Up to index of Isabelle/HOLCF/IOA
theory Compositionality(* Title: HOLCF/IOA/meta_theory/Compositionality.thy ID: $Id$ Author: Olaf Müller *) header {* Compositionality of I/O automata *} theory Compositionality imports CompoTraces begin lemma compatibility_consequence3: "[|eA --> A ; eB & ~eA --> ~A|] ==> (eA | eB) --> A=eA" apply auto done lemma Filter_actAisFilter_extA: "!! A B. [| compatible A B; Forall (%a. a: ext A | a: ext B) tr |] ==> Filter (%a. a: act A)$tr= Filter (%a. a: ext A)$tr" apply (rule ForallPFilterQR) (* i.e.: [| (! x. P x --> (Q x = R x)) ; Forall P tr |] ==> Filter Q$tr = Filter R$tr *) prefer 2 apply (assumption) apply (rule compatibility_consequence3) apply (simp_all add: ext_is_act ext1_ext2_is_not_act1) done (* the next two theorems are only necessary, as there is no theorem ext (A||B) = ext (B||A) *) lemma compatibility_consequence4: "[|eA --> A ; eB & ~eA --> ~A|] ==> (eB | eA) --> A=eA" apply auto done lemma Filter_actAisFilter_extA2: "[| compatible A B; Forall (%a. a: ext B | a: ext A) tr |] ==> Filter (%a. a: act A)$tr= Filter (%a. a: ext A)$tr" apply (rule ForallPFilterQR) prefer 2 apply (assumption) apply (rule compatibility_consequence4) apply (simp_all add: ext_is_act ext1_ext2_is_not_act1) done subsection " Main Compositionality Theorem " lemma compositionality: "[| is_trans_of A1; is_trans_of A2; is_trans_of B1; is_trans_of B2; is_asig_of A1; is_asig_of A2; is_asig_of B1; is_asig_of B2; compatible A1 B1; compatible A2 B2; A1 =<| A2; B1 =<| B2 |] ==> (A1 || B1) =<| (A2 || B2)" apply (simp add: is_asig_of_def) apply (frule_tac A1 = "A1" in compat_commute [THEN iffD1]) apply (frule_tac A1 = "A2" in compat_commute [THEN iffD1]) apply (simp add: ioa_implements_def inputs_of_par outputs_of_par externals_of_par) apply auto apply (simp add: compositionality_tr) apply (subgoal_tac "ext A1 = ext A2 & ext B1 = ext B2") prefer 2 apply (simp add: externals_def) apply (erule conjE)+ (* rewrite with proven subgoal *) apply (simp add: externals_of_par) apply auto (* 2 goals, the 3rd has been solved automatically *) (* 1: Filter A2 x : traces A2 *) apply (drule_tac A = "traces A1" in subsetD) apply assumption apply (simp add: Filter_actAisFilter_extA) (* 2: Filter B2 x : traces B2 *) apply (drule_tac A = "traces B1" in subsetD) apply assumption apply (simp add: Filter_actAisFilter_extA2) done end