Committer's Guide

The FreeBSD Documentation Project
Revision: e194334c79

Copyright © 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 The FreeBSD Documentation Project

FreeBSD is a registered trademark of the FreeBSD Foundation.

Coverity is a registered trademark; Coverity Extend, Coverity Prevent and Coverity Prevent
SQS are trademarks of Coverity, Inc.

IBM, AIX, 0S/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks of International Business
Machines Corporation in the United States, other countries, or both.

Intel, Celeron, Centrino, Core, EtherExpress, i386, 1486, Itanium, Pentium, and Xeon are trade-
marks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

SPARC, SPARC64, and UltraSPARC are trademarks of SPARC International, Inc in the United
States and other countries. SPARC International, Inc owns all of the SPARC trademarks and un-
der licensing agreements allows the proper use of these trademarks by its members.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2021-01-08 14:04:42 +0100 by Daniel Ebdrup Jensen.

Abstract

This document provides information for the FreeBSD committer community. All new com-
mitters should read this document before they start, and existing committers are strongly en-
couraged to review it from time to time.

Almost all FreeBSD developers have commit rights to one or more repositories. However,

a few developers do not, and some of the information here applies to them as well. (For in-
stance, some people only have rights to work with the Problem Report database). Please see
Section 21, “Issues Specific to Developers Who Are Not Committers” for more information.

This document may also be of interest to members of the FreeBSD community who want to
learn more about how the project works.

Table of Contents

. AdMINISEIAtive DELAILS ouivninisiieei it
. OPENPGP KEYS fOF FIEEBSD ..vvvvueeriiineetiiineeetiii e ettt e eeetii e eeeti e e ettt e e e ettin e e eettineesetaieeeeatineeeesaans
. Kerberos and LDAP web Password for FTeeBSD CLUSTETvuvvivniniiiniiiieiieiieee et
. ComMMULE BIt TYPES 1ovuiniuniiiniiiiniiitiiiiini et
oA 3 o) s B o0 e Ve s =) T
. Setup, Conventions, and TraditiONSvvuueiruneriineriieeiieeiiretieetiieesttestieetteesteestieessiieesineessans
. PrE-COMMUIL REVIEW .ttt ettt ettt ettt ettt et et e e et ea et eeseaseasennensenseneenes
. COMMUE LOZ MESSAZES vuvvivninirninirnininiiitiitineiitetitetietitttettaettteattetstenetetetstneartensateneaienenens
. Preferred License fOr NEW FILEScuivuieiiieieiie ittt ettt ettt a e enens
10. Keeping Track of Licenses Granted to the FreeBSD PrOJECEvvvvvunerrriineeeiiiieeriiiineeeiiiineeeiiineeeeiiinnens 29

O 00 N O Ul b LW N =

https://cgit.freebsd.org/doc/commit/?id=e194334c79

Administrative Details

11, DEVElOPET RELATIONS 1.uuevvvneiiinetiiieeiiieeti et et et tte et e et e et e et e et teeets e st eeai e e st e e st essaneesinees 29
12 TE 00 DOUDE.L. +evvtieetiii ettt ettt et e e et e e et e e e et e e et e e e et e et e et e e et es 30
13, BUGZIILA vveneeiieiiiee ettt e et erin s 30
14, PRADTICALOT 1.vuteeeiiii ettt e ettt ettt ettt e ettt e ettt e e e ettt e e ettt e e e et s e e et e e e et eaaes 31
15. WHO'S WHO eiiiiiiiiiiiiiiiiiiiiii e e e 31
16. SSH QUICK-SEAIT GUIAE +vuvnieinieiiiee ittt ettt et et e et e et e et e et e s e et ettt s e eeneenanns 32
17. Coverity® Availability for FreeBSD COMMUILTETS ...e.uuunerrriineeiiiinreeeiiieeeeiiieeeeeiieeeeeiieeeeeiineeeeninnes 33
18. The FreeBSD Committers' Big List Of RUIES ...cvvvuuneiiiiineeiiiiineeiiiin e ettt e e et e e e et e e e e e e 33
19. Support for Multiple ArChItECEUIESuuevriiiieeiiiieeeiii ettt et eeii e 38
20. POTES SPECITIC FAQ tevvuneetviiineetiiiieeetite e e ettt e e ettt e e e et e e ettt e e e et e e e et s e e e tt s e e aatnseeeetieeaeeiannes 41
21. Issues Specific to Developers Who Are NOt COMMUILLETScevvuuneririineeriiiineeeiiiineeeeiiineeeeiineeeeiiieeees 50
22. Information About GOOgle ANALYLICS ...v.vuueeririneeriiiseeiiiis ettt e et e e e et e e e e 51
23, MiISCEllaneouS QUESTIONS +.vvvnvnirinirininti ettt ettt et et e et et et e et e st e e et e tstenetensanens 51
24, Benefits and Perks for FreeBSD COMIMILEETS vvvuuurriviunerriiiieerriiieeeiiieeeeiiinseeeiiineeeeriineeesiineearninnes 52

1.

Administrative Details

Login Methods ssh(1), protocol 2 only
Main Shell Host freefall.FreeBSD.org
SMTP Host smtp.FreeBSD.org:587 (see also Section 6.2.1, “SMTP Access Setup”).

src/ Subversion Root |svn+ssh:// repo.FreeBSD.org/base (see also Section 5.2.2, “RELENG_* Branches and Gen-

eral Layout”).

doc/ Subversion Root |svn+ssh:// repo.FreeBSD.org/doc (see also Section 5.2.3, “FreeBSD Documentation

Project Branches and Layout”).

ports/ Subversion | svn+ssh:// repo.FreeBSD.org/ports (see also Section 5.2.4, “FreeBSD Ports Tree Branch-
Root es and Layout”).

Internal Mailing Lists | developers (technically called all-developers), doc-developers, doc-committers, ports-de-

velopers, ports-committers, src-developers, src-committers. (Each project repository has
its own -developers and -committers mailing lists. Archives for these lists can be found in
the files /local/mail/ repository-name -developers-archive and /local/mail/ repos-
itory-name -committers-archive on the FreeBSD.org cluster.)

Core Team monthly re-| /home/core/public/monthly-reports on the FreeBSD.org cluster.
ports

Ports Management | /home/portmgr/public/monthly-reports on the FreeBSD.org cluster.
Team monthly reports

Noteworthy src/ SVN|stable/n (n-STABLE), head (-CURRENT)
Branches

ssh(1) is required to connect to the project hosts. For more information, see Section 16, “SSH Quick-Start Guide”.
Useful links:

+ FreeBSD Project Internal Pages

+ FreeBSD Project Hosts

¢ FreeBSD Project Administrative Groups

2. OpenPGP Keys for FreeBSD

Cryptographic keys conforming to the OpenPGP (Pretty Good Privacy) standard are used by the FreeBSD project to
authenticate committers. Messages carrying important information like public SSH keys can be signed with the

https://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/internal/
https://www.FreeBSD.org/internal/machines.html
https://www.FreeBSD.org/administration.html

Committer's Guide

OpenPGP key to prove that they are really from the committer. See PGP & GPG: Email for the Practical Paranoid by
Michael Lucas and http://en.wikipedia.org/wiki/Pretty_Good_Privacy for more information.

2.1. Creating a Key

Existing keys can be used, but should be checked with doc/head/share/pgpkeys/checkkey.sh first. In this case,
make sure the key has a FreeBSD user ID.

For those who do not yet have an OpenPGP key, or need a new key to meet FreeBSD security requirements, here
we show how to generate one.

1. Install security/gnupg. Enter these lines in ~/.gnupg/gpg.conf to set minimum acceptable defaults:

2. Generate a key:

© 2048-bit keys with a three-year expiration provide adequate protection at present (2013-12). http://
danielpocock.com/rsa-key-sizes-2048-or-4096-bits describes the situation in more detail.

http://www.nostarch.com/pgp_ml.htm
http://www.nostarch.com/pgp_ml.htm
http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://danielpocock.com/rsa-key-sizes-2048-or-4096-bits
http://danielpocock.com/rsa-key-sizes-2048-or-4096-bits

Kerberos and LDAP web Password for FreeBSD Cluster

8 A three year key lifespan is short enough to obsolete keys weakened by advancing computer power, but
long enough to reduce key management problems.

€ Use your real name here, preferably matching that shown on government-issued ID to make it easier
for others to verify your identity. Text that may help others identify you can be entered in the Comment
section.

After the email address is entered, a passphrase is requested. Methods of creating a secure passphrase are
contentious. Rather than suggest a single way, here are some links to sites that describe various meth-
ods: http://world.std.com/~reinhold/diceware.html, http://www.iusmentis.com/security/passphrasefaq/,
http://xkcd.com/936/, http://en.wikipedia.org/wiki/Passphrase.

Protect the private key and passphrase. If either the private key or passphrase may have been compromised or
disclosed, immediately notify <accounts@FreeBSD.org> and revoke the key.

Committing the new key is shown in Procedure 1, “Steps for New Committers”.

3. Kerberos and LDAP web Password for FreeBSD Cluster

The FreeBSD cluster requires a Kerberos password to access certain services. The Kerberos password also serves
as the LDAP web password, since LDAP is proxying to Kerberos in the cluster. Some of the services which require
this include:

+ Bugzilla
+ Jenkins

To create a new Kerberos account in the FreeBSD cluster, or to reset a Kerberos password for an existing account
using a random password generator:

% ssh kpasswd.freebsd.org

Note
@ This must be done from a machine outside of the FreeBSD.org cluster.

A Kerberos password can also be set manually by logging into freefall.FreeBSD.org and running:

% kpasswd

Note

S Unless the Kerberos-authenticated services of the FreeBSD.org cluster have been used pre-
viously, Client unknown will be shown. This error means that the ssh kpasswd. freebsd.org
method shown above must be used first to initialize the Kerberos account.

4. Commit Bit Types

The FreeBSD repository has a number of components which, when combined, support the basic operating system
source, documentation, third party application ports infrastructure, and various maintained utilities. When Free-
BSD commit bits are allocated, the areas of the tree where the bit may be used are specified. Generally, the areas
associated with a bit reflect who authorized the allocation of the commit bit. Additional areas of authority may

http://world.std.com/~reinhold/diceware.html
http://www.iusmentis.com/security/passphrasefaq/
http://xkcd.com/936/
http://en.wikipedia.org/wiki/Passphrase
mailto:accounts@FreeBSD.org
https://bugs.freebsd.org/bugzilla
https://ci.freebsd.org

Committer's Guide

be added at a later date: when this occurs, the committer should follow normal commit bit allocation procedures
for that area of the tree, seeking approval from the appropriate entity and possibly getting a mentor for that area
for some period of time.

Committer Type Responsible Tree Components

src core@ src/, doc/ subject to appropriate re-
view

doc doceng@ doc/, ports/, src/ documentation

ports portmgr@ ports/

Commit bits allocated prior to the development of the notion of areas of authority may be appropriate for use in
many parts of the tree. However, common sense dictates that a committer who has not previously worked in an
area of the tree seek review prior to committing, seek approval from the appropriate responsible party, and/or
work with a mentor. Since the rules regarding code maintenance differ by area of the tree, this is as much for the
benefit of the committer working in an area of less familiarity as it is for others working on the tree.

Committers are encouraged to seek review for their work as part of the normal development process, regardless
of the area of the tree where the work is occurring.

4.1. Policy for Committer Activity in Other Trees

+ All committers may modify base/head/share/misc/committers-*.dot ,base/head/usr.bin/calendar/cal-
endars/calendar. freebsd, and ports/head/astro/xearth/files

+ doc committers may commit documentation changes to src files, such as man pages, READMESs, fortune data-
bases, calendar files, and comment fixes without approval from a src committer, subject to the normal care and
tending of commits.

* Any committer may make changes to any other tree with an "Approved by" from a non-mentored committer
with the appropriate bit.

+ Committers can acquire an additional bit by the usual process of finding a mentor who will propose them to core,
doceng, or portmgr, as appropriate. When approved, they will be added to 'access' and the normal mentoring
period will ensue, which will involve a continuing of “Approved by” for some period.

« "Approved by" is only acceptable from non-mentored src committers -- mentored committers can provide a
"Reviewed by" but not an "Approved by".

5. Subversion Primer

New committers are assumed to already be familiar with the basic operation of Subversion. If not, start by reading
the Subversion Book.

5.1. Introduction

The FreeBSD source repository switched from CVS to Subversion on May 31st, 2008. The first real SVN commit is
r179447.

The FreeBSD doc/www repository switched from CVS to Subversion on May 19th, 2012. The first real SVN commit
is r38821.

The FreeBSD ports repository switched from CVS to Subversion on July 14th, 2012. The first real SVN commit is
r300894.

Subversion can be installed from the FreeBSD Ports Collection by issuing these commands:

pkg install subversion

http://svnbook.red-bean.com/

Getting Started

5.2. Getting Started
There are a few ways to obtain a working copy of the tree from Subversion. This section will explain them.
5.2.1. Direct Checkout
The first is to check out directly from the main repository. For the src tree, use:
% svn checkout svn+ssh://repo.freebsd.org/base/head /usr/src
For the doc tree, use:
% svn checkout svn+ssh://repo.freebsd.org/doc/head /usr/doc
For the ports tree, use:

% svn checkout svn+ssh://repo.freebsd.org/ports/head /usr/ports

Note

@ Though the remaining examples in this document are written with the workflow of working
with the src tree in mind, the underlying concepts are the same for working with the doc and
the ports tree. Ports related Subversion operations are listed in Section 20, “Ports Specific
FAQ”.

The above command will check out a CURRENT source tree as /usr/src/ , which can be any target directory on the
local filesystem. Omitting the final argument of that command causes the working copy, in this case, to be named
“head”, but that can be renamed safely.

svn+ssh means the SVN protocol tunnelled over SSH. The name of the server is repo. freebsd.org, base is the
path to the repository, and head is the subdirectory within the repository.

If your FreeBSD login name is different from the login name used on the local machine, either include it in the URL
(for example svn+ssh://jarjar@repo.freebsd.org/base/head), or add an entry to ~/.ssh/config in the form:

Host repo.freebsd.org
User jarjar

This is the simplest method, but it is hard to tell just yet how much load it will place on the repository.

Note

@ The svn diff does not require access to the server as SVN stores a reference copy of every
file in the working copy. This, however, means that Subversion working copies are very large
in size.

5.2.2. RELENG_* Branches and General Layout

In svn+ssh://repo.freebsd.org/base , base refers to the source tree. Similarly, ports refers to the ports tree, and
so on. These are separate repositories with their own change number sequences, access controls and commit mail.

For the base repository, HEAD refers to the -CURRENT tree. For example, head/bin/1ls is what would go into /
usr/src/bin/ls in arelease. Some key locations are:

+ /head/ which corresponds to HEAD, also known as - CURRENT.

Committer's Guide

+ /stable/n which corresponds to RELENG n.
» /releng/n.n which corresponds to RELENG n_n.
+ /Jrelease/n.n.n which corresponds to RELENG n n n RELEASE.

+ /vendor* is the vendor branch import work area. This directory itself does not contain branches, however its
subdirectories do. This contrasts with the stable, releng and release directories.

+ /projects and /user feature a branch work area. As above, the /user directory does not contain branches itself.
5.2.3. FreeBSD Documentation Project Branches and Layout
In svn+ssh://repo.freebsd.org/doc , doc refers to the repository root of the source tree.

In general, most FreeBSD Documentation Project work will be done within the head/ branch of the documentation
source tree.

FreeBSD documentation is written and/or translated to various languages, each in a separate directory in the
head/ branch.

Each translation set contains several subdirectories for the various parts of the FreeBSD Documentation Project.
A few noteworthy directories are:

+ /articles/ contains the source code for articles written by various FreeBSD contributors.

+ /books/ contains the source code for the different books, such as the FreeBSD Handbook.

+ /htdocs/ contains the source code for the FreeBSD website.

5.2.4. FreeBSD Ports Tree Branches and Layout

In svn+ssh://repo.freebsd.org/ports , ports refers to the repository root of the ports tree.

In general, most FreeBSD port work will be done within the head/ branch of the ports tree which is the actual ports
tree used to install software. Some other key locations are:

» /branches/RELENG_n_n_n which corresponds to RELENG_n_n_n is used to merge back security updates in prepa-
ration for a release.

* /tags/RELEASE_n_n_n which corresponds to RELEASE_n_n_n represents a release tag of the ports tree.

» /tags/RELEASE_n_EOL represents the end of life tag of a specific FreeBSD branch.

5.3. Daily Use
This section will explain how to perform common day-to-day operations with Subversion.
5.3.1. Help

SVN has built in help documentation. It can be accessed by typing:

% svn help
Additional information can be found in the Subversion Book.
5.3.2. Checkout

As seen earlier, to check out the FreeBSD head branch:

% svn checkout svn+ssh://repo.freebsd.org/base/head /usr/src

At some point, more than just HEAD will probably be useful, for instance when merging changes to stable/7. There-
fore, it may be useful to have a partial checkout of the complete tree (a full checkout would be very painful).

http://svnbook.red-bean.com/

Daily Use

To do this, first check out the root of the repository:

% svn checkout --depth=immediates svn+ssh://repo.freebsd.org/base

This will give base with all the files it contains (at the time of writing, just ROADMAP . txt) and empty subdirectories
for head, stable, vendor and so on.

Expanding the working copy is possible. Just change the depth of the various subdirectories:

% svn up --set-depth=infinity base/head
% svn up --set-depth=immediates base/release base/releng base/stable

The above command will pull down a full copy of head, plus empty copies of every release tag, every releng
branch, and every stable branch.

If at a later date merging to 7-STABLE is required, expand the working copy:
% svn up --set-depth=infinity base/stable/7

Subtrees do not have to be expanded completely. For instance, expanding only stable/7/sys and then later expand
the rest of stable/7:

% svn up --set-depth=infinity base/stable/7/sys
% svn up --set-depth=infinity base/stable/7

Updating the tree with svn update will only update what was previously asked for (in this case, head and stable/7;
it will not pull down the whole tree.

5.3.3. Anonymous Checkout

It is possible to anonymously check out the FreeBSD repository with Subversion. This will give access to a read-
only tree that can be updated, but not committed back to the main repository. To do this, use:

% svn co https://svn.FreeBSD.org/base/head /usr/src
More details on using Subversion this way can be found in Using Subversion.
5.3.4. Updating the Tree

To update a working copy to either the latest revision, or a specific revision:

% svn update
% svn update - ri2345

5.3.5. Status

To view the local changes that have been made to the working copy:

% svn status

To show local changes and files that are out-of-date do:

% svn status --show-updates
5.3.6. Editing and Committing
SVN does not need to be told in advance about file editing.
To commit all changes in the current directory and all subdirectories:
% svn commit
To commit all changes in, for example, lib/libfetch/ and usr/bin/fetch/ in a single operation:

% svn commit lib/libfetch usr/bin/fetch

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn.html

Committer's Guide

There is also a commit wrapper for the ports tree to handle the properties and sanity checking the changes:

% /usr/ports/Tools/scripts/psvn commit

5.3.7. Adding and Removing Files

Note

@ Before adding files, get a copy of auto-props.txt (there is also a ports tree specific version)
and add it to ~/. subversion/config according to the instructions in the file. If you added
something before reading this, use svn rm - -keep-local for just added files, fix your config
file and re-add them again. The initial config file is created when you first run a svn command,
even something as simple as svn help.

Files are added to a SVN repository with svn add. To add a file named foo, edit it, then:

% svn add foo

Note

S Most new source files should include a $FreeBSD$ string near the start of the file. On com-
mit, svn will expand the $FreeBSD$ string, adding the file path, revision number, date and
time of commit, and the username of the committer. Files which cannot be modified may be
committed without the $FreeBSD$ string.

Files can be removed with svn remove:

% svn remove foo

Subversion does not require deleting the file before using svn rm, and indeed complains if that happens.
It is possible to add directories with svn add:

% mkdir bar
% svn add bar

Although svn mkdir makes this easier by combining the creation of the directory and the adding of it:

% svn mkdir bar

Like files, directories are removed with svn rm. There is no separate command specifically for removing directories.

% svn rm bar

5.3.8. Copying and Moving Files

This command creates a copy of foo.c named bar.c, with the new file also under version control and with the

full history of foo.c:

% svn copy foo.c bar.c

This is usually preferred to copying the file with cp and adding it to the repository with svn add because this way

the new file does not inherit the original one's history.

To move and rename a file:

% svn move foo.c bar.c

https://people.FreeBSD.org/~peter/auto-props.txt
https://people.FreeBSD.org/~beat/cvs2svn/auto-props.txt

Advanced Use

5.3.9. Log and Annotate

svn log shows revisions and commit messages, most recent first, for files or directories. When used on a directory,
all revisions that affected the directory and files within that directory are shown.

svn annotate, or equally svn praise or svn blame, shows the most recent revision number and who committed
that revision for each line of a file.

5.3.10. Diffs

svn diff displays changes to the working copy. Diffs generated by SVN are unified and include new files by default
in the diff output.

svn diff can show the changes between two revisions of the same file:

% svn diff -r179453:179454 ROADMAP.txt

It can also show all changes for a specific changeset. This command shows what changes were made to the current
directory and all subdirectories in changeset 179454:

% svn diff -c179454 .
5.3.11. Reverting

Local changes (including additions and deletions) can be reverted using svn revert. It does not update out-of-
date files, but just replaces them with pristine copies of the original version.

5.3.12. Conflicts

If an svn update resulted in a merge conflict, Subversion will remember which files have conflicts and refuse to
commit any changes to those files until explicitly told that the conflicts have been resolved. The simple, not yet
deprecated procedure is:

% svn resolved foo

However, the preferred procedure is:

% svn resolve --accept=working foo
The two examples are equivalent. Possible values for - -accept are:

« working: use the version in your working directory (which one presumes has been edited to resolve the con-
flicts).

* base: use a pristine copy of the version you had before svn update, discarding your own changes, the conflicting
changes, and possibly other intervening changes as well.

+ mine-full: use what you had before svn update, including your own changes, but discarding the conflicting
changes, and possibly other intervening changes as well.

* theirs-full : use the version that was retrieved when you did svn update, discarding your own changes.

5.4. Advanced Use

5.4.1. Sparse Checkouts

SVN allows sparse, or partial checkouts of a directory by adding - -depth to a svn checkout.
Valid arguments to - -depth are:

« empty: the directory itself without any of its contents.

« files:the directory and any files it contains.

10

Committer's Guide

+ immediates: the directory and any files and directories it contains, but none of the subdirectories' contents.
+ infinity: anything.
The --depth option applies to many other commands, including svn commit, svn revert, and svn diff.

Since --depth is sticky, there is a - -set-depth option for svn update that will change the selected depth. Thus,
given the working copy produced by the previous example:

% cd ~/freebsd
% svn update --set-depth=immediates .

The above command will populate the working copy in ~/freebsd with ROADMAP. txt and empty subdirectories,
and nothing will happen when svn update is executed on the subdirectories. However, this command will set the
depth for head (in this case) to infinity, and fully populate it:

% svn update --set-depth=infinity head
5.4.2. Direct Operation

Certain operations can be performed directly on the repository without touching the working copy. Specifically,
this applies to any operation that does not require editing a file, including;

+ log, diff

¢ mkdir

* remove, copy, rename

* propset, propedit, propdel

* merge

Branching is very fast. This command would be used to branch RELENG 8:

% svn copy svn+ssh://repo.freebsd.org/base/head svn+ssh://repo.freebsd.org/base/stable/8

This is equivalent to these commands which take minutes and hours as opposed to seconds, depending on your
network connection:

svn checkout --depth=immediates svn+ssh://repo.freebsd.org/base
cd base

svn update --set-depth=infinity head

svn copy head stable/8

svn commit stable/8

o® o° o° o o°

5.4.3. Merging with SVN

This section deals with merging code from one branch to another (typically, from head to a stable branch).

Note
@ In all examples below, $FSVN refers to the location of the FreeBSD Subversion repository,
svn+ssh://repo.freebsd.org/base/ .

5.4.3.1. About Merge Tracking

From the user's perspective, merge tracking information (or mergeinfo) is stored in a property called svn:merge-
info, which is a comma-separated list of revisions and ranges of revisions that have been merged. When set on a
file, it applies only to that file. When set on a directory, it applies to that directory and its descendants (files and
directories) except for those that have their own svn:mergeinfo.

11

Advanced Use

It is not inherited. For instance, stable/6/contrib/openpam/ does not implicitly inherit mergeinfo from sta-
ble/6/, or stable/6/contrib/. Doing so would make partial checkouts very hard to manage. Instead, mergeinfo
is explicitly propagated down the tree. For merging something into branch/foo/bar/ , these rules apply:

1.

If branch/foo/bar/ does not already have a mergeinfo record, but a direct ancestor (for instance, branch/
foo/) does, then that record will be propagated down to branch/foo/bar/ before information about the cur-
rent merge is recorded.

. Information about the current merge will not be propagated back up that ancestor.

. If a direct descendant of branch/foo/bar/ (for instance, branch/foo/bar/baz/) already has a mergeinfo

record, information about the current merge will be propagated down to it.

If you consider the case where a revision changes several separate parts of the tree (for example, branch/foo/
bar/ and branch/foo/quux/), but you only want to merge some of it (for example, branch/foo/bar/), you will
see that these rules make sense. If mergeinfo was propagated up, it would seem like that revision had also been
merged to branch/foo/quux/ , when in fact it had not been.

5.4.3.2. Selecting the Source and Target Branch When Merging

Merging to stable/ branches should originate from head/ . For example:

%

%

svn merge -c r123456 ”~/head/ stable/11
svn commit stable/11

Merges to releng/ branches should always originate from the corresponding stable/ branch. For example:

[
“©

%

svn merge -c ri23456 ~/stable/11 releng/11.0
svn commit releng/11.0

Note

@ Commiitters are only permitted to commit to the releng/ branches during a release cycle
after receiving approval from the Release Engineering Team, after which only the Security
Officer may commit to a releng/ branch for a Security Advisory or Errata Notice.

All merges are merged to and committed from the root of the branch. All merges look like:

%

%

svn merge -c rl23456 ”~/head/ checkout
svn commit checkout

Note that checkout must be a complete checkout of the branch to which the merge occurs.

o
i)

svn merge -c ri23456 ~/stable/10 releng/10.0

5.4.3.3. Preparing the Merge Target

Due to the mergeinfo propagation issues described earlier, it is very important to never merge changes into a
sparse working copy. Always use a full checkout of the branch being merged into. For instance, when merging from
HEAD to 7, use a full checkout of stable/7:

)
i)
)

i)

cd stable/7
svn up --set-depth=infinity

The target directory must also be up-to-date and must not contain any uncommitted changes or stray files.

5.4.3.4. Identifying Revisions

Identifying revisions to be merged is a must. If the target already has complete mergeinfo, ask SVN for a list:

12

Committer's Guide

% cd stable/6/contrib/openpam
% svn mergeinfo --show-revs=eligible $FSVN/head/contrib/openpam

If the target does not have complete mergeinfo, check the log for the merge source.
5.4.3.5. Merging

Now, let us start merging!

5.4.3.5.1. The Principles

For example, To merge:

* revision $R

+ indirectory $target in stable branch $B

« from directory $source in head

¢ $FSVNis svn+ssh://repo.freebsd.org/base

Assuming that revisions $P and $Q have already been merged, and that the current directory is an up-to-date
working copy of stable/$B, the existing mergeinfo looks like this:

% svn propget svn:mergeinfo -R $target
$target - /head/$source:$P,$Q

Merging is done like so:

% svn merge -c$R $FSVN/head/$source $target
Checking the results of this is possible with svn diff.

The svn:mergeinfo now looks like:

% svn propget svn:mergeinfo -R $target
$target - head/$source:$P, $Q, $R

If the results are not exactly as shown, assistance may be required before committing as mistakes may have been
made, or there may be something wrong with the existing mergeinfo, or there may be a bug in Subversion.

5.4.3.5.2. Practical Example

Asapractical example, consider this scenario. The changes to netmap .4 inr238987 are to be merged from CURRENT
to 9-STABLE. The file resides in head/share/man/man4 . According to Section 5.4.3, “Merging with SVN”, this is
also where to do the merge. Note that in this example all paths are relative to the top of the svn repository. For
more information on the directory layout, see Section 5.2.2, “RELENG_* Branches and General Layout”.

The first step is to inspect the existing mergeinfo.

% svn propget svn:mergeinfo -R stable/9/share/man/man4

Take a quick note of how it looks before moving on to the next step; doing the actual merge:

% svn merge -c r238987 svn+ssh://repo.freebsd.org/base/head/share/man/man4 stable/9/share/
man/man4
--- Merging r238987 into 'stable/9/share/man/man4':
U stable/9/share/man/man4/netmap.4
--- Recording mergeinfo for merge of r238987 into
'stable/9/share/man/man4':
U stable/9/share/man/man4

Check that the revision number of the merged revision has been added. Once this is verified, the only thing left
is the actual commit.

)

% svn commit stable/9/share/man/man4

13

Advanced Use

5.4.3.6. Precautions Before Committing
As always, build world (or appropriate parts of it).

Check the changes with svn diff and svn stat.Make sure all the files that should have been added or deleted
were in fact added or deleted.

Take a closer look at any property change (marked by a M in the second column of svn stat). Normally, no
svn:mergeinfo properties should be anywhere except the target directory (or directories).

If something looks fishy, ask for help.
5.4.3.7. Committing

Make sure to commit a top level directory to have the mergeinfo included as well. Do not specify individual files on
the command line. For more information about committing files in general, see the relevant section of this primer.

5.4.4. Vendor Imports with SVN

Important
A Please read this entire section before starting a vendor import.

Note
@ Patches to vendor code fall into two categories:

+ Vendor patches: these are patches that have been issued by the vendor, or that have been
extracted from the vendor's version control system, which address issues which cannot
wait until the next vendor release.

+ FreeBSD patches: these are patches that modify the vendor code to address FreeBSD-spe-
cific issues.

The nature of a patch dictates where it should be committed:

+ Vendor patches must be committed to the vendor branch, and merged from there to head.
If the patch addresses an issue in a new release that is currently being imported, it must
not be committed along with the new release: the release must be imported and tagged
first, then the patch can be applied and committed. There is no need to re-tag the vendor
sources after committing the patch.

+ FreeBSD patches are committed directly to head.

5.4.4.1. Preparing the Tree

If importing for the first time after the switch to Subversion, flattening and cleaning up the vendor tree is neces-
sary, as well as bootstrapping the merge history in the main tree.

5.4.4.1.1. Flattening

During the conversion from CVS to Subversion, vendor branches were imported with the same layout as the main
tree. This means that the pf vendor sources ended up in vendor/pf/dist/contrib/pf . The vendor source is best
directly in vendor/pf/dist .

14

Committer's Guide

To flatten the pf tree:

% cd vendor/pf/dist/contrib/pf
% svn mv $(svn list) ../..

%cd ../..

% svn rm contrib

% svn propdel -R svn:mergeinfo .
% svn commit

The propdel bit is necessary because starting with 1.5, Subversion will automatically add svn:mergeinfo to any
directory that is copied or moved. In this case, as nothing is being merged from the deleted tree, they just get in
the way.

Tags may be flattened as well (3, 4, 3.5 etc.); the procedure is exactly the same, only changing dist to 3.5 or similar,
and putting the svn commit off until the end of the process.

5.4.4.1.2. Cleaning Up

The dist tree can be cleaned up as necessary. Disabling keyword expansion is recommended, as it makes no sense
on unmodified vendor code and in some cases it can even be harmful. OpenSSH, for example, includes two files
that originated with FreeBSD and still contain the original version tags. To do this:

% svn propdel svn:keywords -R .
% svn commit

5.4.4.1.3. Bootstrapping Merge History

If importing for the first time after the switch to Subversion, bootstrap svn:mergeinfo on the target directory in
the main tree to the revision that corresponds to the last related change to the vendor tree, prior to importing
new sources:

% cd head/contrib/pf
% svn merge --record-only svn+ssh://repo.freebsd.org/base/ vendor/pf/dist@180876
% svn commit

5.4.4.2. Importing New Sources

With two commits—one for the import itself and one for the tag—this step can optionally be repeated for every
upstream release between the last import and the current import.

5.4.4.2.1. Preparing the Vendor Sources

Subversion is able to store a full distribution in the vendor tree. So, import everything, but merge only what is
required.

A svn add is required to add any files that were added since the last vendor import, and svn rm is required to
remove any that were removed since. Preparing sorted lists of the contents of the vendor tree and of the sources
that are about to be imported is recommended, to facilitate the process.

cd vendor/pf/dist

svn list -R | grep -v '/$' | sort >../old
cd ../pf-4.3

find . -type f | cut -c 3- | sort >../new

d® o o° o°

With these two files, comm -23 ../0old ../new will list removed files (files only in old), while conm -13 ../
old ../new will list added files only in new.

5.4.4.2.2. Importing into the Vendor Tree

Now, the sources must be copied into dist and the svn add and svn rm commands are used as needed:

% cd vendor/pf/pf-4.3
% tar cf - . | tar xf - -C ../dist

15

Advanced Use

% cd ../dist
% comm -23 ../old ../new | xargs svn rm
% comm -13 ../old ../new | xargs svn add --parents

If any directories were removed, they will have to be svn rmed manually. Nothing will break if they are not, but
they will remain in the tree.

Check properties on any new files. All text files should have svn:eol-style set to native. All binary files should
have svn:mime-type settoapplication/octet-stream unlessthere isa more appropriate mediatype. Executable
files should have svn:executable set to *. No other properties should exist on any file in the tree.

Committing is now possible. However, it is good practice to make sure that everything is okay by using the svn
stat and svn diff commands.

5.4.4.2.3. Tagging

Once committed, vendor releases are tagged for future reference. The best and quickest way to do this is directly
in the repository:

% svn cp svnissh://repo.freebsd.org/base/ vendor/pf/dist svn+ssh://repo.freebsd.org/
base/ vendor/pf/4.3

Once that is complete, svn up the working copy of vendor/pf to get the new tag, although this is rarely needed.
If creating the tag in the working copy of the tree, svn:mergeinfo results must be removed:
cd vendor/pf

svn cp dist 4.3
svn propdel svn:mergeinfo -R 4.3

d® o° o°

5.4.4.3. Merging to Head

% cd head/contrib/pf
svn up
svn merge --accept=postpone svn+ssh://repo.freebsd.org/base/ vendor/pf/dist

o o°

The - -accept=postpone tells Subversion not to complain about merge conflicts as they will be handled manually.

Tip

@ The cvs2svn changeover occurred on June 3, 2008. When performing vendor merges for
packages which were already present and converted by the cvs2svn process, the com-
mand used to merge /vendor/package name/dist to /head/package location (for exam-
ple, head/contrib/sendmail) must use -¢ REV to indicate the revision to merge from the
/vendor tree. For example:

% svn checkout svn+ssh://repo.freebsd.org/base/head/contrib/ sendmail

% cd sendmail
% svn merge -c r261190 '~/vendor/ sendmail/dist ' .

~ is an alias for the repository path.

Note
@ If using the Zsh shell, the ~ must be escaped with \ or quoted.

16

Committer's Guide

It is necessary to resolve any merge conflicts.

Make sure that any files that were added or removed in the vendor tree have been properly added or removed in
the main tree. To check diffs against the vendor branch:

% svn diff --no-diff-deleted --old=svn+ssh://repo.freebsd.org/base/ vendor/pf/dist --new=.

The --no-diff-deleted tells Subversion not to complain about files that are in the vendor tree but not in the
main tree. Things that would have previously been removed before the vendor import, like the vendor's makefiles
and configure scripts.

Using CV'S, once a file was off the vendor branch, it was not able to be put back. With Subversion, there is no concept
of on or off the vendor branch. If a file that previously had local modifications, to make it not show up in diffs in the
vendor tree, all that has to be done is remove any left-over cruft like FreeBSD version tags, which is much easier.

If any changes are required for the world to build with the new sources, make them now, and keep testing until
everything builds and runs perfectly.

5.4.4.4. Committing the Vendor Import

Commiitting is now possible! Everything must be committed in one go. If done properly, the tree will move from a
consistent state with old code, to a consistent state with new code.

5.4.4.5. From Scratch

5.4.4.5.1. Importing into the Vendor Tree

This section is an example of importing and tagging byacc into head.
First, prepare the directory in vendor:

svn co --depth immediates $FSVN/vendor

cd vendor

svn mkdir byacc
svn mkdir byacc/dist

d® o o° o°

Now, import the sources into the dist directory. Once the files are in place, svn add the new ones, then svn commit
and tag the imported version. To save time and bandwidth, direct remote committing and tagging is possible:

% svn cp -m "Tag byacc 20120115" $FSVN/vendor/byacc/dist $FSVN/vendor/byacc/20120115
5.4.4.5.2. Merging to head

Due to this being a new file, copy it for the merge:

% svn cp -m "Import byacc to contrib" $FSVN/vendor/byacc/dist $FSVN/head/contrib/byacc
Working normally on newly imported sources is still possible.

5.4.5. Reverting a Commit

Reverting a commit to a previous version is fairly easy:

% svn merge -r179454:179453 ROADMAP.txt
% svn commit

Change number syntax, with negative meaning a reverse change, can also be used:

% svn merge -c -179454 ROADMAP.txt
% svn commit

This can also be done directly in the repository:

% svn merge -rl179454:179453 svn+ssh://repo.freebsd.org/base/ROADMAP. txt

17

Advanced Use

Note
S It is important to ensure that the mergeinfo is correct when reverting a file to permit svn
mergeinfo --eligible to work as expected.

Reverting the deletion of a file is slightly different. Copying the version of the file that predates the deletion is
required. For example, to restore a file that was deleted in revision N, restore version N-1:

% svn copy svn+ssh://repo.freebsd.org/base/ROADMAP. txt@179454
% svn commit

or, equally:

)

% svn copy svn+ssh://repo.freebsd.org/base/ROADMAP.txt@179454 svn+ssh://repo.freebsd.org/
base

Do not simply recreate the file manually and svn add it—this will cause history to be lost.
5.4.6. Fixing Mistakes

While we can do surgery in an emergency, do not plan on having mistakes fixed behind the scenes. Plan on mistakes
remaining in the logs forever. Be sure to check the output of svn status and svn diff before committing.

Mistakes will happen but, they can generally be fixed without disruption.

Take a case of adding a file in the wrong location. The right thing to do is to svn move the file to the correct location
and commit. This causes just a couple of lines of metadata in the repository journal, and the logs are all linked
up correctly.

The wrong thing to do is to delete the file and then svn add an independent copy in the correct location. Instead
of a couple of lines of text, the repository journal grows an entire new copy of the file. This is a waste.

5.4.7. Using a Subversion Mirror

There is a serious disadvantage to this method: every time something is to be committed, a svn relocate to the
main repository has to be done, remembering to svn relocate back to the mirror after the commit. Also, since
svn relocate only works between repositories that have the same UUID, some hacking of the local repository's
UUID has to occur before it is possible to start using it.

5.4.7.1. Checkout from a Mirror

Check out a working copy from a mirror by substituting the mirror's URL for svn+ssh://repo. freebsd.org/base .
This can be an official mirror or a mirror maintained by using svnsync.

5.4.7.2. Setting up a svnsync Mirror

Avoid setting up a svnsync mirror unless there is a very good reason for it. Most of the time a git mirror is a better
alternative. Starting a fresh mirror from scratch takes a long time. Expect a minimum of 10 hours for high speed
connectivity. If international links are involved, expect this to take four to ten times longer.

One way to limit the time required is to grab a seed file. It is large (~1GB) but will consume less network traffic and
take less time to fetch than svnsync will.

Extract the file and update it:

% tar xf svnmirror-base-r261170.tar.xz
% svnsync sync file:///home/svnmirror/base

Now, set that up to run from cron(8), do checkouts locally, set up a svnserve server for local machines to talk to, etc.

18

https://download.freebsd.org/ftp/development/subversion/
https://www.FreeBSD.org/cgi/man.cgi?query=cron&sektion=8&manpath=freebsd-release-ports

Committer's Guide

The seed mirror is set to fetch from svn://svn. freebsd.org/base . The configuration for the mirror is stored in
revprop 0 on the local mirror. To see the configuration, try:

% svn proplist -v --revprop -r 0 file:///home/svnmirror/base
Use svn propset to change things.
5.4.8. Committing High-ASCII Data

Files that have high-ASCII bits are considered binary files in SVN, so the pre-commit checks fail and indicate that
the mime-type property should be set to application/octet-stream . However, the use of this is discouraged, so
please do not set it. The best way is always avoiding high-ASCII data, so that it can be read everywhere with any text
editor but if it is not avoidable, instead of changing the mime-type, set the fbsd:notbinary property with propset :

% svn propset fbsd:notbinary yes foo.data
5.4.9. Maintaining a Project Branch

A project branch is one that is synced to head (or another branch) is used to develop a project then commit it back
to head. In SVN, “dolphin” branching is used for this. A “dolphin” branch is one that diverges for a while and is
finally committed back to the original branch. During development code migration in one direction (from head to
the branch only). No code is committed back to head until the end. After the branch is committed back at the end,
it is dead (although a new branch with the same name can be created after the dead one is deleted).

As per https://people.FreeBSD.org/~peter/svn_notes.txt, work that is intended to be merged back into HEAD
should be in base/projects/ . If the work is beneficial to the FreeBSD community in some way but not intended to
be merged directly back into HEAD then the proper location is base/user/ username/. This page contains further
details.

To create a project branch:

% svn copy svn+ssh://repo.freebsd.org/base/head svn+ssh://repo.freebsd.org/base/projects/
spif

To merge changes from HEAD back into the project branch:
% cd copy_of spif

% svn merge svn+ssh://repo.freebsd.org/base/head
% svn commit

It is important to resolve any merge conflicts before committing.

5.5. Some Tips
In commit logs etc., “rev 179872” is spelled “r179872” as per convention.
Speeding up svn is possible by adding these entries to ~/.ssh/config :
Host *
ControlPath ~/.ssh/sockets/master-%\-%r@sh:%p

ControlMaster auto
ControlPersist yes

and then typing
mkdir ~/.ssh/sockets

Checking out a working copy with a stock Subversion client without FreeBSD-specific patches (OPTIONS SET=FREE-
BSD_TEMPLATE) will mean that $FreeBSD$ tags will not be expanded. Once the correct version has been installed,
trick Subversion into expanding them like so:

% svn propdel -R svn:keywords .

19

https://people.FreeBSD.org/~peter/svn_notes.txt
https://svnweb.freebsd.org/base/projects/GUIDELINES.txt

Setup, Conventions, and Traditions

%

©

svn revert -R .

This will wipe out uncommitted patches.

It is possible to automatically fill the "Sponsored by" and "MFC after" commit log fields by setting "freebsd-spon-
sored-by" and "freebsd-mfc-after" fields in the "[miscellany]" section of the ~/ . subversion/config configuration
file. For example:

freebsd-sponsored-by = The FreeBSD Foundation
freebsd-mfc-after = 2 weeks

6. Setup, Conventions, and Traditions

There are a number of things to do as a new developer. The first set of steps is specific to committers only. These
steps must be done by a mentor for those who are not committers.

6.1. For New Committers

Those who have been given commit rights to the FreeBSD repositories must follow these steps.

Get mentor approval before committing each of these changes!

The .ent and .xml files mentioned below exist in the FreeBSD Documentation Project SVN repository at svn
+ssh://repo.FreeBSD.org/doc/ .

New files that do not have the FreeBSD=%H svn:keywords property will be rejected when attempting to commit
them to the repository. Be sure to read Section 5.3.7, “Adding and Removing Files” regarding adding and remov-
ing files. Verify that ~/. subversion/config contains the necessary “auto-props” entries from auto-props. txt
mentioned there.

All src commits go to FreeBSD-CURRENT first before being merged to FreeBSD-STABLE. The FreeBSD-STABLE
branch must maintain ABI and API compatibility with earlier versions of that branch. Do not merge changes
that break this compatibility.

Procedure 1. Steps for New Committers

1.

20

Add an Author Entity

doc/head/share/xml/authors.ent — Add an author entity. Later steps depend on this entity, and missing
this step will cause the doc/ build to fail. This is a relatively easy task, but remains a good first test of version
control skills.

Update the List of Developers and Contributors

doc/head/en US.IS08859-1/articles/contributors/contrib.committers.xml — Add an entry to the
“Developers” section of the Contributors List. Entries are sorted by last name.

doc/head/en_US.IS08859-1/articles/contributors/contrib.additional.xml — Remove the entry from
the “Additional Contributors” section. Entries are sorted by first name.

Add a News Item

doc/head/share/xml/news.xml — Add an entry. Look for the other entries that announce new committers
and follow the format. Use the date from the commit bit approval email from <core@FreeBSD.org>.

Add a PGP Key

doc/head/share/pgpkeys/pgpkeys.ent and doc/head/share/pgpkeys/pgpkeys-developers.xml - Add
your PGP or GnuPG key. Those who do not yet have a key should see Section 2.1, “Creating a Key”.

https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/staff-committers.html
mailto:core@FreeBSD.org

Committer's Guide

10.

Dag-Erling Smergrav <des@FreeBSD.org> has written a shell script (doc/head/share/pgpkeys/addkey.sh)
to make this easier. See the README file for more information.

Use doc/head/share/pgpkeys/checkkey.sh to verify that keys meet minimal best-practices standards.

After adding and checking a key, add both updated files to source control and then commit them. Entries in
this file are sorted by last name.

Note

@ It is very important to have a current PGP/GnuPG key in the repository. The key may be
required for positive identification of a committer. For example, the FreeBSD Adminis-
trators <admins@FreeBSD . org> might need it for account recovery. A complete keyring
of FreeBSD.org users is available for download from https://www.FreeBSD.org/doc/
pgpkeyring.txt.

Update Mentor and Mentee Information

base/head/share/misc/committers- repository.dot — Add an entry to the current committers section,
where repository is doc, ports, or src, depending on the commit privileges granted.

Add an entry for each additional mentor/mentee relationship in the bottom section.
Generate a Kerberos Password

See Section 3, “Kerberos and LDAP web Password for FreeBSD Cluster” to generate or set a Kerberos for use
with other FreeBSD services like the bug tracking database.

Optional: Enable Wiki Account

FreeBSD Wiki Account — A wiki account allows sharing projects and ideas. Those who do not yet have an
account can follow instructions on the AboutWiki Page to obtain one. Contact <wiki-admin@FreeBSD.org> if
you need help with your Wiki account.

Optional: Update Wiki Information

Wiki Information - After gaining access to the wiki, some people add entries to the How We Got Here, IRC
Nicks, and Dogs of FreeBSD pages.

Optional: Update Ports with Personal Information
ports/astro/xearth/files/freebsd.committers.markers and src/usr.bin/calendar/calendars/cal-
endar. freebsd - Some people add entries for themselves to these files to show where they are located or the
date of their birthday.

Optional: Prevent Duplicate Mailings

Subscribers to svn-src-all, svn-ports-all or svn-doc-all might wish to unsubscribe to avoid receiving duplicate
copies of commit messages and followups.

6.2. For Everyone

1.

Introduce yourself to the other developers, otherwise no one will have any idea who you are or what you are
working on. The introduction need not be a comprehensive biography, just write a paragraph or two about

21

mailto:des@FreeBSD.org
http://svnweb.FreeBSD.org/doc/head/share/pgpkeys/README
mailto:admins@FreeBSD.org
https://www.FreeBSD.org/doc/pgpkeyring.txt
https://www.FreeBSD.org/doc/pgpkeyring.txt
https://wiki.freebsd.org
https://wiki.freebsd.org/AboutWiki
mailto:wiki-admin@FreeBSD.org
https://wiki.freebsd.org/HowWeGotHere
https://wiki.freebsd.org/IRC/Nicknames
https://wiki.freebsd.org/IRC/Nicknames
https://wiki.freebsd.org/Community/Dogs
http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-all
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all

For Everyone

who you are, what you plan to be working on as a developer in FreeBSD, and who will be your mentor. Email
this to the FreeBSD developers mailing list and you will be on your way!

Log into freefall.FreeBSD.org and create a /var/forward/ user (where user is your username) file con-
taining the e-mail address where you want mail addressed to yourusername@FreeBSD.org to be forwarded.
This includes all of the commit messages as well as any other mail addressed to the FreeBSD committer's
mailing list and the FreeBSD developers mailing list. Really large mailboxes which have taken up permanent
residence on freefall may get truncated without warning if space needs to be freed, so forward it or save
it elsewhere.

Note
@ If your e-mail system uses SPF with strict rules, you should whitelist mx2.FreeBSD.org
from SPF checks.

Due to the severe load dealing with SPAM places on the central mail servers that do the mailing list processing,
the front-end server does do some basic checks and will drop some messages based on these checks. At the
moment proper DNS information for the connecting host is the only check in place but that may change. Some
people blame these checks for bouncing valid email. To have these checks turned off for your email, create a
file named ~/.spam_lover on freefall.FreeBSD.org.

Note
3 Those who are developers but not committers will not be subscribed to the committers or
developers mailing lists. The subscriptions are derived from the access rights.

6.2.1. SMTP Access Setup

For those willing to send e-mail messages through the FreeBSD.org infrastructure, follow the instructions below:

1.

2.

Point your mail client at smtp.FreeBSD.org:587.
Enable STARTTLS.
Ensure your From: address is set to yourusername@FreeBSD.org.

For authentication, you can use your FreeBSD Kerberos username and password (see Section 3, “Kerberos and
LDAP web Password for FreeBSD Cluster”). The yourusername/mail principal is preferred, as it is only valid
for authenticating to mail resources.

Note
@ Do not include @FreeBSD. org when entering in your username.

22

Additional Notes
@ + Will only accept mail from yourusername@FreeBSD.org. If you are authenticated as one
user, you are not permitted to send mail from another.

Committer's Guide

+ Aheader will be appended with the SASL username: (Authenticated sender: username).

* Host has various rate limits in place to cut down on brute force attempts.

6.2.1.1. Using a Local MTA to Forward Emails to the FreeBSD.org SMTP Service

It is also possible to use a local MTA to forward locally sent emails to the FreeBSD.org SMTP servers.

Example 1. Using Postfix

To tell a local Postfix instance that anything from yourusername@FreeBSD. org should be forwarded to the
FreeBSD.org servers, add this to your main.cf:

sender_dependent relayhost maps = hash:/usr/local/etc/postfix/relayhost maps

smtp sasl auth enable = yes

smtp sasl security options = noanonymous

smtp sasl password maps = hash:/usr/local/etc/postfix/sasl passwd

smtp use tls = yes

Create /usr/local/etc/postfix/relayhost_maps with the following content:
yourusername @FreeBSD.org [smtp.freebsd.org]:587

Create /usr/local/etc/postfix/sasl_passwd with the following content:
[smtp.freebsd.org] :587 yourusername :yourpassword

If the email server is used by other people, you may want to prevent them from sending e-mails from your
address. To achieve this, add this to your main.cf:

smtpd sender login maps = hash:/usr/local/etc/postfix/sender login maps
smtpd sender restrictions = reject known sender login mismatch

Create /usr/local/etc/postfix/sender login maps with the following content:

yourusername @FreeBSD.org yourlocalusername

Where yourlocalusername is the SASL username used to connect to the local instance of Postfix.

6.3. Mentors

All new developers have a mentor assigned to them for the first few months. A mentor is responsible for teaching
the mentee the rules and conventions of the project and guiding their first steps in the developer community. The
mentor is also personally responsible for the mentee's actions during this initial period.

For committers: do not commit anything without first getting mentor approval. Document that approval with an
Approved by: line in the commit message.

When the mentor decides that a mentee has learned the ropes and is ready to commit on their own, the mentor
announces it with a commit to conf/mentors . This file is in the svnadmin branch of each repository:

src base/svnadmin/conf/mentors

doc doc/svnadmin/conf/mentors

23

Pre-Commit Review

ports ports/svnadmin/conf/mentors

New committers should aim to complete enough commits that their mentor is comfortable releasing them from
mentorship within the first year. If they are still under mentorship, the appropriate management body (core, do-
ceng, or portmgr) should attempt to ensure that there are no barriers preventing completion. If the committer
is unable to satisfy their mentor of readiness by a year and a half their commit bit may be converted to project
membership.

7. Pre-Commit Review

Code review is one way to increase the quality of software. The following guidelines apply to commits to the head
(-CURRENT) branch of the src repository. Other branches and the ports and docs trees have their own review
policies, but these guidelines generally apply to commits requiring review:

« All non-trivial changes should be reviewed before they are committed to the repository.

+ Reviews may be conducted by email, in Bugzilla, in Phabricator, or by another mechanism. Where possible,
reviews should be public.

« The developer responsible for a code change is also responsible for making all necessary review-related changes.

+ Code review can be an iterative process, which continues until the patch is ready to be committed. Specifically,
once a patch is sent out for review, it should receive an explicit “looks good” before it is committed. So long as
it is explicit, this can take whatever form makes sense for the review method.

+ Timeouts are not a substitute for review.

Sometimes code reviews will take longer than you would hope for, especially for larger features. Accepted ways
to speed up review times for your patches are:

+ Review other people's patches. If you help out, everybody will be more willing to do the same for you; goodwill
is our currency.

+ Ping the patch. If it is urgent, provide reasons why it is important to you to get this patch landed and ping it
every couple of days. If it is not urgent, the common courtesy ping rate is one week. Remember that you are
asking for valuable time from other professional developers.

+ Ask for help on mailing lists, IRC, etc. Others may be able to either help you directly, or suggest a reviewer.

+ Split your patch into multiple smaller patches that build on each other. The smaller your patch, the higher the
probability that somebody will take a quick look at it.

When making large changes, it is helpful to keep this in mind from the beginning of the effort as breaking large
changes into smaller ones is often difficult after the fact.

Developers should participate in code reviews as both reviewers and reviewees. If someone is kind enough to
review your code, you should return the favor for someone else. Note that while anyone is welcome to review and
give feedback on a patch, only an appropriate subject-matter expert can approve a change. This will usually be a
committer who works with the code in question on a regular basis.

In some cases, no subject-matter expert may be available. In those cases, a review by an experienced developer is
sufficient when coupled with appropriate testing.

8. Commit Log Messages

This section contains some suggestions and traditions for how commit logs are formatted.

24

Committer's Guide

As well as including an informative message with each commit, some additional information may be needed.

This information consists of one or more lines containing the key word or phrase, a colon, tabs for formatting, and
then the additional information.

The key words or phrases are:

PR: The problem report (if any) which is affected (typically,
by being closed) by this commit. Multiple PRs may be
specified on one line, separated by commas or spaces.

Submitted by: The name and e-mail address of the person that sub-
mitted the fix; for developers, just the username on the
FreeBSD cluster.

If the submitter is the maintainer of the port being com-
mitted, include "(maintainer)" after the email address.

Avoid obfuscating the email address of the submitter as
this adds additional work when searching logs.

Reviewed by: The name and e-mail address of the person or people
that reviewed the change; for developers, just the user-
name on the FreeBSD cluster. If a patch was submitted to
a mailing list for review, and the review was favorable,
then just include the list name.

Approved by: The name and e-mail address of the person or people
that approved the change; for developers, just the user-
name on the FreeBSD cluster. It is customary to get pri-
or approval for a commit if it is to an area of the tree
to which you do not usually commit. In addition, dur-
ing the run up to a new release all commits must be ap-
proved by the release engineering team.

While under mentorship, get mentor approval before
the commit. Enter the mentor's username in this field,
and note that they are a mentor:

Approved by: username-of-mentor (mentor)

If a team approved these commits then include the
team name followed by the username of the approver in
parentheses. For example:

Approved by: re (username)

Obtained from: The name of the project (if any) from which the code was
obtained. Do not use this line for the name of an individ-
ual person.

Sponsored by: Sponsoring organizations for this change, if any.

Separate multiple organizations with commas. If on-
ly a portion of the work was sponsored, or different
amounts of sponsorship were provided to different au-
thors, please give appropriate credit in parentheses af-
ter each sponsor name. For example, Example.com (al-
ice, code refactoring), Wormulon (bob), Mom-

corp (cindy) shows that Alice was sponsored by Exam-
ple.com to do code refactoring, while Wormulon spon-

25

Commit Log Messages

sored Bob's work and Momcorp sponsored Cindy's work.
Other authors were either not sponsored or chose not to
list sponsorship.

MFC after:

To receive an e-mail reminder to MFC at a later date,
specify the number of days, weeks, or months after
which an MFC is planned.

MFC to:

If the commit should be merged to a subset of stable
branches, specify the branch names.

MFC with:

If the commit should be merged together with a previ-
ous one in a single MFC commit (for example, where this
commit corrects a bug in the previous change), specify
the corresponding revision number.

Relnotes:

If the change is a candidate for inclusion in the release
notes for the next release from the branch, set to yes.

Security:

If the change is related to a security vulnerability or se-
curity exposure, include one or more references or a de-
scription of the issue. If possible, include a VuXML URL
ora CVEID.

Event:

The description for the event where this commit was
made. If this is a recurring event, add the year or even
the month to it. For example, this could be FooBSDcon
2019. The idea behind this line is to put recognition to
conferences, gatherings, and other types of meetups and
to show that these are useful to have. Please do not use
the Sponsored by: line for this as that is meant for or-
ganizations sponsoring certain features or developers
working on them.

Differential Revision:

The full URL of the Phabricator review. This line must
be the last line. For example: https://reviews. freebs-
d.org/D1708.

PR:

Submitted by:

Example 2. Commit Log for a Commit Based on a PR

The commit is based on a patch from a PR submitted by John Smith. The commit message “PR” and “Sub-
mitted by” fields are filled..

John Smith <John.Smith@example.com>

26

Example 3. Commit Log for a Commit Needing Review

The virtual memory system is being changed. After posting patches to the appropriate mailing list (in this
case, freebsd-arch) and the changes have been approved.

Committer's Guide

Reviewed by: -arch

Example 4. Commit Log for a Commit Needing Approval

Commiit a port, after working with the listed MAINTAINER, who said to go ahead and commit.

Approved by: abc (maintainer)

Where abc is the account name of the person who approved.

Example 5. Commit Log for a Commit Bringing in Code from OpenBSD

Commiitting some code based on work done in the OpenBSD project.

Obtained from: OpenBSD

Example 6. Commit Log for a Change to FreeBSD-CURRENT with a
Planned Commit to FreeBSD-STABLE to Follow at a Later Date.

Committing some code which will be merged from FreeBSD-CURRENT into the FreeBSD-STABLE branch
after two weeks.

MFC after: 2 weeks

Where 2 is the number of days, weeks, or months after which an MFC is planned. The weeks option may
be day, days, week, weeks, month, months .

It is often necessary to combine these.

Consider the situation where a user has submitted a PR containing code from the NetBSD project. Looking at the PR,
the developer sees it is not an area of the tree they normally work in, so they have the change reviewed by the arch
mailing list. Since the change is complex, the developer opts to MFC after one month to allow adequate testing.

The extra information to include in the commit would look something like

Example 7. Example Combined Commit Log

PR: 54321
Submitted by: John Smith <John.Smith@example.com>
Reviewed by: -arch

27

Preferred License for New Files

Obtained from: NetBSD
MFC after: 1 month
Relnotes: yes

9. Preferred License for New Files

The FreeBSD Project's full license policy can be found at https://www.FreeBSD.org/internal/software-li-
cense.html. The rest of this section is intended to help you get started. As a rule, when in doubt, ask. It is much
easier to give advice than to fix the source tree.

The FreeBSD Project suggests and uses this text as the preferred license scheme:

~
*
i

SPDX-License-Identifier: BSD-2-Clause-FreeBSD
Copyright (c) [year] [your name]

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "“AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

¥ X X X X X X X X X X ¥ X X X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X *

[id for your version control system, if any]

*
~

The FreeBSD project strongly discourages the so-called "advertising clause" in new code. Due to the large number of
contributors to the FreeBSD project, complying with this clause for many commercial vendors has become difficult.
If you have code in the tree with the advertising clause, please consider removing it. In fact, please consider using
the above license for your code.

The FreeBSD project discourages completely new licenses and variations on the standard licenses. New licenses
require the approval of the Core Team <core@FreeBSD.org> to reside in the main repository. The more different
licenses that are used in the tree, the more problems that this causes to those wishing to utilize this code, typically
from unintended consequences from a poorly worded license.

Project policy dictates that code under some non-BSD licenses must be placed only in specific sections of the repos-
itory, and in some cases, compilation must be conditional or even disabled by default. For example, the GENERIC
kernel must be compiled under only licenses identical to or substantially similar to the BSD license. GPL, APSL,
CDDL, etc, licensed software must not be compiled into GENERIC,

Developers are reminded that in open source, getting "open" right is just as important as getting "source" right,
as improper handling of intellectual property has serious consequences. Any questions or concerns should imme-
diately be brought to the attention of the core team.

28

https://www.FreeBSD.org/internal/software-license.html
https://www.FreeBSD.org/internal/software-license.html
mailto:core@FreeBSD.org

Committer's Guide

10. Keeping Track of Licenses Granted to the FreeBSD Project

Various software or data exist in the repositories where the FreeBSD project has been granted a special licence
to be able to use them. A case in point are the Terminus fonts for use with vt(4). Here the author Dimitar Zhekov
has allowed us to use the "Terminus BSD Console" font under a 2-clause BSD license rather than the regular Open
Font License he normally uses.

It is clearly sensible to keep a record of any such license grants. To that end, the Core Team <core@FreeBSD.org>
has decided to keep an archive of them. Whenever the FreeBSD project is granted a special license we require the
Core Team <core@FreeBSD.org> to be notified. Any developers involved in arranging such a license grant, please
send details to the Core Team <core@FreeBSD.org> including;

+ Contact details for people or organizations granting the special license.

+ What files, directories etc. in the repositories are covered by the license grant including the revision numbers
where any specially licensed material was committed.

+ The date the license comes into effect from. Unless otherwise agreed, this will be the date the license was issued
by the authors of the software in question.

¢ The license text.

* A note of any restrictions, limitations or exceptions that apply specifically to FreeBSD's usage of the licensed
material.

¢ Any other relevant information.

Once the Core Team <core@FreeBSD.org> is satisfied that all the necessary details have been gathered and are
correct, the secretary will send a PGP-signed acknowledgement of receipt including the license details. This receipt
will be persistently archived and serve as our permanent record of the license grant.

The license archive should contain only details of license grants; this is not the place for any discussions around
licensing or other subjects. Access to data within the license archive will be available on request to the Core Team
<core@FreeBSD.org>.

11. Developer Relations

When working directly on your own code or on code which is already well established as your responsibility, then
there is probably little need to check with other committers before jumping in with a commit. Working on a bug in
an area of the system which is clearly orphaned (and there are a few such areas, to our shame), the same applies.
When modifying parts of the system which are maintained, formally, or informally, consider asking for review just
as a developer would have before becoming a committer. For ports, contact the listed MAINTAINER in the Makefile.

To determine if an area of the tree is maintained, check the MAINTAINERS file at the root of the tree. If nobody is
listed, scan the revision history to see who has committed changes in the past. An example script that lists each
person who has committed to a given file along with the number of commits each person has made can be found
aton freefall at~eadler/bin/whodid . If queries go unanswered or the committer otherwise indicates a lack of
interest in the area affected, go ahead and commit it.

Important
A Avoid sending private emails to maintainers. Other people might be interested in the con-
versation, not just the final output.

If there is any doubt about a commit for any reason at all, have it reviewed before committing. Better to have
it flamed then and there rather than when it is part of the repository. If a commit does results in controversy

29

https://www.FreeBSD.org/cgi/man.cgi?query=vt&sektion=4&manpath=freebsd-release-ports
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org
mailto:core@FreeBSD.org

If in Doubt...

erupting, it may be advisable to consider backing the change out again until the matter is settled. Remember, with
a version control system we can always change it back.

Do not impugn the intentions of others. If they see a different solution to a problem, or even a different problem,
it is probably not because they are stupid, because they have questionable parentage, or because they are trying to
destroy hard work, personal image, or FreeBSD, but basically because they have a different outlook on the world.
Different is good.

Disagree honestly. Argue your position from its merits, be honest about any shortcomings it may have, and be open
to seeing their solution, or even their vision of the problem, with an open mind.

Accept correction. We are all fallible. When you have made a mistake, apologize and get on with life. Do not beat
up yourself, and certainly do not beat up others for your mistake. Do not waste time on embarrassment or recrim-
ination, just fix the problem and move on.

Ask for help. Seek out (and give) peer reviews. One of the ways open source software is supposed to excel is in the
number of eyeballs applied to it; this does not apply if nobody will review code.

12. If in Doubt...

When unsure about something, whether it be a technical issue or a project convention be sure to ask. If you stay
silent you will never make progress.

If it relates to a technical issue ask on the public mailing lists. Avoid the temptation to email the individual person
that knows the answer. This way everyone will be able to learn from the question and the answer.

For project specific or administrative questions ask, in order:

* Your mentor or former mentor.

* An experienced committer on IRC, email, etc.

* Any team with a "hat", as they can give you a definitive answer.
« If still not sure, ask on FreeBSD developers mailing list.

Once your question is answered, if no one pointed you to documentation that spelled out the answer to your ques-
tion, document it, as others will have the same question.

13. Bugzilla

The FreeBSD Project utilizes Bugzilla for tracking bugs and change requests. Be sure that if you commit a fix or
suggestion found in the PR database to close it. It is also considered nice if you take time to close any PRs associated
with your commits, if appropriate.

Committers with non-FreeBSD.org Bugzilla accounts can have the old account merged with the FreeBSD.org ac-
count by following these steps:

1. Login using your old account.

2. Open new bug. Choose Services as the Product, and Bug Tracker as the Component. In bug description list
accounts you wish to be merged.

3. Log in using FreeBSD.org account and post comment to newly opened bug to confirm ownership. See Sec-
tion 3, “Kerberos and LDAP web Password for FreeBSD Cluster” for more details on how to generate or set a
password for your FreeBSD.org account.

4. If there are more than two accounts to merge, post comments from each of them.

30

Committer's Guide

You can find out more about Bugzilla at:
+ FreeBSD Problem Report Handling Guidelines

+ https://www.FreeBSD.org/support.html

14. Phabricator

The FreeBSD Project utilizes Phabricator for code review requests. See the CodeReview wiki page for details.

Committers with non-FreeBSD. org Phabricator accounts can have the old account renamed to the FreeBSD.org
account by following these steps:

1. Change your Phabricator account email to your FreeBSD.org email.

2. Open new bug on our bug tracker using your FreeBSD.org account, see Section 13, “Bugzilla” for more infor-
mation. Choose Services as the Product, and Code Review as the Component. In bug description request that
your Phabricator account be renamed, and provide a link to your Phabricator user. For example, https://
reviews.freebsd.org/p/bob _example.com/

Important
A Phabricator accounts cannot be merged, please do not open a new account.

15. Who's Who

Besides the repository meisters, there are other FreeBSD project members and teams whom you will probably get
to know in your role as a committer. Briefly, and by no means all-inclusively, these are:

Documentation Engineering Team <doceng@FreeBSD.org>
doceng is the group responsible for the documentation build infrastructure, approving new documentation
committers, and ensuring that the FreeBSD website and documentation on the FTP site is up to date with
respect to the subversion tree. It is not a conflict resolution body. The vast majority of documentation related
discussion takes place on the FreeBSD documentation project mailing list. More details regarding the doceng
team can be found in its charter. Committers interested in contributing to the documentation should famil-
iarize themselves with the Documentation Project Primer.

Glen Barber <gjb@FreeBSD.org>, Konstantin Belousov <kib@FreeBSD.org>, Bryan Drewery <bdrewery@Free-
BSD.org>, Marc Fonvieille <blackend@FreeBSD.org>, Xin Li <delphij@FreeBSD.org>, Colin Percival <cperci-
va@FreeBSD. org> Hiroki Sato <hrs@FreeBSD.org>, Gleb Smirnoff <glebius@FreeBSD.org>
These are the members of the Release Engineering Team <re@FreeBSD. org>. This team is responsible for set-
ting release deadlines and controlling the release process. During code freezes, the release engineers have
final authority on all changes to the system for whichever branch is pending release status. If there is some-
thing you want merged from FreeBSD-CURRENT to FreeBSD-STABLE (whatever values those may have at any
given time), these are the people to talk to about it.

Gordon Tetlow <gordon@FreeBSD.org>
Gordon Tetlow is the FreeBSD Security Officer and oversees the Security Officer Team <security-offi-
cer@FreeBSD.org>.

Garrett Wollman <wollman@FreeBSD.org>
If you need advice on obscure network internals or are not sure of some potential change to the networking
subsystem you have in mind, Garrett is someone to talk to. Garrett is also very knowledgeable on the various
standards applicable to FreeBSD.

31

https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/pr-guidelines/index.html
https://www.FreeBSD.org/support.html
https://reviews.freebsd.org
https://wiki.freebsd.org/CodeReview
mailto:doceng@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
https://www.FreeBSD.org/internal/doceng.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/fdp-primer/index.html
mailto:gjb@FreeBSD.org
mailto:kib@FreeBSD.org
mailto:bdrewery@FreeBSD.org
mailto:bdrewery@FreeBSD.org
mailto:blackend@FreeBSD.org
mailto:delphij@FreeBSD.org
mailto:cperciva@FreeBSD.org
mailto:cperciva@FreeBSD.org
mailto:hrs@FreeBSD.org
mailto:glebius@FreeBSD.org
mailto:re@FreeBSD.org
mailto:gordon@FreeBSD.org
https://www.FreeBSD.org/security/
mailto:security-officer@FreeBSD.org
mailto:security-officer@FreeBSD.org
mailto:wollman@FreeBSD.org

SSH Quick-Start Guide

FreeBSD committer's mailing list

svn-src-all, svn-ports-all and svn-doc-all are the mailing lists that the version control system uses to send
commit messages to. Never send email directly to these lists. Only send replies to this list when they are short
and are directly related to a commit.

FreeBSD developers mailing list

All committers are subscribed to -developers. This list was created to be a forum for the committers “commu-
nity” issues. Examples are Core voting, announcements, etc.

The FreeBSD developers mailing list is for the exclusive use of FreeBSD committers. To develop FreeBSD, com-
mitters must have the ability to openly discuss matters that will be resolved before they are publicly an-
nounced. Frank discussions of work in progress are not suitable for open publication and may harm FreeBSD.

All FreeBSD commiitters are expected not to not publish or forward messages from the FreeBSD developers
mailing list outside the list membership without permission of all of the authors. Violators will be removed
from the FreeBSD developers mailing list, resulting in a suspension of commit privileges. Repeated or flagrant
violations may result in permanent revocation of commit privileges.

This list is not intended as a place for code reviews or for any technical discussion. In fact using it as such hurts
the FreeBSD Project as it gives a sense of a closed list where general decisions affecting all of the FreeBSD using
community are made without being “open”. Last, but not least never, never ever, email the FreeBSD developers
mailing list and CC;/BCC: another FreeBSD list. Never, ever email another FreeBSD email list and CC:/BCC: the
FreeBSD developers mailing list. Doing so can greatly diminish the benefits of this list.

16. SSH Quick-Start Guide

1.

If you do not wish to type your password in every time you use ssh(1), and you use keys to authenticate,
ssh-agent(1) is there for your convenience. If you want to use ssh-agent(1), make sure that you run it before
running other applications. X users, for example, usually do this from their .xsession or .xinitrc. See ssh-
agent(1) for details.

Generate a key pair using ssh-keygen(1). The key pair will wind up in your $HOME/ . ssh/ directory.

Important
A Only ECDSA, Ed25519 or RSA keys are supported.

Send your public key ($HOME/.ssh/id_ecdsa.pub , $HOME/.ssh/id ed25519.pub , or $HOME/.ssh/id r-
sa.pub) to the person setting you up as a committer so it can be put into yourlogin in /etc/ssh-keys/ on
freefall.

Now ssh-add(1) can be used for authentication once per session. It prompts for the private key's pass phrase, and
then stores it in the authentication agent (ssh-agent(1)). Use ssh-add -d to remove keys stored in the agent.

Test with a simple remote command: ssh freefall.FreeBSD.org s /usr.

For more information, see security/openssh-portable, ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), and scp(1).

For information on adding, changing, or removing ssh(1) keys, see this article.

32

http://lists.FreeBSD.org/mailman/listinfo/svn-src-all
http://lists.FreeBSD.org/mailman/listinfo/svn-ports-all
http://lists.FreeBSD.org/mailman/listinfo/svn-doc-all
https://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-keygen&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-add&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1&manpath=freebsd-release-ports
https://www.freebsd.org/cgi/url.cgi?ports/security/openssh-portable/pkg-descr
https://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-add&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-agent&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh-keygen&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=scp&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1&manpath=freebsd-release-ports
https://wiki.freebsd.org/clusteradm/ssh-keys

Committer's Guide

17. Coverity® Availability for FreeBSD Committers

All FreeBSD developers can obtain access to Coverity analysis results of all FreeBSD Project software. All who are
interested in obtaining access to the analysis results of the automated Coverity runs, can sign up at Coverity Scan.

The FreeBSD wiki includes a mini-guide for developers who are interested in working with the Coverity® analy-
sis reports: https://wiki.freebsd.org/CoverityPrevent . Please note that this mini-guide is only readable by
FreeBSD developers, so if you cannot access this page, you will have to ask someone to add you to the appropriate
Wiki access list.

Finally, all FreeBSD developers who are going to use Coverity® are always encouraged to ask for more details and
usage information, by posting any questions to the mailing list of the FreeBSD developers.

18. The FreeBSD Committers' Big List of Rules

Everyone involved with the FreeBSD project is expected to abide by the Code of Conduct available from https://
www.FreeBSD.org/internal/code-of-conduct.html. As committers, you form the public face of the project, and how
you behave has a vital impact on the public perception of it. This guide expands on the parts of the Code of Conduct
specific to committers.

1. Respect other committers.
2. Respect other contributors.
3. Discuss any significant change before committing.

4. Respect existing maintainers (if listed in the MAINTAINER field in Makefile or in MAINTAINER in the top-level
directory).

5. Any disputed change must be backed out pending resolution of the dispute if requested by a maintainer. Security
related changes may override a maintainer's wishes at the Security Officer's discretion.

6. Changes go to FreeBSD-CURRENT before FreeBSD-STABLE unless specifically permitted by the release engineer
or unless they are not applicable to FreeBSD-CURRENT. Any non-trivial or non-urgent change which is applic-
able should also be allowed to sit in FreeBSD-CURRENT for at least 3 days before merging so that it can be given
sufficient testing. The release engineer has the same authority over the FreeBSD-STABLE branch as outlined for
the maintainer in rule #5.

7. Do not fight in public with other committers; it looks bad.

8. Respect all code freezes and read the committers and developers mailing lists in a timely manner so you know
when a code freeze is in effect.

9. When in doubt on any procedure, ask first!
10.Test your changes before committing them.
11.Do not commit to contributed software without explicit approval from the respective maintainers.

As noted, breaking some of these rules can be grounds for suspension or, upon repeated offense, permanent re-
moval of commit privileges. Individual members of core have the power to temporarily suspend commit privileges
until core as a whole has the chance to review the issue. In case of an “emergency” (a committer doing damage to
the repository), a temporary suspension may also be done by the repository meisters. Only a 2/3 majority of core
has the authority to suspend commit privileges for longer than a week or to remove them permanently. This rule
does not exist to set core up as a bunch of cruel dictators who can dispose of committers as casually as empty soda
cans, but to give the project a kind of safety fuse. If someone is out of control, it is important to be able to deal with
this immediately rather than be paralyzed by debate. In all cases, a committer whose privileges are suspended or
revoked is entitled to a “hearing” by core, the total duration of the suspension being determined at that time. A
committer whose privileges are suspended may also request a review of the decision after 30 days and every 30

33

http://scan.coverity.com/
https://wiki.freebsd.org/CoverityPrevent
https://www.FreeBSD.org/internal/code-of-conduct.html
https://www.FreeBSD.org/internal/code-of-conduct.html

Details

days thereafter (unless the total suspension period is less than 30 days). A committer whose privileges have been
revoked entirely may request a review after a period of 6 months has elapsed. This review policy is strictly informal
and, in all cases, core reserves the right to either act on or disregard requests for review if they feel their original
decision to be the right one.

In all other aspects of project operation, core is a subset of committers and is bound by the same rules. Just because
someone is in core this does not mean that they have special dispensation to step outside any of the lines painted
[T

here; core's “special powers” only kick in when it acts as a group, not on an individual basis. As individuals, the
core team members are all committers first and core second.

18.1. Details

1. Respect other committers.

This means that you need to treat other committers as the peer-group developers that they are. Despite our
occasional attempts to prove the contrary, one does not get to be a committer by being stupid and nothing
rankles more than being treated that way by one of your peers. Whether we always feel respect for one another
or not (and everyone has off days), we still have to treat other committers with respect at all times, on public
forums and in private email.

Being able to work together long term is this project's greatest asset, one far more important than any set of
changes to the code, and turning arguments about code into issues that affect our long-term ability to work
harmoniously together is just not worth the trade-off by any conceivable stretch of the imagination.

To comply with this rule, do not send email when you are angry or otherwise behave in a manner which is likely
to strike others as needlessly confrontational. First calm down, then think about how to communicate in the
most effective fashion for convincing the other persons that your side of the argument is correct, do not just
blow off some steam so you can feel better in the short term at the cost of a long-term flame war. Not only is this
very bad “energy economics”, but repeated displays of public aggression which impair our ability to work well
together will be dealt with severely by the project leadership and may result in suspension or termination of
your commit privileges. The project leadership will take into account both public and private communications
brought before it. It will not seek the disclosure of private communications, but it will take it into account if it
is volunteered by the committers involved in the complaint.

All of this is never an option which the project's leadership enjoys in the slightest, but unity comes first. No
amount of code or good advice is worth trading that away.

2. Respect other contributors.

You were not always a committer. At one time you were a contributor. Remember that at all times. Remember
what it was like trying to get help and attention. Do not forget that your work as a contributor was very impor-
tant to you. Remember what it was like. Do not discourage, belittle, or demean contributors. Treat them with
respect. They are our committers in waiting. They are every bit as important to the project as committers. Their
contributions are as valid and as important as your own. After all, you made many contributions before you
became a committer. Always remember that.

Consider the points raised under 1 and apply them also to contributors.
3. Discuss any significant change before committing.

The repository is not where changes are initially submitted for correctness or argued over, that happens first in
the mailing lists or by use of the Phabricator service. The commit will only happen once something resembling
consensus has been reached. This does not mean that permission is required before correcting every obvious
syntax error or manual page misspelling, just that it is good to develop a feel for when a proposed change is
not quite such a no-brainer and requires some feedback first. People really do not mind sweeping changes if
the result is something clearly better than what they had before, they just do not like being surprised by those
changes. The very best way of making sure that things are on the right track is to have code reviewed by one
or more other committers.

34

Committer's Guide

When in doubt, ask for review!
4. Respect existing maintainers if listed.

Many parts of FreeBSD are not “owned” in the sense that any specific individual will jump up and yell if you
commit a change to “their” area, but it still pays to check first. One convention we use is to put a maintainer
line in the Makefile for any package or subtree which is being actively maintained by one or more people;
see https://www.FreeBSD.org/doc/en_US.1S08859-1/books/developers-handbook/policies.html for documen-
tation on this. Where sections of code have several maintainers, commits to affected areas by one maintainer
need to be reviewed by at least one other maintainer. In cases where the “maintainer-ship” of something is
not clear, look at the repository logs for the files in question and see if someone has been working recently or
predominantly in that area.

5. Any disputed change must be backed out pending resolution of the dispute if requested by a maintainer. Security
related changes may override a maintainer's wishes at the Security Officer's discretion.

This may be hard to swallow in times of conflict (when each side is convinced that they are in the right, of
course) but a version control system makes it unnecessary to have an ongoing dispute raging when it is far
easier to simply reverse the disputed change, get everyone calmed down again and then try to figure out what
is the best way to proceed. If the change turns out to be the best thing after all, it can be easily brought back.
If it turns out not to be, then the users did not have to live with the bogus change in the tree while everyone
was busily debating its merits. People very rarely call for back-outs in the repository since discussion generally
exposes bad or controversial changes before the commit even happens, but on such rare occasions the back-
out should be done without argument so that we can get immediately on to the topic of figuring out whether
it was bogus or not.

6. Changes go to FreeBSD-CURRENT before FreeBSD-STABLE unless specifically permitted by the release engineer
or unless they are not applicable to FreeBSD-CURRENT. Any non-trivial or non-urgent change which is applic-
able should also be allowed to sit in FreeBSD-CURRENT for at least 3 days before merging so that it can be given
sufficient testing. The release engineer has the same authority over the FreeBSD-STABLE branch as outlined
in rule #5.

This is another “do not argue about it” issue since it is the release engineer who is ultimately responsible (and
gets beaten up) if a change turns out to be bad. Please respect this and give the release engineer your full co-
operation when it comes to the FreeBSD-STABLE branch. The management of FreeBSD-STABLE may frequent-
ly seem to be overly conservative to the casual observer, but also bear in mind the fact that conservatism is
supposed to be the hallmark of FreeBSD-STABLE and different rules apply there than in FreeBSD-CURRENT.
There is also really no point in having FreeBSD-CURRENT be a testing ground if changes are merged over to
FreeBSD-STABLE immediately. Changes need a chance to be tested by the FreeBSD-CURRENT developers, so al-
low some time to elapse before merging unless the FreeBSD-STABLE fix is critical, time sensitive or so obvious
as to make further testing unnecessary (spelling fixes to manual pages, obvious bug/typo fixes, etc.) In other
words, apply common sense.

Changes to the security branches (for example, releng/9.3) must be approved by a member of the Security
Officer Team <security-officer@FreeBSD.org>, or in some cases, by a member of the Release Engineering
Team <re@FreeBSD.org>.

7. Do not fight in public with other committers; it looks bad.

This project has a public image to uphold and that image is very important to all of us, especially if we are to
continue to attract new members. There will be occasions when, despite everyone's very best attempts at self-
control, tempers are lost and angry words are exchanged. The best thing that can be done in such cases is to
minimize the effects of this until everyone has cooled back down. Do not air angry words in public and do not
forward private correspondence or other private communications to public mailing lists, mail aliases, instant
messaging channels or social media sites. What people say one-to-one is often much less sugar-coated than what
they would say in public, and such communications therefore have no place there - they only serve to inflame
an already bad situation. If the person sending a flame-o-gram at least had the grace to send it privately, then

35

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html
mailto:security-officer@FreeBSD.org
mailto:re@FreeBSD.org

Policy on Multiple Architectures

have the grace to keep it private yourself. If you feel you are being unfairly treated by another developer, and
it is causing you anguish, bring the matter up with core rather than taking it public. Core will do its best to play
peace makers and get things back to sanity. In cases where the dispute involves a change to the codebase and
the participants do not appear to be reaching an amicable agreement, core may appoint a mutually-agreeable
third party to resolve the dispute. All parties involved must then agree to be bound by the decision reached
by this third party.

8. Respect all code freezes and read the committers and developers mailing list on a timely basis so you know
when a code freeze is in effect.

Committing unapproved changes during a code freeze is a really big mistake and committers are expected to
keep up-to-date on what is going on before jumping in after a long absence and committing 10 megabytes worth
of accumulated stuff. People who abuse this on a regular basis will have their commit privileges suspended until
they get back from the FreeBSD Happy Reeducation Camp we run in Greenland.

9. When in doubt on any procedure, ask first!

Many mistakes are made because someone is in a hurry and just assumes they know the right way of doing
something. If you have not done it before, chances are good that you do not actually know the way we do things
and really need to ask first or you are going to completely embarrass yourself in public. There is no shame in
asking “how in the heck do I do this?” We already know you are an intelligent person; otherwise, you would
not be a committer.

10.Test your changes before committing them.

This may sound obvious, but if it really were so obvious then we probably would not see so many cases of people
clearly not doing this. If your changes are to the kernel, make sure you can still compile both GENERIC and LINT.
If your changes are anywhere else, make sure you can still make world. If your changes are to a branch, make
sure your testing occurs with a machine which is running that code. If you have a change which also may break
another architecture, be sure and test on all supported architectures. Please refer to the FreeBSD Internal Page
for a list of available resources. As other architectures are added to the FreeBSD supported platforms list, the
appropriate shared testing resources will be made available.

11.Do not commit to contributed software without explicit approval from the respective maintainers.
Contributed software is anything under the src/contrib, src/crypto, or src/sys/contrib trees.

The trees mentioned above are for contributed software usually imported onto a vendor branch. Committing
something there may cause unnecessary headaches when importing newer versions of the software. As a gen-
eral consider sending patches upstream to the vendor. Patches may be committed to FreeBSD first with per-
mission of the maintainer.

Reasons for modifying upstream software range from wanting strict control over a tightly coupled dependency
to lack of portability in the canonical repository's distribution of their code. Regardless of the reason, effort to
minimize the maintenance burden of fork is helpful to fellow maintainers. Avoid committing trivial or cosmetic
changes to files since it makes every merge thereafter more difficult: such patches need to be manually re-
verified every import.

If a particular piece of software lacks a maintainer, you are encouraged to take up ownership. If you are unsure
of the current maintainership email FreeBSD architecture and design mailing list and ask.

18.2. Policy on Multiple Architectures

FreeBSD has added several new architecture ports during recent release cycles and is truly no longer an i386™
centric operating system. In an effort to make it easier to keep FreeBSD portable across the platforms we support,
core has developed this mandate:

Our 32-bit reference platform is 1386, and our 64-bit reference platform is amdé4. Major design
work (including major API and ABI changes) must prove itself on at least one 32-bit and at least

36

https://www.FreeBSD.org/internal/
http://lists.FreeBSD.org/mailman/listinfo/freebsd-arch

Committer's Guide

one 64-bit platform, preferably the primary reference platforms, before it may be committed
to the source tree.

The 1386 and amdé64 platforms were chosen due to being more readily available to developers and as representatives
of more diverse processor and system designs - big versus little endian, register file versus register stack, different
DMA and cache implementations, hardware page tables versus software TLB management etc.

We will continue to re-evaluate this policy as cost and availability of the 64-bit platforms change.

Developers should also be aware of our Tier Policy for the long term support of hardware architectures. The rules
here are intended to provide guidance during the development process, and are distinct from the requirements for
features and architectures listed in that section. The Tier rules for feature support on architectures at release-time
are more strict than the rules for changes during the development process.

18.3. Other Suggestions

When committing documentation changes, use a spell checker before committing. For all XML docs, verify that
the formatting directives are correct by running make lint and textproc/igor.

For manual pages, run sysutils/manck and textproc/igor over the manual page to verify all of the cross references
and file references are correct and that the man page has all of the appropriate MLINKs installed.

Do not mix style fixes with new functionality. A style fix is any change which does not modify the functionality of
the code. Mixing the changes obfuscates the functionality change when asking for differences between revisions,
which can hide any new bugs. Do not include whitespace changes with content changes in commits to doc/ . The
extra clutter in the diffs makes the translators' job much more difficult. Instead, make any style or whitespace
changes in separate commits that are clearly labeled as such in the commit message.

18.4. Deprecating Features

When it is necessary to remove functionality from software in the base system, follow these guidelines whenever
possible:

1. Mention is made in the manual page and possibly the release notes that the option, utility, or interface is dep-
recated. Use of the deprecated feature generates a warning,

2. The option, utility, or interface is preserved until the next major (point zero) release.

3. The option, utility, or interface is removed and no longer documented. It is now obsolete. It is also generally a
good idea to note its removal in the release notes.

18.5. Privacy and Confidentiality
1. Most FreeBSD business is done in public.

FreeBSD is an open project. Which means that not only can anyone use the source code, but that most of the
development process is open to public scrutiny.

2. Certain sensitive matters must remain private or held under embargo.

There unfortunately cannot be complete transparency. As a FreeBSD developer you will have a certain degree of
privileged access to information. Consequently you are expected to respect certain requirements for confiden-
tiality. Sometimes the need for confidentiality comes from external collaborators or has a specific time limit.
Mostly though, it is a matter of not releasing private communications.

3. The Security Officer has sole control over the release of security advisories.

Where there are security problems that affect many different operating systems, FreeBSD frequently depends
on early access to be able to prepare advisories for coordinated release. Unless FreeBSD developers can be trust-
ed to maintain security, such early access will not be made available. The Security Officer is responsible for

37

https://www.freebsd.org/cgi/url.cgi?ports/textproc/igor/pkg-descr
https://www.freebsd.org/cgi/url.cgi?ports/sysutils/manck/pkg-descr
https://www.freebsd.org/cgi/url.cgi?ports/textproc/igor/pkg-descr

Support for Multiple Architectures

controlling pre-release access to information about vulnerabilities, and for timing the release of all advisories.
He may request help under condition of confidentiality from any developer with relevant knowledge to prepare
security fixes.

4. Communications with Core are kept confidential for as long as necessary.

Communications to core will initially be treated as confidential. Eventually however, most of Core's business will
be summarized into the monthly or quarterly core reports. Care will be taken to avoid publicising any sensitive
details. Records of some particularly sensitive subjects may not be reported on at all and will be retained only
in Core's private archives.

5. Non-disclosure Agreements may be required for access to certain commercially sensitive data.

Access to certain commercially sensitive data may only be available under a Non-Disclosure Agreement. The
FreeBSD Foundation legal staff must be consulted before any binding agreements are entered into.

6. Private communications must not be made public without permission.

Beyond the specific requirements above there is a general expectation not to publish private communications
between developers without the consent of all parties involved. Ask permission before forwarding a message
onto a public mailing list, or posting it to a forum or website that can be accessed by other than the original
correspondents.

7. Communications on project-only or restricted access channels must be kept private.

Similarly to personal communications, certain internal communications channels, including FreeBSD Commit-
ter only mailing lists and restricted access IRC channels are considered private communications. Permission is
required to publish material from these sources.

8. Core may approve publication.

Where it is impractical to obtain permission due to the number of correspondents or where permission to pub-
lish is unreasonably withheld, Core may approve release of such private matters that merit more general pub-
lication.

19. Support for Multiple Architectures

FreeBSD is a highly portable operating system intended to function on many different types of hardware archi-
tectures. Maintaining clean separation of Machine Dependent (MD) and Machine Independent (MI) code, as well
as minimizing MD code, is an important part of our strategy to remain agile with regards to current hardware
trends. Each new hardware architecture supported by FreeBSD adds substantially to the cost of code maintenance,
toolchain support, and release engineering. It also dramatically increases the cost of effective testing of kernel
changes. As such, there is strong motivation to differentiate between classes of support for various architectures
while remaining strong in a few key architectures that are seen as the FreeBSD “target audience”.

19.1. Statement of General Intent

The FreeBSD Project targets "production quality commercial off-the-shelf (COTS) workstation, server, and high-
end embedded systems". By retaining a focus on a narrow set of architectures of interest in these environments, the
FreeBSD Project is able to maintain high levels of quality, stability, and performance, as well as minimize the load
on various support teams on the project, such as the ports team, documentation team, security officer, and release
engineering teams. Diversity in hardware support broadens the options for FreeBSD consumers by offering new
features and usage opportunities, but these benefits must always be carefully considered in terms of the real-world
maintenarnce cost associated with additional platform support.

The FreeBSD Project differentiates platform targets into four tiers. Each tier includes a list of guarantees consumers
may rely on as well as obligations by the Project and developers to fulfill those guarantees. These lists define the

38

Committer's Guide

minimum guarantees for each tier. The Project and developers may provide additional levels of support beyond
the minimum guarantees for a given tier, but such additional support is not guaranteed. Each platform target is
assigned to a specific tier for each stable branch. As a result, a platform target might be assigned to different tiers
on concurrent stable branches.

19.2. Platform Targets

Support for a hardware platform consists of two components: kernel support and userland Application Binary
Interfaces (ABIs). Kernel platform support includes things needed to run a FreeBSD kernel on a hardware platform
such as machine-dependent virtual memory management and device drivers. A userland ABI specifies an interface
for user processes to interact with a FreeBSD kernel and base system libraries. A userland ABI includes system call
interfaces, the layout and semantics of public data structures, and the layout and semantics of arguments passed
to subroutines. Some components of an ABI may be defined by specifications such as the layout of C++ exception
objects or calling conventions for C functions.

A FreeBSD kernel also uses an ABI (sometimes referred to as the Kernel Binary Interface (KBI)) which includes the
semantics and layouts of public data structures and the layout and semantics of arguments to public functions
within the kernel itself.

A FreeBSD kernel may support multiple userland ABIs. For example, FreeBSD's amd64 kernel supports FreeBSD
amdé4 and 1386 userland ABIs as well as Linux x86_64 and i386 userland ABIs. A FreeBSD kernel should support a
“native” ABI as the default ABI. The native “ABI” generally shares certain properties with the kernel ABI such as
the C calling convention, sizes of basic types, etc.

Tiers are defined for both kernels and userland ABIs. In the common case, a platform's kernel and FreeBSD ABIs
are assigned to the same tier.

19.3. Tier 1: Fully-Supported Architectures

Tier 1 platforms are the most mature FreeBSD platforms. They are supported by the security officer, release engi-
neering, and port management teams. Tier 1 architectures are expected to be Production Quality with respect to
all aspects of the FreeBSD operating system, including installation and development environments.

The FreeBSD Project provides the following guarantees to consumers of Tier 1 platforms:
« Official FreeBSD release images will be provided by the release engineering team.

+ Binary updates and source patches for Security Advisories and Errata Notices will be provided for supported
releases.

+ Source patches for Security Advisories will be provided for supported branches.

+ Binary updates and source patches for cross-platform Security Advisories will typically be provided at the time
of the announcement.

+ Changes to userland ABIs will generally include compatibility shims to ensure correct operation of binaries
compiled against any stable branch where the platform is Tier 1. These shims might not be enabled in the default
install. If compatibility shims are not provided for an ABI change, the lack of shims will be clearly documented
in the release notes.

+ Changes to certain portions of the kernel ABI will include compatibility shims to ensure correct operation of
kernel modules compiled against the oldest supported release on the branch. Note that not all parts of the kernel
ABI are protected.

« Official binary packages for third party software will be provided by the ports team. For embedded architectures,
these packages may be cross-built from a different architecture.

+ Most relevant ports should either build or have the appropriate filters to prevent inappropriate ones from build-
ing.

39

Tier 2: Developmental and Niche Architectures

+ New features which are not inherently platform-specific will be fully functional on all Tier 1 architectures.

+ Features and compatibility shims used by binaries compiled against older stable branches may be removed in
newer major versions. Such removals will be clearly documented in the release notes.

« Tier 1 platforms should be fully documented. Basic operations will be documented in the FreeBSD Handbook.
« Tier 1 platforms will be included in the source tree.

« Tier 1 platforms should be self-hosting either via the in-tree toolchain or an external toolchain. If an external
toolchain is required, official binary packages for an external toolchain will be provided.

To maintain maturity of Tier 1 platforms, the FreeBSD Project will maintain the following resources to support
development:

« Build and test automation support either in the FreeBSD.org cluster or some other location easily available for
all developers. Embedded platforms may substitute an emulator available in the FreeBSD.org cluster for actual
hardware.

+ Inclusion in the make universe and make tinderbox targets.

+ Dedicated hardware in one of the FreeBSD clusters for package building (either natively or via gemu-user).
Collectively, developers are required to provide the following to maintain the Tier 1 status of a platform:

« Changes to the source tree should not knowingly break the build of a Tier 1 platform.

+ Tier 1 architectures must have a mature, healthy ecosystem of users and active developers.

« Developers should be able to build packages on commonly available, non-embedded Tier 1 systems. This can
mean either native builds if non-embedded systems are commonly available for the platform in question, or it
can mean cross-builds hosted on some other Tier 1 architecture.

+ Changes cannot break the userland ABI. If an ABI change is required, ABI compatibility for existing binaries
should be provided via use of symbol versioning or shared library version bumps.

+ Changes merged to stable branches cannot break the protected portions of the kernel ABI. If a kernel ABI change
is required, the change should be modified to preserve functionality of existing kernel modules.

19.4. Tier 2: Developmental and Niche Architectures

Tier 2 platforms are functional, but less mature FreeBSD platforms. They are not supported by the security officer,
release engineering, and port management teams.

Tier 2 platforms may be Tier 1 platform candidates that are still under active development. Architectures reaching
end of life may also be moved from Tier 1 status to Tier 2 status as the availability of resources to continue to
maintain the system in a Production Quality state diminishes. Well-supported niche architectures may also be Tier
2.

The FreeBSD Project provides the following guarantees to consumers of Tier 2 platforms:

» The ports infrastructure should include basic support for Tier 2 architectures sufficient to support building ports
and packages. This includes support for basic packages such as ports-mgmt/pkg, but there is no guarantee that
arbitrary ports will be buildable or functional.

+ New features which are not inherently platform-specific should be feasible on all Tier 2 architectures if not
implemented.

« Tier 2 platforms will be included in the source tree.
« Tier 2 platforms should be self-hosting either via the in-tree toolchain or an external toolchain. If an external

toolchain is required, official binary packages for an external toolchain will be provided.

40

Committer's Guide

« Tier 2 platforms should provide functional kernels and userlands even if an official release distribution is not
provided.

To maintain maturity of Tier 2 platforms, the FreeBSD Project will maintain the following resources to support
development:

+ Inclusion in the make universe and make tinderbox targets.

Collectively, developers are required to provide the following to maintain the Tier 2 status of a platform:
+ Changes to the source tree should not knowingly break the build of a Tier 2 platform.

« Tier 2 architectures must have an active ecosystem of users and developers.

« While changes are permitted to break the userland ABI, the ABI should not be broken gratuitously. Significant
userland ABI changes should be restricted to major versions.

+ New features that are not yet implemented on Tier 2 architectures should provide a means of disabling them
on those architectures.

19.5. Tier 3: Experimental Architectures

Tier 3 platforms have at least partial FreeBSD support. They are not supported by the security officer, release en-
gineering, and port management teams.

Tier 3 platforms are architectures in the early stages of development, for non-mainstream hardware platforms, or
which are considered legacy systems unlikely to see broad future use. Initial support for Tier 3 platforms may exist
in a separate repository rather than the main source repository.

The FreeBSD Project provides no guarantees to consumers of Tier 3 platforms and is not committed to maintaining
resources to support development. Tier 3 platforms may not always be buildable, nor are any kernel or userland
ABIs considered stable.

19.6. Tier 4: Unsupported Architectures
Tier 4 platforms are not supported in any form by the project.

All systems not otherwise classified are Tier 4 systems. When a platform transitions to Tier 4, all support for the
platform is removed from the source and ports trees. Note that ports support should remain as long as the platform
is supported in a branch supported by ports.

19.7. Policy on Changing the Tier of an Architecture

Systems may only be moved from one tier to another by approval of the FreeBSD Core Team, which shall make
that decision in collaboration with the Security Officer, Release Engineering, and ports management teams. For a
platform to be promoted to a higher tier, any missing support guarantees must be satisfied before the promotion
is completed.

20. Ports Specific FAQ

20.1. Adding a New Port

Q. How doIadd a new port?

A: First, please read the section about repository copies.

The easiest way to add a new port is the addport script located in the ports/Tools/scripts directory. It
adds a port from the directory specified, determining the category automatically from the port Makefile. It

41

Ports Specific FAQ

also adds an entry to the port's category Makefile. It was written by Michael Haro <mharo@FreeBSD.org>,
Will Andrews <will@FreeBSD.org>, and Renato Botelho <garga@FreeBSD.org>. When sending questions
about this script to the FreeBSD ports mailing list, please also CC Chris Rees <crees@FreeBSD.org>, the cur-
rent maintainer.

Any other things I need to know when I add a new port?

Check the port, preferably to make sure it compiles and packages correctly. This is the recommended se-
quence:

make install

make package

make deinstall

pkg add package you built above
make deinstall

make reinstall

make package

HHHH K R HH

The Porters Handbook contains more detailed instructions.

Use portlint(1) to check the syntax of the port. You do not necessarily have to eliminate all warnings but
make sure you have fixed the simple ones.

If the port came from a submitter who has not contributed to the Project before, add that person's name to
the Additional Contributors section of the FreeBSD Contributors List.

Close the PR if the port came in as a PR. To close a PR, change the state to Issue Resolved and the resolution
as Fixed.

20.2. Removing an Existing Port

Q

A:

42

How do I remove an existing port?

First, please read the section about repository copies. Before you remove the port, you have to verify there
are no other ports depending on it.

+ Make sure there is no dependency on the port in the ports collection:
+ The port's PKGNAME appears in exactly one line in a recent INDEX file.

+ No other ports contains any reference to the port's directory or PKGNAME in their Makefiles

Tip
; When using Git, consider using git grep, it is much faster than grep -r.

¢ Then, remove the port:
1. Remove the port's files and directory with svn remove.
2. Remove the SUBDIR listing of the port in the parent directory Makefile.
3. Addan entry to ports/MOVED .

4. Search for entries in ports/security/vuxml/vuln.xml and adjust them accordingly. In particular,
check for previous packages with the new name which version could include the new port.

mailto:mharo@FreeBSD.org
mailto:will@FreeBSD.org
mailto:garga@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
mailto:crees@FreeBSD.org
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/index.html
https://www.FreeBSD.org/cgi/man.cgi?query=portlint&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/contrib-additional.html

Committer's Guide

5. Remove the port from ports/LEGAL if it is there.

Alternatively, you can use the rmport script, from ports/Tools/scripts . This script was written by Vasil
Dimov <vd@F reeBSD. org>. When sending questions about this script to the FreeBSD ports mailing list, please
also CC Chris Rees <crees@FreeBSD.org>, the current maintainer.

20.3. Re-adding a Deleted Port
Q: HowdoIre-add a deleted port?

A: This is essentially the reverse of deleting a port.

Important
A Do not use svn add to add the port. Follow these steps. If they are unclear, or are not
working, ask for help, do not just svn add the port.

1. Figure out when the port was removed. Use this list, or look for the port on freshports, and then copy
the last living revision of the port:

% cd /usr/ports/ category
% svn cp 'svn+ssh://repo.freebsd.org/ports/head/ category /portname /
@XXXXXX ' portname

Pick the revision that is just before the removal. For example, if the revision where it was removed is
269874, use 269873.

It is also possible to specify a date. In that case, pick a date that is before the removal but after the last
commit to the port.

% cd /usr/ports/ category
% svn cp 'svn+ssh://repo.freebsd.org/ports/head/ category /portname /@{YYYY-MM-
DD}' portname

2. Make the changes necessary to get the port working again. If it was deleted because the distfiles are no
longer available, either volunteer to host the distfiles, or find someone else to do so.

3. If some files have been added, or were removed during the resurrection process, use svn add or svn
remove to make sure all the files in the port will be committed.

4. Restore the SUBDIR listing of the port in the parent directory Makefile, keeping the entries sorted.
5. Delete the port entry from ports/MOVED .
6. If the port had an entry in ports/LEGAL, restore it.

7. svn commit these changes, preferably in one step.

@ Tip
The addport script mentioned in Q & A 20.1, “Adding a New Port” now detects when
the port to add has previously existed, and attempts to handle all except the ports/
LEGAL step automatically.

43

mailto:vd@FreeBSD.org
http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports
mailto:crees@FreeBSD.org
https://people.FreeBSD.org/~crees/removed_ports/index.xml
http://www.freshports.org/

Ports Specific FAQ

20.4. Repository Copies

Q:

A:

When do we need a repository copy?

When you want to add a port that is related to any port that is already in the tree in a separate directory,
you have to do a repository copy. Here related means it is a different version or a slightly modified version.
Examples are print/ghostscript* (different versions) and x11-wm/windowmaker* (English-only and inter-
nationalized version).

Another example is when a port is moved from one subdirectory to another, or when the name of a directory
must be changed because the authors renamed their software even though it is a descendant of a port already
in a tree.

What do I need to do?

With Subversion, a repo copy can be done by any committer:

+ Doing a repo copy:
1. Verify that the target directory does not exist.
2. Use svn up to make certain the original files, directories, and checkout information is current.
3. Use svn move or svn copy to do the repo copy.

4. Upgrade the copied port to the new version. Remember to add or change the PKGNAMEPREFIX or PKG-
NAMESUFFIX so there are no duplicate ports with the same name. In some rare cases it may be neces-
sary to change the PORTNAME instead of adding PKGNAMEPREFIX or PKGNAMESUFFIX, but this is only done
when it is really needed — for example, using an existing port as the base for a very similar program
with a different name, or upgrading a port to a new upstream version which actually changes the
distribution name, like the transition from textproc/libxml to textproc/libxml2 .In most cases,
adding or changing PKGNAMEPREFIX or PKGNAMESUFFIX suffices.

5. Add the new subdirectory to the SUBDIR listing in the parent directory Makefile. You can run make
checksubdirs in the parent directory to check this.

6. If the port changed categories, modify the CATEGORIES line of the port's Makefile accordingly
7. Add an entry to ports/MOVED , if you remove the original port.
8. Commit all changes on one commit.

« When removing a port:

1. Performathorough check of the ports collection for any dependencies on the old port location/name,
and update them. Running grep on INDEX is not enough because some ports have dependencies en-
abled by compile-time options. A full grep -r of the ports collection is recommended.

2. Remove the old port and the old SUBDIR entry.
3. Addan entry to ports/MOVED .
* After repo moves (“rename” operations where a port is copied and the old location is removed):

« Follow the same steps that are outlined in the previous two entries, to activate the new location of
the port and remove the old one.

20.5. Ports Freeze

Q:

44

What is a “ports freeze”?

Committer's Guide

A“ports freeze” was a restricted state the ports tree was put in before a release. It was used to ensure a higher
quality for the packages shipped with a release. It usually lasted a couple of weeks. During that time, build
problems were fixed, and the release packages were built. This practice is no longer used, as the packages
for the releases are built from the current stable, quarterly branch.

For more information on how to merge commits to the quarterly branch, see Q:.

20.6. Quarterly Branches

Q:

A:

What is the procedure to request authorization for merging a commit to the quarterly branch?

When doing the commit, add the branch name to the MFH: line, for example:

MFH: 201401

It will automatically notify the Ports Security Team <ports-secteam@FreeBSD.org> and the Ports Manage-
ment Team <portmgr@FreeBSD.org>. They will then decide if the commit can be merged and answer with
the procedure.

If the commit has already been made, send an email to the Ports Security Team <ports-secteam@Free-
BSD.org> and the Ports Management Team <portmgr@FreeBSD.org> with the revision number and a small
description of why the commit needs to be merged.

Tip

; If the MFH is covered by a blanket approval, please explain why with a couple of words
on the MFH line, so that the reviewing team can skip this commit and save time. For
example:

MFH: 2014Q1 (runtime fix)
MFH: 2014Q1 (browser blanket)

The list of blanket approvals is available in Q:.

Are there any changes that can be merged without asking for approval?

The following blanket approvals for merging to the quarterly branches are in effect:

Note
@ This blanket approval also applies to direct commits for ports that have been removed
from head.

Important
A These fixes must be tested on the quarterly branch.

« Fixes that do not result in a change in contents of the resulting package. For example:

+ pkg-descr:wWww: URL updates (existing 404, moved or incorrect)

45

mailto:ports-secteam@FreeBSD.org
mailto:portmgr@FreeBSD.org
mailto:ports-secteam@FreeBSD.org
mailto:ports-secteam@FreeBSD.org
mailto:portmgr@FreeBSD.org

Ports Specific FAQ

Q:

A:

46

« Build, runtime or packaging fixes, if the quarterly branch version is currently broken.
» Missing dependencies (detected, linked against but not registered via * DEPENDS).
« Fixing shebangs, stripping installed libraries and binaries, and plist fixes.

« Backport of security and reliability fixes which only result in PORTREVISION bumps and no changes to
enabled features. for example, adding a patch fixing a buffer overflow.

» Minor version changes that do nothing but fix security or crash-related issues.
+ Adding/fixing CONFLICTS.

+ Web Browsers, browser plugins, and their required dependencies.

Important

A Commits that are not covered by these blanket approvals always require explicit ap-
proval of either Ports Security Team <ports - secteam@F reeBSD. org> or Ports Manage-
ment Team <portmgr@FreeBSD.org>

What is the procedure for merging commits to the quarterly branch?

Ascriptis provided to automate merging a specific commit: ports/Tools/scripts/mfh .Itisusedas follows:

% /usr/ports/Tools/scripts/mfh 380362

U 201501

Checked out revision 380443.

A 2015Q1/security

Updating '2015Q1/security/rubygem-sshkit':

A 2015Q1/security/rubygem-sshkit

A 2015Q1/security/rubygem-sshkit/Makefile

A 2015Q1/security/rubygem-sshkit/distinfo

A 2015Q1/security/rubygem-sshkit/pkg-descr

Updated to revision 380443.

--- Merging r380362 into '2015Q1':

U 2015Q1/security/rubygem-sshkit/Makefile

U 2015Q1/security/rubygem-sshkit/distinfo

--- Recording mergeinfo for merge of r380362 into '2015Q1':
u 2015Q1

--- Recording mergeinfo for merge of r380362 into '2015Q1/security':
G 2015Q1/security

--- Eliding mergeinfo from '2015Q1/security’:

U 2015Q1/security

--- Recording mergeinfo for merge of r380362 into '2015Q1/security/rubygem-sshkit':
G 2015Q1/security/rubygem-sshkit

--- Eliding mergeinfo from '2015Q1/security/rubygem-sshkit"':
U 2015Q1/security/rubygem-sshkit

M 201501
M 2015Q1/security/rubygem-sshkit/Makefile
M 2015Q1/security/rubygem-sshkit/distinfo
Index: 2015Q1/security/rubygem-sshkit/Makefile
--- 2015Q1/security/rubygem-sshkit/Makefile (revision 380443)
+++ 2015Q1/security/rubygem-sshkit/Makefile (working copy)

@@ '217 +217 @@
$FreeBSD$

PORTNAME= sshkit

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/uses-shebangfix.html
mailto:ports-secteam@FreeBSD.org
mailto:portmgr@FreeBSD.org

Committer's Guide

-PORTVERSION= 1.6.1
+PORTVERSION= 1.7.0

CATEGORIES= security rubygems
MASTER SITES= RG

Index: 2015Q1/security/rubygem-sshkit/distinfo

--- 2015Q1/security/rubygem-sshkit/distinfo (revision 380443)

+++ 2015Q1/security/rubygem-sshkit/distinfo (working copy)

@@ -1,2 +1,2 @@

-SHA256 (rubygem/sshkit-1.6.1.gem) =
8cab67e46bb4ea50fdb0553cda77552f3e41b17a5aa919877d93875dfa22c03a7
-SIZE (rubygem/sshkit-1.6.1.gem) = 135680

+SHA256 (rubygem/sshkit-1.7.0.gem) =
90effd1813363bae7355f4a45ebc8335a8ca74acc8d0933babee6d40f281a2cf
+SIZE (rubygem/sshkit-1.7.0.gem) = 136192

Index: 201501

--- 201501 (revision 380443)
+++ 2015Q1 (working copy)

Property changes on: 2015Q1

Modified: svn:mergeinfo
Merged /head:r380362
Do you want to commit? (no = start a shell) [y/n]

At that point, the script will either open a shell for you to fix things, or open your text editor with the commit
message all prepared and then commit the merge.

The script assumes that you can connect to repo.FreeBSD.org with SSH directly, so if your local login name
is different than your FreeBSD cluster account, you need a few lines in your ~/.ssh/config :

Host *.freebsd.org
User freebsd-login

Tip

@ The script is also able to merge more than one revision at a time. If there have been
other updates to the port since the branch was created that have not been merged
because they were not security related. Add the different revisions in the order they were
committed on the mfh line. The new commit log message will contain the combined log
messages from all the original commits. These messages must be edited to show what
is actually being done with the new commit.

% /usr/ports/Tools/scripts/mfh r407208 r407713 r407722 r408567
r408943 r410728

Note

E The mfh script can also take an optional first argument, the branch where the merge
is being done. Only the latest quarterly branch is supported, so specifying the branch
is discouraged. To be safe, the script will give a warning if the quarterly branch is not
the latest:

% /usr/ports/Tools/scripts/mfh 2016Q1l r407208 r407713

47

Ports Specific FAQ

/!'\ The latest branch is 2016Q2, do you really want to commit to
2016Q1? [y/n]

20.7. Creating a New Category

Q:

A:

48

What is the procedure for creating a new category?

Please see Proposing a New Category in the Porter's Handbook. Once that procedure has been followed
and the PR has been assigned to the Ports Management Team <portmgr@FreeBSD.org>, it is their decision
whether or not to approve it. If they do, it is their responsibility to:

1.

2.

3.

Perform any needed moves. (This only applies to physical categories.)
Update the VALID CATEGORIES definition in ports/Mk/bsd.port.mk .

Assign the PR back to you.

What do I need to do to implement a new physical category?

1.

Upgrade each moved port's Makefile. Do not connect the new category to the build yet.
To do this, you will need to:

1. Change the port's CATEGORIES (this was the point of the exercise, remember?) The new category
is listed first. This will help to ensure that the PKGORIGIN is correct.

2. Runamake describe. Since the top-level make index that you will be running in a few steps is
an iteration of make describe over the entire ports hierarchy, catching any errors here will save
you having to re-run that step later on.

3. If you want to be really thorough, now might be a good time to run portlint(1).

Check that the PKGORIGIN s are correct. The ports system uses each port's CATEGORIES entry to create
its PKGORIGIN , which is used to connect installed packages to the port directory they were built from.
If this entry is wrong, common port tools like pkg version(1) and portupgrade(1) fail.

To do this, use the chkorigin.sh tool: env PORTSDIR= /path/to/ports sh -e /path/to/ports /
Tools/scripts/chkorigin.sh . This will check every port in the ports tree, even those not connected
to the build, so you can run it directly after the move operation. Hint: do not forget to look at the
PKGORIGIN s of any slave ports of the ports you just moved!

On your own local system, test the proposed changes: first, comment out the SUBDIR entries in the
old ports' categories' Makefiles; then enable building the new category in ports/Makefile . Run make
checksubdirs in the affected category directories to check the SUBDIR entries. Next, in the ports/
directory, run make index. This can take over 40 minutes on even modern systems; however, it is a
necessary step to prevent problems for other people.

Once this is done, you can commit the updated ports/Makefile to connect the new category to the
build and also commit the Makefile changes for the old category or categories.

Add appropriate entries to ports/MOVED .
Update the documentation by modifying:
« the list of categories in the Porter's Handbook

« doc/en_US.IS08859-1/htdocs/ports . Note that these are now displayed by sub-groups, as speci-
fied in doc/en_US.IS08859-1/htdocs/ports/categories.descriptions

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/makefile-categories.html#proposing-categories
mailto:portmgr@FreeBSD.org
https://www.FreeBSD.org/cgi/man.cgi?query=portlint&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=pkg_version&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=portupgrade&sektion=1&manpath=freebsd-release-ports
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/makefile-categories.html#PORTING-CATEGORIES

Committer's Guide

(Note: these are in the docs, not the ports, repository). If you are not a docs committer, you will need
to submit a PR for this.

7. Only once all the above have been done, and no one is any longer reporting problems with the new
ports, should the old ports be deleted from their previous locations in the repository.

It is not necessary to manually update the ports web pages to reflect the new category. This is done automat-
ically via the change to en_US.IS08859-1/htdocs/ports/categories and the automated rebuild of INDEX.

Q. What do I need to do to implement a new virtual category?
A: This is much simpler than a physical category. Only a few modifications are needed:
« the list of categories in the Porter's Handbook
* en US.IS08859-1/htdocs/ports/categories
20.8. Miscellaneous Questions
Q: Are there changes that can be committed without asking the maintainer for approval?
A: Blanket approval for most ports applies to these types of fixes:

* Most infrastructure changes to a port (that is, modernizing, but not changing the functionality). For ex-
ample, the blanket covers converting to new USES macros, enabling verbose builds, and switching to new
ports system syntaxes.

« Trivial and tested build and runtime fixes.

+ Documentations or metadata changes to ports, like pkg-descr or COMMENT.

Important

A Exceptions to this are anything maintained by the Ports Management Team <portm-
gr@FreeBSD.org>, or the Security Officer Team <security-officer@FreeBSD.org>. No
unauthorized commits may ever be made to ports maintained by those groups.

Q. How do I know if my port is building correctly or not?

A: The packages are built multiple times each week. If a port fails, the maintainer will receive an email from
pkg-fallout@FreeBSD.org.

Reports for all the package builds (official, experimental, and non-regression) are aggregated at pkg-sta-
tus.FreeBSD.org.

Q: Iadded anew port. Do I need to add it to the INDEX?

A: No. The file can either be generated by running make index, or a pre-generated version can be downloaded
with make fetchindex.

Q: Are there any other files I am not allowed to touch?

A: Any file directly under ports/, or any file under a subdirectory that starts with an uppercase letter (Mk/
, Tools/, etc.). In particular, the Ports Management Team <portmgr@FreeBSD.org> is very protective of
ports/Mk/bsd.port*.mk so do not commit changes to those files unless you want to face their wrath.

49

https://www.FreeBSD.org/ports/index.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/makefile-categories.html#PORTING-CATEGORIES
mailto:portmgr@FreeBSD.org
mailto:portmgr@FreeBSD.org
mailto:security-officer@FreeBSD.org
https://pkg-status.freebsd.org/
https://pkg-status.freebsd.org/
mailto:portmgr@FreeBSD.org

Issues Specific to Developers Who Are Not Committers

What is the proper procedure for updating the checksum for a port distfile when the file changes without
a version change?

When the checksum for a distribution file is updated due to the author updating the file without changing
the port revision, the commit message includes a summary of the relevant diffs between the original and
new distfile to ensure that the distfile has not been corrupted or maliciously altered. If the current version
of the port has been in the ports tree for a while, a copy of the old distfile will usually be available on the ftp
servers; otherwise the author or maintainer should be contacted to find out why the distfile has changed.

How can an experimental test build of the ports tree (exp-run) be requested?

An exp-run must be completed before patches with a significant ports impact are committed. The patch can
be against the ports tree or the base system.

Full package builds will be done with the patches provided by the submitter, and the submitter is required
to fix detected problems (fallout) before commit.

1. Go to the Bugzilla new PR page.
2. Select the product your patch is about.
3. Fill in the bug report as normal. Remember to attach the patch.

4. If at the top it says “Show Advanced Fields” click on it. It will now say “Hide Advanced Fields”. Many
new fields will be available. If it already says “Hide Advanced Fields”, no need to do anything.

5. In the “Flags” section, set the “exp-run” one to ?. As for all other fields, hovering the mouse over any
field shows more details.

6. Submit. Wait for the build to run.
7. Ports Management Team <portmgr@FreeBSD.org> will reply with a possible fallout.
8. Depending on the fallout:

+ If there is no fallout, the procedure stops here, and the change can be committed, pending any
other approval required.

¢ a. Ifthereisfallout, it must be fixed, either by fixing the ports directly in the ports tree, or adding
to the submitted patch.

b. When this is done, go back to step 6 saying the fallout was fixed and wait for the exp-run to
be run again. Repeat as long as there are broken ports.

21. Issues Specific to Developers Who Are Not Committers

A few people who have access to the FreeBSD machines do not have commit bits. Almost all of this document will
apply to these developers as well (except things specific to commits and the mailing list memberships that go with
them). In particular, we recommend that you read:

+ Administrative Details

» Conventions

50

https://bugs.freebsd.org/submit
mailto:portmgr@FreeBSD.org

Committer's Guide

Note
@ Get your mentor to add you to the “Additional Contributors” (doc/en_US.1S08859-1/
articles/contributors/contrib.additional.xml), if you are not already listed there.

+ Developer Relations
+ SSH Quick-Start Guide

¢ The FreeBSD Committers' Big List of Rules

22. Information About Google Analytics

As of December 12, 2012, Google Analytics was enabled on the FreeBSD Project website to collect anonymized usage
statistics regarding usage of the site. The information collected is valuable to the FreeBSD Documentation Project,
to identify various problems on the FreeBSD website.

22.1. Google Analytics General Policy

The FreeBSD Project takes visitor privacy very seriously. As such, the FreeBSD Project website honors the “Do Not
Track” header before fetching the tracking code from Google. For more information, please see the FreeBSD Privacy
Policy.

Google Analytics access is not arbitrarily allowed — access must be requested, voted on by the Documentation
Engineering Team <doceng@FreeBSD.org>, and explicitly granted.

Requests for Google Analytics data must include a specific purpose. For example, a valid reason for requesting
access would be “to see the most frequently used web browsers when viewing FreeBSD web pages to ensure page
rendering speeds are acceptable.”

Conversely, “to see what web browsers are most frequently used” (without stating why) would be rejected.

All requests must include the timeframe for which the data would be required. For example, it must be explicitly
stated if the requested data would be needed for a timeframe covering a span of 3 weeks, or if the request would
be one-time only.

Any request for Google Analytics data without a clear, reasonable reason beneficial to the FreeBSD Project will be
rejected.

22.2. Data Available Through Google Analytics

A few examples of the types of Google Analytics data available include:
+ Commonly used web browsers

« Page load times

« Site access by language

23. Miscellaneous Questions

Q. HowdoIadd anew file to a branch?

51

https://www.FreeBSD.org/privacy.html
https://www.FreeBSD.org/privacy.html
mailto:doceng@FreeBSD.org

Benefits and Perks for FreeBSD Committers

A: To add a file onto a branch, simply checkout or update to the branch you want to add to and then add the
file using the add operation as you normally would. This works fine for the doc and ports trees. The src
tree uses SVN and requires more care because of the mergeinfo properties. See the Subversion Primer for
details on how to perform an MFC.

Q: How do I access people.FreeBSD.org to put up personal or project information?

A: people.FreeBSD.org is the same as freefall.FreeBSD.org. Just create a public_html directory. Anything
you place in that directory will automatically be visible under https://people.FreeBSD.org/ .

Q: Where are the mailing list archives stored?

A: The mailing lists are archived under /local/mail on freefall.FreeBSD.org.
Q: I would like to mentor a new committer, What process do I need to follow?
A: See the New Account Creation Procedure document on the internal pages.

24. Benefits and Perks for FreeBSD Committers

24.1. Recognition

Recognition as a competent software engineer is the longest lasting value. In addition, getting a chance to work
with some of the best people that every engineer would dream of meeting is a great perk!

24.2. FreeBSD Mall

FreeBSD committers can get a free 4-CD or DVD set at conferences from FreeBSD Mall, Inc..

24.3. IRC

In addition, developers may request a cloaked hostmask for their account on the Freenode IRC network in the form
of freebsd/developer/ freefall name or freebsd/developer/NickServ name.To request a cloak, send an email
to <irc@FreeBSD.org> with your requested hostmask and NickServ account name.

24.4. Gandi.net
Gandi provides website hosting, cloud computing, domain registration, and X.509 certificate services.

Gandi offers an E-rate discount to all FreeBSD developers. Send mail to <non-profit@gandi.net> using your
@freebsd.org mail address, and indicate your Gandi handle.

52

https://people.FreeBSD.org/
https://www.freebsd.org/internal/new-account.html
http://www.freebsdmall.com
mailto:irc@FreeBSD.org
mailto:non-profit@gandi.net

	Committer's Guide
	Table of Contents
	1. Administrative Details
	2. OpenPGP Keys for FreeBSD
	2.1. Creating a Key

	3. Kerberos and LDAP web Password for FreeBSD Cluster
	4. Commit Bit Types
	4.1. Policy for Committer Activity in Other Trees

	5. Subversion Primer
	5.1. Introduction
	5.2. Getting Started
	5.2.1. Direct Checkout
	5.2.2. RELENG_* Branches and General Layout
	5.2.3. FreeBSD Documentation Project Branches and Layout
	5.2.4. FreeBSD Ports Tree Branches and Layout

	5.3. Daily Use
	5.3.1. Help
	5.3.2. Checkout
	5.3.3. Anonymous Checkout
	5.3.4. Updating the Tree
	5.3.5. Status
	5.3.6. Editing and Committing
	5.3.7. Adding and Removing Files
	5.3.8. Copying and Moving Files
	5.3.9. Log and Annotate
	5.3.10. Diffs
	5.3.11. Reverting
	5.3.12. Conflicts

	5.4. Advanced Use
	5.4.1. Sparse Checkouts
	5.4.2. Direct Operation
	5.4.3. Merging with SVN
	5.4.3.1. About Merge Tracking
	5.4.3.2. Selecting the Source and Target Branch When Merging
	5.4.3.3. Preparing the Merge Target
	5.4.3.4. Identifying Revisions
	5.4.3.5. Merging
	5.4.3.5.1. The Principles
	5.4.3.5.2. Practical Example

	5.4.3.6. Precautions Before Committing
	5.4.3.7. Committing

	5.4.4. Vendor Imports with SVN
	5.4.4.1. Preparing the Tree
	5.4.4.1.1. Flattening
	5.4.4.1.2. Cleaning Up
	5.4.4.1.3. Bootstrapping Merge History

	5.4.4.2. Importing New Sources
	5.4.4.2.1. Preparing the Vendor Sources
	5.4.4.2.2. Importing into the Vendor Tree
	5.4.4.2.3. Tagging

	5.4.4.3. Merging to Head
	5.4.4.4. Committing the Vendor Import
	5.4.4.5. From Scratch
	5.4.4.5.1. Importing into the Vendor Tree
	5.4.4.5.2. Merging to head

	5.4.5. Reverting a Commit
	5.4.6. Fixing Mistakes
	5.4.7. Using a Subversion Mirror
	5.4.7.1. Checkout from a Mirror
	5.4.7.2. Setting up a svnsync Mirror

	5.4.8. Committing High-ASCII Data
	5.4.9. Maintaining a Project Branch

	5.5. Some Tips

	6. Setup, Conventions, and Traditions
	6.1. For New Committers
	6.2. For Everyone
	6.2.1. SMTP Access Setup
	6.2.1.1. Using a Local MTA to Forward Emails to the FreeBSD.org SMTP Service

	6.3. Mentors

	7. Pre-Commit Review
	8. Commit Log Messages
	9. Preferred License for New Files
	10. Keeping Track of Licenses Granted to the FreeBSD Project
	11. Developer Relations
	12. If in Doubt...
	13. Bugzilla
	14. Phabricator
	15. Who's Who
	16. SSH Quick-Start Guide
	17. Coverity® Availability for FreeBSD Committers
	18. The FreeBSD Committers' Big List of Rules
	18.1. Details
	18.2. Policy on Multiple Architectures
	18.3. Other Suggestions
	18.4. Deprecating Features
	18.5. Privacy and Confidentiality

	19. Support for Multiple Architectures
	19.1. Statement of General Intent
	19.2. Platform Targets
	19.3. Tier 1: Fully-Supported Architectures
	19.4. Tier 2: Developmental and Niche Architectures
	19.5. Tier 3: Experimental Architectures
	19.6. Tier 4: Unsupported Architectures
	19.7. Policy on Changing the Tier of an Architecture

	20. Ports Specific FAQ
	21. Issues Specific to Developers Who Are Not Committers
	22. Information About Google Analytics
	22.1. Google Analytics General Policy
	22.2. Data Available Through Google Analytics

	23. Miscellaneous Questions
	24. Benefits and Perks for FreeBSD Committers
	24.1. Recognition
	24.2. FreeBSD Mall
	24.3. IRC
	24.4. Gandi.net

