:
assumes a: "a ∈ carrier R"
shows "eval R R id a (monom P 1R 1 	P monom P a 0) = 0"
(is "eval R R id a ?g = _")

proof -
interpret UP_pre_univ_prop R R id proof qed simp
have eval_ring_hom: "eval R R id a ∈ ring_hom P R" using eval_ring_hom

[OF a] by simp
interpret ring_hom_cring P R "eval R R id a" proof qed (simp add: eval_ring_hom)
have mon1_closed: "monom P 1R 1 ∈ carrier P"

and mon0_closed: "monom P a 0 ∈ carrier P"
and min_mon0_closed: "	P monom P a 0 ∈ carrier P"
using a R.a_inv_closed by auto

have "eval R R id a ?g = eval R R id a (monom P 1 1) 	 eval R R id
a (monom P a 0)"

unfolding P.minus_eq [OF mon1_closed mon0_closed]
unfolding hom_add [OF mon1_closed min_mon0_closed]
unfolding hom_a_inv [OF mon0_closed]
using R.minus_eq [symmetric] mon1_closed mon0_closed by auto

also have ". . . = a 	 a"
using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a

a, of 0] using a by simp
also have ". . . = 0"

using a by algebra
finally show ?thesis by simp

qed

lemma remainder_theorem_exist:
assumes f: "f ∈ carrier P" and a: "a ∈ carrier R"
and R_not_trivial: "carrier R 6= {0}"
shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = (monom P 1R

1 	P monom P a 0) ⊗P q ⊕P r ∧ (deg R r = 0)"
(is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P r ∧

(deg R r = 0)")
proof -

let ?g = "monom P 1R 1 	P monom P a 0"
from deg_minus_monom [OF a R_not_trivial]

302

have deg_g_nzero: "deg R ?g 6= 0" by simp
have "∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧

lcoeff ?g (^) k �P f = ?g ⊗P q ⊕P r ∧ (r = 0P ∨ deg R r < deg R
?g)"

using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a
by auto

then show ?thesis
unfolding lcoeff_monom [OF a R_not_trivial]
unfolding deg_monom_minus [OF a R_not_trivial]
using smult_one [OF f] using deg_zero by force

qed

lemma remainder_theorem_expression:
assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"
and q [simp]: "q ∈ carrier P" and r [simp]: "r ∈ carrier P"
and R_not_trivial: "carrier R 6= {0}"
and f_expr: "f = (monom P 1R 1 	P monom P a 0) ⊗P q ⊕P r"
(is "f = ?g ⊗P q ⊕P r" is "f = ?gq ⊕P r")

and deg_r_0: "deg R r = 0"
shows "r = monom P (eval R R id a f) 0"

proof -
interpret UP_pre_univ_prop R R id P proof qed simp
have eval_ring_hom: "eval R R id a ∈ ring_hom P R"

using eval_ring_hom [OF a] by simp
have "eval R R id a f = eval R R id a ?gq ⊕R eval R R id a r"

unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto
also have ". . . = ((eval R R id a ?g) ⊗ (eval R R id a q)) ⊕R eval R

R id a r"
using ring_hom_mult [OF eval_ring_hom] by auto

also have ". . . = 0 ⊕ eval R R id a r"
unfolding eval_monom_expr [OF a] using eval_ring_hom
unfolding ring_hom_def using q unfolding Pi_def by simp

also have ". . . = eval R R id a r"
using eval_ring_hom unfolding ring_hom_def using r unfolding Pi_def

by simp
finally have eval_eq: "eval R R id a f = eval R R id a r" by simp
from deg_zero_impl_monom [OF r deg_r_0]
have "r = monom P (coeff P r 0) 0" by simp
with eval_const [OF a, of "coeff P r 0"] eval_eq
show ?thesis by auto

qed

corollary remainder_theorem:
assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"
and R_not_trivial: "carrier R 6= {0}"
shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧

f = (monom P 1R 1 	P monom P a 0) ⊗P q ⊕P monom P (eval R R id a
f) 0"
(is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P monom

303

P (eval R R id a f) 0")
proof -

from remainder_theorem_exist [OF f a R_not_trivial]
obtain q r

where q_r: "q ∈ carrier P ∧ r ∈ carrier P ∧ f = ?g ⊗P q ⊕P r"
and deg_r: "deg R r = 0" by force

with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r]
show ?thesis by auto

qed

end

14.13 Sample Application of Evaluation Homomorphism

lemma UP_pre_univ_propI:
assumes "cring R"

and "cring S"
and "h ∈ ring_hom R S"

shows "UP_pre_univ_prop R S h"
using assms
by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro
ring_hom_cring_axioms.intro UP_cring.intro)

definition INTEG :: "int ring"
where INTEG_def: "INTEG == (| carrier = UNIV, mult = op *, one = 1,

zero = 0, add = op + |)"

lemma INTEG_cring:
"cring INTEG"
by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI
zadd_zminus_inverse2 zadd_zmult_distrib)

lemma INTEG_id_eval:
"UP_pre_univ_prop INTEG INTEG id"
by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom)

Interpretation now enables to import all theorems and lemmas valid in the
context of homomorphisms between INTEG and UP INTEG globally.

interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"
using INTEG_id_eval by simp_all

lemma INTEG_closed [intro, simp]:
"z ∈ carrier INTEG"
by (unfold INTEG_def) simp

lemma INTEG_mult [simp]:
"mult INTEG z w = z * w"
by (unfold INTEG_def) simp

REFERENCES 304

lemma INTEG_pow [simp]:
"pow INTEG z n = z ^ n"
by (induct n) (simp_all add: INTEG_def nat_pow_def)

lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"
by (simp add: INTEG.eval_monom)

end

References

[1] C. Ballarin. Computer Algebra and Theorem Proving. PhD the-
sis, University of Cambridge, 1999. http://www4.in.tum.de/∼ballarin/
publications.html.

[2] N. Jacobson. Basic Algebra I. Freeman, 1985.

[3] F. Kammüller and L. C. Paulson. A formal proof of sylow’s theorem:
An experiment in abstract algebra with Isabelle HOL. J. Automated
Reasoning, (23):235–264, 1999.

http://www4.in.tum.de/~ballarin/publications.html
http://www4.in.tum.de/~ballarin/publications.html

	Objects
	Structure with Carrier Set.
	Structure with Carrier and Equivalence Relation eq

	Orders and Lattices
	Partial Orders
	The order relation
	Upper and lower bounds of a set
	Least and greatest, as predicate

	Lattices
	Supremum
	Infimum

	Total Orders
	Complete Lattices
	Orders and Lattices where eq is the Equality
	Examples
	The Powerset of a Set is a Complete Lattice

	Monoids and Groups
	Definitions
	Groups
	Cancellation Laws and Basic Properties
	Subgroups
	Direct Products
	Homomorphisms and Isomorphisms
	Commutative Structures
	The Lattice of Subgroups of a Group
	Product Operator for Commutative Monoids
	Inductive Definition of a Relation for Products over Sets
	Products over Finite Sets

	Cosets and Quotient Groups
	Basic Properties of Cosets
	Normal subgroups
	More Properties of Cosets
	Set of Inverses of an rcoset.
	Theorems for with or .
	An Equivalence Relation
	Two Distinct Right Cosets are Disjoint

	Further lemmas for rcongruent
	Order of a Group and Lagrange's Theorem
	Quotient Groups: Factorization of a Group
	The First Isomorphism Theorem

	Sylow's Theorem
	The Combinatorial Argument Underlying the First Sylow Theorem
	Main Part of the Proof
	Discharging the Assumptions of sylowcentral
	Introduction and Destruct Rules for H

	Equal Cardinalities of M and the Set of Cosets
	The Opposite Injection

	Sylow's Theorem

	Bijections of a Set, Permutation and Automorphism Groups
	Bijections Form a Group
	Automorphisms Form a Group

	Factorial Monoids
	Monoids with Cancellation Law
	Products of Units in Monoids
	Divisibility and Association
	Function definitions
	Divisibility
	Association
	Division and associativity
	Multiplication and associativity
	Units
	Proper factors

	Irreducible Elements and Primes
	Irreducible elements
	Prime elements

	Factorization and Factorial Monoids
	Function definitions
	Comparing lists of elements
	Properties of lists of elements
	Factorization in irreducible elements
	Essentially equal factorizations
	Factorial monoids and wfactors

	Factorizations as Multisets
	Comparing multisets
	Interpreting multisets as factorizations
	Multiplication on multisets
	Divisibility on multisets

	Irreducible Elements are Prime
	Greatest Common Divisors and Lowest Common Multiples
	Definitions
	Connections to Lattice.thy
	Existence of gcd and lcm

	Conditions for Factoriality
	Gcd condition
	Divisor chain condition
	Primeness condition
	Application to factorial monoids

	Factoriality Theorems

	The Algebraic Hierarchy of Rings
	Abelian Groups
	Basic Properties
	Sums over Finite Sets
	Rings: Basic Definitions
	Rings
	Normaliser for Rings
	Sums over Finite Sets

	Integral Domains
	Fields
	Morphisms
	More Lifting from Groups to Abelian Groups
	Definitions
	Cosets
	Subgroups
	Additive subgroups are normal
	Congruence Relation
	Factorization
	The First Isomorphism Theorem
	Homomorphisms
	Cosets
	Addition of Subgroups

	Ideals
	Definitions
	General definition
	Ideals Generated by a Subset of carrier R
	Principal Ideals
	Maximal Ideals
	Prime Ideals

	Special Ideals
	General Ideal Properies
	Intersection of Ideals
	Addition of Ideals
	Ideals generated by a subset of carrier R
	Union of Ideals
	Properties of Principal Ideals
	Prime Ideals
	Maximal Ideals
	Derived Theorems

	Homomorphisms of Non-Commutative Rings
	The Kernel of a Ring Homomorphism
	Cosets

	Quotient Rings
	Multiplication on Cosets
	Quotient Ring Definition
	Factorization over General Ideals
	Factorization over Prime Ideals
	Factorization over Maximal Ideals

	The Ring of Integers
	Some properties of int
	Z: The Set of Integers as Algebraic Structure
	Interpretations
	Generated Ideals of Z
	Ideals and Divisibility
	Ideals and the Modulus
	Factorization

	Modules over an Abelian Group
	Definitions
	Basic Properties of Algebras

	Univariate Polynomials
	The Constructor for Univariate Polynomials
	Effect of Operations on Coefficients
	Polynomials Form a Ring.
	Polynomials Form a Commutative Ring.
	Polynomials over a commutative ring for a commutative ring
	Polynomials Form an Algebra
	Further Lemmas Involving Monomials
	The Degree Function
	Polynomials over Integral Domains
	The Evaluation Homomorphism and Universal Property
	The long division algorithm: some previous facts.
	The long division proof for commutative rings
	Sample Application of Evaluation Homomorphism

