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theory Congruence imports Main begin

1 Objects

1.1 Structure with Carrier Set.

record ’a partial_object =
carrier :: "’a set"

1.2 Structure with Carrier and Equivalence Relation eq

record ’a eq_object = "’a partial_object" +
eq :: "’a ⇒ ’a ⇒ bool" (infixl ".=ı " 50)

constdefs (structure S)
elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl ".∈ı " 50)
"x .∈ A ≡ (∃ y ∈ A. x .= y)"

set_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.=}ı " 50)
"A {.=} B == ((∀ x ∈ A. x .∈ B) ∧ (∀ x ∈ B. x .∈ A))"

eq_class_of :: "_ ⇒ ’a ⇒ ’a set" ("class’_ofı _")
"class_of x == {y ∈ carrier S. x .= y}"

eq_closure_of :: "_ ⇒ ’a set ⇒ ’a set" ("closure’_ofı _")
"closure_of A == {y ∈ carrier S. y .∈ A}"

eq_is_closed :: "_ ⇒ ’a set ⇒ bool" ("is’_closedı _")
"is_closed A == (A ⊆ carrier S ∧ closure_of A = A)"

syntax
not_eq :: "_ ⇒ ’a ⇒ ’a ⇒ bool" (infixl ".6=ı " 50)
not_elem :: "_ ⇒ ’a ⇒ ’a set ⇒ bool" (infixl "./∈ı " 50)
set_not_eq :: "_ ⇒ ’a set ⇒ ’a set ⇒ bool" (infixl "{.6=}ı " 50)

translations
"x .6=ı y" == "~(x .=ı y)"
"x ./∈ı A" == "~(x .∈ı A)"
"A {. 6=}ı B" == "~(A {.=}ı B)"

locale equivalence =
fixes S (structure)
assumes refl [simp, intro]: "x ∈ carrier S =⇒ x .= x"

and sym [sym]: "[[ x .= y; x ∈ carrier S; y ∈ carrier S ]] =⇒ y .=
x"

and trans [trans]: "[[ x .= y; y .= z; x ∈ carrier S; y ∈ carrier
S; z ∈ carrier S ]] =⇒ x .= z"
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lemma elemI:
fixes R (structure)
assumes "a’ ∈ A" and "a .= a’"
shows "a .∈ A"

unfolding elem_def
using assms
by fast

lemma (in equivalence) elem_exact:
assumes "a ∈ carrier S" and "a ∈ A"
shows "a .∈ A"

using assms
by (fast intro: elemI)

lemma elemE:
fixes S (structure)
assumes "a .∈ A"

and "
∧
a’. [[a’ ∈ A; a .= a’]] =⇒ P"

shows "P"
using assms
unfolding elem_def
by fast

lemma (in equivalence) elem_cong_l [trans]:
assumes cong: "a’ .= a"

and a: "a .∈ A"
and carr: "a ∈ carrier S" "a’ ∈ carrier S"
and Acarr: "A ⊆ carrier S"

shows "a’ .∈ A"
using a
apply (elim elemE, intro elemI)
proof assumption

fix b
assume bA: "b ∈ A"
note [simp] = carr bA[THEN subsetD[OF Acarr]]
note cong
also assume "a .= b"
finally show "a’ .= b" by simp

qed

lemma (in equivalence) elem_subsetD:
assumes "A ⊆ B"

and aA: "a .∈ A"
shows "a .∈ B"

using assms
by (fast intro: elemI elim: elemE dest: subsetD)
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lemma (in equivalence) mem_imp_elem [simp, intro]:
"[| x ∈ A; x ∈ carrier S |] ==> x .∈ A"
unfolding elem_def by blast

lemma set_eqI:
fixes R (structure)
assumes ltr: "

∧
a. a ∈ A =⇒ a .∈ B"

and rtl: "
∧
b. b ∈ B =⇒ b .∈ A"

shows "A {.=} B"
unfolding set_eq_def
by (fast intro: ltr rtl)

lemma set_eqI2:
fixes R (structure)
assumes ltr: "

∧
a b. a ∈ A =⇒ ∃ b∈B. a .= b"

and rtl: "
∧
b. b ∈ B =⇒ ∃ a∈A. b .= a"

shows "A {.=} B"
by (intro set_eqI, unfold elem_def) (fast intro: ltr rtl)+

lemma set_eqD1:
fixes R (structure)
assumes AA’: "A {.=} A’"

and "a ∈ A"
shows "∃ a’∈A’. a .= a’"

using assms
unfolding set_eq_def elem_def
by fast

lemma set_eqD2:
fixes R (structure)
assumes AA’: "A {.=} A’"

and "a’ ∈ A’"
shows "∃ a∈A. a’ .= a"

using assms
unfolding set_eq_def elem_def
by fast

lemma set_eqE:
fixes R (structure)
assumes AB: "A {.=} B"

and r: "[[∀ a∈A. a .∈ B; ∀ b∈B. b .∈ A]] =⇒ P"
shows "P"

using AB
unfolding set_eq_def
by (blast dest: r)

lemma set_eqE2:
fixes R (structure)
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assumes AB: "A {.=} B"
and r: "[[∀ a∈A. (∃ b∈B. a .= b); ∀ b∈B. (∃ a∈A. b .= a)]] =⇒ P"

shows "P"
using AB
unfolding set_eq_def elem_def
by (blast dest: r)

lemma set_eqE’:
fixes R (structure)
assumes AB: "A {.=} B"

and aA: "a ∈ A" and bB: "b ∈ B"
and r: "

∧
a’ b’. [[a’ ∈ A; b .= a’; b’ ∈ B; a .= b’]] =⇒ P"

shows "P"
proof -

from AB aA
have "∃ b’∈B. a .= b’" by (rule set_eqD1)

from this obtain b’
where b’: "b’ ∈ B" "a .= b’" by auto

from AB bB
have "∃ a’∈A. b .= a’" by (rule set_eqD2)

from this obtain a’
where a’: "a’ ∈ A" "b .= a’" by auto

from a’ b’
show "P" by (rule r)

qed

lemma (in equivalence) eq_elem_cong_r [trans]:
assumes a: "a .∈ A"

and cong: "A {.=} A’"
and carr: "a ∈ carrier S"
and Carr: "A ⊆ carrier S" "A’ ⊆ carrier S"

shows "a .∈ A’"
using a cong
proof (elim elemE set_eqE)

fix b
assume bA: "b ∈ A"

and inA’: "∀ b∈A. b .∈ A’"
note [simp] = carr Carr Carr[THEN subsetD] bA
assume "a .= b"
also from bA inA’

have "b .∈ A’" by fast
finally

show "a .∈ A’" by simp
qed

lemma (in equivalence) set_eq_sym [sym]:
assumes "A {.=} B"



10

and "A ⊆ carrier S" "B ⊆ carrier S"
shows "B {.=} A"

using assms
unfolding set_eq_def elem_def
by fast

lemma (in equivalence) equal_set_eq_trans [trans]:
assumes AB: "A = B" and BC: "B {.=} C"
shows "A {.=} C"
using AB BC by simp

lemma (in equivalence) set_eq_equal_trans [trans]:
assumes AB: "A {.=} B" and BC: "B = C"
shows "A {.=} C"
using AB BC by simp

lemma (in equivalence) set_eq_trans [trans]:
assumes AB: "A {.=} B" and BC: "B {.=} C"

and carr: "A ⊆ carrier S" "B ⊆ carrier S" "C ⊆ carrier S"
shows "A {.=} C"

proof (intro set_eqI)
fix a
assume aA: "a ∈ A"
with carr have "a ∈ carrier S" by fast
note [simp] = carr this

from aA
have "a .∈ A" by (simp add: elem_exact)

also note AB
also note BC
finally

show "a .∈ C" by simp
next

fix c
assume cC: "c ∈ C"
with carr have "c ∈ carrier S" by fast
note [simp] = carr this

from cC
have "c .∈ C" by (simp add: elem_exact)

also note BC[symmetric]
also note AB[symmetric]
finally

show "c .∈ A" by simp
qed
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lemma (in equivalence) set_eq_pairI:
assumes xx’: "x .= x’"

and carr: "x ∈ carrier S" "x’ ∈ carrier S" "y ∈ carrier S"
shows "{x, y} {.=} {x’, y}"

unfolding set_eq_def elem_def
proof safe

have "x’ ∈ {x’, y}" by fast
with xx’ show "∃ b∈{x’, y}. x .= b" by fast

next
have "y ∈ {x’, y}" by fast
with carr show "∃ b∈{x’, y}. y .= b" by fast

next
have "x ∈ {x, y}" by fast
with xx’[symmetric] carr
show "∃ a∈{x, y}. x’ .= a" by fast

next
have "y ∈ {x, y}" by fast
with carr show "∃ a∈{x, y}. y .= a" by fast

qed

lemma (in equivalence) is_closedI:
assumes closed: "!!x y. [| x .= y; x ∈ A; y ∈ carrier S |] ==> y ∈

A"
and S: "A ⊆ carrier S"

shows "is_closed A"
unfolding eq_is_closed_def eq_closure_of_def elem_def
using S
by (blast dest: closed sym)

lemma (in equivalence) closure_of_eq:
"[| x .= x’; A ⊆ carrier S; x ∈ closure_of A; x ∈ carrier S; x’ ∈ carrier

S |] ==> x’ ∈ closure_of A"
unfolding eq_closure_of_def elem_def
by (blast intro: trans sym)

lemma (in equivalence) is_closed_eq [dest]:
"[| x .= x’; x ∈ A; is_closed A; x ∈ carrier S; x’ ∈ carrier S |] ==>

x’ ∈ A"
unfolding eq_is_closed_def
using closure_of_eq [where A = A]
by simp

lemma (in equivalence) is_closed_eq_rev [dest]:
"[| x .= x’; x’ ∈ A; is_closed A; x ∈ carrier S; x’ ∈ carrier S |]
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==> x ∈ A"
by (drule sym) (simp_all add: is_closed_eq)

lemma closure_of_closed [simp, intro]:
fixes S (structure)
shows "closure_of A ⊆ carrier S"

unfolding eq_closure_of_def
by fast

lemma closure_of_memI:
fixes S (structure)
assumes "a .∈ A"

and "a ∈ carrier S"
shows "a ∈ closure_of A"

unfolding eq_closure_of_def
using assms
by fast

lemma closure_ofI2:
fixes S (structure)
assumes "a .= a’"

and "a’ ∈ A"
and "a ∈ carrier S"

shows "a ∈ closure_of A"
unfolding eq_closure_of_def elem_def
using assms
by fast

lemma closure_of_memE:
fixes S (structure)
assumes p: "a ∈ closure_of A"

and r: "[[a ∈ carrier S; a .∈ A]] =⇒ P"
shows "P"

proof -
from p

have acarr: "a ∈ carrier S"
and "a .∈ A"
by (simp add: eq_closure_of_def)+

thus "P" by (rule r)
qed

lemma closure_ofE2:
fixes S (structure)
assumes p: "a ∈ closure_of A"

and r: "
∧
a’. [[a ∈ carrier S; a’ ∈ A; a .= a’]] =⇒ P"

shows "P"
proof -

from p have acarr: "a ∈ carrier S" by (simp add: eq_closure_of_def)
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from p have "∃ a’∈A. a .= a’" by (simp add: eq_closure_of_def elem_def)
from this obtain a’

where "a’ ∈ A" and "a .= a’" by auto

from acarr and this
show "P" by (rule r)

qed

end

theory Lattice imports Congruence begin

2 Orders and Lattices

2.1 Partial Orders

record ’a gorder = "’a eq_object" +
le :: "[’a, ’a] => bool" (infixl "vı " 50)

locale weak_partial_order = equivalence L for L (structure) +
assumes le_refl [intro, simp]:

"x ∈ carrier L ==> x v x"
and weak_le_anti_sym [intro]:
"[| x v y; y v x; x ∈ carrier L; y ∈ carrier L |] ==> x .= y"

and le_trans [trans]:
"[| x v y; y v z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L

|] ==> x v z"
and le_cong:
"[[ x .= y; z .= w; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L;

w ∈ carrier L ]] =⇒ x v z ←→ y v w"

constdefs (structure L)
lless :: "[_, ’a, ’a] => bool" (infixl "@ı " 50)
"x @ y == x v y & x . 6= y"

2.1.1 The order relation

context weak_partial_order begin

lemma le_cong_l [intro, trans]:
"[[ x .= y; y v z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L ]] =⇒

x v z"
by (auto intro: le_cong [THEN iffD2])
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lemma le_cong_r [intro, trans]:
"[[ x v y; y .= z; x ∈ carrier L; y ∈ carrier L; z ∈ carrier L ]] =⇒

x v z"
by (auto intro: le_cong [THEN iffD1])

lemma weak_refl [intro, simp]: "[[ x .= y; x ∈ carrier L; y ∈ carrier
L ]] =⇒ x v y"

by (simp add: le_cong_l)

end

lemma weak_llessI:
fixes R (structure)
assumes "x v y" and "~(x .= y)"
shows "x @ y"
using assms unfolding lless_def by simp

lemma lless_imp_le:
fixes R (structure)
assumes "x @ y"
shows "x v y"
using assms unfolding lless_def by simp

lemma weak_lless_imp_not_eq:
fixes R (structure)
assumes "x @ y"
shows "¬ (x .= y)"
using assms unfolding lless_def by simp

lemma weak_llessE:
fixes R (structure)
assumes p: "x @ y" and e: "[[x v y; ¬ (x .= y)]] =⇒ P"
shows "P"
using p by (blast dest: lless_imp_le weak_lless_imp_not_eq e)

lemma (in weak_partial_order) lless_cong_l [trans]:
assumes xx’: "x .= x’"

and xy: "x’ @ y"
and carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

shows "x @ y"
using assms unfolding lless_def by (auto intro: trans sym)

lemma (in weak_partial_order) lless_cong_r [trans]:
assumes xy: "x @ y"

and yy’: "y .= y’"
and carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

shows "x @ y’"
using assms unfolding lless_def by (auto intro: trans sym)
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lemma (in weak_partial_order) lless_antisym:
assumes "a ∈ carrier L" "b ∈ carrier L"

and "a @ b" "b @ a"
shows "P"
using assms
by (elim weak_llessE) auto

lemma (in weak_partial_order) lless_trans [trans]:
assumes "a @ b" "b @ c"

and carr[simp]: "a ∈ carrier L" "b ∈ carrier L" "c ∈ carrier L"
shows "a @ c"
using assms unfolding lless_def by (blast dest: le_trans intro: sym)

2.1.2 Upper and lower bounds of a set

constdefs (structure L)
Upper :: "[_, ’a set] => ’a set"
"Upper L A == {u. (ALL x. x ∈ A ∩ carrier L --> x v u)} ∩ carrier L"

Lower :: "[_, ’a set] => ’a set"
"Lower L A == {l. (ALL x. x ∈ A ∩ carrier L --> l v x)} ∩ carrier L"

lemma Upper_closed [intro!, simp]:
"Upper L A ⊆ carrier L"
by (unfold Upper_def) clarify

lemma Upper_memD [dest]:
fixes L (structure)
shows "[| u ∈ Upper L A; x ∈ A; A ⊆ carrier L |] ==> x v u ∧ u ∈

carrier L"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemD [dest]:
"[| u .∈ Upper L A; u ∈ carrier L; x ∈ A; A ⊆ carrier L |] ==> x v

u"
unfolding Upper_def elem_def
by (blast dest: sym)

lemma Upper_memI:
fixes L (structure)
shows "[| !! y. y ∈ A ==> y v x; x ∈ carrier L |] ==> x ∈ Upper L

A"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_elemI:
"[| !! y. y ∈ A ==> y v x; x ∈ carrier L |] ==> x .∈ Upper L A"
unfolding Upper_def by blast
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lemma Upper_antimono:
"A ⊆ B ==> Upper L B ⊆ Upper L A"
by (unfold Upper_def) blast

lemma (in weak_partial_order) Upper_is_closed [simp]:
"A ⊆ carrier L ==> is_closed (Upper L A)"
by (rule is_closedI) (blast intro: Upper_memI)+

lemma (in weak_partial_order) Upper_mem_cong:
assumes a’carr: "a’ ∈ carrier L" and Acarr: "A ⊆ carrier L"

and aa’: "a .= a’"
and aelem: "a ∈ Upper L A"

shows "a’ ∈ Upper L A"
proof (rule Upper_memI[OF _ a’carr])

fix y
assume yA: "y ∈ A"
hence "y v a" by (intro Upper_memD[OF aelem, THEN conjunct1] Acarr)
also note aa’
finally

show "y v a’"
by (simp add: a’carr subsetD[OF Acarr yA] subsetD[OF Upper_closed

aelem])
qed

lemma (in weak_partial_order) Upper_cong:
assumes Acarr: "A ⊆ carrier L" and A’carr: "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "Upper L A = Upper L A’"

unfolding Upper_def
apply rule
apply (rule, clarsimp) defer 1
apply (rule, clarsimp) defer 1

proof -
fix x a’
assume carr: "x ∈ carrier L" "a’ ∈ carrier L"

and a’A’: "a’ ∈ A’"
assume aLxCond[rule_format]: "∀ a. a ∈ A ∧ a ∈ carrier L −→ a v x"

from AA’ and a’A’ have "∃ a∈A. a’ .= a" by (rule set_eqD2)
from this obtain a

where aA: "a ∈ A"
and a’a: "a’ .= a"
by auto

note [simp] = subsetD[OF Acarr aA] carr

note a’a
also have "a v x" by (simp add: aLxCond aA)
finally show "a’ v x" by simp

next
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fix x a
assume carr: "x ∈ carrier L" "a ∈ carrier L"

and aA: "a ∈ A"
assume a’LxCond[rule_format]: "∀ a’. a’ ∈ A’ ∧ a’ ∈ carrier L −→ a’

v x"

from AA’ and aA have "∃ a’∈A’. a .= a’" by (rule set_eqD1)
from this obtain a’

where a’A’: "a’ ∈ A’"
and aa’: "a .= a’"
by auto

note [simp] = subsetD[OF A’carr a’A’] carr

note aa’
also have "a’ v x" by (simp add: a’LxCond a’A’)
finally show "a v x" by simp

qed

lemma Lower_closed [intro!, simp]:
"Lower L A ⊆ carrier L"
by (unfold Lower_def) clarify

lemma Lower_memD [dest]:
fixes L (structure)
shows "[| l ∈ Lower L A; x ∈ A; A ⊆ carrier L |] ==> l v x ∧ l ∈

carrier L"
by (unfold Lower_def) blast

lemma Lower_memI:
fixes L (structure)
shows "[| !! y. y ∈ A ==> x v y; x ∈ carrier L |] ==> x ∈ Lower L

A"
by (unfold Lower_def) blast

lemma Lower_antimono:
"A ⊆ B ==> Lower L B ⊆ Lower L A"
by (unfold Lower_def) blast

lemma (in weak_partial_order) Lower_is_closed [simp]:
"A ⊆ carrier L =⇒ is_closed (Lower L A)"
by (rule is_closedI) (blast intro: Lower_memI dest: sym)+

lemma (in weak_partial_order) Lower_mem_cong:
assumes a’carr: "a’ ∈ carrier L" and Acarr: "A ⊆ carrier L"

and aa’: "a .= a’"
and aelem: "a ∈ Lower L A"

shows "a’ ∈ Lower L A"
using assms Lower_closed[of L A]
by (intro Lower_memI) (blast intro: le_cong_l[OF aa’[symmetric]])
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lemma (in weak_partial_order) Lower_cong:
assumes Acarr: "A ⊆ carrier L" and A’carr: "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "Lower L A = Lower L A’"

using Lower_memD[of y]
unfolding Lower_def
apply safe
apply clarsimp defer 1
apply clarsimp defer 1

proof -
fix x a’
assume carr: "x ∈ carrier L" "a’ ∈ carrier L"

and a’A’: "a’ ∈ A’"
assume "∀ a. a ∈ A ∧ a ∈ carrier L −→ x v a"
hence aLxCond: "

∧
a. [[a ∈ A; a ∈ carrier L]] =⇒ x v a" by fast

from AA’ and a’A’ have "∃ a∈A. a’ .= a" by (rule set_eqD2)
from this obtain a

where aA: "a ∈ A"
and a’a: "a’ .= a"
by auto

from aA and subsetD[OF Acarr aA]
have "x v a" by (rule aLxCond)

also note a’a[symmetric]
finally

show "x v a’" by (simp add: carr subsetD[OF Acarr aA])
next

fix x a
assume carr: "x ∈ carrier L" "a ∈ carrier L"

and aA: "a ∈ A"
assume "∀ a’. a’ ∈ A’ ∧ a’ ∈ carrier L −→ x v a’"
hence a’LxCond: "

∧
a’. [[a’ ∈ A’; a’ ∈ carrier L]] =⇒ x v a’" by fast+

from AA’ and aA have "∃ a’∈A’. a .= a’" by (rule set_eqD1)
from this obtain a’

where a’A’: "a’ ∈ A’"
and aa’: "a .= a’"
by auto

from a’A’ and subsetD[OF A’carr a’A’]
have "x v a’" by (rule a’LxCond)

also note aa’[symmetric]
finally show "x v a" by (simp add: carr subsetD[OF A’carr a’A’])

qed

2.1.3 Least and greatest, as predicate

constdefs (structure L)
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least :: "[_, ’a, ’a set] => bool"
"least L l A == A ⊆ carrier L & l ∈ A & (ALL x : A. l v x)"

greatest :: "[_, ’a, ’a set] => bool"
"greatest L g A == A ⊆ carrier L & g ∈ A & (ALL x : A. x v g)"

Could weaken these to l ∈ carrier L ∧ l .∈ A and g ∈ carrier L ∧ g .∈
A.

lemma least_closed [intro, simp]:
"least L l A ==> l ∈ carrier L"
by (unfold least_def) fast

lemma least_mem:
"least L l A ==> l ∈ A"
by (unfold least_def) fast

lemma (in weak_partial_order) weak_least_unique:
"[| least L x A; least L y A |] ==> x .= y"
by (unfold least_def) blast

lemma least_le:
fixes L (structure)
shows "[| least L x A; a ∈ A |] ==> x v a"
by (unfold least_def) fast

lemma (in weak_partial_order) least_cong:
"[| x .= x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==> least

L x A = least L x’ A"
by (unfold least_def) (auto dest: sym)

least is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) least_Upper_cong_l:
assumes "x .= x’"

and "x ∈ carrier L" "x’ ∈ carrier L"
and "A ⊆ carrier L"

shows "least L x (Upper L A) = least L x’ (Upper L A)"
apply (rule least_cong) using assms by auto

lemma (in weak_partial_order) least_Upper_cong_r:
assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "least L x (Upper L A) = least L x (Upper L A’)"

apply (subgoal_tac "Upper L A = Upper L A’", simp)
by (rule Upper_cong) fact+

lemma least_UpperI:
fixes L (structure)
assumes above: "!! x. x ∈ A ==> x v s"

and below: "!! y. y ∈ Upper L A ==> s v y"
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and L: "A ⊆ carrier L" "s ∈ carrier L"
shows "least L s (Upper L A)"

proof -
have "Upper L A ⊆ carrier L" by simp
moreover from above L have "s ∈ Upper L A" by (simp add: Upper_def)
moreover from below have "ALL x : Upper L A. s v x" by fast
ultimately show ?thesis by (simp add: least_def)

qed

lemma least_Upper_above:
fixes L (structure)
shows "[| least L s (Upper L A); x ∈ A; A ⊆ carrier L |] ==> x v s"
by (unfold least_def) blast

lemma greatest_closed [intro, simp]:
"greatest L l A ==> l ∈ carrier L"
by (unfold greatest_def) fast

lemma greatest_mem:
"greatest L l A ==> l ∈ A"
by (unfold greatest_def) fast

lemma (in weak_partial_order) weak_greatest_unique:
"[| greatest L x A; greatest L y A |] ==> x .= y"
by (unfold greatest_def) blast

lemma greatest_le:
fixes L (structure)
shows "[| greatest L x A; a ∈ A |] ==> a v x"
by (unfold greatest_def) fast

lemma (in weak_partial_order) greatest_cong:
"[| x .= x’; x ∈ carrier L; x’ ∈ carrier L; is_closed A |] ==>
greatest L x A = greatest L x’ A"
by (unfold greatest_def) (auto dest: sym)

greatest is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) greatest_Lower_cong_l:
assumes "x .= x’"

and "x ∈ carrier L" "x’ ∈ carrier L"
and "A ⊆ carrier L"

shows "greatest L x (Lower L A) = greatest L x’ (Lower L A)"
apply (rule greatest_cong) using assms by auto

lemma (in weak_partial_order) greatest_Lower_cong_r:
assumes Acarrs: "A ⊆ carrier L" "A’ ⊆ carrier L"

and AA’: "A {.=} A’"
shows "greatest L x (Lower L A) = greatest L x (Lower L A’)"

apply (subgoal_tac "Lower L A = Lower L A’", simp)
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by (rule Lower_cong) fact+

lemma greatest_LowerI:
fixes L (structure)
assumes below: "!! x. x ∈ A ==> i v x"

and above: "!! y. y ∈ Lower L A ==> y v i"
and L: "A ⊆ carrier L" "i ∈ carrier L"

shows "greatest L i (Lower L A)"
proof -

have "Lower L A ⊆ carrier L" by simp
moreover from below L have "i ∈ Lower L A" by (simp add: Lower_def)
moreover from above have "ALL x : Lower L A. x v i" by fast
ultimately show ?thesis by (simp add: greatest_def)

qed

lemma greatest_Lower_below:
fixes L (structure)
shows "[| greatest L i (Lower L A); x ∈ A; A ⊆ carrier L |] ==> i v

x"
by (unfold greatest_def) blast

Supremum and infimum

constdefs (structure L)
sup :: "[_, ’a set] => ’a" ("

⊔
ı _" [90] 90)

"
⊔
A == SOME x. least L x (Upper L A)"

inf :: "[_, ’a set] => ’a" ("
d
ı _" [90] 90)

"
d
A == SOME x. greatest L x (Lower L A)"

join :: "[_, ’a, ’a] => ’a" (infixl "tı " 65)
"x t y ==

⊔
{x, y}"

meet :: "[_, ’a, ’a] => ’a" (infixl "uı " 70)
"x u y ==

d
{x, y}"

2.2 Lattices

locale weak_upper_semilattice = weak_partial_order +
assumes sup_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. least L s (Upper L {x,

y})"

locale weak_lower_semilattice = weak_partial_order +
assumes inf_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. greatest L s (Lower

L {x, y})"

locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice
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2.2.1 Supremum

lemma (in weak_upper_semilattice) joinI:
"[| !!l. least L l (Upper L {x, y}) ==> P l; x ∈ carrier L; y ∈ carrier

L |]
==> P (x t y)"

proof (unfold join_def sup_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"

and P: "!!l. least L l (Upper L {x, y}) ==> P l"
with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"

by fast
with L show "P (SOME l. least L l (Upper L {x, y}))"

by (fast intro: someI2 P)
qed

lemma (in weak_upper_semilattice) join_closed [simp]:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x t y ∈ carrier L"
by (rule joinI) (rule least_closed)

lemma (in weak_upper_semilattice) join_cong_l:
assumes carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

and xx’: "x .= x’"
shows "x t y .= x’ t y"

proof (rule joinI, rule joinI)
fix a b
from xx’ carr

have seq: "{x, y} {.=} {x’, y}" by (rule set_eq_pairI)

assume leasta: "least L a (Upper L {x, y})"
assume "least L b (Upper L {x’, y})"
with carr

have leastb: "least L b (Upper L {x, y})"
by (simp add: least_Upper_cong_r[OF _ _ seq])

from leasta leastb
show "a .= b" by (rule weak_least_unique)

qed (rule carr)+

lemma (in weak_upper_semilattice) join_cong_r:
assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

and yy’: "y .= y’"
shows "x t y .= x t y’"

proof (rule joinI, rule joinI)
fix a b
have "{x, y} = {y, x}" by fast
also from carr yy’

have "{y, x} {.=} {y’, x}" by (intro set_eq_pairI)
also have "{y’, x} = {x, y’}" by fast
finally

have seq: "{x, y} {.=} {x, y’}" .
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assume leasta: "least L a (Upper L {x, y})"
assume "least L b (Upper L {x, y’})"
with carr

have leastb: "least L b (Upper L {x, y})"
by (simp add: least_Upper_cong_r[OF _ _ seq])

from leasta leastb
show "a .= b" by (rule weak_least_unique)

qed (rule carr)+

lemma (in weak_partial_order) sup_of_singletonI:
"x ∈ carrier L ==> least L x (Upper L {x})"
by (rule least_UpperI) auto

lemma (in weak_partial_order) weak_sup_of_singleton [simp]:
"x ∈ carrier L ==>

⊔
{x} .= x"

unfolding sup_def
by (rule someI2) (auto intro: weak_least_unique sup_of_singletonI)

lemma (in weak_partial_order) sup_of_singleton_closed [simp]:
"x ∈ carrier L =⇒

⊔
{x} ∈ carrier L"

unfolding sup_def
by (rule someI2) (auto intro: sup_of_singletonI)

Condition on A: supremum exists.

lemma (in weak_upper_semilattice) sup_insertI:
"[| !!s. least L s (Upper L (insert x A)) ==> P s;
least L a (Upper L A); x ∈ carrier L; A ⊆ carrier L |]
==> P (

⊔
(insert x A))"

proof (unfold sup_def)
assume L: "x ∈ carrier L" "A ⊆ carrier L"

and P: "!!l. least L l (Upper L (insert x A)) ==> P l"
and least_a: "least L a (Upper L A)"

from L least_a have La: "a ∈ carrier L" by simp
from L sup_of_two_exists least_a
obtain s where least_s: "least L s (Upper L {a, x})" by blast
show "P (SOME l. least L l (Upper L (insert x A)))"
proof (rule someI2)

show "least L s (Upper L (insert x A))"
proof (rule least_UpperI)

fix z
assume "z ∈ insert x A"
then show "z v s"
proof

assume "z = x" then show ?thesis
by (simp add: least_Upper_above [OF least_s] L La)

next
assume "z ∈ A"
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with L least_s least_a show ?thesis
by (rule_tac le_trans [where y = a]) (auto dest: least_Upper_above)

qed
next

fix y
assume y: "y ∈ Upper L (insert x A)"
show "s v y"
proof (rule least_le [OF least_s], rule Upper_memI)

fix z
assume z: "z ∈ {a, x}"
then show "z v y"
proof

have y’: "y ∈ Upper L A"
apply (rule subsetD [where A = "Upper L (insert x A)"])
apply (rule Upper_antimono)
apply blast

apply (rule y)
done

assume "z = a"
with y’ least_a show ?thesis by (fast dest: least_le)

next
assume "z ∈ {x}"
with y L show ?thesis by blast

qed
qed (rule Upper_closed [THEN subsetD, OF y])

next
from L show "insert x A ⊆ carrier L" by simp
from least_s show "s ∈ carrier L" by simp

qed
qed (rule P)

qed

lemma (in weak_upper_semilattice) finite_sup_least:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==> least L (

⊔
A) (Upper L A)"

proof (induct set: finite)
case empty
then show ?case by simp

next
case (insert x A)
show ?case
proof (cases "A = {}")

case True
with insert show ?thesis

by simp (simp add: least_cong [OF weak_sup_of_singleton]
sup_of_singleton_closed sup_of_singletonI)

next
case False
with insert have "least L (

⊔
A) (Upper L A)" by simp



25

with _ show ?thesis
by (rule sup_insertI) (simp_all add: insert [simplified])

qed
qed

lemma (in weak_upper_semilattice) finite_sup_insertI:
assumes P: "!!l. least L l (Upper L (insert x A)) ==> P l"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"
shows "P (

⊔
(insert x A))"

proof (cases "A = {}")
case True with P and xA show ?thesis

by (simp add: finite_sup_least)
next

case False with P and xA show ?thesis
by (simp add: sup_insertI finite_sup_least)

qed

lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==>

⊔
A ∈ carrier L"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case

by - (rule finite_sup_insertI, simp_all)
qed

lemma (in weak_upper_semilattice) join_left:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x v x t y"
by (rule joinI [folded join_def]) (blast dest: least_mem)

lemma (in weak_upper_semilattice) join_right:
"[| x ∈ carrier L; y ∈ carrier L |] ==> y v x t y"
by (rule joinI [folded join_def]) (blast dest: least_mem)

lemma (in weak_upper_semilattice) sup_of_two_least:
"[| x ∈ carrier L; y ∈ carrier L |] ==> least L (

⊔
{x, y}) (Upper L

{x, y})"
proof (unfold sup_def)

assume L: "x ∈ carrier L" "y ∈ carrier L"
with sup_of_two_exists obtain s where "least L s (Upper L {x, y})"

by fast
with L show "least L (SOME z. least L z (Upper L {x, y})) (Upper L

{x, y})"
by (fast intro: someI2 weak_least_unique)

qed

lemma (in weak_upper_semilattice) join_le:
assumes sub: "x v z" "y v z"

and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier
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L"
shows "x t y v z"

proof (rule joinI [OF _ x y])
fix s
assume "least L s (Upper L {x, y})"
with sub z show "s v z" by (fast elim: least_le intro: Upper_memI)

qed

lemma (in weak_upper_semilattice) weak_join_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "x t (y t z) .=

⊔
{x, y, z}"

proof (rule finite_sup_insertI)
— The textbook argument in Jacobson I, p 457
fix s
assume sup: "least L s (Upper L {x, y, z})"
show "x t (y t z) .= s"
proof (rule weak_le_anti_sym)

from sup L show "x t (y t z) v s"
by (fastsimp intro!: join_le elim: least_Upper_above)

next
from sup L show "s v x t (y t z)"
by (erule_tac least_le)
(blast intro!: Upper_memI intro: le_trans join_left join_right join_closed)

qed (simp_all add: L least_closed [OF sup])
qed (simp_all add: L)

Commutativity holds for =.

lemma join_comm:
fixes L (structure)
shows "x t y = y t x"
by (unfold join_def) (simp add: insert_commute)

lemma (in weak_upper_semilattice) weak_join_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x t y) t z .= x t (y t z)"

proof -

have "(x t y) t z = z t (x t y)" by (simp only: join_comm)
also from L have "... .=

⊔
{z, x, y}" by (simp add: weak_join_assoc_lemma)

also from L have "... =
⊔
{x, y, z}" by (simp add: insert_commute)

also from L have "... .= x t (y t z)" by (simp add: weak_join_assoc_lemma
[symmetric])

finally show ?thesis by (simp add: L)
qed

2.2.2 Infimum

lemma (in weak_lower_semilattice) meetI:
"[| !!i. greatest L i (Lower L {x, y}) ==> P i;
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x ∈ carrier L; y ∈ carrier L |]
==> P (x u y)"

proof (unfold meet_def inf_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"

and P: "!!g. greatest L g (Lower L {x, y}) ==> P g"
with inf_of_two_exists obtain i where "greatest L i (Lower L {x, y})"

by fast
with L show "P (SOME g. greatest L g (Lower L {x, y}))"
by (fast intro: someI2 weak_greatest_unique P)

qed

lemma (in weak_lower_semilattice) meet_closed [simp]:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y ∈ carrier L"
by (rule meetI) (rule greatest_closed)

lemma (in weak_lower_semilattice) meet_cong_l:
assumes carr: "x ∈ carrier L" "x’ ∈ carrier L" "y ∈ carrier L"

and xx’: "x .= x’"
shows "x u y .= x’ u y"

proof (rule meetI, rule meetI)
fix a b
from xx’ carr

have seq: "{x, y} {.=} {x’, y}" by (rule set_eq_pairI)

assume greatesta: "greatest L a (Lower L {x, y})"
assume "greatest L b (Lower L {x’, y})"
with carr

have greatestb: "greatest L b (Lower L {x, y})"
by (simp add: greatest_Lower_cong_r[OF _ _ seq])

from greatesta greatestb
show "a .= b" by (rule weak_greatest_unique)

qed (rule carr)+

lemma (in weak_lower_semilattice) meet_cong_r:
assumes carr: "x ∈ carrier L" "y ∈ carrier L" "y’ ∈ carrier L"

and yy’: "y .= y’"
shows "x u y .= x u y’"

proof (rule meetI, rule meetI)
fix a b
have "{x, y} = {y, x}" by fast
also from carr yy’

have "{y, x} {.=} {y’, x}" by (intro set_eq_pairI)
also have "{y’, x} = {x, y’}" by fast
finally

have seq: "{x, y} {.=} {x, y’}" .

assume greatesta: "greatest L a (Lower L {x, y})"
assume "greatest L b (Lower L {x, y’})"
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with carr
have greatestb: "greatest L b (Lower L {x, y})"
by (simp add: greatest_Lower_cong_r[OF _ _ seq])

from greatesta greatestb
show "a .= b" by (rule weak_greatest_unique)

qed (rule carr)+

lemma (in weak_partial_order) inf_of_singletonI:
"x ∈ carrier L ==> greatest L x (Lower L {x})"
by (rule greatest_LowerI) auto

lemma (in weak_partial_order) weak_inf_of_singleton [simp]:
"x ∈ carrier L ==>

d
{x} .= x"

unfolding inf_def
by (rule someI2) (auto intro: weak_greatest_unique inf_of_singletonI)

lemma (in weak_partial_order) inf_of_singleton_closed:
"x ∈ carrier L ==>

d
{x} ∈ carrier L"

unfolding inf_def
by (rule someI2) (auto intro: inf_of_singletonI)

Condition on A: infimum exists.

lemma (in weak_lower_semilattice) inf_insertI:
"[| !!i. greatest L i (Lower L (insert x A)) ==> P i;
greatest L a (Lower L A); x ∈ carrier L; A ⊆ carrier L |]
==> P (

d
(insert x A))"

proof (unfold inf_def)
assume L: "x ∈ carrier L" "A ⊆ carrier L"

and P: "!!g. greatest L g (Lower L (insert x A)) ==> P g"
and greatest_a: "greatest L a (Lower L A)"

from L greatest_a have La: "a ∈ carrier L" by simp
from L inf_of_two_exists greatest_a
obtain i where greatest_i: "greatest L i (Lower L {a, x})" by blast
show "P (SOME g. greatest L g (Lower L (insert x A)))"
proof (rule someI2)

show "greatest L i (Lower L (insert x A))"
proof (rule greatest_LowerI)

fix z
assume "z ∈ insert x A"
then show "i v z"
proof

assume "z = x" then show ?thesis
by (simp add: greatest_Lower_below [OF greatest_i] L La)

next
assume "z ∈ A"
with L greatest_i greatest_a show ?thesis

by (rule_tac le_trans [where y = a]) (auto dest: greatest_Lower_below)
qed
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next
fix y
assume y: "y ∈ Lower L (insert x A)"
show "y v i"
proof (rule greatest_le [OF greatest_i], rule Lower_memI)

fix z
assume z: "z ∈ {a, x}"
then show "y v z"
proof

have y’: "y ∈ Lower L A"
apply (rule subsetD [where A = "Lower L (insert x A)"])
apply (rule Lower_antimono)
apply blast

apply (rule y)
done

assume "z = a"
with y’ greatest_a show ?thesis by (fast dest: greatest_le)

next
assume "z ∈ {x}"
with y L show ?thesis by blast

qed
qed (rule Lower_closed [THEN subsetD, OF y])

next
from L show "insert x A ⊆ carrier L" by simp
from greatest_i show "i ∈ carrier L" by simp

qed
qed (rule P)

qed

lemma (in weak_lower_semilattice) finite_inf_greatest:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==> greatest L (

d
A) (Lower

L A)"
proof (induct set: finite)

case empty then show ?case by simp
next

case (insert x A)
show ?case
proof (cases "A = {}")

case True
with insert show ?thesis

by simp (simp add: greatest_cong [OF weak_inf_of_singleton]
inf_of_singleton_closed inf_of_singletonI)

next
case False
from insert show ?thesis
proof (rule_tac inf_insertI)

from False insert show "greatest L (
d
A) (Lower L A)" by simp

qed simp_all
qed
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qed

lemma (in weak_lower_semilattice) finite_inf_insertI:
assumes P: "!!i. greatest L i (Lower L (insert x A)) ==> P i"

and xA: "finite A" "x ∈ carrier L" "A ⊆ carrier L"
shows "P (

d
(insert x A))"

proof (cases "A = {}")
case True with P and xA show ?thesis

by (simp add: finite_inf_greatest)
next

case False with P and xA show ?thesis
by (simp add: inf_insertI finite_inf_greatest)

qed

lemma (in weak_lower_semilattice) finite_inf_closed [simp]:
"[| finite A; A ⊆ carrier L; A ~= {} |] ==>

d
A ∈ carrier L"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case

by (rule_tac finite_inf_insertI) (simp_all)
qed

lemma (in weak_lower_semilattice) meet_left:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y v x"
by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) meet_right:
"[| x ∈ carrier L; y ∈ carrier L |] ==> x u y v y"
by (rule meetI [folded meet_def]) (blast dest: greatest_mem)

lemma (in weak_lower_semilattice) inf_of_two_greatest:
"[| x ∈ carrier L; y ∈ carrier L |] ==>
greatest L (

d
{x, y}) (Lower L {x, y})"

proof (unfold inf_def)
assume L: "x ∈ carrier L" "y ∈ carrier L"
with inf_of_two_exists obtain s where "greatest L s (Lower L {x, y})"

by fast
with L
show "greatest L (SOME z. greatest L z (Lower L {x, y})) (Lower L {x,

y})"
by (fast intro: someI2 weak_greatest_unique)

qed

lemma (in weak_lower_semilattice) meet_le:
assumes sub: "z v x" "z v y"

and x: "x ∈ carrier L" and y: "y ∈ carrier L" and z: "z ∈ carrier
L"

shows "z v x u y"
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proof (rule meetI [OF _ x y])
fix i
assume "greatest L i (Lower L {x, y})"
with sub z show "z v i" by (fast elim: greatest_le intro: Lower_memI)

qed

lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "x u (y u z) .=

d
{x, y, z}"

proof (rule finite_inf_insertI)

The textbook argument in Jacobson I, p 457

fix i
assume inf: "greatest L i (Lower L {x, y, z})"
show "x u (y u z) .= i"
proof (rule weak_le_anti_sym)

from inf L show "i v x u (y u z)"
by (fastsimp intro!: meet_le elim: greatest_Lower_below)

next
from inf L show "x u (y u z) v i"
by (erule_tac greatest_le)
(blast intro!: Lower_memI intro: le_trans meet_left meet_right meet_closed)

qed (simp_all add: L greatest_closed [OF inf])
qed (simp_all add: L)

lemma meet_comm:
fixes L (structure)
shows "x u y = y u x"
by (unfold meet_def) (simp add: insert_commute)

lemma (in weak_lower_semilattice) weak_meet_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x u y) u z .= x u (y u z)"

proof -

have "(x u y) u z = z u (x u y)" by (simp only: meet_comm)
also from L have "... .=

d
{z, x, y}" by (simp add: weak_meet_assoc_lemma)

also from L have "... =
d

{x, y, z}" by (simp add: insert_commute)
also from L have "... .= x u (y u z)" by (simp add: weak_meet_assoc_lemma

[symmetric])
finally show ?thesis by (simp add: L)

qed

2.3 Total Orders

locale weak_total_order = weak_partial_order +
assumes total: "[| x ∈ carrier L; y ∈ carrier L |] ==> x v y | y v

x"

Introduction rule: the usual definition of total order



32

lemma (in weak_partial_order) weak_total_orderI:
assumes total: "!!x y. [| x ∈ carrier L; y ∈ carrier L |] ==> x v

y | y v x"
shows "weak_total_order L"
proof qed (rule total)

Total orders are lattices.

sublocale weak_total_order < weak: weak_lattice
proof

fix x y
assume L: "x ∈ carrier L" "y ∈ carrier L"
show "EX s. least L s (Upper L {x, y})"
proof -

note total L
moreover
{

assume "x v y"
with L have "least L y (Upper L {x, y})"

by (rule_tac least_UpperI) auto
}
moreover
{

assume "y v x"
with L have "least L x (Upper L {x, y})"

by (rule_tac least_UpperI) auto
}
ultimately show ?thesis by blast

qed
next

fix x y
assume L: "x ∈ carrier L" "y ∈ carrier L"
show "EX i. greatest L i (Lower L {x, y})"
proof -

note total L
moreover
{

assume "y v x"
with L have "greatest L y (Lower L {x, y})"

by (rule_tac greatest_LowerI) auto
}
moreover
{

assume "x v y"
with L have "greatest L x (Lower L {x, y})"

by (rule_tac greatest_LowerI) auto
}
ultimately show ?thesis by blast

qed
qed
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2.4 Complete Lattices

locale weak_complete_lattice = weak_lattice +
assumes sup_exists:
"[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

Introduction rule: the usual definition of complete lattice

lemma (in weak_partial_order) weak_complete_latticeI:
assumes sup_exists:
"!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

shows "weak_complete_lattice L"
proof qed (auto intro: sup_exists inf_exists)

constdefs (structure L)
top :: "_ => ’a" (">ı ")
"> == sup L (carrier L)"

bottom :: "_ => ’a" ("⊥ı ")
"⊥ == inf L (carrier L)"

lemma (in weak_complete_lattice) supI:
"[| !!l. least L l (Upper L A) ==> P l; A ⊆ carrier L |]
==> P (

⊔
A)"

proof (unfold sup_def)
assume L: "A ⊆ carrier L"

and P: "!!l. least L l (Upper L A) ==> P l"
with sup_exists obtain s where "least L s (Upper L A)" by blast
with L show "P (SOME l. least L l (Upper L A))"
by (fast intro: someI2 weak_least_unique P)

qed

lemma (in weak_complete_lattice) sup_closed [simp]:
"A ⊆ carrier L ==>

⊔
A ∈ carrier L"

by (rule supI) simp_all

lemma (in weak_complete_lattice) top_closed [simp, intro]:
"> ∈ carrier L"
by (unfold top_def) simp

lemma (in weak_complete_lattice) infI:
"[| !!i. greatest L i (Lower L A) ==> P i; A ⊆ carrier L |]
==> P (

d
A)"

proof (unfold inf_def)
assume L: "A ⊆ carrier L"

and P: "!!l. greatest L l (Lower L A) ==> P l"
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with inf_exists obtain s where "greatest L s (Lower L A)" by blast
with L show "P (SOME l. greatest L l (Lower L A))"
by (fast intro: someI2 weak_greatest_unique P)

qed

lemma (in weak_complete_lattice) inf_closed [simp]:
"A ⊆ carrier L ==>

d
A ∈ carrier L"

by (rule infI) simp_all

lemma (in weak_complete_lattice) bottom_closed [simp, intro]:
"⊥ ∈ carrier L"
by (unfold bottom_def) simp

Jacobson: Theorem 8.1

lemma Lower_empty [simp]:
"Lower L {} = carrier L"
by (unfold Lower_def) simp

lemma Upper_empty [simp]:
"Upper L {} = carrier L"
by (unfold Upper_def) simp

theorem (in weak_partial_order) weak_complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"

and inf_exists:
"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower

L A)"
shows "weak_complete_lattice L"

proof (rule weak_complete_latticeI)
from top_exists obtain top where top: "greatest L top (carrier L)"

..
fix A
assume L: "A ⊆ carrier L"
let ?B = "Upper L A"
from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)
then have B_non_empty: "?B ~= {}" by fast
have B_L: "?B ⊆ carrier L" by simp
from inf_exists [OF B_L B_non_empty]
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
have "least L b (Upper L A)"

apply (rule least_UpperI)
apply (rule greatest_le [where A = "Lower L ?B"])
apply (rule b_inf_B)

apply (rule Lower_memI)
apply (erule Upper_memD [THEN conjunct1])
apply assumption

apply (rule L)
apply (fast intro: L [THEN subsetD])

apply (erule greatest_Lower_below [OF b_inf_B])
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apply simp
apply (rule L)

apply (rule greatest_closed [OF b_inf_B])
done

then show "EX s. least L s (Upper L A)" ..
next

fix A
assume L: "A ⊆ carrier L"
show "EX i. greatest L i (Lower L A)"
proof (cases "A = {}")

case True then show ?thesis
by (simp add: top_exists)

next
case False with L show ?thesis

by (rule inf_exists)
qed

qed

2.5 Orders and Lattices where eq is the Equality

locale partial_order = weak_partial_order +
assumes eq_is_equal: "op .= = op ="

begin

declare weak_le_anti_sym [rule del]

lemma le_anti_sym [intro]:
"[| x v y; y v x; x ∈ carrier L; y ∈ carrier L |] ==> x = y"
using weak_le_anti_sym unfolding eq_is_equal .

lemma lless_eq:
"x @ y ←→ x v y & x 6= y"
unfolding lless_def by (simp add: eq_is_equal)

lemma lless_asym:
assumes "a ∈ carrier L" "b ∈ carrier L"

and "a @ b" "b @ a"
shows "P"
using assms unfolding lless_eq by auto

end

Least and greatest, as predicate

lemma (in partial_order) least_unique:
"[| least L x A; least L y A |] ==> x = y"
using weak_least_unique unfolding eq_is_equal .

lemma (in partial_order) greatest_unique:
"[| greatest L x A; greatest L y A |] ==> x = y"
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using weak_greatest_unique unfolding eq_is_equal .

Lattices

locale upper_semilattice = partial_order +
assumes sup_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. least L s (Upper L {x,

y})"

sublocale upper_semilattice < weak: weak_upper_semilattice
proof qed (rule sup_of_two_exists)

locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
"[| x ∈ carrier L; y ∈ carrier L |] ==> EX s. greatest L s (Lower

L {x, y})"

sublocale lower_semilattice < weak: weak_lower_semilattice
proof qed (rule inf_of_two_exists)

locale lattice = upper_semilattice + lower_semilattice

Supremum

declare (in partial_order) weak_sup_of_singleton [simp del]

lemma (in partial_order) sup_of_singleton [simp]:
"x ∈ carrier L ==>

⊔
{x} = x"

using weak_sup_of_singleton unfolding eq_is_equal .

lemma (in upper_semilattice) join_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "x t (y t z) =

⊔
{x, y, z}"

using weak_join_assoc_lemma L unfolding eq_is_equal .

lemma (in upper_semilattice) join_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x t y) t z = x t (y t z)"
using weak_join_assoc L unfolding eq_is_equal .

Infimum

declare (in partial_order) weak_inf_of_singleton [simp del]

lemma (in partial_order) inf_of_singleton [simp]:
"x ∈ carrier L ==>

d
{x} = x"

using weak_inf_of_singleton unfolding eq_is_equal .

Condition on A: infimum exists.

lemma (in lower_semilattice) meet_assoc_lemma:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
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shows "x u (y u z) =
d
{x, y, z}"

using weak_meet_assoc_lemma L unfolding eq_is_equal .

lemma (in lower_semilattice) meet_assoc:
assumes L: "x ∈ carrier L" "y ∈ carrier L" "z ∈ carrier L"
shows "(x u y) u z = x u (y u z)"
using weak_meet_assoc L unfolding eq_is_equal .

Total Orders

locale total_order = partial_order +
assumes total_order_total: "[| x ∈ carrier L; y ∈ carrier L |] ==>

x v y | y v x"

sublocale total_order < weak: weak_total_order
proof qed (rule total_order_total)

Introduction rule: the usual definition of total order

lemma (in partial_order) total_orderI:
assumes total: "!!x y. [| x ∈ carrier L; y ∈ carrier L |] ==> x v

y | y v x"
shows "total_order L"
proof qed (rule total)

Total orders are lattices.

sublocale total_order < weak: lattice
proof qed (auto intro: sup_of_two_exists inf_of_two_exists)

Complete lattices

locale complete_lattice = lattice +
assumes sup_exists:
"[| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"[| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

sublocale complete_lattice < weak: weak_complete_lattice
proof qed (auto intro: sup_exists inf_exists)

Introduction rule: the usual definition of complete lattice

lemma (in partial_order) complete_latticeI:
assumes sup_exists:
"!!A. [| A ⊆ carrier L |] ==> EX s. least L s (Upper L A)"
and inf_exists:
"!!A. [| A ⊆ carrier L |] ==> EX i. greatest L i (Lower L A)"

shows "complete_lattice L"
proof qed (auto intro: sup_exists inf_exists)

theorem (in partial_order) complete_lattice_criterion1:
assumes top_exists: "EX g. greatest L g (carrier L)"
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and inf_exists:
"!!A. [| A ⊆ carrier L; A ~= {} |] ==> EX i. greatest L i (Lower

L A)"
shows "complete_lattice L"

proof (rule complete_latticeI)
from top_exists obtain top where top: "greatest L top (carrier L)"

..
fix A
assume L: "A ⊆ carrier L"
let ?B = "Upper L A"
from L top have "top ∈ ?B" by (fast intro!: Upper_memI intro: greatest_le)
then have B_non_empty: "?B ~= {}" by fast
have B_L: "?B ⊆ carrier L" by simp
from inf_exists [OF B_L B_non_empty]
obtain b where b_inf_B: "greatest L b (Lower L ?B)" ..
have "least L b (Upper L A)"

apply (rule least_UpperI)
apply (rule greatest_le [where A = "Lower L ?B"])
apply (rule b_inf_B)

apply (rule Lower_memI)
apply (erule Upper_memD [THEN conjunct1])
apply assumption

apply (rule L)
apply (fast intro: L [THEN subsetD])

apply (erule greatest_Lower_below [OF b_inf_B])
apply simp

apply (rule L)
apply (rule greatest_closed [OF b_inf_B])
done

then show "EX s. least L s (Upper L A)" ..
next

fix A
assume L: "A ⊆ carrier L"
show "EX i. greatest L i (Lower L A)"
proof (cases "A = {}")

case True then show ?thesis
by (simp add: top_exists)

next
case False with L show ?thesis

by (rule inf_exists)
qed

qed

2.6 Examples

2.6.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:
"complete_lattice (| carrier = Pow A, eq = op =, le = op ⊆ |)"
(is "complete_lattice ?L")
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proof (rule partial_order.complete_latticeI)
show "partial_order ?L"

proof qed auto
next

fix B
assume B: "B ⊆ carrier ?L"
show "EX s. least ?L s (Upper ?L B)"
proof

from B show "least ?L (
⋃

B) (Upper ?L B)"
by (fastsimp intro!: least_UpperI simp: Upper_def)

qed
next

fix B
assume B: "B ⊆ carrier ?L"
show "EX i. greatest ?L i (Lower ?L B)"
proof

from B show "greatest ?L (
⋂

B ∩ A) (Lower ?L B)"⋂
B is not the infimum of B:

⋂
{} = UNIV which is in general bigger than A!

by (fastsimp intro!: greatest_LowerI simp: Lower_def)
qed

qed

An other example, that of the lattice of subgroups of a group, can be found
in Group theory (Section 3.8).

end

theory Group
imports Lattice FuncSet
begin

3 Monoids and Groups

3.1 Definitions

Definitions follow [2].

record ’a monoid = "’a partial_object" +
mult :: "[’a, ’a] ⇒ ’a" (infixl "⊗ı " 70)
one :: ’a ("1ı ")

constdefs (structure G)
m_inv :: "(’a, ’b) monoid_scheme => ’a => ’a" ("invı _" [81] 80)
"inv x == (THE y. y ∈ carrier G & x ⊗ y = 1 & y ⊗ x = 1)"

Units :: "_ => ’a set"
— The set of invertible elements
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"Units G == {y. y ∈ carrier G & (∃ x ∈ carrier G. x ⊗ y = 1 & y ⊗ x
= 1)}"

consts
pow :: "[(’a, ’m) monoid_scheme, ’a, ’b::number] => ’a" (infixr "’(^’)ı "

75)

defs (overloaded)
nat_pow_def: "pow G a n == nat_rec 1G (%u b. b ⊗G a) n"
int_pow_def: "pow G a z ==
let p = nat_rec 1G (%u b. b ⊗G a)
in if neg z then invG (p (nat (-z))) else p (nat z)"

locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:

"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y ∈ carrier G"
and m_assoc:

"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]]
=⇒ (x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and one_closed [intro, simp]: "1 ∈ carrier G"
and l_one [simp]: "x ∈ carrier G =⇒ 1 ⊗ x = x"
and r_one [simp]: "x ∈ carrier G =⇒ x ⊗ 1 = x"

lemma monoidI:
fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and r_one: "!!x. x ∈ carrier G ==> x ⊗ 1 = x"

shows "monoid G"
by (fast intro!: monoid.intro intro: assms)

lemma (in monoid) Units_closed [dest]:
"x ∈ Units G ==> x ∈ carrier G"
by (unfold Units_def) fast

lemma (in monoid) inv_unique:
assumes eq: "y ⊗ x = 1" "x ⊗ y’ = 1"

and G: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"
shows "y = y’"

proof -
from G eq have "y = y ⊗ (x ⊗ y’)" by simp
also from G have "... = (y ⊗ x) ⊗ y’" by (simp add: m_assoc)
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also from G eq have "... = y’" by simp
finally show ?thesis .

qed

lemma (in monoid) Units_m_closed [intro, simp]:
assumes x: "x ∈ Units G" and y: "y ∈ Units G"
shows "x ⊗ y ∈ Units G"

proof -
from x obtain x’ where x: "x ∈ carrier G" "x’ ∈ carrier G" and xinv:

"x ⊗ x’ = 1" "x’ ⊗ x = 1"
unfolding Units_def by fast

from y obtain y’ where y: "y ∈ carrier G" "y’ ∈ carrier G" and yinv:
"y ⊗ y’ = 1" "y’ ⊗ y = 1"

unfolding Units_def by fast
from x y xinv yinv have "y’ ⊗ (x’ ⊗ x) ⊗ y = 1" by simp
moreover from x y xinv yinv have "x ⊗ (y ⊗ y’) ⊗ x’ = 1" by simp
moreover note x y
ultimately show ?thesis unfolding Units_def

— Must avoid premature use of hyp_subst_tac.
apply (rule_tac CollectI)
apply (rule)
apply (fast)
apply (rule bexI [where x = "y’ ⊗ x’"])
apply (auto simp: m_assoc)
done

qed

lemma (in monoid) Units_one_closed [intro, simp]:
"1 ∈ Units G"
by (unfold Units_def) auto

lemma (in monoid) Units_inv_closed [intro, simp]:
"x ∈ Units G ==> inv x ∈ carrier G"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_l_inv_ex:
"x ∈ Units G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_r_inv_ex:
"x ∈ Units G ==> ∃ y ∈ carrier G. x ⊗ y = 1"
by (unfold Units_def) auto

lemma (in monoid) Units_l_inv [simp]:
"x ∈ Units G ==> inv x ⊗ x = 1"
apply (unfold Units_def m_inv_def, auto)
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apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_r_inv [simp]:
"x ∈ Units G ==> x ⊗ inv x = 1"
apply (unfold Units_def m_inv_def, auto)
apply (rule theI2, fast)
apply (fast intro: inv_unique, fast)

done

lemma (in monoid) Units_inv_Units [intro, simp]:
"x ∈ Units G ==> inv x ∈ Units G"

proof -
assume x: "x ∈ Units G"
show "inv x ∈ Units G"

by (auto simp add: Units_def
intro: Units_l_inv Units_r_inv x Units_closed [OF x])

qed

lemma (in monoid) Units_l_cancel [simp]:
"[| x ∈ Units G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"

proof
assume eq: "x ⊗ y = x ⊗ z"

and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
then have "(inv x ⊗ x) ⊗ y = (inv x ⊗ x) ⊗ z"

by (simp add: m_assoc Units_closed del: Units_l_inv)
with G show "y = z" by (simp add: Units_l_inv)

next
assume eq: "y = z"

and G: "x ∈ Units G" "y ∈ carrier G" "z ∈ carrier G"
then show "x ⊗ y = x ⊗ z" by simp

qed

lemma (in monoid) Units_inv_inv [simp]:
"x ∈ Units G ==> inv (inv x) = x"

proof -
assume x: "x ∈ Units G"
then have "inv x ⊗ inv (inv x) = inv x ⊗ x" by simp
with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv)

qed

lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"

proof (rule inj_onI)
fix x y
assume G: "x ∈ Units G" "y ∈ Units G" and eq: "inv x = inv y"
then have "inv (inv x) = inv (inv y)" by simp
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with G show "x = y" by simp
qed

lemma (in monoid) Units_inv_comm:
assumes inv: "x ⊗ y = 1"

and G: "x ∈ Units G" "y ∈ Units G"
shows "y ⊗ x = 1"

proof -
from G have "x ⊗ y ⊗ x = x ⊗ 1" by (auto simp add: inv Units_closed)
with G show ?thesis by (simp del: r_one add: m_assoc Units_closed)

qed

Power

lemma (in monoid) nat_pow_closed [intro, simp]:
"x ∈ carrier G ==> x (^) (n::nat) ∈ carrier G"
by (induct n) (simp_all add: nat_pow_def)

lemma (in monoid) nat_pow_0 [simp]:
"x (^) (0::nat) = 1"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_Suc [simp]:
"x (^) (Suc n) = x (^) n ⊗ x"
by (simp add: nat_pow_def)

lemma (in monoid) nat_pow_one [simp]:
"1 (^) (n::nat) = 1"
by (induct n) simp_all

lemma (in monoid) nat_pow_mult:
"x ∈ carrier G ==> x (^) (n::nat) ⊗ x (^) m = x (^) (n + m)"
by (induct m) (simp_all add: m_assoc [THEN sym])

lemma (in monoid) nat_pow_pow:
"x ∈ carrier G ==> (x (^) n) (^) m = x (^) (n * m::nat)"
by (induct m) (simp, simp add: nat_pow_mult add_commute)

3.2 Groups

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes Units: "carrier G <= Units G"

lemma (in group) is_group: "group G" by (rule group_axioms)

theorem groupI:
fixes G (structure)
assumes m_closed [simp]:
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"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed [simp]: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one [simp]: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"

shows "group G"
proof -

have l_cancel [simp]:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"

proof
fix x y z
assume eq: "x ⊗ y = x ⊗ z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"

and l_inv: "x_inv ⊗ x = 1" by fast
from G eq xG have "(x_inv ⊗ x) ⊗ y = (x_inv ⊗ x) ⊗ z"

by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)

next
fix x y z
assume eq: "y = z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then show "x ⊗ y = x ⊗ z" by simp

qed
have r_one:
"!!x. x ∈ carrier G ==> x ⊗ 1 = x"

proof -
fix x
assume x: "x ∈ carrier G"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier G"

and l_inv: "x_inv ⊗ x = 1" by fast
from x xG have "x_inv ⊗ (x ⊗ 1) = x_inv ⊗ x"

by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x ⊗ 1 = x" by simp

qed
have inv_ex:
"!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

proof -
fix x
assume x: "x ∈ carrier G"
with l_inv_ex obtain y where y: "y ∈ carrier G"

and l_inv: "y ⊗ x = 1" by fast
from x y have "y ⊗ (x ⊗ y) = y ⊗ 1"

by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x ⊗ y = 1"
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by simp
from x y show "∃ y ∈ carrier G. y ⊗ x = 1 & x ⊗ y = 1"

by (fast intro: l_inv r_inv)
qed
then have carrier_subset_Units: "carrier G <= Units G"

by (unfold Units_def) fast
show ?thesis proof qed (auto simp: r_one m_assoc carrier_subset_Units)

qed

lemma (in monoid) group_l_invI:
assumes l_inv_ex:
"!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"

shows "group G"
by (rule groupI) (auto intro: m_assoc l_inv_ex)

lemma (in group) Units_eq [simp]:
"Units G = carrier G"

proof
show "Units G <= carrier G" by fast

next
show "carrier G <= Units G" by (rule Units)

qed

lemma (in group) inv_closed [intro, simp]:
"x ∈ carrier G ==> inv x ∈ carrier G"
using Units_inv_closed by simp

lemma (in group) l_inv_ex [simp]:
"x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"
using Units_l_inv_ex by simp

lemma (in group) r_inv_ex [simp]:
"x ∈ carrier G ==> ∃ y ∈ carrier G. x ⊗ y = 1"
using Units_r_inv_ex by simp

lemma (in group) l_inv [simp]:
"x ∈ carrier G ==> inv x ⊗ x = 1"
using Units_l_inv by simp

3.3 Cancellation Laws and Basic Properties

lemma (in group) l_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y = x ⊗ z) = (y = z)"

using Units_l_inv by simp

lemma (in group) r_inv [simp]:
"x ∈ carrier G ==> x ⊗ inv x = 1"

proof -
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assume x: "x ∈ carrier G"
then have "inv x ⊗ (x ⊗ inv x) = inv x ⊗ 1"

by (simp add: m_assoc [symmetric] l_inv)
with x show ?thesis by (simp del: r_one)

qed

lemma (in group) r_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(y ⊗ x = z ⊗ x) = (y = z)"

proof
assume eq: "y ⊗ x = z ⊗ x"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then have "y ⊗ (x ⊗ inv x) = z ⊗ (x ⊗ inv x)"

by (simp add: m_assoc [symmetric] del: r_inv Units_r_inv)
with G show "y = z" by simp

next
assume eq: "y = z"

and G: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
then show "y ⊗ x = z ⊗ x" by simp

qed

lemma (in group) inv_one [simp]:
"inv 1 = 1"

proof -
have "inv 1 = 1 ⊗ (inv 1)" by (simp del: r_inv Units_r_inv)
moreover have "... = 1" by simp
finally show ?thesis .

qed

lemma (in group) inv_inv [simp]:
"x ∈ carrier G ==> inv (inv x) = x"
using Units_inv_inv by simp

lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"
using inv_inj_on_Units by simp

lemma (in group) inv_mult_group:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv y ⊗ inv x"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "inv (x ⊗ y) ⊗ (x ⊗ y) = (inv y ⊗ inv x) ⊗ (x ⊗ y)"

by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric])
with G show ?thesis by (simp del: l_inv Units_l_inv)

qed

lemma (in group) inv_comm:
"[| x ⊗ y = 1; x ∈ carrier G; y ∈ carrier G |] ==> y ⊗ x = 1"
by (rule Units_inv_comm) auto
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lemma (in group) inv_equality:
"[|y ⊗ x = 1; x ∈ carrier G; y ∈ carrier G|] ==> inv x = y"

apply (simp add: m_inv_def)
apply (rule the_equality)
apply (simp add: inv_comm [of y x])

apply (rule r_cancel [THEN iffD1], auto)
done

Power

lemma (in group) int_pow_def2:
"a (^) (z::int) = (if neg z then inv (a (^) (nat (-z))) else a (^) (nat

z))"
by (simp add: int_pow_def nat_pow_def Let_def)

lemma (in group) int_pow_0 [simp]:
"x (^) (0::int) = 1"
by (simp add: int_pow_def2)

lemma (in group) int_pow_one [simp]:
"1 (^) (z::int) = 1"
by (simp add: int_pow_def2)

3.4 Subgroups

locale subgroup =
fixes H and G (structure)
assumes subset: "H ⊆ carrier G"

and m_closed [intro, simp]: "[[x ∈ H; y ∈ H]] =⇒ x ⊗ y ∈ H"
and one_closed [simp]: "1 ∈ H"
and m_inv_closed [intro,simp]: "x ∈ H =⇒ inv x ∈ H"

lemma (in subgroup) is_subgroup:
"subgroup H G" by (rule subgroup_axioms)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:
"x ∈ H =⇒ x ∈ carrier G"
using subset by blast

lemma subgroup_imp_subset:
"subgroup H G =⇒ H ⊆ carrier G"
by (rule subgroup.subset)

lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G(|carrier := H|))"

proof -
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interpret group G by fact
show ?thesis

apply (rule monoid.group_l_invI)
apply (unfold_locales) [1]
apply (auto intro: m_assoc l_inv mem_carrier)
done

qed

Since H is nonempty, it contains some element x. Since it is closed under
inverse, it contains inv x. Since it is closed under product, it contains x ⊗
inv x = 1.

lemma (in group) one_in_subset:
"[| H ⊆ carrier G; H 6= {}; ∀ a ∈ H. inv a ∈ H; ∀ a∈H. ∀ b∈H. a ⊗ b

∈ H |]
==> 1 ∈ H"

by (force simp add: l_inv)

A characterization of subgroups: closed, non-empty subset.

lemma (in group) subgroupI:
assumes subset: "H ⊆ carrier G" and non_empty: "H 6= {}"

and inv: "!!a. a ∈ H =⇒ inv a ∈ H"
and mult: "!!a b. [[a ∈ H; b ∈ H]] =⇒ a ⊗ b ∈ H"

shows "subgroup H G"
proof (simp add: subgroup_def assms)

show "1 ∈ H" by (rule one_in_subset) (auto simp only: assms)
qed

declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
"~ subgroup {} G"
by (blast dest: subgroup.one_closed)

lemma (in subgroup) finite_imp_card_positive:
"finite (carrier G) ==> 0 < card H"

proof (rule classical)
assume "finite (carrier G)" "~ 0 < card H"
then have "finite H" by (blast intro: finite_subset [OF subset])
with prems have "subgroup {} G" by simp
with subgroup_nonempty show ?thesis by contradiction

qed

3.5 Direct Products

constdefs
DirProd :: "_ ⇒ _ ⇒ (’a × ’b) monoid" (infixr "××" 80)
"G ×× H ≡ (|carrier = carrier G × carrier H,

mult = (λ(g, h) (g’, h’). (g ⊗G g’, h ⊗H h’)),
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one = (1G, 1H)|)"

lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G ×× H)"

proof -
interpret G: monoid G by fact
interpret H: monoid H by fact
from assms
show ?thesis by (unfold monoid_def DirProd_def, auto)

qed

Does not use the previous result because it’s easier just to use auto.

lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G ×× H)"

proof -
interpret G: group G by fact
interpret H: group H by fact
show ?thesis by (rule groupI)

(auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProd_def)

qed

lemma carrier_DirProd [simp]:
"carrier (G ×× H) = carrier G × carrier H"

by (simp add: DirProd_def)

lemma one_DirProd [simp]:
"1G ×× H = (1G, 1H)"

by (simp add: DirProd_def)

lemma mult_DirProd [simp]:
"(g, h) ⊗(G ×× H) (g’, h’) = (g ⊗G g’, h ⊗H h’)"

by (simp add: DirProd_def)

lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g ∈ carrier G"

and h: "h ∈ carrier H"
shows "m_inv (G ×× H) (g, h) = (invG g, invH h)"

proof -
interpret G: group G by fact
interpret H: group H by fact
interpret Prod: group "G ×× H"

by (auto intro: DirProd_group group.intro group.axioms assms)
show ?thesis by (simp add: Prod.inv_equality g h)

qed
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3.6 Homomorphisms and Isomorphisms

constdefs (structure G and H)
hom :: "_ => _ => (’a => ’b) set"
"hom G H ==
{h. h ∈ carrier G -> carrier H &
(∀ x ∈ carrier G. ∀ y ∈ carrier G. h (x ⊗G y) = h x ⊗H h y)}"

lemma (in group) hom_compose:
"[|h ∈ hom G H; i ∈ hom H I|] ==> compose (carrier G) i h ∈ hom

G I"
apply (auto simp add: hom_def funcset_compose)
apply (simp add: compose_def funcset_mem)
done

constdefs
iso :: "_ => _ => (’a => ’b) set" (infixr "∼=" 60)
"G ∼= H == {h. h ∈ hom G H & bij_betw h (carrier G) (carrier H)}"

lemma iso_refl: "(%x. x) ∈ G ∼= G"
by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma (in group) iso_sym:
"h ∈ G ∼= H =⇒ Inv (carrier G) h ∈ H ∼= G"

apply (simp add: iso_def bij_betw_Inv)
apply (subgoal_tac "Inv (carrier G) h ∈ carrier H → carrier G")
prefer 2 apply (simp add: bij_betw_imp_funcset [OF bij_betw_Inv])

apply (simp add: hom_def bij_betw_def Inv_f_eq funcset_mem f_Inv_f)
done

lemma (in group) iso_trans:
"[|h ∈ G ∼= H; i ∈ H ∼= I|] ==> (compose (carrier G) i h) ∈ G ∼= I"

by (auto simp add: iso_def hom_compose bij_betw_compose)

lemma DirProd_commute_iso:
shows "(λ(x,y). (y,x)) ∈ (G ×× H) ∼= (H ×× G)"

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

lemma DirProd_assoc_iso:
shows "(λ(x,y,z). (x,(y,z))) ∈ (G ×× H ×× I) ∼= (G ×× (H ×× I))"

by (auto simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def)

Basis for homomorphism proofs: we assume two groups G and H, with a
homomorphism h between them
locale group_hom = G: group G + H: group H for G (structure) and H (struc-
ture) +

fixes h
assumes homh: "h ∈ hom G H"

lemma (in group_hom) hom_mult [simp]:
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"[| x ∈ carrier G; y ∈ carrier G |] ==> h (x ⊗G y) = h x ⊗H h y"
proof -

assume "x ∈ carrier G" "y ∈ carrier G"
with homh [unfolded hom_def] show ?thesis by simp

qed

lemma (in group_hom) hom_closed [simp]:
"x ∈ carrier G ==> h x ∈ carrier H"

proof -
assume "x ∈ carrier G"
with homh [unfolded hom_def] show ?thesis by (auto simp add: funcset_mem)

qed

lemma (in group_hom) one_closed [simp]:
"h 1 ∈ carrier H"
by simp

lemma (in group_hom) hom_one [simp]:
"h 1 = 1H"

proof -
have "h 1 ⊗H 1H = h 1 ⊗H h 1"

by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis by (simp del: r_one)

qed

lemma (in group_hom) inv_closed [simp]:
"x ∈ carrier G ==> h (inv x) ∈ carrier H"
by simp

lemma (in group_hom) hom_inv [simp]:
"x ∈ carrier G ==> h (inv x) = invH (h x)"

proof -
assume x: "x ∈ carrier G"
then have "h x ⊗H h (inv x) = 1H"

by (simp add: hom_mult [symmetric] del: hom_mult)
also from x have "... = h x ⊗H invH (h x)"

by (simp add: hom_mult [symmetric] del: hom_mult)
finally have "h x ⊗H h (inv x) = h x ⊗H invH (h x)" .
with x show ?thesis by (simp del: H.r_inv H.Units_r_inv)

qed

3.7 Commutative Structures

Naming convention: multiplicative structures that are commutative are
called commutative, additive structures are called Abelian.

locale comm_monoid = monoid +
assumes m_comm: "[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊗ y = y ⊗ x"

lemma (in comm_monoid) m_lcomm:
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"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
x ⊗ (y ⊗ z) = y ⊗ (x ⊗ z)"

proof -
assume xyz: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
from xyz have "x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z" by (simp add: m_assoc)
also from xyz have "... = (y ⊗ x) ⊗ z" by (simp add: m_comm)
also from xyz have "... = y ⊗ (x ⊗ z)" by (simp add: m_assoc)
finally show ?thesis .

qed

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm

lemma comm_monoidI:
fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and m_comm:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

shows "comm_monoid G"
using l_one

by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro

intro: assms simp: m_closed one_closed m_comm)

lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"
shows "comm_monoid G"
by (rule comm_monoidI) (auto intro: m_assoc m_comm)

lemma (in comm_monoid) nat_pow_distr:
"[| x ∈ carrier G; y ∈ carrier G |] ==>
(x ⊗ y) (^) (n::nat) = x (^) n ⊗ y (^) n"
by (induct n) (simp, simp add: m_ac)

locale comm_group = comm_monoid + group

lemma (in group) group_comm_groupI:
assumes m_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==>

x ⊗ y = y ⊗ x"
shows "comm_group G"
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proof qed (simp_all add: m_comm)

lemma comm_groupI:
fixes G (structure)
assumes m_closed:

"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y ∈ carrier
G"

and one_closed: "1 ∈ carrier G"
and m_assoc:
"!!x y z. [| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z)"

and m_comm:
"!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊗ y = y ⊗ x"

and l_one: "!!x. x ∈ carrier G ==> 1 ⊗ x = x"
and l_inv_ex: "!!x. x ∈ carrier G ==> ∃ y ∈ carrier G. y ⊗ x = 1"

shows "comm_group G"
by (fast intro: group.group_comm_groupI groupI assms)

lemma (in comm_group) inv_mult:
"[| x ∈ carrier G; y ∈ carrier G |] ==> inv (x ⊗ y) = inv x ⊗ inv y"
by (simp add: m_ac inv_mult_group)

3.8 The Lattice of Subgroups of a Group

theorem (in group) subgroups_partial_order:
"partial_order (| carrier = {H. subgroup H G}, eq = op =, le = op ⊆

|)"
proof qed simp_all

lemma (in group) subgroup_self:
"subgroup (carrier G) G"
by (rule subgroupI) auto

lemma (in group) subgroup_imp_group:
"subgroup H G ==> group (G(| carrier := H |))"
by (erule subgroup.subgroup_is_group) (rule group_axioms)

lemma (in group) is_monoid [intro, simp]:
"monoid G"
by (auto intro: monoid.intro m_assoc)

lemma (in group) subgroup_inv_equality:
"[| subgroup H G; x ∈ H |] ==> m_inv (G (| carrier := H |)) x = inv

x"
apply (rule_tac inv_equality [THEN sym])

apply (rule group.l_inv [OF subgroup_imp_group, simplified], assumption+)
apply (rule subsetD [OF subgroup.subset], assumption+)

apply (rule subsetD [OF subgroup.subset], assumption)
apply (rule_tac group.inv_closed [OF subgroup_imp_group, simplified],
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assumption+)
done

theorem (in group) subgroups_Inter:
assumes subgr: "(!!H. H ∈ A ==> subgroup H G)"

and not_empty: "A ~= {}"
shows "subgroup (

⋂
A) G"

proof (rule subgroupI)
from subgr [THEN subgroup.subset] and not_empty
show "

⋂
A ⊆ carrier G" by blast

next
from subgr [THEN subgroup.one_closed]
show "

⋂
A ~= {}" by blast

next
fix x assume "x ∈

⋂
A"

with subgr [THEN subgroup.m_inv_closed]
show "inv x ∈

⋂
A" by blast

next
fix x y assume "x ∈

⋂
A" "y ∈

⋂
A"

with subgr [THEN subgroup.m_closed]
show "x ⊗ y ∈

⋂
A" by blast

qed

theorem (in group) subgroups_complete_lattice:
"complete_lattice (| carrier = {H. subgroup H G}, eq = op =, le = op

⊆ |)"
(is "complete_lattice ?L")

proof (rule partial_order.complete_lattice_criterion1)
show "partial_order ?L" by (rule subgroups_partial_order)

next
show "∃ G. greatest ?L G (carrier ?L)"
proof

show "greatest ?L (carrier G) (carrier ?L)"
by (unfold greatest_def)
(simp add: subgroup.subset subgroup_self)

qed
next

fix A
assume L: "A ⊆ carrier ?L" and non_empty: "A ~= {}"
then have Int_subgroup: "subgroup (

⋂
A) G"

by (fastsimp intro: subgroups_Inter)
show "∃ I. greatest ?L I (Lower ?L A)"
proof

show "greatest ?L (
⋂
A) (Lower ?L A)"

(is "greatest _ ?Int _")
proof (rule greatest_LowerI)

fix H
assume H: "H ∈ A"
with L have subgroupH: "subgroup H G" by auto
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from subgroupH have groupH: "group (G (| carrier := H |))" (is "group
?H")

by (rule subgroup_imp_group)
from groupH have monoidH: "monoid ?H"

by (rule group.is_monoid)
from H have Int_subset: "?Int ⊆ H" by fastsimp
then show "le ?L ?Int H" by simp

next
fix H
assume H: "H ∈ Lower ?L A"
with L Int_subgroup show "le ?L H ?Int"

by (fastsimp simp: Lower_def intro: Inter_greatest)
next

show "A ⊆ carrier ?L" by (rule L)
next

show "?Int ∈ carrier ?L" by simp (rule Int_subgroup)
qed

qed
qed

end

theory FiniteProduct imports Group begin

3.9 Product Operator for Commutative Monoids

3.9.1 Inductive Definition of a Relation for Products over Sets

Instantiation of locale LC of theory Finite_Set is not possible, because here
we have explicit typing rules like x ∈ carrier G. We introduce an explicit
argument for the domain D.

inductive set
foldSetD :: "[’a set, ’b => ’a => ’a, ’a] => (’b set * ’a) set"
for D :: "’a set" and f :: "’b => ’a => ’a" and e :: ’a
where
emptyI [intro]: "e ∈ D ==> ({}, e) ∈ foldSetD D f e"

| insertI [intro]: "[| x ~: A; f x y ∈ D; (A, y) ∈ foldSetD D f e |]
==>

(insert x A, f x y) ∈ foldSetD D f e"

inductive cases empty_foldSetDE [elim!]: "({}, x) ∈ foldSetD D f e"

constdefs
foldD :: "[’a set, ’b => ’a => ’a, ’a, ’b set] => ’a"
"foldD D f e A == THE x. (A, x) ∈ foldSetD D f e"

lemma foldSetD_closed:
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"[| (A, z) ∈ foldSetD D f e ; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==>
f x y ∈ D

|] ==> z ∈ D"
by (erule foldSetD.cases) auto

lemma Diff1_foldSetD:
"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; f x y ∈ D |] ==>
(A, f x y) ∈ foldSetD D f e"

apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
apply auto

done

lemma foldSetD_imp_finite [simp]: "(A, x) ∈ foldSetD D f e ==> finite
A"

by (induct set: foldSetD) auto

lemma finite_imp_foldSetD:
"[| finite A; e ∈ D; !!x y. [| x ∈ A; y ∈ D |] ==> f x y ∈ D |] ==>
EX x. (A, x) ∈ foldSetD D f e"

proof (induct set: finite)
case empty then show ?case by auto

next
case (insert x F)
then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto
with insert have "y ∈ D" by (auto dest: foldSetD_closed)
with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"

by (intro foldSetD.intros) auto
then show ?case ..

qed

Left-Commutative Operations

locale LCD =
fixes B :: "’b set"
and D :: "’a set"
and f :: "’b => ’a => ’a" (infixl "·" 70)
assumes left_commute:
"[| x ∈ B; y ∈ B; z ∈ D |] ==> x · (y · z) = y · (x · z)"

and f_closed [simp, intro!]: "!!x y. [| x ∈ B; y ∈ D |] ==> f x y ∈
D"

lemma (in LCD) foldSetD_closed [dest]:
"(A, z) ∈ foldSetD D f e ==> z ∈ D"
by (erule foldSetD.cases) auto

lemma (in LCD) Diff1_foldSetD:
"[| (A - {x}, y) ∈ foldSetD D f e; x ∈ A; A ⊆ B |] ==>
(A, f x y) ∈ foldSetD D f e"
apply (subgoal_tac "x ∈ B")
prefer 2 apply fast
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apply (erule insert_Diff [THEN subst], rule foldSetD.intros)
apply auto

done

lemma (in LCD) foldSetD_imp_finite [simp]:
"(A, x) ∈ foldSetD D f e ==> finite A"
by (induct set: foldSetD) auto

lemma (in LCD) finite_imp_foldSetD:
"[| finite A; A ⊆ B; e ∈ D |] ==> EX x. (A, x) ∈ foldSetD D f e"

proof (induct set: finite)
case empty then show ?case by auto

next
case (insert x F)
then obtain y where y: "(F, y) ∈ foldSetD D f e" by auto
with insert have "y ∈ D" by auto
with y and insert have "(insert x F, f x y) ∈ foldSetD D f e"

by (intro foldSetD.intros) auto
then show ?case ..

qed

lemma (in LCD) foldSetD_determ_aux:
"e ∈ D ==> ∀ A x. A ⊆ B & card A < n --> (A, x) ∈ foldSetD D f e -->

(∀ y. (A, y) ∈ foldSetD D f e --> y = x)"
apply (induct n)
apply (auto simp add: less_Suc_eq)

apply (erule foldSetD.cases)
apply blast

apply (erule foldSetD.cases)
apply blast

apply clarify

force simplification of card A < card (insert ...).

apply (erule rev_mp)
apply (simp add: less_Suc_eq_le)
apply (rule impI)
apply (rename_tac xa Aa ya xb Ab yb, case_tac "xa = xb")
apply (subgoal_tac "Aa = Ab")
prefer 2 apply (blast elim!: equalityE)

apply blast

case xa /∈ xb.

apply (subgoal_tac "Aa - {xb} = Ab - {xa} & xb ∈ Aa & xa ∈ Ab")
prefer 2 apply (blast elim!: equalityE)

apply clarify
apply (subgoal_tac "Aa = insert xb Ab - {xa}")
prefer 2 apply blast

apply (subgoal_tac "card Aa ≤ card Ab")
prefer 2
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apply (rule Suc_le_mono [THEN subst])
apply (simp add: card_Suc_Diff1)

apply (rule_tac A1 = "Aa - {xb}" in finite_imp_foldSetD [THEN exE])
apply (blast intro: foldSetD_imp_finite finite_Diff)

apply best
apply assumption

apply (frule (1) Diff1_foldSetD)
apply best

apply (subgoal_tac "ya = f xb x")
prefer 2
apply (subgoal_tac "Aa ⊆ B")
prefer 2 apply best

apply (blast del: equalityCE)
apply (subgoal_tac "(Ab - {xa}, x) ∈ foldSetD D f e")
prefer 2 apply simp

apply (subgoal_tac "yb = f xa x")
prefer 2
apply (blast del: equalityCE dest: Diff1_foldSetD)

apply (simp (no_asm_simp))
apply (rule left_commute)

apply assumption
apply best

apply best
done

lemma (in LCD) foldSetD_determ:
"[| (A, x) ∈ foldSetD D f e; (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B

|]
==> y = x"
by (blast intro: foldSetD_determ_aux [rule_format])

lemma (in LCD) foldD_equality:
"[| (A, y) ∈ foldSetD D f e; e ∈ D; A ⊆ B |] ==> foldD D f e A = y"
by (unfold foldD_def) (blast intro: foldSetD_determ)

lemma foldD_empty [simp]:
"e ∈ D ==> foldD D f e {} = e"
by (unfold foldD_def) blast

lemma (in LCD) foldD_insert_aux:
"[| x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==>
((insert x A, v) ∈ foldSetD D f e) =
(EX y. (A, y) ∈ foldSetD D f e & v = f x y)"

apply auto
apply (rule_tac A1 = A in finite_imp_foldSetD [THEN exE])

apply (fastsimp dest: foldSetD_imp_finite)
apply assumption

apply assumption
apply (blast intro: foldSetD_determ)
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done

lemma (in LCD) foldD_insert:
"[| finite A; x ~: A; x ∈ B; e ∈ D; A ⊆ B |] ==>
foldD D f e (insert x A) = f x (foldD D f e A)"

apply (unfold foldD_def)
apply (simp add: foldD_insert_aux)
apply (rule the_equality)
apply (auto intro: finite_imp_foldSetD
cong add: conj_cong simp add: foldD_def [symmetric] foldD_equality)

done

lemma (in LCD) foldD_closed [simp]:
"[| finite A; e ∈ D; A ⊆ B |] ==> foldD D f e A ∈ D"

proof (induct set: finite)
case empty then show ?case by (simp add: foldD_empty)

next
case insert then show ?case by (simp add: foldD_insert)

qed

lemma (in LCD) foldD_commute:
"[| finite A; x ∈ B; e ∈ D; A ⊆ B |] ==>
f x (foldD D f e A) = foldD D f (f x e) A"

apply (induct set: finite)
apply simp

apply (auto simp add: left_commute foldD_insert)
done

lemma Int_mono2:
"[| A ⊆ C; B ⊆ C |] ==> A Int B ⊆ C"
by blast

lemma (in LCD) foldD_nest_Un_Int:
"[| finite A; finite C; e ∈ D; A ⊆ B; C ⊆ B |] ==>
foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A

Un C)"
apply (induct set: finite)
apply simp

apply (simp add: foldD_insert foldD_commute Int_insert_left insert_absorb
Int_mono2 Un_subset_iff)

done

lemma (in LCD) foldD_nest_Un_disjoint:
"[| finite A; finite B; A Int B = {}; e ∈ D; A ⊆ B; C ⊆ B |]

==> foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
by (simp add: foldD_nest_Un_Int)

— Delete rules to do with foldSetD relation.



60

declare foldSetD_imp_finite [simp del]
empty_foldSetDE [rule del]
foldSetD.intros [rule del]

declare (in LCD)
foldSetD_closed [rule del]

Commutative Monoids

We enter a more restrictive context, with f :: ’a => ’a => ’a instead of ’b
=> ’a => ’a.

locale ACeD =
fixes D :: "’a set"

and f :: "’a => ’a => ’a" (infixl "·" 70)
and e :: ’a

assumes ident [simp]: "x ∈ D ==> x · e = x"
and commute: "[| x ∈ D; y ∈ D |] ==> x · y = y · x"
and assoc: "[| x ∈ D; y ∈ D; z ∈ D |] ==> (x · y) · z = x · (y · z)"
and e_closed [simp]: "e ∈ D"
and f_closed [simp]: "[| x ∈ D; y ∈ D |] ==> x · y ∈ D"

lemma (in ACeD) left_commute:
"[| x ∈ D; y ∈ D; z ∈ D |] ==> x · (y · z) = y · (x · z)"

proof -
assume D: "x ∈ D" "y ∈ D" "z ∈ D"
then have "x · (y · z) = (y · z) · x" by (simp add: commute)
also from D have "... = y · (z · x)" by (simp add: assoc)
also from D have "z · x = x · z" by (simp add: commute)
finally show ?thesis .

qed

lemmas (in ACeD) AC = assoc commute left_commute

lemma (in ACeD) left_ident [simp]: "x ∈ D ==> e · x = x"
proof -

assume "x ∈ D"
then have "x · e = x" by (rule ident)
with ‘x ∈ D‘ show ?thesis by (simp add: commute)

qed

lemma (in ACeD) foldD_Un_Int:
"[| finite A; finite B; A ⊆ D; B ⊆ D |] ==>
foldD D f e A · foldD D f e B =
foldD D f e (A Un B) · foldD D f e (A Int B)"

apply (induct set: finite)
apply (simp add: left_commute LCD.foldD_closed [OF LCD.intro [of D]])

apply (simp add: AC insert_absorb Int_insert_left
LCD.foldD_insert [OF LCD.intro [of D]]
LCD.foldD_closed [OF LCD.intro [of D]]
Int_mono2 Un_subset_iff)
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done

lemma (in ACeD) foldD_Un_disjoint:
"[| finite A; finite B; A Int B = {}; A ⊆ D; B ⊆ D |] ==>
foldD D f e (A Un B) = foldD D f e A · foldD D f e B"

by (simp add: foldD_Un_Int
left_commute LCD.foldD_closed [OF LCD.intro [of D]] Un_subset_iff)

3.9.2 Products over Finite Sets

constdefs (structure G)
finprod :: "[(’b, ’m) monoid_scheme, ’a => ’b, ’a set] => ’b"
"finprod G f A == if finite A

then foldD (carrier G) (mult G o f) 1 A
else undefined"

syntax
"_finprod" :: "index => idt => ’a set => ’b => ’b"

("(3
⊗

__:_. _)" [1000, 0, 51, 10] 10)
syntax (xsymbols)

"_finprod" :: "index => idt => ’a set => ’b => ’b"
("(3

⊗
__∈_. _)" [1000, 0, 51, 10] 10)

syntax (HTML output)
"_finprod" :: "index => idt => ’a set => ’b => ’b"

("(3
⊗

__∈_. _)" [1000, 0, 51, 10] 10)
translations
"
⊗

ı i:A. b" == "finprod �ı (%i. b) A"
— Beware of argument permutation!

lemma (in comm_monoid) finprod_empty [simp]:
"finprod G f {} = 1"
by (simp add: finprod_def)

declare funcsetI [intro]
funcset_mem [dest]

context comm_monoid begin

lemma finprod_insert [simp]:
"[| finite F; a /∈ F; f ∈ F -> carrier G; f a ∈ carrier G |] ==>
finprod G f (insert a F) = f a ⊗ finprod G f F"

apply (rule trans)
apply (simp add: finprod_def)

apply (rule trans)
apply (rule LCD.foldD_insert [OF LCD.intro [of "insert a F"]])

apply simp
apply (rule m_lcomm)

apply fast
apply fast
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apply assumption
apply (fastsimp intro: m_closed)

apply simp+
apply fast

apply (auto simp add: finprod_def)
done

lemma finprod_one [simp]:
"finite A ==> (

⊗
i:A. 1) = 1"

proof (induct set: finite)
case empty show ?case by simp

next
case (insert a A)
have "(%i. 1) ∈ A -> carrier G" by auto
with insert show ?case by simp

qed

lemma finprod_closed [simp]:
fixes A
assumes fin: "finite A" and f: "f ∈ A -> carrier G"
shows "finprod G f A ∈ carrier G"

using fin f
proof induct

case empty show ?case by simp
next

case (insert a A)
then have a: "f a ∈ carrier G" by fast
from insert have A: "f ∈ A -> carrier G" by fast
from insert A a show ?case by simp

qed

lemma funcset_Int_left [simp, intro]:
"[| f ∈ A -> C; f ∈ B -> C |] ==> f ∈ A Int B -> C"
by fast

lemma funcset_Un_left [iff]:
"(f ∈ A Un B -> C) = (f ∈ A -> C & f ∈ B -> C)"
by fast

lemma finprod_Un_Int:
"[| finite A; finite B; g ∈ A -> carrier G; g ∈ B -> carrier G |] ==>

finprod G g (A Un B) ⊗ finprod G g (A Int B) =
finprod G g A ⊗ finprod G g B"

— The reversed orientation looks more natural, but LOOPS as a simprule!
proof (induct set: finite)

case empty then show ?case by (simp add: finprod_closed)
next

case (insert a A)
then have a: "g a ∈ carrier G" by fast
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from insert have A: "g ∈ A -> carrier G" by fast
from insert A a show ?case

by (simp add: m_ac Int_insert_left insert_absorb finprod_closed
Int_mono2 Un_subset_iff)

qed

lemma finprod_Un_disjoint:
"[| finite A; finite B; A Int B = {};

g ∈ A -> carrier G; g ∈ B -> carrier G |]
==> finprod G g (A Un B) = finprod G g A ⊗ finprod G g B"

apply (subst finprod_Un_Int [symmetric])
apply (auto simp add: finprod_closed)

done

lemma finprod_multf:
"[| finite A; f ∈ A -> carrier G; g ∈ A -> carrier G |] ==>
finprod G (%x. f x ⊗ g x) A = (finprod G f A ⊗ finprod G g A)"

proof (induct set: finite)
case empty show ?case by simp

next
case (insert a A) then
have fA: "f ∈ A -> carrier G" by fast
from insert have fa: "f a ∈ carrier G" by fast
from insert have gA: "g ∈ A -> carrier G" by fast
from insert have ga: "g a ∈ carrier G" by fast
from insert have fgA: "(%x. f x ⊗ g x) ∈ A -> carrier G"

by (simp add: Pi_def)
show ?case

by (simp add: insert fA fa gA ga fgA m_ac)
qed

lemma finprod_cong’:
"[| A = B; g ∈ B -> carrier G;

!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"
proof -

assume prems: "A = B" "g ∈ B -> carrier G"
"!!i. i ∈ B ==> f i = g i"

show ?thesis
proof (cases "finite B")

case True
then have "!!A. [| A = B; g ∈ B -> carrier G;
!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"

proof induct
case empty thus ?case by simp

next
case (insert x B)
then have "finprod G f A = finprod G f (insert x B)" by simp
also from insert have "... = f x ⊗ finprod G f B"
proof (intro finprod_insert)



64

show "finite B" by fact
next

show "x ~: B" by fact
next

assume "x ~: B" "!!i. i ∈ insert x B =⇒ f i = g i"
"g ∈ insert x B → carrier G"

thus "f ∈ B -> carrier G" by fastsimp
next

assume "x ~: B" "!!i. i ∈ insert x B =⇒ f i = g i"
"g ∈ insert x B → carrier G"

thus "f x ∈ carrier G" by fastsimp
qed
also from insert have "... = g x ⊗ finprod G g B" by fastsimp
also from insert have "... = finprod G g (insert x B)"
by (intro finprod_insert [THEN sym]) auto
finally show ?case .

qed
with prems show ?thesis by simp

next
case False with prems show ?thesis by (simp add: finprod_def)

qed
qed

lemma finprod_cong:
"[| A = B; f ∈ B -> carrier G = True;

!!i. i ∈ B ==> f i = g i |] ==> finprod G f A = finprod G g B"

by (rule finprod_cong’) force+

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g ∈ B -> carrier G cannot be shown. Adding Pi_def to the
simpset is often useful. For this reason, comm_monoid.finprod_cong is not
added to the simpset by default.

end

declare funcsetI [rule del]
funcset_mem [rule del]

context comm_monoid begin

lemma finprod_0 [simp]:
"f ∈ {0::nat} -> carrier G ==> finprod G f {..0} = f 0"

by (simp add: Pi_def)

lemma finprod_Suc [simp]:
"f ∈ {..Suc n} -> carrier G ==>
finprod G f {..Suc n} = (f (Suc n) ⊗ finprod G f {..n})"

by (simp add: Pi_def atMost_Suc)
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lemma finprod_Suc2:
"f ∈ {..Suc n} -> carrier G ==>
finprod G f {..Suc n} = (finprod G (%i. f (Suc i)) {..n} ⊗ f 0)"

proof (induct n)
case 0 thus ?case by (simp add: Pi_def)

next
case Suc thus ?case by (simp add: m_assoc Pi_def)

qed

lemma finprod_mult [simp]:
"[| f ∈ {..n} -> carrier G; g ∈ {..n} -> carrier G |] ==>

finprod G (%i. f i ⊗ g i) {..n::nat} =
finprod G f {..n} ⊗ finprod G g {..n}"

by (induct n) (simp_all add: m_ac Pi_def)

lemma finprod_reindex:
assumes fin: "finite A"

shows "f : (h ‘ A) → carrier G =⇒
inj_on h A ==> finprod G f (h ‘ A) = finprod G (%x. f (h x)) A"

using fin apply induct
apply (auto simp add: finprod_insert Pi_def)

done

lemma finprod_const:
assumes fin [simp]: "finite A"

and a [simp]: "a : carrier G"
shows "finprod G (%x. a) A = a (^) card A"

using fin apply induct
apply force
apply (subst finprod_insert)
apply auto
apply (force simp add: Pi_def)
apply (subst m_comm)
apply auto

done

lemma finprod_singleton:
assumes i_in_A: "i ∈ A" and fin_A: "finite A" and f_Pi: "f ∈ A →

carrier G"
shows "(

⊗
j∈A. if i = j then f j else 1) = f i"

using i_in_A finprod_insert [of "A - {i}" i "(λj. if i = j then f j
else 1)"]

fin_A f_Pi finprod_one [of "A - {i}"]
finprod_cong [of "A - {i}" "A - {i}" "(λj. if i = j then f j else

1)" "(λi. 1)"]
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unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)

end

end

theory Coset imports Group begin

4 Cosets and Quotient Groups

constdefs (structure G)
r_coset :: "[_, ’a set, ’a] ⇒ ’a set" (infixl "#>ı " 60)
"H #> a ≡

⋃
h∈H. {h ⊗ a}"

l_coset :: "[_, ’a, ’a set] ⇒ ’a set" (infixl "<#ı " 60)
"a <# H ≡

⋃
h∈H. {a ⊗ h}"

RCOSETS :: "[_, ’a set] ⇒ (’a set)set" ("rcosetsı _" [81] 80)
"rcosets H ≡

⋃
a∈carrier G. {H #> a}"

set_mult :: "[_, ’a set ,’a set] ⇒ ’a set" (infixl "<#>ı " 60)
"H <#> K ≡

⋃
h∈H.

⋃
k∈K. {h ⊗ k}"

SET_INV :: "[_,’a set] ⇒ ’a set" ("set’_invı _" [81] 80)
"set_inv H ≡

⋃
h∈H. {inv h}"

locale normal = subgroup + group +
assumes coset_eq: "(∀ x ∈ carrier G. H #> x = x <# H)"

abbreviation
normal_rel :: "[’a set, (’a, ’b) monoid_scheme] ⇒ bool" (infixl "C"

60) where
"H C G ≡ normal H G"

4.1 Basic Properties of Cosets

lemma (in group) coset_mult_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> (M #> g) #> h = M #> (g ⊗ h)"

by (force simp add: r_coset_def m_assoc)

lemma (in group) coset_mult_one [simp]: "M ⊆ carrier G ==> M #> 1 =
M"
by (force simp add: r_coset_def)

lemma (in group) coset_mult_inv1:
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"[| M #> (x ⊗ (inv y)) = M; x ∈ carrier G ; y ∈ carrier G;
M ⊆ carrier G |] ==> M #> x = M #> y"

apply (erule subst [of concl: "%z. M #> x = z #> y"])
apply (simp add: coset_mult_assoc m_assoc)
done

lemma (in group) coset_mult_inv2:
"[| M #> x = M #> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier

G |]
==> M #> (x ⊗ (inv y)) = M "

apply (simp add: coset_mult_assoc [symmetric])
apply (simp add: coset_mult_assoc)
done

lemma (in group) coset_join1:
"[| H #> x = H; x ∈ carrier G; subgroup H G |] ==> x ∈ H"

apply (erule subst)
apply (simp add: r_coset_def)
apply (blast intro: l_one subgroup.one_closed sym)
done

lemma (in group) solve_equation:
"[[subgroup H G; x ∈ H; y ∈ H]] =⇒ ∃ h∈H. y = h ⊗ x"

apply (rule bexI [of _ "y ⊗ (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc

subgroup.subset [THEN subsetD])
done

lemma (in group) repr_independence:
"[[y ∈ H #> x; x ∈ carrier G; subgroup H G]] =⇒ H #> x = H #> y"

by (auto simp add: r_coset_def m_assoc [symmetric]
subgroup.subset [THEN subsetD]
subgroup.m_closed solve_equation)

lemma (in group) coset_join2:
"[[x ∈ carrier G; subgroup H G; x∈H]] =⇒ H #> x = H"

— Alternative proof is to put x = 1 in repr_independence.
by (force simp add: subgroup.m_closed r_coset_def solve_equation)

lemma (in monoid) r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> H #> x ⊆ carrier G"

by (auto simp add: r_coset_def)

lemma (in group) rcosI:
"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊗ x ∈ H #> x"

by (auto simp add: r_coset_def)

lemma (in group) rcosetsI:
"[[H ⊆ carrier G; x ∈ carrier G]] =⇒ H #> x ∈ rcosets H"
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by (auto simp add: RCOSETS_def)

Really needed?

lemma (in group) transpose_inv:
"[| x ⊗ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]
==> (inv x) ⊗ z = y"

by (force simp add: m_assoc [symmetric])

lemma (in group) rcos_self: "[| x ∈ carrier G; subgroup H G |] ==> x
∈ H #> x"
apply (simp add: r_coset_def)
apply (blast intro: sym l_one subgroup.subset [THEN subsetD]

subgroup.one_closed)
done

Opposite of "repr_independence"

lemma (in group) repr_independenceD:
assumes "subgroup H G"
assumes ycarr: "y ∈ carrier G"

and repr: "H #> x = H #> y"
shows "y ∈ H #> x"

proof -
interpret subgroup H G by fact
show ?thesis apply (subst repr)
apply (intro rcos_self)
apply (rule ycarr)
apply (rule is_subgroup)

done
qed

Elements of a right coset are in the carrier

lemma (in subgroup) elemrcos_carrier:
assumes "group G"
assumes acarr: "a ∈ carrier G"

and a’: "a’ ∈ H #> a"
shows "a’ ∈ carrier G"

proof -
interpret group G by fact
from subset and acarr
have "H #> a ⊆ carrier G" by (rule r_coset_subset_G)
from this and a’
show "a’ ∈ carrier G"

by fast
qed

lemma (in subgroup) rcos_const:
assumes "group G"
assumes hH: "h ∈ H"
shows "H #> h = H"
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proof -
interpret group G by fact
show ?thesis apply (unfold r_coset_def)

apply rule
apply rule
apply clarsimp
apply (intro subgroup.m_closed)
apply (rule is_subgroup)
apply assumption
apply (rule hH)
apply rule
apply simp

proof -
fix h’
assume h’H: "h’ ∈ H"
note carr = hH[THEN mem_carrier] h’H[THEN mem_carrier]
from carr
have a: "h’ = (h’ ⊗ inv h) ⊗ h" by (simp add: m_assoc)
from h’H hH
have "h’ ⊗ inv h ∈ H" by simp
from this and a
show "∃ x∈H. h’ = x ⊗ h" by fast

qed
qed

Step one for lemma rcos_module

lemma (in subgroup) rcos_module_imp:
assumes "group G"
assumes xcarr: "x ∈ carrier G"

and x’cos: "x’ ∈ H #> x"
shows "(x’ ⊗ inv x) ∈ H"

proof -
interpret group G by fact
from xcarr x’cos

have x’carr: "x’ ∈ carrier G"
by (rule elemrcos_carrier[OF is_group])

from xcarr
have ixcarr: "inv x ∈ carrier G"
by simp

from x’cos
have "∃ h∈H. x’ = h ⊗ x"
unfolding r_coset_def
by fast

from this
obtain h

where hH: "h ∈ H"
and x’: "x’ = h ⊗ x"

by auto
from hH and subset
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have hcarr: "h ∈ carrier G" by fast
note carr = xcarr x’carr hcarr
from x’ and carr

have "x’ ⊗ (inv x) = (h ⊗ x) ⊗ (inv x)" by fast
also from carr

have ". . . = h ⊗ (x ⊗ inv x)" by (simp add: m_assoc)
also from carr

have ". . . = h ⊗ 1" by simp
also from carr

have ". . . = h" by simp
finally

have "x’ ⊗ (inv x) = h" by simp
from hH this

show "x’ ⊗ (inv x) ∈ H" by simp
qed

Step two for lemma rcos_module

lemma (in subgroup) rcos_module_rev:
assumes "group G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

and xixH: "(x’ ⊗ inv x) ∈ H"
shows "x’ ∈ H #> x"

proof -
interpret group G by fact
from xixH

have "∃ h∈H. x’ ⊗ (inv x) = h" by fast
from this

obtain h
where hH: "h ∈ H"
and hsym: "x’ ⊗ (inv x) = h"

by fast
from hH subset have hcarr: "h ∈ carrier G" by simp
note carr = carr hcarr
from hsym[symmetric] have "h ⊗ x = x’ ⊗ (inv x) ⊗ x" by fast
also from carr

have ". . . = x’ ⊗ ((inv x) ⊗ x)" by (simp add: m_assoc)
also from carr

have ". . . = x’ ⊗ 1" by (simp add: l_inv)
also from carr

have ". . . = x’" by simp
finally

have "h ⊗ x = x’" by simp
from this[symmetric] and hH

show "x’ ∈ H #> x"
unfolding r_coset_def
by fast

qed

Module property of right cosets
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lemma (in subgroup) rcos_module:
assumes "group G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"
shows "(x’ ∈ H #> x) = (x’ ⊗ inv x ∈ H)"

proof -
interpret group G by fact
show ?thesis proof assume "x’ ∈ H #> x"

from this and carr
show "x’ ⊗ inv x ∈ H"

by (intro rcos_module_imp[OF is_group])
next

assume "x’ ⊗ inv x ∈ H"
from this and carr
show "x’ ∈ H #> x"

by (intro rcos_module_rev[OF is_group])
qed

qed

Right cosets are subsets of the carrier.

lemma (in subgroup) rcosets_carrier:
assumes "group G"
assumes XH: "X ∈ rcosets H"
shows "X ⊆ carrier G"

proof -
interpret group G by fact
from XH have "∃ x∈ carrier G. X = H #> x"

unfolding RCOSETS_def
by fast

from this
obtain x

where xcarr: "x∈ carrier G"
and X: "X = H #> x"

by fast
from subset and xcarr

show "X ⊆ carrier G"
unfolding X
by (rule r_coset_subset_G)

qed

Multiplication of general subsets

lemma (in monoid) set_mult_closed:
assumes Acarr: "A ⊆ carrier G"

and Bcarr: "B ⊆ carrier G"
shows "A <#> B ⊆ carrier G"

apply rule apply (simp add: set_mult_def, clarsimp)
proof -

fix a b
assume "a ∈ A"
from this and Acarr
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have acarr: "a ∈ carrier G" by fast

assume "b ∈ B"
from this and Bcarr

have bcarr: "b ∈ carrier G" by fast

from acarr bcarr
show "a ⊗ b ∈ carrier G" by (rule m_closed)

qed

lemma (in comm_group) mult_subgroups:
assumes subH: "subgroup H G"

and subK: "subgroup K G"
shows "subgroup (H <#> K) G"

apply (rule subgroup.intro)
apply (intro set_mult_closed subgroup.subset[OF subH] subgroup.subset[OF

subK])
apply (simp add: set_mult_def) apply clarsimp defer 1
apply (simp add: set_mult_def) defer 1
apply (simp add: set_mult_def, clarsimp) defer 1

proof -
fix ha hb ka kb
assume haH: "ha ∈ H" and hbH: "hb ∈ H" and kaK: "ka ∈ K" and kbK:

"kb ∈ K"
note carr = haH[THEN subgroup.mem_carrier[OF subH]] hbH[THEN subgroup.mem_carrier[OF

subH]]
kaK[THEN subgroup.mem_carrier[OF subK]] kbK[THEN subgroup.mem_carrier[OF

subK]]
from carr

have "(ha ⊗ ka) ⊗ (hb ⊗ kb) = ha ⊗ (ka ⊗ hb) ⊗ kb" by (simp add:
m_assoc)

also from carr
have ". . . = ha ⊗ (hb ⊗ ka) ⊗ kb" by (simp add: m_comm)

also from carr
have ". . . = (ha ⊗ hb) ⊗ (ka ⊗ kb)" by (simp add: m_assoc)

finally
have eq: "(ha ⊗ ka) ⊗ (hb ⊗ kb) = (ha ⊗ hb) ⊗ (ka ⊗ kb)" .

from haH hbH have hH: "ha ⊗ hb ∈ H" by (simp add: subgroup.m_closed[OF
subH])

from kaK kbK have kK: "ka ⊗ kb ∈ K" by (simp add: subgroup.m_closed[OF
subK])

from hH and kK and eq
show "∃ h’∈H. ∃ k’∈K. (ha ⊗ ka) ⊗ (hb ⊗ kb) = h’ ⊗ k’" by fast

next
have "1 = 1 ⊗ 1" by simp
from subgroup.one_closed[OF subH] subgroup.one_closed[OF subK] this

show "∃ h∈H. ∃ k∈K. 1 = h ⊗ k" by fast
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next
fix h k
assume hH: "h ∈ H"

and kK: "k ∈ K"

from hH[THEN subgroup.mem_carrier[OF subH]] kK[THEN subgroup.mem_carrier[OF
subK]]

have "inv (h ⊗ k) = inv h ⊗ inv k" by (simp add: inv_mult_group
m_comm)

from subgroup.m_inv_closed[OF subH hH] and subgroup.m_inv_closed[OF
subK kK] and this

show "∃ ha∈H. ∃ ka∈K. inv (h ⊗ k) = ha ⊗ ka" by fast
qed

lemma (in subgroup) lcos_module_rev:
assumes "group G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"

and xixH: "(inv x ⊗ x’) ∈ H"
shows "x’ ∈ x <# H"

proof -
interpret group G by fact
from xixH

have "∃ h∈H. (inv x) ⊗ x’ = h" by fast
from this

obtain h
where hH: "h ∈ H"
and hsym: "(inv x) ⊗ x’ = h"

by fast

from hH subset have hcarr: "h ∈ carrier G" by simp
note carr = carr hcarr
from hsym[symmetric] have "x ⊗ h = x ⊗ ((inv x) ⊗ x’)" by fast
also from carr

have ". . . = (x ⊗ (inv x)) ⊗ x’" by (simp add: m_assoc[symmetric])
also from carr

have ". . . = 1 ⊗ x’" by simp
also from carr

have ". . . = x’" by simp
finally

have "x ⊗ h = x’" by simp

from this[symmetric] and hH
show "x’ ∈ x <# H"
unfolding l_coset_def
by fast

qed
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4.2 Normal subgroups

lemma normal_imp_subgroup: "H C G =⇒ subgroup H G"
by (simp add: normal_def subgroup_def)

lemma (in group) normalI:
"subgroup H G =⇒ (∀ x ∈ carrier G. H #> x = x <# H) =⇒ H C G"
by (simp add: normal_def normal_axioms_def prems)

lemma (in normal) inv_op_closed1:
"[[x ∈ carrier G; h ∈ H]] =⇒ (inv x) ⊗ h ⊗ x ∈ H"

apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done

lemma (in normal) inv_op_closed2:
"[[x ∈ carrier G; h ∈ H]] =⇒ x ⊗ h ⊗ (inv x) ∈ H"

apply (subgoal_tac "inv (inv x) ⊗ h ⊗ (inv x) ∈ H")
apply (simp add: )
apply (blast intro: inv_op_closed1)
done

Alternative characterization of normal subgroups

lemma (in group) normal_inv_iff:
"(N C G) =
(subgroup N G & (∀ x ∈ carrier G. ∀ h ∈ N. x ⊗ h ⊗ (inv x) ∈ N))"
(is "_ = ?rhs")

proof
assume N: "N C G"
show ?rhs

by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next

assume ?rhs
hence sg: "subgroup N G"

and closed: "
∧
x. x∈carrier G =⇒ ∀ h∈N. x ⊗ h ⊗ inv x ∈ N" by auto

hence sb: "N ⊆ carrier G" by (simp add: subgroup.subset)
show "N C G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)

fix x
assume x: "x ∈ carrier G"
show "(

⋃
h∈N. {h ⊗ x}) = (

⋃
h∈N. {x ⊗ h})"

proof
show "(

⋃
h∈N. {h ⊗ x}) ⊆ (

⋃
h∈N. {x ⊗ h})"

proof clarify
fix n
assume n: "n ∈ N"
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show "n ⊗ x ∈ (
⋃
h∈N. {x ⊗ h})"

proof
from closed [of "inv x"]
show "inv x ⊗ n ⊗ x ∈ N" by (simp add: x n)
show "n ⊗ x ∈ {x ⊗ (inv x ⊗ n ⊗ x)}"

by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
qed

qed
next

show "(
⋃
h∈N. {x ⊗ h}) ⊆ (

⋃
h∈N. {h ⊗ x})"

proof clarify
fix n
assume n: "n ∈ N"
show "x ⊗ n ∈ (

⋃
h∈N. {h ⊗ x})"

proof
show "x ⊗ n ⊗ inv x ∈ N" by (simp add: x n closed)
show "x ⊗ n ∈ {x ⊗ n ⊗ inv x ⊗ x}"

by (simp add: x n m_assoc sb [THEN subsetD])
qed

qed
qed

qed
qed

4.3 More Properties of Cosets

lemma (in group) lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> g <# (h <# M) = (g ⊗ h) <# M"

by (force simp add: l_coset_def m_assoc)

lemma (in group) lcos_mult_one: "M ⊆ carrier G ==> 1 <# M = M"
by (force simp add: l_coset_def)

lemma (in group) l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <# H ⊆ carrier G"

by (auto simp add: l_coset_def subsetD)

lemma (in group) l_coset_swap:
"[[y ∈ x <# H; x ∈ carrier G; subgroup H G]] =⇒ x ∈ y <# H"

proof (simp add: l_coset_def)
assume "∃ h∈H. y = x ⊗ h"

and x: "x ∈ carrier G"
and sb: "subgroup H G"

then obtain h’ where h’: "h’ ∈ H & x ⊗ h’ = y" by blast
show "∃ h∈H. x = y ⊗ h"
proof

show "x = y ⊗ inv h’" using h’ x sb
by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
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show "inv h’ ∈ H" using h’ sb
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)

qed
qed

lemma (in group) l_coset_carrier:
"[| y ∈ x <# H; x ∈ carrier G; subgroup H G |] ==> y ∈ carrier

G"
by (auto simp add: l_coset_def m_assoc

subgroup.subset [THEN subsetD] subgroup.m_closed)

lemma (in group) l_repr_imp_subset:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H

G"
shows "y <# H ⊆ x <# H"

proof -
from y
obtain h’ where "h’ ∈ H" "x ⊗ h’ = y" by (auto simp add: l_coset_def)
thus ?thesis using x sb

by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)

qed

lemma (in group) l_repr_independence:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier G" and sb: "subgroup H

G"
shows "x <# H = y <# H"

proof
show "x <# H ⊆ y <# H"

by (rule l_repr_imp_subset,
(blast intro: l_coset_swap l_coset_carrier y x sb)+)

show "y <# H ⊆ x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed

lemma (in group) setmult_subset_G:
"[[H ⊆ carrier G; K ⊆ carrier G]] =⇒ H <#> K ⊆ carrier G"

by (auto simp add: set_mult_def subsetD)

lemma (in group) subgroup_mult_id: "subgroup H G =⇒ H <#> H = H"
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "1"])
apply (auto simp add: subgroup.m_closed subgroup.one_closed

r_one subgroup.subset [THEN subsetD])
done

4.3.1 Set of Inverses of an r_coset.

lemma (in normal) rcos_inv:
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assumes x: "x ∈ carrier G"
shows "set_inv (H #> x) = H #> (inv x)"

proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe)
fix h
assume "h ∈ H"
show "inv x ⊗ inv h ∈ (

⋃
j∈H. {j ⊗ inv x})"

proof
show "inv x ⊗ inv h ⊗ x ∈ H"

by (simp add: inv_op_closed1 prems)
show "inv x ⊗ inv h ∈ {inv x ⊗ inv h ⊗ x ⊗ inv x}"

by (simp add: prems m_assoc)
qed

next
fix h
assume "h ∈ H"
show "h ⊗ inv x ∈ (

⋃
j∈H. {inv x ⊗ inv j})"

proof
show "x ⊗ inv h ⊗ inv x ∈ H"

by (simp add: inv_op_closed2 prems)
show "h ⊗ inv x ∈ {inv x ⊗ inv (x ⊗ inv h ⊗ inv x)}"

by (simp add: prems m_assoc [symmetric] inv_mult_group)
qed

qed

4.3.2 Theorems for <#> with #> or <#.

lemma (in group) setmult_rcos_assoc:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ H <#> (K #> x) = (H <#> K) #> x"

by (force simp add: r_coset_def set_mult_def m_assoc)

lemma (in group) rcos_assoc_lcos:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ (H #> x) <#> K = H <#> (x <# K)"

by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)

lemma (in normal) rcos_mult_step1:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"

by (simp add: setmult_rcos_assoc subset
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)

lemma (in normal) rcos_mult_step2:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"

by (insert coset_eq, simp add: normal_def)

lemma (in normal) rcos_mult_step3:
"[[x ∈ carrier G; y ∈ carrier G]]
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=⇒ (H <#> (H #> x)) #> y = H #> (x ⊗ y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc

subgroup_mult_id normal.axioms subset prems)

lemma (in normal) rcos_sum:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H #> x) <#> (H #> y) = H #> (x ⊗ y)"

by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)

lemma (in normal) rcosets_mult_eq: "M ∈ rcosets H =⇒ H <#> M = M"
— generalizes subgroup_mult_id
by (auto simp add: RCOSETS_def subset

setmult_rcos_assoc subgroup_mult_id normal.axioms prems)

4.3.3 An Equivalence Relation

constdefs (structure G)
r_congruent :: "[(’a,’b)monoid_scheme, ’a set] ⇒ (’a*’a)set"

("rcongı _")
"rcong H ≡ {(x,y). x ∈ carrier G & y ∈ carrier G & inv x ⊗ y ∈ H}"

lemma (in subgroup) equiv_rcong:
assumes "group G"
shows "equiv (carrier G) (rcong H)"

proof -
interpret group G by fact
show ?thesis
proof (intro equiv.intro)

show "refl_on (carrier G) (rcong H)"
by (auto simp add: r_congruent_def refl_on_def)

next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)

fix x y
assume [simp]: "x ∈ carrier G" "y ∈ carrier G"

and "inv x ⊗ y ∈ H"
hence "inv (inv x ⊗ y) ∈ H" by (simp add: m_inv_closed)
thus "inv y ⊗ x ∈ H" by (simp add: inv_mult_group)

qed
next

show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)

fix x y z
assume [simp]: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"

and "inv x ⊗ y ∈ H" and "inv y ⊗ z ∈ H"
hence "(inv x ⊗ y) ⊗ (inv y ⊗ z) ∈ H" by simp
hence "inv x ⊗ (y ⊗ inv y) ⊗ z ∈ H"

by (simp add: m_assoc del: r_inv Units_r_inv)
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thus "inv x ⊗ z ∈ H" by simp
qed

qed
qed

Equivalence classes of rcong correspond to left cosets. Was there a mistake
in the definitions? I’d have expected them to correspond to right cosets.

lemma (in subgroup) l_coset_eq_rcong:
assumes "group G"
assumes a: "a ∈ carrier G"
shows "a <# H = rcong H ‘‘ {a}"

proof -
interpret group G by fact
show ?thesis by (force simp add: r_congruent_def l_coset_def m_assoc

[symmetric] a )
qed

4.3.4 Two Distinct Right Cosets are Disjoint

lemma (in group) rcos_equation:
assumes "subgroup H G"
assumes p: "ha ⊗ a = h ⊗ b" "a ∈ carrier G" "b ∈ carrier G" "h ∈ H"

"ha ∈ H" "hb ∈ H"
shows "hb ⊗ a ∈ (

⋃
h∈H. {h ⊗ b})"

proof -
interpret subgroup H G by fact
from p show ?thesis apply (rule_tac UN_I [of "hb ⊗ ((inv ha) ⊗ h)"])

apply (simp add: )
apply (simp add: m_assoc transpose_inv)
done

qed

lemma (in group) rcos_disjoint:
assumes "subgroup H G"
assumes p: "a ∈ rcosets H" "b ∈ rcosets H" "a 6=b"
shows "a ∩ b = {}"

proof -
interpret subgroup H G by fact
from p show ?thesis apply (simp add: RCOSETS_def r_coset_def)

apply (blast intro: rcos_equation prems sym)
done

qed

4.4 Further lemmas for r_congruent

The relation is a congruence

lemma (in normal) congruent_rcong:
shows "congruent2 (rcong H) (rcong H) (λa b. a ⊗ b <# H)"

proof (intro congruent2I[of "carrier G" _ "carrier G" _] equiv_rcong is_group)
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fix a b c
assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from abrcong
have acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"
and abH: "inv a ⊗ b ∈ H"

unfolding r_congruent_def
by fast+

note carr = acarr bcarr ccarr

from ccarr and abH
have "inv c ⊗ (inv a ⊗ b) ⊗ c ∈ H" by (rule inv_op_closed1)

moreover
from carr and inv_closed
have "inv c ⊗ (inv a ⊗ b) ⊗ c = (inv c ⊗ inv a) ⊗ (b ⊗ c)"
by (force cong: m_assoc)

moreover
from carr and inv_closed
have ". . . = (inv (a ⊗ c)) ⊗ (b ⊗ c)"
by (simp add: inv_mult_group)

ultimately
have "(inv (a ⊗ c)) ⊗ (b ⊗ c) ∈ H" by simp

from carr and this
have "(b ⊗ c) ∈ (a ⊗ c) <# H"
by (simp add: lcos_module_rev[OF is_group])

from carr and this and is_subgroup
show "(a ⊗ c) <# H = (b ⊗ c) <# H" by (intro l_repr_independence,

simp+)
next

fix a b c
assume abrcong: "(a, b) ∈ rcong H"

and ccarr: "c ∈ carrier G"

from ccarr have "c ∈ Units G" by (simp add: Units_eq)
hence cinvc_one: "inv c ⊗ c = 1" by (rule Units_l_inv)

from abrcong
have acarr: "a ∈ carrier G"
and bcarr: "b ∈ carrier G"
and abH: "inv a ⊗ b ∈ H"

by (unfold r_congruent_def, fast+)

note carr = acarr bcarr ccarr

from carr and inv_closed
have "inv a ⊗ b = inv a ⊗ (1 ⊗ b)" by simp
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also from carr and inv_closed
have ". . . = inv a ⊗ (inv c ⊗ c) ⊗ b" by simp

also from carr and inv_closed
have ". . . = (inv a ⊗ inv c) ⊗ (c ⊗ b)" by (force cong: m_assoc)

also from carr and inv_closed
have ". . . = inv (c ⊗ a) ⊗ (c ⊗ b)" by (simp add: inv_mult_group)

finally
have "inv a ⊗ b = inv (c ⊗ a) ⊗ (c ⊗ b)" .

from abH and this
have "inv (c ⊗ a) ⊗ (c ⊗ b) ∈ H" by simp

from carr and this
have "(c ⊗ b) ∈ (c ⊗ a) <# H"
by (simp add: lcos_module_rev[OF is_group])

from carr and this and is_subgroup
show "(c ⊗ a) <# H = (c ⊗ b) <# H" by (intro l_repr_independence,

simp+)
qed

4.5 Order of a Group and Lagrange’s Theorem

constdefs
order :: "(’a, ’b) monoid_scheme ⇒ nat"
"order S ≡ card (carrier S)"

lemma (in group) rcosets_part_G:
assumes "subgroup H G"
shows "

⋃
(rcosets H) = carrier G"

proof -
interpret subgroup H G by fact
show ?thesis

apply (rule equalityI)
apply (force simp add: RCOSETS_def r_coset_def)
apply (auto simp add: RCOSETS_def intro: rcos_self prems)
done

qed

lemma (in group) cosets_finite:
"[[c ∈ rcosets H; H ⊆ carrier G; finite (carrier G)]] =⇒ finite

c"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN finite_subset])
done

The next two lemmas support the proof of card_cosets_equal.

lemma (in group) inj_on_f:
"[[H ⊆ carrier G; a ∈ carrier G]] =⇒ inj_on (λy. y ⊗ inv a) (H #>

a)"
apply (rule inj_onI)
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apply (subgoal_tac "x ∈ carrier G & y ∈ carrier G")
prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])

apply (simp add: subsetD)
done

lemma (in group) inj_on_g:
"[[H ⊆ carrier G; a ∈ carrier G]] =⇒ inj_on (λy. y ⊗ a) H"

by (force simp add: inj_on_def subsetD)

lemma (in group) card_cosets_equal:
"[[c ∈ rcosets H; H ⊆ carrier G; finite(carrier G)]]
=⇒ card c = card H"

apply (auto simp add: RCOSETS_def)
apply (rule card_bij_eq)

apply (rule inj_on_f, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)

apply (rule inj_on_g, assumption+)
apply (force simp add: m_assoc subsetD r_coset_def)

The sets H #> a and H are finite.

apply (simp add: r_coset_subset_G [THEN finite_subset])
apply (blast intro: finite_subset)
done

lemma (in group) rcosets_subset_PowG:
"subgroup H G =⇒ rcosets H ⊆ Pow(carrier G)"

apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done

theorem (in group) lagrange:
"[[finite(carrier G); subgroup H G]]
=⇒ card(rcosets H) * card(H) = order(G)"

apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult_commute)
apply (rule card_partition)

apply (simp add: rcosets_subset_PowG [THEN finite_subset])
apply (simp add: rcosets_part_G)

apply (simp add: card_cosets_equal subgroup.subset)
apply (simp add: rcos_disjoint)
done

4.6 Quotient Groups: Factorization of a Group

constdefs
FactGroup :: "[(’a,’b) monoid_scheme, ’a set] ⇒ (’a set) monoid"

(infixl "Mod" 65)
— Actually defined for groups rather than monoids

"FactGroup G H ≡
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(|carrier = rcosetsG H, mult = set_mult G, one = H|)"

lemma (in normal) setmult_closed:
"[[K1 ∈ rcosets H; K2 ∈ rcosets H]] =⇒ K1 <#> K2 ∈ rcosets H"

by (auto simp add: rcos_sum RCOSETS_def)

lemma (in normal) setinv_closed:
"K ∈ rcosets H =⇒ set_inv K ∈ rcosets H"

by (auto simp add: rcos_inv RCOSETS_def)

lemma (in normal) rcosets_assoc:
"[[M1 ∈ rcosets H; M2 ∈ rcosets H; M3 ∈ rcosets H]]
=⇒ M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"

by (auto simp add: RCOSETS_def rcos_sum m_assoc)

lemma (in subgroup) subgroup_in_rcosets:
assumes "group G"
shows "H ∈ rcosets H"

proof -
interpret group G by fact
from _ subgroup_axioms have "H #> 1 = H"

by (rule coset_join2) auto
then show ?thesis

by (auto simp add: RCOSETS_def)
qed

lemma (in normal) rcosets_inv_mult_group_eq:
"M ∈ rcosets H =⇒ set_inv M <#> M = H"

by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset normal.axioms
prems)

theorem (in normal) factorgroup_is_group:
"group (G Mod H)"

apply (simp add: FactGroup_def)
apply (rule groupI)

apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])

apply (simp add: restrictI setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup

subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done

lemma mult_FactGroup [simp]: "X ⊗(G Mod H) X’ = X <#>G X’"
by (simp add: FactGroup_def)

lemma (in normal) inv_FactGroup:
"X ∈ carrier (G Mod H) =⇒ invG Mod H X = set_inv X"

apply (rule group.inv_equality [OF factorgroup_is_group])
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apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in normal) r_coset_hom_Mod:
"(λa. H #> a) ∈ hom G (G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def Pi_def hom_def rcos_sum)

4.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

constdefs
kernel :: "(’a, ’m) monoid_scheme ⇒ (’b, ’n) monoid_scheme ⇒

(’a ⇒ ’b) ⇒ ’a set"
— the kernel of a homomorphism

"kernel G H h ≡ {x. x ∈ carrier G & h x = 1H}"

lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro prems)
done

The kernel of a homomorphism is a normal subgroup

lemma (in group_hom) normal_kernel: "(kernel G H h) C G"
apply (simp add: G.normal_inv_iff subgroup_kernel)
apply (simp add: kernel_def)
done

lemma (in group_hom) FactGroup_nonempty:
assumes X: "X ∈ carrier (G Mod kernel G H h)"
shows "X 6= {}"

proof -
from X
obtain g where "g ∈ carrier G"

and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)

thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)

qed

lemma (in group_hom) FactGroup_contents_mem:
assumes X: "X ∈ carrier (G Mod (kernel G H h))"
shows "contents (h‘X) ∈ carrier H"

proof -
from X
obtain g where g: "g ∈ carrier G"
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and "X = kernel G H h #> g"
by (auto simp add: FactGroup_def RCOSETS_def)

hence "h ‘ X = {h g}" by (auto simp add: kernel_def r_coset_def image_def
g)

thus ?thesis by (auto simp add: g)
qed

lemma (in group_hom) FactGroup_hom:
"(λX. contents (h‘X)) ∈ hom (G Mod (kernel G H h)) H"

apply (simp add: hom_def FactGroup_contents_mem normal.factorgroup_is_group
[OF normal_kernel] group.axioms monoid.m_closed)
proof (simp add: hom_def funcsetI FactGroup_contents_mem, intro ballI)

fix X and X’
assume X: "X ∈ carrier (G Mod kernel G H h)"

and X’: "X’ ∈ carrier (G Mod kernel G H h)"
then
obtain g and g’

where "g ∈ carrier G" and "g’ ∈ carrier G"
and "X = kernel G H h #> g" and "X’ = kernel G H h #> g’"

by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀ x∈X. h x = h g" "∀ x∈X’. h x = h g’"

and Xsub: "X ⊆ carrier G" and X’sub: "X’ ⊆ carrier G"
by (force simp add: kernel_def r_coset_def image_def)+

hence "h ‘ (X <#> X’) = {h g ⊗H h g’}" using X X’
by (auto dest!: FactGroup_nonempty

simp add: set_mult_def image_eq_UN
subsetD [OF Xsub] subsetD [OF X’sub])

thus "contents (h ‘ (X <#> X’)) = contents (h ‘ X) ⊗H contents (h ‘
X’)"

by (simp add: all image_eq_UN FactGroup_nonempty X X’)
qed

Lemma for the following injectivity result

lemma (in group_hom) FactGroup_subset:
"[[g ∈ carrier G; g’ ∈ carrier G; h g = h g’]]
=⇒ kernel G H h #> g ⊆ kernel G H h #> g’"

apply (clarsimp simp add: kernel_def r_coset_def image_def)
apply (rename_tac y)
apply (rule_tac x="y ⊗ g ⊗ inv g’" in exI)
apply (simp add: G.m_assoc)
done

lemma (in group_hom) FactGroup_inj_on:
"inj_on (λX. contents (h ‘ X)) (carrier (G Mod kernel G H h))"

proof (simp add: inj_on_def, clarify)
fix X and X’
assume X: "X ∈ carrier (G Mod kernel G H h)"

and X’: "X’ ∈ carrier (G Mod kernel G H h)"
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then
obtain g and g’

where gX: "g ∈ carrier G" "g’ ∈ carrier G"
"X = kernel G H h #> g" "X’ = kernel G H h #> g’"

by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀ x∈X. h x = h g" "∀ x∈X’. h x = h g’"

by (force simp add: kernel_def r_coset_def image_def)+
assume "contents (h ‘ X) = contents (h ‘ X’)"
hence h: "h g = h g’"

by (simp add: image_eq_UN all FactGroup_nonempty X X’)
show "X=X’" by (rule equalityI) (simp_all add: FactGroup_subset h gX)

qed

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in group_hom) FactGroup_onto:
assumes h: "h ‘ carrier G = carrier H"
shows "(λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G H h) = carrier

H"
proof

show "(λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G H h) ⊆ carrier
H"

by (auto simp add: FactGroup_contents_mem)
show "carrier H ⊆ (λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G

H h)"
proof

fix y
assume y: "y ∈ carrier H"
with h obtain g where g: "g ∈ carrier G" "h g = y"

by (blast elim: equalityE)
hence "(

⋃
x∈kernel G H h #> g. {h x}) = {y}"

by (auto simp add: y kernel_def r_coset_def)
with g show "y ∈ (λX. contents (h ‘ X)) ‘ carrier (G Mod kernel G

H h)"
by (auto intro!: bexI simp add: FactGroup_def RCOSETS_def image_eq_UN)

qed
qed

If h is a homomorphism from G onto H, then the quotient group G Mod kernel

G H h is isomorphic to H.

theorem (in group_hom) FactGroup_iso:
"h ‘ carrier G = carrier H
=⇒ (λX. contents (h‘X)) ∈ (G Mod (kernel G H h)) ∼= H"

by (simp add: iso_def FactGroup_hom FactGroup_inj_on bij_betw_def
FactGroup_onto)

end
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theory Exponent
imports Main Primes Binomial
begin

5 Sylow’s Theorem

5.1 The Combinatorial Argument Underlying the First Sy-
low Theorem

definition exponent :: "nat => nat => nat" where
"exponent p s == if prime p then (GREATEST r. p^r dvd s) else 0"

Prime Theorems

lemma prime_imp_one_less: "prime p ==> Suc 0 < p"
by (unfold prime_def, force)

lemma prime_iff:
"(prime p) = (Suc 0 < p & (∀ a b. p dvd a*b --> (p dvd a) | (p dvd b)))"

apply (auto simp add: prime_imp_one_less)
apply (blast dest!: prime_dvd_mult)
apply (auto simp add: prime_def)
apply (erule dvdE)
apply (case_tac "k=0", simp)
apply (drule_tac x = m in spec)
apply (drule_tac x = k in spec)
apply (simp add: dvd_mult_cancel1 dvd_mult_cancel2)
done

lemma zero_less_prime_power: "prime p ==> 0 < p^a"
by (force simp add: prime_iff)

lemma zero_less_card_empty: "[| finite S; S 6= {} |] ==> 0 < card(S)"
by (rule ccontr, simp)

lemma prime_dvd_cases:
"[| p*k dvd m*n; prime p |]
==> (∃ x. k dvd x*n & m = p*x) | (∃ y. k dvd m*y & n = p*y)"

apply (simp add: prime_iff)
apply (frule dvd_mult_left)
apply (subgoal_tac "p dvd m | p dvd n")
prefer 2 apply blast

apply (erule disjE)
apply (rule disjI1)
apply (rule_tac [2] disjI2)
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apply (auto elim!: dvdE)
done

lemma prime_power_dvd_cases [rule_format (no_asm)]: "prime p
==> ∀ m n. p^c dvd m*n -->

(∀ a b. a+b = Suc c --> p^a dvd m | p^b dvd n)"
apply (induct c)
apply clarify
apply (case_tac "a")
apply simp

apply simp

apply simp
apply clarify
apply (erule prime_dvd_cases [THEN disjE], assumption, auto)

apply (case_tac "a")
apply simp

apply clarify
apply (drule spec, drule spec, erule (1) notE impE)
apply (drule_tac x = nat in spec)
apply (drule_tac x = b in spec)
apply simp

apply (case_tac "b")
apply simp

apply clarify
apply (drule spec, drule spec, erule (1) notE impE)
apply (drule_tac x = a in spec)
apply (drule_tac x = nat in spec, simp)
done

lemma div_combine:
"[| prime p; ~ (p ^ (Suc r) dvd n); p^(a+r) dvd n*k |]
==> p ^ a dvd k"

by (drule_tac a = "Suc r" and b = a in prime_power_dvd_cases, assumption,
auto)

lemma Suc_le_power: "Suc 0 < p ==> Suc n <= p^n"
apply (induct n)
apply (simp (no_asm_simp))
apply simp
apply (subgoal_tac "2 * n + 2 <= p * p^n", simp)
apply (subgoal_tac "2 * p^n <= p * p^n")
apply arith
apply (drule_tac k = 2 in mult_le_mono2, simp)
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done

lemma power_dvd_bound: "[|p^n dvd a; Suc 0 < p; a > 0|] ==> n < a"
apply (drule dvd_imp_le)
apply (drule_tac [2] n = n in Suc_le_power, auto)
done

Exponent Theorems

lemma exponent_ge [rule_format]:
"[|p^k dvd n; prime p; 0<n|] ==> k <= exponent p n"

apply (simp add: exponent_def)
apply (erule Greatest_le)
apply (blast dest: prime_imp_one_less power_dvd_bound)
done

lemma power_exponent_dvd: "s>0 ==> (p ^ exponent p s) dvd s"
apply (simp add: exponent_def)
apply clarify
apply (rule_tac k = 0 in GreatestI)
prefer 2 apply (blast dest: prime_imp_one_less power_dvd_bound, simp)
done

lemma power_Suc_exponent_Not_dvd:
"[|(p * p ^ exponent p s) dvd s; prime p |] ==> s=0"

apply (subgoal_tac "p ^ Suc (exponent p s) dvd s")
prefer 2 apply simp

apply (rule ccontr)
apply (drule exponent_ge, auto)
done

lemma exponent_power_eq [simp]: "prime p ==> exponent p (p^a) = a"
apply (simp (no_asm_simp) add: exponent_def)
apply (rule Greatest_equality, simp)
apply (simp (no_asm_simp) add: prime_imp_one_less power_dvd_imp_le)
done

lemma exponent_equalityI:
"!r::nat. (p^r dvd a) = (p^r dvd b) ==> exponent p a = exponent p b"

by (simp (no_asm_simp) add: exponent_def)

lemma exponent_eq_0 [simp]: "¬ prime p ==> exponent p s = 0"
by (simp (no_asm_simp) add: exponent_def)

lemma exponent_mult_add1: "[| a > 0; b > 0 |]
==> (exponent p a) + (exponent p b) <= exponent p (a * b)"

apply (case_tac "prime p")
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apply (rule exponent_ge)
apply (auto simp add: power_add)
apply (blast intro: prime_imp_one_less power_exponent_dvd mult_dvd_mono)
done

lemma exponent_mult_add2: "[| a > 0; b > 0 |]
==> exponent p (a * b) <= (exponent p a) + (exponent p b)"

apply (case_tac "prime p")
apply (rule leI, clarify)
apply (cut_tac p = p and s = "a*b" in power_exponent_dvd, auto)
apply (subgoal_tac "p ^ (Suc (exponent p a + exponent p b)) dvd a * b")
apply (rule_tac [2] le_imp_power_dvd [THEN dvd_trans])

prefer 3 apply assumption
prefer 2 apply simp

apply (frule_tac a = "Suc (exponent p a) " and b = "Suc (exponent p b)
" in prime_power_dvd_cases)
apply (assumption, force, simp)

apply (blast dest: power_Suc_exponent_Not_dvd)
done

lemma exponent_mult_add: "[| a > 0; b > 0 |]
==> exponent p (a * b) = (exponent p a) + (exponent p b)"

by (blast intro: exponent_mult_add1 exponent_mult_add2 order_antisym)

lemma not_divides_exponent_0: "~ (p dvd n) ==> exponent p n = 0"
apply (case_tac "exponent p n", simp)
apply (case_tac "n", simp)
apply (cut_tac s = n and p = p in power_exponent_dvd)
apply (auto dest: dvd_mult_left)
done

lemma exponent_1_eq_0 [simp]: "exponent p (Suc 0) = 0"
apply (case_tac "prime p")
apply (auto simp add: prime_iff not_divides_exponent_0)
done

Main Combinatorial Argument

lemma le_extend_mult: "[| c > 0; a <= b |] ==> a <= b * (c::nat)"
apply (rule_tac P = "%x. x <= b * c" in subst)
apply (rule mult_1_right)
apply (rule mult_le_mono, auto)
done

lemma p_fac_forw_lemma:
"[| (m::nat) > 0; k > 0; k < p^a; (p^r) dvd (p^a)* m - k |] ==> r <=

a"
apply (rule notnotD)
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apply (rule notI)
apply (drule contrapos_nn [OF _ leI, THEN notnotD], assumption)
apply (drule less_imp_le [of a])
apply (drule le_imp_power_dvd)
apply (drule_tac b = "p ^ r" in dvd_trans, assumption)
apply(metis dvd_diffD1 dvd_triv_right le_extend_mult linorder_linear linorder_not_less
mult_commute nat_dvd_not_less neq0_conv)
done

lemma p_fac_forw: "[| (m::nat) > 0; k>0; k < p^a; (p^r) dvd (p^a)* m
- k |]
==> (p^r) dvd (p^a) - k"

apply (frule p_fac_forw_lemma [THEN le_imp_power_dvd, of _ k p], auto)
apply (subgoal_tac "p^r dvd p^a*m")
prefer 2 apply (blast intro: dvd_mult2)

apply (drule dvd_diffD1)
apply assumption

prefer 2 apply (blast intro: nat_dvd_diff)
apply (drule gr0_implies_Suc, auto)
done

lemma r_le_a_forw:
"[| (k::nat) > 0; k < p^a; p>0; (p^r) dvd (p^a) - k |] ==> r <= a"

by (rule_tac m = "Suc 0" in p_fac_forw_lemma, auto)

lemma p_fac_backw: "[| m>0; k>0; (p::nat)6=0; k < p^a; (p^r) dvd p^a
- k |]
==> (p^r) dvd (p^a)*m - k"

apply (frule_tac k1 = k and p1 = p in r_le_a_forw [THEN le_imp_power_dvd],
auto)
apply (subgoal_tac "p^r dvd p^a*m")
prefer 2 apply (blast intro: dvd_mult2)

apply (drule dvd_diffD1)
apply assumption

prefer 2 apply (blast intro: nat_dvd_diff)
apply (drule less_imp_Suc_add, auto)
done

lemma exponent_p_a_m_k_equation: "[| m>0; k>0; (p::nat)6=0; k < p^a
|]
==> exponent p (p^a * m - k) = exponent p (p^a - k)"

apply (blast intro: exponent_equalityI p_fac_forw p_fac_backw)
done

Suc rules that we have to delete from the simpset

lemmas bad_Sucs = binomial_Suc_Suc mult_Suc mult_Suc_right
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lemma p_not_div_choose_lemma [rule_format]:
"[| ∀ i. Suc i < K --> exponent p (Suc i) = exponent p (Suc(j+i))|]
==> k<K --> exponent p ((j+k) choose k) = 0"

apply (cases "prime p")
prefer 2 apply simp

apply (induct k)
apply (simp (no_asm))

apply (subgoal_tac "(Suc (j+k) choose Suc k) > 0")
prefer 2 apply (simp add: zero_less_binomial_iff, clarify)

apply (subgoal_tac "exponent p ((Suc (j+k) choose Suc k) * Suc k) =
exponent p (Suc k)")

First, use the assumed equation. We simplify the LHS to exponent p (Suc (j
+ k) choose Suc k) + exponent p (Suc k) the common terms cancel, proving
the conclusion.

apply (simp del: bad_Sucs add: exponent_mult_add)

Establishing the equation requires first applying Suc_times_binomial_eq ...

apply (simp del: bad_Sucs add: Suc_times_binomial_eq [symmetric])

...then exponent_mult_add and the quantified premise.

apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add)
done

lemma p_not_div_choose:
"[| k<K; k<=n;

∀ j. 0<j & j<K --> exponent p (n - k + (K - j)) = exponent p (K -
j)|]

==> exponent p (n choose k) = 0"
apply (cut_tac j = "n-k" and k = k and p = p in p_not_div_choose_lemma)

prefer 3 apply simp
prefer 2 apply assumption

apply (drule_tac x = "K - Suc i" in spec)
apply (simp add: Suc_diff_le)
done

lemma const_p_fac_right:
"m>0 ==> exponent p ((p^a * m - Suc 0) choose (p^a - Suc 0)) = 0"

apply (case_tac "prime p")
prefer 2 apply simp

apply (frule_tac a = a in zero_less_prime_power)
apply (rule_tac K = "p^a" in p_not_div_choose)

apply simp
apply simp

apply (case_tac "m")
apply (case_tac [2] "p^a")
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apply auto

apply (subgoal_tac "0<p")
prefer 2 apply (force dest!: prime_imp_one_less)

apply (subst exponent_p_a_m_k_equation, auto)
done

lemma const_p_fac:
"m>0 ==> exponent p (((p^a) * m) choose p^a) = exponent p m"

apply (case_tac "prime p")
prefer 2 apply simp

apply (subgoal_tac "0 < p^a * m & p^a <= p^a * m")
prefer 2 apply (force simp add: prime_iff)

A similar trick to the one used in p_not_div_choose_lemma: insert an equation;
use exponent_mult_add on the LHS; on the RHS, first transform the binomial
coefficient, then use exponent_mult_add.

apply (subgoal_tac "exponent p ((( (p^a) * m) choose p^a) * p^a) =
a + exponent p m")

apply (simp del: bad_Sucs add: zero_less_binomial_iff exponent_mult_add
prime_iff)

one subgoal left!

apply (subst times_binomial_minus1_eq, simp, simp)
apply (subst exponent_mult_add, simp)
apply (simp (no_asm_simp) add: zero_less_binomial_iff)
apply arith
apply (simp del: bad_Sucs add: exponent_mult_add const_p_fac_right)
done

end

theory Sylow imports Coset Exponent begin

See also [3].

The combinatorial argument is in theory Exponent

locale sylow = group +
fixes p and a and m and calM and RelM
assumes prime_p: "prime p"

and order_G: "order(G) = (p^a) * m"
and finite_G [iff]: "finite (carrier G)"

defines "calM == {s. s ⊆ carrier(G) & card(s) = p^a}"
and "RelM == {(N1,N2). N1 ∈ calM & N2 ∈ calM &

(∃ g ∈ carrier(G). N1 = (N2 #> g) )}"
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lemma (in sylow) RelM_refl_on: "refl_on calM RelM"
apply (auto simp add: refl_on_def RelM_def calM_def)
apply (blast intro!: coset_mult_one [symmetric])
done

lemma (in sylow) RelM_sym: "sym RelM"
proof (unfold sym_def RelM_def, clarify)

fix y g
assume "y ∈ calM"

and g: "g ∈ carrier G"
hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
thus "∃ g’∈carrier G. y = y #> g #> g’"
by (blast intro: g inv_closed)

qed

lemma (in sylow) RelM_trans: "trans RelM"
by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)

lemma (in sylow) RelM_equiv: "equiv calM RelM"
apply (unfold equiv_def)
apply (blast intro: RelM_refl_on RelM_sym RelM_trans)
done

lemma (in sylow) M_subset_calM_prep: "M’ ∈ calM // RelM ==> M’ ⊆ calM"
apply (unfold RelM_def)
apply (blast elim!: quotientE)
done

5.2 Main Part of the Proof

locale sylow_central = sylow +
fixes H and M1 and M
assumes M_in_quot: "M ∈ calM // RelM"

and not_dvd_M: "~(p ^ Suc(exponent p m) dvd card(M))"
and M1_in_M: "M1 ∈ M"

defines "H == {g. g∈carrier G & M1 #> g = M1}"

lemma (in sylow_central) M_subset_calM: "M ⊆ calM"
by (rule M_in_quot [THEN M_subset_calM_prep])

lemma (in sylow_central) card_M1: "card(M1) = p^a"
apply (cut_tac M_subset_calM M1_in_M)
apply (simp add: calM_def, blast)
done

lemma card_nonempty: "0 < card(S) ==> S 6= {}"
by force

lemma (in sylow_central) exists_x_in_M1: "∃ x. x∈M1"
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apply (subgoal_tac "0 < card M1")
apply (blast dest: card_nonempty)

apply (cut_tac prime_p [THEN prime_imp_one_less])
apply (simp (no_asm_simp) add: card_M1)
done

lemma (in sylow_central) M1_subset_G [simp]: "M1 ⊆ carrier G"
apply (rule subsetD [THEN PowD])
apply (rule_tac [2] M1_in_M)
apply (rule M_subset_calM [THEN subset_trans])
apply (auto simp add: calM_def)
done

lemma (in sylow_central) M1_inj_H: "∃ f ∈ H→M1. inj_on f H"
proof -

from exists_x_in_M1 obtain m1 where m1M: "m1 ∈ M1"..
have m1G: "m1 ∈ carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
show ?thesis
proof

show "inj_on (λz∈H. m1 ⊗ z) H"
by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def

m1G)
show "restrict (op ⊗ m1) H ∈ H → M1"
proof (rule restrictI)

fix z assume zH: "z ∈ H"
show "m1 ⊗ z ∈ M1"
proof -

from zH
have zG: "z ∈ carrier G" and M1zeq: "M1 #> z = M1"

by (auto simp add: H_def)
show ?thesis

by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
qed

qed
qed

qed

5.3 Discharging the Assumptions of sylow_central

lemma (in sylow) EmptyNotInEquivSet: "{} /∈ calM // RelM"
by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])

lemma (in sylow) existsM1inM: "M ∈ calM // RelM ==> ∃ M1. M1 ∈ M"
apply (subgoal_tac "M 6= {}")
apply blast

apply (cut_tac EmptyNotInEquivSet, blast)
done

lemma (in sylow) zero_less_o_G: "0 < order(G)"
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apply (unfold order_def)
apply (blast intro: one_closed zero_less_card_empty)
done

lemma (in sylow) zero_less_m: "m > 0"
apply (cut_tac zero_less_o_G)
apply (simp add: order_G)
done

lemma (in sylow) card_calM: "card(calM) = (p^a) * m choose p^a"
by (simp add: calM_def n_subsets order_G [symmetric] order_def)

lemma (in sylow) zero_less_card_calM: "card calM > 0"
by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)

lemma (in sylow) max_p_div_calM:
"~ (p ^ Suc(exponent p m) dvd card(calM))"

apply (subgoal_tac "exponent p m = exponent p (card calM) ")
apply (cut_tac zero_less_card_calM prime_p)
apply (force dest: power_Suc_exponent_Not_dvd)

apply (simp add: card_calM zero_less_m [THEN const_p_fac])
done

lemma (in sylow) finite_calM: "finite calM"
apply (unfold calM_def)
apply (rule_tac B = "Pow (carrier G) " in finite_subset)
apply auto
done

lemma (in sylow) lemma_A1:
"∃ M ∈ calM // RelM. ~ (p ^ Suc(exponent p m) dvd card(M))"

apply (rule max_p_div_calM [THEN contrapos_np])
apply (simp add: finite_calM equiv_imp_dvd_card [OF _ RelM_equiv])
done

5.3.1 Introduction and Destruct Rules for H

lemma (in sylow_central) H_I: "[|g ∈ carrier G; M1 #> g = M1|] ==> g
∈ H"
by (simp add: H_def)

lemma (in sylow_central) H_into_carrier_G: "x ∈ H ==> x ∈ carrier G"
by (simp add: H_def)

lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
by (simp add: H_def)

lemma (in sylow_central) H_m_closed: "[| x∈H; y∈H|] ==> x ⊗ y ∈ H"
apply (unfold H_def)
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apply (simp add: coset_mult_assoc [symmetric] m_closed)
done

lemma (in sylow_central) H_not_empty: "H 6= {}"
apply (simp add: H_def)
apply (rule exI [of _ 1], simp)
done

lemma (in sylow_central) H_is_subgroup: "subgroup H G"
apply (rule subgroupI)
apply (rule subsetI)
apply (erule H_into_carrier_G)
apply (rule H_not_empty)
apply (simp add: H_def, clarify)
apply (erule_tac P = "%z. ?lhs(z) = M1" in subst)
apply (simp add: coset_mult_assoc )
apply (blast intro: H_m_closed)
done

lemma (in sylow_central) rcosetGM1g_subset_G:
"[| g ∈ carrier G; x ∈ M1 #> g |] ==> x ∈ carrier G"

by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])

lemma (in sylow_central) finite_M1: "finite M1"
by (rule finite_subset [OF M1_subset_G finite_G])

lemma (in sylow_central) finite_rcosetGM1g: "g∈carrier G ==> finite (M1
#> g)"
apply (rule finite_subset)
apply (rule subsetI)
apply (erule rcosetGM1g_subset_G, assumption)
apply (rule finite_G)
done

lemma (in sylow_central) M1_cardeq_rcosetGM1g:
"g ∈ carrier G ==> card(M1 #> g) = card(M1)"

by (simp (no_asm_simp) add: M1_subset_G card_cosets_equal rcosetsI)

lemma (in sylow_central) M1_RelM_rcosetGM1g:
"g ∈ carrier G ==> (M1, M1 #> g) ∈ RelM"

apply (simp (no_asm) add: RelM_def calM_def card_M1 M1_subset_G)
apply (rule conjI)
apply (blast intro: rcosetGM1g_subset_G)

apply (simp (no_asm_simp) add: card_M1 M1_cardeq_rcosetGM1g)
apply (rule bexI [of _ "inv g"])
apply (simp_all add: coset_mult_assoc M1_subset_G)
done
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5.4 Equal Cardinalities of M and the Set of Cosets

Injections between M and rcosetsG H show that their cardinalities are equal.

lemma ElemClassEquiv:
"[| equiv A r; C ∈ A // r |] ==> ∀ x ∈ C. ∀ y ∈ C. (x,y)∈r"

by (unfold equiv_def quotient_def sym_def trans_def, blast)

lemma (in sylow_central) M_elem_map:
"M2 ∈ M ==> ∃ g. g ∈ carrier G & M1 #> g = M2"

apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]])
apply (simp add: RelM_def)
apply (blast dest!: bspec)
done

lemmas (in sylow_central) M_elem_map_carrier =
M_elem_map [THEN someI_ex, THEN conjunct1]

lemmas (in sylow_central) M_elem_map_eq =
M_elem_map [THEN someI_ex, THEN conjunct2]

lemma (in sylow_central) M_funcset_rcosets_H:
"(%x:M. H #> (SOME g. g ∈ carrier G & M1 #> g = x)) ∈ M → rcosets

H"
apply (rule rcosetsI [THEN restrictI])
apply (rule H_is_subgroup [THEN subgroup.subset])
apply (erule M_elem_map_carrier)
done

lemma (in sylow_central) inj_M_GmodH: "∃ f ∈ M→rcosets H. inj_on f M"
apply (rule bexI)
apply (rule_tac [2] M_funcset_rcosets_H)
apply (rule inj_onI, simp)
apply (rule trans [OF _ M_elem_map_eq])
prefer 2 apply assumption
apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
apply (rule coset_mult_inv1)
apply (erule_tac [2] M_elem_map_carrier)+
apply (rule_tac [2] M1_subset_G)
apply (rule coset_join1 [THEN in_H_imp_eq])
apply (rule_tac [3] H_is_subgroup)
prefer 2 apply (blast intro: m_closed M_elem_map_carrier inv_closed)
apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
done

5.4.1 The Opposite Injection

lemma (in sylow_central) H_elem_map:
"H1 ∈ rcosets H ==> ∃ g. g ∈ carrier G & H #> g = H1"

by (auto simp add: RCOSETS_def)
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lemmas (in sylow_central) H_elem_map_carrier =
H_elem_map [THEN someI_ex, THEN conjunct1]

lemmas (in sylow_central) H_elem_map_eq =
H_elem_map [THEN someI_ex, THEN conjunct2]

lemma EquivElemClass:
"[|equiv A r; M ∈ A//r; M1∈M; (M1,M2) ∈ r |] ==> M2 ∈ M"

by (unfold equiv_def quotient_def sym_def trans_def, blast)

lemma (in sylow_central) rcosets_H_funcset_M:
"(λC ∈ rcosets H. M1 #> (@g. g ∈ carrier G ∧ H #> g = C)) ∈ rcosets

H → M"
apply (simp add: RCOSETS_def)
apply (fast intro: someI2

intro!: restrictI M1_in_M
EquivElemClass [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g])

done

close to a duplicate of inj_M_GmodH

lemma (in sylow_central) inj_GmodH_M:
"∃ g ∈ rcosets H→M. inj_on g (rcosets H)"

apply (rule bexI)
apply (rule_tac [2] rcosets_H_funcset_M)
apply (rule inj_onI)
apply (simp)
apply (rule trans [OF _ H_elem_map_eq])
prefer 2 apply assumption
apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
apply (rule coset_mult_inv1)
apply (erule_tac [2] H_elem_map_carrier)+
apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
apply (rule coset_join2)
apply (blast intro: m_closed inv_closed H_elem_map_carrier)
apply (rule H_is_subgroup)
apply (simp add: H_I coset_mult_inv2 M1_subset_G H_elem_map_carrier)
done

lemma (in sylow_central) calM_subset_PowG: "calM ⊆ Pow(carrier G)"
by (auto simp add: calM_def)

lemma (in sylow_central) finite_M: "finite M"
apply (rule finite_subset)
apply (rule M_subset_calM [THEN subset_trans])
apply (rule calM_subset_PowG, blast)
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done

lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets H)"
apply (insert inj_M_GmodH inj_GmodH_M)
apply (blast intro: card_bij finite_M H_is_subgroup

rcosets_subset_PowG [THEN finite_subset]
finite_Pow_iff [THEN iffD2])

done

lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)"
by (simp add: cardMeqIndexH lagrange H_is_subgroup)

lemma (in sylow_central) lemma_leq1: "p^a ≤ card(H)"
apply (rule dvd_imp_le)
apply (rule div_combine [OF prime_p not_dvd_M])
prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)

apply (simp add: index_lem order_G power_add mult_dvd_mono power_exponent_dvd
zero_less_m)

done

lemma (in sylow_central) lemma_leq2: "card(H) ≤ p^a"
apply (subst card_M1 [symmetric])
apply (cut_tac M1_inj_H)
apply (blast intro!: M1_subset_G intro:

card_inj H_into_carrier_G finite_subset [OF _ finite_G])
done

lemma (in sylow_central) card_H_eq: "card(H) = p^a"
by (blast intro: le_anti_sym lemma_leq1 lemma_leq2)

lemma (in sylow) sylow_thm: "∃ H. subgroup H G & card(H) = p^a"
apply (cut_tac lemma_A1, clarify)
apply (frule existsM1inM, clarify)
apply (subgoal_tac "sylow_central G p a m M1 M")
apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)

apply (simp add: sylow_central_def sylow_central_axioms_def prems)
done

Needed because the locale’s automatic definition refers to semigroup G and
group_axioms G rather than simply to group G.

lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)"
by (simp add: sylow_def group_def)

5.5 Sylow’s Theorem

theorem sylow_thm:
"[| prime p; group(G); order(G) = (p^a) * m; finite (carrier G)|]
==> ∃ H. subgroup H G & card(H) = p^a"

apply (rule sylow.sylow_thm [of G p a m])
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apply (simp add: sylow_eq sylow_axioms_def)
done

end

theory Bij imports Group begin

6 Bijections of a Set, Permutation and Automor-
phism Groups

constdefs
Bij :: "’a set ⇒ (’a ⇒ ’a) set"

— Only extensional functions, since otherwise we get too many.
"Bij S ≡ extensional S ∩ {f. bij_betw f S S}"

BijGroup :: "’a set ⇒ (’a ⇒ ’a) monoid"
"BijGroup S ≡

(|carrier = Bij S,
mult = λg ∈ Bij S. λf ∈ Bij S. compose S g f,
one = λx ∈ S. x|)"

declare Id_compose [simp] compose_Id [simp]

lemma Bij_imp_extensional: "f ∈ Bij S =⇒ f ∈ extensional S"
by (simp add: Bij_def)

lemma Bij_imp_funcset: "f ∈ Bij S =⇒ f ∈ S → S"
by (auto simp add: Bij_def bij_betw_imp_funcset)

6.1 Bijections Form a Group

lemma restrict_Inv_Bij: "f ∈ Bij S =⇒ (λx ∈ S. (Inv S f) x) ∈ Bij S"
by (simp add: Bij_def bij_betw_Inv)

lemma id_Bij: "(λx∈S. x) ∈ Bij S "
by (auto simp add: Bij_def bij_betw_def inj_on_def)

lemma compose_Bij: "[[x ∈ Bij S; y ∈ Bij S]] =⇒ compose S x y ∈ Bij S"
by (auto simp add: Bij_def bij_betw_compose)

lemma Bij_compose_restrict_eq:
"f ∈ Bij S =⇒ compose S (restrict (Inv S f) S) f = (λx∈S. x)"

by (simp add: Bij_def compose_Inv_id)
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theorem group_BijGroup: "group (BijGroup S)"
apply (simp add: BijGroup_def)
apply (rule groupI)

apply (simp add: compose_Bij)
apply (simp add: id_Bij)

apply (simp add: compose_Bij)
apply (blast intro: compose_assoc [symmetric] Bij_imp_funcset)

apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
apply (blast intro: Bij_compose_restrict_eq restrict_Inv_Bij)
done

6.2 Automorphisms Form a Group

lemma Bij_Inv_mem: "[[ f ∈ Bij S; x ∈ S]] =⇒ Inv S f x ∈ S"
by (simp add: Bij_def bij_betw_def Inv_mem)

lemma Bij_Inv_lemma:
assumes eq: "

∧
x y. [[x ∈ S; y ∈ S]] =⇒ h(g x y) = g (h x) (h y)"

shows "[[h ∈ Bij S; g ∈ S → S → S; x ∈ S; y ∈ S]]
=⇒ Inv S h (g x y) = g (Inv S h x) (Inv S h y)"

apply (simp add: Bij_def bij_betw_def)
apply (subgoal_tac "∃ x’∈S. ∃ y’∈S. x = h x’ & y = h y’", clarify)
apply (simp add: eq [symmetric] Inv_f_f funcset_mem [THEN funcset_mem],
blast)
done

constdefs
auto :: "(’a, ’b) monoid_scheme ⇒ (’a ⇒ ’a) set"
"auto G ≡ hom G G ∩ Bij (carrier G)"

AutoGroup :: "(’a, ’c) monoid_scheme ⇒ (’a ⇒ ’a) monoid"
"AutoGroup G ≡ BijGroup (carrier G) (|carrier := auto G|)"

lemma (in group) id_in_auto: "(λx ∈ carrier G. x) ∈ auto G"
by (simp add: auto_def hom_def restrictI group.axioms id_Bij)

lemma (in group) mult_funcset: "mult G ∈ carrier G → carrier G → carrier
G"

by (simp add: Pi_I group.axioms)

lemma (in group) restrict_Inv_hom:
"[[h ∈ hom G G; h ∈ Bij (carrier G)]]
=⇒ restrict (Inv (carrier G) h) (carrier G) ∈ hom G G"

by (simp add: hom_def Bij_Inv_mem restrictI mult_funcset
group.axioms Bij_Inv_lemma)

lemma inv_BijGroup:
"f ∈ Bij S =⇒ m_inv (BijGroup S) f = (λx ∈ S. (Inv S f) x)"
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apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add: BijGroup_def restrict_Inv_Bij Bij_compose_restrict_eq)
done

lemma (in group) subgroup_auto:
"subgroup (auto G) (BijGroup (carrier G))"

proof (rule subgroup.intro)
show "auto G ⊆ carrier (BijGroup (carrier G))"

by (force simp add: auto_def BijGroup_def)
next

fix x y
assume "x ∈ auto G" "y ∈ auto G"
thus "x ⊗BijGroup (carrier G) y ∈ auto G"

by (force simp add: BijGroup_def is_group auto_def Bij_imp_funcset

group.hom_compose compose_Bij)
next

show "1BijGroup (carrier G) ∈ auto G" by (simp add: BijGroup_def id_in_auto)
next

fix x
assume "x ∈ auto G"
thus "invBijGroup (carrier G) x ∈ auto G"

by (simp del: restrict_apply
add: inv_BijGroup auto_def restrict_Inv_Bij restrict_Inv_hom)

qed

theorem (in group) AutoGroup: "group (AutoGroup G)"
by (simp add: AutoGroup_def subgroup.subgroup_is_group subgroup_auto

group_BijGroup)

end

theory Divisibility
imports Permutation Coset Group
begin

7 Factorial Monoids

7.1 Monoids with Cancellation Law

locale monoid_cancel = monoid +
assumes l_cancel:

"[[c ⊗ a = c ⊗ b; a ∈ carrier G; b ∈ carrier G; c ∈ carrier
G]] =⇒ a = b"

and r_cancel:
"[[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈ carrier
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G]] =⇒ a = b"

lemma (in monoid) monoid_cancelI:
assumes l_cancel:

"
∧
a b c. [[c ⊗ a = c ⊗ b; a ∈ carrier G; b ∈ carrier G; c ∈

carrier G]] =⇒ a = b"
and r_cancel:

"
∧
a b c. [[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈

carrier G]] =⇒ a = b"
shows "monoid_cancel G"
proof qed fact+

lemma (in monoid_cancel) is_monoid_cancel:
"monoid_cancel G"
..

sublocale group ⊆ monoid_cancel
proof qed simp+

locale comm_monoid_cancel = monoid_cancel + comm_monoid

lemma comm_monoid_cancelI:
fixes G (structure)
assumes "comm_monoid G"
assumes cancel:

"
∧
a b c. [[a ⊗ c = b ⊗ c; a ∈ carrier G; b ∈ carrier G; c ∈

carrier G]] =⇒ a = b"
shows "comm_monoid_cancel G"

proof -
interpret comm_monoid G by fact
show "comm_monoid_cancel G"

apply unfold_locales
apply (subgoal_tac "a ⊗ c = b ⊗ c")
apply (iprover intro: cancel)
apply (simp add: m_comm)
apply (iprover intro: cancel)
done

qed

lemma (in comm_monoid_cancel) is_comm_monoid_cancel:
"comm_monoid_cancel G"
by intro_locales

sublocale comm_group ⊆ comm_monoid_cancel
..
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7.2 Products of Units in Monoids

lemma (in monoid) Units_m_closed[simp, intro]:
assumes h1unit: "h1 ∈ Units G" and h2unit: "h2 ∈ Units G"
shows "h1 ⊗ h2 ∈ Units G"

unfolding Units_def
using assms
apply safe
apply fast
apply (intro bexI[of _ "inv h2 ⊗ inv h1"], safe)

apply (simp add: m_assoc Units_closed)
apply (simp add: m_assoc[symmetric] Units_closed Units_l_inv)

apply (simp add: m_assoc Units_closed)
apply (simp add: m_assoc[symmetric] Units_closed Units_r_inv)

apply fast
done

lemma (in monoid) prod_unit_l:
assumes abunit[simp]: "a ⊗ b ∈ Units G" and aunit[simp]: "a ∈ Units

G"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "b ∈ Units G"
proof -

have c: "inv (a ⊗ b) ⊗ a ∈ carrier G" by simp

have "(inv (a ⊗ b) ⊗ a) ⊗ b = inv (a ⊗ b) ⊗ (a ⊗ b)" by (simp add:
m_assoc)

also have ". . . = 1" by (simp add: Units_l_inv)
finally have li: "(inv (a ⊗ b) ⊗ a) ⊗ b = 1" .

have "1 = inv a ⊗ a" by (simp add: Units_l_inv[symmetric])
also have ". . . = inv a ⊗ 1 ⊗ a" by simp
also have ". . . = inv a ⊗ ((a ⊗ b) ⊗ inv (a ⊗ b)) ⊗ a"

by (simp add: Units_r_inv[OF abunit, symmetric] del: Units_r_inv)
also have ". . . = ((inv a ⊗ a) ⊗ b) ⊗ inv (a ⊗ b) ⊗ a"

by (simp add: m_assoc del: Units_l_inv)
also have ". . . = b ⊗ inv (a ⊗ b) ⊗ a" by (simp add: Units_l_inv)
also have ". . . = b ⊗ (inv (a ⊗ b) ⊗ a)" by (simp add: m_assoc)
finally have ri: "b ⊗ (inv (a ⊗ b) ⊗ a) = 1 " by simp

from c li ri
show "b ∈ Units G" by (simp add: Units_def, fast)

qed

lemma (in monoid) prod_unit_r:
assumes abunit[simp]: "a ⊗ b ∈ Units G" and bunit[simp]: "b ∈ Units

G"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "a ∈ Units G"
proof -
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have c: "b ⊗ inv (a ⊗ b) ∈ carrier G" by simp

have "a ⊗ (b ⊗ inv (a ⊗ b)) = (a ⊗ b) ⊗ inv (a ⊗ b)"
by (simp add: m_assoc del: Units_r_inv)

also have ". . . = 1" by simp
finally have li: "a ⊗ (b ⊗ inv (a ⊗ b)) = 1" .

have "1 = b ⊗ inv b" by (simp add: Units_r_inv[symmetric])
also have ". . . = b ⊗ 1 ⊗ inv b" by simp
also have ". . . = b ⊗ (inv (a ⊗ b) ⊗ (a ⊗ b)) ⊗ inv b"

by (simp add: Units_l_inv[OF abunit, symmetric] del: Units_l_inv)
also have ". . . = (b ⊗ inv (a ⊗ b) ⊗ a) ⊗ (b ⊗ inv b)"

by (simp add: m_assoc del: Units_l_inv)
also have ". . . = b ⊗ inv (a ⊗ b) ⊗ a" by simp
finally have ri: "(b ⊗ inv (a ⊗ b)) ⊗ a = 1 " by simp

from c li ri
show "a ∈ Units G" by (simp add: Units_def, fast)

qed

lemma (in comm_monoid) unit_factor:
assumes abunit: "a ⊗ b ∈ Units G"

and [simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "a ∈ Units G"

using abunit[simplified Units_def]
proof clarsimp

fix i
assume [simp]: "i ∈ carrier G"

and li: "i ⊗ (a ⊗ b) = 1"
and ri: "a ⊗ b ⊗ i = 1"

have carr’: "b ⊗ i ∈ carrier G" by simp

have "(b ⊗ i) ⊗ a = (i ⊗ b) ⊗ a" by (simp add: m_comm)
also have ". . . = i ⊗ (b ⊗ a)" by (simp add: m_assoc)
also have ". . . = i ⊗ (a ⊗ b)" by (simp add: m_comm)
also note li
finally have li’: "(b ⊗ i) ⊗ a = 1" .

have "a ⊗ (b ⊗ i) = a ⊗ b ⊗ i" by (simp add: m_assoc)
also note ri
finally have ri’: "a ⊗ (b ⊗ i) = 1" .

from carr’ li’ ri’
show "a ∈ Units G" by (simp add: Units_def, fast)

qed
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7.3 Divisibility and Association

7.3.1 Function definitions

constdefs (structure G)
factor :: "[_, ’a, ’a] ⇒ bool" (infix "dividesı " 65)
"a divides b == ∃ c∈carrier G. b = a ⊗ c"

constdefs (structure G)
associated :: "[_, ’a, ’a] => bool" (infix "∼ı " 55)
"a ∼ b == a divides b ∧ b divides a"

abbreviation
"division_rel G == (|carrier = carrier G, eq = op ∼G, le = op dividesG|)"

constdefs (structure G)
properfactor :: "[_, ’a, ’a] ⇒ bool"
"properfactor G a b == a divides b ∧ ¬(b divides a)"

constdefs (structure G)
irreducible :: "[_, ’a] ⇒ bool"
"irreducible G a == a /∈ Units G ∧ (∀ b∈carrier G. properfactor G b a

−→ b ∈ Units G)"

constdefs (structure G)
prime :: "[_, ’a] ⇒ bool"
"prime G p == p /∈ Units G ∧

(∀ a∈carrier G. ∀ b∈carrier G. p divides (a ⊗ b) −→ p
divides a ∨ p divides b)"

7.3.2 Divisibility

lemma dividesI:
fixes G (structure)
assumes carr: "c ∈ carrier G"

and p: "b = a ⊗ c"
shows "a divides b"

unfolding factor_def
using assms by fast

lemma dividesI’ [intro]:
fixes G (structure)

assumes p: "b = a ⊗ c"
and carr: "c ∈ carrier G"

shows "a divides b"
using assms
by (fast intro: dividesI)

lemma dividesD:
fixes G (structure)
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assumes "a divides b"
shows "∃ c∈carrier G. b = a ⊗ c"

using assms
unfolding factor_def
by fast

lemma dividesE [elim]:
fixes G (structure)
assumes d: "a divides b"

and elim: "
∧
c. [[b = a ⊗ c; c ∈ carrier G]] =⇒ P"

shows "P"
proof -

from dividesD[OF d]
obtain c
where "c∈carrier G"
and "b = a ⊗ c"
by auto

thus "P" by (elim elim)
qed

lemma (in monoid) divides_refl[simp, intro!]:
assumes carr: "a ∈ carrier G"
shows "a divides a"

apply (intro dividesI[of "1"])
apply (simp, simp add: carr)
done

lemma (in monoid) divides_trans [trans]:
assumes dvds: "a divides b" "b divides c"

and acarr: "a ∈ carrier G"
shows "a divides c"

using dvds[THEN dividesD]
by (blast intro: dividesI m_assoc acarr)

lemma (in monoid) divides_mult_lI [intro]:
assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(c ⊗ a) divides (c ⊗ b)"

using ab
apply (elim dividesE, simp add: m_assoc[symmetric] carr)
apply (fast intro: dividesI)
done

lemma (in monoid_cancel) divides_mult_l [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(c ⊗ a) divides (c ⊗ b) = a divides b"

apply safe
apply (elim dividesE, intro dividesI, assumption)
apply (rule l_cancel[of c])
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apply (simp add: m_assoc carr)+
apply (fast intro: divides_mult_lI carr)
done

lemma (in comm_monoid) divides_mult_rI [intro]:
assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(a ⊗ c) divides (b ⊗ c)"

using carr ab
apply (simp add: m_comm[of a c] m_comm[of b c])
apply (rule divides_mult_lI, assumption+)
done

lemma (in comm_monoid_cancel) divides_mult_r [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "(a ⊗ c) divides (b ⊗ c) = a divides b"

using carr
by (simp add: m_comm[of a c] m_comm[of b c])

lemma (in monoid) divides_prod_r:
assumes ab: "a divides b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "a divides (b ⊗ c)"

using ab carr
by (fast intro: m_assoc)

lemma (in comm_monoid) divides_prod_l:
assumes carr[intro]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier

G"
and ab: "a divides b"

shows "a divides (c ⊗ b)"
using ab carr
apply (simp add: m_comm[of c b])
apply (fast intro: divides_prod_r)
done

lemma (in monoid) unit_divides:
assumes uunit: "u ∈ Units G"

and acarr: "a ∈ carrier G"
shows "u divides a"

proof (intro dividesI[of "(inv u) ⊗ a"], fast intro: uunit acarr)
from uunit acarr

have xcarr: "inv u ⊗ a ∈ carrier G" by fast

from uunit acarr
have "u ⊗ (inv u ⊗ a) = (u ⊗ inv u) ⊗ a" by (fast intro: m_assoc[symmetric])

also have ". . . = 1 ⊗ a" by (simp add: Units_r_inv[OF uunit])
also from acarr

have ". . . = a" by simp
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finally
show "a = u ⊗ (inv u ⊗ a)" ..

qed

lemma (in comm_monoid) divides_unit:
assumes udvd: "a divides u"

and carr: "a ∈ carrier G" "u ∈ Units G"
shows "a ∈ Units G"

using udvd carr
by (blast intro: unit_factor)

lemma (in comm_monoid) Unit_eq_dividesone:
assumes ucarr: "u ∈ carrier G"
shows "u ∈ Units G = u divides 1"

using ucarr
by (fast dest: divides_unit intro: unit_divides)

7.3.3 Association

lemma associatedI:
fixes G (structure)
assumes "a divides b" "b divides a"
shows "a ∼ b"

using assms
by (simp add: associated_def)

lemma (in monoid) associatedI2:
assumes uunit[simp]: "u ∈ Units G"

and a: "a = b ⊗ u"
and bcarr[simp]: "b ∈ carrier G"

shows "a ∼ b"
using uunit bcarr
unfolding a
apply (intro associatedI)
apply (rule dividesI[of "inv u"], simp)
apply (simp add: m_assoc Units_closed Units_r_inv)

apply fast
done

lemma (in monoid) associatedI2’:
assumes a: "a = b ⊗ u"

and uunit: "u ∈ Units G"
and bcarr: "b ∈ carrier G"

shows "a ∼ b"
using assms by (intro associatedI2)

lemma associatedD:
fixes G (structure)
assumes "a ∼ b"



111

shows "a divides b"
using assms by (simp add: associated_def)

lemma (in monoid_cancel) associatedD2:
assumes assoc: "a ∼ b"

and carr: "a ∈ carrier G" "b ∈ carrier G"
shows "∃ u∈Units G. a = b ⊗ u"

using assoc
unfolding associated_def
proof clarify

assume "b divides a"
hence "∃ u∈carrier G. a = b ⊗ u" by (rule dividesD)
from this obtain u

where ucarr: "u ∈ carrier G" and a: "a = b ⊗ u"
by auto

assume "a divides b"
hence "∃ u’∈carrier G. b = a ⊗ u’" by (rule dividesD)
from this obtain u’

where u’carr: "u’ ∈ carrier G" and b: "b = a ⊗ u’"
by auto

note carr = carr ucarr u’carr

from carr
have "a ⊗ 1 = a" by simp

also have ". . . = b ⊗ u" by (simp add: a)
also have ". . . = a ⊗ u’ ⊗ u" by (simp add: b)
also from carr

have ". . . = a ⊗ (u’ ⊗ u)" by (simp add: m_assoc)
finally

have "a ⊗ 1 = a ⊗ (u’ ⊗ u)" .
with carr

have u1: "1 = u’ ⊗ u" by (fast dest: l_cancel)

from carr
have "b ⊗ 1 = b" by simp

also have ". . . = a ⊗ u’" by (simp add: b)
also have ". . . = b ⊗ u ⊗ u’" by (simp add: a)
also from carr

have ". . . = b ⊗ (u ⊗ u’)" by (simp add: m_assoc)
finally

have "b ⊗ 1 = b ⊗ (u ⊗ u’)" .
with carr

have u2: "1 = u ⊗ u’" by (fast dest: l_cancel)

from u’carr u1[symmetric] u2[symmetric]
have "∃ u’∈carrier G. u’ ⊗ u = 1 ∧ u ⊗ u’ = 1" by fast

hence "u ∈ Units G" by (simp add: Units_def ucarr)
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from ucarr this a
show "∃ u∈Units G. a = b ⊗ u" by fast

qed

lemma associatedE:
fixes G (structure)
assumes assoc: "a ∼ b"

and e: "[[a divides b; b divides a]] =⇒ P"
shows "P"

proof -
from assoc

have "a divides b" "b divides a"
by (simp add: associated_def)+

thus "P" by (elim e)
qed

lemma (in monoid_cancel) associatedE2:
assumes assoc: "a ∼ b"

and e: "
∧
u. [[a = b ⊗ u; u ∈ Units G]] =⇒ P"

and carr: "a ∈ carrier G" "b ∈ carrier G"
shows "P"

proof -
from assoc and carr

have "∃ u∈Units G. a = b ⊗ u" by (rule associatedD2)
from this obtain u

where "u ∈ Units G" "a = b ⊗ u"
by auto

thus "P" by (elim e)
qed

lemma (in monoid) associated_refl [simp, intro!]:
assumes "a ∈ carrier G"
shows "a ∼ a"

using assms
by (fast intro: associatedI)

lemma (in monoid) associated_sym [sym]:
assumes "a ∼ b"

and "a ∈ carrier G" "b ∈ carrier G"
shows "b ∼ a"

using assms
by (iprover intro: associatedI elim: associatedE)

lemma (in monoid) associated_trans [trans]:
assumes "a ∼ b" "b ∼ c"

and "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "a ∼ c"

using assms
by (iprover intro: associatedI divides_trans elim: associatedE)
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lemma (in monoid) division_equiv [intro, simp]:
"equivalence (division_rel G)"
apply unfold_locales
apply simp_all
apply (rule associated_sym, assumption+)
apply (iprover intro: associated_trans)
done

7.3.4 Division and associativity

lemma divides_antisym:
fixes G (structure)
assumes "a divides b" "b divides a"

and "a ∈ carrier G" "b ∈ carrier G"
shows "a ∼ b"

using assms
by (fast intro: associatedI)

lemma (in monoid) divides_cong_l [trans]:
assumes xx’: "x ∼ x’"

and xdvdy: "x’ divides y"
and carr [simp]: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier

G"
shows "x divides y"

proof -
from xx’

have "x divides x’" by (simp add: associatedD)
also note xdvdy
finally

show "x divides y" by simp
qed

lemma (in monoid) divides_cong_r [trans]:
assumes xdvdy: "x divides y"

and yy’: "y ∼ y’"
and carr[simp]: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "x divides y’"
proof -

note xdvdy
also from yy’

have "y divides y’" by (simp add: associatedD)
finally

show "x divides y’" by simp
qed

lemma (in monoid) division_weak_partial_order [simp, intro!]:
"weak_partial_order (division_rel G)"
apply unfold_locales
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apply simp_all
apply (simp add: associated_sym)
apply (blast intro: associated_trans)
apply (simp add: divides_antisym)
apply (blast intro: divides_trans)
apply (blast intro: divides_cong_l divides_cong_r associated_sym)
done

7.3.5 Multiplication and associativity

lemma (in monoid_cancel) mult_cong_r:
assumes "b ∼ b’"

and carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"
shows "a ⊗ b ∼ a ⊗ b’"

using assms
apply (elim associatedE2, intro associatedI2)
apply (auto intro: m_assoc[symmetric])
done

lemma (in comm_monoid_cancel) mult_cong_l:
assumes "a ∼ a’"

and carr: "a ∈ carrier G" "a’ ∈ carrier G" "b ∈ carrier G"
shows "a ⊗ b ∼ a’ ⊗ b"

using assms
apply (elim associatedE2, intro associatedI2)

apply assumption
apply (simp add: m_assoc Units_closed)
apply (simp add: m_comm Units_closed)

apply simp+
done

lemma (in monoid_cancel) assoc_l_cancel:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "b’ ∈ carrier G"

and "a ⊗ b ∼ a ⊗ b’"
shows "b ∼ b’"

using assms
apply (elim associatedE2, intro associatedI2)

apply assumption
apply (rule l_cancel[of a])

apply (simp add: m_assoc Units_closed)
apply fast+

done

lemma (in comm_monoid_cancel) assoc_r_cancel:
assumes "a ⊗ b ∼ a’ ⊗ b"

and carr: "a ∈ carrier G" "a’ ∈ carrier G" "b ∈ carrier G"
shows "a ∼ a’"

using assms
apply (elim associatedE2, intro associatedI2)
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apply assumption
apply (rule r_cancel[of a b])

apply (simp add: m_assoc Units_closed)
apply (simp add: m_comm Units_closed)

apply fast+
done

7.3.6 Units

lemma (in monoid_cancel) assoc_unit_l [trans]:
assumes asc: "a ∼ b" and bunit: "b ∈ Units G"

and carr: "a ∈ carrier G"
shows "a ∈ Units G"

using assms
by (fast elim: associatedE2)

lemma (in monoid_cancel) assoc_unit_r [trans]:
assumes aunit: "a ∈ Units G" and asc: "a ∼ b"

and bcarr: "b ∈ carrier G"
shows "b ∈ Units G"

using aunit bcarr associated_sym[OF asc]
by (blast intro: assoc_unit_l)

lemma (in comm_monoid) Units_cong:
assumes aunit: "a ∈ Units G" and asc: "a ∼ b"

and bcarr: "b ∈ carrier G"
shows "b ∈ Units G"

using assms
by (blast intro: divides_unit elim: associatedE)

lemma (in monoid) Units_assoc:
assumes units: "a ∈ Units G" "b ∈ Units G"
shows "a ∼ b"

using units
by (fast intro: associatedI unit_divides)

lemma (in monoid) Units_are_ones:
"Units G {.=}(division_rel G) {1}"

apply (simp add: set_eq_def elem_def, rule, simp_all)
proof clarsimp

fix a
assume aunit: "a ∈ Units G"
show "a ∼ 1"
apply (rule associatedI)
apply (fast intro: dividesI[of "inv a"] aunit Units_r_inv[symmetric])

apply (fast intro: dividesI[of "a"] l_one[symmetric] Units_closed[OF
aunit])

done
next
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have "1 ∈ Units G" by simp
moreover have "1 ∼ 1" by simp
ultimately show "∃ a ∈ Units G. 1 ∼ a" by fast

qed

lemma (in comm_monoid) Units_Lower:
"Units G = Lower (division_rel G) (carrier G)"

apply (simp add: Units_def Lower_def)
apply (rule, rule)
apply clarsimp
apply (rule unit_divides)
apply (unfold Units_def, fast)

apply assumption
apply clarsimp
proof -

fix x
assume xcarr: "x ∈ carrier G"
assume r[rule_format]: "∀ y. y ∈ carrier G −→ x divides y"
have "1 ∈ carrier G" by simp
hence "x divides 1" by (rule r)
hence "∃ x’∈carrier G. 1 = x ⊗ x’" by (rule dividesE, fast)
from this obtain x’

where x’carr: "x’ ∈ carrier G"
and xx’: "1 = x ⊗ x’"
by auto

note xx’
also with xcarr x’carr

have ". . . = x’ ⊗ x" by (simp add: m_comm)
finally

have "1 = x’ ⊗ x" .

from x’carr xx’[symmetric] this[symmetric]
show "∃ y∈carrier G. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast

qed

7.3.7 Proper factors

lemma properfactorI:
fixes G (structure)
assumes "a divides b"

and "¬(b divides a)"
shows "properfactor G a b"

using assms
unfolding properfactor_def
by simp

lemma properfactorI2:
fixes G (structure)
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assumes advdb: "a divides b"
and neq: "¬(a ∼ b)"

shows "properfactor G a b"
apply (rule properfactorI, rule advdb)
proof (rule ccontr, simp)

assume "b divides a"
with advdb have "a ∼ b" by (rule associatedI)
with neq show "False" by fast

qed

lemma (in comm_monoid_cancel) properfactorI3:
assumes p: "p = a ⊗ b"

and nunit: "b /∈ Units G"
and carr: "a ∈ carrier G" "b ∈ carrier G" "p ∈ carrier G"

shows "properfactor G a p"
unfolding p
using carr
apply (intro properfactorI, fast)
proof (clarsimp, elim dividesE)

fix c
assume ccarr: "c ∈ carrier G"
note [simp] = carr ccarr

have "a ⊗ 1 = a" by simp
also assume "a = a ⊗ b ⊗ c"
also have ". . . = a ⊗ (b ⊗ c)" by (simp add: m_assoc)
finally have "a ⊗ 1 = a ⊗ (b ⊗ c)" .

hence rinv: "1 = b ⊗ c" by (intro l_cancel[of "a" "1" "b ⊗ c"], simp+)
also have ". . . = c ⊗ b" by (simp add: m_comm)
finally have linv: "1 = c ⊗ b" .

from ccarr linv[symmetric] rinv[symmetric]
have "b ∈ Units G" unfolding Units_def by fastsimp
with nunit

show "False" ..
qed

lemma properfactorE:
fixes G (structure)
assumes pf: "properfactor G a b"

and r: "[[a divides b; ¬(b divides a)]] =⇒ P"
shows "P"

using pf
unfolding properfactor_def
by (fast intro: r)

lemma properfactorE2:
fixes G (structure)
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assumes pf: "properfactor G a b"
and elim: "[[a divides b; ¬(a ∼ b)]] =⇒ P"

shows "P"
using pf
unfolding properfactor_def
by (fast elim: elim associatedE)

lemma (in monoid) properfactor_unitE:
assumes uunit: "u ∈ Units G"

and pf: "properfactor G a u"
and acarr: "a ∈ carrier G"

shows "P"
using pf unit_divides[OF uunit acarr]
by (fast elim: properfactorE)

lemma (in monoid) properfactor_divides:
assumes pf: "properfactor G a b"
shows "a divides b"

using pf
by (elim properfactorE)

lemma (in monoid) properfactor_trans1 [trans]:
assumes dvds: "a divides b" "properfactor G b c"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a c"

using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+

done

lemma (in monoid) properfactor_trans2 [trans]:
assumes dvds: "properfactor G a b" "b divides c"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a c"

using dvds carr
apply (elim properfactorE, intro properfactorI)
apply (iprover intro: divides_trans)+

done

lemma properfactor_lless:
fixes G (structure)
shows "properfactor G = lless (division_rel G)"

apply (rule ext) apply (rule ext) apply rule
apply (fastsimp elim: properfactorE2 intro: weak_llessI)

apply (fastsimp elim: weak_llessE intro: properfactorI2)
done

lemma (in monoid) properfactor_cong_l [trans]:
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assumes x’x: "x’ ∼ x"
and pf: "properfactor G x y"
and carr: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"

shows "properfactor G x’ y"
using pf
unfolding properfactor_lless
proof -

interpret weak_partial_order "division_rel G" ..
from x’x

have "x’ .=division_rel G x" by simp
also assume "x @division_rel G y"
finally

show "x’ @division_rel G y" by (simp add: carr)
qed

lemma (in monoid) properfactor_cong_r [trans]:
assumes pf: "properfactor G x y"

and yy’: "y ∼ y’"
and carr: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

shows "properfactor G x y’"
using pf
unfolding properfactor_lless
proof -

interpret weak_partial_order "division_rel G" ..
assume "x @division_rel G y"
also from yy’

have "y .=division_rel G y’" by simp
finally

show "x @division_rel G y’" by (simp add: carr)
qed

lemma (in monoid_cancel) properfactor_mult_lI [intro]:
assumes ab: "properfactor G a b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (c ⊗ a) (c ⊗ b)"

using ab carr
by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in monoid_cancel) properfactor_mult_l [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (c ⊗ a) (c ⊗ b) = properfactor G a b"

using carr
by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
assumes ab: "properfactor G a b"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (a ⊗ c) (b ⊗ c)"

using ab carr
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by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G (a ⊗ c) (b ⊗ c) = properfactor G a b"

using carr
by (fastsimp elim: properfactorE intro: properfactorI)

lemma (in monoid) properfactor_prod_r:
assumes ab: "properfactor G a b"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a (b ⊗ c)"

by (intro properfactor_trans2[OF ab] divides_prod_r, simp+)

lemma (in comm_monoid) properfactor_prod_l:
assumes ab: "properfactor G a b"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "properfactor G a (c ⊗ b)"

by (intro properfactor_trans2[OF ab] divides_prod_l, simp+)

7.4 Irreducible Elements and Primes

7.4.1 Irreducible elements

lemma irreducibleI:
fixes G (structure)
assumes "a /∈ Units G"

and "
∧
b. [[b ∈ carrier G; properfactor G b a]] =⇒ b ∈ Units G"

shows "irreducible G a"
using assms
unfolding irreducible_def
by blast

lemma irreducibleE:
fixes G (structure)
assumes irr: "irreducible G a"

and elim: "[[a /∈ Units G; ∀ b. b ∈ carrier G ∧ properfactor G b a
−→ b ∈ Units G]] =⇒ P"

shows "P"
using assms
unfolding irreducible_def
by blast

lemma irreducibleD:
fixes G (structure)
assumes irr: "irreducible G a"

and pf: "properfactor G b a"
and bcarr: "b ∈ carrier G"

shows "b ∈ Units G"
using assms
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by (fast elim: irreducibleE)

lemma (in monoid_cancel) irreducible_cong [trans]:
assumes irred: "irreducible G a"

and aa’: "a ∼ a’"
and carr[simp]: "a ∈ carrier G" "a’ ∈ carrier G"

shows "irreducible G a’"
using assms
apply (elim irreducibleE, intro irreducibleI)
apply simp_all
proof clarify

assume "a’ ∈ Units G"
also note aa’[symmetric]
finally have aunit: "a ∈ Units G" by simp

assume "a /∈ Units G"
with aunit

show "False" by fast
next

fix b
assume r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b a −→

b ∈ Units G"
and bcarr[simp]: "b ∈ carrier G"

assume "properfactor G b a’"
also note aa’[symmetric]
finally

have "properfactor G b a" by simp

with bcarr
show "b ∈ Units G" by (fast intro: r)

qed

lemma (in monoid) irreducible_prod_rI:
assumes airr: "irreducible G a"

and bunit: "b ∈ Units G"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "irreducible G (a ⊗ b)"
using airr carr bunit
apply (elim irreducibleE, intro irreducibleI, clarify)
apply (subgoal_tac "a ∈ Units G", simp)
apply (intro prod_unit_r[of a b] carr bunit, assumption)

proof -
fix c
assume [simp]: "c ∈ carrier G"

and r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b a −→ b
∈ Units G"

assume "properfactor G c (a ⊗ b)"
also have "a ⊗ b ∼ a" by (intro associatedI2[OF bunit], simp+)
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finally
have pfa: "properfactor G c a" by simp

show "c ∈ Units G" by (rule r, simp add: pfa)
qed

lemma (in comm_monoid) irreducible_prod_lI:
assumes birr: "irreducible G b"

and aunit: "a ∈ Units G"
and carr [simp]: "a ∈ carrier G" "b ∈ carrier G"

shows "irreducible G (a ⊗ b)"
apply (subst m_comm, simp+)
apply (intro irreducible_prod_rI assms)
done

lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
assumes irr: "irreducible G (a ⊗ b)"

and carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
and e1: "[[irreducible G a; b ∈ Units G]] =⇒ P"
and e2: "[[a ∈ Units G; irreducible G b]] =⇒ P"

shows "P"
using irr
proof (elim irreducibleE)

assume abnunit: "a ⊗ b /∈ Units G"
and isunit[rule_format]: "∀ ba. ba ∈ carrier G ∧ properfactor G ba

(a ⊗ b) −→ ba ∈ Units G"

show "P"
proof (cases "a ∈ Units G")

assume aunit: "a ∈ Units G"

have "irreducible G b"
apply (rule irreducibleI)
proof (rule ccontr, simp)

assume "b ∈ Units G"
with aunit have "(a ⊗ b) ∈ Units G" by fast
with abnunit show "False" ..

next
fix c
assume ccarr: "c ∈ carrier G"

and "properfactor G c b"
hence "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_l[of

c b a])
from ccarr this show "c ∈ Units G" by (fast intro: isunit)

qed

from aunit this show "P" by (rule e2)
next

assume anunit: "a /∈ Units G"
with carr have "properfactor G b (b ⊗ a)" by (fast intro: properfactorI3)
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hence bf: "properfactor G b (a ⊗ b)" by (subst m_comm[of a b], simp+)
hence bunit: "b ∈ Units G" by (intro isunit, simp)

have "irreducible G a"
apply (rule irreducibleI)
proof (rule ccontr, simp)

assume "a ∈ Units G"
with bunit have "(a ⊗ b) ∈ Units G" by fast
with abnunit show "False" ..

next
fix c
assume ccarr: "c ∈ carrier G"

and "properfactor G c a"
hence "properfactor G c (a ⊗ b)" by (simp add: properfactor_prod_r[of

c a b])
from ccarr this show "c ∈ Units G" by (fast intro: isunit)

qed

from this bunit show "P" by (rule e1)
qed

qed

7.4.2 Prime elements

lemma primeI:
fixes G (structure)
assumes "p /∈ Units G"

and "
∧
a b. [[a ∈ carrier G; b ∈ carrier G; p divides (a ⊗ b)]] =⇒

p divides a ∨ p divides b"
shows "prime G p"

using assms
unfolding prime_def
by blast

lemma primeE:
fixes G (structure)
assumes pprime: "prime G p"

and e: "[[p /∈ Units G; ∀ a∈carrier G. ∀ b∈carrier G.
p divides a ⊗ b −→ p divides a ∨ p divides

b]] =⇒ P"
shows "P"

using pprime
unfolding prime_def
by (blast dest: e)

lemma (in comm_monoid_cancel) prime_divides:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"

and pprime: "prime G p"
and pdvd: "p divides a ⊗ b"
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shows "p divides a ∨ p divides b"
using assms
by (blast elim: primeE)

lemma (in monoid_cancel) prime_cong [trans]:
assumes pprime: "prime G p"

and pp’: "p ∼ p’"
and carr[simp]: "p ∈ carrier G" "p’ ∈ carrier G"

shows "prime G p’"
using pprime
apply (elim primeE, intro primeI)
proof clarify

assume pnunit: "p /∈ Units G"
assume "p’ ∈ Units G"
also note pp’[symmetric]
finally

have "p ∈ Units G" by simp
with pnunit

show False ..
next

fix a b
assume r[rule_format]:

"∀ a∈carrier G. ∀ b∈carrier G. p divides a ⊗ b −→ p divides
a ∨ p divides b"

assume p’dvd: "p’ divides a ⊗ b"
and carr’[simp]: "a ∈ carrier G" "b ∈ carrier G"

note pp’
also note p’dvd
finally

have "p divides a ⊗ b" by simp
hence "p divides a ∨ p divides b" by (intro r, simp+)
moreover {

note pp’[symmetric]
also assume "p divides a"
finally

have "p’ divides a" by simp
hence "p’ divides a ∨ p’ divides b" by simp

}
moreover {

note pp’[symmetric]
also assume "p divides b"
finally

have "p’ divides b" by simp
hence "p’ divides a ∨ p’ divides b" by simp

}
ultimately

show "p’ divides a ∨ p’ divides b" by fast
qed
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7.5 Factorization and Factorial Monoids

7.5.1 Function definitions

constdefs (structure G)
factors :: "[_, ’a list, ’a] ⇒ bool"
"factors G fs a == (∀ x ∈ (set fs). irreducible G x) ∧ foldr (op ⊗)

fs 1 = a"

wfactors ::"[_, ’a list, ’a] ⇒ bool"
"wfactors G fs a == (∀ x ∈ (set fs). irreducible G x) ∧ foldr (op ⊗)

fs 1 ∼ a"

abbreviation
list_assoc :: "(’a,_) monoid_scheme ⇒ ’a list ⇒ ’a list ⇒ bool" (in-

fix "[∼]ı " 44) where
"list_assoc G == list_all2 (op ∼G)"

constdefs (structure G)
essentially_equal :: "[_, ’a list, ’a list] ⇒ bool"
"essentially_equal G fs1 fs2 == (∃ fs1’. fs1 <~~> fs1’ ∧ fs1’ [∼] fs2)"

locale factorial_monoid = comm_monoid_cancel +
assumes factors_exist:

"[[a ∈ carrier G; a /∈ Units G]] =⇒ ∃ fs. set fs ⊆ carrier G ∧
factors G fs a"

and factors_unique:
"[[factors G fs a; factors G fs’ a; a ∈ carrier G; a /∈ Units

G;
set fs ⊆ carrier G; set fs’ ⊆ carrier G]] =⇒ essentially_equal

G fs fs’"

7.5.2 Comparing lists of elements

Association on lists

lemma (in monoid) listassoc_refl [simp, intro]:
assumes "set as ⊆ carrier G"
shows "as [∼] as"

using assms
by (induct as) simp+

lemma (in monoid) listassoc_sym [sym]:
assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "bs [∼] as"

using assms
proof (induct as arbitrary: bs, simp)

case Cons
thus ?case
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apply (induct bs, simp)
apply clarsimp
apply (iprover intro: associated_sym)

done
qed

lemma (in monoid) listassoc_trans [trans]:
assumes "as [∼] bs" and "bs [∼] cs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G" and "set cs ⊆
carrier G"

shows "as [∼] cs"
using assms
apply (simp add: list_all2_conv_all_nth set_conv_nth, safe)
apply (rule associated_trans)

apply (subgoal_tac "as ! i ∼ bs ! i", assumption)
apply (simp, simp)

apply blast+
done

lemma (in monoid_cancel) irrlist_listassoc_cong:
assumes "∀ a∈set as. irreducible G a"

and "as [∼] bs"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "∀ a∈set bs. irreducible G a"
using assms
apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)
apply (blast intro: irreducible_cong)
done

Permutations

lemma perm_map [intro]:
assumes p: "a <~~> b"
shows "map f a <~~> map f b"

using p
by induct auto

lemma perm_map_switch:
assumes m: "map f a = map f b" and p: "b <~~> c"
shows "∃ d. a <~~> d ∧ map f d = map f c"

using p m
by (induct arbitrary: a) (simp, force, force, blast)

lemma (in monoid) perm_assoc_switch:
assumes a:"as [∼] bs" and p: "bs <~~> cs"
shows "∃ bs’. as <~~> bs’ ∧ bs’ [∼] cs"

using p a
apply (induct bs cs arbitrary: as, simp)

apply (clarsimp simp add: list_all2_Cons2, blast)
apply (clarsimp simp add: list_all2_Cons2)
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apply blast
apply blast
done

lemma (in monoid) perm_assoc_switch_r:
assumes p: "as <~~> bs" and a:"bs [∼] cs"
shows "∃ bs’. as [∼] bs’ ∧ bs’ <~~> cs"

using p a
apply (induct as bs arbitrary: cs, simp)

apply (clarsimp simp add: list_all2_Cons1, blast)
apply (clarsimp simp add: list_all2_Cons1)
apply blast

apply blast
done

declare perm_sym [sym]

lemma perm_setP:
assumes perm: "as <~~> bs"

and as: "P (set as)"
shows "P (set bs)"

proof -
from perm

have "multiset_of as = multiset_of bs"
by (simp add: multiset_of_eq_perm)

hence "set as = set bs" by (rule multiset_of_eq_setD)
with as

show "P (set bs)" by simp
qed

lemmas (in monoid) perm_closed =
perm_setP[of _ _ "λas. as ⊆ carrier G"]

lemmas (in monoid) irrlist_perm_cong =
perm_setP[of _ _ "λas. ∀ a∈as. irreducible G a"]

Essentially equal factorizations

lemma (in monoid) essentially_equalI:
assumes ex: "fs1 <~~> fs1’" "fs1’ [∼] fs2"
shows "essentially_equal G fs1 fs2"

using ex
unfolding essentially_equal_def
by fast

lemma (in monoid) essentially_equalE:
assumes ee: "essentially_equal G fs1 fs2"

and e: "
∧
fs1’. [[fs1 <~~> fs1’; fs1’ [∼] fs2]] =⇒ P"

shows "P"
using ee
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unfolding essentially_equal_def
by (fast intro: e)

lemma (in monoid) ee_refl [simp,intro]:
assumes carr: "set as ⊆ carrier G"
shows "essentially_equal G as as"

using carr
by (fast intro: essentially_equalI)

lemma (in monoid) ee_sym [sym]:
assumes ee: "essentially_equal G as bs"

and carr: "set as ⊆ carrier G" "set bs ⊆ carrier G"
shows "essentially_equal G bs as"

using ee
proof (elim essentially_equalE)

fix fs
assume "as <~~> fs" "fs [∼] bs"
hence "∃ fs’. as [∼] fs’ ∧ fs’ <~~> bs" by (rule perm_assoc_switch_r)
from this obtain fs’

where a: "as [∼] fs’" and p: "fs’ <~~> bs"
by auto

from p have "bs <~~> fs’" by (rule perm_sym)
with a[symmetric] carr

show ?thesis
by (iprover intro: essentially_equalI perm_closed)

qed

lemma (in monoid) ee_trans [trans]:
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal

G bs cs"
and ascarr: "set as ⊆ carrier G"
and bscarr: "set bs ⊆ carrier G"
and cscarr: "set cs ⊆ carrier G"

shows "essentially_equal G as cs"
using ab bc
proof (elim essentially_equalE)

fix abs bcs
assume "abs [∼] bs" and pb: "bs <~~> bcs"
hence "∃ bs’. abs <~~> bs’ ∧ bs’ [∼] bcs" by (rule perm_assoc_switch)
from this obtain bs’

where p: "abs <~~> bs’" and a: "bs’ [∼] bcs"
by auto

assume "as <~~> abs"
with p

have pp: "as <~~> bs’" by fast

from pp ascarr have c1: "set bs’ ⊆ carrier G" by (rule perm_closed)
from pb bscarr have c2: "set bcs ⊆ carrier G" by (rule perm_closed)
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note a
also assume "bcs [∼] cs"
finally (listassoc_trans) have"bs’ [∼] cs" by (simp add: c1 c2 cscarr)

with pp
show ?thesis
by (rule essentially_equalI)

qed

7.5.3 Properties of lists of elements

Multiplication of factors in a list

lemma (in monoid) multlist_closed [simp, intro]:
assumes ascarr: "set fs ⊆ carrier G"
shows "foldr (op ⊗) fs 1 ∈ carrier G"

by (insert ascarr, induct fs, simp+)

lemma (in comm_monoid) multlist_dividesI :
assumes "f ∈ set fs" and "f ∈ carrier G" and "set fs ⊆ carrier G"
shows "f divides (foldr (op ⊗) fs 1)"

using assms
apply (induct fs)
apply simp

apply (case_tac "f = a", simp)
apply (fast intro: dividesI)

apply clarsimp
apply (elim dividesE, intro dividesI)
defer 1
apply (simp add: m_comm)
apply (simp add: m_assoc[symmetric])
apply (simp add: m_comm)

apply simp
done

lemma (in comm_monoid_cancel) multlist_listassoc_cong:
assumes "fs [∼] fs’"

and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"
shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"

using assms
proof (induct fs arbitrary: fs’, simp)

case (Cons a as fs’)
thus ?case
apply (induct fs’, simp)
proof clarsimp

fix b bs
assume "a ∼ b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G"

hence p: "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ as 1"
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by (fast intro: mult_cong_l)
also

assume "as [∼] bs"
and bscarr: "set bs ⊆ carrier G"
and "

∧
fs’. [[as [∼] fs’; set fs’ ⊆ carrier G]] =⇒ foldr op ⊗

as 1 ∼ foldr op ⊗ fs’ 1"
hence "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by simp
with ascarr bscarr bcarr

have "b ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"
by (fast intro: mult_cong_r)

finally
show "a ⊗ foldr op ⊗ as 1 ∼ b ⊗ foldr op ⊗ bs 1"
by (simp add: ascarr bscarr acarr bcarr)

qed
qed

lemma (in comm_monoid) multlist_perm_cong:
assumes prm: "as <~~> bs"

and ascarr: "set as ⊆ carrier G"
shows "foldr (op ⊗) as 1 = foldr (op ⊗) bs 1"

using prm ascarr
apply (induct, simp, clarsimp simp add: m_ac, clarsimp)
proof clarsimp

fix xs ys zs
assume "xs <~~> ys" "set xs ⊆ carrier G"
hence "set ys ⊆ carrier G" by (rule perm_closed)
moreover assume "set ys ⊆ carrier G =⇒ foldr op ⊗ ys 1 = foldr op

⊗ zs 1"
ultimately show "foldr op ⊗ ys 1 = foldr op ⊗ zs 1" by simp

qed

lemma (in comm_monoid_cancel) multlist_ee_cong:
assumes "essentially_equal G fs fs’"

and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"
shows "foldr (op ⊗) fs 1 ∼ foldr (op ⊗) fs’ 1"

using assms
apply (elim essentially_equalE)
apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)
done

7.5.4 Factorization in irreducible elements

lemma wfactorsI:
fixes G (structure)
assumes "∀ f∈set fs. irreducible G f"

and "foldr (op ⊗) fs 1 ∼ a"
shows "wfactors G fs a"

using assms
unfolding wfactors_def
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by simp

lemma wfactorsE:
fixes G (structure)
assumes wf: "wfactors G fs a"

and e: "[[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 ∼ a]] =⇒
P"

shows "P"
using wf
unfolding wfactors_def
by (fast dest: e)

lemma (in monoid) factorsI:
assumes "∀ f∈set fs. irreducible G f"

and "foldr (op ⊗) fs 1 = a"
shows "factors G fs a"

using assms
unfolding factors_def
by simp

lemma factorsE:
fixes G (structure)
assumes f: "factors G fs a"

and e: "[[∀ f∈set fs. irreducible G f; foldr (op ⊗) fs 1 = a]] =⇒ P"
shows "P"

using f
unfolding factors_def
by (simp add: e)

lemma (in monoid) factors_wfactors:
assumes "factors G as a" and "set as ⊆ carrier G"
shows "wfactors G as a"

using assms
by (blast elim: factorsE intro: wfactorsI)

lemma (in monoid) wfactors_factors:
assumes "wfactors G as a" and "set as ⊆ carrier G"
shows "∃ a’. factors G as a’ ∧ a’ ∼ a"

using assms
by (blast elim: wfactorsE intro: factorsI)

lemma (in monoid) factors_closed [dest]:
assumes "factors G fs a" and "set fs ⊆ carrier G"
shows "a ∈ carrier G"

using assms
by (elim factorsE, clarsimp)

lemma (in monoid) nunit_factors:
assumes anunit: "a /∈ Units G"
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and fs: "factors G as a"
shows "length as > 0"

apply (insert fs, elim factorsE)
proof (cases "length as = 0")

assume "length as = 0"
hence fold: "foldr op ⊗ as 1 = 1" by force

assume "foldr op ⊗ as 1 = a"
with fold

have "a = 1" by simp
then have "a ∈ Units G" by fast
with anunit

have "False" by simp
thus ?thesis ..

qed simp

lemma (in monoid) unit_wfactors [simp]:
assumes aunit: "a ∈ Units G"
shows "wfactors G [] a"

using aunit
by (intro wfactorsI) (simp, simp add: Units_assoc)

lemma (in comm_monoid_cancel) unit_wfactors_empty:
assumes aunit: "a ∈ Units G"

and wf: "wfactors G fs a"
and carr[simp]: "set fs ⊆ carrier G"

shows "fs = []"
proof (rule ccontr, cases fs, simp)

fix f fs’
assume fs: "fs = f # fs’"

from carr
have fcarr[simp]: "f ∈ carrier G"
and carr’[simp]: "set fs’ ⊆ carrier G"
by (simp add: fs)+

from fs wf
have "irreducible G f" by (simp add: wfactors_def)

hence fnunit: "f /∈ Units G" by (fast elim: irreducibleE)

from fs wf
have a: "f ⊗ foldr (op ⊗) fs’ 1 ∼ a" by (simp add: wfactors_def)

note aunit
also from fs wf

have a: "f ⊗ foldr (op ⊗) fs’ 1 ∼ a" by (simp add: wfactors_def)
have "a ∼ f ⊗ foldr (op ⊗) fs’ 1"
by (simp add: Units_closed[OF aunit] a[symmetric])

finally
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have "f ⊗ foldr (op ⊗) fs’ 1 ∈ Units G" by simp
hence "f ∈ Units G" by (intro unit_factor[of f], simp+)

with fnunit show "False" by simp
qed

Comparing wfactors

lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:
assumes fact: "wfactors G fs a"

and asc: "fs [∼] fs’"
and carr: "a ∈ carrier G" "set fs ⊆ carrier G" "set fs’ ⊆ carrier

G"
shows "wfactors G fs’ a"

using fact
apply (elim wfactorsE, intro wfactorsI)
proof -

assume "∀ f∈set fs. irreducible G f"
also note asc
finally (irrlist_listassoc_cong)

show "∀ f∈set fs’. irreducible G f" by (simp add: carr)
next

from asc[symmetric]
have "foldr op ⊗ fs’ 1 ∼ foldr op ⊗ fs 1"
by (simp add: multlist_listassoc_cong carr)

also assume "foldr op ⊗ fs 1 ∼ a"
finally

show "foldr op ⊗ fs’ 1 ∼ a" by (simp add: carr)
qed

lemma (in comm_monoid) wfactors_perm_cong_l:
assumes "wfactors G fs a"

and "fs <~~> fs’"
and "set fs ⊆ carrier G"

shows "wfactors G fs’ a"
using assms
apply (elim wfactorsE, intro wfactorsI)
apply (rule irrlist_perm_cong, assumption+)

apply (simp add: multlist_perm_cong[symmetric])
done

lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:
assumes ee: "essentially_equal G as bs"

and bfs: "wfactors G bs b"
and carr: "b ∈ carrier G" "set as ⊆ carrier G" "set bs ⊆ carrier

G"
shows "wfactors G as b"

using ee
proof (elim essentially_equalE)

fix fs
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assume prm: "as <~~> fs"
with carr

have fscarr: "set fs ⊆ carrier G" by (simp add: perm_closed)

note bfs
also assume [symmetric]: "fs [∼] bs"
also (wfactors_listassoc_cong_l)

note prm[symmetric]
finally (wfactors_perm_cong_l)

show "wfactors G as b" by (simp add: carr fscarr)
qed

lemma (in monoid) wfactors_cong_r [trans]:
assumes fac: "wfactors G fs a" and aa’: "a ∼ a’"

and carr[simp]: "a ∈ carrier G" "a’ ∈ carrier G" "set fs ⊆ carrier
G"

shows "wfactors G fs a’"
using fac
proof (elim wfactorsE, intro wfactorsI)

assume "foldr op ⊗ fs 1 ∼ a" also note aa’
finally show "foldr op ⊗ fs 1 ∼ a’" by simp

qed

7.5.5 Essentially equal factorizations

lemma (in comm_monoid_cancel) unitfactor_ee:
assumes uunit: "u ∈ Units G"

and carr: "set as ⊆ carrier G"
shows "essentially_equal G (as[0 := (as!0 ⊗ u)]) as" (is "essentially_equal

G ?as’ as")
using assms
apply (intro essentially_equalI[of _ ?as’], simp)
apply (cases as, simp)
apply (clarsimp, fast intro: associatedI2[of u])
done

lemma (in comm_monoid_cancel) factors_cong_unit:
assumes uunit: "u ∈ Units G" and anunit: "a /∈ Units G"

and afs: "factors G as a"
and ascarr: "set as ⊆ carrier G"

shows "factors G (as[0 := (as!0 ⊗ u)]) (a ⊗ u)" (is "factors G ?as’
?a’")
using assms
apply (elim factorsE, clarify)
apply (cases as)
apply (simp add: nunit_factors)

apply clarsimp
apply (elim factorsE, intro factorsI)
apply (clarsimp, fast intro: irreducible_prod_rI)
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apply (simp add: m_ac Units_closed)
done

lemma (in comm_monoid) perm_wfactorsD:
assumes prm: "as <~~> bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and ascarr[simp]: "set as ⊆ carrier G"

shows "a ∼ b"
using afs bfs
proof (elim wfactorsE)

from prm have [simp]: "set bs ⊆ carrier G" by (simp add: perm_closed)
assume "foldr op ⊗ as 1 ∼ a"
hence "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
also from prm

have "foldr op ⊗ as 1 = foldr op ⊗ bs 1" by (rule multlist_perm_cong,
simp)

also assume "foldr op ⊗ bs 1 ∼ b"
finally

show "a ∼ b" by simp
qed

lemma (in comm_monoid_cancel) listassoc_wfactorsD:
assumes assoc: "as [∼] bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and [simp]: "set as ⊆ carrier G" "set bs ⊆ carrier G"

shows "a ∼ b"
using afs bfs
proof (elim wfactorsE)

assume "foldr op ⊗ as 1 ∼ a"
hence "a ∼ foldr op ⊗ as 1" by (rule associated_sym, simp+)
also from assoc

have "foldr op ⊗ as 1 ∼ foldr op ⊗ bs 1" by (rule multlist_listassoc_cong,
simp+)

also assume "foldr op ⊗ bs 1 ∼ b"
finally

show "a ∼ b" by simp
qed

lemma (in comm_monoid_cancel) ee_wfactorsD:
assumes ee: "essentially_equal G as bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a ∈ carrier G" "b ∈ carrier G"
and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs

⊆ carrier G"
shows "a ∼ b"

using ee
proof (elim essentially_equalE)
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fix fs
assume prm: "as <~~> fs"
hence as’carr[simp]: "set fs ⊆ carrier G" by (simp add: perm_closed)
from afs prm

have afs’: "wfactors G fs a" by (rule wfactors_perm_cong_l, simp)
assume "fs [∼] bs"
from this afs’ bfs

show "a ∼ b" by (rule listassoc_wfactorsD, simp+)
qed

lemma (in comm_monoid_cancel) ee_factorsD:
assumes ee: "essentially_equal G as bs"

and afs: "factors G as a" and bfs:"factors G bs b"
and "set as ⊆ carrier G" "set bs ⊆ carrier G"

shows "a ∼ b"
using assms
by (blast intro: factors_wfactors dest: ee_wfactorsD)

lemma (in factorial_monoid) ee_factorsI:
assumes ab: "a ∼ b"

and afs: "factors G as a" and anunit: "a /∈ Units G"
and bfs: "factors G bs b" and bnunit: "b /∈ Units G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "essentially_equal G as bs"
proof -

note carr[simp] = factors_closed[OF afs ascarr] ascarr[THEN subsetD]
factors_closed[OF bfs bscarr] bscarr[THEN subsetD]

from ab carr
have "∃ u∈Units G. a = b ⊗ u" by (fast elim: associatedE2)

from this obtain u
where uunit: "u ∈ Units G"
and a: "a = b ⊗ u" by auto

from uunit bscarr
have ee: "essentially_equal G (bs[0 := (bs!0 ⊗ u)]) bs"

(is "essentially_equal G ?bs’ bs")
by (rule unitfactor_ee)

from bscarr uunit
have bs’carr: "set ?bs’ ⊆ carrier G"
by (cases bs) (simp add: Units_closed)+

from uunit bnunit bfs bscarr
have fac: "factors G ?bs’ (b ⊗ u)"
by (rule factors_cong_unit)

from afs fac[simplified a[symmetric]] ascarr bs’carr anunit
have "essentially_equal G as ?bs’"
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by (blast intro: factors_unique)
also note ee
finally

show "essentially_equal G as bs" by (simp add: ascarr bscarr bs’carr)
qed

lemma (in factorial_monoid) ee_wfactorsI:
assumes asc: "a ∼ b"

and asf: "wfactors G as a" and bsf: "wfactors G bs b"
and acarr[simp]: "a ∈ carrier G" and bcarr[simp]: "b ∈ carrier G"
and ascarr[simp]: "set as ⊆ carrier G" and bscarr[simp]: "set bs

⊆ carrier G"
shows "essentially_equal G as bs"

using assms
proof (cases "a ∈ Units G")

assume aunit: "a ∈ Units G"
also note asc
finally have bunit: "b ∈ Units G" by simp

from aunit asf ascarr
have e: "as = []" by (rule unit_wfactors_empty)

from bunit bsf bscarr
have e’: "bs = []" by (rule unit_wfactors_empty)

have "essentially_equal G [] []"
by (fast intro: essentially_equalI)

thus ?thesis by (simp add: e e’)
next

assume anunit: "a /∈ Units G"
have bnunit: "b /∈ Units G"
proof clarify

assume "b ∈ Units G"
also note asc[symmetric]
finally have "a ∈ Units G" by simp
with anunit

show "False" ..
qed

have "∃ a’. factors G as a’ ∧ a’ ∼ a" by (rule wfactors_factors[OF
asf ascarr])

from this obtain a’
where fa’: "factors G as a’"
and a’: "a’ ∼ a"
by auto

from fa’ ascarr
have a’carr[simp]: "a’ ∈ carrier G" by fast

have a’nunit: "a’ /∈ Units G"
proof (clarify)
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assume "a’ ∈ Units G"
also note a’
finally have "a ∈ Units G" by simp
with anunit

show "False" ..
qed

have "∃ b’. factors G bs b’ ∧ b’ ∼ b" by (rule wfactors_factors[OF
bsf bscarr])

from this obtain b’
where fb’: "factors G bs b’"
and b’: "b’ ∼ b"
by auto

from fb’ bscarr
have b’carr[simp]: "b’ ∈ carrier G" by fast

have b’nunit: "b’ /∈ Units G"
proof (clarify)

assume "b’ ∈ Units G"
also note b’
finally have "b ∈ Units G" by simp
with bnunit

show "False" ..
qed

note a’
also note asc
also note b’[symmetric]
finally

have "a’ ∼ b’" by simp

from this fa’ a’nunit fb’ b’nunit ascarr bscarr
show "essentially_equal G as bs"

by (rule ee_factorsI)
qed

lemma (in factorial_monoid) ee_wfactors:
assumes asf: "wfactors G as a"

and bsf: "wfactors G bs b"
and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows asc: "a ∼ b = essentially_equal G as bs"
using assms
by (fast intro: ee_wfactorsI ee_wfactorsD)

lemma (in factorial_monoid) wfactors_exist [intro, simp]:
assumes acarr[simp]: "a ∈ carrier G"
shows "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs a"

proof (cases "a ∈ Units G")
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assume "a ∈ Units G"
hence "wfactors G [] a" by (rule unit_wfactors)
thus ?thesis by (intro exI) force

next
assume "a /∈ Units G"
hence "∃ fs. set fs ⊆ carrier G ∧ factors G fs a" by (intro factors_exist

acarr)
from this obtain fs

where fscarr: "set fs ⊆ carrier G"
and f: "factors G fs a"
by auto

from f have "wfactors G fs a" by (rule factors_wfactors) fact
from fscarr this

show ?thesis by fast
qed

lemma (in monoid) wfactors_prod_exists [intro, simp]:
assumes "∀ a ∈ set as. irreducible G a" and "set as ⊆ carrier G"
shows "∃ a. a ∈ carrier G ∧ wfactors G as a"

unfolding wfactors_def
using assms
by blast

lemma (in factorial_monoid) wfactors_unique:
assumes "wfactors G fs a" and "wfactors G fs’ a"

and "a ∈ carrier G"
and "set fs ⊆ carrier G" and "set fs’ ⊆ carrier G"

shows "essentially_equal G fs fs’"
using assms
by (fast intro: ee_wfactorsI[of a a])

lemma (in monoid) factors_mult_single:
assumes "irreducible G a" and "factors G fb b" and "a ∈ carrier G"
shows "factors G (a # fb) (a ⊗ b)"

using assms
unfolding factors_def
by simp

lemma (in monoid_cancel) wfactors_mult_single:
assumes f: "irreducible G a" "wfactors G fb b"

"a ∈ carrier G" "b ∈ carrier G" "set fb ⊆ carrier G"
shows "wfactors G (a # fb) (a ⊗ b)"

using assms
unfolding wfactors_def
by (simp add: mult_cong_r)

lemma (in monoid) factors_mult:
assumes factors: "factors G fa a" "factors G fb b"

and ascarr: "set fa ⊆ carrier G" and bscarr:"set fb ⊆ carrier G"
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shows "factors G (fa @ fb) (a ⊗ b)"
using assms
unfolding factors_def
apply (safe, force)
apply (induct fa)
apply simp

apply (simp add: m_assoc)
done

lemma (in comm_monoid_cancel) wfactors_mult [intro]:
assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr:"set bs ⊆ carrier G"

shows "wfactors G (as @ bs) (a ⊗ b)"
apply (insert wfactors_factors[OF asf ascarr])
apply (insert wfactors_factors[OF bsf bscarr])
proof (clarsimp)

fix a’ b’
assume asf’: "factors G as a’" and a’a: "a’ ∼ a"

and bsf’: "factors G bs b’" and b’b: "b’ ∼ b"
from asf’ have a’carr: "a’ ∈ carrier G" by (rule factors_closed) fact
from bsf’ have b’carr: "b’ ∈ carrier G" by (rule factors_closed) fact

note carr = acarr bcarr a’carr b’carr ascarr bscarr

from asf’ bsf’
have "factors G (as @ bs) (a’ ⊗ b’)" by (rule factors_mult) fact+

with carr
have abf’: "wfactors G (as @ bs) (a’ ⊗ b’)" by (intro factors_wfactors)

simp+
also from b’b carr

have trb: "a’ ⊗ b’ ∼ a’ ⊗ b" by (intro mult_cong_r)
also from a’a carr

have tra: "a’ ⊗ b ∼ a ⊗ b" by (intro mult_cong_l)
finally

show "wfactors G (as @ bs) (a ⊗ b)"
by (simp add: carr)

qed

lemma (in comm_monoid) factors_dividesI:
assumes "factors G fs a" and "f ∈ set fs"

and "set fs ⊆ carrier G"
shows "f divides a"

using assms
by (fast elim: factorsE intro: multlist_dividesI)

lemma (in comm_monoid) wfactors_dividesI:
assumes p: "wfactors G fs a"
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and fscarr: "set fs ⊆ carrier G" and acarr: "a ∈ carrier G"
and f: "f ∈ set fs"

shows "f divides a"
apply (insert wfactors_factors[OF p fscarr], clarsimp)
proof -

fix a’
assume fsa’: "factors G fs a’"

and a’a: "a’ ∼ a"
with fscarr

have a’carr: "a’ ∈ carrier G" by (simp add: factors_closed)

from fsa’ fscarr f
have "f divides a’" by (fast intro: factors_dividesI)

also note a’a
finally

show "f divides a" by (simp add: f fscarr[THEN subsetD] acarr
a’carr)
qed

7.5.6 Factorial monoids and wfactors

lemma (in comm_monoid_cancel) factorial_monoidI:
assumes wfactors_exists:

"
∧
a. a ∈ carrier G =⇒ ∃ fs. set fs ⊆ carrier G ∧ wfactors

G fs a"
and wfactors_unique:

"
∧
a fs fs’. [[a ∈ carrier G; set fs ⊆ carrier G; set fs’ ⊆ carrier

G;
wfactors G fs a; wfactors G fs’ a]] =⇒ essentially_equal

G fs fs’"
shows "factorial_monoid G"

proof
fix a
assume acarr: "a ∈ carrier G" and anunit: "a /∈ Units G"

from wfactors_exists[OF acarr]
obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

from afs ascarr
have "∃ a’. factors G as a’ ∧ a’ ∼ a" by (rule wfactors_factors)

from this obtain a’
where afs’: "factors G as a’"
and a’a: "a’ ∼ a"
by auto

from afs’ ascarr
have a’carr: "a’ ∈ carrier G" by fast

have a’nunit: "a’ /∈ Units G"
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proof clarify
assume "a’ ∈ Units G"
also note a’a
finally have "a ∈ Units G" by (simp add: acarr)
with anunit

show "False" ..
qed

from a’carr acarr a’a
have "∃ u. u ∈ Units G ∧ a’ = a ⊗ u" by (blast elim: associatedE2)

from this obtain u
where uunit: "u ∈ Units G"
and a’: "a’ = a ⊗ u"
by auto

note [simp] = acarr Units_closed[OF uunit] Units_inv_closed[OF uunit]

have "a = a ⊗ 1" by simp
also have ". . . = a ⊗ (u ⊗ inv u)" by (simp add: Units_r_inv uunit)
also have ". . . = a’ ⊗ inv u" by (simp add: m_assoc[symmetric] a’[symmetric])
finally

have a: "a = a’ ⊗ inv u" .

from ascarr uunit
have cr: "set (as[0:=(as!0 ⊗ inv u)]) ⊆ carrier G"
by (cases as, clarsimp+)

from afs’ uunit a’nunit acarr ascarr
have "factors G (as[0:=(as!0 ⊗ inv u)]) a"
by (simp add: a factors_cong_unit)

with cr
show "∃ fs. set fs ⊆ carrier G ∧ factors G fs a" by fast

qed (blast intro: factors_wfactors wfactors_unique)

7.6 Factorizations as Multisets

Gives useful operations like intersection

abbreviation
"assocs G x == eq_closure_of (division_rel G) {x}"

constdefs (structure G)
"fmset G as ≡ multiset_of (map (λa. assocs G a) as)"

Helper lemmas

lemma (in monoid) assocs_repr_independence:
assumes "y ∈ assocs G x"

and "x ∈ carrier G"
shows "assocs G x = assocs G y"
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using assms
apply safe
apply (elim closure_ofE2, intro closure_ofI2[of _ _ y])

apply (clarsimp, iprover intro: associated_trans associated_sym, simp+)
apply (elim closure_ofE2, intro closure_ofI2[of _ _ x])

apply (clarsimp, iprover intro: associated_trans, simp+)
done

lemma (in monoid) assocs_self:
assumes "x ∈ carrier G"
shows "x ∈ assocs G x"

using assms
by (fastsimp intro: closure_ofI2)

lemma (in monoid) assocs_repr_independenceD:
assumes repr: "assocs G x = assocs G y"

and ycarr: "y ∈ carrier G"
shows "y ∈ assocs G x"

unfolding repr
using ycarr
by (intro assocs_self)

lemma (in comm_monoid) assocs_assoc:
assumes "a ∈ assocs G b"

and "b ∈ carrier G"
shows "a ∼ b"

using assms
by (elim closure_ofE2, simp)

lemmas (in comm_monoid) assocs_eqD =
assocs_repr_independenceD[THEN assocs_assoc]

7.6.1 Comparing multisets

lemma (in monoid) fmset_perm_cong:
assumes prm: "as <~~> bs"
shows "fmset G as = fmset G bs"

using perm_map[OF prm]
by (simp add: multiset_of_eq_perm fmset_def)

lemma (in comm_monoid_cancel) eqc_listassoc_cong:
assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "map (assocs G) as = map (assocs G) bs"

using assms
apply (induct as arbitrary: bs, simp)
apply (clarsimp simp add: Cons_eq_map_conv list_all2_Cons1, safe)
apply (clarsimp elim!: closure_ofE2) defer 1
apply (clarsimp elim!: closure_ofE2) defer 1
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proof -
fix a x z
assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier

G"
assume "x ∼ a"
also assume "a ∼ z"
finally have "x ∼ z" by simp
with carr

show "x ∈ assocs G z"
by (intro closure_ofI2) simp+

next
fix a x z
assume carr[simp]: "a ∈ carrier G" "x ∈ carrier G" "z ∈ carrier

G"
assume "x ∼ z"
also assume [symmetric]: "a ∼ z"
finally have "x ∼ a" by simp
with carr

show "x ∈ assocs G a"
by (intro closure_ofI2) simp+

qed

lemma (in comm_monoid_cancel) fmset_listassoc_cong:
assumes "as [∼] bs"

and "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "fmset G as = fmset G bs"

using assms
unfolding fmset_def
by (simp add: eqc_listassoc_cong)

lemma (in comm_monoid_cancel) ee_fmset:
assumes ee: "essentially_equal G as bs"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
shows "fmset G as = fmset G bs"

using ee
proof (elim essentially_equalE)

fix as’
assume prm: "as <~~> as’"
from prm ascarr

have as’carr: "set as’ ⊆ carrier G" by (rule perm_closed)

from prm
have "fmset G as = fmset G as’" by (rule fmset_perm_cong)

also assume "as’ [∼] bs"
with as’carr bscarr
have "fmset G as’ = fmset G bs" by (simp add: fmset_listassoc_cong)

finally
show "fmset G as = fmset G bs" .

qed
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lemma (in monoid_cancel) fmset_ee__hlp_induct:
assumes prm: "cas <~~> cbs"

and cdef: "cas = map (assocs G) as" "cbs = map (assocs G) bs"
shows "∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧

cbs = map (assocs G) bs) −→ (∃ as’. as <~~> as’ ∧ map
(assocs G) as’ = cbs)"
apply (rule perm.induct[of cas cbs], rule prm)
apply safe apply simp_all

apply (simp add: map_eq_Cons_conv, blast)
apply force

proof -
fix ys as bs
assume p1: "map (assocs G) as <~~> ys"

and r1[rule_format]:
"∀ asa bs. map (assocs G) as = map (assocs G) asa ∧

ys = map (assocs G) bs
−→ (∃ as’. asa <~~> as’ ∧ map (assocs G) as’ = map

(assocs G) bs)"
and p2: "ys <~~> map (assocs G) bs"
and r2[rule_format]:

"∀ as bsa. ys = map (assocs G) as ∧
map (assocs G) bs = map (assocs G) bsa
−→ (∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs

G) bsa)"
and p3: "map (assocs G) as <~~> map (assocs G) bs"

from p1
have "multiset_of (map (assocs G) as) = multiset_of ys"
by (simp add: multiset_of_eq_perm)

hence setys: "set (map (assocs G) as) = set ys" by (rule multiset_of_eq_setD)

have "set (map (assocs G) as) = { assocs G x | x. x ∈ set as}" by clarsimp
fast

with setys have "set ys ⊆ { assocs G x | x. x ∈ set as}" by simp
hence "∃ yy. ys = map (assocs G) yy"

apply (induct ys, simp, clarsimp)
proof -

fix yy x
show "∃ yya. (assocs G x) # map (assocs G) yy =

map (assocs G) yya"
by (rule exI[of _ "x#yy"], simp)

qed
from this obtain yy

where ys: "ys = map (assocs G) yy"
by auto

from p1 ys
have "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) yy"
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by (intro r1, simp)
from this obtain as’

where asas’: "as <~~> as’"
and as’yy: "map (assocs G) as’ = map (assocs G) yy"
by auto

from p2 ys
have "∃ as’. yy <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bs"
by (intro r2, simp)

from this obtain as’’
where yyas’’: "yy <~~> as’’"
and as’’bs: "map (assocs G) as’’ = map (assocs G) bs"
by auto

from as’yy and yyas’’
have "∃ cs. as’ <~~> cs ∧ map (assocs G) cs = map (assocs G) as’’"
by (rule perm_map_switch)

from this obtain cs
where as’cs: "as’ <~~> cs"
and csas’’: "map (assocs G) cs = map (assocs G) as’’"
by auto

from asas’ and as’cs
have ascs: "as <~~> cs" by fast

from csas’’ and as’’bs
have "map (assocs G) cs = map (assocs G) bs" by simp

from ascs and this
show "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bs" by

fast
qed

lemma (in comm_monoid_cancel) fmset_ee:
assumes mset: "fmset G as = fmset G bs"

and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"
shows "essentially_equal G as bs"

proof -
from mset

have mpp: "map (assocs G) as <~~> map (assocs G) bs"
by (simp add: fmset_def multiset_of_eq_perm)

have "∃ cas. cas = map (assocs G) as" by simp
from this obtain cas where cas: "cas = map (assocs G) as" by simp

have "∃ cbs. cbs = map (assocs G) bs" by simp
from this obtain cbs where cbs: "cbs = map (assocs G) bs" by simp

from cas cbs mpp
have [rule_format]:

"∀ as bs. (cas <~~> cbs ∧ cas = map (assocs G) as ∧
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cbs = map (assocs G) bs)
−→ (∃ as’. as <~~> as’ ∧ map (assocs G) as’ = cbs)"

by (intro fmset_ee__hlp_induct, simp+)
with mpp cas cbs

have "∃ as’. as <~~> as’ ∧ map (assocs G) as’ = map (assocs G) bs"
by simp

from this obtain as’
where tp: "as <~~> as’"
and tm: "map (assocs G) as’ = map (assocs G) bs"
by auto

from tm have lene: "length as’ = length bs" by (rule map_eq_imp_length_eq)
from tp have "set as = set as’" by (simp add: multiset_of_eq_perm multiset_of_eq_setD)
with ascarr

have as’carr: "set as’ ⊆ carrier G" by simp

from tm as’carr[THEN subsetD] bscarr[THEN subsetD]
have "as’ [∼] bs"

by (induct as’ arbitrary: bs) (simp, fastsimp dest: assocs_eqD[THEN
associated_sym])

from tp and this
show "essentially_equal G as bs" by (fast intro: essentially_equalI)

qed

lemma (in comm_monoid_cancel) ee_is_fmset:
assumes "set as ⊆ carrier G" and "set bs ⊆ carrier G"
shows "essentially_equal G as bs = (fmset G as = fmset G bs)"

using assms
by (fast intro: ee_fmset fmset_ee)

7.6.2 Interpreting multisets as factorizations

lemma (in monoid) mset_fmsetEx:
assumes elems: "

∧
X. X ∈ set_of Cs =⇒ ∃ x. P x ∧ X = assocs G x"

shows "∃ cs. (∀ c ∈ set cs. P c) ∧ fmset G cs = Cs"
proof -

have "∃ Cs’. Cs = multiset_of Cs’"
by (rule surjE[OF surj_multiset_of], fast)

from this obtain Cs’
where Cs: "Cs = multiset_of Cs’"
by auto

have "∃ cs. (∀ c ∈ set cs. P c) ∧ multiset_of (map (assocs G) cs) =
Cs"

using elems
unfolding Cs

apply (induct Cs’, simp)
apply clarsimp
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apply (subgoal_tac "∃ cs. (∀ x∈set cs. P x) ∧
multiset_of (map (assocs G) cs) = multiset_of

Cs’")
proof clarsimp

fix a Cs’ cs
assume ih: "

∧
X. X = a ∨ X ∈ set Cs’ =⇒ ∃ x. P x ∧ X = assocs G

x"
and csP: "∀ x∈set cs. P x"
and mset: "multiset_of (map (assocs G) cs) = multiset_of Cs’"

from ih
have "∃ x. P x ∧ a = assocs G x" by fast

from this obtain c
where cP: "P c"
and a: "a = assocs G c"
by auto

from cP csP
have tP: "∀ x∈set (c#cs). P x" by simp

from mset a
have "multiset_of (map (assocs G) (c#cs)) = multiset_of Cs’ + {#a#}"

by simp
from tP this
show "∃ cs. (∀ x∈set cs. P x) ∧

multiset_of (map (assocs G) cs) =
multiset_of Cs’ + {#a#}" by fast

qed simp
thus ?thesis by (simp add: fmset_def)

qed

lemma (in monoid) mset_wfactorsEx:
assumes elems: "

∧
X. X ∈ set_of Cs

=⇒ ∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X =
assocs G x"

shows "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧ fmset G cs = Cs"
proof -

have "∃ cs. (∀ c∈set cs. c ∈ carrier G ∧ irreducible G c) ∧ fmset G
cs = Cs"

by (intro mset_fmsetEx, rule elems)
from this obtain cs

where p[rule_format]: "∀ c∈set cs. c ∈ carrier G ∧ irreducible
G c"

and Cs[symmetric]: "fmset G cs = Cs"
by auto

from p
have cscarr: "set cs ⊆ carrier G" by fast

from p
have "∃ c. c ∈ carrier G ∧ wfactors G cs c"
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by (intro wfactors_prod_exists) fast+
from this obtain c

where ccarr: "c ∈ carrier G"
and cfs: "wfactors G cs c"
by auto

with cscarr Cs
show ?thesis by fast

qed

7.6.3 Multiplication on multisets

lemma (in factorial_monoid) mult_wfactors_fmset:
assumes afs: "wfactors G as a" and bfs: "wfactors G bs b" and cfs:

"wfactors G cs (a ⊗ b)"
and carr: "a ∈ carrier G" "b ∈ carrier G"

"set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier
G"

shows "fmset G cs = fmset G as + fmset G bs"
proof -

from assms
have "wfactors G (as @ bs) (a ⊗ b)" by (intro wfactors_mult)

with carr cfs
have "essentially_equal G cs (as@bs)" by (intro ee_wfactorsI[of

"a⊗b" "a⊗b"], simp+)
with carr

have "fmset G cs = fmset G (as@bs)" by (intro ee_fmset, simp+)
also have "fmset G (as@bs) = fmset G as + fmset G bs" by (simp add:

fmset_def)
finally show "fmset G cs = fmset G as + fmset G bs" .

qed

lemma (in factorial_monoid) mult_factors_fmset:
assumes afs: "factors G as a" and bfs: "factors G bs b" and cfs: "factors

G cs (a ⊗ b)"
and "set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier

G"
shows "fmset G cs = fmset G as + fmset G bs"

using assms
by (blast intro: factors_wfactors mult_wfactors_fmset)

lemma (in comm_monoid_cancel) fmset_wfactors_mult:
assumes mset: "fmset G cs = fmset G as + fmset G bs"

and carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
"set as ⊆ carrier G" "set bs ⊆ carrier G" "set cs ⊆ carrier

G"
and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"

shows "c ∼ a ⊗ b"
proof -
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from carr fs
have m: "wfactors G (as @ bs) (a ⊗ b)" by (intro wfactors_mult)

from mset
have "fmset G cs = fmset G (as@bs)" by (simp add: fmset_def)

then have "essentially_equal G cs (as@bs)" by (rule fmset_ee) (simp
add: carr)+

then show "c ∼ a ⊗ b" by (rule ee_wfactorsD[of "cs" "as@bs"]) (simp
add: assms m)+
qed

7.6.4 Divisibility on multisets

lemma (in factorial_monoid) divides_fmsubset:
assumes ab: "a divides b"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and carr: "a ∈ carrier G" "b ∈ carrier G" "set as ⊆ carrier G"

"set bs ⊆ carrier G"
shows "fmset G as ≤# fmset G bs"

using ab
proof (elim dividesE)

fix c
assume ccarr: "c ∈ carrier G"
hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by (rule wfactors_exist)
from this obtain cs

where cscarr: "set cs ⊆ carrier G"
and cfs: "wfactors G cs c" by auto

note carr = carr ccarr cscarr

assume "b = a ⊗ c"
with afs bfs cfs carr

have "fmset G bs = fmset G as + fmset G cs"
by (intro mult_wfactors_fmset[OF afs cfs]) simp+

thus ?thesis by simp
qed

lemma (in comm_monoid_cancel) fmsubset_divides:
assumes msubset: "fmset G as ≤# fmset G bs"

and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and bscarr: "set bs ⊆ carrier G"

shows "a divides b"
proof -

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:
wfactorsE)

from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:
wfactorsE)
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have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧ fmset G cs = fmset G bs - fmset G as"

proof (intro mset_wfactorsEx, simp)
fix X
assume "count (fmset G as) X < count (fmset G bs) X"
hence "0 < count (fmset G bs) X" by simp
hence "X ∈ set_of (fmset G bs)" by simp
hence "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)
hence "∃ x. x ∈ set bs ∧ X = assocs G x" by (induct bs) auto
from this obtain x

where xbs: "x ∈ set bs"
and X: "X = assocs G x"
by auto

with bscarr have xcarr: "x ∈ carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
show "∃ x. x ∈ carrier G ∧ irreducible G x ∧ X = assocs G x"

by fast
qed
from this obtain c cs

where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csf: "wfactors G cs c"
and csmset: "fmset G cs = fmset G bs - fmset G as" by auto

from csmset msubset
have "fmset G bs = fmset G as + fmset G cs"
by (simp add: multiset_eq_conv_count_eq mset_le_def)

hence basc: "b ∼ a ⊗ c"
by (rule fmset_wfactors_mult) fact+

thus ?thesis
proof (elim associatedE2)

fix u
assume "u ∈ Units G" "b = a ⊗ c ⊗ u"
with acarr ccarr

show "a divides b" by (fast intro: dividesI[of "c ⊗ u"] m_assoc)
qed (simp add: acarr bcarr ccarr)+

qed

lemma (in factorial_monoid) divides_as_fmsubset:
assumes "wfactors G as a" and "wfactors G bs b"

and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "a divides b = (fmset G as ≤# fmset G bs)"
using assms
by (blast intro: divides_fmsubset fmsubset_divides)
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Proper factors on multisets

lemma (in factorial_monoid) fmset_properfactor:
assumes asubb: "fmset G as ≤# fmset G bs"

and anb: "fmset G as 6= fmset G bs"
and "wfactors G as a" and "wfactors G bs b"
and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "properfactor G a b"
apply (rule properfactorI)
apply (rule fmsubset_divides[of as bs], fact+)
proof

assume "b divides a"
hence "fmset G bs ≤# fmset G as"

by (rule divides_fmsubset) fact+
with asubb

have "fmset G as = fmset G bs" by (simp add: mset_le_antisym)
with anb

show "False" ..
qed

lemma (in factorial_monoid) properfactor_fmset:
assumes pf: "properfactor G a b"

and "wfactors G as a" and "wfactors G bs b"
and "a ∈ carrier G" and "b ∈ carrier G"
and "set as ⊆ carrier G" and "set bs ⊆ carrier G"

shows "fmset G as ≤# fmset G bs ∧ fmset G as 6= fmset G bs"
using pf
apply (elim properfactorE)
apply rule
apply (intro divides_fmsubset, assumption)
apply (rule assms)+

proof
assume bna: "¬ b divides a"
assume "fmset G as = fmset G bs"
then have "essentially_equal G as bs" by (rule fmset_ee) fact+
hence "a ∼ b" by (rule ee_wfactorsD[of as bs]) fact+
hence "b divides a" by (elim associatedE)
with bna

show "False" ..
qed

7.7 Irreducible Elements are Prime

lemma (in factorial_monoid) irreducible_is_prime:
assumes pirr: "irreducible G p"

and pcarr: "p ∈ carrier G"
shows "prime G p"

using pirr
proof (elim irreducibleE, intro primeI)
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fix a b
assume acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"

and pdvdab: "p divides (a ⊗ b)"
and pnunit: "p /∈ Units G"

assume irreduc[rule_format]:
"∀ b. b ∈ carrier G ∧ properfactor G b p −→ b ∈ Units G"

from pdvdab
have "∃ c∈carrier G. a ⊗ b = p ⊗ c" by (rule dividesD)

from this obtain c
where ccarr: "c ∈ carrier G"
and abpc: "a ⊗ b = p ⊗ c"
by auto

from acarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs a" by (rule
wfactors_exist)

from this obtain as where ascarr: "set as ⊆ carrier G" and afs: "wfactors
G as a" by auto

from bcarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs b" by (rule
wfactors_exist)

from this obtain bs where bscarr: "set bs ⊆ carrier G" and bfs: "wfactors
G bs b" by auto

from ccarr have "∃ fs. set fs ⊆ carrier G ∧ wfactors G fs c" by (rule
wfactors_exist)

from this obtain cs where cscarr: "set cs ⊆ carrier G" and cfs: "wfactors
G cs c" by auto

note carr[simp] = pcarr acarr bcarr ccarr ascarr bscarr cscarr

from afs and bfs
have abfs: "wfactors G (as @ bs) (a ⊗ b)" by (rule wfactors_mult)

fact+

from pirr cfs
have pcfs: "wfactors G (p # cs) (p ⊗ c)" by (rule wfactors_mult_single)

fact+
with abpc

have abfs’: "wfactors G (p # cs) (a ⊗ b)" by simp

from abfs’ abfs
have "essentially_equal G (p # cs) (as @ bs)"
by (rule wfactors_unique) simp+

hence "∃ ds. p # cs <~~> ds ∧ ds [∼] (as @ bs)"
by (fast elim: essentially_equalE)

from this obtain ds
where "p # cs <~~> ds"
and dsassoc: "ds [∼] (as @ bs)"
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by auto

then have "p ∈ set ds"
by (simp add: perm_set_eq[symmetric])

with dsassoc
have "∃ p’. p’ ∈ set (as@bs) ∧ p ∼ p’"
unfolding list_all2_conv_all_nth set_conv_nth
by force

from this obtain p’
where "p’ ∈ set (as@bs)"
and pp’: "p ∼ p’"
by auto

hence "p’ ∈ set as ∨ p’ ∈ set bs" by simp
moreover
{

assume p’elem: "p’ ∈ set as"
with ascarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from afs

have "p’ divides a" by (rule wfactors_dividesI) fact+
finally

have "p divides a" by simp
}
moreover
{

assume p’elem: "p’ ∈ set bs"
with bscarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from bfs

have "p’ divides b" by (rule wfactors_dividesI) fact+
finally

have "p divides b" by simp
}
ultimately

show "p divides a ∨ p divides b" by fast
qed

— A version using factors, more complicated
lemma (in factorial_monoid) factors_irreducible_is_prime:

assumes pirr: "irreducible G p"
and pcarr: "p ∈ carrier G"

shows "prime G p"
using pirr
apply (elim irreducibleE, intro primeI)
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apply assumption
proof -

fix a b
assume acarr: "a ∈ carrier G"

and bcarr: "b ∈ carrier G"
and pdvdab: "p divides (a ⊗ b)"

assume irreduc[rule_format]:
"∀ b. b ∈ carrier G ∧ properfactor G b p −→ b ∈ Units G"

from pdvdab
have "∃ c∈carrier G. a ⊗ b = p ⊗ c" by (rule dividesD)

from this obtain c
where ccarr: "c ∈ carrier G"
and abpc: "a ⊗ b = p ⊗ c"
by auto

note [simp] = pcarr acarr bcarr ccarr

show "p divides a ∨ p divides b"
proof (cases "a ∈ Units G")

assume aunit: "a ∈ Units G"

note pdvdab
also have "a ⊗ b = b ⊗ a" by (simp add: m_comm)
also from aunit

have bab: "b ⊗ a ∼ b"
by (intro associatedI2[of "a"], simp+)

finally
have "p divides b" by simp

thus "p divides a ∨ p divides b" ..
next

assume anunit: "a /∈ Units G"

show "p divides a ∨ p divides b"
proof (cases "b ∈ Units G")

assume bunit: "b ∈ Units G"

note pdvdab
also from bunit

have baa: "a ⊗ b ∼ a"
by (intro associatedI2[of "b"], simp+)

finally
have "p divides a" by simp

thus "p divides a ∨ p divides b" ..
next

assume bnunit: "b /∈ Units G"

have cnunit: "c /∈ Units G"
proof (rule ccontr, simp)

assume cunit: "c ∈ Units G"
from bnunit
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have "properfactor G a (a ⊗ b)"
by (intro properfactorI3[of _ _ b], simp+)

also note abpc
also from cunit

have "p ⊗ c ∼ p"
by (intro associatedI2[of c], simp+)

finally
have "properfactor G a p" by simp

with acarr
have "a ∈ Units G" by (fast intro: irreduc)

with anunit
show "False" ..

qed

have abnunit: "a ⊗ b /∈ Units G"
proof clarsimp

assume abunit: "a ⊗ b ∈ Units G"
hence "a ∈ Units G" by (rule unit_factor) fact+
with anunit

show "False" ..
qed

from acarr anunit have "∃ fs. set fs ⊆ carrier G ∧ factors G fs
a" by (rule factors_exist)

then obtain as where ascarr: "set as ⊆ carrier G" and afac: "factors
G as a" by auto

from bcarr bnunit have "∃ fs. set fs ⊆ carrier G ∧ factors G fs
b" by (rule factors_exist)

then obtain bs where bscarr: "set bs ⊆ carrier G" and bfac: "factors
G bs b" by auto

from ccarr cnunit have "∃ fs. set fs ⊆ carrier G ∧ factors G fs
c" by (rule factors_exist)

then obtain cs where cscarr: "set cs ⊆ carrier G" and cfac: "factors
G cs c" by auto

note [simp] = ascarr bscarr cscarr

from afac and bfac
have abfac: "factors G (as @ bs) (a ⊗ b)" by (rule factors_mult)

fact+

from pirr cfac
have pcfac: "factors G (p # cs) (p ⊗ c)" by (rule factors_mult_single)

fact+
with abpc

have abfac’: "factors G (p # cs) (a ⊗ b)" by simp
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from abfac’ abfac
have "essentially_equal G (p # cs) (as @ bs)"
by (rule factors_unique) (fact | simp)+

hence "∃ ds. p # cs <~~> ds ∧ ds [∼] (as @ bs)"
by (fast elim: essentially_equalE)

from this obtain ds
where "p # cs <~~> ds"
and dsassoc: "ds [∼] (as @ bs)"
by auto

then have "p ∈ set ds"
by (simp add: perm_set_eq[symmetric])

with dsassoc
have "∃ p’. p’ ∈ set (as@bs) ∧ p ∼ p’"
unfolding list_all2_conv_all_nth set_conv_nth
by force

from this obtain p’
where "p’ ∈ set (as@bs)"
and pp’: "p ∼ p’" by auto

hence "p’ ∈ set as ∨ p’ ∈ set bs" by simp
moreover
{

assume p’elem: "p’ ∈ set as"
with ascarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from afac p’elem

have "p’ divides a" by (rule factors_dividesI) fact+
finally

have "p divides a" by simp
}
moreover
{

assume p’elem: "p’ ∈ set bs"
with bscarr have [simp]: "p’ ∈ carrier G" by fast

note pp’
also from bfac

have "p’ divides b" by (rule factors_dividesI) fact+
finally have "p divides b" by simp

}
ultimately

show "p divides a ∨ p divides b" by fast
qed

qed



158

qed

7.8 Greatest Common Divisors and Lowest Common Multi-
ples

7.8.1 Definitions

constdefs (structure G)
isgcd :: "[(’a,_) monoid_scheme, ’a, ’a, ’a] ⇒ bool" ("(_ gcdofı _

_)" [81,81,81] 80)
"x gcdof a b ≡ x divides a ∧ x divides b ∧

(∀ y∈carrier G. (y divides a ∧ y divides b −→ y divides
x))"

islcm :: "[_, ’a, ’a, ’a] ⇒ bool" ("(_ lcmofı _ _)" [81,81,81] 80)
"x lcmof a b ≡ a divides x ∧ b divides x ∧

(∀ y∈carrier G. (a divides y ∧ b divides y −→ x divides
y))"

constdefs (structure G)
somegcd :: "(’a,_) monoid_scheme ⇒ ’a ⇒ ’a ⇒ ’a"
"somegcd G a b == SOME x. x ∈ carrier G ∧ x gcdof a b"

somelcm :: "(’a,_) monoid_scheme ⇒ ’a ⇒ ’a ⇒ ’a"
"somelcm G a b == SOME x. x ∈ carrier G ∧ x lcmof a b"

constdefs (structure G)
"SomeGcd G A == inf (division_rel G) A"

locale gcd_condition_monoid = comm_monoid_cancel +
assumes gcdof_exists:

"[[a ∈ carrier G; b ∈ carrier G]] =⇒ ∃ c. c ∈ carrier G ∧ c gcdof
a b"

locale primeness_condition_monoid = comm_monoid_cancel +
assumes irreducible_prime:

"[[a ∈ carrier G; irreducible G a]] =⇒ prime G a"

locale divisor_chain_condition_monoid = comm_monoid_cancel +
assumes division_wellfounded:

"wf {(x, y). x ∈ carrier G ∧ y ∈ carrier G ∧ properfactor G
x y}"

7.8.2 Connections to Lattice.thy

lemma gcdof_greatestLower:
fixes G (structure)
assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "(x ∈ carrier G ∧ x gcdof a b) =
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greatest (division_rel G) x (Lower (division_rel G) {a, b})"
unfolding isgcd_def greatest_def Lower_def elem_def
proof (simp, safe)

fix xa
assume r1[rule_format]: "∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ xa

divides x"
assume r2[rule_format]: "∀ y∈carrier G. y divides a ∧ y divides b −→

y divides x"

assume "xa ∈ carrier G" "x divides a" "x divides b"
with carr
show "xa divides x"

by (fast intro: r1 r2)
next

fix a’ y
assume r1[rule_format]:

"∀ xa∈{l. ∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ l divides
x} ∩ carrier G.

xa divides x"
assume "y ∈ carrier G" "y divides a" "y divides b"
with carr

show "y divides x"
by (fast intro: r1)

qed (simp, simp)

lemma lcmof_leastUpper:
fixes G (structure)
assumes carr[simp]: "a ∈ carrier G" "b ∈ carrier G"
shows "(x ∈ carrier G ∧ x lcmof a b) =

least (division_rel G) x (Upper (division_rel G) {a, b})"
unfolding islcm_def least_def Upper_def elem_def
proof (simp, safe)

fix xa
assume r1[rule_format]: "∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ x

divides xa"
assume r2[rule_format]: "∀ y∈carrier G. a divides y ∧ b divides y −→

x divides y"

assume "xa ∈ carrier G" "a divides x" "b divides x"
with carr
show "x divides xa"

by (fast intro: r1 r2)
next

fix a’ y
assume r1[rule_format]:

"∀ xa∈{l. ∀ x. (x = a ∨ x = b) ∧ x ∈ carrier G −→ x divides
l} ∩ carrier G.

x divides xa"
assume "y ∈ carrier G" "a divides y" "b divides y"
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with carr
show "x divides y"
by (fast intro: r1)

qed (simp, simp)

lemma somegcd_meet:
fixes G (structure)
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "somegcd G a b = meet (division_rel G) a b"

unfolding somegcd_def meet_def inf_def
by (simp add: gcdof_greatestLower[OF carr])

lemma (in monoid) isgcd_divides_l:
assumes "a divides b"

and "a ∈ carrier G" "b ∈ carrier G"
shows "a gcdof a b"

using assms
unfolding isgcd_def
by fast

lemma (in monoid) isgcd_divides_r:
assumes "b divides a"

and "a ∈ carrier G" "b ∈ carrier G"
shows "b gcdof a b"

using assms
unfolding isgcd_def
by fast

7.8.3 Existence of gcd and lcm

lemma (in factorial_monoid) gcdof_exists:
assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
shows "∃ c. c ∈ carrier G ∧ c gcdof a b"

proof -
from acarr have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (rule

wfactors_exist)
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:
wfactorsE)

from bcarr have "∃ bs. set bs ⊆ carrier G ∧ wfactors G bs b" by (rule
wfactors_exist)

from this obtain bs
where bscarr: "set bs ⊆ carrier G"
and bfs: "wfactors G bs b"
by auto
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from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:
wfactorsE)

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧

fmset G cs = fmset G as #∩ fmset G bs"
proof (intro mset_wfactorsEx)

fix X
assume "X ∈ set_of (fmset G as #∩ fmset G bs)"
hence "X ∈ set_of (fmset G as)" by (simp add: multiset_inter_def)
hence "X ∈ set (map (assocs G) as)" by (simp add: fmset_def)
hence "∃ x. X = assocs G x ∧ x ∈ set as" by (induct as) auto
from this obtain x

where X: "X = assocs G x"
and xas: "x ∈ set as"
by auto

with ascarr have xcarr: "x ∈ carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
show "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x"

by fast
qed

from this obtain c cs
where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as #∩ fmset G bs" by auto

have "c gcdof a b"
proof (simp add: isgcd_def, safe)

from csmset
have "fmset G cs ≤# fmset G as"
by (simp add: multiset_inter_def mset_le_def)

thus "c divides a" by (rule fmsubset_divides) fact+
next

from csmset
have "fmset G cs ≤# fmset G bs"
by (simp add: multiset_inter_def mset_le_def, force)

thus "c divides b" by (rule fmsubset_divides) fact+
next

fix y
assume ycarr: "y ∈ carrier G"
hence "∃ ys. set ys ⊆ carrier G ∧ wfactors G ys y" by (rule wfactors_exist)
from this obtain ys

where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto
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assume "y divides a"
hence ya: "fmset G ys ≤# fmset G as" by (rule divides_fmsubset) fact+

assume "y divides b"
hence yb: "fmset G ys ≤# fmset G bs" by (rule divides_fmsubset) fact+

from ya yb csmset
have "fmset G ys ≤# fmset G cs" by (simp add: mset_le_def multiset_inter_count)
thus "y divides c" by (rule fmsubset_divides) fact+

qed

with ccarr
show "∃ c. c ∈ carrier G ∧ c gcdof a b" by fast

qed

lemma (in factorial_monoid) lcmof_exists:
assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G"
shows "∃ c. c ∈ carrier G ∧ c lcmof a b"

proof -
from acarr have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (rule

wfactors_exist)
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

from afs have airr: "∀ a ∈ set as. irreducible G a" by (fast elim:
wfactorsE)

from bcarr have "∃ bs. set bs ⊆ carrier G ∧ wfactors G bs b" by (rule
wfactors_exist)

from this obtain bs
where bscarr: "set bs ⊆ carrier G"
and bfs: "wfactors G bs b"
by auto

from bfs have birr: "∀ b ∈ set bs. irreducible G b" by (fast elim:
wfactorsE)

have "∃ c cs. c ∈ carrier G ∧ set cs ⊆ carrier G ∧ wfactors G cs c
∧

fmset G cs = (fmset G as - fmset G bs) + fmset G bs"
proof (intro mset_wfactorsEx)

fix X
assume "X ∈ set_of ((fmset G as - fmset G bs) + fmset G bs)"
hence "X ∈ set_of (fmset G as) ∨ X ∈ set_of (fmset G bs)"

by (cases "X :# fmset G bs", simp, simp)
moreover
{

assume "X ∈ set_of (fmset G as)"
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hence "X ∈ set (map (assocs G) as)" by (simp add: fmset_def)
hence "∃ x. x ∈ set as ∧ X = assocs G x" by (induct as) auto
from this obtain x

where xas: "x ∈ set as"
and X: "X = assocs G x" by auto

with ascarr have xcarr: "x ∈ carrier G" by fast
from xas airr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
have "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G

x" by fast
}
moreover
{

assume "X ∈ set_of (fmset G bs)"
hence "X ∈ set (map (assocs G) bs)" by (simp add: fmset_def)
hence "∃ x. x ∈ set bs ∧ X = assocs G x" by (induct as) auto
from this obtain x

where xbs: "x ∈ set bs"
and X: "X = assocs G x" by auto

with bscarr have xcarr: "x ∈ carrier G" by fast
from xbs birr have xirr: "irreducible G x" by simp

from xcarr and xirr and X
have "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G

x" by fast
}
ultimately
show "∃ x. (x ∈ carrier G ∧ irreducible G x) ∧ X = assocs G x" by

fast
qed

from this obtain c cs
where ccarr: "c ∈ carrier G"
and cscarr: "set cs ⊆ carrier G"
and csirr: "wfactors G cs c"
and csmset: "fmset G cs = fmset G as - fmset G bs + fmset G bs"

by auto

have "c lcmof a b"
proof (simp add: islcm_def, safe)

from csmset have "fmset G as ≤# fmset G cs" by (simp add: mset_le_def,
force)

thus "a divides c" by (rule fmsubset_divides) fact+
next

from csmset have "fmset G bs ≤# fmset G cs" by (simp add: mset_le_def)
thus "b divides c" by (rule fmsubset_divides) fact+
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next
fix y
assume ycarr: "y ∈ carrier G"
hence "∃ ys. set ys ⊆ carrier G ∧ wfactors G ys y" by (rule wfactors_exist)
from this obtain ys

where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto

assume "a divides y"
hence ya: "fmset G as ≤# fmset G ys" by (rule divides_fmsubset) fact+

assume "b divides y"
hence yb: "fmset G bs ≤# fmset G ys" by (rule divides_fmsubset) fact+

from ya yb csmset
have "fmset G cs ≤# fmset G ys"

apply (simp add: mset_le_def, clarify)
apply (case_tac "count (fmset G as) a < count (fmset G bs) a")
apply simp

apply simp
done
thus "c divides y" by (rule fmsubset_divides) fact+

qed

with ccarr
show "∃ c. c ∈ carrier G ∧ c lcmof a b" by fast

qed

7.9 Conditions for Factoriality

7.9.1 Gcd condition

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:
shows "weak_lower_semilattice (division_rel G)"

proof -
interpret weak_partial_order "division_rel G" ..
show ?thesis
apply (unfold_locales, simp_all)
proof -

fix x y
assume carr: "x ∈ carrier G" "y ∈ carrier G"
hence "∃ z. z ∈ carrier G ∧ z gcdof x y" by (rule gcdof_exists)
from this obtain z

where zcarr: "z ∈ carrier G"
and isgcd: "z gcdof x y"
by auto

with carr
have "greatest (division_rel G) z (Lower (division_rel G) {x, y})"

by (subst gcdof_greatestLower[symmetric], simp+)
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thus "∃ z. greatest (division_rel G) z (Lower (division_rel G) {x,
y})" by fast

qed
qed

lemma (in gcd_condition_monoid) gcdof_cong_l:
assumes a’a: "a’ ∼ a"

and agcd: "a gcdof b c"
and a’carr: "a’ ∈ carrier G" and carr’: "a ∈ carrier G" "b ∈ carrier

G" "c ∈ carrier G"
shows "a’ gcdof b c"

proof -
note carr = a’carr carr’
interpret weak_lower_semilattice "division_rel G" by simp
have "a’ ∈ carrier G ∧ a’ gcdof b c"

apply (simp add: gcdof_greatestLower carr’)
apply (subst greatest_Lower_cong_l[of _ a])

apply (simp add: a’a)
apply (simp add: carr)

apply (simp add: carr)
apply (simp add: carr)
apply (simp add: gcdof_greatestLower[symmetric] agcd carr)

done
thus ?thesis ..

qed

lemma (in gcd_condition_monoid) gcd_closed [simp]:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "somegcd G a b ∈ carrier G"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_isgcd:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) gcdof a b"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
from carr
have "somegcd G a b ∈ carrier G ∧ (somegcd G a b) gcdof a b"

apply (subst gcdof_greatestLower, simp, simp)
apply (simp add: somegcd_meet[OF carr] meet_def)
apply (rule inf_of_two_greatest[simplified], assumption+)

done
thus "(somegcd G a b) gcdof a b" by simp
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qed

lemma (in gcd_condition_monoid) gcd_exists:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "∃ x∈carrier G. x = somegcd G a b"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_divides_l:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) divides a"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_left[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_divides_r:
assumes carr: "a ∈ carrier G" "b ∈ carrier G"
shows "(somegcd G a b) divides b"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet[OF carr])
apply (rule meet_right[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_divides:
assumes sub: "z divides x" "z divides y"

and L: "x ∈ carrier G" "y ∈ carrier G" "z ∈ carrier G"
shows "z divides (somegcd G x y)"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet L)
apply (rule meet_le[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_cong_l:
assumes xx’: "x ∼ x’"
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and carr: "x ∈ carrier G" "x’ ∈ carrier G" "y ∈ carrier G"
shows "somegcd G x y ∼ somegcd G x’ y"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet carr)
apply (rule meet_cong_l[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_cong_r:
assumes carr: "x ∈ carrier G" "y ∈ carrier G" "y’ ∈ carrier G"

and yy’: "y ∼ y’"
shows "somegcd G x y ∼ somegcd G x y’"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: somegcd_meet carr)
apply (rule meet_cong_r[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcdI:
assumes dvd: "a divides b" "a divides c"

and others: "∀ y∈carrier G. y divides b ∧ y divides c −→ y divides
a"

and acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr:
"c ∈ carrier G"

shows "a ∼ somegcd G b c"
apply (simp add: somegcd_def)
apply (rule someI2_ex)
apply (rule exI[of _ a], simp add: isgcd_def)
apply (simp add: assms)

apply (simp add: isgcd_def assms, clarify)
apply (insert assms, blast intro: associatedI)
done

lemma (in gcd_condition_monoid) gcdI2:
assumes "a gcdof b c"

and "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr: "c ∈ carrier
G"

shows "a ∼ somegcd G b c"
using assms
unfolding isgcd_def
by (blast intro: gcdI)

lemma (in gcd_condition_monoid) SomeGcd_ex:
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assumes "finite A" "A ⊆ carrier G" "A 6= {}"
shows "∃ x∈ carrier G. x = SomeGcd G A"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (simp add: SomeGcd_def)
apply (rule finite_inf_closed[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_assoc:
assumes carr: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"
shows "somegcd G (somegcd G a b) c ∼ somegcd G a (somegcd G b c)"

proof -
interpret weak_lower_semilattice "division_rel G" by simp
show ?thesis

apply (subst (2 3) somegcd_meet, (simp add: carr)+)
apply (simp add: somegcd_meet carr)
apply (rule weak_meet_assoc[simplified], fact+)

done
qed

lemma (in gcd_condition_monoid) gcd_mult:
assumes acarr: "a ∈ carrier G" and bcarr: "b ∈ carrier G" and ccarr:

"c ∈ carrier G"
shows "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a) (c ⊗ b)"

proof -
let ?d = "somegcd G a b"
let ?e = "somegcd G (c ⊗ a) (c ⊗ b)"
note carr[simp] = acarr bcarr ccarr
have dcarr: "?d ∈ carrier G" by simp
have ecarr: "?e ∈ carrier G" by simp
note carr = carr dcarr ecarr

have "?d divides a" by (simp add: gcd_divides_l)
hence cd’ca: "c ⊗ ?d divides (c ⊗ a)" by (simp add: divides_mult_lI)

have "?d divides b" by (simp add: gcd_divides_r)
hence cd’cb: "c ⊗ ?d divides (c ⊗ b)" by (simp add: divides_mult_lI)

from cd’ca cd’cb
have cd’e: "c ⊗ ?d divides ?e"
by (rule gcd_divides) simp+

hence "∃ u. u ∈ carrier G ∧ ?e = c ⊗ ?d ⊗ u"
by (elim dividesE, fast)

from this obtain u
where ucarr[simp]: "u ∈ carrier G"
and e_cdu: "?e = c ⊗ ?d ⊗ u"
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by auto

note carr = carr ucarr

have "?e divides c ⊗ a" by (rule gcd_divides_l) simp+
hence "∃ x. x ∈ carrier G ∧ c ⊗ a = ?e ⊗ x"

by (elim dividesE, fast)
from this obtain x

where xcarr: "x ∈ carrier G"
and ca_ex: "c ⊗ a = ?e ⊗ x"
by auto

with e_cdu
have ca_cdux: "c ⊗ a = c ⊗ ?d ⊗ u ⊗ x" by simp

from ca_cdux xcarr
have "c ⊗ a = c ⊗ (?d ⊗ u ⊗ x)" by (simp add: m_assoc)

then have "a = ?d ⊗ u ⊗ x" by (rule l_cancel[of c a]) (simp add: xcarr)+
hence du’a: "?d ⊗ u divides a" by (rule dividesI[OF xcarr])

have "?e divides c ⊗ b" by (intro gcd_divides_r, simp+)
hence "∃ x. x ∈ carrier G ∧ c ⊗ b = ?e ⊗ x"

by (elim dividesE, fast)
from this obtain x

where xcarr: "x ∈ carrier G"
and cb_ex: "c ⊗ b = ?e ⊗ x"
by auto

with e_cdu
have cb_cdux: "c ⊗ b = c ⊗ ?d ⊗ u ⊗ x" by simp

from cb_cdux xcarr
have "c ⊗ b = c ⊗ (?d ⊗ u ⊗ x)" by (simp add: m_assoc)

with xcarr
have "b = ?d ⊗ u ⊗ x" by (intro l_cancel[of c b], simp+)

hence du’b: "?d ⊗ u divides b" by (intro dividesI[OF xcarr])

from du’a du’b carr
have du’d: "?d ⊗ u divides ?d"
by (intro gcd_divides, simp+)

hence uunit: "u ∈ Units G"
proof (elim dividesE)

fix v
assume vcarr[simp]: "v ∈ carrier G"
assume d: "?d = ?d ⊗ u ⊗ v"
have "?d ⊗ 1 = ?d ⊗ u ⊗ v" by simp fact
also have "?d ⊗ u ⊗ v = ?d ⊗ (u ⊗ v)" by (simp add: m_assoc)
finally have "?d ⊗ 1 = ?d ⊗ (u ⊗ v)" .
hence i2: "1 = u ⊗ v" by (rule l_cancel) simp+
hence i1: "1 = v ⊗ u" by (simp add: m_comm)
from vcarr i1[symmetric] i2[symmetric]
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show "u ∈ Units G"
by (unfold Units_def, simp, fast)

qed

from e_cdu uunit
have "somegcd G (c ⊗ a) (c ⊗ b) ∼ c ⊗ somegcd G a b"
by (intro associatedI2[of u], simp+)

from this[symmetric]
show "c ⊗ somegcd G a b ∼ somegcd G (c ⊗ a) (c ⊗ b)" by simp

qed

lemma (in monoid) assoc_subst:
assumes ab: "a ∼ b"

and cP: "ALL a b. a : carrier G & b : carrier G & a ∼ b
--> f a : carrier G & f b : carrier G & f a ∼ f b"

and carr: "a ∈ carrier G" "b ∈ carrier G"
shows "f a ∼ f b"
using assms by auto

lemma (in gcd_condition_monoid) relprime_mult:
assumes abrelprime: "somegcd G a b ∼ 1" and acrelprime: "somegcd G

a c ∼ 1"
and carr[simp]: "a ∈ carrier G" "b ∈ carrier G" "c ∈ carrier G"

shows "somegcd G a (b ⊗ c) ∼ 1"
proof -

have "c = c ⊗ 1" by simp
also from abrelprime[symmetric]

have ". . . ∼ c ⊗ somegcd G a b"
by (rule assoc_subst) (simp add: mult_cong_r)+

also have ". . . ∼ somegcd G (c ⊗ a) (c ⊗ b)" by (rule gcd_mult) fact+
finally

have c: "c ∼ somegcd G (c ⊗ a) (c ⊗ b)" by simp

from carr
have a: "a ∼ somegcd G a (c ⊗ a)"
by (fast intro: gcdI divides_prod_l)

have "somegcd G a (b ⊗ c) ∼ somegcd G a (c ⊗ b)" by (simp add: m_comm)
also from a

have ". . . ∼ somegcd G (somegcd G a (c ⊗ a)) (c ⊗ b)"
by (rule assoc_subst) (simp add: gcd_cong_l)+

also from gcd_assoc
have ". . . ∼ somegcd G a (somegcd G (c ⊗ a) (c ⊗ b))"
by (rule assoc_subst) simp+

also from c[symmetric]
have ". . . ∼ somegcd G a c"

by (rule assoc_subst) (simp add: gcd_cong_r)+
also note acrelprime
finally
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show "somegcd G a (b ⊗ c) ∼ 1" by simp
qed

lemma (in gcd_condition_monoid) primeness_condition:
"primeness_condition_monoid G"

apply unfold_locales
apply (rule primeI)
apply (elim irreducibleE, assumption)

proof -
fix p a b
assume pcarr: "p ∈ carrier G" and acarr: "a ∈ carrier G" and bcarr:

"b ∈ carrier G"
and pirr: "irreducible G p"
and pdvdab: "p divides a ⊗ b"

from pirr
have pnunit: "p /∈ Units G"
and r[rule_format]: "∀ b. b ∈ carrier G ∧ properfactor G b p −→

b ∈ Units G"
by - (fast elim: irreducibleE)+

show "p divides a ∨ p divides b"
proof (rule ccontr, clarsimp)

assume npdvda: "¬ p divides a"
with pcarr acarr
have "1 ∼ somegcd G p a"
apply (intro gcdI, simp, simp, simp)

apply (fast intro: unit_divides)
apply (fast intro: unit_divides)

apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof (rule ccontr, simp)

fix y
assume ycarr: "y ∈ carrier G"
assume "p divides y"
also assume "y divides a"
finally

have "p divides a" by (simp add: pcarr ycarr acarr)
with npdvda

show "False" ..
qed simp+
with pcarr acarr

have pa: "somegcd G p a ∼ 1" by (fast intro: associated_sym[of
"1"] gcd_closed)

assume npdvdb: "¬ p divides b"
with pcarr bcarr
have "1 ∼ somegcd G p b"
apply (intro gcdI, simp, simp, simp)
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apply (fast intro: unit_divides)
apply (fast intro: unit_divides)

apply (clarsimp simp add: Unit_eq_dividesone[symmetric])
apply (rule r, rule, assumption)
apply (rule properfactorI, assumption)
proof (rule ccontr, simp)

fix y
assume ycarr: "y ∈ carrier G"
assume "p divides y"
also assume "y divides b"
finally have "p divides b" by (simp add: pcarr ycarr bcarr)
with npdvdb

show "False" ..
qed simp+
with pcarr bcarr

have pb: "somegcd G p b ∼ 1" by (fast intro: associated_sym[of
"1"] gcd_closed)

from pcarr acarr bcarr pdvdab
have "p gcdof p (a ⊗ b)" by (fast intro: isgcd_divides_l)

with pcarr acarr bcarr
have "p ∼ somegcd G p (a ⊗ b)" by (fast intro: gcdI2)

also from pa pb pcarr acarr bcarr
have "somegcd G p (a ⊗ b) ∼ 1" by (rule relprime_mult)

finally have "p ∼ 1" by (simp add: pcarr acarr bcarr)

with pcarr
have "p ∈ Units G" by (fast intro: assoc_unit_l)

with pnunit
show "False" ..

qed
qed

sublocale gcd_condition_monoid ⊆ primeness_condition_monoid
by (rule primeness_condition)

7.9.2 Divisor chain condition

lemma (in divisor_chain_condition_monoid) wfactors_exist:
assumes acarr: "a ∈ carrier G"
shows "∃ as. set as ⊆ carrier G ∧ wfactors G as a"

proof -
have r[rule_format]: "a ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧

wfactors G as a)"
apply (rule wf_induct[OF division_wellfounded])

proof -
fix x
assume ih: "∀ y. (y, x) ∈ {(x, y). x ∈ carrier G ∧ y ∈ carrier G



173

∧ properfactor G x y}
−→ y ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧

wfactors G as y)"

show "x ∈ carrier G −→ (∃ as. set as ⊆ carrier G ∧ wfactors G as
x)"

apply clarify
apply (cases "x ∈ Units G")
apply (rule exI[of _ "[]"], simp)

apply (cases "irreducible G x")
apply (rule exI[of _ "[x]"], simp add: wfactors_def)

proof -
assume xcarr: "x ∈ carrier G"

and xnunit: "x /∈ Units G"
and xnirr: "¬ irreducible G x"

hence "∃ y. y ∈ carrier G ∧ properfactor G y x ∧ y /∈ Units G"
apply - apply (rule ccontr, simp)
apply (subgoal_tac "irreducible G x", simp)
apply (rule irreducibleI, simp, simp)

done
from this obtain y

where ycarr: "y ∈ carrier G"
and ynunit: "y /∈ Units G"
and pfyx: "properfactor G y x"
by auto

have ih’:
"
∧
y. [[y ∈ carrier G; properfactor G y x]]

=⇒ ∃ as. set as ⊆ carrier G ∧ wfactors G as y"
by (rule ih[rule_format, simplified]) (simp add: xcarr)+

from ycarr pfyx
have "∃ as. set as ⊆ carrier G ∧ wfactors G as y"
by (rule ih’)

from this obtain ys
where yscarr: "set ys ⊆ carrier G"
and yfs: "wfactors G ys y"
by auto

from pfyx
have "y divides x"
and nyx: "¬ y ∼ x"
by - (fast elim: properfactorE2)+

hence "∃ z. z ∈ carrier G ∧ x = y ⊗ z"
by (fast elim: dividesE)

from this obtain z
where zcarr: "z ∈ carrier G"
and x: "x = y ⊗ z"
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by auto

from zcarr ycarr
have "properfactor G z x"

apply (subst x)
apply (intro properfactorI3[of _ _ y])
apply (simp add: m_comm)

apply (simp add: ynunit)+
done
with zcarr

have "∃ as. set as ⊆ carrier G ∧ wfactors G as z"
by (rule ih’)

from this obtain zs
where zscarr: "set zs ⊆ carrier G"
and zfs: "wfactors G zs z"
by auto

from yscarr zscarr
have xscarr: "set (ys@zs) ⊆ carrier G" by simp

from yfs zfs ycarr zcarr yscarr zscarr
have "wfactors G (ys@zs) (y⊗z)" by (rule wfactors_mult)

hence "wfactors G (ys@zs) x" by (simp add: x)

from xscarr this
show "∃ xs. set xs ⊆ carrier G ∧ wfactors G xs x" by fast

qed
qed

from acarr
show ?thesis by (rule r)

qed

7.9.3 Primeness condition

lemma (in comm_monoid_cancel) multlist_prime_pos:
assumes carr: "a ∈ carrier G" "set as ⊆ carrier G"

and aprime: "prime G a"
and "a divides (foldr (op ⊗) as 1)"

shows "∃ i<length as. a divides (as!i)"
proof -

have r[rule_format]:
"set as ⊆ carrier G ∧ a divides (foldr (op ⊗) as 1)
−→ (∃ i. i < length as ∧ a divides (as!i))"

apply (induct as)
apply clarsimp defer 1
apply clarsimp defer 1

proof -
assume "a divides 1"
with carr
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have "a ∈ Units G"
by (fast intro: divides_unit[of a 1])

with aprime
show "False" by (elim primeE, simp)

next
fix aa as
assume ih[rule_format]: "a divides foldr op ⊗ as 1 −→ (∃ i<length

as. a divides as ! i)"
and carr’: "aa ∈ carrier G" "set as ⊆ carrier G"
and "a divides aa ⊗ foldr op ⊗ as 1"

with carr aprime
have "a divides aa ∨ a divides foldr op ⊗ as 1"
by (intro prime_divides) simp+

moreover {
assume "a divides aa"
hence p1: "a divides (aa#as)!0" by simp
have "0 < Suc (length as)" by simp
with p1 have "∃ i<Suc (length as). a divides (aa # as) ! i" by fast

}
moreover {

assume "a divides foldr op ⊗ as 1"
hence "∃ i. i < length as ∧ a divides as ! i" by (rule ih)
from this obtain i where "a divides as ! i" and len: "i < length

as" by auto
hence p1: "a divides (aa#as) ! (Suc i)" by simp
from len have "Suc i < Suc (length as)" by simp
with p1 have "∃ i<Suc (length as). a divides (aa # as) ! i" by force

}
ultimately

show "∃ i<Suc (length as). a divides (aa # as) ! i" by fast
qed

from assms
show ?thesis
by (intro r, safe)

qed

lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct:
"∀ a as’. a ∈ carrier G ∧ set as ⊆ carrier G ∧ set as’ ⊆ carrier G

∧
wfactors G as a ∧ wfactors G as’ a −→ essentially_equal G

as as’"
apply (induct as)
apply clarsimp defer 1
apply clarsimp defer 1
proof -

fix a as’
assume acarr: "a ∈ carrier G"

and "wfactors G [] a"
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hence aunit: "a ∈ Units G"
apply (elim wfactorsE)
apply (simp, rule assoc_unit_r[of "1"], simp+)

done

assume "set as’ ⊆ carrier G" "wfactors G as’ a"
with aunit

have "as’ = []"
by (intro unit_wfactors_empty[of a])

thus "essentially_equal G [] as’" by simp
next

fix a as ah as’
assume ih[rule_format]:

"∀ a as’. a ∈ carrier G ∧ set as’ ⊆ carrier G ∧
wfactors G as a ∧ wfactors G as’ a −→ essentially_equal

G as as’"
and acarr: "a ∈ carrier G" and ahcarr: "ah ∈ carrier G"
and ascarr: "set as ⊆ carrier G" and as’carr: "set as’ ⊆ carrier

G"
and afs: "wfactors G (ah # as) a"
and afs’: "wfactors G as’ a"

hence ahdvda: "ah divides a"
by (intro wfactors_dividesI[of "ah#as" "a"], simp+)

hence "∃ a’∈ carrier G. a = ah ⊗ a’" by (fast elim: dividesE)
from this obtain a’

where a’carr: "a’ ∈ carrier G"
and a: "a = ah ⊗ a’"
by auto

have a’fs: "wfactors G as a’"
apply (rule wfactorsE[OF afs], rule wfactorsI, simp)
apply (simp add: a, insert ascarr a’carr)
apply (intro assoc_l_cancel[of ah _ a’] multlist_closed ahcarr, assumption+)

done

from afs have ahirr: "irreducible G ah" by (elim wfactorsE, simp)
with ascarr have ahprime: "prime G ah" by (intro irreducible_prime

ahcarr)

note carr [simp] = acarr ahcarr ascarr as’carr a’carr

note ahdvda
also from afs’

have "a divides (foldr (op ⊗) as’ 1)"
by (elim wfactorsE associatedE, simp)

finally have "ah divides (foldr (op ⊗) as’ 1)" by simp

with ahprime
have "∃ i<length as’. ah divides as’!i"
by (intro multlist_prime_pos, simp+)
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from this obtain i
where len: "i<length as’" and ahdvd: "ah divides as’!i"
by auto

from afs’ carr have irrasi: "irreducible G (as’!i)"
by (fast intro: nth_mem[OF len] elim: wfactorsE)

from len carr
have asicarr[simp]: "as’!i ∈ carrier G" by (unfold set_conv_nth,

force)
note carr = carr asicarr

from ahdvd have "∃ x ∈ carrier G. as’!i = ah ⊗ x" by (fast elim: dividesE)
from this obtain x where "x ∈ carrier G" and asi: "as’!i = ah ⊗ x"

by auto

with carr irrasi[simplified asi]
have asiah: "as’!i ∼ ah" apply -

apply (elim irreducible_prodE[of "ah" "x"], assumption+)
apply (rule associatedI2[of x], assumption+)

apply (rule irreducibleE[OF ahirr], simp)
done

note setparts = set_take_subset[of i as’] set_drop_subset[of "Suc i"
as’]

note partscarr [simp] = setparts[THEN subset_trans[OF _ as’carr]]
note carr = carr partscarr

have "∃ aa_1. aa_1 ∈ carrier G ∧ wfactors G (take i as’) aa_1"
apply (intro wfactors_prod_exists)
using setparts afs’ by (fast elim: wfactorsE, simp)

from this obtain aa_1
where aa1carr: "aa_1 ∈ carrier G"
and aa1fs: "wfactors G (take i as’) aa_1"
by auto

have "∃ aa_2. aa_2 ∈ carrier G ∧ wfactors G (drop (Suc i) as’) aa_2"
apply (intro wfactors_prod_exists)
using setparts afs’ by (fast elim: wfactorsE, simp)

from this obtain aa_2
where aa2carr: "aa_2 ∈ carrier G"
and aa2fs: "wfactors G (drop (Suc i) as’) aa_2"
by auto

note carr = carr aa1carr[simp] aa2carr[simp]

from aa1fs aa2fs
have v1: "wfactors G (take i as’ @ drop (Suc i) as’) (aa_1 ⊗ aa_2)"
by (intro wfactors_mult, simp+)

hence v1’: "wfactors G (as’!i # take i as’ @ drop (Suc i) as’) (as’!i
⊗ (aa_1 ⊗ aa_2))"
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apply (intro wfactors_mult_single)
using setparts afs’
by (fast intro: nth_mem[OF len] elim: wfactorsE, simp+)

from aa2carr carr aa1fs aa2fs
have "wfactors G (as’!i # drop (Suc i) as’) (as’!i ⊗ aa_2)"

apply (intro wfactors_mult_single)
apply (rule wfactorsE[OF afs’], fast intro: nth_mem[OF len])

apply (fast intro: nth_mem[OF len])
apply fast

apply fast
apply assumption

done
with len carr aa1carr aa2carr aa1fs

have v2: "wfactors G (take i as’ @ as’!i # drop (Suc i) as’) (aa_1
⊗ (as’!i ⊗ aa_2))"

apply (intro wfactors_mult)
apply fast

apply (simp, (fast intro: nth_mem[OF len])?)+
done

from len
have as’: "as’ = (take i as’ @ as’!i # drop (Suc i) as’)"
by (simp add: drop_Suc_conv_tl)

with carr
have eer: "essentially_equal G (take i as’ @ as’!i # drop (Suc i)

as’) as’"
by simp

with v2 afs’ carr aa1carr aa2carr nth_mem[OF len]
have "aa_1 ⊗ (as’!i ⊗ aa_2) ∼ a"

apply (intro ee_wfactorsD[of "take i as’ @ as’!i # drop (Suc i) as’"
"as’"])

apply fast+
apply (simp, fast)

done
then
have t1: "as’!i ⊗ (aa_1 ⊗ aa_2) ∼ a"

apply (simp add: m_assoc[symmetric])
apply (simp add: m_comm)

done
from carr asiah
have "ah ⊗ (aa_1 ⊗ aa_2) ∼ as’!i ⊗ (aa_1 ⊗ aa_2)"

apply (intro mult_cong_l)
apply (fast intro: associated_sym, simp+)

done
also note t1
finally

have "ah ⊗ (aa_1 ⊗ aa_2) ∼ a" by simp
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with carr aa1carr aa2carr a’carr nth_mem[OF len]
have a’: "aa_1 ⊗ aa_2 ∼ a’"
by (simp add: a, fast intro: assoc_l_cancel[of ah _ a’])

note v1
also note a’
finally have "wfactors G (take i as’ @ drop (Suc i) as’) a’" by simp

from a’fs this carr
have "essentially_equal G as (take i as’ @ drop (Suc i) as’)"
by (intro ih[of a’]) simp

hence ee1: "essentially_equal G (ah # as) (ah # take i as’ @ drop (Suc
i) as’)"

apply (elim essentially_equalE) apply (fastsimp intro: essentially_equalI)
done

from carr
have ee2: "essentially_equal G (ah # take i as’ @ drop (Suc i) as’)

(as’ ! i # take i as’ @ drop (Suc i)
as’)"

proof (intro essentially_equalI)
show "ah # take i as’ @ drop (Suc i) as’ <~~> ah # take i as’ @ drop

(Suc i) as’"
by simp

next show "ah # take i as’ @ drop (Suc i) as’ [∼]
as’ ! i # take i as’ @ drop (Suc i) as’"

apply (simp add: list_all2_append)
apply (simp add: asiah[symmetric] ahcarr asicarr)
done

qed

note ee1
also note ee2
also have "essentially_equal G (as’ ! i # take i as’ @ drop (Suc i)

as’)
(take i as’ @ as’ ! i # drop (Suc i)

as’)"
apply (intro essentially_equalI)
apply (subgoal_tac "as’ ! i # take i as’ @ drop (Suc i) as’ <~~>

take i as’ @ as’ ! i # drop (Suc i) as’")
apply simp

apply (rule perm_append_Cons)
apply simp

done
finally

have "essentially_equal G (ah # as)
(take i as’ @ as’ ! i # drop (Suc i) as’)"
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by simp

thus "essentially_equal G (ah # as) as’" by (subst as’, assumption)
qed

lemma (in primeness_condition_monoid) wfactors_unique:
assumes "wfactors G as a" "wfactors G as’ a"

and "a ∈ carrier G" "set as ⊆ carrier G" "set as’ ⊆ carrier G"
shows "essentially_equal G as as’"

apply (rule wfactors_unique__hlp_induct[rule_format, of a])
apply (simp add: assms)
done

7.9.4 Application to factorial monoids

Number of factors for wellfoundedness

constdefs
factorcount :: "_ ⇒ ’a ⇒ nat"
"factorcount G a == THE c. (ALL as. set as ⊆ carrier G ∧

wfactors G as a −→ c = length as)"

lemma (in monoid) ee_length:
assumes ee: "essentially_equal G as bs"
shows "length as = length bs"

apply (rule essentially_equalE[OF ee])
apply (subgoal_tac "length as = length fs1’")
apply (simp add: list_all2_lengthD)

apply (simp add: perm_length)
done

lemma (in factorial_monoid) factorcount_exists:
assumes carr[simp]: "a ∈ carrier G"
shows "EX c. ALL as. set as ⊆ carrier G ∧ wfactors G as a −→ c = length

as"
proof -

have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by (intro wfactors_exist,
simp)

from this obtain as
where ascarr[simp]: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by (auto simp del: carr)

have "ALL as’. set as’ ⊆ carrier G ∧ wfactors G as’ a −→ length as
= length as’"

proof clarify
fix as’
assume [simp]: "set as’ ⊆ carrier G"

and bfs: "wfactors G as’ a"
from afs bfs
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have "essentially_equal G as as’"
by (intro ee_wfactorsI[of a a as as’], simp+)

thus "length as = length as’" by (rule ee_length)
qed
thus "EX c. ALL as’. set as’ ⊆ carrier G ∧ wfactors G as’ a −→ c =

length as’" ..
qed

lemma (in factorial_monoid) factorcount_unique:
assumes afs: "wfactors G as a"

and acarr[simp]: "a ∈ carrier G" and ascarr[simp]: "set as ⊆ carrier
G"

shows "factorcount G a = length as"
proof -

have "EX ac. ALL as. set as ⊆ carrier G ∧ wfactors G as a −→ ac =
length as" by (rule factorcount_exists, simp)

from this obtain ac where
alen: "ALL as. set as ⊆ carrier G ∧ wfactors G as a −→ ac = length

as"
by auto

have ac: "ac = factorcount G a"
apply (simp add: factorcount_def)
apply (rule theI2)

apply (rule alen)
apply (elim allE[of _ "as"], rule allE[OF alen, of "as"], simp add:

ascarr afs)
apply (elim allE[of _ "as"], rule allE[OF alen, of "as"], simp add:

ascarr afs)
done

from ascarr afs have "ac = length as" by (iprover intro: alen[rule_format])
with ac show ?thesis by simp

qed

lemma (in factorial_monoid) divides_fcount:
assumes dvd: "a divides b"

and acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"
shows "factorcount G a <= factorcount G b"

apply (rule dividesE[OF dvd])
proof -

fix c
from assms

have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by fast
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique)
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assume ccarr: "c ∈ carrier G"
hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by fast
from this obtain cs

where cscarr: "set cs ⊆ carrier G"
and cfs: "wfactors G cs c"
by auto

note [simp] = acarr bcarr ccarr ascarr cscarr

assume b: "b = a ⊗ c"
from afs cfs

have "wfactors G (as@cs) (a ⊗ c)" by (intro wfactors_mult, simp+)
with b have "wfactors G (as@cs) b" by simp
hence "factorcount G b = length (as@cs)" by (intro factorcount_unique,

simp+)
hence "factorcount G b = length as + length cs" by simp
with fca show ?thesis by simp

qed

lemma (in factorial_monoid) associated_fcount:
assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"

and asc: "a ∼ b"
shows "factorcount G a = factorcount G b"

apply (rule associatedE[OF asc])
apply (drule divides_fcount[OF _ acarr bcarr])
apply (drule divides_fcount[OF _ bcarr acarr])
apply simp
done

lemma (in factorial_monoid) properfactor_fcount:
assumes acarr: "a ∈ carrier G" and bcarr:"b ∈ carrier G"

and pf: "properfactor G a b"
shows "factorcount G a < factorcount G b"

apply (rule properfactorE[OF pf], elim dividesE)
proof -

fix c
from assms
have "∃ as. set as ⊆ carrier G ∧ wfactors G as a" by fast
from this obtain as

where ascarr: "set as ⊆ carrier G"
and afs: "wfactors G as a"
by auto

with acarr have fca: "factorcount G a = length as" by (intro factorcount_unique)

assume ccarr: "c ∈ carrier G"
hence "∃ cs. set cs ⊆ carrier G ∧ wfactors G cs c" by fast
from this obtain cs

where cscarr: "set cs ⊆ carrier G"
and cfs: "wfactors G cs c"
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by auto

assume b: "b = a ⊗ c"

have "wfactors G (as@cs) (a ⊗ c)" by (rule wfactors_mult) fact+
with b

have "wfactors G (as@cs) b" by simp
with ascarr cscarr bcarr

have "factorcount G b = length (as@cs)" by (simp add: factorcount_unique)
hence fcb: "factorcount G b = length as + length cs" by simp

assume nbdvda: "¬ b divides a"
have "c /∈ Units G"
proof (rule ccontr, simp)

assume cunit:"c ∈ Units G"

have "b ⊗ inv c = a ⊗ c ⊗ inv c" by (simp add: b)
also with ccarr acarr cunit

have ". . . = a ⊗ (c ⊗ inv c)" by (fast intro: m_assoc)
also with ccarr cunit

have ". . . = a ⊗ 1" by (simp add: Units_r_inv)
also with acarr

have ". . . = a" by simp
finally have "a = b ⊗ inv c" by simp
with ccarr cunit
have "b divides a" by (fast intro: dividesI[of "inv c"])
with nbdvda show False by simp

qed

with cfs have "length cs > 0"
apply -
apply (rule ccontr, simp)
proof -

assume "wfactors G [] c"
hence "1 ∼ c" by (elim wfactorsE, simp)
with ccarr

have cunit: "c ∈ Units G" by (intro assoc_unit_r[of "1" "c"],
simp+)

assume "c /∈ Units G"
with cunit show "False" by simp

qed

with fca fcb show ?thesis by simp
qed

sublocale factorial_monoid ⊆ divisor_chain_condition_monoid
apply unfold_locales
apply (rule wfUNIVI)
apply (rule measure_induct[of "factorcount G"])
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apply simp
proof -

fix P x
assume r1[rule_format]:

"∀ y. (∀ z. z ∈ carrier G ∧ y ∈ carrier G ∧ properfactor G z
y −→ P z) −→ P y"

and r2[rule_format]: "∀ y. factorcount G y < factorcount G x −→ P
y"

show "P x"
apply (rule r1)
apply (rule r2)
apply (rule properfactor_fcount, simp+)

done
qed

sublocale factorial_monoid ⊆ primeness_condition_monoid
proof qed (rule irreducible_is_prime)

lemma (in factorial_monoid) primeness_condition:
shows "primeness_condition_monoid G"
..

lemma (in factorial_monoid) gcd_condition [simp]:
shows "gcd_condition_monoid G"
proof qed (rule gcdof_exists)

sublocale factorial_monoid ⊆ gcd_condition_monoid
proof qed (rule gcdof_exists)

lemma (in factorial_monoid) division_weak_lattice [simp]:
shows "weak_lattice (division_rel G)"

proof -
interpret weak_lower_semilattice "division_rel G" by simp

show "weak_lattice (division_rel G)"
apply (unfold_locales, simp_all)
proof -

fix x y
assume carr: "x ∈ carrier G" "y ∈ carrier G"

hence "∃ z. z ∈ carrier G ∧ z lcmof x y" by (rule lcmof_exists)
from this obtain z

where zcarr: "z ∈ carrier G"
and isgcd: "z lcmof x y"
by auto

with carr
have "least (division_rel G) z (Upper (division_rel G) {x, y})"

by (simp add: lcmof_leastUpper[symmetric])
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thus "∃ z. least (division_rel G) z (Upper (division_rel G) {x, y})"
by fast

qed
qed

7.10 Factoriality Theorems

theorem factorial_condition_one:
shows "(divisor_chain_condition_monoid G ∧ primeness_condition_monoid

G) =
factorial_monoid G"

apply rule
proof clarify

assume dcc: "divisor_chain_condition_monoid G"
and pc: "primeness_condition_monoid G"

interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret primeness_condition_monoid "G" by (rule pc)

show "factorial_monoid G"
by (fast intro: factorial_monoidI wfactors_exist wfactors_unique)

next
assume fm: "factorial_monoid G"
interpret factorial_monoid "G" by (rule fm)
show "divisor_chain_condition_monoid G ∧ primeness_condition_monoid

G"
by rule unfold_locales

qed

theorem factorial_condition_two:
shows "(divisor_chain_condition_monoid G ∧ gcd_condition_monoid G)

= factorial_monoid G"
apply rule
proof clarify

assume dcc: "divisor_chain_condition_monoid G"
and gc: "gcd_condition_monoid G"

interpret divisor_chain_condition_monoid "G" by (rule dcc)
interpret gcd_condition_monoid "G" by (rule gc)
show "factorial_monoid G"

by (simp add: factorial_condition_one[symmetric], rule, unfold_locales)
next

assume fm: "factorial_monoid G"
interpret factorial_monoid "G" by (rule fm)
show "divisor_chain_condition_monoid G ∧ gcd_condition_monoid G"

by rule unfold_locales
qed

end
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theory Ring
imports FiniteProduct
uses ("ringsimp.ML") begin

8 The Algebraic Hierarchy of Rings

8.1 Abelian Groups

record ’a ring = "’a monoid" +
zero :: ’a ("0ı ")
add :: "[’a, ’a] => ’a" (infixl "⊕ı " 65)

Derived operations.

constdefs (structure R)
a_inv :: "[(’a, ’m) ring_scheme, ’a ] => ’a" ("	ı _" [81] 80)
"a_inv R == m_inv (| carrier = carrier R, mult = add R, one = zero R

|)"

a_minus :: "[(’a, ’m) ring_scheme, ’a, ’a] => ’a" (infixl "	ı " 65)
"[| x ∈ carrier R; y ∈ carrier R |] ==> x 	 y == x ⊕ (	 y)"

locale abelian_monoid =
fixes G (structure)
assumes a_comm_monoid:

"comm_monoid (| carrier = carrier G, mult = add G, one = zero G |)"

The following definition is redundant but simple to use.

locale abelian_group = abelian_monoid +
assumes a_comm_group:

"comm_group (| carrier = carrier G, mult = add G, one = zero G |)"

8.2 Basic Properties

lemma abelian_monoidI:
fixes R (structure)
assumes a_closed:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier
R"

and zero_closed: "0 ∈ carrier R"
and a_assoc:
"!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"

and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"
and a_comm:
"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"

shows "abelian_monoid R"
by (auto intro!: abelian_monoid.intro comm_monoidI intro: assms)
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lemma abelian_groupI:
fixes R (structure)
assumes a_closed:

"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y ∈ carrier
R"

and zero_closed: "zero R ∈ carrier R"
and a_assoc:
"!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |] ==>
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"

and a_comm:
"!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==> x ⊕ y = y ⊕ x"

and l_zero: "!!x. x ∈ carrier R ==> 0 ⊕ x = x"
and l_inv_ex: "!!x. x ∈ carrier R ==> EX y : carrier R. y ⊕ x = 0"

shows "abelian_group R"
by (auto intro!: abelian_group.intro abelian_monoidI

abelian_group_axioms.intro comm_monoidI comm_groupI
intro: assms)

lemma (in abelian_monoid) a_monoid:
"monoid (| carrier = carrier G, mult = add G, one = zero G |)"

by (rule comm_monoid.axioms, rule a_comm_monoid)

lemma (in abelian_group) a_group:
"group (| carrier = carrier G, mult = add G, one = zero G |)"
by (simp add: group_def a_monoid)
(simp add: comm_group.axioms group.axioms a_comm_group)

lemmas monoid_record_simps = partial_object.simps monoid.simps

lemma (in abelian_monoid) a_closed [intro, simp]:
"[[ x ∈ carrier G; y ∈ carrier G ]] =⇒ x ⊕ y ∈ carrier G"
by (rule monoid.m_closed [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_monoid) zero_closed [intro, simp]:
"0 ∈ carrier G"
by (rule monoid.one_closed [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) a_inv_closed [intro, simp]:
"x ∈ carrier G ==> 	 x ∈ carrier G"
by (simp add: a_inv_def
group.inv_closed [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) minus_closed [intro, simp]:
"[| x ∈ carrier G; y ∈ carrier G |] ==> x 	 y ∈ carrier G"
by (simp add: a_minus_def)

lemma (in abelian_group) a_l_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
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(x ⊕ y = x ⊕ z) = (y = z)"
by (rule group.l_cancel [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) a_r_cancel [simp]:
"[| x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |] ==>
(y ⊕ x = z ⊕ x) = (y = z)"

by (rule group.r_cancel [OF a_group, simplified monoid_record_simps])

lemma (in abelian_monoid) a_assoc:
"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)"
by (rule monoid.m_assoc [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_monoid) l_zero [simp]:
"x ∈ carrier G ==> 0 ⊕ x = x"
by (rule monoid.l_one [OF a_monoid, simplified monoid_record_simps])

lemma (in abelian_group) l_neg:
"x ∈ carrier G ==> 	 x ⊕ x = 0"
by (simp add: a_inv_def
group.l_inv [OF a_group, simplified monoid_record_simps])

lemma (in abelian_monoid) a_comm:
"[[x ∈ carrier G; y ∈ carrier G]] =⇒ x ⊕ y = y ⊕ x"
by (rule comm_monoid.m_comm [OF a_comm_monoid,
simplified monoid_record_simps])

lemma (in abelian_monoid) a_lcomm:
"[[x ∈ carrier G; y ∈ carrier G; z ∈ carrier G]] =⇒
x ⊕ (y ⊕ z) = y ⊕ (x ⊕ z)"

by (rule comm_monoid.m_lcomm [OF a_comm_monoid,
simplified monoid_record_simps])

lemma (in abelian_monoid) r_zero [simp]:
"x ∈ carrier G ==> x ⊕ 0 = x"
using monoid.r_one [OF a_monoid]
by simp

lemma (in abelian_group) r_neg:
"x ∈ carrier G ==> x ⊕ (	 x) = 0"
using group.r_inv [OF a_group]
by (simp add: a_inv_def)

lemma (in abelian_group) minus_zero [simp]:
"	 0 = 0"
by (simp add: a_inv_def
group.inv_one [OF a_group, simplified monoid_record_simps])

lemma (in abelian_group) minus_minus [simp]:
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"x ∈ carrier G ==> 	 (	 x) = x"
using group.inv_inv [OF a_group, simplified monoid_record_simps]
by (simp add: a_inv_def)

lemma (in abelian_group) a_inv_inj:
"inj_on (a_inv G) (carrier G)"
using group.inv_inj [OF a_group, simplified monoid_record_simps]
by (simp add: a_inv_def)

lemma (in abelian_group) minus_add:
"[| x ∈ carrier G; y ∈ carrier G |] ==> 	 (x ⊕ y) = 	 x ⊕ 	 y"
using comm_group.inv_mult [OF a_comm_group]
by (simp add: a_inv_def)

lemma (in abelian_group) minus_equality:
"[| x ∈ carrier G; y ∈ carrier G; y ⊕ x = 0 |] ==> 	 x = y"
using group.inv_equality [OF a_group]
by (auto simp add: a_inv_def)

lemma (in abelian_monoid) minus_unique:
"[| x ∈ carrier G; y ∈ carrier G; y’ ∈ carrier G;

y ⊕ x = 0; x ⊕ y’ = 0 |] ==> y = y’"
using monoid.inv_unique [OF a_monoid]
by (simp add: a_inv_def)

lemmas (in abelian_monoid) a_ac = a_assoc a_comm a_lcomm

Derive an abelian_group from a comm_group

lemma comm_group_abelian_groupI:
fixes G (structure)
assumes cg: "comm_group (|carrier = carrier G, mult = add G, one = zero

G|)"
shows "abelian_group G"

proof -
interpret comm_group "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule cg)

show "abelian_group G" ..
qed

8.3 Sums over Finite Sets

This definition makes it easy to lift lemmas from finprod.

constdefs
finsum :: "[(’b, ’m) ring_scheme, ’a => ’b, ’a set] => ’b"
"finsum G f A == finprod (| carrier = carrier G,

mult = add G, one = zero G |) f A"

syntax
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"_finsum" :: "index => idt => ’a set => ’b => ’b"
("(3

⊕
__:_. _)" [1000, 0, 51, 10] 10)

syntax (xsymbols)
"_finsum" :: "index => idt => ’a set => ’b => ’b"

("(3
⊕

__∈_. _)" [1000, 0, 51, 10] 10)
syntax (HTML output)
"_finsum" :: "index => idt => ’a set => ’b => ’b"

("(3
⊕

__∈_. _)" [1000, 0, 51, 10] 10)
translations
"
⊕

ı i:A. b" == "finsum �ı (%i. b) A"
— Beware of argument permutation!

context abelian_monoid begin

lemma finsum_empty [simp]:
"finsum G f {} = 0"
by (rule comm_monoid.finprod_empty [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_insert [simp]:
"[| finite F; a /∈ F; f ∈ F -> carrier G; f a ∈ carrier G |]
==> finsum G f (insert a F) = f a ⊕ finsum G f F"
by (rule comm_monoid.finprod_insert [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_zero [simp]:
"finite A ==> (

⊕
i∈A. 0) = 0"

by (rule comm_monoid.finprod_one [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_closed [simp]:
fixes A
assumes fin: "finite A" and f: "f ∈ A -> carrier G"
shows "finsum G f A ∈ carrier G"
apply (rule comm_monoid.finprod_closed [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

apply (rule fin)
apply (rule f)
done

lemma finsum_Un_Int:
"[| finite A; finite B; g ∈ A -> carrier G; g ∈ B -> carrier G |] ==>

finsum G g (A Un B) ⊕ finsum G g (A Int B) =
finsum G g A ⊕ finsum G g B"

by (rule comm_monoid.finprod_Un_Int [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])
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lemma finsum_Un_disjoint:
"[| finite A; finite B; A Int B = {};

g ∈ A -> carrier G; g ∈ B -> carrier G |]
==> finsum G g (A Un B) = finsum G g A ⊕ finsum G g B"

by (rule comm_monoid.finprod_Un_disjoint [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_addf:
"[| finite A; f ∈ A -> carrier G; g ∈ A -> carrier G |] ==>
finsum G (%x. f x ⊕ g x) A = (finsum G f A ⊕ finsum G g A)"

by (rule comm_monoid.finprod_multf [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps])

lemma finsum_cong’:
"[| A = B; g : B -> carrier G;

!!i. i : B ==> f i = g i |] ==> finsum G f A = finsum G g B"
by (rule comm_monoid.finprod_cong’ [OF a_comm_monoid,
folded finsum_def, simplified monoid_record_simps]) auto

lemma finsum_0 [simp]:
"f : {0::nat} -> carrier G ==> finsum G f {..0} = f 0"
by (rule comm_monoid.finprod_0 [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_Suc [simp]:
"f : {..Suc n} -> carrier G ==>
finsum G f {..Suc n} = (f (Suc n) ⊕ finsum G f {..n})"

by (rule comm_monoid.finprod_Suc [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_Suc2:
"f : {..Suc n} -> carrier G ==>
finsum G f {..Suc n} = (finsum G (%i. f (Suc i)) {..n} ⊕ f 0)"

by (rule comm_monoid.finprod_Suc2 [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_add [simp]:
"[| f : {..n} -> carrier G; g : {..n} -> carrier G |] ==>

finsum G (%i. f i ⊕ g i) {..n::nat} =
finsum G f {..n} ⊕ finsum G g {..n}"

by (rule comm_monoid.finprod_mult [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps])

lemma finsum_cong:
"[| A = B; f : B -> carrier G;

!!i. i : B =simp=> f i = g i |] ==> finsum G f A = finsum G g B"
by (rule comm_monoid.finprod_cong [OF a_comm_monoid, folded finsum_def,
simplified monoid_record_simps]) (auto simp add: simp_implies_def)

Usually, if this rule causes a failed congruence proof error, the reason is that
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the premise g ∈ B -> carrier G cannot be shown. Adding Pi_def to the
simpset is often useful.

lemma finsum_reindex:
assumes fin: "finite A"

shows "f : (h ‘ A) → carrier G =⇒
inj_on h A ==> finsum G f (h ‘ A) = finsum G (%x. f (h x)) A"

using fin apply induct
apply (auto simp add: finsum_insert Pi_def)

done

lemma finsum_singleton:
assumes i_in_A: "i ∈ A" and fin_A: "finite A" and f_Pi: "f ∈ A →

carrier G"
shows "(

⊕
j∈A. if i = j then f j else 0) = f i"

using i_in_A finsum_insert [of "A - {i}" i "(λj. if i = j then f j else
0)"]

fin_A f_Pi finsum_zero [of "A - {i}"]
finsum_cong [of "A - {i}" "A - {i}" "(λj. if i = j then f j else 0)"

"(λi. 0)"]
unfolding Pi_def simp_implies_def by (force simp add: insert_absorb)

end

8.4 Rings: Basic Definitions

locale ring = abelian_group R + monoid R for R (structure) +
assumes l_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]

==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"
and r_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R |]
==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"

locale cring = ring + comm_monoid R

locale "domain" = cring +
assumes one_not_zero [simp]: "1 ~= 0"

and integral: "[| a ⊗ b = 0; a ∈ carrier R; b ∈ carrier R |] ==>
a = 0 | b = 0"

locale field = "domain" +
assumes field_Units: "Units R = carrier R - {0}"

8.5 Rings

lemma ringI:
fixes R (structure)
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assumes abelian_group: "abelian_group R"
and monoid: "monoid R"
and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]
==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

and r_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier
R |]

==> z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y"
shows "ring R"
by (auto intro: ring.intro
abelian_group.axioms ring_axioms.intro assms)

lemma (in ring) is_abelian_group:
"abelian_group R"
..

lemma (in ring) is_monoid:
"monoid R"
by (auto intro!: monoidI m_assoc)

lemma (in ring) is_ring:
"ring R"
by (rule ring_axioms)

lemmas ring_record_simps = monoid_record_simps ring.simps

lemma cringI:
fixes R (structure)
assumes abelian_group: "abelian_group R"

and comm_monoid: "comm_monoid R"
and l_distr: "!!x y z. [| x ∈ carrier R; y ∈ carrier R; z ∈ carrier

R |]
==> (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗ z"

shows "cring R"
proof (intro cring.intro ring.intro)

show "ring_axioms R"
— Right-distributivity follows from left-distributivity and commutativity.

proof (rule ring_axioms.intro)
fix x y z
assume R: "x ∈ carrier R" "y ∈ carrier R" "z ∈ carrier R"
note [simp] = comm_monoid.axioms [OF comm_monoid]
abelian_group.axioms [OF abelian_group]
abelian_monoid.a_closed

from R have "z ⊗ (x ⊕ y) = (x ⊕ y) ⊗ z"
by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])

also from R have "... = x ⊗ z ⊕ y ⊗ z" by (simp add: l_distr)
also from R have "... = z ⊗ x ⊕ z ⊗ y"

by (simp add: comm_monoid.m_comm [OF comm_monoid.intro])
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finally show "z ⊗ (x ⊕ y) = z ⊗ x ⊕ z ⊗ y" .
qed (rule l_distr)

qed (auto intro: cring.intro
abelian_group.axioms comm_monoid.axioms ring_axioms.intro assms)

lemma (in cring) is_cring:
"cring R" by (rule cring_axioms)

8.5.1 Normaliser for Rings

lemma (in abelian_group) r_neg2:
"[| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕ (	 x ⊕ y) = y"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "(x ⊕ 	 x) ⊕ y = y"

by (simp only: r_neg l_zero)
with G show ?thesis

by (simp add: a_ac)
qed

lemma (in abelian_group) r_neg1:
"[| x ∈ carrier G; y ∈ carrier G |] ==> 	 x ⊕ (x ⊕ y) = y"

proof -
assume G: "x ∈ carrier G" "y ∈ carrier G"
then have "(	 x ⊕ x) ⊕ y = y"

by (simp only: l_neg l_zero)
with G show ?thesis by (simp add: a_ac)

qed

The following proofs are from Jacobson, Basic Algebra I, pp. 88–89

lemma (in ring) l_null [simp]:
"x ∈ carrier R ==> 0 ⊗ x = 0"

proof -
assume R: "x ∈ carrier R"
then have "0 ⊗ x ⊕ 0 ⊗ x = (0 ⊕ 0) ⊗ x"

by (simp add: l_distr del: l_zero r_zero)
also from R have "... = 0 ⊗ x ⊕ 0" by simp
finally have "0 ⊗ x ⊕ 0 ⊗ x = 0 ⊗ x ⊕ 0" .
with R show ?thesis by (simp del: r_zero)

qed

lemma (in ring) r_null [simp]:
"x ∈ carrier R ==> x ⊗ 0 = 0"

proof -
assume R: "x ∈ carrier R"
then have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ (0 ⊕ 0)"

by (simp add: r_distr del: l_zero r_zero)
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also from R have "... = x ⊗ 0 ⊕ 0" by simp
finally have "x ⊗ 0 ⊕ x ⊗ 0 = x ⊗ 0 ⊕ 0" .
with R show ?thesis by (simp del: r_zero)

qed

lemma (in ring) l_minus:
"[| x ∈ carrier R; y ∈ carrier R |] ==> 	 x ⊗ y = 	 (x ⊗ y)"

proof -
assume R: "x ∈ carrier R" "y ∈ carrier R"
then have "(	 x) ⊗ y ⊕ x ⊗ y = (	 x ⊕ x) ⊗ y" by (simp add: l_distr)
also from R have "... = 0" by (simp add: l_neg l_null)
finally have "(	 x) ⊗ y ⊕ x ⊗ y = 0" .
with R have "(	 x) ⊗ y ⊕ x ⊗ y ⊕ 	 (x ⊗ y) = 0 ⊕ 	 (x ⊗ y)" by

simp
with R show ?thesis by (simp add: a_assoc r_neg)

qed

lemma (in ring) r_minus:
"[| x ∈ carrier R; y ∈ carrier R |] ==> x ⊗ 	 y = 	 (x ⊗ y)"

proof -
assume R: "x ∈ carrier R" "y ∈ carrier R"
then have "x ⊗ (	 y) ⊕ x ⊗ y = x ⊗ (	 y ⊕ y)" by (simp add: r_distr)
also from R have "... = 0" by (simp add: l_neg r_null)
finally have "x ⊗ (	 y) ⊕ x ⊗ y = 0" .
with R have "x ⊗ (	 y) ⊕ x ⊗ y ⊕ 	 (x ⊗ y) = 0 ⊕ 	 (x ⊗ y)" by

simp
with R show ?thesis by (simp add: a_assoc r_neg )

qed

lemma (in abelian_group) minus_eq:
"[| x ∈ carrier G; y ∈ carrier G |] ==> x 	 y = x ⊕ 	 y"
by (simp only: a_minus_def)

Setup algebra method: compute distributive normal form in locale contexts

use "ringsimp.ML"

setup Algebra.setup

lemmas (in ring) ring_simprules
[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]

=
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc l_zero l_neg a_comm m_assoc l_one l_distr minus_eq
r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
a_lcomm r_distr l_null r_null l_minus r_minus

lemmas (in cring)
[algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult

R"] =
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_

lemmas (in cring) cring_simprules
[algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult

R"] =
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc l_zero l_neg a_comm m_assoc l_one l_distr m_comm minus_eq
r_zero r_neg r_neg2 r_neg1 minus_add minus_minus minus_zero
a_lcomm m_lcomm r_distr l_null r_null l_minus r_minus

lemma (in cring) nat_pow_zero:
"(n::nat) ~= 0 ==> 0 (^) n = 0"
by (induct n) simp_all

lemma (in ring) one_zeroD:
assumes onezero: "1 = 0"
shows "carrier R = {0}"

proof (rule, rule)
fix x
assume xcarr: "x ∈ carrier R"
from xcarr

have "x = x ⊗ 1" by simp
from this and onezero

have "x = x ⊗ 0" by simp
from this and xcarr

have "x = 0" by simp
thus "x ∈ {0}" by fast

qed fast

lemma (in ring) one_zeroI:
assumes carrzero: "carrier R = {0}"
shows "1 = 0"

proof -
from one_closed and carrzero

show "1 = 0" by simp
qed

lemma (in ring) carrier_one_zero:
shows "(carrier R = {0}) = (1 = 0)"
by (rule, erule one_zeroI, erule one_zeroD)

lemma (in ring) carrier_one_not_zero:
shows "(carrier R 6= {0}) = (1 6= 0)"
by (simp add: carrier_one_zero)

Two examples for use of method algebra

lemma
fixes R (structure) and S (structure)
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assumes "ring R" "cring S"
assumes RS: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier S" "d ∈ carrier

S"
shows "a ⊕ 	 (a ⊕ 	 b) = b & c ⊗S d = d ⊗S c"

proof -
interpret ring R by fact
interpret cring S by fact

ML val {* Algebra.print_structures @{context} *}
from RS show ?thesis by algebra

qed

lemma
fixes R (structure)
assumes "ring R"
assumes R: "a ∈ carrier R" "b ∈ carrier R"
shows "a 	 (a 	 b) = b"

proof -
interpret ring R by fact
from R show ?thesis by algebra

qed

8.5.2 Sums over Finite Sets

lemma (in ring) finsum_ldistr:
"[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
finsum R f A ⊗ a = finsum R (%i. f i ⊗ a) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case (insert x F) then show ?case by (simp add: Pi_def l_distr)

qed

lemma (in ring) finsum_rdistr:
"[| finite A; a ∈ carrier R; f ∈ A -> carrier R |] ==>
a ⊗ finsum R f A = finsum R (%i. a ⊗ f i) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case (insert x F) then show ?case by (simp add: Pi_def r_distr)

qed

8.6 Integral Domains

lemma (in "domain") zero_not_one [simp]:
"0 ~= 1"
by (rule not_sym) simp

lemma (in "domain") integral_iff:
"[| a ∈ carrier R; b ∈ carrier R |] ==> (a ⊗ b = 0) = (a = 0 | b =

0)"
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proof
assume "a ∈ carrier R" "b ∈ carrier R" "a ⊗ b = 0"
then show "a = 0 | b = 0" by (simp add: integral)

next
assume "a ∈ carrier R" "b ∈ carrier R" "a = 0 | b = 0"
then show "a ⊗ b = 0" by auto

qed

lemma (in "domain") m_lcancel:
assumes prem: "a ~= 0"

and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
shows "(a ⊗ b = a ⊗ c) = (b = c)"

proof
assume eq: "a ⊗ b = a ⊗ c"
with R have "a ⊗ (b 	 c) = 0" by algebra
with R have "a = 0 | (b 	 c) = 0" by (simp add: integral_iff)
with prem and R have "b 	 c = 0" by auto
with R have "b = b 	 (b 	 c)" by algebra
also from R have "b 	 (b 	 c) = c" by algebra
finally show "b = c" .

next
assume "b = c" then show "a ⊗ b = a ⊗ c" by simp

qed

lemma (in "domain") m_rcancel:
assumes prem: "a ~= 0"

and R: "a ∈ carrier R" "b ∈ carrier R" "c ∈ carrier R"
shows conc: "(b ⊗ a = c ⊗ a) = (b = c)"

proof -
from prem and R have "(a ⊗ b = a ⊗ c) = (b = c)" by (rule m_lcancel)
with R show ?thesis by algebra

qed

8.7 Fields

Field would not need to be derived from domain, the properties for domain
follow from the assumptions of field

lemma (in cring) cring_fieldI:
assumes field_Units: "Units R = carrier R - {0}"
shows "field R"

proof
from field_Units
have a: "0 /∈ Units R" by fast
have "1 ∈ Units R" by fast
from this and a
show "1 6= 0" by force

next
fix a b
assume acarr: "a ∈ carrier R"
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and bcarr: "b ∈ carrier R"
and ab: "a ⊗ b = 0"

show "a = 0 ∨ b = 0"
proof (cases "a = 0", simp)

assume "a 6= 0"
from this and field_Units and acarr
have aUnit: "a ∈ Units R" by fast
from bcarr
have "b = 1 ⊗ b" by algebra
also from aUnit acarr
have "... = (inv a ⊗ a) ⊗ b" by (simp add: Units_l_inv)
also from acarr bcarr aUnit[THEN Units_inv_closed]
have "... = (inv a) ⊗ (a ⊗ b)" by algebra
also from ab and acarr bcarr aUnit
have "... = (inv a) ⊗ 0" by simp
also from aUnit[THEN Units_inv_closed]
have "... = 0" by algebra
finally
have "b = 0" .
thus "a = 0 ∨ b = 0" by simp

qed
qed (rule field_Units)

Another variant to show that something is a field

lemma (in cring) cring_fieldI2:
assumes notzero: "0 6= 1"
and invex: "

∧
a. [[a ∈ carrier R; a 6= 0]] =⇒ ∃ b∈carrier R. a ⊗ b =

1"
shows "field R"
apply (rule cring_fieldI, simp add: Units_def)
apply (rule, clarsimp)
apply (simp add: notzero)

proof (clarsimp)
fix x
assume xcarr: "x ∈ carrier R"

and "x 6= 0"
from this
have "∃ y∈carrier R. x ⊗ y = 1" by (rule invex)
from this
obtain y

where ycarr: "y ∈ carrier R"
and xy: "x ⊗ y = 1"
by fast

from xy xcarr ycarr have "y ⊗ x = 1" by (simp add: m_comm)
from ycarr and this and xy
show "∃ y∈carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast

qed
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8.8 Morphisms

constdefs (structure R S)
ring_hom :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme] => (’a =>

’b) set"
"ring_hom R S == {h. h ∈ carrier R -> carrier S &

(ALL x y. x ∈ carrier R & y ∈ carrier R -->
h (x ⊗ y) = h x ⊗S h y & h (x ⊕ y) = h x ⊕S h y) &

h 1 = 1S}"

lemma ring_hom_memI:
fixes R (structure) and S (structure)
assumes hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"

and hom_mult: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊗ y) = h x ⊗S h y"

and hom_add: "!!x y. [| x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊕ y) = h x ⊕S h y"

and hom_one: "h 1 = 1S"
shows "h ∈ ring_hom R S"
by (auto simp add: ring_hom_def assms Pi_def)

lemma ring_hom_closed:
"[| h ∈ ring_hom R S; x ∈ carrier R |] ==> h x ∈ carrier S"
by (auto simp add: ring_hom_def funcset_mem)

lemma ring_hom_mult:
fixes R (structure) and S (structure)
shows
"[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊗ y) = h x ⊗S h y"
by (simp add: ring_hom_def)

lemma ring_hom_add:
fixes R (structure) and S (structure)
shows
"[| h ∈ ring_hom R S; x ∈ carrier R; y ∈ carrier R |] ==>
h (x ⊕ y) = h x ⊕S h y"
by (simp add: ring_hom_def)

lemma ring_hom_one:
fixes R (structure) and S (structure)
shows "h ∈ ring_hom R S ==> h 1 = 1S"
by (simp add: ring_hom_def)

locale ring_hom_cring = R: cring R + S: cring S
for R (structure) and S (structure) +

fixes h
assumes homh [simp, intro]: "h ∈ ring_hom R S"
notes hom_closed [simp, intro] = ring_hom_closed [OF homh]

and hom_mult [simp] = ring_hom_mult [OF homh]
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and hom_add [simp] = ring_hom_add [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]:
"h 0 = 0S"

proof -
have "h 0 ⊕S h 0 = h 0 ⊕S 0S"

by (simp add: hom_add [symmetric] del: hom_add)
then show ?thesis by (simp del: S.r_zero)

qed

lemma (in ring_hom_cring) hom_a_inv [simp]:
"x ∈ carrier R ==> h (	 x) = 	S h x"

proof -
assume R: "x ∈ carrier R"
then have "h x ⊕S h (	 x) = h x ⊕S (	S h x)"

by (simp add: hom_add [symmetric] R.r_neg S.r_neg del: hom_add)
with R show ?thesis by simp

qed

lemma (in ring_hom_cring) hom_finsum [simp]:
"[| finite A; f ∈ A -> carrier R |] ==>
h (finsum R f A) = finsum S (h o f) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case by (simp add: Pi_def)

qed

lemma (in ring_hom_cring) hom_finprod:
"[| finite A; f ∈ A -> carrier R |] ==>
h (finprod R f A) = finprod S (h o f) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case by (simp add: Pi_def)

qed

declare ring_hom_cring.hom_finprod [simp]

lemma id_ring_hom [simp]:
"id ∈ ring_hom R R"
by (auto intro!: ring_hom_memI)

end

theory AbelCoset
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imports Coset Ring
begin

8.9 More Lifting from Groups to Abelian Groups

8.9.1 Definitions

Hiding <+> from Sum_Type until I come up with better syntax here

no notation Plus (infixr "<+>" 65)

constdefs (structure G)
a_r_coset :: "[_, ’a set, ’a] ⇒ ’a set" (infixl "+>ı " 60)
"a_r_coset G ≡ r_coset (|carrier = carrier G, mult = add G, one = zero

G|)"

a_l_coset :: "[_, ’a, ’a set] ⇒ ’a set" (infixl "<+ı " 60)
"a_l_coset G ≡ l_coset (|carrier = carrier G, mult = add G, one = zero

G|)"

A_RCOSETS :: "[_, ’a set] ⇒ (’a set)set" ("a’_rcosetsı _" [81] 80)
"A_RCOSETS G H ≡ RCOSETS (|carrier = carrier G, mult = add G, one = zero

G|) H"

set_add :: "[_, ’a set ,’a set] ⇒ ’a set" (infixl "<+>ı " 60)
"set_add G ≡ set_mult (|carrier = carrier G, mult = add G, one = zero

G|)"

A_SET_INV :: "[_,’a set] ⇒ ’a set" ("a’_set’_invı _" [81] 80)
"A_SET_INV G H ≡ SET_INV (|carrier = carrier G, mult = add G, one = zero

G|) H"

constdefs (structure G)
a_r_congruent :: "[(’a,’b)ring_scheme, ’a set] ⇒ (’a*’a)set"

("racongı _")
"a_r_congruent G ≡ r_congruent (|carrier = carrier G, mult = add G,

one = zero G|)"

constdefs
A_FactGroup :: "[(’a,’b) ring_scheme, ’a set] ⇒ (’a set) monoid"

(infixl "A’_Mod" 65)
— Actually defined for groups rather than monoids

"A_FactGroup G H ≡ FactGroup (|carrier = carrier G, mult = add G, one
= zero G|) H"

constdefs
a_kernel :: "(’a, ’m) ring_scheme ⇒ (’b, ’n) ring_scheme ⇒

(’a ⇒ ’b) ⇒ ’a set"
— the kernel of a homomorphism (additive)

"a_kernel G H h ≡ kernel (|carrier = carrier G, mult = add G, one = zero
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G|)
(|carrier = carrier H, mult = add H, one

= zero H|) h"

locale abelian_group_hom = G: abelian_group G + H: abelian_group H
for G (structure) and H (structure) +

fixes h
assumes a_group_hom: "group_hom (| carrier = carrier G, mult = add

G, one = zero G |)
(| carrier = carrier H, mult = add H,

one = zero H |) h"

lemmas a_r_coset_defs =
a_r_coset_def r_coset_def

lemma a_r_coset_def’:
fixes G (structure)
shows "H +> a ≡

⋃
h∈H. {h ⊕ a}"

unfolding a_r_coset_defs
by simp

lemmas a_l_coset_defs =
a_l_coset_def l_coset_def

lemma a_l_coset_def’:
fixes G (structure)
shows "a <+ H ≡

⋃
h∈H. {a ⊕ h}"

unfolding a_l_coset_defs
by simp

lemmas A_RCOSETS_defs =
A_RCOSETS_def RCOSETS_def

lemma A_RCOSETS_def’:
fixes G (structure)
shows "a_rcosets H ≡

⋃
a∈carrier G. {H +> a}"

unfolding A_RCOSETS_defs
by (fold a_r_coset_def, simp)

lemmas set_add_defs =
set_add_def set_mult_def

lemma set_add_def’:
fixes G (structure)
shows "H <+> K ≡

⋃
h∈H.

⋃
k∈K. {h ⊕ k}"

unfolding set_add_defs
by simp

lemmas A_SET_INV_defs =
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A_SET_INV_def SET_INV_def

lemma A_SET_INV_def’:
fixes G (structure)
shows "a_set_inv H ≡

⋃
h∈H. {	 h}"

unfolding A_SET_INV_defs
by (fold a_inv_def)

8.9.2 Cosets

lemma (in abelian_group) a_coset_add_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> (M +> g) +> h = M +> (g ⊕ h)"

by (rule group.coset_mult_assoc [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_zero [simp]:
"M ⊆ carrier G ==> M +> 0 = M"

by (rule group.coset_mult_one [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv1:
"[| M +> (x ⊕ (	 y)) = M; x ∈ carrier G ; y ∈ carrier G;

M ⊆ carrier G |] ==> M +> x = M +> y"
by (rule group.coset_mult_inv1 [OF a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_add_inv2:
"[| M +> x = M +> y; x ∈ carrier G; y ∈ carrier G; M ⊆ carrier

G |]
==> M +> (x ⊕ (	 y)) = M"

by (rule group.coset_mult_inv2 [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join1:
"[| H +> x = H; x ∈ carrier G; subgroup H (|carrier = carrier G,

mult = add G, one = zero G|) |] ==> x ∈ H"
by (rule group.coset_join1 [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_solve_equation:
"[[subgroup H (|carrier = carrier G, mult = add G, one = zero G|);

x ∈ H; y ∈ H]] =⇒ ∃ h∈H. y = h ⊕ x"
by (rule group.solve_equation [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_repr_independence:
"[[y ∈ H +> x; x ∈ carrier G; subgroup H (|carrier = carrier G, mult

= add G, one = zero G|) ]] =⇒ H +> x = H +> y"
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by (rule group.repr_independence [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_coset_join2:
"[[x ∈ carrier G; subgroup H (|carrier = carrier G, mult = add G,

one = zero G|); x∈H]] =⇒ H +> x = H"
by (rule group.coset_join2 [OF a_group,

folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_monoid) a_r_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> H +> x ⊆ carrier G"

by (rule monoid.r_coset_subset_G [OF a_monoid,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosI:
"[| h ∈ H; H ⊆ carrier G; x ∈ carrier G|] ==> h ⊕ x ∈ H +> x"

by (rule group.rcosI [OF a_group,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcosetsI:
"[[H ⊆ carrier G; x ∈ carrier G]] =⇒ H +> x ∈ a_rcosets H"

by (rule group.rcosetsI [OF a_group,
folded a_r_coset_def A_RCOSETS_def, simplified monoid_record_simps])

Really needed?

lemma (in abelian_group) a_transpose_inv:
"[| x ⊕ y = z; x ∈ carrier G; y ∈ carrier G; z ∈ carrier G |]
==> (	 x) ⊕ z = y"

by (rule group.transpose_inv [OF a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

8.9.3 Subgroups

locale additive_subgroup =
fixes H and G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"

lemma (in additive_subgroup) is_additive_subgroup:
shows "additive_subgroup H G"

by (rule additive_subgroup_axioms)

lemma additive_subgroupI:
fixes G (structure)
assumes a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"
shows "additive_subgroup H G"

by (rule additive_subgroup.intro) (rule a_subgroup)
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lemma (in additive_subgroup) a_subset:
"H ⊆ carrier G"

by (rule subgroup.subset[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) a_closed [intro, simp]:
"[[x ∈ H; y ∈ H]] =⇒ x ⊕ y ∈ H"

by (rule subgroup.m_closed[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) zero_closed [simp]:
"0 ∈ H"

by (rule subgroup.one_closed[OF a_subgroup,
simplified monoid_record_simps])

lemma (in additive_subgroup) a_inv_closed [intro,simp]:
"x ∈ H =⇒ 	 x ∈ H"

by (rule subgroup.m_inv_closed[OF a_subgroup,
folded a_inv_def, simplified monoid_record_simps])

8.9.4 Additive subgroups are normal

Every subgroup of an abelian_group is normal

locale abelian_subgroup = additive_subgroup + abelian_group G +
assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one

= zero G|)"

lemma (in abelian_subgroup) is_abelian_subgroup:
shows "abelian_subgroup H G"

by (rule abelian_subgroup_axioms)

lemma abelian_subgroupI:
assumes a_normal: "normal H (|carrier = carrier G, mult = add G, one

= zero G|)"
and a_comm: "!!x y. [| x ∈ carrier G; y ∈ carrier G |] ==> x ⊕G

y = y ⊕G x"
shows "abelian_subgroup H G"

proof -
interpret normal "H" "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_normal)

show "abelian_subgroup H G"
proof qed (simp add: a_comm)

qed

lemma abelian_subgroupI2:
fixes G (structure)
assumes a_comm_group: "comm_group (|carrier = carrier G, mult = add
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G, one = zero G|)"
and a_subgroup: "subgroup H (|carrier = carrier G, mult = add G,

one = zero G|)"
shows "abelian_subgroup H G"

proof -
interpret comm_group "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_comm_group)
interpret subgroup "H" "(|carrier = carrier G, mult = add G, one = zero

G|)"
by (rule a_subgroup)

show "abelian_subgroup H G"
apply unfold_locales
proof (simp add: r_coset_def l_coset_def, clarsimp)

fix x
assume xcarr: "x ∈ carrier G"
from a_subgroup

have Hcarr: "H ⊆ carrier G" by (unfold subgroup_def, simp)
from xcarr Hcarr

show "(
⋃
h∈H. {h ⊕G x}) = (

⋃
h∈H. {x ⊕G h})"

using m_comm[simplified]
by fast

qed
qed

lemma abelian_subgroupI3:
fixes G (structure)
assumes asg: "additive_subgroup H G"

and ag: "abelian_group G"
shows "abelian_subgroup H G"

apply (rule abelian_subgroupI2)
apply (rule abelian_group.a_comm_group[OF ag])

apply (rule additive_subgroup.a_subgroup[OF asg])
done

lemma (in abelian_subgroup) a_coset_eq:
"(∀ x ∈ carrier G. H +> x = x <+ H)"

by (rule normal.coset_eq[OF a_normal,
folded a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed1:
shows "[[x ∈ carrier G; h ∈ H]] =⇒ (	 x) ⊕ h ⊕ x ∈ H"

by (rule normal.inv_op_closed1 [OF a_normal,
folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_inv_op_closed2:
shows "[[x ∈ carrier G; h ∈ H]] =⇒ x ⊕ h ⊕ (	 x) ∈ H"

by (rule normal.inv_op_closed2 [OF a_normal,
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folded a_inv_def, simplified monoid_record_simps])

Alternative characterization of normal subgroups

lemma (in abelian_group) a_normal_inv_iff:
"(N C (|carrier = carrier G, mult = add G, one = zero G|)) =
(subgroup N (|carrier = carrier G, mult = add G, one = zero G|) &

(∀ x ∈ carrier G. ∀ h ∈ N. x ⊕ h ⊕ (	 x) ∈ N))"
(is "_ = ?rhs")

by (rule group.normal_inv_iff [OF a_group,
folded a_inv_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_m_assoc:
"[| M ⊆ carrier G; g ∈ carrier G; h ∈ carrier G |]
==> g <+ (h <+ M) = (g ⊕ h) <+ M"

by (rule group.lcos_m_assoc [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_lcos_mult_one:
"M ⊆ carrier G ==> 0 <+ M = M"

by (rule group.lcos_mult_one [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_subset_G:
"[| H ⊆ carrier G; x ∈ carrier G |] ==> x <+ H ⊆ carrier G"

by (rule group.l_coset_subset_G [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_swap:
"[[y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G, mult

= add G, one = zero G|)]] =⇒ x ∈ y <+ H"
by (rule group.l_coset_swap [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_coset_carrier:
"[| y ∈ x <+ H; x ∈ carrier G; subgroup H (|carrier = carrier G,

mult = add G, one = zero G|) |] ==> y ∈ carrier G"
by (rule group.l_coset_carrier [OF a_group,

folded a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_l_repr_imp_subset:
assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H

(|carrier = carrier G, mult = add G, one = zero G|)"
shows "y <+ H ⊆ x <+ H"

apply (rule group.l_repr_imp_subset [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

apply (rule y)
apply (rule x)
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apply (rule sb)
done

lemma (in abelian_group) a_l_repr_independence:
assumes y: "y ∈ x <+ H" and x: "x ∈ carrier G" and sb: "subgroup H

(|carrier = carrier G, mult = add G, one = zero G|)"
shows "x <+ H = y <+ H"

apply (rule group.l_repr_independence [OF a_group,
folded a_l_coset_def, simplified monoid_record_simps])

apply (rule y)
apply (rule x)
apply (rule sb)
done

lemma (in abelian_group) setadd_subset_G:
"[[H ⊆ carrier G; K ⊆ carrier G]] =⇒ H <+> K ⊆ carrier G"

by (rule group.setmult_subset_G [OF a_group,
folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_group) subgroup_add_id: "subgroup H (|carrier = carrier
G, mult = add G, one = zero G|) =⇒ H <+> H = H"
by (rule group.subgroup_mult_id [OF a_group,

folded set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_inv:
assumes x: "x ∈ carrier G"
shows "a_set_inv (H +> x) = H +> (	 x)"

by (rule normal.rcos_inv [OF a_normal,
folded a_r_coset_def a_inv_def A_SET_INV_def, simplified monoid_record_simps])

(rule x)

lemma (in abelian_group) a_setmult_rcos_assoc:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ H <+> (K +> x) = (H <+> K) +> x"

by (rule group.setmult_rcos_assoc [OF a_group,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_group) a_rcos_assoc_lcos:
"[[H ⊆ carrier G; K ⊆ carrier G; x ∈ carrier G]]
=⇒ (H +> x) <+> K = H <+> (x <+ K)"

by (rule group.rcos_assoc_lcos [OF a_group,
folded set_add_def a_r_coset_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_sum:
"[[x ∈ carrier G; y ∈ carrier G]]
=⇒ (H +> x) <+> (H +> y) = H +> (x ⊕ y)"

by (rule normal.rcos_sum [OF a_normal,
folded set_add_def a_r_coset_def, simplified monoid_record_simps])
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lemma (in abelian_subgroup) rcosets_add_eq:
"M ∈ a_rcosets H =⇒ H <+> M = M"
— generalizes subgroup_mult_id

by (rule normal.rcosets_mult_eq [OF a_normal,
folded set_add_def A_RCOSETS_def, simplified monoid_record_simps])

8.9.5 Congruence Relation

lemma (in abelian_subgroup) a_equiv_rcong:
shows "equiv (carrier G) (racong H)"

by (rule subgroup.equiv_rcong [OF a_subgroup a_group,
folded a_r_congruent_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_l_coset_eq_rcong:
assumes a: "a ∈ carrier G"
shows "a <+ H = racong H ‘‘ {a}"

by (rule subgroup.l_coset_eq_rcong [OF a_subgroup a_group,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

(rule a)

lemma (in abelian_subgroup) a_rcos_equation:
shows

"[[ha ⊕ a = h ⊕ b; a ∈ carrier G; b ∈ carrier G;
h ∈ H; ha ∈ H; hb ∈ H]]

=⇒ hb ⊕ a ∈ (
⋃
h∈H. {h ⊕ b})"

by (rule group.rcos_equation [OF a_group a_subgroup,
folded a_r_congruent_def a_l_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_disjoint:
shows "[[a ∈ a_rcosets H; b ∈ a_rcosets H; a6=b]] =⇒ a ∩ b = {}"

by (rule group.rcos_disjoint [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_self:
shows "x ∈ carrier G =⇒ x ∈ H +> x"

by (rule group.rcos_self [OF a_group _ a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_part_G:
shows "

⋃
(a_rcosets H) = carrier G"

by (rule group.rcosets_part_G [OF a_group a_subgroup,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_cosets_finite:
"[[c ∈ a_rcosets H; H ⊆ carrier G; finite (carrier G)]] =⇒ finite

c"
by (rule group.cosets_finite [OF a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])
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lemma (in abelian_group) a_card_cosets_equal:
"[[c ∈ a_rcosets H; H ⊆ carrier G; finite(carrier G)]]
=⇒ card c = card H"

by (rule group.card_cosets_equal [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_group) rcosets_subset_PowG:
"additive_subgroup H G =⇒ a_rcosets H ⊆ Pow(carrier G)"

by (rule group.rcosets_subset_PowG [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps],
rule additive_subgroup.a_subgroup)

theorem (in abelian_group) a_lagrange:
"[[finite(carrier G); additive_subgroup H G]]
=⇒ card(a_rcosets H) * card(H) = order(G)"

by (rule group.lagrange [OF a_group,
folded A_RCOSETS_def, simplified monoid_record_simps order_def, folded

order_def])
(fast intro!: additive_subgroup.a_subgroup)+

8.9.6 Factorization

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def

lemma A_FactGroup_def’:
fixes G (structure)
shows "G A_Mod H ≡ (|carrier = a_rcosetsG H, mult = set_add G, one =

H|)"
unfolding A_FactGroup_defs
by (fold A_RCOSETS_def set_add_def)

lemma (in abelian_subgroup) a_setmult_closed:
"[[K1 ∈ a_rcosets H; K2 ∈ a_rcosets H]] =⇒ K1 <+> K2 ∈ a_rcosets H"

by (rule normal.setmult_closed [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_setinv_closed:
"K ∈ a_rcosets H =⇒ a_set_inv K ∈ a_rcosets H"

by (rule normal.setinv_closed [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_assoc:
"[[M1 ∈ a_rcosets H; M2 ∈ a_rcosets H; M3 ∈ a_rcosets H]]
=⇒ M1 <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"

by (rule normal.rcosets_assoc [OF a_normal,
folded A_RCOSETS_def set_add_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_subgroup_in_rcosets:
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"H ∈ a_rcosets H"
by (rule subgroup.subgroup_in_rcosets [OF a_subgroup a_group,

folded A_RCOSETS_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:
"M ∈ a_rcosets H =⇒ a_set_inv M <+> M = H"

by (rule normal.rcosets_inv_mult_group_eq [OF a_normal,
folded A_RCOSETS_def A_SET_INV_def set_add_def, simplified monoid_record_simps])

theorem (in abelian_subgroup) a_factorgroup_is_group:
"group (G A_Mod H)"

by (rule normal.factorgroup_is_group [OF a_normal,
folded A_FactGroup_def, simplified monoid_record_simps])

Since the Factorization is based on an abelian subgroup, is results in a
commutative group

theorem (in abelian_subgroup) a_factorgroup_is_comm_group:
"comm_group (G A_Mod H)"

apply (intro comm_group.intro comm_monoid.intro) prefer 3
apply (rule a_factorgroup_is_group)

apply (rule group.axioms[OF a_factorgroup_is_group])
apply (rule comm_monoid_axioms.intro)
apply (unfold A_FactGroup_def FactGroup_def RCOSETS_def, fold set_add_def
a_r_coset_def, clarsimp)
apply (simp add: a_rcos_sum a_comm)
done

lemma add_A_FactGroup [simp]: "X ⊗(G A_Mod H) X’ = X <+>G X’"
by (simp add: A_FactGroup_def set_add_def)

lemma (in abelian_subgroup) a_inv_FactGroup:
"X ∈ carrier (G A_Mod H) =⇒ invG A_Mod H X = a_set_inv X"

by (rule normal.inv_FactGroup [OF a_normal,
folded A_FactGroup_def A_SET_INV_def, simplified monoid_record_simps])

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
"(λa. H +> a) ∈ hom (|carrier = carrier G, mult = add G, one = zero G|)

(G A_Mod H)"
by (rule normal.r_coset_hom_Mod [OF a_normal,

folded A_FactGroup_def a_r_coset_def, simplified monoid_record_simps])

The isomorphism theorems have been omitted from lifting, at least for now

8.9.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.
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lemmas a_kernel_defs =
a_kernel_def kernel_def

lemma a_kernel_def’:
"a_kernel R S h ≡ {x ∈ carrier R. h x = 0S}"

by (rule a_kernel_def[unfolded kernel_def, simplified ring_record_simps])

8.9.8 Homomorphisms

lemma abelian_group_homI:
assumes "abelian_group G"
assumes "abelian_group H"
assumes a_group_hom: "group_hom (| carrier = carrier G, mult = add

G, one = zero G |)
(| carrier = carrier H, mult = add H,

one = zero H |) h"
shows "abelian_group_hom G H h"

proof -
interpret G: abelian_group G by fact
interpret H: abelian_group H by fact
show ?thesis apply (intro abelian_group_hom.intro abelian_group_hom_axioms.intro)

apply fact
apply fact
apply (rule a_group_hom)
done

qed

lemma (in abelian_group_hom) is_abelian_group_hom:
"abelian_group_hom G H h"
..

lemma (in abelian_group_hom) hom_add [simp]:
"[| x : carrier G; y : carrier G |]

==> h (x ⊕G y) = h x ⊕H h y"
by (rule group_hom.hom_mult[OF a_group_hom,

simplified ring_record_simps])

lemma (in abelian_group_hom) hom_closed [simp]:
"x ∈ carrier G =⇒ h x ∈ carrier H"

by (rule group_hom.hom_closed[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) zero_closed [simp]:
"h 0 ∈ carrier H"

by (rule group_hom.one_closed[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) hom_zero [simp]:
"h 0 = 0H"
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by (rule group_hom.hom_one[OF a_group_hom,
simplified ring_record_simps])

lemma (in abelian_group_hom) a_inv_closed [simp]:
"x ∈ carrier G ==> h (	x) ∈ carrier H"

by (rule group_hom.inv_closed[OF a_group_hom,
folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) hom_a_inv [simp]:
"x ∈ carrier G ==> h (	x) = 	H (h x)"

by (rule group_hom.hom_inv[OF a_group_hom,
folded a_inv_def, simplified ring_record_simps])

lemma (in abelian_group_hom) additive_subgroup_a_kernel:
"additive_subgroup (a_kernel G H h) G"

apply (rule additive_subgroup.intro)
apply (rule group_hom.subgroup_kernel[OF a_group_hom,

folded a_kernel_def, simplified ring_record_simps])
done

The kernel of a homomorphism is an abelian subgroup

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"

apply (rule abelian_subgroupI)
apply (rule group_hom.normal_kernel[OF a_group_hom,

folded a_kernel_def, simplified ring_record_simps])
apply (simp add: G.a_comm)
done

lemma (in abelian_group_hom) A_FactGroup_nonempty:
assumes X: "X ∈ carrier (G A_Mod a_kernel G H h)"
shows "X 6= {}"

by (rule group_hom.FactGroup_nonempty[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule X)

lemma (in abelian_group_hom) FactGroup_contents_mem:
assumes X: "X ∈ carrier (G A_Mod (a_kernel G H h))"
shows "contents (h‘X) ∈ carrier H"

by (rule group_hom.FactGroup_contents_mem[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

(rule X)

lemma (in abelian_group_hom) A_FactGroup_hom:
"(λX. contents (h‘X)) ∈ hom (G A_Mod (a_kernel G H h))

(|carrier = carrier H, mult = add H, one = zero H|)"
by (rule group_hom.FactGroup_hom[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
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lemma (in abelian_group_hom) A_FactGroup_inj_on:
"inj_on (λX. contents (h ‘ X)) (carrier (G A_Mod a_kernel G H h))"

by (rule group_hom.FactGroup_inj_on[OF a_group_hom,
folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in abelian_group_hom) A_FactGroup_onto:
assumes h: "h ‘ carrier G = carrier H"
shows "(λX. contents (h ‘ X)) ‘ carrier (G A_Mod a_kernel G H h) =

carrier H"
by (rule group_hom.FactGroup_onto[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])
(rule h)

If h is a homomorphism from G onto H, then the quotient group G Mod kernel

G H h is isomorphic to H.

theorem (in abelian_group_hom) A_FactGroup_iso:
"h ‘ carrier G = carrier H
=⇒ (λX. contents (h‘X)) ∈ (G A_Mod (a_kernel G H h)) ∼=

(| carrier = carrier H, mult = add H, one = zero H |)"
by (rule group_hom.FactGroup_iso[OF a_group_hom,

folded a_kernel_def A_FactGroup_def, simplified ring_record_simps])

8.9.9 Cosets

Not eveything from CosetExt.thy is lifted here.

lemma (in additive_subgroup) a_Hcarr [simp]:
assumes hH: "h ∈ H"
shows "h ∈ carrier G"

by (rule subgroup.mem_carrier [OF a_subgroup,
simplified monoid_record_simps]) (rule hH)

lemma (in abelian_subgroup) a_elemrcos_carrier:
assumes acarr: "a ∈ carrier G"

and a’: "a’ ∈ H +> a"
shows "a’ ∈ carrier G"

by (rule subgroup.elemrcos_carrier [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule acarr,

rule a’)

lemma (in abelian_subgroup) a_rcos_const:
assumes hH: "h ∈ H"
shows "H +> h = H"

by (rule subgroup.rcos_const [OF a_subgroup a_group,
folded a_r_coset_def, simplified monoid_record_simps]) (rule hH)
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lemma (in abelian_subgroup) a_rcos_module_imp:
assumes xcarr: "x ∈ carrier G"

and x’cos: "x’ ∈ H +> x"
shows "(x’ ⊕ 	x) ∈ H"

by (rule subgroup.rcos_module_imp [OF a_subgroup a_group,
folded a_r_coset_def a_inv_def, simplified monoid_record_simps]) (rule

xcarr, rule x’cos)

lemma (in abelian_subgroup) a_rcos_module_rev:
assumes "x ∈ carrier G" "x’ ∈ carrier G"

and "(x’ ⊕ 	x) ∈ H"
shows "x’ ∈ H +> x"

using assms
by (rule subgroup.rcos_module_rev [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

lemma (in abelian_subgroup) a_rcos_module:
assumes "x ∈ carrier G" "x’ ∈ carrier G"
shows "(x’ ∈ H +> x) = (x’ ⊕ 	x ∈ H)"

using assms
by (rule subgroup.rcos_module [OF a_subgroup a_group,

folded a_r_coset_def a_inv_def, simplified monoid_record_simps])

— variant
lemma (in abelian_subgroup) a_rcos_module_minus:

assumes "ring G"
assumes carr: "x ∈ carrier G" "x’ ∈ carrier G"
shows "(x’ ∈ H +> x) = (x’ 	 x ∈ H)"

proof -
interpret G: ring G by fact
from carr
have "(x’ ∈ H +> x) = (x’ ⊕ 	x ∈ H)" by (rule a_rcos_module)
with carr
show "(x’ ∈ H +> x) = (x’ 	 x ∈ H)"

by (simp add: minus_eq)
qed

lemma (in abelian_subgroup) a_repr_independence’:
assumes y: "y ∈ H +> x"

and xcarr: "x ∈ carrier G"
shows "H +> x = H +> y"
apply (rule a_repr_independence)

apply (rule y)
apply (rule xcarr)

apply (rule a_subgroup)
done

lemma (in abelian_subgroup) a_repr_independenceD:
assumes ycarr: "y ∈ carrier G"
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and repr: "H +> x = H +> y"
shows "y ∈ H +> x"

by (rule group.repr_independenceD [OF a_group a_subgroup,
folded a_r_coset_def, simplified monoid_record_simps]) (rule ycarr,

rule repr)

lemma (in abelian_subgroup) a_rcosets_carrier:
"X ∈ a_rcosets H =⇒ X ⊆ carrier G"

by (rule subgroup.rcosets_carrier [OF a_subgroup a_group,
folded A_RCOSETS_def, simplified monoid_record_simps])

8.9.10 Addition of Subgroups

lemma (in abelian_monoid) set_add_closed:
assumes Acarr: "A ⊆ carrier G"

and Bcarr: "B ⊆ carrier G"
shows "A <+> B ⊆ carrier G"

by (rule monoid.set_mult_closed [OF a_monoid,
folded set_add_def, simplified monoid_record_simps]) (rule Acarr,

rule Bcarr)

lemma (in abelian_group) add_additive_subgroups:
assumes subH: "additive_subgroup H G"

and subK: "additive_subgroup K G"
shows "additive_subgroup (H <+> K) G"

apply (rule additive_subgroup.intro)
apply (unfold set_add_def)
apply (intro comm_group.mult_subgroups)

apply (rule a_comm_group)
apply (rule additive_subgroup.a_subgroup[OF subH])

apply (rule additive_subgroup.a_subgroup[OF subK])
done

end

theory Ideal
imports Ring AbelCoset
begin

9 Ideals

9.1 Definitions

9.1.1 General definition

locale ideal = additive_subgroup I R + ring R for I and R (structure) +
assumes I_l_closed: "[[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"
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and I_r_closed: "[[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

sublocale ideal ⊆ abelian_subgroup I R
apply (intro abelian_subgroupI3 abelian_group.intro)

apply (rule ideal.axioms, rule ideal_axioms)
apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
rule ideal_axioms)
apply (rule abelian_group.axioms, rule ring.axioms, rule ideal.axioms,
rule ideal_axioms)
done

lemma (in ideal) is_ideal:
"ideal I R"

by (rule ideal_axioms)

lemma idealI:
fixes R (structure)
assumes "ring R"
assumes a_subgroup: "subgroup I (|carrier = carrier R, mult = add R,

one = zero R|)"
and I_l_closed: "

∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

shows "ideal I R"
proof -

interpret ring R by fact
show ?thesis apply (intro ideal.intro ideal_axioms.intro additive_subgroupI)

apply (rule a_subgroup)
apply (rule is_ring)

apply (erule (1) I_l_closed)
apply (erule (1) I_r_closed)
done

qed

9.1.2 Ideals Generated by a Subset of carrier R

constdefs (structure R)
genideal :: "(’a, ’b) ring_scheme ⇒ ’a set ⇒ ’a set" ("Idlı _" [80]

79)
"genideal R S ≡ Inter {I. ideal I R ∧ S ⊆ I}"

9.1.3 Principal Ideals

locale principalideal = ideal +
assumes generate: "∃ i ∈ carrier R. I = Idl {i}"

lemma (in principalideal) is_principalideal:
shows "principalideal I R"

by (rule principalideal_axioms)

lemma principalidealI:
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fixes R (structure)
assumes "ideal I R"
assumes generate: "∃ i ∈ carrier R. I = Idl {i}"
shows "principalideal I R"

proof -
interpret ideal I R by fact
show ?thesis by (intro principalideal.intro principalideal_axioms.intro)

(rule is_ideal, rule generate)
qed

9.1.4 Maximal Ideals

locale maximalideal = ideal +
assumes I_notcarr: "carrier R 6= I"

and I_maximal: "[[ideal J R; I ⊆ J; J ⊆ carrier R]] =⇒ J = I ∨ J
= carrier R"

lemma (in maximalideal) is_maximalideal:
shows "maximalideal I R"

by (rule maximalideal_axioms)

lemma maximalidealI:
fixes R
assumes "ideal I R"
assumes I_notcarr: "carrier R 6= I"

and I_maximal: "
∧
J. [[ideal J R; I ⊆ J; J ⊆ carrier R]] =⇒ J = I

∨ J = carrier R"
shows "maximalideal I R"

proof -
interpret ideal I R by fact
show ?thesis by (intro maximalideal.intro maximalideal_axioms.intro)

(rule is_ideal, rule I_notcarr, rule I_maximal)
qed

9.1.5 Prime Ideals

locale primeideal = ideal + cring +
assumes I_notcarr: "carrier R 6= I"

and I_prime: "[[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒ a ∈
I ∨ b ∈ I"

lemma (in primeideal) is_primeideal:
shows "primeideal I R"

by (rule primeideal_axioms)

lemma primeidealI:
fixes R (structure)
assumes "ideal I R"
assumes "cring R"
assumes I_notcarr: "carrier R 6= I"
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and I_prime: "
∧
a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]]

=⇒ a ∈ I ∨ b ∈ I"
shows "primeideal I R"

proof -
interpret ideal I R by fact
interpret cring R by fact
show ?thesis by (intro primeideal.intro primeideal_axioms.intro)
(rule is_ideal, rule is_cring, rule I_notcarr, rule I_prime)

qed

lemma primeidealI2:
fixes R (structure)
assumes "additive_subgroup I R"
assumes "cring R"
assumes I_l_closed: "

∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ x ⊗ a ∈ I"

and I_r_closed: "
∧
a x. [[a ∈ I; x ∈ carrier R]] =⇒ a ⊗ x ∈ I"

and I_notcarr: "carrier R 6= I"
and I_prime: "

∧
a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]]

=⇒ a ∈ I ∨ b ∈ I"
shows "primeideal I R"

proof -
interpret additive_subgroup I R by fact
interpret cring R by fact
show ?thesis apply (intro_locales)

apply (intro ideal_axioms.intro)
apply (erule (1) I_l_closed)
apply (erule (1) I_r_closed)
apply (intro primeideal_axioms.intro)
apply (rule I_notcarr)
apply (erule (2) I_prime)
done

qed

9.2 Special Ideals

lemma (in ring) zeroideal:
shows "ideal {0} R"

apply (intro idealI subgroup.intro)
apply (rule is_ring)

apply simp+
apply (fold a_inv_def, simp)

apply simp+
done

lemma (in ring) oneideal:
shows "ideal (carrier R) R"

apply (intro idealI subgroup.intro)
apply (rule is_ring)

apply simp+
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apply (fold a_inv_def, simp)
apply simp+

done

lemma (in "domain") zeroprimeideal:
shows "primeideal {0} R"

apply (intro primeidealI)
apply (rule zeroideal)

apply (rule domain.axioms, rule domain_axioms)
defer 1
apply (simp add: integral)

proof (rule ccontr, simp)
assume "carrier R = {0}"
from this have "1 = 0" by (rule one_zeroI)
from this and one_not_zero

show "False" by simp
qed

9.3 General Ideal Properies

lemma (in ideal) one_imp_carrier:
assumes I_one_closed: "1 ∈ I"
shows "I = carrier R"

apply (rule)
apply (rule)
apply (rule a_Hcarr, simp)
proof

fix x
assume xcarr: "x ∈ carrier R"
from I_one_closed and this

have "x ⊗ 1 ∈ I" by (intro I_l_closed)
from this and xcarr

show "x ∈ I" by simp
qed

lemma (in ideal) Icarr:
assumes iI: "i ∈ I"
shows "i ∈ carrier R"

using iI by (rule a_Hcarr)

9.4 Intersection of Ideals

Intersection of two ideals The intersection of any two ideals is again
an ideal in R

lemma (in ring) i_intersect:
assumes "ideal I R"
assumes "ideal J R"
shows "ideal (I ∩ J) R"

proof -
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interpret ideal I R by fact
interpret ideal J R by fact
show ?thesis

apply (intro idealI subgroup.intro)
apply (rule is_ring)

apply (force simp add: a_subset)
apply (simp add: a_inv_def[symmetric])

apply simp
apply (simp add: a_inv_def[symmetric])

apply (clarsimp, rule)
apply (fast intro: ideal.I_l_closed ideal.intro assms)+

apply (clarsimp, rule)
apply (fast intro: ideal.I_r_closed ideal.intro assms)+

done
qed

The intersection of any Number of Ideals is again an Ideal in R

lemma (in ring) i_Intersect:
assumes Sideals: "

∧
I. I ∈ S =⇒ ideal I R"

and notempty: "S 6= {}"
shows "ideal (Inter S) R"

apply (unfold_locales)
apply (simp_all add: Inter_def INTER_def)

apply (rule, simp) defer 1
apply rule defer 1
apply rule defer 1
apply (fold a_inv_def, rule) defer 1
apply rule defer 1
apply rule defer 1

proof -
fix x
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

from notempty have "∃ I0. I0 ∈ S" by blast
from this obtain I0 where I0S: "I0 ∈ S" by auto

interpret ideal I0 R by (rule Sideals[OF I0S])

from xI[OF I0S] have "x ∈ I0" .
from this and a_subset show "x ∈ carrier R" by fast

next
fix x y
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

assume "∀ I∈S. y ∈ I"
hence yI: "

∧
I. I ∈ S =⇒ y ∈ I" by simp

fix J
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assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
from xI[OF JS] and yI[OF JS]

show "x ⊕ y ∈ J" by (rule a_closed)
next

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])
show "0 ∈ J" by simp

next
fix x
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS]
show "	 x ∈ J" by (rule a_inv_closed)

next
fix x y
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

assume ycarr: "y ∈ carrier R"

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and ycarr
show "y ⊗ x ∈ J" by (rule I_l_closed)

next
fix x y
assume "∀ I∈S. x ∈ I"
hence xI: "

∧
I. I ∈ S =⇒ x ∈ I" by simp

assume ycarr: "y ∈ carrier R"

fix J
assume JS: "J ∈ S"
interpret ideal J R by (rule Sideals[OF JS])

from xI[OF JS] and ycarr
show "x ⊗ y ∈ J" by (rule I_r_closed)

qed

9.5 Addition of Ideals

lemma (in ring) add_ideals:
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assumes idealI: "ideal I R"
and idealJ: "ideal J R"

shows "ideal (I <+> J) R"
apply (rule ideal.intro)

apply (rule add_additive_subgroups)
apply (intro ideal.axioms[OF idealI])

apply (intro ideal.axioms[OF idealJ])
apply (rule is_ring)

apply (rule ideal_axioms.intro)
apply (simp add: set_add_defs, clarsimp) defer 1
apply (simp add: set_add_defs, clarsimp) defer 1

proof -
fix x i j
assume xcarr: "x ∈ carrier R"

and iI: "i ∈ I"
and jJ: "j ∈ J"

from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]
have c: "(i ⊕ j) ⊗ x = (i ⊗ x) ⊕ (j ⊗ x)" by algebra

from xcarr and iI
have a: "i ⊗ x ∈ I" by (simp add: ideal.I_r_closed[OF idealI])

from xcarr and jJ
have b: "j ⊗ x ∈ J" by (simp add: ideal.I_r_closed[OF idealJ])

from a b c
show "∃ ha∈I. ∃ ka∈J. (i ⊕ j) ⊗ x = ha ⊕ ka" by fast

next
fix x i j
assume xcarr: "x ∈ carrier R"

and iI: "i ∈ I"
and jJ: "j ∈ J"

from xcarr ideal.Icarr[OF idealI iI] ideal.Icarr[OF idealJ jJ]
have c: "x ⊗ (i ⊕ j) = (x ⊗ i) ⊕ (x ⊗ j)" by algebra

from xcarr and iI
have a: "x ⊗ i ∈ I" by (simp add: ideal.I_l_closed[OF idealI])

from xcarr and jJ
have b: "x ⊗ j ∈ J" by (simp add: ideal.I_l_closed[OF idealJ])

from a b c
show "∃ ha∈I. ∃ ka∈J. x ⊗ (i ⊕ j) = ha ⊕ ka" by fast

qed

9.6 Ideals generated by a subset of carrier R

genideal generates an ideal

lemma (in ring) genideal_ideal:
assumes Scarr: "S ⊆ carrier R"
shows "ideal (Idl S) R"

unfolding genideal_def
proof (rule i_Intersect, fast, simp)

from oneideal and Scarr
show "∃ I. ideal I R ∧ S ≤ I" by fast
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qed

lemma (in ring) genideal_self:
assumes "S ⊆ carrier R"
shows "S ⊆ Idl S"

unfolding genideal_def
by fast

lemma (in ring) genideal_self’:
assumes carr: "i ∈ carrier R"
shows "i ∈ Idl {i}"

proof -
from carr

have "{i} ⊆ Idl {i}" by (fast intro!: genideal_self)
thus "i ∈ Idl {i}" by fast

qed

genideal generates the minimal ideal

lemma (in ring) genideal_minimal:
assumes a: "ideal I R"

and b: "S ⊆ I"
shows "Idl S ⊆ I"

unfolding genideal_def
by (rule, elim InterD, simp add: a b)

Generated ideals and subsets

lemma (in ring) Idl_subset_ideal:
assumes Iideal: "ideal I R"

and Hcarr: "H ⊆ carrier R"
shows "(Idl H ⊆ I) = (H ⊆ I)"

proof
assume a: "Idl H ⊆ I"
from Hcarr have "H ⊆ Idl H" by (rule genideal_self)
from this and a

show "H ⊆ I" by simp
next

fix x
assume HI: "H ⊆ I"

from Iideal and HI
have "I ∈ {I. ideal I R ∧ H ⊆ I}" by fast

from this
show "Idl H ⊆ I"
unfolding genideal_def
by fast

qed

lemma (in ring) subset_Idl_subset:
assumes Icarr: "I ⊆ carrier R"
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and HI: "H ⊆ I"
shows "Idl H ⊆ Idl I"

proof -
from HI and genideal_self[OF Icarr]

have HIdlI: "H ⊆ Idl I" by fast

from Icarr
have Iideal: "ideal (Idl I) R" by (rule genideal_ideal)

from HI and Icarr
have "H ⊆ carrier R" by fast

from Iideal and this
have "(H ⊆ Idl I) = (Idl H ⊆ Idl I)"
by (rule Idl_subset_ideal[symmetric])

from HIdlI and this
show "Idl H ⊆ Idl I" by simp

qed

lemma (in ring) Idl_subset_ideal’:
assumes acarr: "a ∈ carrier R" and bcarr: "b ∈ carrier R"
shows "(Idl {a} ⊆ Idl {b}) = (a ∈ Idl {b})"

apply (subst Idl_subset_ideal[OF genideal_ideal[of "{b}"], of "{a}"])
apply (fast intro: bcarr, fast intro: acarr)

apply fast
done

lemma (in ring) genideal_zero:
"Idl {0} = {0}"

apply rule
apply (rule genideal_minimal[OF zeroideal], simp)

apply (simp add: genideal_self’)
done

lemma (in ring) genideal_one:
"Idl {1} = carrier R"

proof -
interpret ideal "Idl {1}" "R" by (rule genideal_ideal, fast intro: one_closed)
show "Idl {1} = carrier R"
apply (rule, rule a_subset)
apply (simp add: one_imp_carrier genideal_self’)
done

qed

Generation of Principal Ideals in Commutative Rings
constdefs (structure R)
cgenideal :: "(’a, ’b) monoid_scheme ⇒ ’a ⇒ ’a set" ("PIdlı _" [80]

79)
"cgenideal R a ≡ { x ⊗ a | x. x ∈ carrier R }"

genhideal (?) really generates an ideal
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lemma (in cring) cgenideal_ideal:
assumes acarr: "a ∈ carrier R"
shows "ideal (PIdl a) R"

apply (unfold cgenideal_def)
apply (rule idealI[OF is_ring])

apply (rule subgroup.intro)
apply (simp_all add: monoid_record_simps)
apply (blast intro: acarr m_closed)
apply clarsimp defer 1
defer 1
apply (fold a_inv_def, clarsimp) defer 1
apply clarsimp defer 1
apply clarsimp defer 1

proof -
fix x y
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
note carr = acarr xcarr ycarr

from carr
have "x ⊗ a ⊕ y ⊗ a = (x ⊕ y) ⊗ a" by (simp add: l_distr)

from this and carr
show "∃ z. x ⊗ a ⊕ y ⊗ a = z ⊗ a ∧ z ∈ carrier R" by fast

next
from l_null[OF acarr, symmetric] and zero_closed

show "∃ x. 0 = x ⊗ a ∧ x ∈ carrier R" by fast
next

fix x
assume xcarr: "x ∈ carrier R"
note carr = acarr xcarr

from carr
have "	 (x ⊗ a) = (	 x) ⊗ a" by (simp add: l_minus)

from this and carr
show "∃ z. 	 (x ⊗ a) = z ⊗ a ∧ z ∈ carrier R" by fast

next
fix x y
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
note carr = acarr xcarr ycarr

from carr
have "y ⊗ a ⊗ x = (y ⊗ x) ⊗ a" by (simp add: m_assoc, simp add:

m_comm)
from this and carr

show "∃ z. y ⊗ a ⊗ x = z ⊗ a ∧ z ∈ carrier R" by fast
next

fix x y
assume xcarr: "x ∈ carrier R"
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and ycarr: "y ∈ carrier R"
note carr = acarr xcarr ycarr

from carr
have "x ⊗ (y ⊗ a) = (x ⊗ y) ⊗ a" by (simp add: m_assoc)

from this and carr
show "∃ z. x ⊗ (y ⊗ a) = z ⊗ a ∧ z ∈ carrier R" by fast

qed

lemma (in ring) cgenideal_self:
assumes icarr: "i ∈ carrier R"
shows "i ∈ PIdl i"

unfolding cgenideal_def
proof simp

from icarr
have "i = 1 ⊗ i" by simp

from this and icarr
show "∃ x. i = x ⊗ i ∧ x ∈ carrier R" by fast

qed

cgenideal is minimal

lemma (in ring) cgenideal_minimal:
assumes "ideal J R"
assumes aJ: "a ∈ J"
shows "PIdl a ⊆ J"

proof -
interpret ideal J R by fact
show ?thesis unfolding cgenideal_def

apply rule
apply clarify
using aJ
apply (erule I_l_closed)
done

qed

lemma (in cring) cgenideal_eq_genideal:
assumes icarr: "i ∈ carrier R"
shows "PIdl i = Idl {i}"

apply rule
apply (intro cgenideal_minimal)
apply (rule genideal_ideal, fast intro: icarr)

apply (rule genideal_self’, fast intro: icarr)
apply (intro genideal_minimal)
apply (rule cgenideal_ideal [OF icarr])

apply (simp, rule cgenideal_self [OF icarr])
done

lemma (in cring) cgenideal_eq_rcos:
"PIdl i = carrier R #> i"
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unfolding cgenideal_def r_coset_def
by fast

lemma (in cring) cgenideal_is_principalideal:
assumes icarr: "i ∈ carrier R"
shows "principalideal (PIdl i) R"

apply (rule principalidealI)
apply (rule cgenideal_ideal [OF icarr])
proof -

from icarr
have "PIdl i = Idl {i}" by (rule cgenideal_eq_genideal)

from icarr and this
show "∃ i’∈carrier R. PIdl i = Idl {i’}" by fast

qed

9.7 Union of Ideals

lemma (in ring) union_genideal:
assumes idealI: "ideal I R"

and idealJ: "ideal J R"
shows "Idl (I ∪ J) = I <+> J"

apply rule
apply (rule ring.genideal_minimal)

apply (rule is_ring)
apply (rule add_ideals[OF idealI idealJ])

apply (rule)
apply (simp add: set_add_defs) apply (elim disjE) defer 1 defer 1
apply (rule) apply (simp add: set_add_defs genideal_def) apply clarsimp

defer 1
proof -

fix x
assume xI: "x ∈ I"
have ZJ: "0 ∈ J"

by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealJ])
from ideal.Icarr[OF idealI xI]

have "x = x ⊕ 0" by algebra
from xI and ZJ and this

show "∃ h∈I. ∃ k∈J. x = h ⊕ k" by fast
next

fix x
assume xJ: "x ∈ J"
have ZI: "0 ∈ I"

by (intro additive_subgroup.zero_closed, rule ideal.axioms[OF idealI])
from ideal.Icarr[OF idealJ xJ]

have "x = 0 ⊕ x" by algebra
from ZI and xJ and this

show "∃ h∈I. ∃ k∈J. x = h ⊕ k" by fast
next

fix i j K
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assume iI: "i ∈ I"
and jJ: "j ∈ J"
and idealK: "ideal K R"
and IK: "I ⊆ K"
and JK: "J ⊆ K"

from iI and IK
have iK: "i ∈ K" by fast

from jJ and JK
have jK: "j ∈ K" by fast

from iK and jK
show "i ⊕ j ∈ K" by (intro additive_subgroup.a_closed) (rule ideal.axioms[OF

idealK])
qed

9.8 Properties of Principal Ideals

0 generates the zero ideal

lemma (in ring) zero_genideal:
shows "Idl {0} = {0}"

apply rule
apply (simp add: genideal_minimal zeroideal)
apply (fast intro!: genideal_self)
done

1 generates the unit ideal

lemma (in ring) one_genideal:
shows "Idl {1} = carrier R"

proof -
have "1 ∈ Idl {1}" by (simp add: genideal_self’)
thus "Idl {1} = carrier R" by (intro ideal.one_imp_carrier, fast intro:

genideal_ideal)
qed

The zero ideal is a principal ideal

corollary (in ring) zeropideal:
shows "principalideal {0} R"

apply (rule principalidealI)
apply (rule zeroideal)

apply (blast intro!: zero_closed zero_genideal[symmetric])
done

The unit ideal is a principal ideal

corollary (in ring) onepideal:
shows "principalideal (carrier R) R"

apply (rule principalidealI)
apply (rule oneideal)

apply (blast intro!: one_closed one_genideal[symmetric])
done
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Every principal ideal is a right coset of the carrier

lemma (in principalideal) rcos_generate:
assumes "cring R"
shows "∃ x∈I. I = carrier R #> x"

proof -
interpret cring R by fact
from generate

obtain i
where icarr: "i ∈ carrier R"
and I1: "I = Idl {i}"

by fast+

from icarr and genideal_self[of "{i}"]
have "i ∈ Idl {i}" by fast

hence iI: "i ∈ I" by (simp add: I1)

from I1 icarr
have I2: "I = PIdl i" by (simp add: cgenideal_eq_genideal)

have "PIdl i = carrier R #> i"
unfolding cgenideal_def r_coset_def
by fast

from I2 and this
have "I = carrier R #> i" by simp

from iI and this
show "∃ x∈I. I = carrier R #> x" by fast

qed

9.9 Prime Ideals

lemma (in ideal) primeidealCD:
assumes "cring R"
assumes notprime: "¬ primeideal I R"
shows "carrier R = I ∨ (∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗

b ∈ I ∧ a /∈ I ∧ b /∈ I)"
proof (rule ccontr, clarsimp)

interpret cring R by fact
assume InR: "carrier R 6= I"

and "∀ a. a ∈ carrier R −→ (∀ b. a ⊗ b ∈ I −→ b ∈ carrier R −→
a ∈ I ∨ b ∈ I)"

hence I_prime: "
∧

a b. [[a ∈ carrier R; b ∈ carrier R; a ⊗ b ∈ I]] =⇒
a ∈ I ∨ b ∈ I" by simp

have "primeideal I R"
apply (rule primeideal.intro [OF is_ideal is_cring])
apply (rule primeideal_axioms.intro)
apply (rule InR)

apply (erule (2) I_prime)
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done
from this and notprime

show "False" by simp
qed

lemma (in ideal) primeidealCE:
assumes "cring R"
assumes notprime: "¬ primeideal I R"
obtains "carrier R = I"
| "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧ b

/∈ I"
proof -

interpret R: cring R by fact
assume "carrier R = I ==> thesis"

and "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈ I ∧
b /∈ I =⇒ thesis"

then show thesis using primeidealCD [OF R.is_cring notprime] by blast
qed

If {0} is a prime ideal of a commutative ring, the ring is a domain

lemma (in cring) zeroprimeideal_domainI:
assumes pi: "primeideal {0} R"
shows "domain R"

apply (rule domain.intro, rule is_cring)
apply (rule domain_axioms.intro)
proof (rule ccontr, simp)

interpret primeideal "{0}" "R" by (rule pi)
assume "1 = 0"
hence "carrier R = {0}" by (rule one_zeroD)
from this[symmetric] and I_notcarr

show "False" by simp
next

interpret primeideal "{0}" "R" by (rule pi)
fix a b
assume ab: "a ⊗ b = 0"

and carr: "a ∈ carrier R" "b ∈ carrier R"
from ab

have abI: "a ⊗ b ∈ {0}" by fast
from carr and this

have "a ∈ {0} ∨ b ∈ {0}" by (rule I_prime)
thus "a = 0 ∨ b = 0" by simp

qed

corollary (in cring) domain_eq_zeroprimeideal:
shows "domain R = primeideal {0} R"

apply rule
apply (erule domain.zeroprimeideal)

apply (erule zeroprimeideal_domainI)
done
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9.10 Maximal Ideals

lemma (in ideal) helper_I_closed:
assumes carr: "a ∈ carrier R" "x ∈ carrier R" "y ∈ carrier R"

and axI: "a ⊗ x ∈ I"
shows "a ⊗ (x ⊗ y) ∈ I"

proof -
from axI and carr

have "(a ⊗ x) ⊗ y ∈ I" by (simp add: I_r_closed)
also from carr

have "(a ⊗ x) ⊗ y = a ⊗ (x ⊗ y)" by (simp add: m_assoc)
finally

show "a ⊗ (x ⊗ y) ∈ I" .
qed

lemma (in ideal) helper_max_prime:
assumes "cring R"
assumes acarr: "a ∈ carrier R"
shows "ideal {x∈carrier R. a ⊗ x ∈ I} R"

proof -
interpret cring R by fact
show ?thesis apply (rule idealI)

apply (rule cring.axioms[OF is_cring])
apply (rule subgroup.intro)
apply (simp, fast)
apply clarsimp apply (simp add: r_distr acarr)
apply (simp add: acarr)
apply (simp add: a_inv_def[symmetric], clarify) defer 1
apply clarsimp defer 1
apply (fast intro!: helper_I_closed acarr)

proof -
fix x
assume xcarr: "x ∈ carrier R"

and ax: "a ⊗ x ∈ I"
from ax and acarr xcarr
have "	(a ⊗ x) ∈ I" by simp
also from acarr xcarr
have "	(a ⊗ x) = a ⊗ (	x)" by algebra
finally
show "a ⊗ (	x) ∈ I" .
from acarr
have "a ⊗ 0 = 0" by simp

next
fix x y
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
and ayI: "a ⊗ y ∈ I"

from ayI and acarr xcarr ycarr
have "a ⊗ (y ⊗ x) ∈ I" by (simp add: helper_I_closed)
moreover from xcarr ycarr
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have "y ⊗ x = x ⊗ y" by (simp add: m_comm)
ultimately
show "a ⊗ (x ⊗ y) ∈ I" by simp

qed
qed

In a cring every maximal ideal is prime

lemma (in cring) maximalideal_is_prime:
assumes "maximalideal I R"
shows "primeideal I R"

proof -
interpret maximalideal I R by fact
show ?thesis apply (rule ccontr)

apply (rule primeidealCE)
apply (rule is_cring)
apply assumption
apply (simp add: I_notcarr)

proof -
assume "∃ a b. a ∈ carrier R ∧ b ∈ carrier R ∧ a ⊗ b ∈ I ∧ a /∈

I ∧ b /∈ I"
from this
obtain a b

where acarr: "a ∈ carrier R"
and bcarr: "b ∈ carrier R"
and abI: "a ⊗ b ∈ I"
and anI: "a /∈ I"
and bnI: "b /∈ I"
by fast

def J ≡ "{x∈carrier R. a ⊗ x ∈ I}"

from is_cring and acarr
have idealJ: "ideal J R" unfolding J_def by (rule helper_max_prime)

have IsubJ: "I ⊆ J"
proof

fix x
assume xI: "x ∈ I"
from this and acarr
have "a ⊗ x ∈ I" by (intro I_l_closed)
from xI[THEN a_Hcarr] this
show "x ∈ J" unfolding J_def by fast

qed

from abI and acarr bcarr
have "b ∈ J" unfolding J_def by fast
from bnI and this
have JnI: "J 6= I" by fast
from acarr
have "a = a ⊗ 1" by algebra
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from this and anI
have "a ⊗ 1 /∈ I" by simp
from one_closed and this
have "1 /∈ J" unfolding J_def by fast
hence Jncarr: "J 6= carrier R" by fast

interpret ideal J R by (rule idealJ)

have "J = I ∨ J = carrier R"
apply (intro I_maximal)
apply (rule idealJ)
apply (rule IsubJ)
apply (rule a_subset)
done

from this and JnI and Jncarr
show "False" by simp

qed
qed

9.11 Derived Theorems

— A non-zero cring that has only the two trivial ideals is a field
lemma (in cring) trivialideals_fieldI:

assumes carrnzero: "carrier R 6= {0}"
and haveideals: "{I. ideal I R} = {{0}, carrier R}"

shows "field R"
apply (rule cring_fieldI)
apply (rule, rule, rule)
apply (erule Units_closed)

defer 1
apply rule

defer 1
proof (rule ccontr, simp)

assume zUnit: "0 ∈ Units R"
hence a: "0 ⊗ inv 0 = 1" by (rule Units_r_inv)
from zUnit

have "0 ⊗ inv 0 = 0" by (intro l_null, rule Units_inv_closed)
from a[symmetric] and this

have "1 = 0" by simp
hence "carrier R = {0}" by (rule one_zeroD)
from this and carrnzero

show "False" by simp
next

fix x
assume xcarr’: "x ∈ carrier R - {0}"
hence xcarr: "x ∈ carrier R" by fast
from xcarr’

have xnZ: "x 6= 0" by fast
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from xcarr
have xIdl: "ideal (PIdl x) R" by (intro cgenideal_ideal, fast)

from xcarr
have "x ∈ PIdl x" by (intro cgenideal_self, fast)

from this and xnZ
have "PIdl x 6= {0}" by fast

from haveideals and this
have "PIdl x = carrier R"
by (blast intro!: xIdl)

hence "1 ∈ PIdl x" by simp
hence "∃ y. 1 = y ⊗ x ∧ y ∈ carrier R" unfolding cgenideal_def by blast
from this

obtain y
where ycarr: " y ∈ carrier R"
and ylinv: "1 = y ⊗ x"

by fast+
from ylinv and xcarr ycarr

have yrinv: "1 = x ⊗ y" by (simp add: m_comm)
from ycarr and ylinv[symmetric] and yrinv[symmetric]

have "∃ y ∈ carrier R. y ⊗ x = 1 ∧ x ⊗ y = 1" by fast
from this and xcarr

show "x ∈ Units R"
unfolding Units_def
by fast

qed

lemma (in field) all_ideals:
shows "{I. ideal I R} = {{0}, carrier R}"

apply (rule, rule)
proof -

fix I
assume a: "I ∈ {I. ideal I R}"
with this

interpret ideal I R by simp

show "I ∈ {{0}, carrier R}"
proof (cases "∃ a. a ∈ I - {0}")

assume "∃ a. a ∈ I - {0}"
from this

obtain a
where aI: "a ∈ I"
and anZ: "a 6= 0"

by fast+
from aI[THEN a_Hcarr] anZ

have aUnit: "a ∈ Units R" by (simp add: field_Units)
hence a: "a ⊗ inv a = 1" by (rule Units_r_inv)
from aI and aUnit

have "a ⊗ inv a ∈ I" by (simp add: I_r_closed del: Units_r_inv)
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hence oneI: "1 ∈ I" by (simp add: a[symmetric])

have "carrier R ⊆ I"
proof

fix x
assume xcarr: "x ∈ carrier R"
from oneI and this

have "1 ⊗ x ∈ I" by (rule I_r_closed)
from this and xcarr

show "x ∈ I" by simp
qed
from this and a_subset

have "I = carrier R" by fast
thus "I ∈ {{0}, carrier R}" by fast

next
assume "¬ (∃ a. a ∈ I - {0})"
hence IZ: "

∧
a. a ∈ I =⇒ a = 0" by simp

have a: "I ⊆ {0}"
proof

fix x
assume "x ∈ I"
hence "x = 0" by (rule IZ)
thus "x ∈ {0}" by fast

qed

have "0 ∈ I" by simp
hence "{0} ⊆ I" by fast

from this and a
have "I = {0}" by fast

thus "I ∈ {{0}, carrier R}" by fast
qed

qed (simp add: zeroideal oneideal)

— Jacobson Theorem 2.2
lemma (in cring) trivialideals_eq_field:

assumes carrnzero: "carrier R 6= {0}"
shows "({I. ideal I R} = {{0}, carrier R}) = field R"

by (fast intro!: trivialideals_fieldI[OF carrnzero] field.all_ideals)

Like zeroprimeideal for domains

lemma (in field) zeromaximalideal:
"maximalideal {0} R"

apply (rule maximalidealI)
apply (rule zeroideal)

proof-
from one_not_zero

have "1 /∈ {0}" by simp
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from this and one_closed
show "carrier R 6= {0}" by fast

next
fix J
assume Jideal: "ideal J R"
hence "J ∈ {I. ideal I R}"

by fast

from this and all_ideals
show "J = {0} ∨ J = carrier R" by simp

qed

lemma (in cring) zeromaximalideal_fieldI:
assumes zeromax: "maximalideal {0} R"
shows "field R"

apply (rule trivialideals_fieldI, rule maximalideal.I_notcarr[OF zeromax])
apply rule apply clarsimp defer 1
apply (simp add: zeroideal oneideal)

proof -
fix J
assume Jn0: "J 6= {0}"

and idealJ: "ideal J R"
interpret ideal J R by (rule idealJ)
have "{0} ⊆ J" by (rule ccontr, simp)
from zeromax and idealJ and this and a_subset

have "J = {0} ∨ J = carrier R" by (rule maximalideal.I_maximal)
from this and Jn0

show "J = carrier R" by simp
qed

lemma (in cring) zeromaximalideal_eq_field:
"maximalideal {0} R = field R"

apply rule
apply (erule zeromaximalideal_fieldI)

apply (erule field.zeromaximalideal)
done

end

theory RingHom
imports Ideal
begin

10 Homomorphisms of Non-Commutative Rings

Lifting existing lemmas in a ring_hom_ring locale
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locale ring_hom_ring = R: ring R + S: ring S
for R (structure) and S (structure) +

fixes h
assumes homh: "h ∈ ring_hom R S"
notes hom_mult [simp] = ring_hom_mult [OF homh]

and hom_one [simp] = ring_hom_one [OF homh]

sublocale ring_hom_cring ⊆ ring: ring_hom_ring
proof qed (rule homh)

sublocale ring_hom_ring ⊆ abelian_group: abelian_group_hom R S
apply (rule abelian_group_homI)

apply (rule R.is_abelian_group)
apply (rule S.is_abelian_group)

apply (intro group_hom.intro group_hom_axioms.intro)
apply (rule R.a_group)

apply (rule S.a_group)
apply (insert homh, unfold hom_def ring_hom_def)
apply simp
done

lemma (in ring_hom_ring) is_ring_hom_ring:
"ring_hom_ring R S h"
by (rule ring_hom_ring_axioms)

lemma ring_hom_ringI:
fixes R (structure) and S (structure)
assumes "ring R" "ring S"
assumes

hom_closed: "!!x. x ∈ carrier R ==> h x ∈ carrier S"
and compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]

==> h (x ⊗ y) = h x ⊗S h y"
and compatible_add: "!!x y. [| x : carrier R; y : carrier R |] ==>

h (x ⊕ y) = h x ⊕S h y"
and compatible_one: "h 1 = 1S"

shows "ring_hom_ring R S h"
proof -

interpret ring R by fact
interpret ring S by fact
show ?thesis apply unfold_locales

apply (unfold ring_hom_def, safe)
apply (simp add: hom_closed Pi_def)

apply (erule (1) compatible_mult)
apply (erule (1) compatible_add)

apply (rule compatible_one)
done
qed

lemma ring_hom_ringI2:
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assumes "ring R" "ring S"
assumes h: "h ∈ ring_hom R S"
shows "ring_hom_ring R S h"

proof -
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)

apply (rule R.is_ring)
apply (rule S.is_ring)
apply (rule h)
done

qed

lemma ring_hom_ringI3:
fixes R (structure) and S (structure)
assumes "abelian_group_hom R S h" "ring R" "ring S"
assumes compatible_mult: "!!x y. [| x : carrier R; y : carrier R |]

==> h (x ⊗ y) = h x ⊗S h y"
and compatible_one: "h 1 = 1S"

shows "ring_hom_ring R S h"
proof -

interpret abelian_group_hom R S h by fact
interpret R: ring R by fact
interpret S: ring S by fact
show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro,

rule R.is_ring, rule S.is_ring)
apply (insert group_hom.homh[OF a_group_hom])
apply (unfold hom_def ring_hom_def, simp)
apply safe
apply (erule (1) compatible_mult)
apply (rule compatible_one)
done

qed

lemma ring_hom_cringI:
assumes "ring_hom_ring R S h" "cring R" "cring S"
shows "ring_hom_cring R S h"

proof -
interpret ring_hom_ring R S h by fact
interpret R: cring R by fact
interpret S: cring S by fact
show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)

(rule R.is_cring, rule S.is_cring, rule homh)
qed

10.1 The Kernel of a Ring Homomorphism

— the kernel of a ring homomorphism is an ideal
lemma (in ring_hom_ring) kernel_is_ideal:
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shows "ideal (a_kernel R S h) R"
apply (rule idealI)

apply (rule R.is_ring)
apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])

apply (unfold a_kernel_def’, simp+)
done

Elements of the kernel are mapped to zero

lemma (in abelian_group_hom) kernel_zero [simp]:
"i ∈ a_kernel R S h =⇒ h i = 0S"

by (simp add: a_kernel_defs)

10.2 Cosets

Cosets of the kernel correspond to the elements of the image of the homo-
morphism

lemma (in ring_hom_ring) rcos_imp_homeq:
assumes acarr: "a ∈ carrier R"

and xrcos: "x ∈ a_kernel R S h +> a"
shows "h x = h a"

proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

from xrcos
have "∃ i ∈ a_kernel R S h. x = i ⊕ a" by (simp add: a_r_coset_defs)

from this obtain i
where iker: "i ∈ a_kernel R S h"

and x: "x = i ⊕ a"
by fast+

note carr = acarr iker[THEN a_Hcarr]

from x
have "h x = h (i ⊕ a)" by simp

also from carr
have ". . . = h i ⊕S h a" by simp

also from iker
have ". . . = 0S ⊕S h a" by simp

also from carr
have ". . . = h a" by simp

finally
show "h x = h a" .

qed

lemma (in ring_hom_ring) homeq_imp_rcos:
assumes acarr: "a ∈ carrier R"

and xcarr: "x ∈ carrier R"
and hx: "h x = h a"

shows "x ∈ a_kernel R S h +> a"
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proof -
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

note carr = acarr xcarr
note hcarr = acarr[THEN hom_closed] xcarr[THEN hom_closed]

from hx and hcarr
have a: "h x ⊕S 	Sh a = 0S" by algebra

from carr
have "h x ⊕S 	Sh a = h (x ⊕ 	a)" by simp

from a and this
have b: "h (x ⊕ 	a) = 0S" by simp

from carr have "x ⊕ 	a ∈ carrier R" by simp
from this and b

have "x ⊕ 	a ∈ a_kernel R S h"
unfolding a_kernel_def’
by fast

from this and carr
show "x ∈ a_kernel R S h +> a" by (simp add: a_rcos_module_rev)

qed

corollary (in ring_hom_ring) rcos_eq_homeq:
assumes acarr: "a ∈ carrier R"
shows "(a_kernel R S h) +> a = {x ∈ carrier R. h x = h a}"

apply rule defer 1
apply clarsimp defer 1
proof

interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

fix x
assume xrcos: "x ∈ a_kernel R S h +> a"
from acarr and this

have xcarr: "x ∈ carrier R"
by (rule a_elemrcos_carrier)

from xrcos
have "h x = h a" by (rule rcos_imp_homeq[OF acarr])

from xcarr and this
show "x ∈ {x ∈ carrier R. h x = h a}" by fast

next
interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)

fix x
assume xcarr: "x ∈ carrier R"

and hx: "h x = h a"
from acarr xcarr hx

show "x ∈ a_kernel R S h +> a" by (rule homeq_imp_rcos)
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qed

end

theory QuotRing
imports RingHom
begin

11 Quotient Rings

11.1 Multiplication on Cosets

constdefs (structure R)
rcoset_mult :: "[(’a, _) ring_scheme, ’a set, ’a set, ’a set] ⇒ ’a

set"
("[mod _:] _

⊗
ı _" [81,81,81] 80)

"rcoset_mult R I A B ≡
⋃
a∈A.

⋃
b∈B. I +> (a ⊗ b)"

rcoset_mult fulfils the properties required by congruences

lemma (in ideal) rcoset_mult_add:
"[[x ∈ carrier R; y ∈ carrier R]] =⇒ [mod I:] (I +> x)

⊗
(I +> y) =

I +> (x ⊗ y)"
apply rule
apply (rule, simp add: rcoset_mult_def, clarsimp)
defer 1
apply (rule, simp add: rcoset_mult_def)
defer 1
proof -

fix z x’ y’
assume carr: "x ∈ carrier R" "y ∈ carrier R"

and x’rcos: "x’ ∈ I +> x"
and y’rcos: "y’ ∈ I +> y"
and zrcos: "z ∈ I +> x’ ⊗ y’"

from x’rcos
have "∃ h∈I. x’ = h ⊕ x" by (simp add: a_r_coset_def r_coset_def)

from this obtain hx
where hxI: "hx ∈ I"
and x’: "x’ = hx ⊕ x"
by fast+

from y’rcos
have "∃ h∈I. y’ = h ⊕ y" by (simp add: a_r_coset_def r_coset_def)

from this
obtain hy
where hyI: "hy ∈ I"
and y’: "y’ = hy ⊕ y"
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by fast+

from zrcos
have "∃ h∈I. z = h ⊕ (x’ ⊗ y’)" by (simp add: a_r_coset_def r_coset_def)

from this
obtain hz
where hzI: "hz ∈ I"
and z: "z = hz ⊕ (x’ ⊗ y’)"
by fast+

note carr = carr hxI[THEN a_Hcarr] hyI[THEN a_Hcarr] hzI[THEN a_Hcarr]

from z have "z = hz ⊕ (x’ ⊗ y’)" .
also from x’ y’

have ". . . = hz ⊕ ((hx ⊕ x) ⊗ (hy ⊕ y))" by simp
also from carr

have ". . . = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" by algebra
finally

have z2: "z = (hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy) ⊕ x ⊗ y" .

from hxI hyI hzI carr
have "hz ⊕ (hx ⊗ (hy ⊕ y)) ⊕ x ⊗ hy ∈ I" by (simp add: I_l_closed

I_r_closed)

from this and z2
have "∃ h∈I. z = h ⊕ x ⊗ y" by fast

thus "z ∈ I +> x ⊗ y" by (simp add: a_r_coset_def r_coset_def)
next

fix z
assume xcarr: "x ∈ carrier R"

and ycarr: "y ∈ carrier R"
and zrcos: "z ∈ I +> x ⊗ y"

from xcarr
have xself: "x ∈ I +> x" by (intro a_rcos_self)

from ycarr
have yself: "y ∈ I +> y" by (intro a_rcos_self)

from xself and yself and zrcos
show "∃ a∈I +> x. ∃ b∈I +> y. z ∈ I +> a ⊗ b" by fast

qed

11.2 Quotient Ring Definition

constdefs (structure R)
FactRing :: "[(’a,’b) ring_scheme, ’a set] ⇒ (’a set) ring"

(infixl "Quot" 65)
"FactRing R I ≡

(|carrier = a_rcosets I, mult = rcoset_mult R I, one = (I +> 1), zero
= I, add = set_add R|)"
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11.3 Factorization over General Ideals

The quotient is a ring

lemma (in ideal) quotient_is_ring:
shows "ring (R Quot I)"

apply (rule ringI)
— abelian group
apply (rule comm_group_abelian_groupI)
apply (simp add: FactRing_def)
apply (rule a_factorgroup_is_comm_group[unfolded A_FactGroup_def’])

— mult monoid
apply (rule monoidI)

apply (simp_all add: FactRing_def A_RCOSETS_def RCOSETS_def
a_r_coset_def[symmetric])

— mult closed
apply (clarify)
apply (simp add: rcoset_mult_add, fast)

— mult one_closed
apply (force intro: one_closed)

— mult assoc
apply clarify
apply (simp add: rcoset_mult_add m_assoc)

— mult one
apply clarify
apply (simp add: rcoset_mult_add l_one)

apply clarify
apply (simp add: rcoset_mult_add r_one)

— distr
apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum l_distr)

apply clarify
apply (simp add: rcoset_mult_add a_rcos_sum r_distr)
done

This is a ring homomorphism

lemma (in ideal) rcos_ring_hom:
"(op +> I) ∈ ring_hom R (R Quot I)"

apply (rule ring_hom_memI)
apply (simp add: FactRing_def a_rcosetsI[OF a_subset])

apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)

apply (simp add: FactRing_def)
done

lemma (in ideal) rcos_ring_hom_ring:
"ring_hom_ring R (R Quot I) (op +> I)"

apply (rule ring_hom_ringI)
apply (rule is_ring, rule quotient_is_ring)

apply (simp add: FactRing_def a_rcosetsI[OF a_subset])
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apply (simp add: FactRing_def rcoset_mult_add)
apply (simp add: FactRing_def a_rcos_sum)

apply (simp add: FactRing_def)
done

The quotient of a cring is also commutative

lemma (in ideal) quotient_is_cring:
assumes "cring R"
shows "cring (R Quot I)"

proof -
interpret cring R by fact
show ?thesis apply (intro cring.intro comm_monoid.intro comm_monoid_axioms.intro)
apply (rule quotient_is_ring)

apply (rule ring.axioms[OF quotient_is_ring])
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric])
apply clarify
apply (simp add: rcoset_mult_add m_comm)
done
qed

Cosets as a ring homomorphism on crings

lemma (in ideal) rcos_ring_hom_cring:
assumes "cring R"
shows "ring_hom_cring R (R Quot I) (op +> I)"

proof -
interpret cring R by fact
show ?thesis apply (rule ring_hom_cringI)
apply (rule rcos_ring_hom_ring)

apply (rule is_cring)
apply (rule quotient_is_cring)
apply (rule is_cring)
done
qed

11.4 Factorization over Prime Ideals

The quotient ring generated by a prime ideal is a domain

lemma (in primeideal) quotient_is_domain:
shows "domain (R Quot I)"

apply (rule domain.intro)
apply (rule quotient_is_cring, rule is_cring)

apply (rule domain_axioms.intro)
apply (simp add: FactRing_def) defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],

clarify)
apply (simp add: rcoset_mult_add) defer 1

proof (rule ccontr, clarsimp)
assume "I +> 1 = I"
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hence "1 ∈ I" by (simp only: a_coset_join1 one_closed a_subgroup)
hence "carrier R ⊆ I" by (subst one_imp_carrier, simp, fast)
from this and a_subset

have "I = carrier R" by fast
from this and I_notcarr

show "False" by fast
next

fix x y
assume carr: "x ∈ carrier R" "y ∈ carrier R"

and a: "I +> x ⊗ y = I"
and b: "I +> y 6= I"

have ynI: "y /∈ I"
proof (rule ccontr, simp)

assume "y ∈ I"
hence "I +> y = I" by (rule a_rcos_const)
from this and b

show "False" by simp
qed

from carr
have "x ⊗ y ∈ I +> x ⊗ y" by (simp add: a_rcos_self)

from this
have xyI: "x ⊗ y ∈ I" by (simp add: a)

from xyI and carr
have xI: "x ∈ I ∨ y ∈ I" by (simp add: I_prime)

from this and ynI
have "x ∈ I" by fast

thus "I +> x = I" by (rule a_rcos_const)
qed

Generating right cosets of a prime ideal is a homomorphism on commutative
rings

lemma (in primeideal) rcos_ring_hom_cring:
shows "ring_hom_cring R (R Quot I) (op +> I)"

by (rule rcos_ring_hom_cring, rule is_cring)

11.5 Factorization over Maximal Ideals

In a commutative ring, the quotient ring over a maximal ideal is a field.
The proof follows “W. Adkins, S. Weintraub: Algebra – An Approach via
Module Theory”

lemma (in maximalideal) quotient_is_field:
assumes "cring R"
shows "field (R Quot I)"

proof -
interpret cring R by fact
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show ?thesis apply (intro cring.cring_fieldI2)
apply (rule quotient_is_cring, rule is_cring)

defer 1
apply (simp add: FactRing_def A_RCOSETS_defs a_r_coset_def[symmetric],

clarsimp)
apply (simp add: rcoset_mult_add) defer 1

proof (rule ccontr, simp)
— Quotient is not empty
assume "0R Quot I = 1R Quot I"
hence II1: "I = I +> 1" by (simp add: FactRing_def)
from a_rcos_self[OF one_closed]
have "1 ∈ I" by (simp add: II1[symmetric])
hence "I = carrier R" by (rule one_imp_carrier)
from this and I_notcarr
show "False" by simp

next
— Existence of Inverse
fix a
assume IanI: "I +> a 6= I"

and acarr: "a ∈ carrier R"

— Helper ideal J
def J ≡ "(carrier R #> a) <+> I :: ’a set"
have idealJ: "ideal J R"

apply (unfold J_def, rule add_ideals)
apply (simp only: cgenideal_eq_rcos[symmetric], rule cgenideal_ideal,

rule acarr)
apply (rule is_ideal)
done

— Showing J not smaller than I
have IinJ: "I ⊆ J"
proof (rule, simp add: J_def r_coset_def set_add_defs)

fix x
assume xI: "x ∈ I"
have Zcarr: "0 ∈ carrier R" by fast
from xI[THEN a_Hcarr] acarr
have "x = 0 ⊗ a ⊕ x" by algebra

from Zcarr and xI and this
show "∃ xa∈carrier R. ∃ k∈I. x = xa ⊗ a ⊕ k" by fast

qed

— Showing J 6= I
have anI: "a /∈ I"
proof (rule ccontr, simp)

assume "a ∈ I"
hence "I +> a = I" by (rule a_rcos_const)
from this and IanI
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show "False" by simp
qed

have aJ: "a ∈ J"
proof (simp add: J_def r_coset_def set_add_defs)

from acarr
have "a = 1 ⊗ a ⊕ 0" by algebra
from one_closed and additive_subgroup.zero_closed[OF is_additive_subgroup]

and this
show "∃ x∈carrier R. ∃ k∈I. a = x ⊗ a ⊕ k" by fast

qed

from aJ and anI
have JnI: "J 6= I" by fast

— Deducing J = carrier R because I is maximal
from idealJ and IinJ
have "J = I ∨ J = carrier R"
proof (rule I_maximal, unfold J_def)

have "carrier R #> a ⊆ carrier R"
using subset_refl acarr
by (rule r_coset_subset_G)

from this and a_subset
show "carrier R #> a <+> I ⊆ carrier R" by (rule set_add_closed)

qed

from this and JnI
have Jcarr: "J = carrier R" by simp

— Calculating an inverse for a
from one_closed[folded Jcarr]
have "∃ r∈carrier R. ∃ i∈I. 1 = r ⊗ a ⊕ i"

by (simp add: J_def r_coset_def set_add_defs)
from this
obtain r i

where rcarr: "r ∈ carrier R"
and iI: "i ∈ I"
and one: "1 = r ⊗ a ⊕ i"

by fast
from one and rcarr and acarr and iI[THEN a_Hcarr]
have rai1: "a ⊗ r = 	i ⊕ 1" by algebra

— Lifting to cosets
from iI
have "	i ⊕ 1 ∈ I +> 1"

by (intro a_rcosI, simp, intro a_subset, simp)
from this and rai1
have "a ⊗ r ∈ I +> 1" by simp
from this have "I +> 1 = I +> a ⊗ r"
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by (rule a_repr_independence, simp) (rule a_subgroup)

from rcarr and this[symmetric]
show "∃ r∈carrier R. I +> a ⊗ r = I +> 1" by fast

qed
qed

end

theory IntRing
imports QuotRing Lattice Int Primes
begin

12 The Ring of Integers

12.1 Some properties of int

lemma dvds_imp_abseq:
"[[l dvd k; k dvd l]] =⇒ abs l = abs (k::int)"

apply (subst abs_split, rule conjI)
apply (clarsimp, subst abs_split, rule conjI)
apply (clarsimp)
apply (cases "k=0", simp)
apply (cases "l=0", simp)
apply (simp add: zdvd_anti_sym)

apply clarsimp
apply (cases "k=0", simp)
apply (simp add: zdvd_anti_sym)

apply (clarsimp, subst abs_split, rule conjI)
apply (clarsimp)
apply (cases "l=0", simp)
apply (simp add: zdvd_anti_sym)

apply (clarsimp)
apply (subgoal_tac "-l = -k", simp)
apply (intro zdvd_anti_sym, simp+)
done

lemma abseq_imp_dvd:
assumes a_lk: "abs l = abs (k::int)"
shows "l dvd k"

proof -
from a_lk

have "nat (abs l) = nat (abs k)" by simp
hence "nat (abs l) dvd nat (abs k)" by simp
hence "int (nat (abs l)) dvd k" by (subst int_dvd_iff)
hence "abs l dvd k" by simp
thus "l dvd k"
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apply (unfold dvd_def, cases "l<0")
defer 1 apply clarsimp

proof (clarsimp)
fix k
assume l0: "l < 0"
have "- (l * k) = l * (-k)" by simp
thus "∃ ka. - (l * k) = l * ka" by fast

qed
qed

lemma dvds_eq_abseq:
"(l dvd k ∧ k dvd l) = (abs l = abs (k::int))"

apply rule
apply (simp add: dvds_imp_abseq)

apply (rule conjI)
apply (simp add: abseq_imp_dvd)+

done

12.2 Z: The Set of Integers as Algebraic Structure

constdefs
int_ring :: "int ring" ("Z")
"int_ring ≡ (|carrier = UNIV, mult = op *, one = 1, zero = 0, add = op

+|)"

lemma int_Zcarr [intro!, simp]:
"k ∈ carrier Z"
by (simp add: int_ring_def)

lemma int_is_cring:
"cring Z"

unfolding int_ring_def
apply (rule cringI)

apply (rule abelian_groupI, simp_all)
defer 1
apply (rule comm_monoidI, simp_all)

apply (rule zadd_zmult_distrib)
apply (fast intro: zadd_zminus_inverse2)
done

12.3 Interpretations

Since definitions of derived operations are global, their interpretation needs
to be done as early as possible — that is, with as few assumptions as possible.

interpretation int: monoid Z
where "carrier Z = UNIV"

and "mult Z x y = x * y"
and "one Z = 1"
and "pow Z x n = x^n"
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proof -
— Specification
show "monoid Z" proof qed (auto simp: int_ring_def)
then interpret int: monoid Z .

— Carrier
show "carrier Z = UNIV" by (simp add: int_ring_def)

— Operations
{ fix x y show "mult Z x y = x * y" by (simp add: int_ring_def) }
note mult = this
show one: "one Z = 1" by (simp add: int_ring_def)
show "pow Z x n = x^n" by (induct n) (simp, simp add: int_ring_def)+

qed

interpretation int: comm_monoid Z
where "finprod Z f A = (if finite A then setprod f A else undefined)"

proof -
— Specification
show "comm_monoid Z" proof qed (auto simp: int_ring_def)
then interpret int: comm_monoid Z .

— Operations
{ fix x y have "mult Z x y = x * y" by (simp add: int_ring_def) }
note mult = this
have one: "one Z = 1" by (simp add: int_ring_def)
show "finprod Z f A = (if finite A then setprod f A else undefined)"
proof (cases "finite A")

case True then show ?thesis proof induct
case empty show ?case by (simp add: one)

next
case insert then show ?case by (simp add: Pi_def mult)

qed
next

case False then show ?thesis by (simp add: finprod_def)
qed

qed

interpretation int: abelian_monoid Z
where "zero Z = 0"

and "add Z x y = x + y"
and "finsum Z f A = (if finite A then setsum f A else undefined)"

proof -
— Specification
show "abelian_monoid Z" proof qed (auto simp: int_ring_def)
then interpret int: abelian_monoid Z .

— Operations
{ fix x y show "add Z x y = x + y" by (simp add: int_ring_def) }
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note add = this
show zero: "zero Z = 0" by (simp add: int_ring_def)
show "finsum Z f A = (if finite A then setsum f A else undefined)"
proof (cases "finite A")

case True then show ?thesis proof induct
case empty show ?case by (simp add: zero)

next
case insert then show ?case by (simp add: Pi_def add)

qed
next

case False then show ?thesis by (simp add: finsum_def finprod_def)
qed

qed

interpretation int: abelian_group Z
where "a_inv Z x = - x"

and "a_minus Z x y = x - y"
proof -

— Specification
show "abelian_group Z"
proof (rule abelian_groupI)

show "!!x. x ∈ carrier Z ==> EX y : carrier Z. y ⊕Z x = 0Z"
by (simp add: int_ring_def) arith

qed (auto simp: int_ring_def)
then interpret int: abelian_group Z .

— Operations
{ fix x y have "add Z x y = x + y" by (simp add: int_ring_def) }
note add = this
have zero: "zero Z = 0" by (simp add: int_ring_def)
{ fix x

have "add Z (-x) x = zero Z" by (simp add: add zero)
then show "a_inv Z x = - x" by (simp add: int.minus_equality) }

note a_inv = this
show "a_minus Z x y = x - y" by (simp add: int.minus_eq add a_inv)

qed

interpretation int: "domain" Z
proof qed (auto simp: int_ring_def left_distrib right_distrib)

Removal of occurrences of UNIV in interpretation result — experimental.

lemma UNIV:
"x ∈ UNIV = True"
"A ⊆ UNIV = True"
"(ALL x : UNIV. P x) = (ALL x. P x)"
"(EX x : UNIV. P x) = (EX x. P x)"
"(True --> Q) = Q"
"(True ==> PROP R) == PROP R"
by simp_all



254

interpretation int :
partial_order "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
where "carrier (| carrier = UNIV::int set, eq = op =, le = op ≤ |)

= UNIV"
and "le (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y =

(x ≤ y)"
and "lless (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x

y = (x < y)"
proof -

show "partial_order (| carrier = UNIV::int set, eq = op =, le = op
≤ |)"

proof qed simp_all
show "carrier (| carrier = UNIV::int set, eq = op =, le = op ≤ |) =

UNIV"
by simp

show "le (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y =
(x ≤ y)"

by simp
show "lless (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y

= (x < y)"
by (simp add: lless_def) auto

qed

interpretation int :
lattice "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
where "join (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y

= max x y"
and "meet (| carrier = UNIV::int set, eq = op =, le = op ≤ |) x y

= min x y"
proof -

let ?Z = "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
show "lattice ?Z"

apply unfold_locales
apply (simp add: least_def Upper_def)
apply arith
apply (simp add: greatest_def Lower_def)
apply arith
done

then interpret int: lattice "?Z" .
show "join ?Z x y = max x y"

apply (rule int.joinI)
apply (simp_all add: least_def Upper_def)
apply arith
done

show "meet ?Z x y = min x y"
apply (rule int.meetI)
apply (simp_all add: greatest_def Lower_def)
apply arith
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done
qed

interpretation int :
total_order "(| carrier = UNIV::int set, eq = op =, le = op ≤ |)"
proof qed clarsimp

12.4 Generated Ideals of Z

lemma int_Idl:
"IdlZ {a} = {x * a | x. True}"
apply (subst int.cgenideal_eq_genideal[symmetric]) apply (simp add:

int_ring_def)
apply (simp add: cgenideal_def int_ring_def)
done

lemma multiples_principalideal:
"principalideal {x * a | x. True } Z"

apply (subst int_Idl[symmetric], rule principalidealI)
apply (rule int.genideal_ideal, simp)

apply fast
done

lemma prime_primeideal:
assumes prime: "prime (nat p)"
shows "primeideal (IdlZ {p}) Z"

apply (rule primeidealI)
apply (rule int.genideal_ideal, simp)

apply (rule int_is_cring)
apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
apply (simp add: int_ring_def)
apply clarsimp defer 1
apply (simp add: int.cgenideal_eq_genideal[symmetric] cgenideal_def)
apply (simp add: int_ring_def)
apply (elim exE)

proof -
fix a b x

from prime
have ppos: "0 <= p" by (simp add: prime_def)

have unnat: "!!x. nat p dvd nat (abs x) ==> p dvd x"
proof -

fix x
assume "nat p dvd nat (abs x)"
hence "int (nat p) dvd x" by (simp add: int_dvd_iff[symmetric])
thus "p dvd x" by (simp add: ppos)

qed
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assume "a * b = x * p"
hence "p dvd a * b" by simp
hence "nat p dvd nat (abs (a * b))" using ppos by (simp add: nat_dvd_iff)
hence "nat p dvd (nat (abs a) * nat (abs b))" by (simp add: nat_abs_mult_distrib)
hence "nat p dvd nat (abs a) | nat p dvd nat (abs b)" by (rule prime_dvd_mult[OF

prime])
hence "p dvd a | p dvd b" by (fast intro: unnat)
thus "(EX x. a = x * p) | (EX x. b = x * p)"
proof

assume "p dvd a"
hence "EX x. a = p * x" by (simp add: dvd_def)
from this obtain x

where "a = p * x" by fast
hence "a = x * p" by simp
hence "EX x. a = x * p" by simp
thus "(EX x. a = x * p) | (EX x. b = x * p)" ..

next
assume "p dvd b"
hence "EX x. b = p * x" by (simp add: dvd_def)
from this obtain x

where "b = p * x" by fast
hence "b = x * p" by simp
hence "EX x. b = x * p" by simp
thus "(EX x. a = x * p) | (EX x. b = x * p)" ..

qed
next

assume "UNIV = {uu. EX x. uu = x * p}"
from this obtain x

where "1 = x * p" by best
from this [symmetric]

have "p * x = 1" by (subst zmult_commute)
hence "|p * x| = 1" by simp
hence "|p| = 1" by (rule abs_zmult_eq_1)
from this and prime

show "False" by (simp add: prime_def)
qed

12.5 Ideals and Divisibility

lemma int_Idl_subset_ideal:
"IdlZ {k} ⊆ IdlZ {l} = (k ∈ IdlZ {l})"

by (rule int.Idl_subset_ideal’, simp+)

lemma Idl_subset_eq_dvd:
"(IdlZ {k} ⊆ IdlZ {l}) = (l dvd k)"

apply (subst int_Idl_subset_ideal, subst int_Idl, simp)
apply (rule, clarify)
apply (simp add: dvd_def)
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apply (simp add: dvd_def mult_ac)
done

lemma dvds_eq_Idl:
"(l dvd k ∧ k dvd l) = (IdlZ {k} = IdlZ {l})"

proof -
have a: "l dvd k = (IdlZ {k} ⊆ IdlZ {l})" by (rule Idl_subset_eq_dvd[symmetric])
have b: "k dvd l = (IdlZ {l} ⊆ IdlZ {k})" by (rule Idl_subset_eq_dvd[symmetric])

have "(l dvd k ∧ k dvd l) = ((IdlZ {k} ⊆ IdlZ {l}) ∧ (IdlZ {l} ⊆
IdlZ {k}))"

by (subst a, subst b, simp)
also have "((IdlZ {k} ⊆ IdlZ {l}) ∧ (IdlZ {l} ⊆ IdlZ {k})) = (IdlZ

{k} = IdlZ {l})" by (rule, fast+)
finally

show ?thesis .
qed

lemma Idl_eq_abs:
"(IdlZ {k} = IdlZ {l}) = (abs l = abs k)"

apply (subst dvds_eq_abseq[symmetric])
apply (rule dvds_eq_Idl[symmetric])
done

12.6 Ideals and the Modulus

constdefs
ZMod :: "int => int => int set"
"ZMod k r == (IdlZ {k}) +>Z r"

lemmas ZMod_defs =
ZMod_def genideal_def

lemma rcos_zfact:
assumes kIl: "k ∈ ZMod l r"
shows "EX x. k = x * l + r"

proof -
from kIl[unfolded ZMod_def]

have "∃ xl∈IdlZ {l}. k = xl + r" by (simp add: a_r_coset_defs int_ring_def)
from this obtain xl

where xl: "xl ∈ IdlZ {l}"
and k: "k = xl + r"
by auto

from xl obtain x
where "xl = x * l"
by (simp add: int_Idl, fast)

from k and this
have "k = x * l + r" by simp

thus "∃ x. k = x * l + r" ..
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qed

lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"

proof -
interpret ideal "IdlZ {m}" Z by (rule int.genideal_ideal, fast)
from zmods

have "b ∈ ZMod m a"
unfolding ZMod_def
by (simp add: a_repr_independenceD)

from this
have "EX x. b = x * m + a" by (rule rcos_zfact)

from this obtain x
where "b = x * m + a"
by fast

hence "b mod m = (x * m + a) mod m" by simp
also

have ". . . = ((x * m) mod m) + (a mod m)" by (simp add: mod_add_eq)
also

have ". . . = a mod m" by simp
finally

have "b mod m = a mod m" .
thus "a mod m = b mod m" ..

qed

lemma ZMod_mod:
shows "ZMod m a = ZMod m (a mod m)"

proof -
interpret ideal "IdlZ {m}" Z by (rule int.genideal_ideal, fast)
show ?thesis

unfolding ZMod_def
apply (rule a_repr_independence’[symmetric])
apply (simp add: int_Idl a_r_coset_defs)
apply (simp add: int_ring_def)
proof -

have "a = m * (a div m) + (a mod m)" by (simp add: zmod_zdiv_equality)
hence "a = (a div m) * m + (a mod m)" by simp
thus "∃ h. (∃ x. h = x * m) ∧ a = h + a mod m" by fast

qed simp
qed

lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a = ZMod m b"

proof -
have "ZMod m a = ZMod m (a mod m)" by (rule ZMod_mod)
also have ". . . = ZMod m (b mod m)" by (simp add: modeq[symmetric])
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also have ". . . = ZMod m b" by (rule ZMod_mod[symmetric])
finally show ?thesis .

qed

corollary ZMod_eq_mod:
shows "(ZMod m a = ZMod m b) = (a mod m = b mod m)"

by (rule, erule ZMod_imp_zmod, erule zmod_imp_ZMod)

12.7 Factorization

constdefs
ZFact :: "int ⇒ int set ring"
"ZFact k == Z Quot (IdlZ {k})"

lemmas ZFact_defs = ZFact_def FactRing_def

lemma ZFact_is_cring:
shows "cring (ZFact k)"

apply (unfold ZFact_def)
apply (rule ideal.quotient_is_cring)
apply (intro ring.genideal_ideal)
apply (simp add: cring.axioms[OF int_is_cring] ring.intro)

apply simp
apply (rule int_is_cring)
done

lemma ZFact_zero:
"carrier (ZFact 0) = (

⋃
a. {{a}})"

apply (insert int.genideal_zero)
apply (simp add: ZFact_defs A_RCOSETS_defs r_coset_def int_ring_def ring_record_simps)
done

lemma ZFact_one:
"carrier (ZFact 1) = {UNIV}"

apply (simp only: ZFact_defs A_RCOSETS_defs r_coset_def int_ring_def ring_record_simps)
apply (subst int.genideal_one[unfolded int_ring_def, simplified ring_record_simps])
apply (rule, rule, clarsimp)
apply (rule, rule, clarsimp)
apply (rule, clarsimp, arith)

apply (rule, clarsimp)
apply (rule exI[of _ "0"], clarsimp)
done

lemma ZFact_prime_is_domain:
assumes pprime: "prime (nat p)"
shows "domain (ZFact p)"

apply (unfold ZFact_def)
apply (rule primeideal.quotient_is_domain)
apply (rule prime_primeideal[OF pprime])
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done

end

theory Module imports Ring begin

13 Modules over an Abelian Group

13.1 Definitions

record (’a, ’b) module = "’b ring" +
smult :: "[’a, ’b] => ’b" (infixl "�ı " 70)

locale module = R: cring + M: abelian_group M for M (structure) +
assumes smult_closed [simp, intro]:

"[| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier M"
and smult_l_distr:
"[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊕ b) �M x = a �M x ⊕M b �M x"

and smult_r_distr:
"[| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
a �M (x ⊕M y) = a �M x ⊕M a �M y"

and smult_assoc1:
"[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊗ b) �M x = a �M (b �M x)"

and smult_one [simp]:
"x ∈ carrier M ==> 1 �M x = x"

locale algebra = module + cring M +
assumes smult_assoc2:

"[| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
(a �M x) ⊗M y = a �M (x ⊗M y)"

lemma moduleI:
fixes R (structure) and M (structure)
assumes cring: "cring R"

and abelian_group: "abelian_group M"
and smult_closed:
"!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier

M"
and smult_l_distr:
"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊕ b) �M x = (a �M x) ⊕M (b �M x)"

and smult_r_distr:
"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
a �M (x ⊕M y) = (a �M x) ⊕M (a �M y)"

and smult_assoc1:
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"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊗ b) �M x = a �M (b �M x)"

and smult_one:
"!!x. x ∈ carrier M ==> 1 �M x = x"

shows "module R M"
by (auto intro: module.intro cring.axioms abelian_group.axioms
module_axioms.intro assms)

lemma algebraI:
fixes R (structure) and M (structure)
assumes R_cring: "cring R"

and M_cring: "cring M"
and smult_closed:
"!!a x. [| a ∈ carrier R; x ∈ carrier M |] ==> a �M x ∈ carrier

M"
and smult_l_distr:
"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊕ b) �M x = (a �M x) ⊕M (b �M x)"

and smult_r_distr:
"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
a �M (x ⊕M y) = (a �M x) ⊕M (a �M y)"

and smult_assoc1:
"!!a b x. [| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>
(a ⊗ b) �M x = a �M (b �M x)"

and smult_one:
"!!x. x ∈ carrier M ==> (one R) �M x = x"

and smult_assoc2:
"!!a x y. [| a ∈ carrier R; x ∈ carrier M; y ∈ carrier M |] ==>
(a �M x) ⊗M y = a �M (x ⊗M y)"

shows "algebra R M"
apply intro_locales
apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule module_axioms.intro)
apply (simp add: smult_closed)
apply (simp add: smult_l_distr)
apply (simp add: smult_r_distr)
apply (simp add: smult_assoc1)
apply (simp add: smult_one)

apply (rule cring.axioms ring.axioms abelian_group.axioms comm_monoid.axioms
assms)+
apply (rule algebra_axioms.intro)
apply (simp add: smult_assoc2)

done

lemma (in algebra) R_cring:
"cring R"
..



262

lemma (in algebra) M_cring:
"cring M"
..

lemma (in algebra) module:
"module R M"
by (auto intro: moduleI R_cring is_abelian_group
smult_l_distr smult_r_distr smult_assoc1)

13.2 Basic Properties of Algebras

lemma (in algebra) smult_l_null [simp]:
"x ∈ carrier M ==> 0 �M x = 0M"

proof -
assume M: "x ∈ carrier M"
note facts = M smult_closed [OF R.zero_closed]
from facts have "0 �M x = (0 �M x ⊕M 0 �M x) ⊕M 	M (0 �M x)" by

algebra
also from M have "... = (0 ⊕ 0) �M x ⊕M 	M (0 �M x)"

by (simp add: smult_l_distr del: R.l_zero R.r_zero)
also from facts have "... = 0M" apply algebra apply algebra done
finally show ?thesis .

qed

lemma (in algebra) smult_r_null [simp]:
"a ∈ carrier R ==> a �M 0M = 0M"

proof -
assume R: "a ∈ carrier R"
note facts = R smult_closed
from facts have "a �M 0M = (a �M 0M ⊕M a �M 0M) ⊕M 	M (a �M 0M)"

by algebra
also from R have "... = a �M (0M ⊕M 0M) ⊕M 	M (a �M 0M)"

by (simp add: smult_r_distr del: M.l_zero M.r_zero)
also from facts have "... = 0M" by algebra
finally show ?thesis .

qed

lemma (in algebra) smult_l_minus:
"[| a ∈ carrier R; x ∈ carrier M |] ==> (	a) �M x = 	M (a �M x)"

proof -
assume RM: "a ∈ carrier R" "x ∈ carrier M"
from RM have a_smult: "a �M x ∈ carrier M" by simp
from RM have ma_smult: "	a �M x ∈ carrier M" by simp
note facts = RM a_smult ma_smult
from facts have "(	a) �M x = (	a �M x ⊕M a �M x) ⊕M 	M(a �M x)"

by algebra
also from RM have "... = (	a ⊕ a) �M x ⊕M 	M(a �M x)"

by (simp add: smult_l_distr)
also from facts smult_l_null have "... = 	M(a �M x)"
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apply algebra apply algebra done
finally show ?thesis .

qed

lemma (in algebra) smult_r_minus:
"[| a ∈ carrier R; x ∈ carrier M |] ==> a �M (	Mx) = 	M (a �M x)"

proof -
assume RM: "a ∈ carrier R" "x ∈ carrier M"
note facts = RM smult_closed
from facts have "a �M (	Mx) = (a �M 	Mx ⊕M a �M x) ⊕M 	M(a �M x)"

by algebra
also from RM have "... = a �M (	Mx ⊕M x) ⊕M 	M(a �M x)"

by (simp add: smult_r_distr)
also from facts smult_r_null have "... = 	M(a �M x)" by algebra
finally show ?thesis .

qed

end

theory UnivPoly
imports Module RingHom
begin

14 Univariate Polynomials

Polynomials are formalised as modules with additional operations for ex-
tracting coefficients from polynomials and for obtaining monomials from co-
efficients and exponents (record up_ring). The carrier set is a set of bounded
functions from Nat to the coefficient domain. Bounded means that these
functions return zero above a certain bound (the degree). There is a chap-
ter on the formalisation of polynomials in the PhD thesis [1], which was
implemented with axiomatic type classes. This was later ported to Locales.

14.1 The Constructor for Univariate Polynomials

Functions with finite support.

locale bound =
fixes z :: ’a

and n :: nat
and f :: "nat => ’a"

assumes bound: "!!m. n < m =⇒ f m = z"

declare bound.intro [intro!]
and bound.bound [dest]
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lemma bound_below:
assumes bound: "bound z m f" and nonzero: "f n 6= z" shows "n ≤ m"

proof (rule classical)
assume "~ ?thesis"
then have "m < n" by arith
with bound have "f n = z" ..
with nonzero show ?thesis by contradiction

qed

record (’a, ’p) up_ring = "(’a, ’p) module" +
monom :: "[’a, nat] => ’p"
coeff :: "[’p, nat] => ’a"

definition up :: "(’a, ’m) ring_scheme => (nat => ’a) set"
where up_def: "up R == {f. f ∈ UNIV -> carrier R & (EX n. bound 0R

n f)}"

definition UP :: "(’a, ’m) ring_scheme => (’a, nat => ’a) up_ring"
where UP_def: "UP R == (|
carrier = up R,
mult = (%p:up R. %q:up R. %n.

⊕
Ri ∈ {..n}. p i ⊗R q (n-i)),

one = (%i. if i=0 then 1R else 0R),
zero = (%i. 0R),
add = (%p:up R. %q:up R. %i. p i ⊕R q i),
smult = (%a:carrier R. %p:up R. %i. a ⊗R p i),
monom = (%a:carrier R. %n i. if i=n then a else 0R),
coeff = (%p:up R. %n. p n) |)"

Properties of the set of polynomials up.

lemma mem_upI [intro]:
"[| !!n. f n ∈ carrier R; EX n. bound (zero R) n f |] ==> f ∈ up R"
by (simp add: up_def Pi_def)

lemma mem_upD [dest]:
"f ∈ up R ==> f n ∈ carrier R"
by (simp add: up_def Pi_def)

context ring
begin

lemma bound_upD [dest]: "f ∈ up R ==> EX n. bound 0 n f" by (simp add:
up_def)

lemma up_one_closed: "(%n. if n = 0 then 1 else 0) ∈ up R" using up_def
by force

lemma up_smult_closed: "[| a ∈ carrier R; p ∈ up R |] ==> (%i. a ⊗ p
i) ∈ up R" by force
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lemma up_add_closed:
"[| p ∈ up R; q ∈ up R |] ==> (%i. p i ⊕ q i) ∈ up R"

proof
fix n
assume "p ∈ up R" and "q ∈ up R"
then show "p n ⊕ q n ∈ carrier R"

by auto
next

assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%i. p i ⊕ q i)"
proof -

from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast
have "bound 0 (max n m) (%i. p i ⊕ q i)"
proof

fix i
assume "max n m < i"
with boundn and boundm and UP show "p i ⊕ q i = 0" by fastsimp

qed
then show ?thesis ..

qed
qed

lemma up_a_inv_closed:
"p ∈ up R ==> (%i. 	 (p i)) ∈ up R"

proof
assume R: "p ∈ up R"
then obtain n where "bound 0 n p" by auto
then have "bound 0 n (%i. 	 p i)" by auto
then show "EX n. bound 0 n (%i. 	 p i)" by auto

qed auto

lemma up_minus_closed:
"[| p ∈ up R; q ∈ up R |] ==> (%i. p i 	 q i) ∈ up R"
using mem_upD [of p R] mem_upD [of q R] up_add_closed up_a_inv_closed

a_minus_def [of _ R]
by auto

lemma up_mult_closed:
"[| p ∈ up R; q ∈ up R |] ==>
(%n.

⊕
i ∈ {..n}. p i ⊗ q (n-i)) ∈ up R"

proof
fix n
assume "p ∈ up R" "q ∈ up R"
then show "(

⊕
i ∈ {..n}. p i ⊗ q (n-i)) ∈ carrier R"

by (simp add: mem_upD funcsetI)
next

assume UP: "p ∈ up R" "q ∈ up R"
show "EX n. bound 0 n (%n.

⊕
i ∈ {..n}. p i ⊗ q (n-i))"
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proof -
from UP obtain n where boundn: "bound 0 n p" by fast
from UP obtain m where boundm: "bound 0 m q" by fast
have "bound 0 (n + m) (%n.

⊕
i ∈ {..n}. p i ⊗ q (n - i))"

proof
fix k assume bound: "n + m < k"
{

fix i
have "p i ⊗ q (k-i) = 0"
proof (cases "n < i")

case True
with boundn have "p i = 0" by auto
moreover from UP have "q (k-i) ∈ carrier R" by auto
ultimately show ?thesis by simp

next
case False
with bound have "m < k-i" by arith
with boundm have "q (k-i) = 0" by auto
moreover from UP have "p i ∈ carrier R" by auto
ultimately show ?thesis by simp

qed
}
then show "(

⊕
i ∈ {..k}. p i ⊗ q (k-i)) = 0"

by (simp add: Pi_def)
qed
then show ?thesis by fast

qed
qed

end

14.2 Effect of Operations on Coefficients

locale UP =
fixes R (structure) and P (structure)
defines P_def: "P == UP R"

locale UP_ring = UP + R: ring R

locale UP_cring = UP + R: cring R

sublocale UP_cring < UP_ring
by intro_locales [1] (rule P_def)

locale UP_domain = UP + R: "domain" R

sublocale UP_domain < UP_cring
by intro_locales [1] (rule P_def)
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context UP
begin

Temporarily declare P ≡ UP R as simp rule.

declare P_def [simp]

lemma up_eqI:
assumes prem: "!!n. coeff P p n = coeff P q n" and R: "p ∈ carrier

P" "q ∈ carrier P"
shows "p = q"

proof
fix x
from prem and R show "p x = q x" by (simp add: UP_def)

qed

lemma coeff_closed [simp]:
"p ∈ carrier P ==> coeff P p n ∈ carrier R" by (auto simp add: UP_def)

end

context UP_ring
begin

lemma coeff_monom [simp]:
"a ∈ carrier R ==> coeff P (monom P a m) n = (if m=n then a else 0)"

proof -
assume R: "a ∈ carrier R"
then have "(%n. if n = m then a else 0) ∈ up R"

using up_def by force
with R show ?thesis by (simp add: UP_def)

qed

lemma coeff_zero [simp]: "coeff P 0P n = 0" by (auto simp add: UP_def)

lemma coeff_one [simp]: "coeff P 1P n = (if n=0 then 1 else 0)"
using up_one_closed by (simp add: UP_def)

lemma coeff_smult [simp]:
"[| a ∈ carrier R; p ∈ carrier P |] ==> coeff P (a �P p) n = a ⊗ coeff

P p n"
by (simp add: UP_def up_smult_closed)

lemma coeff_add [simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> coeff P (p ⊕P q) n = coeff

P p n ⊕ coeff P q n"
by (simp add: UP_def up_add_closed)
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lemma coeff_mult [simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> coeff P (p ⊗P q) n = (

⊕
i ∈

{..n}. coeff P p i ⊗ coeff P q (n-i))"
by (simp add: UP_def up_mult_closed)

end

14.3 Polynomials Form a Ring.

context UP_ring
begin

Operations are closed over P.

lemma UP_mult_closed [simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> p ⊗P q ∈ carrier P" by (simp

add: UP_def up_mult_closed)

lemma UP_one_closed [simp]:
"1P ∈ carrier P" by (simp add: UP_def up_one_closed)

lemma UP_zero_closed [intro, simp]:
"0P ∈ carrier P" by (auto simp add: UP_def)

lemma UP_a_closed [intro, simp]:
"[| p ∈ carrier P; q ∈ carrier P |] ==> p ⊕P q ∈ carrier P" by (simp

add: UP_def up_add_closed)

lemma monom_closed [simp]:
"a ∈ carrier R ==> monom P a n ∈ carrier P" by (auto simp add: UP_def

up_def Pi_def)

lemma UP_smult_closed [simp]:
"[| a ∈ carrier R; p ∈ carrier P |] ==> a �P p ∈ carrier P" by (simp

add: UP_def up_smult_closed)

end

declare (in UP) P_def [simp del]

Algebraic ring properties

context UP_ring
begin

lemma UP_a_assoc:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊕P q) ⊕P r = p ⊕P (q ⊕P r)" by (rule up_eqI, simp add:

a_assoc R, simp_all add: R)

lemma UP_l_zero [simp]:
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assumes R: "p ∈ carrier P"
shows "0P ⊕P p = p" by (rule up_eqI, simp_all add: R)

lemma UP_l_neg_ex:
assumes R: "p ∈ carrier P"
shows "EX q : carrier P. q ⊕P p = 0P"

proof -
let ?q = "%i. 	 (p i)"
from R have closed: "?q ∈ carrier P"

by (simp add: UP_def P_def up_a_inv_closed)
from R have coeff: "!!n. coeff P ?q n = 	 (coeff P p n)"

by (simp add: UP_def P_def up_a_inv_closed)
show ?thesis
proof

show "?q ⊕P p = 0P"
by (auto intro!: up_eqI simp add: R closed coeff R.l_neg)

qed (rule closed)
qed

lemma UP_a_comm:
assumes R: "p ∈ carrier P" "q ∈ carrier P"
shows "p ⊕P q = q ⊕P p" by (rule up_eqI, simp add: a_comm R, simp_all

add: R)

lemma UP_m_assoc:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊗P q) ⊗P r = p ⊗P (q ⊗P r)"

proof (rule up_eqI)
fix n
{

fix k and a b c :: "nat=>’a"
assume R: "a ∈ UNIV -> carrier R" "b ∈ UNIV -> carrier R"
"c ∈ UNIV -> carrier R"

then have "k <= n ==>
(
⊕

j ∈ {..k}. (
⊕

i ∈ {..j}. a i ⊗ b (j-i)) ⊗ c (n-j)) =
(
⊕

j ∈ {..k}. a j ⊗ (
⊕

i ∈ {..k-j}. b i ⊗ c (n-j-i)))"
(is "_ =⇒ ?eq k")

proof (induct k)
case 0 then show ?case by (simp add: Pi_def m_assoc)

next
case (Suc k)
then have "k <= n" by arith
from this R have "?eq k" by (rule Suc)
with R show ?case

by (simp cong: finsum_cong
add: Suc_diff_le Pi_def l_distr r_distr m_assoc)

(simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc)
qed

}
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with R show "coeff P ((p ⊗P q) ⊗P r) n = coeff P (p ⊗P (q ⊗P r))
n"

by (simp add: Pi_def)
qed (simp_all add: R)

lemma UP_r_one [simp]:
assumes R: "p ∈ carrier P" shows "p ⊗P 1P = p"

proof (rule up_eqI)
fix n
show "coeff P (p ⊗P 1P) n = coeff P p n"
proof (cases n)

case 0
{

with R show ?thesis by simp
}

next
case Suc
{

fix nn assume Succ: "n = Suc nn"
have "coeff P (p ⊗P 1P) (Suc nn) = coeff P p (Suc nn)"
proof -

have "coeff P (p ⊗P 1P) (Suc nn) = (
⊕

i∈{..Suc nn}. coeff P
p i ⊗ (if Suc nn ≤ i then 1 else 0))" using R by simp

also have ". . . = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then
1 else 0) ⊕ (

⊕
i∈{..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else 0))"

using finsum_Suc [of "(λi::nat. coeff P p i ⊗ (if Suc nn ≤
i then 1 else 0))" "nn"] unfolding Pi_def using R by simp

also have ". . . = coeff P p (Suc nn) ⊗ (if Suc nn ≤ Suc nn then
1 else 0)"

proof -
have "(

⊕
i∈{..nn}. coeff P p i ⊗ (if Suc nn ≤ i then 1 else

0)) = (
⊕

i∈{..nn}. 0)"
using finsum_cong [of "{..nn}" "{..nn}" "(λi::nat. coeff P

p i ⊗ (if Suc nn ≤ i then 1 else 0))" "(λi::nat. 0)"] using R
unfolding Pi_def by simp

also have ". . . = 0" by simp
finally show ?thesis using r_zero R by simp

qed
also have ". . . = coeff P p (Suc nn)" using R by simp
finally show ?thesis by simp

qed
then show ?thesis using Succ by simp

}
qed

qed (simp_all add: R)

lemma UP_l_one [simp]:
assumes R: "p ∈ carrier P"
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shows "1P ⊗P p = p"
proof (rule up_eqI)

fix n
show "coeff P (1P ⊗P p) n = coeff P p n"
proof (cases n)

case 0 with R show ?thesis by simp
next

case Suc with R show ?thesis
by (simp del: finsum_Suc add: finsum_Suc2 Pi_def)

qed
qed (simp_all add: R)

lemma UP_l_distr:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "(p ⊕P q) ⊗P r = (p ⊗P r) ⊕P (q ⊗P r)"
by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R)

lemma UP_r_distr:
assumes R: "p ∈ carrier P" "q ∈ carrier P" "r ∈ carrier P"
shows "r ⊗P (p ⊕P q) = (r ⊗P p) ⊕P (r ⊗P q)"
by (rule up_eqI) (simp add: r_distr R Pi_def, simp_all add: R)

theorem UP_ring: "ring P"
by (auto intro!: ringI abelian_groupI monoidI UP_a_assoc)
(auto intro: UP_a_comm UP_l_neg_ex UP_m_assoc UP_l_distr UP_r_distr)

end

14.4 Polynomials Form a Commutative Ring.

context UP_cring
begin

lemma UP_m_comm:
assumes R1: "p ∈ carrier P" and R2: "q ∈ carrier P" shows "p ⊗P q

= q ⊗P p"
proof (rule up_eqI)

fix n
{

fix k and a b :: "nat=>’a"
assume R: "a ∈ UNIV -> carrier R" "b ∈ UNIV -> carrier R"
then have "k <= n ==>
(
⊕

i ∈ {..k}. a i ⊗ b (n-i)) = (
⊕

i ∈ {..k}. a (k-i) ⊗ b (i+n-k))"
(is "_ =⇒ ?eq k")

proof (induct k)
case 0 then show ?case by (simp add: Pi_def)

next
case (Suc k) then show ?case

by (subst (2) finsum_Suc2) (simp add: Pi_def a_comm)+



272

qed
}
note l = this
from R1 R2 show "coeff P (p ⊗P q) n = coeff P (q ⊗P p) n"

unfolding coeff_mult [OF R1 R2, of n]
unfolding coeff_mult [OF R2 R1, of n]
using l [of "(λi. coeff P p i)" "(λi. coeff P q i)" "n"] by (simp

add: Pi_def m_comm)
qed (simp_all add: R1 R2)

14.5 Polynomials over a commutative ring for a commutative
ring

theorem UP_cring:
"cring P" using UP_ring unfolding cring_def by (auto intro!: comm_monoidI

UP_m_assoc UP_m_comm)

end

context UP_ring
begin

lemma UP_a_inv_closed [intro, simp]:
"p ∈ carrier P ==> 	P p ∈ carrier P"
by (rule abelian_group.a_inv_closed [OF ring.is_abelian_group [OF UP_ring]])

lemma coeff_a_inv [simp]:
assumes R: "p ∈ carrier P"
shows "coeff P (	P p) n = 	 (coeff P p n)"

proof -
from R coeff_closed UP_a_inv_closed have
"coeff P (	P p) n = 	 coeff P p n ⊕ (coeff P p n ⊕ coeff P (	P p)

n)"
by algebra

also from R have "... = 	 (coeff P p n)"
by (simp del: coeff_add add: coeff_add [THEN sym]
abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]])

finally show ?thesis .
qed

end

sublocale UP_ring < P: ring P using UP_ring .
sublocale UP_cring < P: cring P using UP_cring .

14.6 Polynomials Form an Algebra

context UP_ring
begin
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lemma UP_smult_l_distr:
"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>
(a ⊕ b) �P p = a �P p ⊕P b �P p"
by (rule up_eqI) (simp_all add: R.l_distr)

lemma UP_smult_r_distr:
"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>
a �P (p ⊕P q) = a �P p ⊕P a �P q"
by (rule up_eqI) (simp_all add: R.r_distr)

lemma UP_smult_assoc1:
"[| a ∈ carrier R; b ∈ carrier R; p ∈ carrier P |] ==>
(a ⊗ b) �P p = a �P (b �P p)"

by (rule up_eqI) (simp_all add: R.m_assoc)

lemma UP_smult_zero [simp]:
"p ∈ carrier P ==> 0 �P p = 0P"

by (rule up_eqI) simp_all

lemma UP_smult_one [simp]:
"p ∈ carrier P ==> 1 �P p = p"

by (rule up_eqI) simp_all

lemma UP_smult_assoc2:
"[| a ∈ carrier R; p ∈ carrier P; q ∈ carrier P |] ==>
(a �P p) ⊗P q = a �P (p ⊗P q)"
by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def)

end

Interpretation of lemmas from algebra.

lemma (in cring) cring:
"cring R" ..

lemma (in UP_cring) UP_algebra:
"algebra R P" by (auto intro!: algebraI R.cring UP_cring UP_smult_l_distr

UP_smult_r_distr
UP_smult_assoc1 UP_smult_assoc2)

sublocale UP_cring < algebra R P using UP_algebra .

14.7 Further Lemmas Involving Monomials

context UP_ring
begin

lemma monom_zero [simp]:
"monom P 0 n = 0P" by (simp add: UP_def P_def)
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lemma monom_mult_is_smult:
assumes R: "a ∈ carrier R" "p ∈ carrier P"
shows "monom P a 0 ⊗P p = a �P p"

proof (rule up_eqI)
fix n
show "coeff P (monom P a 0 ⊗P p) n = coeff P (a �P p) n"
proof (cases n)

case 0 with R show ?thesis by simp
next

case Suc with R show ?thesis
using R.finsum_Suc2 by (simp del: R.finsum_Suc add: R.r_null Pi_def)

qed
qed (simp_all add: R)

lemma monom_one [simp]:
"monom P 1 0 = 1P"
by (rule up_eqI) simp_all

lemma monom_add [simp]:
"[| a ∈ carrier R; b ∈ carrier R |] ==>
monom P (a ⊕ b) n = monom P a n ⊕P monom P b n"
by (rule up_eqI) simp_all

lemma monom_one_Suc:
"monom P 1 (Suc n) = monom P 1 n ⊗P monom P 1 1"

proof (rule up_eqI)
fix k
show "coeff P (monom P 1 (Suc n)) k = coeff P (monom P 1 n ⊗P monom

P 1 1) k"
proof (cases "k = Suc n")

case True show ?thesis
proof -

fix m
from True have less_add_diff:
"!!i. [| n < i; i <= n + m |] ==> n + m - i < m" by arith

from True have "coeff P (monom P 1 (Suc n)) k = 1" by simp
also from True
have "... = (

⊕
i ∈ {..<n} ∪ {n}. coeff P (monom P 1 n) i ⊗

coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: Pi_def)

also have "... = (
⊕

i ∈ {..n}. coeff P (monom P 1 n) i ⊗
coeff P (monom P 1 1) (k - i))"
by (simp only: ivl_disj_un_singleton)

also from True
have "... = (

⊕
i ∈ {..n} ∪ {n<..k}. coeff P (monom P 1 n) i ⊗

coeff P (monom P 1 1) (k - i))"
by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
order_less_imp_not_eq Pi_def)
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also from True have "... = coeff P (monom P 1 n ⊗P monom P 1 1)
k"

by (simp add: ivl_disj_un_one)
finally show ?thesis .

qed
next

case False
note neq = False
let ?s =
"λi. (if n = i then 1 else 0) ⊗ (if Suc 0 = k - i then 1 else 0)"

from neq have "coeff P (monom P 1 (Suc n)) k = 0" by simp
also have "... = (

⊕
i ∈ {..k}. ?s i)"

proof -
have f1: "(

⊕
i ∈ {..<n}. ?s i) = 0"

by (simp cong: R.finsum_cong add: Pi_def)
from neq have f2: "(

⊕
i ∈ {n}. ?s i) = 0"

by (simp cong: R.finsum_cong add: Pi_def) arith
have f3: "n < k ==> (

⊕
i ∈ {n<..k}. ?s i) = 0"

by (simp cong: R.finsum_cong add: order_less_imp_not_eq Pi_def)
show ?thesis
proof (cases "k < n")

case True then show ?thesis by (simp cong: R.finsum_cong add:
Pi_def)

next
case False then have n_le_k: "n <= k" by arith
show ?thesis
proof (cases "n = k")

case True
then have "0 = (

⊕
i ∈ {..<n} ∪ {n}. ?s i)"

by (simp cong: R.finsum_cong add: ivl_disj_int_singleton Pi_def)
also from True have "... = (

⊕
i ∈ {..k}. ?s i)"

by (simp only: ivl_disj_un_singleton)
finally show ?thesis .

next
case False with n_le_k have n_less_k: "n < k" by arith
with neq have "0 = (

⊕
i ∈ {..<n} ∪ {n}. ?s i)"

by (simp add: R.finsum_Un_disjoint f1 f2
ivl_disj_int_singleton Pi_def del: Un_insert_right)

also have "... = (
⊕

i ∈ {..n}. ?s i)"
by (simp only: ivl_disj_un_singleton)

also from n_less_k neq have "... = (
⊕

i ∈ {..n} ∪ {n<..k}.
?s i)"

by (simp add: R.finsum_Un_disjoint f3 ivl_disj_int_one Pi_def)
also from n_less_k have "... = (

⊕
i ∈ {..k}. ?s i)"

by (simp only: ivl_disj_un_one)
finally show ?thesis .

qed
qed

qed
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also have "... = coeff P (monom P 1 n ⊗P monom P 1 1) k" by simp
finally show ?thesis .

qed
qed (simp_all)

lemma monom_one_Suc2:
"monom P 1 (Suc n) = monom P 1 1 ⊗P monom P 1 n"

proof (induct n)
case 0 show ?case by simp

next
case Suc
{

fix k:: nat
assume hypo: "monom P 1 (Suc k) = monom P 1 1 ⊗P monom P 1 k"
then show "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 (Suc

k)"
proof -

have lhs: "monom P 1 (Suc (Suc k)) = monom P 1 1 ⊗P monom P 1 k
⊗P monom P 1 1"

unfolding monom_one_Suc [of "Suc k"] unfolding hypo ..
note cl = monom_closed [OF R.one_closed, of 1]
note clk = monom_closed [OF R.one_closed, of k]
have rhs: "monom P 1 1 ⊗P monom P 1 (Suc k) = monom P 1 1 ⊗P monom

P 1 k ⊗P monom P 1 1"
unfolding monom_one_Suc [of k] unfolding sym [OF m_assoc [OF

cl clk cl]] ..
from lhs rhs show ?thesis by simp

qed
}

qed

The following corollary follows from lemmas monom P 1 (Suc ?n) = monom P

1 ?n ⊗P monom P 1 1 and monom P 1 (Suc ?n) = monom P 1 1 ⊗P monom P

1 ?n, and is trivial in UP_cring

corollary monom_one_comm: shows "monom P 1 k ⊗P monom P 1 1 = monom P
1 1 ⊗P monom P 1 k"

unfolding monom_one_Suc [symmetric] monom_one_Suc2 [symmetric] ..

lemma monom_mult_smult:
"[| a ∈ carrier R; b ∈ carrier R |] ==> monom P (a ⊗ b) n = a �P monom

P b n"
by (rule up_eqI) simp_all

lemma monom_one_mult:
"monom P 1 (n + m) = monom P 1 n ⊗P monom P 1 m"

proof (induct n)
case 0 show ?case by simp

next
case Suc then show ?case
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unfolding add_Suc unfolding monom_one_Suc unfolding Suc.hyps
using m_assoc monom_one_comm [of m] by simp

qed

lemma monom_one_mult_comm: "monom P 1 n ⊗P monom P 1 m = monom P 1 m
⊗P monom P 1 n"

unfolding monom_one_mult [symmetric] by (rule up_eqI) simp_all

lemma monom_mult [simp]:
assumes a_in_R: "a ∈ carrier R" and b_in_R: "b ∈ carrier R"
shows "monom P (a ⊗ b) (n + m) = monom P a n ⊗P monom P b m"

proof (rule up_eqI)
fix k
show "coeff P (monom P (a ⊗ b) (n + m)) k = coeff P (monom P a n ⊗P

monom P b m) k"
proof (cases "n + m = k")

case True
{

show ?thesis
unfolding True [symmetric]
coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed [OF

b_in_R, of m], of "n + m"]
coeff_monom [OF a_in_R, of n] coeff_monom [OF b_in_R, of m]

using R.finsum_cong [of "{.. n + m}" "{.. n + m}" "(λi. (if n
= i then a else 0) ⊗ (if m = n + m - i then b else 0))"

"(λi. if n = i then a ⊗ b else 0)"]
a_in_R b_in_R

unfolding simp_implies_def
using R.finsum_singleton [of n "{.. n + m}" "(λi. a ⊗ b)"]
unfolding Pi_def by auto

}
next

case False
{

show ?thesis
unfolding coeff_monom [OF R.m_closed [OF a_in_R b_in_R], of "n

+ m" k] apply (simp add: False)
unfolding coeff_mult [OF monom_closed [OF a_in_R, of n] monom_closed

[OF b_in_R, of m], of k]
unfolding coeff_monom [OF a_in_R, of n] unfolding coeff_monom

[OF b_in_R, of m] using False
using R.finsum_cong [of "{..k}" "{..k}" "(λi. (if n = i then a

else 0) ⊗ (if m = k - i then b else 0))" "(λi. 0)"]
unfolding Pi_def simp_implies_def using a_in_R b_in_R by force

}
qed

qed (simp_all add: a_in_R b_in_R)

lemma monom_a_inv [simp]:
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"a ∈ carrier R ==> monom P (	 a) n = 	P monom P a n"
by (rule up_eqI) simp_all

lemma monom_inj:
"inj_on (%a. monom P a n) (carrier R)"

proof (rule inj_onI)
fix x y
assume R: "x ∈ carrier R" "y ∈ carrier R" and eq: "monom P x n = monom

P y n"
then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp
with R show "x = y" by simp

qed

end

14.8 The Degree Function

definition deg :: "[(’a, ’m) ring_scheme, nat => ’a] => nat"
where "deg R p == LEAST n. bound 0R n (coeff (UP R) p)"

context UP_ring
begin

lemma deg_aboveI:
"[| (!!m. n < m ==> coeff P p m = 0); p ∈ carrier P |] ==> deg R p <=

n"
by (unfold deg_def P_def) (fast intro: Least_le)

lemma deg_aboveD:
assumes "deg R p < m" and "p ∈ carrier P"
shows "coeff P p m = 0"

proof -
from ‘p ∈ carrier P‘ obtain n where "bound 0 n (coeff P p)"

by (auto simp add: UP_def P_def)
then have "bound 0 (deg R p) (coeff P p)"

by (auto simp: deg_def P_def dest: LeastI)
from this and ‘deg R p < m‘ show ?thesis ..

qed

lemma deg_belowI:
assumes non_zero: "n ~= 0 ==> coeff P p n ~= 0"

and R: "p ∈ carrier P"
shows "n <= deg R p"

— Logically, this is a slightly stronger version of deg_aboveD
proof (cases "n=0")

case True then show ?thesis by simp
next
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case False then have "coeff P p n ~= 0" by (rule non_zero)
then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R)
then show ?thesis by arith

qed

lemma lcoeff_nonzero_deg:
assumes deg: "deg R p ~= 0" and R: "p ∈ carrier P"
shows "coeff P p (deg R p) ~= 0"

proof -
from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~=

0"
proof -

have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)"
by arith

from deg have "deg R p - 1 < (LEAST n. bound 0 n (coeff P p))"
by (unfold deg_def P_def) simp

then have "~ bound 0 (deg R p - 1) (coeff P p)" by (rule not_less_Least)
then have "EX m. deg R p - 1 < m & coeff P p m ~= 0"

by (unfold bound_def) fast
then have "EX m. deg R p <= m & coeff P p m ~= 0" by (simp add: deg

minus)
then show ?thesis by (auto intro: that)

qed
with deg_belowI R have "deg R p = m" by fastsimp
with m_coeff show ?thesis by simp

qed

lemma lcoeff_nonzero_nonzero:
assumes deg: "deg R p = 0" and nonzero: "p ~= 0P" and R: "p ∈ carrier

P"
shows "coeff P p 0 ~= 0"

proof -
have "EX m. coeff P p m ~= 0"
proof (rule classical)

assume "~ ?thesis"
with R have "p = 0P" by (auto intro: up_eqI)
with nonzero show ?thesis by contradiction

qed
then obtain m where coeff: "coeff P p m ~= 0" ..
from this and R have "m <= deg R p" by (rule deg_belowI)
then have "m = 0" by (simp add: deg)
with coeff show ?thesis by simp

qed

lemma lcoeff_nonzero:
assumes neq: "p ~= 0P" and R: "p ∈ carrier P"
shows "coeff P p (deg R p) ~= 0"

proof (cases "deg R p = 0")
case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero)
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next
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg)

qed

lemma deg_eqI:
"[| !!m. n < m ==> coeff P p m = 0;

!!n. n ~= 0 ==> coeff P p n ~= 0; p ∈ carrier P |] ==> deg R p =
n"
by (fast intro: le_anti_sym deg_aboveI deg_belowI)

Degree and polynomial operations

lemma deg_add [simp]:
assumes R: "p ∈ carrier P" "q ∈ carrier P"
shows "deg R (p ⊕P q) <= max (deg R p) (deg R q)"

proof (cases "deg R p <= deg R q")
case True show ?thesis

by (rule deg_aboveI) (simp_all add: True R deg_aboveD)
next

case False show ?thesis
by (rule deg_aboveI) (simp_all add: False R deg_aboveD)

qed

lemma deg_monom_le:
"a ∈ carrier R ==> deg R (monom P a n) <= n"
by (intro deg_aboveI) simp_all

lemma deg_monom [simp]:
"[| a ~= 0; a ∈ carrier R |] ==> deg R (monom P a n) = n"
by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI)

lemma deg_const [simp]:
assumes R: "a ∈ carrier R" shows "deg R (monom P a 0) = 0"

proof (rule le_anti_sym)
show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add:

R)
next

show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add:
R)
qed

lemma deg_zero [simp]:
"deg R 0P = 0"

proof (rule le_anti_sym)
show "deg R 0P <= 0" by (rule deg_aboveI) simp_all

next
show "0 <= deg R 0P" by (rule deg_belowI) simp_all

qed

lemma deg_one [simp]:
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"deg R 1P = 0"
proof (rule le_anti_sym)

show "deg R 1P <= 0" by (rule deg_aboveI) simp_all
next

show "0 <= deg R 1P" by (rule deg_belowI) simp_all
qed

lemma deg_uminus [simp]:
assumes R: "p ∈ carrier P" shows "deg R (	P p) = deg R p"

proof (rule le_anti_sym)
show "deg R (	P p) <= deg R p" by (simp add: deg_aboveI deg_aboveD

R)
next

show "deg R p <= deg R (	P p)"
by (simp add: deg_belowI lcoeff_nonzero_deg
inj_on_iff [OF R.a_inv_inj, of _ "0", simplified] R)

qed

The following lemma is later overwritten by the most specific one for do-
mains, deg_smult.

lemma deg_smult_ring [simp]:
"[| a ∈ carrier R; p ∈ carrier P |] ==>
deg R (a �P p) <= (if a = 0 then 0 else deg R p)"
by (cases "a = 0") (simp add: deg_aboveI deg_aboveD)+

end

context UP_domain
begin

lemma deg_smult [simp]:
assumes R: "a ∈ carrier R" "p ∈ carrier P"
shows "deg R (a �P p) = (if a = 0 then 0 else deg R p)"

proof (rule le_anti_sym)
show "deg R (a �P p) <= (if a = 0 then 0 else deg R p)"

using R by (rule deg_smult_ring)
next

show "(if a = 0 then 0 else deg R p) <= deg R (a �P p)"
proof (cases "a = 0")
qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R)

qed

end

context UP_ring
begin

lemma deg_mult_ring:
assumes R: "p ∈ carrier P" "q ∈ carrier P"
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shows "deg R (p ⊗P q) <= deg R p + deg R q"
proof (rule deg_aboveI)

fix m
assume boundm: "deg R p + deg R q < m"
{

fix k i
assume boundk: "deg R p + deg R q < k"
then have "coeff P p i ⊗ coeff P q (k - i) = 0"
proof (cases "deg R p < i")

case True then show ?thesis by (simp add: deg_aboveD R)
next

case False with boundk have "deg R q < k - i" by arith
then show ?thesis by (simp add: deg_aboveD R)

qed
}
with boundm R show "coeff P (p ⊗P q) m = 0" by simp

qed (simp add: R)

end

context UP_domain
begin

lemma deg_mult [simp]:
"[| p ~= 0P; q ~= 0P; p ∈ carrier P; q ∈ carrier P |] ==>
deg R (p ⊗P q) = deg R p + deg R q"

proof (rule le_anti_sym)
assume "p ∈ carrier P" " q ∈ carrier P"
then show "deg R (p ⊗P q) <= deg R p + deg R q" by (rule deg_mult_ring)

next
let ?s = "(%i. coeff P p i ⊗ coeff P q (deg R p + deg R q - i))"
assume R: "p ∈ carrier P" "q ∈ carrier P" and nz: "p ~= 0P" "q ~=

0P"
have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith
show "deg R p + deg R q <= deg R (p ⊗P q)"
proof (rule deg_belowI, simp add: R)

have "(
⊕

i ∈ {.. deg R p + deg R q}. ?s i)
= (

⊕
i ∈ {..< deg R p} ∪ {deg R p .. deg R p + deg R q}. ?s i)"

by (simp only: ivl_disj_un_one)
also have "... = (

⊕
i ∈ {deg R p .. deg R p + deg R q}. ?s i)"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD less_add_diff R Pi_def)

also have "...= (
⊕

i ∈ {deg R p} ∪ {deg R p <.. deg R p + deg R q}.
?s i)"

by (simp only: ivl_disj_un_singleton)
also have "... = coeff P p (deg R p) ⊗ coeff P q (deg R q)"

by (simp cong: R.finsum_cong
add: ivl_disj_int_singleton deg_aboveD R Pi_def)

finally have "(
⊕

i ∈ {.. deg R p + deg R q}. ?s i)
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= coeff P p (deg R p) ⊗ coeff P q (deg R q)" .
with nz show "(

⊕
i ∈ {.. deg R p + deg R q}. ?s i) ~= 0"

by (simp add: integral_iff lcoeff_nonzero R)
qed (simp add: R)

qed

end

The following lemmas also can be lifted to UP_ring.

context UP_ring
begin

lemma coeff_finsum:
assumes fin: "finite A"
shows "p ∈ A -> carrier P ==>
coeff P (finsum P p A) k = (

⊕
i ∈ A. coeff P (p i) k)"

using fin by induct (auto simp: Pi_def)

lemma up_repr:
assumes R: "p ∈ carrier P"
shows "(

⊕
P i ∈ {..deg R p}. monom P (coeff P p i) i) = p"

proof (rule up_eqI)
let ?s = "(%i. monom P (coeff P p i) i)"
fix k
from R have RR: "!!i. (if i = k then coeff P p i else 0) ∈ carrier

R"
by simp

show "coeff P (
⊕

P i ∈ {..deg R p}. ?s i) k = coeff P p k"
proof (cases "k <= deg R p")

case True
hence "coeff P (

⊕
P i ∈ {..deg R p}. ?s i) k =

coeff P (
⊕

P i ∈ {..k} ∪ {k<..deg R p}. ?s i) k"
by (simp only: ivl_disj_un_one)

also from True
have "... = coeff P (

⊕
P i ∈ {..k}. ?s i) k"

by (simp cong: R.finsum_cong add: R.finsum_Un_disjoint
ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def)

also
have "... = coeff P (

⊕
P i ∈ {..<k} ∪ {k}. ?s i) k"

by (simp only: ivl_disj_un_singleton)
also have "... = coeff P p k"

by (simp cong: R.finsum_cong
add: ivl_disj_int_singleton coeff_finsum deg_aboveD R RR Pi_def)

finally show ?thesis .
next

case False
hence "coeff P (

⊕
P i ∈ {..deg R p}. ?s i) k =

coeff P (
⊕

P i ∈ {..<deg R p} ∪ {deg R p}. ?s i) k"
by (simp only: ivl_disj_un_singleton)
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also from False have "... = coeff P p k"
by (simp cong: R.finsum_cong
add: ivl_disj_int_singleton coeff_finsum deg_aboveD R Pi_def)

finally show ?thesis .
qed

qed (simp_all add: R Pi_def)

lemma up_repr_le:
"[| deg R p <= n; p ∈ carrier P |] ==>
(
⊕

P i ∈ {..n}. monom P (coeff P p i) i) = p"
proof -

let ?s = "(%i. monom P (coeff P p i) i)"
assume R: "p ∈ carrier P" and "deg R p <= n"
then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} ∪ {deg R p<..n})"

by (simp only: ivl_disj_un_one)
also have "... = finsum P ?s {..deg R p}"

by (simp cong: P.finsum_cong add: P.finsum_Un_disjoint ivl_disj_int_one
deg_aboveD R Pi_def)

also have "... = p" using R by (rule up_repr)
finally show ?thesis .

qed

end

14.9 Polynomials over Integral Domains

lemma domainI:
assumes cring: "cring R"

and one_not_zero: "one R ~= zero R"
and integral: "!!a b. [| mult R a b = zero R; a ∈ carrier R;
b ∈ carrier R |] ==> a = zero R | b = zero R"

shows "domain R"
by (auto intro!: domain.intro domain_axioms.intro cring.axioms assms
del: disjCI)

context UP_domain
begin

lemma UP_one_not_zero:
"1P ~= 0P"

proof
assume "1P = 0P"
hence "coeff P 1P 0 = (coeff P 0P 0)" by simp
hence "1 = 0" by simp
with R.one_not_zero show "False" by contradiction

qed

lemma UP_integral:
"[| p ⊗P q = 0P; p ∈ carrier P; q ∈ carrier P |] ==> p = 0P | q = 0P"
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proof -
fix p q
assume pq: "p ⊗P q = 0P" and R: "p ∈ carrier P" "q ∈ carrier P"
show "p = 0P | q = 0P"
proof (rule classical)

assume c: "~ (p = 0P | q = 0P)"
with R have "deg R p + deg R q = deg R (p ⊗P q)" by simp
also from pq have "... = 0" by simp
finally have "deg R p + deg R q = 0" .
then have f1: "deg R p = 0 & deg R q = 0" by simp
from f1 R have "p = (

⊕
P i ∈ {..0}. monom P (coeff P p i) i)"

by (simp only: up_repr_le)
also from R have "... = monom P (coeff P p 0) 0" by simp
finally have p: "p = monom P (coeff P p 0) 0" .
from f1 R have "q = (

⊕
P i ∈ {..0}. monom P (coeff P q i) i)"

by (simp only: up_repr_le)
also from R have "... = monom P (coeff P q 0) 0" by simp
finally have q: "q = monom P (coeff P q 0) 0" .
from R have "coeff P p 0 ⊗ coeff P q 0 = coeff P (p ⊗P q) 0" by

simp
also from pq have "... = 0" by simp
finally have "coeff P p 0 ⊗ coeff P q 0 = 0" .
with R have "coeff P p 0 = 0 | coeff P q 0 = 0"

by (simp add: R.integral_iff)
with p q show "p = 0P | q = 0P" by fastsimp

qed
qed

theorem UP_domain:
"domain P"
by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI)

end

Interpretation of theorems from domain.

sublocale UP_domain < "domain" P
by intro_locales (rule domain.axioms UP_domain)+

14.10 The Evaluation Homomorphism and Universal Prop-
erty

lemma (in abelian_monoid) boundD_carrier:
"[| bound 0 n f; n < m |] ==> f m ∈ carrier G"
by auto

context ring
begin

theorem diagonal_sum:
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"[| f ∈ {..n + m::nat} -> carrier R; g ∈ {..n + m} -> carrier R |] ==>
(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =
(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..n + m - k}. f k ⊗ g i)"
proof -

assume Rf: "f ∈ {..n + m} -> carrier R" and Rg: "g ∈ {..n + m} ->
carrier R"

{
fix j
have "j <= n + m ==>
(
⊕

k ∈ {..j}.
⊕

i ∈ {..k}. f i ⊗ g (k - i)) =
(
⊕

k ∈ {..j}.
⊕

i ∈ {..j - k}. f k ⊗ g i)"
proof (induct j)

case 0 from Rf Rg show ?case by (simp add: Pi_def)
next

case (Suc j)
have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i ∈ carrier

R"
using Suc by (auto intro!: funcset_mem [OF Rg])

have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) ∈ carrier
R"

using Suc by (auto intro!: funcset_mem [OF Rg])
have R9: "!!i k. [| k <= Suc j |] ==> f k ∈ carrier R"

using Suc by (auto intro!: funcset_mem [OF Rf])
have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i ∈ carrier

R"
using Suc by (auto intro!: funcset_mem [OF Rg])

have R11: "g 0 ∈ carrier R"
using Suc by (auto intro!: funcset_mem [OF Rg])

from Suc show ?case
by (simp cong: finsum_cong add: Suc_diff_le a_ac
Pi_def R6 R8 R9 R10 R11)

qed
}
then show ?thesis by fast

qed

theorem cauchy_product:
assumes bf: "bound 0 n f" and bg: "bound 0 m g"

and Rf: "f ∈ {..n} -> carrier R" and Rg: "g ∈ {..m} -> carrier R"
shows "(

⊕
k ∈ {..n + m}.

⊕
i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

i ∈ {..n}. f i) ⊗ (
⊕

i ∈ {..m}. g i)"
proof -

have f: "!!x. f x ∈ carrier R"
proof -

fix x
show "f x ∈ carrier R"

using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def)
qed
have g: "!!x. g x ∈ carrier R"



287

proof -
fix x
show "g x ∈ carrier R"

using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def)
qed
from f g have "(

⊕
k ∈ {..n + m}.

⊕
i ∈ {..k}. f i ⊗ g (k - i)) =

(
⊕

k ∈ {..n + m}.
⊕

i ∈ {..n + m - k}. f k ⊗ g i)"
by (simp add: diagonal_sum Pi_def)

also have "... = (
⊕

k ∈ {..n} ∪ {n<..n + m}.
⊕

i ∈ {..n + m - k}.
f k ⊗ g i)"

by (simp only: ivl_disj_un_one)
also from f g have "... = (

⊕
k ∈ {..n}.

⊕
i ∈ {..n + m - k}. f k ⊗

g i)"
by (simp cong: finsum_cong
add: bound.bound [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def)

also from f g
have "... = (

⊕
k ∈ {..n}.

⊕
i ∈ {..m} ∪ {m<..n + m - k}. f k ⊗ g i)"

by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def)
also from f g have "... = (

⊕
k ∈ {..n}.

⊕
i ∈ {..m}. f k ⊗ g i)"

by (simp cong: finsum_cong
add: bound.bound [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def)

also from f g have "... = (
⊕

i ∈ {..n}. f i) ⊗ (
⊕

i ∈ {..m}. g i)"
by (simp add: finsum_ldistr diagonal_sum Pi_def,
simp cong: finsum_cong add: finsum_rdistr Pi_def)

finally show ?thesis .
qed

end

lemma (in UP_ring) const_ring_hom:
"(%a. monom P a 0) ∈ ring_hom R P"
by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult)

definition
eval :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme,

’a => ’b, ’b, nat => ’a] => ’b"
where "eval R S phi s == λp ∈ carrier (UP R).⊕

Si ∈ {..deg R p}. phi (coeff (UP R) p i) ⊗S s (^)S i"

context UP
begin

lemma eval_on_carrier:
fixes S (structure)
shows "p ∈ carrier P ==>
eval R S phi s p = (

⊕
S i ∈ {..deg R p}. phi (coeff P p i) ⊗S s (^)S

i)"
by (unfold eval_def, fold P_def) simp
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lemma eval_extensional:
"eval R S phi p ∈ extensional (carrier P)"
by (unfold eval_def, fold P_def) simp

end

The universal property of the polynomial ring

locale UP_pre_univ_prop = ring_hom_cring + UP_cring

locale UP_univ_prop = UP_pre_univ_prop +
fixes s and Eval
assumes indet_img_carrier [simp, intro]: "s ∈ carrier S"
defines Eval_def: "Eval == eval R S h s"

JE: I have moved the following lemma from Ring.thy and lifted then to the
locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not
hold for non commutative rings, so maybe it is not that necessary.

lemma (in ring_hom_ring) hom_finsum [simp]:
"[| finite A; f ∈ A -> carrier R |] ==>
h (finsum R f A) = finsum S (h o f) A"

proof (induct set: finite)
case empty then show ?case by simp

next
case insert then show ?case by (simp add: Pi_def)

qed

context UP_pre_univ_prop
begin

theorem eval_ring_hom:
assumes S: "s ∈ carrier S"
shows "eval R S h s ∈ ring_hom P S"

proof (rule ring_hom_memI)
fix p
assume R: "p ∈ carrier P"
then show "eval R S h s p ∈ carrier S"

by (simp only: eval_on_carrier) (simp add: S Pi_def)
next

fix p q
assume R: "p ∈ carrier P" "q ∈ carrier P"
then show "eval R S h s (p ⊕P q) = eval R S h s p ⊕S eval R S h s

q"
proof (simp only: eval_on_carrier P.a_closed)

from S R have
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"(
⊕

S i∈{..deg R (p ⊕P q)}. h (coeff P (p ⊕P q) i) ⊗S s (^)S i)
=

(
⊕

S i∈{..deg R (p ⊕P q)} ∪ {deg R (p ⊕P q)<..max (deg R p) (deg
R q)}.

h (coeff P (p ⊕P q) i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def del:

coeff_add)
also from R have "... =

(
⊕

S i ∈ {..max (deg R p) (deg R q)}.
h (coeff P (p ⊕P q) i) ⊗S s (^)S i)"

by (simp add: ivl_disj_un_one)
also from R S have "... =
(
⊕

Si∈{..max (deg R p) (deg R q)}. h (coeff P p i) ⊗S s (^)S i)
⊕S

(
⊕

Si∈{..max (deg R p) (deg R q)}. h (coeff P q i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: S.l_distr deg_aboveD ivl_disj_int_one Pi_def)

also have "... =
(
⊕

S i ∈ {..deg R p} ∪ {deg R p<..max (deg R p) (deg R q)}.
h (coeff P p i) ⊗S s (^)S i) ⊕S

(
⊕

S i ∈ {..deg R q} ∪ {deg R q<..max (deg R p) (deg R q)}.
h (coeff P q i) ⊗S s (^)S i)"

by (simp only: ivl_disj_un_one le_maxI1 le_maxI2)
also from R S have "... =
(
⊕

S i ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

S i ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)

finally show
"(

⊕
Si ∈ {..deg R (p ⊕P q)}. h (coeff P (p ⊕P q) i) ⊗S s (^)S

i) =
(
⊕

Si ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊕S
(
⊕

Si ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)" .
qed

next
show "eval R S h s 1P = 1S"

by (simp only: eval_on_carrier UP_one_closed) simp
next

fix p q
assume R: "p ∈ carrier P" "q ∈ carrier P"
then show "eval R S h s (p ⊗P q) = eval R S h s p ⊗S eval R S h s

q"
proof (simp only: eval_on_carrier UP_mult_closed)

from R S have
"(

⊕
S i ∈ {..deg R (p ⊗P q)}. h (coeff P (p ⊗P q) i) ⊗S s (^)S

i) =
(
⊕

S i ∈ {..deg R (p ⊗P q)} ∪ {deg R (p ⊗P q)<..deg R p + deg
R q}.
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h (coeff P (p ⊗P q) i) ⊗S s (^)S i)"
by (simp cong: S.finsum_cong
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def
del: coeff_mult)

also from R have "... =
(
⊕

S i ∈ {..deg R p + deg R q}. h (coeff P (p ⊗P q) i) ⊗S s (^)S
i)"

by (simp only: ivl_disj_un_one deg_mult_ring)
also from R S have "... =

(
⊕

S i ∈ {..deg R p + deg R q}.⊕
S k ∈ {..i}.
h (coeff P p k) ⊗S h (coeff P q (i - k)) ⊗S
(s (^)S k ⊗S s (^)S (i - k)))"

by (simp cong: S.finsum_cong add: S.nat_pow_mult Pi_def
S.m_ac S.finsum_rdistr)

also from R S have "... =
(
⊕

S i∈{..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊗S
(
⊕

S i∈{..deg R q}. h (coeff P q i) ⊗S s (^)S i)"
by (simp add: S.cauchy_product [THEN sym] bound.intro deg_aboveD

S.m_ac
Pi_def)

finally show
"(

⊕
S i ∈ {..deg R (p ⊗P q)}. h (coeff P (p ⊗P q) i) ⊗S s (^)S

i) =
(
⊕

S i ∈ {..deg R p}. h (coeff P p i) ⊗S s (^)S i) ⊗S
(
⊕

S i ∈ {..deg R q}. h (coeff P q i) ⊗S s (^)S i)" .
qed

qed

The following lemma could be proved in UP_cring with the additional as-
sumption that h is closed.

lemma (in UP_pre_univ_prop) eval_const:
"[| s ∈ carrier S; r ∈ carrier R |] ==> eval R S h s (monom P r 0) =

h r"
by (simp only: eval_on_carrier monom_closed) simp

Further properties of the evaluation homomorphism.

The following proof is complicated by the fact that in arbitrary rings one
might have 1 = 0.

lemma (in UP_pre_univ_prop) eval_monom1:
assumes S: "s ∈ carrier S"
shows "eval R S h s (monom P 1 1) = s"

proof (simp only: eval_on_carrier monom_closed R.one_closed)
from S have
"(

⊕
S i∈{..deg R (monom P 1 1)}. h (coeff P (monom P 1 1) i) ⊗S s

(^)S i) =
(
⊕

S i∈{..deg R (monom P 1 1)} ∪ {deg R (monom P 1 1)<..1}.
h (coeff P (monom P 1 1) i) ⊗S s (^)S i)"
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by (simp cong: S.finsum_cong del: coeff_monom
add: deg_aboveD S.finsum_Un_disjoint ivl_disj_int_one Pi_def)

also have "... =
(
⊕

S i ∈ {..1}. h (coeff P (monom P 1 1) i) ⊗S s (^)S i)"
by (simp only: ivl_disj_un_one deg_monom_le R.one_closed)

also have "... = s"
proof (cases "s = 0S")

case True then show ?thesis by (simp add: Pi_def)
next

case False then show ?thesis by (simp add: S Pi_def)
qed
finally show "(

⊕
S i ∈ {..deg R (monom P 1 1)}.

h (coeff P (monom P 1 1) i) ⊗S s (^)S i) = s" .
qed

end

Interpretation of ring homomorphism lemmas.

sublocale UP_univ_prop < ring_hom_cring P S Eval
apply (unfold Eval_def)
apply intro_locales
apply (rule ring_hom_cring.axioms)
apply (rule ring_hom_cring.intro)
apply unfold_locales
apply (rule eval_ring_hom)
apply rule
done

lemma (in UP_cring) monom_pow:
assumes R: "a ∈ carrier R"
shows "(monom P a n) (^)P m = monom P (a (^) m) (n * m)"

proof (induct m)
case 0 from R show ?case by simp

next
case Suc with R show ?case

by (simp del: monom_mult add: monom_mult [THEN sym] add_commute)
qed

lemma (in ring_hom_cring) hom_pow [simp]:
"x ∈ carrier R ==> h (x (^) n) = h x (^)S (n::nat)"
by (induct n) simp_all

lemma (in UP_univ_prop) Eval_monom:
"r ∈ carrier R ==> Eval (monom P r n) = h r ⊗S s (^)S n"

proof -
assume R: "r ∈ carrier R"
from R have "Eval (monom P r n) = Eval (monom P r 0 ⊗P (monom P 1 1)

(^)P n)"
by (simp del: monom_mult add: monom_mult [THEN sym] monom_pow)
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also
from R eval_monom1 [where s = s, folded Eval_def]
have "... = h r ⊗S s (^)S n"

by (simp add: eval_const [where s = s, folded Eval_def])
finally show ?thesis .

qed

lemma (in UP_pre_univ_prop) eval_monom:
assumes R: "r ∈ carrier R" and S: "s ∈ carrier S"
shows "eval R S h s (monom P r n) = h r ⊗S s (^)S n"

proof -
interpret UP_univ_prop R S h P s "eval R S h s"

using UP_pre_univ_prop_axioms P_def R S
by (auto intro: UP_univ_prop.intro UP_univ_prop_axioms.intro)

from R
show ?thesis by (rule Eval_monom)

qed

lemma (in UP_univ_prop) Eval_smult:
"[| r ∈ carrier R; p ∈ carrier P |] ==> Eval (r �P p) = h r ⊗S Eval

p"
proof -

assume R: "r ∈ carrier R" and P: "p ∈ carrier P"
then show ?thesis

by (simp add: monom_mult_is_smult [THEN sym]
eval_const [where s = s, folded Eval_def])

qed

lemma ring_hom_cringI:
assumes "cring R"

and "cring S"
and "h ∈ ring_hom R S"

shows "ring_hom_cring R S h"
by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro
cring.axioms assms)

context UP_pre_univ_prop
begin

lemma UP_hom_unique:
assumes "ring_hom_cring P S Phi"
assumes Phi: "Phi (monom P 1 (Suc 0)) = s"

"!!r. r ∈ carrier R ==> Phi (monom P r 0) = h r"
assumes "ring_hom_cring P S Psi"
assumes Psi: "Psi (monom P 1 (Suc 0)) = s"

"!!r. r ∈ carrier R ==> Psi (monom P r 0) = h r"
and P: "p ∈ carrier P" and S: "s ∈ carrier S"

shows "Phi p = Psi p"
proof -
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interpret ring_hom_cring P S Phi by fact
interpret ring_hom_cring P S Psi by fact
have "Phi p =

Phi (
⊕

P i ∈ {..deg R p}. monom P (coeff P p i) 0 ⊗P monom P 1
1 (^)P i)"

by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
also
have "... =

Psi (
⊕

P i∈{..deg R p}. monom P (coeff P p i) 0 ⊗P monom P 1 1
(^)P i)"

by (simp add: Phi Psi P Pi_def comp_def)
also have "... = Psi p"

by (simp add: up_repr P monom_mult [THEN sym] monom_pow del: monom_mult)
finally show ?thesis .

qed

lemma ring_homD:
assumes Phi: "Phi ∈ ring_hom P S"
shows "ring_hom_cring P S Phi"

proof (rule ring_hom_cring.intro)
show "ring_hom_cring_axioms P S Phi"
by (rule ring_hom_cring_axioms.intro) (rule Phi)

qed unfold_locales

theorem UP_universal_property:
assumes S: "s ∈ carrier S"
shows "EX! Phi. Phi ∈ ring_hom P S ∩ extensional (carrier P) &
Phi (monom P 1 1) = s &
(ALL r : carrier R. Phi (monom P r 0) = h r)"

using S eval_monom1
apply (auto intro: eval_ring_hom eval_const eval_extensional)
apply (rule extensionalityI)
apply (auto intro: UP_hom_unique ring_homD)
done

end

JE: The following lemma was added by me; it might be even lifted to a
simpler locale

context monoid
begin

lemma nat_pow_eone[simp]: assumes x_in_G: "x ∈ carrier G" shows "x
(^) (1::nat) = x"

using nat_pow_Suc [of x 0] unfolding nat_pow_0 [of x] unfolding l_one
[OF x_in_G] by simp

end
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context UP_ring
begin

abbreviation lcoeff :: "(nat =>’a) => ’a" where "lcoeff p == coeff P
p (deg R p)"

lemma lcoeff_nonzero2: assumes p_in_R: "p ∈ carrier P" and p_not_zero:
"p 6= 0P" shows "lcoeff p 6= 0"

using lcoeff_nonzero [OF p_not_zero p_in_R] .

14.11 The long division algorithm: some previous facts.

lemma coeff_minus [simp]:
assumes p: "p ∈ carrier P" and q: "q ∈ carrier P" shows "coeff P (p

	P q) n = coeff P p n 	 coeff P q n"
unfolding a_minus_def [OF p q] unfolding coeff_add [OF p a_inv_closed

[OF q]] unfolding coeff_a_inv [OF q]
using coeff_closed [OF p, of n] using coeff_closed [OF q, of n] by algebra

lemma lcoeff_closed [simp]: assumes p: "p ∈ carrier P" shows "lcoeff
p ∈ carrier R"

using coeff_closed [OF p, of "deg R p"] by simp

lemma deg_smult_decr: assumes a_in_R: "a ∈ carrier R" and f_in_P: "f
∈ carrier P" shows "deg R (a �P f) ≤ deg R f"

using deg_smult_ring [OF a_in_R f_in_P] by (cases "a = 0", auto)

lemma coeff_monom_mult: assumes R: "c ∈ carrier R" and P: "p ∈ carrier
P"

shows "coeff P (monom P c n ⊗P p) (m + n) = c ⊗ (coeff P p m)"
proof -

have "coeff P (monom P c n ⊗P p) (m + n) = (
⊕

i∈{..m + n}. (if n =
i then c else 0) ⊗ coeff P p (m + n - i))"

unfolding coeff_mult [OF monom_closed [OF R, of n] P, of "m + n"]
unfolding coeff_monom [OF R, of n] by simp

also have "(
⊕

i∈{..m + n}. (if n = i then c else 0) ⊗ coeff P p (m
+ n - i)) =

(
⊕

i∈{..m + n}. (if n = i then c ⊗ coeff P p (m + n - i) else 0))"
using R.finsum_cong [of "{..m + n}" "{..m + n}" "(λi::nat. (if n

= i then c else 0) ⊗ coeff P p (m + n - i))"
"(λi::nat. (if n = i then c ⊗ coeff P p (m + n - i) else 0))"]

using coeff_closed [OF P] unfolding Pi_def simp_implies_def using
R by auto

also have ". . . = c ⊗ coeff P p m" using R.finsum_singleton [of n "{..m
+ n}" "(λi. c ⊗ coeff P p (m + n - i))"]

unfolding Pi_def using coeff_closed [OF P] using P R by auto
finally show ?thesis by simp

qed
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lemma deg_lcoeff_cancel:
assumes p_in_P: "p ∈ carrier P" and q_in_P: "q ∈ carrier P" and r_in_P:

"r ∈ carrier P"
and deg_r_nonzero: "deg R r 6= 0"
and deg_R_p: "deg R p ≤ deg R r" and deg_R_q: "deg R q ≤ deg R r"

and coeff_R_p_eq_q: "coeff P p (deg R r) = 	R (coeff P q (deg R r))"
shows "deg R (p ⊕P q) < deg R r"

proof -
have deg_le: "deg R (p ⊕P q) ≤ deg R r"
proof (rule deg_aboveI)

fix m
assume deg_r_le: "deg R r < m"
show "coeff P (p ⊕P q) m = 0"
proof -

have slp: "deg R p < m" and "deg R q < m" using deg_R_p deg_R_q
using deg_r_le by auto

then have max_sl: "max (deg R p) (deg R q) < m" by simp
then have "deg R (p ⊕P q) < m" using deg_add [OF p_in_P q_in_P]

by arith
with deg_R_p deg_R_q show ?thesis using coeff_add [OF p_in_P q_in_P,

of m]
using deg_aboveD [of "p ⊕P q" m] using p_in_P q_in_P by simp

qed
qed (simp add: p_in_P q_in_P)
moreover have deg_ne: "deg R (p ⊕P q) 6= deg R r"
proof (rule ccontr)

assume nz: "¬ deg R (p ⊕P q) 6= deg R r" then have deg_eq: "deg
R (p ⊕P q) = deg R r" by simp

from deg_r_nonzero have r_nonzero: "r 6= 0P" by (cases "r = 0P",
simp_all)

have "coeff P (p ⊕P q) (deg R r) = 0R" using coeff_add [OF p_in_P
q_in_P, of "deg R r"] using coeff_R_p_eq_q

using coeff_closed [OF p_in_P, of "deg R r"] coeff_closed [OF q_in_P,
of "deg R r"] by algebra

with lcoeff_nonzero [OF r_nonzero r_in_P] and deg_eq show False
using lcoeff_nonzero [of "p ⊕P q"] using p_in_P q_in_P

using deg_r_nonzero by (cases "p ⊕P q 6= 0P", auto)
qed
ultimately show ?thesis by simp

qed

lemma monom_deg_mult:
assumes f_in_P: "f ∈ carrier P" and g_in_P: "g ∈ carrier P" and deg_le:

"deg R g ≤ deg R f"
and a_in_R: "a ∈ carrier R"
shows "deg R (g ⊗P monom P a (deg R f - deg R g)) ≤ deg R f"
using deg_mult_ring [OF g_in_P monom_closed [OF a_in_R, of "deg R f
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- deg R g"]]
apply (cases "a = 0") using g_in_P apply simp
using deg_monom [OF _ a_in_R, of "deg R f - deg R g"] using deg_le by

simp

lemma deg_zero_impl_monom:
assumes f_in_P: "f ∈ carrier P" and deg_f: "deg R f = 0"
shows "f = monom P (coeff P f 0) 0"
apply (rule up_eqI) using coeff_monom [OF coeff_closed [OF f_in_P],

of 0 0]
using f_in_P deg_f using deg_aboveD [of f _] by auto

end

14.12 The long division proof for commutative rings

context UP_cring
begin

lemma exI3: assumes exist: "Pred x y z"
shows "∃ x y z. Pred x y z"
using exist by blast

Jacobson’s Theorem 2.14

lemma long_div_theorem:
assumes g_in_P [simp]: "g ∈ carrier P" and f_in_P [simp]: "f ∈ carrier

P"
and g_not_zero: "g 6= 0P"
shows "∃ q r (k::nat). (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff

g)(^)Rk �P f = g ⊗P q ⊕P r ∧ (r = 0P | deg R r < deg R g)"
proof -

let ?pred = "(λ q r (k::nat).
(q ∈ carrier P) ∧ (r ∈ carrier P) ∧ (lcoeff g)(^)Rk �P f = g ⊗P

q ⊕P r ∧ (r = 0P | deg R r < deg R g))"
and ?lg = "lcoeff g"

show ?thesis

proof (cases "deg R f < deg R g")
case True

have "?pred 0P f 0" using True by force
then show ?thesis by fast

next
case False then have deg_g_le_deg_f: "deg R g ≤ deg R f" by simp
{

from f_in_P deg_g_le_deg_f show ?thesis
proof (induct n ≡ "deg R f" arbitrary: "f" rule: nat_less_induct)
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fix n f
assume hypo: "∀ m<n. ∀ x. x ∈ carrier P −→

deg R g ≤ deg R x −→
m = deg R x −→
(∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧ lcoeff g (^)

k �P x = g ⊗P q ⊕P r & (r = 0P | deg R r < deg R g))"
and prem: "n = deg R f" and f_in_P [simp]: "f ∈ carrier P"
and deg_g_le_deg_f: "deg R g ≤ deg R f"

let ?k = "1::nat" and ?r = "(g ⊗P (monom P (lcoeff f) (deg R f
- deg R g))) ⊕P 	P (lcoeff g �P f)"

and ?q = "monom P (lcoeff f) (deg R f - deg R g)"
show "∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧ lcoeff

g (^) k �P f = g ⊗P q ⊕P r & (r = 0P | deg R r < deg R g)"
proof -

have exist: "lcoeff g (^) ?k �P f = g ⊗P ?q ⊕P 	P ?r"
using minus_add
using sym [OF a_assoc [of "g ⊗P ?q" "	P (g ⊗P ?q)" "lcoeff

g �P f"]]
using r_neg by auto

show ?thesis
proof (cases "deg R (	P ?r) < deg R g")

case True
{

show ?thesis
proof (rule exI3 [of _ ?q "	P ?r" ?k], intro conjI)
show "lcoeff g (^) ?k �P f = g ⊗P ?q ⊕P 	P ?r" using

exist by simp
show "	P ?r = 0P ∨ deg R (	P ?r) < deg R g" using True

by simp
qed (simp_all)

}
next

case False note n_deg_r_l_deg_g = False
{

show ?thesis
proof (cases "deg R f = 0")

case True
{

have deg_g: "deg R g = 0" using True using deg_g_le_deg_f
by simp

have "lcoeff g (^) (1::nat) �P f = g ⊗P f ⊕P 0P"
unfolding deg_g apply simp
unfolding sym [OF monom_mult_is_smult [OF coeff_closed

[OF g_in_P, of 0] f_in_P]]
using deg_zero_impl_monom [OF g_in_P deg_g] by simp
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then show ?thesis using f_in_P by blast
}

next
case False note deg_f_nzero = False
{

have deg_remainder_l_f: "deg R (	P ?r) < n"
proof -

have "deg R (	P ?r) = deg R ?r" using deg_uminus [of
?r] by simp

also have ". . . < deg R f"
proof (rule deg_lcoeff_cancel)

show "deg R (	P (lcoeff g �P f)) ≤ deg R f"
using deg_smult_ring [of "lcoeff g" f] using prem
using lcoeff_nonzero2 [OF g_in_P g_not_zero] by simp
show "deg R (g ⊗P ?q) ≤ deg R f"
using monom_deg_mult [OF _ g_in_P, of f "lcoeff f"]

and deg_g_le_deg_f
by simp
show "coeff P (g ⊗P ?q) (deg R f) = 	 coeff P (	P

(lcoeff g �P f)) (deg R f)"
unfolding coeff_mult [OF g_in_P monom_closed [OF

lcoeff_closed [OF f_in_P], of "deg R f - deg R g"], of "deg R f"]
unfolding coeff_monom [OF lcoeff_closed [OF f_in_P],

of "(deg R f - deg R g)"]
using R.finsum_cong’ [of "{..deg R f}" "{..deg R

f}"
"(λi. coeff P g i ⊗ (if deg R f - deg R g = deg

R f - i then lcoeff f else 0))"
"(λi. if deg R g = i then coeff P g i ⊗ lcoeff

f else 0)"]
using R.finsum_singleton [of "deg R g" "{.. deg R

f}" "(λi. coeff P g i ⊗ lcoeff f)"]
unfolding Pi_def using deg_g_le_deg_f by force

qed (simp_all add: deg_f_nzero)
finally show "deg R (	P ?r) < n" unfolding prem .

qed
moreover have "	P ?r ∈ carrier P" by simp
moreover obtain m where deg_rem_eq_m: "deg R (	P ?r)

= m" by auto
moreover have "deg R g ≤ deg R (	P ?r)" using n_deg_r_l_deg_g

by simp

ultimately obtain q’ r’ k’
where rem_desc: "lcoeff g (^) (k’::nat) �P (	P ?r)

= g ⊗P q’ ⊕P r’"and rem_deg: "(r’ = 0P ∨ deg R r’ < deg R g)"
and q’_in_carrier: "q’ ∈ carrier P" and r’_in_carrier:

"r’ ∈ carrier P"



299

using hypo by blast

show ?thesis
proof (rule exI3 [of _ "((lcoeff g (^) k’) �P ?q ⊕P

q’)" r’ "Suc k’"], intro conjI)
show "(lcoeff g (^) (Suc k’)) �P f = g ⊗P ((lcoeff

g (^) k’) �P ?q ⊕P q’) ⊕P r’"
proof -

have "(lcoeff g (^) (Suc k’)) �P f = (lcoeff g (^)
k’) �P (g ⊗P ?q ⊕P 	P ?r)"

using smult_assoc1 exist by simp
also have ". . . = (lcoeff g (^) k’) �P (g ⊗P ?q) ⊕P

((lcoeff g (^) k’) �P ( 	P ?r))"
using UP_smult_r_distr by simp
also have ". . . = (lcoeff g (^) k’) �P (g ⊗P ?q) ⊕P

(g ⊗P q’ ⊕P r’)"
using rem_desc by simp
also have ". . . = (lcoeff g (^) k’) �P (g ⊗P ?q) ⊕P

g ⊗P q’ ⊕P r’"
using sym [OF a_assoc [of "lcoeff g (^) k’ �P (g

⊗P ?q)" "g ⊗P q’" "r’"]]
using q’_in_carrier r’_in_carrier by simp
also have ". . . = (lcoeff g (^) k’) �P (?q ⊗P g) ⊕P

q’ ⊗P g ⊕P r’"
using q’_in_carrier by (auto simp add: m_comm)
also have ". . . = (((lcoeff g (^) k’) �P ?q) ⊗P g)

⊕P q’ ⊗P g ⊕P r’"
using smult_assoc2 q’_in_carrier by auto
also have ". . . = ((lcoeff g (^) k’) �P ?q ⊕P q’)

⊗P g ⊕P r’"
using sym [OF l_distr] and q’_in_carrier by auto
finally show ?thesis using m_comm q’_in_carrier by

auto
qed

qed (simp_all add: rem_deg q’_in_carrier r’_in_carrier)
}

qed
}

qed
qed

qed
}

qed
qed

end

The remainder theorem as corollary of the long division theorem.

context UP_cring
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begin

lemma deg_minus_monom:
assumes a: "a ∈ carrier R"
and R_not_trivial: "(carrier R 6= {0})"
shows "deg R (monom P 1R 1 	P monom P a 0) = 1"
(is "deg R ?g = 1")

proof -
have "deg R ?g ≤ 1"
proof (rule deg_aboveI)

fix m
assume "(1::nat) < m"
then show "coeff P ?g m = 0"

using coeff_minus using a by auto algebra
qed (simp add: a)
moreover have "deg R ?g ≥ 1"
proof (rule deg_belowI)

show "coeff P ?g 1 6= 0"
using a using R.carrier_one_not_zero R_not_trivial by simp algebra

qed (simp add: a)
ultimately show ?thesis by simp

qed

lemma lcoeff_monom:
assumes a: "a ∈ carrier R" and R_not_trivial: "(carrier R 6= {0})"
shows "lcoeff (monom P 1R 1 	P monom P a 0) = 1"
using deg_minus_monom [OF a R_not_trivial]
using coeff_minus a by auto algebra

lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p 6= 0"
shows "p 6= 0P"
using deg_zero deg_p_nzero by auto

lemma deg_monom_minus:
assumes a: "a ∈ carrier R"
and R_not_trivial: "carrier R 6= {0}"
shows "deg R (monom P 1R 1 	P monom P a 0) = 1"
(is "deg R ?g = 1")

proof -
have "deg R ?g ≤ 1"
proof (rule deg_aboveI)

fix m::nat assume "1 < m" then show "coeff P ?g m = 0"
using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed

[OF a, of 0], of m]
using coeff_monom [OF R.one_closed, of 1 m] using coeff_monom [OF

a, of 0 m] by auto algebra
qed (simp add: a)
moreover have "1 ≤ deg R ?g"
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proof (rule deg_belowI)
show "coeff P ?g 1 6= 0"

using coeff_minus [OF monom_closed [OF R.one_closed, of 1] monom_closed
[OF a, of 0], of 1]

using coeff_monom [OF R.one_closed, of 1 1] using coeff_monom [OF
a, of 0 1]

using R_not_trivial using R.carrier_one_not_zero
by auto algebra

qed (simp add: a)
ultimately show ?thesis by simp

qed

lemma eval_monom_expr:
assumes a: "a ∈ carrier R"
shows "eval R R id a (monom P 1R 1 	P monom P a 0) = 0"
(is "eval R R id a ?g = _")

proof -
interpret UP_pre_univ_prop R R id proof qed simp
have eval_ring_hom: "eval R R id a ∈ ring_hom P R" using eval_ring_hom

[OF a] by simp
interpret ring_hom_cring P R "eval R R id a" proof qed (simp add: eval_ring_hom)
have mon1_closed: "monom P 1R 1 ∈ carrier P"

and mon0_closed: "monom P a 0 ∈ carrier P"
and min_mon0_closed: "	P monom P a 0 ∈ carrier P"
using a R.a_inv_closed by auto

have "eval R R id a ?g = eval R R id a (monom P 1 1) 	 eval R R id
a (monom P a 0)"

unfolding P.minus_eq [OF mon1_closed mon0_closed]
unfolding hom_add [OF mon1_closed min_mon0_closed]
unfolding hom_a_inv [OF mon0_closed]
using R.minus_eq [symmetric] mon1_closed mon0_closed by auto

also have ". . . = a 	 a"
using eval_monom [OF R.one_closed a, of 1] using eval_monom [OF a

a, of 0] using a by simp
also have ". . . = 0"

using a by algebra
finally show ?thesis by simp

qed

lemma remainder_theorem_exist:
assumes f: "f ∈ carrier P" and a: "a ∈ carrier R"
and R_not_trivial: "carrier R 6= {0}"
shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = (monom P 1R

1 	P monom P a 0) ⊗P q ⊕P r ∧ (deg R r = 0)"
(is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P r ∧

(deg R r = 0)")
proof -

let ?g = "monom P 1R 1 	P monom P a 0"
from deg_minus_monom [OF a R_not_trivial]
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have deg_g_nzero: "deg R ?g 6= 0" by simp
have "∃ q r (k::nat). q ∈ carrier P ∧ r ∈ carrier P ∧

lcoeff ?g (^) k �P f = ?g ⊗P q ⊕P r ∧ (r = 0P ∨ deg R r < deg R
?g)"

using long_div_theorem [OF _ f deg_nzero_nzero [OF deg_g_nzero]] a
by auto

then show ?thesis
unfolding lcoeff_monom [OF a R_not_trivial]
unfolding deg_monom_minus [OF a R_not_trivial]
using smult_one [OF f] using deg_zero by force

qed

lemma remainder_theorem_expression:
assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"
and q [simp]: "q ∈ carrier P" and r [simp]: "r ∈ carrier P"
and R_not_trivial: "carrier R 6= {0}"
and f_expr: "f = (monom P 1R 1 	P monom P a 0) ⊗P q ⊕P r"
(is "f = ?g ⊗P q ⊕P r" is "f = ?gq ⊕P r")

and deg_r_0: "deg R r = 0"
shows "r = monom P (eval R R id a f) 0"

proof -
interpret UP_pre_univ_prop R R id P proof qed simp
have eval_ring_hom: "eval R R id a ∈ ring_hom P R"

using eval_ring_hom [OF a] by simp
have "eval R R id a f = eval R R id a ?gq ⊕R eval R R id a r"

unfolding f_expr using ring_hom_add [OF eval_ring_hom] by auto
also have ". . . = ((eval R R id a ?g) ⊗ (eval R R id a q)) ⊕R eval R

R id a r"
using ring_hom_mult [OF eval_ring_hom] by auto

also have ". . . = 0 ⊕ eval R R id a r"
unfolding eval_monom_expr [OF a] using eval_ring_hom
unfolding ring_hom_def using q unfolding Pi_def by simp

also have ". . . = eval R R id a r"
using eval_ring_hom unfolding ring_hom_def using r unfolding Pi_def

by simp
finally have eval_eq: "eval R R id a f = eval R R id a r" by simp
from deg_zero_impl_monom [OF r deg_r_0]
have "r = monom P (coeff P r 0) 0" by simp
with eval_const [OF a, of "coeff P r 0"] eval_eq
show ?thesis by auto

qed

corollary remainder_theorem:
assumes f [simp]: "f ∈ carrier P" and a [simp]: "a ∈ carrier R"
and R_not_trivial: "carrier R 6= {0}"
shows "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧

f = (monom P 1R 1 	P monom P a 0) ⊗P q ⊕P monom P (eval R R id a
f) 0"
(is "∃ q r. (q ∈ carrier P) ∧ (r ∈ carrier P) ∧ f = ?g ⊗P q ⊕P monom
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P (eval R R id a f) 0")
proof -

from remainder_theorem_exist [OF f a R_not_trivial]
obtain q r

where q_r: "q ∈ carrier P ∧ r ∈ carrier P ∧ f = ?g ⊗P q ⊕P r"
and deg_r: "deg R r = 0" by force

with remainder_theorem_expression [OF f a _ _ R_not_trivial, of q r]
show ?thesis by auto

qed

end

14.13 Sample Application of Evaluation Homomorphism

lemma UP_pre_univ_propI:
assumes "cring R"

and "cring S"
and "h ∈ ring_hom R S"

shows "UP_pre_univ_prop R S h"
using assms
by (auto intro!: UP_pre_univ_prop.intro ring_hom_cring.intro
ring_hom_cring_axioms.intro UP_cring.intro)

definition INTEG :: "int ring"
where INTEG_def: "INTEG == (| carrier = UNIV, mult = op *, one = 1,

zero = 0, add = op + |)"

lemma INTEG_cring:
"cring INTEG"
by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI
zadd_zminus_inverse2 zadd_zmult_distrib)

lemma INTEG_id_eval:
"UP_pre_univ_prop INTEG INTEG id"
by (fast intro: UP_pre_univ_propI INTEG_cring id_ring_hom)

Interpretation now enables to import all theorems and lemmas valid in the
context of homomorphisms between INTEG and UP INTEG globally.

interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"
using INTEG_id_eval by simp_all

lemma INTEG_closed [intro, simp]:
"z ∈ carrier INTEG"
by (unfold INTEG_def) simp

lemma INTEG_mult [simp]:
"mult INTEG z w = z * w"
by (unfold INTEG_def) simp
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lemma INTEG_pow [simp]:
"pow INTEG z n = z ^ n"
by (induct n) (simp_all add: INTEG_def nat_pow_def)

lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"
by (simp add: INTEG.eval_monom)

end
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