Theory Ordinals

Up to index of Isabelle/HOL/Induct

theory Ordinals
imports Main

(*  Title:      HOL/Induct/Ordinals.thy
    ID:         $Id$
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
*)

header {* Ordinals *}

theory Ordinals imports Main begin

text {*
  Some basic definitions of ordinal numbers.  Draws an Agda
  development (in Martin-L\"of type theory) by Peter Hancock (see
  \url{http://www.dcs.ed.ac.uk/home/pgh/chat.html}).
*}

datatype ordinal =
    Zero
  | Succ ordinal
  | Limit "nat => ordinal"

consts
  pred :: "ordinal => nat => ordinal option"
primrec
  "pred Zero n = None"
  "pred (Succ a) n = Some a"
  "pred (Limit f) n = Some (f n)"

consts
  iter :: "('a => 'a) => nat => ('a => 'a)"
primrec
  "iter f 0 = id"
  "iter f (Suc n) = f o (iter f n)"

definition
  OpLim :: "(nat => (ordinal => ordinal)) => (ordinal => ordinal)" where
  "OpLim F a = Limit (λn. F n a)"

definition
  OpItw :: "(ordinal => ordinal) => (ordinal => ordinal)"    ("\<Squnion>") where
  "\<Squnion>f = OpLim (iter f)"

consts
  cantor :: "ordinal => ordinal => ordinal"
primrec
  "cantor a Zero = Succ a"
  "cantor a (Succ b) = \<Squnion>(λx. cantor x b) a"
  "cantor a (Limit f) = Limit (λn. cantor a (f n))"

consts
  Nabla :: "(ordinal => ordinal) => (ordinal => ordinal)"    ("∇")
primrec
  "∇f Zero = f Zero"
  "∇f (Succ a) = f (Succ (∇f a))"
  "∇f (Limit h) = Limit (λn. ∇f (h n))"

definition
  deriv :: "(ordinal => ordinal) => (ordinal => ordinal)" where
  "deriv f = ∇(\<Squnion>f)"

consts
  veblen :: "ordinal => ordinal => ordinal"
primrec
  "veblen Zero = ∇(OpLim (iter (cantor Zero)))"
  "veblen (Succ a) = ∇(OpLim (iter (veblen a)))"
  "veblen (Limit f) = ∇(OpLim (λn. veblen (f n)))"

definition "veb a = veblen a Zero"
definition 0 = veb Zero"
definition 0 = Limit (λn. iter veb n Zero)"

end